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ABSTRACT

In this thesis we give a general definition of a geometry
on a set S and consider the lattices of the subspaces of these
geometries. ‘

First, we show that all such geometries on a fixed set S
form a lattice and we investigate its properties. -

Secondly, we shoﬁ that the lattice of all geometries on
a fixed set S is isomorphic to the lattice of subépaces of some
geometry and we characterize all such geometries. |

Finally, we show that every finite lattice can be eﬁbed&éd
in the lattice of all geometries on some finite set Se. This reduces
the unéolved problem of embedding every finite lattice iﬁto a finite
partition lattice to the problem of embedding every finite lattice

of geometries into a finite partition lattice.



Section

1.

2

3.

’lu

- iy =
fABLE OF CONTENTS

Title
ACKNOWLEDGEMENTS
ABSTRACT
Latfice Theory Fouﬁdations
Definition and Properties of Geometries
Characterization of L1G(S)
Embedding Theorems

REFERENCES

Page
41

iy

14

39



- 1 -
SOME EMBEDDING THEOREMS FOR LATTICES.

1. Lattice Theory Foundations.
In the follewing paragraphawill be compiled the essentials
of lattice theory which will be used in this manuseripte

A partially ordered get is a set P and a binary relation
< on the elements of P satisfying the postulates

Pl: av_<_a for a1l a in P,

P2: a<b and b<c imply that a < c.
For a and b in Py,a=b ifandonlyif a<b and b < a.
28 <b shall mean a £b but not a = b, An element ¢ in P is

sald to be the union of a subset X of P, ifx < c for each x in

x'-and x<d foreach x in X implies ¢ S d. An element c¢ in

P isg said té be the intersection of a subgset X of P, if c £ x

- for each x in X and if d < x for each x in X implies d £ ec.
A lattice is a partially ordered set L in which each pair

of elemehts has a union and intersection in L. The union of a and b

is designated by au b and the intersection a2 b. The unions and

intersections satisfy the following identities:

\ Ils an a=auU a=a,

anNnb=bnNn a and a LV b=b U 8,

anfbec)=(amn db) N ¢ and av (bue)-‘:(aub)ua,

FEFR

an(aubdb)=a and au(anN b)=a,

A lattice is said to be gomplete if every nonwempty set has a union and
intersection. An element I 1is said to be the unit element of the
lattice L if it is the union ef all the elements of L. Dually, an
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element O is said to be the null element of the lattice L if it
»is the intersection of all elements of L. A lattice with a unit
and null element is said to be gomplemented if for each a in L

there exists an a' such that a N a' =0 and a U a' = I./ In a

lattice an element a is said to gover an element b (a > b) if a # b,
and a>2p>b impiies‘ p = 8.
A single valued mapping © from a lattice L 6ntd a lattice

L' is a homomorphism, if for any a and b in L the tworelations

é(aub) =8(a)U e(b) and

8(a nb) = 8(a) N 8(b) |
are valid. If the mapping is one-to-one the homomorphism 1s-refbffed
to as an isomorphism. A subset L' of a lattice L 4s said to be
a sub;#tggce of L, if with any two elements it contains their union
and intersection. A lattice L' issaid to be gmbedded in a lattice
L if L contains a sublattice isomorphic to LY, ;

‘Let S and R be any sets. Then théir set pnion and set
intersection will be denoted by S \V R and S AR, respectivelys
RS S vill mean that R is a subset of S and a ¢ S will mean
ﬁhat A i3 an element of S. If 3 1s a finite set then n[S] will

be the number of elements in S.

2, Definition and Properties of Geometries.

Definition 1: A geometry G on a set S 1is a collection
of subsets of S, such that any two distinct elements of vS are con-

tained in one and only one subset and every subset contains at least

two distinet elements.
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The elements of the set S are called peints and the
subsets of Definition 1 are called lines of the gecmetry G. The line
defined by the two distinct points p and q is denoted by (p,q)e.
A line (p,q) is said to be trivial if it contains only two points,
nop-trivial othervise, -

Definition 2: Let G be a gecmetry on a set S, Then a
subset T of S is calleda gecmetric cbisct of the gecmetry if with
any two distinct points of T the line defined by these points is
contained in T. |

Iheorem 1: All geometric cbjects of a geomstry form a
complete point lattice under set inclusion,. |

zr_é_gis The set of all geamstric 'ébjects of G on S 1is

- a partially ordered set under set inclusion with the unit element

I =S, We shall show that this partially ordered set is closed under
arbit.rar}? intersections, Let R be a subset of the set of a.ll
geometric objects of G. We have to show that /\ R 1is a geometric
objecte If AR ie vold or consists of only one point it is by
Vﬁeﬁnition 2 a gecmetric object, If AR contains two distinct points
P and q, then the line (p,q) is contained in every gecmetric object
T in R and therefore (p,q) is contained in AR, Thus by Definition
2, AR 1is a geometric cbject. Therefore the set of all gecmetric
objects of G 1s a complete lattice, since every partially ordered set
with a unit element and closed under arbitrary intersections is a con=
plete lattice. Furthermore, it is a point lattice s:lnée by Deﬁnition P

the points of G are geometric objects.
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We shall call a lattice L a geometry if L is isomorphic
to a lattice of all geometric objects of scme geametry.

Theorem 2: A complete ﬁoint lattice L with the set of
points S 1is a geometry if and only if the two following conditiens
held.

1) If p and q are distinect points in S then p U g Fp
and q,

i1) If Q is a subset of S such that, p U q 2 8, 8 £ S, implies
8 is contained in Q whenever p and q are in Q, then
e= {pesSlpsuq }.

Proof: Let G be a gecmstry on S and L the lattice of

this geometry, We shall show that the condition i) holds in L. If

p and q are distinct points of G then p U q = (psq), since by
Definition 2 every geometric object containing p and q has te
contain the line (pyq)e let T be a geametric cbject such that

puU q2T>p,qy then p and q are contained in T and therefore
the line (p,q) 4s contained in T, thus puU qST<puU q and
we have that p U q = T, which implies that puU q > p and g. Iet
'us now show that the condition i1) holds in L. If Q is a subset

of S for which the condition ii) holds, then Q is a geometric
object of G, since with any two distinct points in ‘Q the line defined
by these points is contained in Q. But them Q is an elemgnt of the
complete point htiiee L and therefore Q= {peSlpg UQ } .
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Conversely, if L is a camplete point lattice with the

set of points S in which the conditions i) and ii) hold, then we
7 can define a geametry on S so that L 1s isomorphic to the lattice
of this geometry., To do this let the line which contains the twe distinct
points P and q be given by (psq) = {r esSlr<puU q } . Iet
us noﬁ show that any ts;o distinet points on the line défine the line.
Let r be a point on the line defined by p and gq» r # p. Then
PUQ2ZpuU r>p and condition i) implies that p U q=puU r,
so that (psq) = (pyr). Similarly we can replace p in (p,r) by
any point s on this line if 8 #r. Thus any two distinct lines can
have at most one point in comnon and since every two distiéct’ ‘poihts
of S are contained in at least one line we see that these éuhsets
(psq) form a gecmetry on S, All the points oi' L contained in an
element of L form a geometric object; therefore, to any two distinct
.1a1~'.t.1ee elements there correspond two distinct geometric ebjectg.
Condition 1i) asserts that to any two distinct gecuetri,é objects there
corréspond two distinct lattice elements. Thus L is s geometry.

M 3: The collection of all gecmetries on a get S forms
a ccn\plet.o point lattice under its natural ordering,

Progf:s let G and H be two geometries om Sy then G 2 H
if and only if for every line 1 of H there exists'ayline L of G
such that 1 1is contained in L. This relation satisfies Pl and F2
and thus is a partially ordered set. To show that it is a complete lattice
under this ordering we first note that it has a unit element I = {s}
and we shall show that it is closed under arbitrary ﬁtdrsectiohs. To. do
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this let {Gﬂ]a € A_}‘ be any collection of geometries on the set S,
For any two distinct peints p and q of S there exists exactly
one line (psq), ©f G, which contains p and q. Let (psq) =
/\{(p,q)ulu €A} o« PFor any two such pairs p, g and r,-8

either (Pstl)ql = (r,s)é, all g € A, and therefore, (p;q) = (r,s8),

or there exists an a € A such that (pyq) # (rss),. In the second
case (p,q)a. and (r,s) o Aare distinet lines of G  and tﬁerefora
they have at most one point in common which implies that (psq) and
(ry8) have at most one point in commen, Thaa}aay vtwo di_stinet points
of S are contained in one and only one set (p,q) and iherefor&,

all such distinct sets (p,q) containing two or more points forn a
geometry G on S. Clearly G< G, acA If HSG acA, then
H< G which shows that G is the intersection of the éet {Gah €A} .
- But thern this partially ordered set has a unit element and is clesed
under arbitrary intersections and therefore is a cemplete lattice.
Finally, let us show that it is a point lattice. We observe that a
point P in this lattice is a geometry which has cnly one non~trivial
line and this line consists of three points., If G 1is a geametry,
we have to show that G=U{P|P<G} . First, G is larger then
every point P contained in it. Secondly, we have to show that if
P<F,all PG, then G<F. Todo this let us consider H < G; then
there exists a line 1 of H such that 1 is properly contained in
a non=trivial line L of G. Therefore we can pick three elements of
S which are in L, but are not contained simultanecusly in the same
line of H. Thus there exists a point P such that P <G ‘and Pi He
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If ve nowset G N F=H then clearly P < H, all P £ G, and
therefore, H carnot be less than Ge Thus G NF =G and therefore
G £ Fo This completes the proofs

We shall denote the lattice of all geometries on a set S

Theorem 4: The lattice of all geometries on aset S isa

geometry.

Prooft By Theorem 3 the lattice of all gecmetries is a
complete point lattice. Thus by Theorem 2 we just have to verify that
the conditions i) and ii) of Theorem 2 hold in IG(S). To verify the
condition 1) let P and R be distinct points of LG(S). The points
of 1G(S) ar§ geomstries with only one non=trivial line and this line
‘consists of three points, say, P = {(a,b,c)} s R= {(d,é,f)} .
 Iet n[(asbye) A (dse,£)] S 13 then PU R = {(a,b,c),(d:,e.f)}
and PUR » P and R, If a[(a,byc) A (dye,f)] = 2, say, a = d,
b=e and c#f, then PURS= {(a,b,c,f)} and agaiﬁ PURJ»P
and R. Thus property 1) holds and thersfere the sets of points of
'1G(S) which are contained in the unions of two distinct points form the
set of lines for some geometry. To verify property ii) we have "r.e_ show
that if T is a geometric object in the above defined geometry then
P= {(asbse) } € UT implies that P is contained in T, By
Theorem 3, U T = {KyLyM, oo J i3 & geometry on S and therefore a
point {(a,bsc)} 4s less than U T 4if the elements a, b, ¢ are
contained in a line of UT, say, ay by ¢ £ Ko Let us now consider all
the points {(x,y,z)} of LG(S) such that x, y, z € K and let
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us denote this set by HK. NK is a geometric object since it consists
of all the points of LG(S) which are contained in an element of
 1G(S). This element is the gecmetry with the only non~trivial line

K, let us denote it by {K} .+ Since LG(S) 4s a point lattice ve
have that UN. {K} By Theorem 1 we know that the geatistric
ebjeéts are closed under intersections and therefore TK =T N NK

is a geometric object. Furthermore we shall show that U T, = {K}
We know that UT = (UT) U (VT) VU (UT,) eeo 5 where Ty Tyy oos
are defined similarly to TK'
UTL S {L} » ees » and tims

On the other hand U T, S {K},

{E Lo My eos }=UTs{K}U {L}U {u} *+* = { KoLyM, eor )
For the equality sign to hold we must have ) 'I' { K} ’ |
Ut = {L} , eee s Ve shall now show that if a, b, ¢ £ K then
{ (ay by c)} is contained in Ty and therefore in T, which will
complete the proof. To prove this we shall construct an auiili_.#ry
geometry G such that G= UT,  and if {(a, b, é)} $ G then

K

{(a, b, c)}, 1s contained in Tye To construct G let us consider

subsets U of S with the property that if the distinct elements

‘Xs ¥ 2 £ Uy then {(x, Yo z)} is in Ty.

collection of all such subsets by ¢4 o Let us order the non-void set

Let us denote the

% under set inclusion. We shall now construct the lines 1(p,q) of

Ge Iet 1(psq) containenly p and q if there isno set U in ¥
which contains p and q, otherwise let 1(p,q) = \/{U eF lpsacu} .
To show that all the distinct sets 1(p,q) form a goometry om S

we note that any two distinct points of S are contained in at least

one of these lines, To show that any two distinct lines ‘efk G have at
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most one point in common we shall show that if 1(p,q) 4is non=trivial
then it is a maximal element of ¥ . First, let us show that 1(p,q)
i3 an element of F . If the distinct elements x, ‘y, 2 are contained
in 1(p.q), then by definition of 1(p,q) each of the peints x, Vs
hés to be contained in: soﬁe element of ¥ which also contains p and
qe if the points ' Ps q are contalned in thé set consisting of x, y, 2,
8ayy p Xy qQ =¥y then 2, py q € U, some element U of T ,'aﬁd
therefore, {(x,y,z)} ={(p,q,z)} 1s contained in F . If one of
the poilnts p or q is contained in the set consisting of x, y, 2,
say, p = x, then {(p, Qs y)} and {(p, q,’z)} are elements of
Tz and since T, is a geometric object we obtain that .{(p', y, z)}
= {(x, Vo z)} is contained in Ty. If Py Qs X» ¥y 2 are distinct
then {(x, Ps q)} and  {(v, ps q)} are contained in T, and

K

since T, is a geometric object {(z,y,q)} is contained in T..

Similarly we obtain that {(x, Z, q)} is contained in 'I‘K and there«
fore {(x, Y. z)} is contained in T, which shaws_ﬁhat 1(psq)

is an element of F . To see that 1(psq) is a maximal element of ‘T’
assume that 1(psq) S U, vhere U is an element of ¥ . Then

p and q are contained im U and therefore by definition of 1(psq),
‘U is contained in 1(psq) and thus 1(p,q) = U. ILet us now show

that two distinct lines of G have at most cne point in common. If the
distinct points v, t are contained in 1(p,q) and 1(s,r) then
since 1(p,q)s 1(s,r) are elements of ‘T we have that 1(psq)s

1(s,r) = 1(vyt), but since they are maximal elements of 4 we obtain
that 1(p,q) = 1(syr) = 1(v,t). Tius the collection of distinct lines

1(psq) formsa geometry G on S, Finally we see that if .{(x,y,z)} <G



then x, yy 2 are contained in some U, U ¢ ‘f[-" s and therefore
7{(1:, ¥s z)} e Tge Conversely if {(x. ¥ z)} € T, then the set
U consisting of x, y, 2 is an element of ‘F‘ and therefore
[eys2)} <G Tms UT =C amdif {(x,¥y3)} SUTy
then {(x, Y z)} is contained in Ty which complstes the proof.
We shall now proceed to investigate the problem of complemene

tation in the lattice of all geometries.

lemmg 1: Let G and H be geometries on S and let H
have at most one non-trivial line, Then G U H has at most one line L
which is not a line of G,

Progf: If H has only trivial lines then G U H=G and
Lemma 1 holds. Let H have a nonwtrivial line and let L be the line
of G U H which containsg it lLet F consist of L and the lines 1
of G which are not contained in L. We shall show that F is a
geametry and G U H = F. Any two distinot points p and q in S
are contained in a line 1 of G. Either 1 isaliﬁeof F or 1
is contained in L. Thus any two points are contained in some line of
F. Note that no two lines of F have more than one peint in common,
since L is a line of G U H and therefore if a line 1 of G has
two or more points in common with L it is contained in L and clearly
no two lines of G may have more than ones point in common, Thus F
is a geometry. Finally, we see that G < F, since every line 1 of G
is either a line of F or contained in the line I of F. Also
H<F and therefare G U H< F. On the other hand F<G U H so
that F =G U H; which completes the proof. |



Theorem 5: The lattice of all geometries on a set S is

complemented.

Broef: let G be a geometry on S. Let R be a subset
of S such that R has at most two points in common with any line of
Ge Let us denote the collection of all such sets by 4 and ordér A
under set inclusion. We shall show that if M is a maximal element
of 4 then the geametry H with the only mom-trivial line M is a
complenment of G if G # I. First, let us show that there exists a
maximal element in - . By the Maximal Principal ‘every chain C of 5
is contained in a maximal chain [ of 4 . Ve assert that VL
is an element of ‘% o To see that, let the distinct points 'x, y, 2
be contained in VL. and some 1ine 1 of C. Then, since [l isa
chain, there exists same element R contaiﬁed in [ such that x, y, 2
-are contalned In R and 1 of G, contrary to the asgumption that R is
contained in '% « Tms VL is an element of «%r . It eiéarly is a
maximal element and we shall denote it by M. Let the geometry with
the only non=-trivial line M be denoted by H, Then HN G = 0,
Let us show that H VU G =I. By Lemma 1 the union G U H can have
‘at most one non=trivial line, let us denote this non-trivial 1line by L.
Then M S L and the geometry G U H consists of L and all the
lines 1 of G which are not centained in L. We shall éhow that L = S,
Let us assume that there exiats an element x contained in S which is
not contaeined in L. If M V{x] is an element of ‘5 then since M is
a maximal element of «% we have that x is contained iﬁ M and
therefore in L, contrary to the assumption. Thus we ﬁay assume that
MV {x} is not an element of »% and therefore there exist distinct
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points X, ¥y, 2  contained in Mv {x} and some line 1 of G. But
then y, z are contained in 1 and M, which implies that 1 < L

7 and therefore x ¢ L, contrary to the assumption, Thus L =S and
GUH= { S} = I , which shows that H is a complement of G.
From the proof of Theorem 5 we can see that we ’prove‘d the

someﬁhat stronger resuit:

Corollary 1: Let G be a geomstry which is distinect from I.
Then there existsa geometry H on S vwhich is a complement of G, has
only one non=trivial line,and this line contains any two preseribed

points of S.

Corollary 2: If a geamstry G has a unique complément then
G is either the zere or the unit element of LG(S). |

Proof: Iet G # 0, I, Then G has a line which contains
gt least three distinct points, say, a, by ¢ By Carellari 1 there
exist two complements of G with only one non-trivial line and this
line contains the points a, b and a, cy respectively. Clearly these
‘two complements are distinct, which proves Corollary 2.

We shall now consider the homemorphisms of LG(S).

lemmg 2: If @ 1s a nonwtrivial homomorphism on a couplete
point lattice L, then there exists a point p of L such that
e(p) = @(o). |

Proof: Ilet @ be a none~trivial homomorphism on L, Then
there exist two elements a, b contained in L, a > b, such that



-13 =

6(a) = 6(b). Since L is a complete point lattice there exists a
~point p .such that a N p=p, b N p =0, but then

o(p) =8(pna) =8(p) ne(a) = 8(p) ne(b) =8(p nb) = &(o) .
Theorem §: There are only trivial homemorphisms on LG(S).

Proof: Iet us consider the geometries on S whoée_ non~
trivial lines all contain a fixed point d of S, I= {S} is one
of these geometries and all such geometries are clesed under arbitrary
intersectionsj thus they form a sublattice L of LG(S). Amy two of
the non-trivial lines in one of these gecmetries have only 'thg point 4
in commen, so that after the removal of the point d the non<trivial
lines can be considered as the non-irivial blocks of a partitién on the
set S = d. This yields a one-to-one order preserving mapping of L
onto the set of all partitions on S = de Thus L is isomorphic to a
partition lattice, Let © be a homomorphism on LG(S) which
identifies at least two distinct elements. Then by I.ema 2 there exists
apoiat P= {(a, b, )} of La(S), such that 8(P) = 8(0), If we
et a=d then P 1is an element of L and therefore © induces a
_homomorphism on L which identifies two distinct elements, But Ore [1]
proved that there are only trivial homomorphisms on a partit.ionllattice,
thus © mst identify all the elements in L. Since L and LG(S)
have the same unit and zero elements & identifies all elements of

LG(S)e Therefore @ 1is a trivial-homomorphism which was to be shown.
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3. Characterization of 1G(S).
In the previous part we inveétigated tle lattice properties

of LG(S) and we showed that it is isomorphic to the lattice of some
geometrj. We shall now characterize these geometries whose lattices
are isomorphic to the lattice of all gecmetries on some set S."

We shall 1ntr$duce some concepts which are essential for the

following theory.

Definition 3: Two distinct points p and q of a geometry
G are said to be related if the line defined by p and q is non=
trivial,

Definition 4: The points p and q of a geometry kG are
said to be close if p 1s equal to g, p 1s related to q or there
exists a point ¢t of G such that p 1is related to t and t is
i-el#ted to qe

Dafinjtion 5: Iet the line 1 of G consist of the four

distinct points Pys Pys Py and let uw denote the set consisting

P
of the three collinear points Pys Py» and Pge. Then a point q of

G is said to be gloge to w if one of the two following conditions
holds:
1) q 1s equal to p;» p, or P3»

1i) q 4s close to Pys Pys Pyi Q is distinct from pA and not

related to p 4°

For the further discussion w will denote a triplet of distinet

i
collinear points of G.
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Definition 63 #, 1s said to be close to w, if every

point in LB is close to Toe

Theorem 7: Let L be the lattice of a geowetry G on W
and let W consist of four or more points. Then L 1is isomorphic

to the lattice of all geometries on some set S if and only if G
satisfies the following five axioms:

Axiom 1: The non~trivial 1lines of G consist of four points and

‘every point is contained in at least one non=trivial line,

Axion 2: If apoint p is close to W, and w, dis close to

T then p is close to Toe

Ago_rg 3s If m, is close to @, then =, is close to w,.

t

Axiom 4: If wy, Wy Wy are distinet then there exists a point

p such that p is close to Ty Ty and W,.

Axiom 5: let 1 be a non=trivial line and let p be a point
which is not on this line but is close to every point on this line,
then p is related to exactly two points of 1.

To show that L 1is lsomorphic to the lattice of all geometries
on some set S we have to show that there exists a cme-to;one maéping
of the set W onto the set of points of LG(S) and that this mapping
preserves lines, To do this we shall introduce the concept of a gtar
of G. Let = be a triplet of distinct collirsar poims of Ge. Then
the set of all points which are close to 7 will be ,dalled the star |
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of G defined by w. This set will be denoted by A(w)s We shall
show that the lattice of all geometries on the set of stars of G 1s
isanorphie to L. We know that a point of IG(S) is a geometry with
only one non=trivial line and this line consists of three points. Thus
everj point of LG(S) ig characterized by the three elements eis S
which ére contained in i’c;s non~trivial line. Therefore we first have
to establish a one-to-one mapping of the set W onto the set of all
triplets consisting of distinct stars of G. We shall do this by
showing that every point of G 1is contained in exactly three distinet
stars and that any three distinct stars have exactly one point of G

in common. The proof consists of the following Lemmas.

Lemma 3: If the point p is close to m, then there

exists =

5 such that p 1s contained in w, and =, is ¢lese to Wye

Proof: Iet w, consist of the distinct points ,pi., Py» Py
and let the fourth collinear point of this line 1 be p 4 It p
is contained in 1 then p must be equal to Pys Py oi* P3 since
by Definition 5 the fourth collinear point P, is not close to w..
Thus we may set %, =, since then p is contained in ", and by
Definition 5 and Definition 6 we see that w, 1s close to wee Let
us now assume that p is not on the line 1 but is related to a point
- of m,e Let this point be p, as indicsted in the following figure:
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Then p4 is related to Py and P is related to every point of
7the line defined by p and Pye Thus by Definition 4, pA is close

to every point on this line and therefore by Axiom 5, p, is related
tc‘exacfly two of the four distinet points of this line, We kqow that
p4 is related to P4 gnd let us denote the second peint to which it

is reiated by s. Sincé the line defined by p and P4 consists

of four points there must exiét a point q on this line ﬁhich is distinct

from p and is not related to p4. Iet #u_ consist of p, Py and

2

ge We see that p is contained in w, and we shall show that =

2 2

is close to Wy By Definition 6 we have to show that every point of

", is clese to e Py is contained in L and thereforé by'Definition
5 close to We P and q are close to every point in L énd not
related to e Thus by Definition 5 they are close to LI It

Afol}ows that n, is close to LT We may now assume that p 1s not
related to any point on the line 1l. Since p is close toip1 ’there
exists a point t of O such that p is related to t and t is

related to Py as shavn in the following figure:
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Using the result of the previous case we know that there exists a
triplet Ty on the line defined by Py and t such that t is con-
tained in T, and Ty is close to m,. Let us denote the point of
this line which is not contained in Ty by s as we did in the |
previous case. We recall_i that s is related to p 4 Thus P éannot
be related to s since otherwise p 1s related to s and s related
to p 4 which implies that p 1s close to p 4 and therefofe close to
every point on 1, From this we would conclude that p 1is related
to exactly two points on the line 1, contrary to assumption, . But
then p is close to 7, and is related to t which is cori'!;ained
in Tqe Using again the result of the previous case there exigt‘s a
triplet T, on the line defined by p and t such that p is.
contained in 1r'2 and ™, is close to LEY Now we have that p is cone
tained in LY R is close to 1r3, and 1r3 is close to Tye Thus by
Axiom 2 we conclude that w, is close to w. This completeé the

proof of lemma 3.

M—Az Any three distinct collinear points contained in a
star define the star, :

Proof: Let ,

of ™ is close to LY and therefore e is close to Ty e By

be contained in A(m,). Then every point

" Axiom 3, Ty is close to and therefore by Axiom 2 every point
which is close to KL is close to LY and vice versa, From this it
follows that A(m,) = A(wz).
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Ismma 5: Every point p of G is conmtained in at least
three distinct stars.

‘Proof: By Axiom 1 a poiﬁt p of G is contained in at _
least one non=-trivial linre 1 and this line consists of four yoints.
There are exactly three 'distinct triplets Mis W, and Wy of 1
vwhich contain p. The fourth collinear point of 1 which is_not con=
tained in w, i by Definition 5 not contained in 4(w,). But this
point'is contained in ", and L) and therefore it is contained in
a(ny) end A(wg)e Thus 4(w,) is distinet from 4(wy) and A(sy)e
Similarly we show that A(uz) is distinct from d(na). This shovs
that there are at least three distinct stars which contain p.-

Iemma 6: There are exactly three distinect stars cohtaining

every point p of G,

Proof: Let p be contained in a non=trivial line 1 and
let m, :}2 and m, be the distinet triplets of 1 which contain p.
By the previcus result we know that the stars A(ni), A(uz)‘ and &(53)
are distinct, ILet p be contained in some star. A(n)§ we shall show
that A(F) is equal to A(u.‘), a(m,)y or A(BB)o Note that if p is
'contained in A(w) then by Lemma 3 there exists a triplet =? éugh
that p is contained in w' and #' 4is close to w, If  u' is
contained in the line 1 then it must be equal to MW, or ®

3
therefere by Axiom 3 and Axiom 2 we conclude that A(m) is equal to

and

A(ui), A(u2) or A(w3). Thus we may assume that u' is contained in a
non=trivial line 1' and that 1' is distinct from 1. Ilet us denote
the point of 1! which is not contained in w' by q. Sinece p is



contained in @' and therefore in 1! we see that q is related to
p and P is related to every element of the line 1. Thus q is
7close to every point on the line 1 and therefore related to exactly
two points of 1. We know that q d4s related to p. ILet the second
point to which q is related be denoted by s. One of the triﬁlets
n1, ué or uB does noi contain the point s, say “1' Then "1 is
close to u! since p is contained in n and the two remaining points
of m, are close to every point in #' and not related or equal to q.
From the fact that L is close to w! it follews by Axiom3 and Axiom
2 that A(u1) = A(w'); this proves Lemma 6.

By Axiom 4 any three distinct stars have at least‘onavpoint
in common. The next lemma will show that there cannot be moré‘than

one such point.

Lemma 7: Any three distinct stars have exactly one point

in common,

Proof: Let p and q be distinct points of L. We shall
show that the three distinct stars which contain p cannot all contain
qs let p be contained in the non-trivial line 1 and let ‘H1, , and
m, be the distinct triplets of 1 which contain p. These triplets
define the three distinct stars which contain pe If q is also
contained in the line 1 then q is not contained in one of these
triplets. Let this triplet be LD Thén q 1is not contained in the
star A(n1) since q is the point of 1 which is not contained in
L Thus we may assume that p and q are not related, vwhich implies

that q cannot be close to “l’ w, and n3. Since if q would be

2



close to Wys Wy and iy then gq would be close to every point on 1
~and therefore q would be related to exactly two elements of 1. But
then q would be related to an element of 1 which is not contained
in one bf the triplets Tys W, oOr u3 and therefore q would not be
close to one of these t;'iplets, contrary to the assumption. Thus q
is no£ contained iny one “of the three stars which contain p. This
proves Lemma 7. | |

So far we have shown that there exists a one-~to-one mapping
of the set W onto the set of points of LG(S), where S is the set

of stars of G. Let us denote this mapping by @.
lemma 8: The mapping © preserves lines.

Proof: let 1 be a non-trivial line of G. Then 1 contains
four distinet triplets Tis Uys TWae @ 4 and these tripleia define the
four distinet stars A1 » By A3, AA’ respectively. Every péint ‘of the
line 1 1is contained in three of these triplets and therefore in three
of these stars. Under the above established mapping 9‘ the line 1
is mapped into the line 1' of LG(S) which consists of the four
patnts {45 80 80T » {(&5 80 80} » {(84s &5, 8} ana
' {»(Az, 8qs AL)} o Which shows that every point on'the line 1 is
mapped inte a point of the corresponding line 1% of 1LG(S). Conversely,
let 1' be a non-trivial line of LG(S) and let this line consist
of the four points {(A‘I’ Ays AB)} ’ {(Al’ Ay AA)} ’ {(Ai’ AB’ AA)}
ad {(&s 830 80} + Lot {(4, &y 00} wna {(85 4 )] be

mapped into the polnts p and gy respectively. Let p be contained in
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a non~trivial line 1 of G. We know that the triplets Tys Tps Ty
~of 1 which contain p define the stars Al ’ Az, AB’ respectively.
q 1is contained in A1 and A2 and therefore q is close to every
point on 1. Thus q is related to exactly two points of 1l. q has
to be related to p six}ee otherwise one of the triplets #1 or ,
would 'not contain a poix;t of 1 to which q 1s related and therefore
q would not be close to W, or W, , contrary to assumpi".ien*. Thus

p and q are related.Without loss of generslity we may assume that p
and q are contained in 1 and that Tys Tas Tqy L , @are the distinet
triplets of 1. Tys Moy n3 and w

4
4,s respectively. Clearly every three distinct triplets of the set

define the stars A1,‘A2, AB and

1, g? Tys T 4 have a point in common and this point is contained in l.
This shows that every point of the line 1% is mapped into a point on
the corresponding line l. Thus the mapping preserves lines and we
conclude that L is isomorphic to LG(S). |

We now show that the five axioms of Theorem 7 hold in the
geometry of LG(S), whenever S consists of four or more elements. lLet
the elements of S be denoted by @y by Cy ses o Lot {(a, by e)}
and {(d, es f)} be points of LG(S)e Then thése points are related
if and only if their non-trivial lines consisting of a, by, ¢ and
d, ey £y respectively, have two elements in common, If these non=trivial
lines have one element in common, say a = d, then {(a, b, c)} is
related to {(a, b, e)} and {(a, by e)} is related to v {(a, ey f)}.
From this follows that two points of LG(S) are close if their non=
trivial lines have one or more points in common. ILet us recall that
every non~trivial line of LG(S) comsists of four points and they are
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of the form {(a, b,‘c)} ,{(a, b, d)} ’ {(a, e, 4)} and {(b, Cs d)},
Thus Axiom 1 holds if the set S contains four or more elements. We
7note that any three of these four collinear points are such that their
non-triﬁal lines have an element in ccmmon. For example the three first
points which we shall dgnoté by 7 have a as the element whichis common
to théir non~trivial lii;es. Thus every point of the form {(a, Y z)}
15 close to every point in u and is related to {(b, ¢, )} if
and only if it is contaired in w. Therefore every point of the form
{(a, ¥s z)} is close to w. Conversely, if {(x,y,z)}_ is close
to w, then its non~trivial line must have at least one element in
common with the non=trivial line of every point in wn. Thus its non=
trivial line must contain a or if it does mot contain a it must
contain any two of the three elements b, c, d.’ For the second case
{(x, Vs z)} will be related or equal to {(b, Cy d)} and there=
'for.e not close to w. Thus it must be of the form {(a, ¥s z)} .
It follows that w, is close to m, if and only if the
non=~trivial lines of the points in L and LY have tﬁe same element
~in common. From this we see that Axiom 2 and Axiom 3 hold. Let 4(w,),
A‘(;uz) and A(nz) be distinct stars. Then the common elements ays 8,
and a3 of w, W, and Tys respectively, are distinct. and the point
{(a‘l » 85y 84 )} 1 contained in these three stars. This shows that
Axiom 4 holds. To verify Axiom 5 we note that every §oint {(x, ¥s z)}
which is close to the four collimear points {(a., b, é)} ’ {(a, b, d)} ’
{(a, Cs d)} ’ {(b, cs d)} and not equal to any one of them must be
such that its non~trivial line contains exactly two of the four elements
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a, b, ey d¢ But then the point {(x, Y z)} is related to exactly
‘two of the four collinear points. This finally completes the proof

of Theorem 7.

4-0 Embedding Thegy;ems. .
Theorem 8: Every finite point lattice can be embedded in the

lattice of some finite geometrye.

Proof: Let L be a finite point lattice with the points
Pys Pys eee s Pye We shall construct a geometry G on a finite set S
such that L is isomorphic to a sublattice of the lattice L' of
this geometry Ge If N =1 or 2 then L is a geometry. For N 2 3
let S contain 2'(6N% = 15N + 8) points and let R, Sys Sy eee » Sy
be disjoint subsets of S. let R contain 42 (N = 2)(N = 1) points

and 1ot S,, 4 = 15 2, eee » Ny contain 2(2N - 3) points, At the end

i
of this proof we shall show that these sets are sufficiéntlj large to
carry out the following construction of G. Let S, Sé, cee s Sy

be non=trivial lines of G. Let every point Py of L correspond to

the line S, of G. This establishes a one-~to~one mapping @ of the
set of points of L onto the set consisting of non~trivial lines

S1 ’ 32, ese SN of Ge In general we shall add other non-trivial

lines to G in order to preserve the unions and intersections under

the mapping ©. We shall now describe the construction of the additional |
non=-trivial lines. Assume that, after re~snumerating if necessary,

A the union of the points Pys Pos ees » Py of L contains the point

Ppt and that no union of a smaller number of the points Pys Pyr ese s Py
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contains p nt1® The additional non=trivial lines of G will be so
_constructed that the corresponding union of Sl’ Sz, eve 9 Sn in Lt

. } 4 " 113
contalng Sn +1° To do this let the distinct points X9 Xiy XJy X7
be contained in Si for 1<1i<n,let Yy y:{, y;_, yg’ be contained

in R for 2<1i<n andlet 3z, 2! be contained in Iet

n+1°
none of these points be contained in any other construction of additional

non~trivial lines., Then we shall add to G +the lines
(x1 sxzsyz) ) (szXB sYB )s (33 914’74) 9 o0 9 (Yn_1 oxnsyn) ’

the corresponding lines in the primed, double primed, and iriple primed
elements and finally the lines (;,rn,yl'1 »2) and (yx‘;,yg',z' Je This
construction is shown in Figure 1. We see that any two of these nonw~
trivial lines 'have at most one point in common and since all the different
constructions of additional non-trivial lines will be done on disjoint
sets of points G will be a geometry. We also see that any geometric
object Tv of G which contains the first n-lines 81, 8'2, ces s S

of this construction will contain the points 2z, z' and therefore T
will contain the last line S 1 of this construction. Let us assume
t.‘hat we have adjoined the necessary non~trivial lines for all the unions
as described above., We shall now characterize the union

U{Sili eA} in L'e et U{p; € Lli e A} =a be the
corresponding union in L and let X = {i|p, <a} . With the index
set L we associate a set PK which is a subset of the elements of R
vhich are used to construct additional non=trivial li,nes.y To determine

whether such a point y is contained in PK let us re-enumerate the
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lines and points as we did in Figure 1, Then y = ¥ and ¥y 1s
contained in P; if and only if the first k lines S, S,y «ee » S
of this construction sre contained in the set {S,]i ¢k }. ve
assert that U {S;Jt e 2} = V{s;|1 e X}V P . ILet us dencte
the set \/{S,|1 e X}V Py by T. We first note that S, =T, when-

—

ever 1 €A, Secondly, TS U {811 €4} since if S, =T then

J 4is either contained in A and therefore S, is contained in the

J
union or j is not contained in A but is contained in 1. In this
case py < U {pi e Ljie A} and therefore there exists a construction

of additional lines of G which forces S, to be contained in the

J
unione If Vi is contained in PK then by definition of PK “the
first k-lines of this construction are contained in the union.. but any
geometric object which contains these lines has to contain yk. Thus
we see that TE—.U{SiIi € A} o We shall show that T is a geometric
object of Gs To do this we shall show that with any two distinct
pointé of T the line defined by these points is also contained in T.
Iet x and y be distinet points of T If x and y do not belong
to the same construction of additional non~trivial lines then the line
defined by x and y is either trivial and therefore cont;aihed in T
or 11; is equal to Si’ but then by the definition of T we see that S:l
is contained in T, We may now assume that x and y are contained
in the same construction of additional non=trivial lizies of Ge. Iet us
re-gnumerate the points and lines as we did when we deécribed the con=
struction of these lines (see Figure 1). If both points x and y

are contained in S, then clearly S, is contained in T. The only

i i
other non=trivial lines contained in this construction are listed above



where we described the construction. We see that the only pairs of
distinet points which define non=trivial lines are,

1) x1’ x2 3) Xi’ yi’ 2 5 i _<_ Ny
2) xp¥, 4) Xy4qr Iy 25i<nm,

the cofresponding pairs of primed, double primed, and triple primed
points and any two distinct points on the line (yh, AL z) or
(ng Y;" 2'). |

For the first case the lines S1 and 32 of this construction

are contained in T and therefore by definition of PK the third

collinear point ¥, of the line is contained in EK and therefore in T,

In the second case ¥ is contained in T and therefore

S1 and 82 are contained in T and thus x,

In the third case vy is contained in T and therefore all

is contained in T,

ihe.lines S1, 32’ ese 3 Si of this construction are contaiged in T
and thus y,_ 4 1is contained in T, , | |

In the fourth case vy is contained in T aﬁd therefore the
lines S1, 82’7“' ’ Si of this construction are contginsd in T. We
also have that x, ., is contained in T which impliéé that >Si+1 is
contained in T, This together implies that Y4 is coﬁtained in T,

The same proof holds for the primed, double primed, and triple
primed pointa. Finally, we note that any distinct pair ofvpoints vhich
is contained in the line (yh, Yhe z) or Cyg, A z') has to contain
one of the points Yo yﬁ, yg, y;'. But if any one of these points is

contained in T then the lines 81, Sz, eve 3 Sn are contained in_ T
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and therefore the line S and the lines (yn, y:l_. z) and

n+l
(yps ¥ .z3) are contained in T, This shows that T is a geometric
_object and therefore T =\/ {8t e K}V e o From this ve see that
Py < U{pi e L|1 € AT if end only if 8y < U{Sili e &} » which
shows that © definee a one-to~one order preserving mapping of L

onto the collection of élements of L! which are unions of the elements
of {31, Sys eee s SN}' We shall now show that these unions are
closed under intersections and therefore form a sublattice of L! which
is isomorphic to L. Iet \/{Sili £ Z}VPK and \/{Sili_e §}\/ Py
be two unions and let A A B = C. We know that the sets FK and Pﬁ

are disjoint from the sets ‘SI’ 82, ese 3 S From the definition of

N
thg- sets PI and Pﬁ it follows that PK /\PE = P-c o« Thus ‘Eha_ inter~
section of these unions is given by V{1 € c}v Py 5 which shows
that they are closed under intersection. |

o To complete this proof we shall show that the sets S, R,

S,, Sé, see 9 SN' are sufficiently large to carry out the constrﬁction
of G If Si is one of the first n-lines of a censtruction consiéting
of n + 1 lines, then four points of the set Si are contained in this
construction. If S, is the last line of this éomtruction then two
pointe of Si are contained in this construection. Theré are at most
2N"1 subsets of the set {S‘l’ Sps eee s SN} which contain the set Sge
. Any one of these subsets cen form the first n-lines for at most N ~ 2

constructions. We also see that S, can be the last line for at most

h
21"["'1 congstructions. Thus Si has to contain at most 4 o . -1 (N «2)
+2 2}':“"l = 2N(2N = 3) points. For every construction which contains

n + 1 lines S1 we must have 4(n - 1) points contained in R. Since



there are at most 2 (N = 2) constructions R has to contain at most
4+ 2¥(N = 2)(N = 1) points. Thus S has to contain at most
72N(6N2 = 15N + 8) points. This completes the proof of Theorem 8

We know that every finite lattice can be embedded in a finite

point lattice. Thus by Theorem 8 we obtain the more general resulti

Corollary 3: Every finite lattice can be embedded in the
lattice of a finite geometry.

lemma 9: let L be the lattice of a gecmetry G on a finite
get S, Then L can be embedded in the lattice L! of the geometry G?
on a finite set S!' such that every point of G! is containedvin at

leaét one non~trivial line,

Proof: For every point Py of G which is not contained in

a non-trivial line of G we shall add two new points ’pi, ﬁ; to S
and a new line consisting of Py p] and p; to G. ‘Let this be the
geometry G' on S! and denote its lattice by L', Every geometric
objeect T of G is a geometric objeect of G' aince ve did not intro-
duce any neﬁ non~trivial lines between the points of ‘S. The set of
all geometric objects of G is closed under intersections in L', To
see that it is also closed under unions let 'I‘1 W) T2 = T3~ in L.

Then T, < T1 v T2 in L' saince we added new points and lires to G.
But we know that T1, T, T

3
thus T1 U T2 = T3 also in L', This shows that L is a sublattice

and T3 is a geometric object of GY,

of Lt.
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Theorem 9: let L be the lattice of a geometry G on a
finite set S, then L can be embedded in the lattice of all geometries

on some finite set St

Proof: let G be a geometry with the points pyy Pys «ee s By
and with the nonetrivial lines 1., 1,y ees 5 1. By lemma 9 ve mey
assume that every point of G 1s contained in at least one non-trivial
line of G. We shall show tﬁat if the set S' contains at least
mn(6n + 1) points then L is a sublattice of LG(S')e To do this we
shall map every point Py of G onto a geometry Gl on _S' and show
that these geometries generate a sublattice of LG(S') which is
isomorphic to Lo Let us denote this mapping by 8., To construct the
geometry Gi we shali first define certain subsets of S! which will
be used in this construetion. let R, So’ Sl’ SZ’ vee o Sn be disjoint
subsets of S' such that R and S each contain 2m° points and let
S4»1 =15 2, eee » 1, contein m(2n + 1) points. With every point P
of G we assoclate a set Aj which is contained in thé set union of
Si’ Sz, eos 3 Sn~ and is such that Aj hag exactly one point in common
with the set S, 1if the point p, is on the line 1, of G. and has
no points in common with S1 otherwise. lLet any two such sets Ai and
Aj be disjoint if they are associated with distinct points Py gnd
pj, respectively. Let 1k be a non-trivial line of G and let, after

re~emumerating if necessary, Pys Pys see » Py be the points of this

line. Then we define

Lk=A1V ALV e VA

2 "'So

t k



With every pair (a, I.k), acl, ve associate the three subsets each
consisting of three points: My = (xo, X, 9 Z), w, = (x:,, xf{, z!) and
7u1 = (z, 2%, a). Let the distinct points x_, x! be contained in S ,
let xk, xl‘( be contained in Sk, and let 2z, 2! be contained in R.
Iet none of these points except a be contained in Ai’ i= 1, 29 evs 9 Ne
Let two such triplets of éubsets which are associated with (a, Lk)
and (b, Lj)’ respectively, have no points in common if a # b' and
only the point a in common if a =b, k # jo We shall denote the set
of all such subsets mw, by P. Zk shall denote the set consisting of
poeints 2z, 2' of R which are contained in some set w, -associated
with (a, Lk)’ ac Ik'

Before we proceed with the proof let us show that thé vset.s

i

Ss Ry Sys Sgs Sys eee » S, contain a sufficient number of points to
carry out the construction of the above defined subsets. | Any one of the
in éets A1, Az, ves 9 Am can have at most one point in ccmmon with
the set Sk‘ Thus Slc has to contaln at most m poi;ats for thé con=
struction of these sets, To construet the three subseﬁs LI #2’ ;3
associated with the pair (a, Lk). the sets R, S, and S, each has
to contain two distinet points. There are at most men poj.nts in the
set AIV Az\/ see \/Am so that there are at most men pa-irs (a, Lk)
for a fixed k. Thus Sk has to contain at most 2mn + m points and
8, and R have at most 20n® points eachs Therefore we see that S
has to contain at most mn[én + 1] points.

To construct the geometry G:l on S' we let the set of non~
trivial linesof Gy consist of S \/A;s Si5 Sy ese 5 S, and all the

elements w, of P. Any two of these non~trivial lines have at most
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one point in common which shows that it is a set of non-trivial lines

of sot;e ggometry on 3'., We recall that every point Py of G is

7 contained in at least one non-trivial line of G and therefore the set
Ai’ 1= 1y 25 eee 9 My i8 non-voids Since these sets ars disjoint we

see that the geomstries Gy G,y +.o » G are non-comparable in LG(S“).
Thus the mapping © is" a one~-to-one mapping of the set of points of L
onto the set consisting of (}1 ’ GZ’ ses 3 Gm‘ We also see that the
intersection of any two such distinct geometries Gi and Gj is the
geometry whose set of non~trivial lines consists of So’ Sl,f 82, ses 3 Sn
and all the elements =

i
Ifr Py and pj are distinct points of G which are not

of P,

contained in the same non-trivial line then Gi UG 5

non-trivial lines of E consists of So\/ A:l \V} Aj’ 81, 82’ coe 9 Sn

=E and the set of

and all the elements “i

‘of these non=trivial lines have at most one point in common, To see

of P. First, we shall show that any two

this, let us denote the line of E which contains S, by M and let
us recall that the sets R, S,s Sis Spp eee s S, aTe disjoint. The

line M can have at most one point in common with the line Sk since
otherwise Ai j
which would imply that the points p, and py are cortained in the non=

and A, would have points in common with the set Sk

trivial line lk ‘of G, contrary to assumption. From the definition of

the line n_ contained in P it follows that = " can have at most one

k
point in common with L and Si’ 1 =152 600 yne Thus E 13 a

geometry. We see that every line of Gi and G 3 is contained in a line
of E, thus Gi’ G‘:‘1 < E. Since So\/ Ai and So\/ Aj, are lines of Gi

and Gj’ respectively, and they have more than one point in common
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SoV Ai\/ Aj is contained in a line of Gi U G,s but then every line

of E is contained in a line of the union and therefore E £ Gy U Gj'

j L ]
If p; and py are distinct points of G which are contained

From this it follows that E = G1 UG

in the non-trivial line 1, then G, U G.'I = E and the set of non-

trivial lires of E conaists of So\/ SkV Lk\/ Zk’ S1, Sz, eee 9 Sk-‘l’

S‘k HP e o Sn and all the elements of w, of P which are not associ=-

i
ated with a pair (a, L ), & € L.

Llet M denote the line of E which contains the set So'
If M and S, t # k, have a point in common then this point must come
from one of the sets Ar contained in M. Thus the point ‘pr‘ of G

is contained in the non-trivial line 1, of G, By the definition of

t
M the point P, is also contained in the non-trivial line 11:‘ There-
fore the sets M and St’ t # k, can have at most one point in common

'sin‘oe otherwise the two distinct non=trivial lines 1 4 and lt
have more than one point in common, ‘rhe line W, can haVe at mbst

would

one point in common with the set S., J = 15 25 ees o Ny and if m is
not related to f(a, Ly ) then it can have at most one point in common

with the 1ine M, Thus E is a geometry. We see that G, Gy S E

since every line of G, and Gj is contained in a line of E.
So\/ Ai and So\/ A j are lines of Gi and Gj’ respectively, and
they have more than one point in common. Thus S V Si\/ A j is

contained in a line of the union Giu G,s We know that S, has a

h | k

point in common with A, and a distinct point in common with A j

i

so that Se\/ Sk\/ Ai\/ A

j mst be contained in a line of Gi U Gj’
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But then by the definition of the sets LA which are associated with
(a, Lk), a I3 Lk, we obtain that S_V SkV LkV Z, is contained in a

line of G, U Gje Thus Gy, Gy <E and E <G UGy which implies
that G, U Gy = E,

From these results it follows that p, < p; U Py in L if and
only 1f G <G U G in 16(S'). Thus these unions define a set of
lines on the set consisting of G.', Gz, ese Gm’ and these lines are
preserved under the mapping 6. To complete the proof we shall show that
the geometries Ggs G,y eeo s G gonerate & sublattice of LG(S') and
that this sublattice is the lattice of the above defined ggbmetry on

{51, Gys eoe s Gm'} and therefore isomorphic to L. Let
T= {pi e Lli e B} be a geometric object of G and let '{Gili £ B}
be the corresponding geometric cbject in the geometry on {G1 ,Gz,...,Gm'}.
Let, after re-enumerating if necessary, 11, 12, eos 9 lt be the non-
trivial lines which are contained in T and let Pys Py» eee » P, e
the points of T which are not contained in non=trivial lines in T.
Then U {Gi|i € B } = H and the set of non~trivial lines of H consists
of '

SVEIV 8V VS VLV LV VRNV LV Yt VLV

A1V sz soe VAS’

Sg41? Sy4p? e » S, and all the elements m, of P which are not
associated with (a, Li)’ i =152 eoo 9 te« The line of H which

contains So is also given by

[,V S,V 8, Vore V8,V 2,V 2,V *es VB IV [Viatji e B } 1.
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Exactly as in the two previous cases we show that any two non=-trivial
lines can have at most one point in common and that H = U{Gili € B} .
‘From this follows that Gy <H if and only 4f G; 1is contained in the
gecmetric object { Gili € B} « Thus to complete the proof we need
only to show that these unions are closed under intersections, - Let
Ty = {Gili € B} and T, = {Gjlj € c} be geometric objects of
the geometry on the set consisting of Gyy Gps eee » Gpo Lot '
{1815 e B } and {1 ]s €T} be the sets of non~trivial lines of T,
and T, respectively. We wish to show that (u'rt) N (UT2) =

U (T1 A Tz). Since every G, uhich is contained in T, A T, is

2
contained in (UT1) N (uwz) we see that (u'rl) N (UT2) >
U (’.!‘1 N Tz)o We shall now show that every line of the geometry
(uwt) N (u'rz) is contained in a line of the geometry u('r1 )\Té).
This will imply that (UTy) N (UT,) £ U(Ty A T,) and therefore
(UTy) N (UT,) = U(T{ AT,). Let us dencte the line of UT,

which contained So by M.', Then

M =S vV {sil‘i e BYIviv{z |1 e B}IVIV {41 QB}} .
Let the corresponding line of U T, be M. Then |

M, - SoVIv{slt eTYIvIiv{zlt eC}IvIV{als c-C}] o

~ We have to compute M1 A M2 « To do this let us recall that the sets
Zi’ Z j are disjoint whenever i # j, Si’ S j are disjoint whenever
1#13 Sy Zj are disjoint and so are A, and Zj' Thus after using
the distributive law for set operations we obtain that
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‘M‘/\Mz =s,vIv{slt eBAT}IVIV{Z]1 e BAT}]

vV IV{A L eanBIIVIOV{a]t e BIA(V{8;l3 T})]
\'/_[(V{Aili ecPIN(v{syls eB}N .

Iet us simplify this expression. Assume that a point x of the set St

is contained in Ai/\ s j

Note that 1 éontained in B implies that the geometry Gi is con=

,1eB and je€C (oricC and j ¢B).

tained in T1, and if Ai and S j have a point in common then the

geometry Gi is contained in the non=~trivial line 13 which is con=
tained in ‘1‘2. Thus Gi
is contained in V {Aili'c BAC }. From this it follows th#t

is contained in LI T, and thérefore x

My A M, =S VIV {811 e EATHVIV{Z|1 eBAT}]

V[V{AilicB/\c}] .

This is also the line of the geometry U ('].‘1 A T2) which contains the
set S i thus this line of the geometry (U Tl) N (UTé)i is contained
in a line of U (T‘l N Tz). Any one of the remaining non~trivial lines
of the geometry (UT1) N (UTZ) is an intersection of some lines from
the geometry UT; with same line from UT, and therefore this line
mst be contained in a set Si or . Clearly any one of these sets
s contained in a line of the geometry U ('I'1 N '1‘2). .Thus we see that
(ur)) N (UT)) = U(Ty A T,)o This shows that the geometries

Gys Gys ees s G  genmerate a sublattice of 1G(S?') which is isomorphic

to L as was to be shown.
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From Theorem & and Theorem 9 we obtain the final result:

Theorem 10: Any finite lattice L can be embedded in the

lattice of all gecmetries on some finite set S,

From P.M, Whi?man‘s [2] result we know that every 1a££ice
can bevembedded in a paftition lattice on some infinite set. The
corresponding problem of embedding every finite lattice in a finite
partition lattice has not been solved yet. We see though that
Theorem 10 reduces this problem to the problem of embedding every
lattice of all geometries on a finite set into a finite partition

lattice.
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