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ABSTRACT 

A theoretical and experimental study of the buckling under 

impulsive load of a n  a r c h  with rotational end res t ra in ts  was carr ied  

out. 

Impulsive loading was realized experimentally by use of the 

spray deposited explosive si lver  nitrate - si lver  acetylide. The experi- 

mental buckling loads were compared to those obtained by a theoretical 

analysis. It was found that the theoretical analysis yields a quite 

conservative lower bound on the magnitude of load necessary for 

buckling. Both uniform and nonuniform loadings were considered. 

I t  was found that there  exists a cr i t ical  value of rotational 

spring constant above which dynamic buckling may not occur in the 

rigorous mathematical sense. An expression for  this cr i t ical  value 

was found. 
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I. INTRODUCTION 

The stat ic  and dynamic behavior of shallow a rches  i s  of much 

interest  to the engineer, a s  shallow a rches  represent  one of the 

simplest types of nonlinear s t ructures  which exhibit the dynarnic buck- 

ling phenomenon, a feature which i s  common to more  complex shell 

s t ructures.  The complete, t ime -dependent equation of motion for the 

shallow a r ch  i s  given by a nonlinear part ial  differential equation to 

which a n  exact solution has  not yet been found. If the time-dependent 

t e rms  a r e  ignored, the static equation of equilibrium results ,  which 

may  be solved exactly for various types of loadings and boundary 

conditions (Refs. 1 and 2).  However, if one wishes to t r ea t  the dynarn- 

ic  loading case,  one must  r esor t  to energy methods, o r  numerical o r  

analogue techniques for solving the complete equation of motion. 

In part icular ,  the dynamic buckling (o r  dynamic snap through) 

phenomenon has attracted attention. Dynamic buckling may best be 

defined a s  a large increase in displacement resulting f rom a very  

small  increase in the magnitude of a n  applied, time-dependent, load. 

The load a t  which this increase in displacement occurs i s  known a s  

the dynamic buckling load. This behavior has been analyzed by Hsu 

(Ref. 3 )  using an  energy argument. He showed that a sufficient condi- 

tion for the possibility s f  dynamic buckling to exist i s  that the system 

under consideration possess a t  leas t  one stable equ i l i b r im  position 

other than the original unloaded position, 

The dynamic buckling o f a  simply supported a r c h  was f i r s t  

investigated by Hoff and Bmce (Ref. 4). Arches with clamped ends 
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were considered by Humphreys (Ref. 5) and Cheung (Ref. 6 ) ,  among 

others.  It may  be noted that both the simply supported and clamped 

boundary conditions represent  the limiting cases  of an  a rch  whose ends 

a r e  elastically restrained in rotation. If K i s  the rotational spring 

constant, then K = 0 gives the simply supported boundary conditions, 

and K 4 cx, gives the clamped conditions. It was thus thought worth- 

while to investigate the dynamic buckling behavior of an  a r c h  with 

elastically restrained ends. This thesis  presents  the resul ts  of that 

investigation. 

F i r s t ,  a se r i es  of experiments were conducted on a rches  

subjected to unifo rrnly distributed impulsive loadings with the afore 

mentioned boundary conditions. The resul ts  a r e  compared to the 

critical loads predicted by Hsu's  cr i ter ia .  

Secondly, some qualitative features of the potential energy 

function of the a r ch  a r e  discussed. It has  been shown that dynamic 

buckling of a n  impulsively loaded clamped a r ch  in the sense of Hsu i s  

impossible (Ref. 7) .  However, dynamic buckling i s  possible for the 

simply supported arch.  This suggests that there  exists some value 

of rotational spring constant above which dynamic buckling may not 

occur. This i s  shown by a theoretical argument to actually be the 

case,  and a n  expression for this  cr i t ical  value i s  given. 



11. DESCRIPTION OF EXPERIMENT 

A. Description of Explosive 

Impulsive loading was achieved experimentally by use of the 

explosive si lver  acetylide- silver nitrate (Ag2C2"AgN03). This 

cornpound yields the low impulse levels necessary for an  experiment 

of this type and i s  also relatively safe to handle. 

The method of preparation of the explosive i s  discussed in 

reference 8. The explosive i s  best spray deposited, and the method 

of spraying i s  described in references 8 and 9. In this case,  the spray 

was deposited on 0. 002 in. thick s t r ips  of Mylar of the desired length. 

After drying, the s t r ips  could be conveniently laid on the surface to be 

loaded. 

Silver -acetylide - si lver  nitrate i s  light sensitive, and detona- 

tion was achieved by means of a nonexpendable Xenon flash tube with 

a 10 in, parabolic reflector. By examination of the Mylar s t r ips  

af ter  firing, it was found that detonation occurred nearly simultaneous- 

ly a t  several  points directly beneath the flash tube. Ignition then 

proceeded outward from these points. Cheung (Ref. 6)  has shown that 

the speed of propagation of the explosion i s  such that the resulting 

impulse may be considered a s  essentially uniform, even though 

uniform ignition over the explosive surface i s  not realized. Reference 

6 also gives a more  complete description of the flash tube apparatus. 

In o rder  to verify previously obtained values of impulse pe r  

unit weight of explosive, a se r i es  of tes ts  were performed on a 

ballistic pendulum. The explosive for these tes ts  was sprayed onto 



1" x 4" s t r ips  of 0. 002 in. Mylar in order  to simulate a s  nearly a s  

possible the explosive str ip geometry used in the actual a r ch  tes ts .  

The value of impulse per  unit weight of explosive obtained f r o m  these 

tes ts  agreed very well with that reported by Cheung (Ref. 6 ) ,  This 

value i s  I/W, = 1.79  slug-in/sec-gm. 

It should be noted that Cheung sprayed his  explosive onto a 

ba re  metal  surface. Apparently, then, the Mylar surface has only an  

insignificant effect on the magnitude of the impulse unit weight 

obtainable from the explosive. However, it was observed that for 

2 
values of We /A less  than about 0.025 gm/in , the explosive would 

propagate only a short distance f rom the initial points of ignition, 

leaving the a rea  a t  the ends of the s t r ip  unignited. It i s  hypothesized 

that this i s  a Mylar effect, a s  Cheung obtained complete ignition with 

2 
values of We/A less  than 0,025 gm/in . 

A drawback to the technique of using a spray-deposited explosive 

should be mentioned. Although i t  i s  possible to obtain fair ly uniform 

sprays  and thus uniform loadings, it i s  difficult to deposit exactly a 

given weight of explosive, Thus one must  usually spray a number of 

s t r ips  to obtain one with a weight close to the desired weight. 

B. Apparatus 

1. Arch. The a rch  used in the impulsive loading experiments 

was formed from a flat piece of spring steel  15 in. long, 1 in. wide, 

and 1/32 in. thick. The a r ch  shape was obtained by buckling the s t r ip  

a s  an  Euler column, until the desired central r i s e  was obtained. 

F rom the theory of column buckling, i t  i s  known that the resulting 

shape i s  a half-sine wave. 
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This i s  a simple means of obtaining a shallow sinusoidal arch ,  

and avoids the necessity of rolling the s t r ip  to form the desired shape. 

However, a n  initial end thrust ,  approximately equal to the f i r s t  Euler 

buckling load for the s tr ip,  i s  introduced into the s tructure.  This 

must  accordingly be taken into account in the theoretical analysis. 

2. Rotational spring and a r ch  frame.  The rotational springs 

were constructed by attaching torsion rods to ei ther  end of the a r c h  in 

such a way that rotation of the a r ch  ends resulted in twisting of the 

rods. This was accomplished by securing both ends of the rod in dri l l  

chucks so that no rotation of the rod ends was possible. Two small  

plates were then screwed down over the center of the rod, and one end 

of the a r ch  inserted between the two plates, so that the a r c h  end 

rested against the rod. Two set  screws in the top of one of the plates 

were then tightened to hold the a r c h  in place. The center of each 

torsion rod was knurled, so a s  to reduce the possibility of slippage 

between the rod and the clamped plates. This arrangement i s  depicted 

in Figure 1. 

To avoid la tera l  bending of the torsion rods due to a r c h  end 

thrust ,  the rods were supported b y  passing them through Torrington 

4 N B C 6 1 2 Z P  needle bearings placed immediately to either side of the 

clamped plates. The bearings were pressed into metal  blocks which 

were then bolted to the a r ch  frame,  a heavy steel  structure. The 

bearings also served to res t ra in  the a r ch  ends from motion. An 

overall  view of the a r ch  frame,  with torsion rods and a r ch  in place, 

i s  given in Figure 2a, b, 
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3 .  Spring stiffnesses. The torsion rods were made f rom 

lengths of s teel  rod. By varying the length and diameter of the rod, 

a fairly wide range of rotational spring constants could be obtained. 

It should be noted here  that the dr i l l  chucks could be moved along the 

length of the c rossa rms ,  allowing the use  of rods of different lengths. 

After manufacturing the rods, their  rotational spring constants 

were  measured experimentally by placing the rods in position in the 

a r c h  frame.  They were then subjected to a known moment applied 

through the clamping plates and the resulting angle of twist measured. 

Rods having four different rotational spring constants were used in 

the impulsive loading experiments. These had values of K =  85.0,  

75.0, 48.8,  and 22.5 in-lbs /rad. 

The torsional stiffnesses of the rods were also calculated 

using the standard torsional theory for circular  ba r s .  F o r  the stiffest 

0 
spring, this gave a value of stiffness 15 /o above that observed 

experimentally. The agreement between theory and experiment 

became bet ter  with decreasing stiffness. It i s  felt that this discrep- 

ancy i s  due to some twisting of the rod within the clamped plates,  the 

rods not being held completely clamped. However the experimental 

values of torsional stiffness were quite repeatable, so this occasioned 

no difficulty. 

It was found that the a r ch  f rame possessed a nonnegligible 

amount of flexibility in the axial, o r  horizontal direction. The stiff- 

ness  of the f r ame  in the axial direction was accordingly measured 

experimentally by applying a known force over the range of expected 

a r ch  end thrusts  and measuring the deflection. In this manner,  i t  
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was determined that the frame had an  effective axial spring constant 

of approximately 16, 600 lbsl in.  This was then included in the 

theoretical analysis by adding an  axial spring a t  one end of the arch.  

4. Measurement of a r ch  deflection. A measurement of the 

a r c h  deflection under loading was obtained by soldering a long needle 

to the underside of the a rch  a t  i ts center.  %'-hen the a r ch  deflected, 

the needle pierced a se r i es  of t issue str ips.  An examination of the 

t issues af ter  the experiment was over then gave an  indication of the 

total deflection of the center of the arch .  Since the t issues were 

spaced 0.2 in. apar t ,  only an  approximate measure  could be obtained 

However, this i s  not felt to be a serious drawback. A photograph of 

the small  f r ame  used to hold the t issue str ips i s  given in Figure 3 .  
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111. THEORETICAL ANALYSIS 

A. Equations of Motion 

The a r ch  geometry to be considered i s  shown in Figure 4a. 

I t  i s  assumed that due to the shallowness of the arch ,  the axial load 

H may be considered constant throughout the arch .  Under this 

assumption, the equation of motion may be derived by considering the 

equilibrium of a differential element of the arch ,  shown in Figure 4b. 

Summing forces in the vertical direction 

and taking moments about point A, 

Combining these equations 

Note here  that M i s  the total bending moment present  in the 

arch.  Thus f rom standard beam theory 

2 a w  M = EI- 
ax 2 

The end thrust  i s  given by 



and 6 i s  the deflection of the axial spring. Thus 

Also, i f  a represents  the spring constant of the axial spring, 

Combining these two expressions gives 

and therefore 

Substitution of (2 )  and (3) into (1) then give the final equation 

of rnotion 
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It may  be noted that there i s  some difference between (4) and 

the equation of motion a s  it i s  usually presented in the l i terature ( in 

part icular ,  reference 1, where this equation was obtained for the f i rs t  

4 2 
t ime) .  Usually, the t e r m  -EI a wo/ax4 - Ho a wo /ax2 would be 

added to the left-hand side of (4). However the a r ch  under consider- 

ation i s  assumed to have obtained i t s  shape a s  the resul t  of the buckling 

of a flat strip.  Thus for  this  case;  

I t  will la ter  be shown that, by utilizing an energy analysis to 

t r ea t  the case of buckling under an  impulsive load, only the static 

equilibrium positions of the a r ch  under zero load need be considered. 

Thus in (4), the time dependency vanishes, and q = 0. (4) then 

be comes 

where H i s  given by (3). 

The analysis f rom this point will be s imi lar  to that presented 

by Vahidi in reference 2. 

F i r s t  equations (5) and (3) a r e  written in t e r m s  of nondimen- 

sional variables by making the following substitutions : 



(5) thus becomes 

and (3)  becomes 

For  a sinusoidal a r ch  with the coordinate system a s  indicated 

in Figure 4a, yo = r cos 5 

Also, for the particular case under consideration, H i s  just 
0 

equal to the f i r s t  Euler  buckling load for  the s t r ip ,  and therefore 

S = 1. 

The solutions of (6 )  describe the equilibrium positions of the 

arch ,  and, foranyequi l ibr iumposi t ion ,  w i l l b e a  constant. If 

we thus assume p to have a known constant value, the solution to (6)  

may immediately be found to be: 

y = A1 sin P 5 + Az cos P 5 + A j  E, + A4 (8 
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where A1, A2, A j  and A4 a r e  constants to be determined f r o m  the 

boundary conditions. 

F o r  the case  of a n  a r c h  with rotational end r e s t r a in t s  (spring 

constant = KJ, the boundary conditions in nondirnensional f o r m  a r e :  

Ti- Ti- 
Y(-  Z) = Y ( ~ )  = 0 

where K'  = K L  
ITEI 

These then give four equations for  the four undetermined 

constants A A2, A and A4. 1 ' 3 

PTi- PTi- A sin- + A ~ C O S -  Ti-A3 
1 2  2 +2 + A 4 = 0  

PTi- P r  3. 

1 2 2 2 
A f A 4 = 0  -A s in-  t A cos -  - 2 

PTi- @Ti- 2 PTi- 2 PTi -=o  -Kt( - r+AIPcos  - t A Psin7 + A )+ AIP sinT - A2P COP 2 2 3 2 

t 9d) 

Now subtract  (9c) f rom (9a),  and add (9b) to (9b) , The resu l t  

is 



Similarly, add (9c) to (9a) and subtract (9d) f rom (9b) to obtain 

2 
A2(K1P sin + + cos q) - Kf r = 0 (1 lb)  

Note that (10a, lob) contain only the antisymmetric components of the 

a r c h  deformation, while (1 l a ,  1 lb)  contain only the symmetric  

components. Solving (1 l a ,  1 lb)  gives 

A2 = K' r 
P P.- K'psin - + cos - 2 2 

Rewriting (lOa, lob),  

P r  A s i n - + - A  = O  
1 2 2 3  

2 P.- 6.- A1(P sin - K'P cos T )  - K1A3 = 0 

Two possibilities exist here. 

i. A1 = A 0, which implies that the deflected a r ch  shape is  3 = 

symmetric.  
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ii. A l ,  A3 f 0, which implies that the determinant of the 

matr ix  of coefficients vanishes, i. e. 

pTr Tr 2 pl-r P r  - K'sin- + -(P sin- - K'P COS -) - 0 
2 2 2 2 

This equation i s  a transcendental equation for  P. It 

i s  interesting to note that this equation always has 

solutions, even for the case  K' -, CQ. In this 

instance, (14) becomes 

P r  - PTr tan - - - 2 2 

which does indeed have solutions. Note also that for 

A12 A3 # 0, we cannot yet obtain explicit represen- 

tations for A1 and A3, but only a relation between 

the two. F rom (13a), this relation i s  

2 A = - A  s i n &  
3 T r l  2 

Recall we assumed a t  the s t a r t  that P had some known 

constant value which, however, was not specified. Apparently, then, 

another relation i s  needed in o rder  to completely determine the 

equilibrium states.  This relation i s  supplied by requiring (7) to be 

satisfied. For  if  we substitute the expressions for  y and y into 
0 

( 7 ) ,  we obtain 

1 2  2 2 2  pl-r PTr PTr 2 2 PTr 
$3 

P r  - 1 ) -  +; A l  P(-Z + sin - cos -)+--A P(- - sin$ cos -) 2 2 T r 2  2 2 
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(16) i s  called the "constraint equation" by Vahidi. With the inclusion 

of (16), the problem i s  completely determined. 

In the interest  of clarity,  the method of obtaining solutions for 

the separate cases  Al = A = 0 and A A i 0 will now be outlined. 
3 1' 3 

i. A = A = 0 (symmetric  case)  
1 3 

In this case the deflected equilibrium position i s ,  

f rom (8) ,  

where A2 and A4 a r e  given by (12a) and (12b) 

respectively. Noting that A2 and A4 a r e  

functions of p and known a r c h  parameters ,  

(12a, 12b) may be substituted into (16) to obtain 

a transcendental equation which may then be solved 

for p. The roots of this equation may then be 

substituted into (17) to obtain expressions for the 

equilibrium positions of the arch.  

. - 
11. A1, A $ 0 (antisymmetric case)  3 

In this case (14) must  be satisfied. (14) i s  another 

transcendental equation in p, the roots of which 

describe the equilibrium positions of the arch.  

Knowing the equilibrium values of P, A2 and 

A may be calculated. However, A1 and A a r e  4 3 

stil l  indeterminant. Knowing P, we may use (15) 

and ( 16) to solve for A1 and A3. Putting ( 15) into 

(16) gives 



where 

- - 2p (-2- P r  + s i n 2  P r  cos FIT - 7 8 sin 2 &  
=2 - IT 

'K 
2 

Thus 

The - t sign simply means that no antisymmetric 

orientation i s  preferred,  Note there exists a 

possibility that (20) may  possess no rea l  roots. 

This possibility will be discussed later .  

A digital computer program was written to solve the two 

transcendental equations and to calculate the deflected equilibrium 

positions for both the symmetric  and antisymmetric cases. A plot of 

some of the lower equilibrium values of P vs. K t  obtained by this 

program i s  given in Figure 5, 

B. Stability under Impulsive Load 

To characterize the stability of the a rch  under an  impulsive 

load, the s train energy present in any equilibrium position must  f i rs t  

be calculated. The difference in s t ra in  energy f rom the undeforrned 

state i s  given by 



where 

Now define a nondirnensional energy by 

Substituting (22) into (21) and using (23) gives 

Now wri te  

U = U1 + u2 + U3 + u4 



Here 

- - n A ' p 3 [  IT pn + s in  pn ] - r  (271 

by using (8) and the relation yo = r cos 5 

- - 2 2 2 2  2 p n  2 K ~ A ~ ~  n C O S ~ @ + ~ X ~ P  2 s in Z + 2 A 3  
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Now that an  expression for the s train energy has been derived, 

we may apply Hsu' s cr i ter ion to the case of impulsive loading to 

determine the stability of the arch.  

Consider a uniformly distributed impulsive load given by 

q(t)  = B 6 ( t )  (30)  

The initial velocity of the a r ch  will then be 

& = B/,-,A 

and its initial energy i s  

Now Hsu's stability cr i ter ion i s  that be l e ss  than some cri t ical  
-* 

value T'. If > V , then the possibility of dynamic snap through 

exists,  
4, 

In o rder  to determine 
V.'' 

for the arch ,  consider Figure 6,  

which depicts an  energy surface for the a r ch  with no applied load. 

Here q represents  some symmetric  component of the deflected 1 

shape, and q some antisymmetric component, The contours 2 

represent  equi-strain energy curves, A diagram of this so r t  for the 

a r c h  was f i r s t  presented by Hoff and Bruce in reference 4. 

F r o m  the condition that equilibrium positions correspond to an  

extremum on the energy surface, we see that, within the simplified 

representation of the diagram, there  a r e  only four equilibrium posi- 

tions available apar t  from the initial position (actually there  may be 

more ,  depending on the initial a r ch  r i se ,  but these have no meaning in 
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the present  discussion).  The two positions with q2 components a r e  

saddle points and a r e  thus unstable. One of the positions on the q 1 

ax i s  is a t  the top of a "hill" and i s  unstable; the other  i s  a t  the bottom 

of a depression and i s  a stable equilibrium position. 

Now i t  is known that no ma t t e r  how many equilibrium positions 

the  a r c h  possesses  under zero load, the re  may  exist  only one stable 

position apa r t  f r o m  the initial position. This is the "snapped throught' 

position, in  which the a r c h  undergoes a r eve r sa l  of curvature along 

mos t  of i t s  length. This position i s  made up of s y n m e t r i c  deflection 

components only, and may  be identified with the depression in the 

energy surface. 

We m a y  consider the a r c h  to describe a t ra jec tory  over  the 

energy surface in q - q2 space. Now the effect of the impulsive 

load i s  to impar t  a n  initial energy to the arch .  If enough energy i s  

imparted to the a rch ,  the t ra jec tory  will be able to c r o s s  over  the r i s e  

in the energy surface separating the original unloaded equilibriwn. 

position f rom the snapped through equilibrium position. When this 

happens, dynarnic buckling i s  said to  have occurred.  However, i f  the 

a r c h  does not have enough energy to c r o s s  the r i se ,  the t ra jec tory  will 

always remain in the vicinity of the original position. 

F r o m  the definition of O* a s  that initial energy above which 
.I. 

dynamic buckling may  occur ,  it i s  easy  to see  that V*'' i s  just equal to 

the energy associated with the saddle points, a s  these a r e  the points 

having the lowest energies on the r i s e  separating the two stable equi- 

l ibr ium positions. It  is also easy  to see  how this  sat isf ies  the definition 

of dynamic buckling given in the Introduction. Suppose the a r c h  follows 
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a t ra jec tory  which passes  through one of the saddle points. Then if the 

- << 
a r c h  has a n  initial energy V , the t ra jec tory  will eventually come to 

r e s t  a t  the saddle point in unstable equilibrium, taking a n  infinitely 

long t ime to do so. However if  the  a r c h  has an  initial energy 

9 = 8" + AT,  then it will have sufficient energy so that the t ra jec tory  

will c r o s s  the saddle point and proceed down the other  side of the r i se .  

Thus a n  infinitesimal increase in load (and thus initial energy) has  

produced a finite increase  in displacement. 

If the t ra jec tory  was to pass  over  some par t  of the r i s e  other  

than the saddle points, m o r e  energy would be required than that 

necessary  to c r o s s  a t  the saddle points. Thus O* i s  a necessary  

condition for  dynamic buckling. 

It should be noted that, for  Hsu ' s  c r i te r ion  to be applicable, 

there  must  exist  a t  least  one stable equilibrium position other  than the 

undeflected position. If the undeflected position i s  the only stable 

equilibrium position, then a l l  t ra jec tor ies  which s t a r t  out f r o m  this  

point on the energy surface will eventually r e tu rn  to the s a m e  point. 

Thus dynamic buckling in the sense of Hsu i s  not possible. This ,  of 

course,  implicitly a s sumes  that the a r c h  will never come to r e s t  in a n  

unstable equilibrium position. 

A plot of s t r a in  energy vs.  K'  i s  given in Figure 7 ,  for  r = 39.8  

f o r  the f i r s t  t h ree  equilibrium positions. It  can be seen that the f i r s t  

symmetr ic  position has the lowest energy. This corresponds to the 

stable snapped through equilibrium position. The next highest energy 

i s  associated with the f i r s t  ant isymmetric  position, which corresponds 

to the saddle points, o r  B"'. 
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Effect of Increasing Torsional Spring Stiffness 

It was stated previously that, in order  for  Hsu's stability 

criterion to be applicable, the a r ch  must possess a t  least  one other 

stable equilibrium position other than the original unloaded position. 

If such i s  not the case, then the a rch  must always be stable in the 

sense of Hsu. 

Now the simply supported a r ch  i s  known to have a stable equi- 

l ibrium position other than the original unloaded position. Thi s i s  the 

snapped through position. Contrariwise, i t  has been shown by Vahidi 

(Ref. 7 )  and confirmed experimentally by Cheung (Ref. 6)  that the 

clamped a r ch  has no stable equilibrium position other than the original 

position. This then suggests that there exists some critical value of 

rotational spring constant above which the a r ch  possesses only one 

stable equilibrium position, the undeflected one, Above this critical 

value, dynamic buckling in the mathematical sense may not occur. 

It i s  suspected, therefore, that a t  some point the f i rs t  

symmetric (snapped through) position loses i ts  stability and becomes 

unstable. The mechanism causing this to occur may be deduced by 

considering Figure 7. With increasing spring stiffness, the strain 

energy curves for the f i r s t  symmetric and f i r s t  antisymmetric equi- 

librium positions tend to run together until they merge. By then 

looking a t  the energy surface in Figure 6, it can be seen that this 

implies that the two saddle points a r e  merging in along the q axis 2 

towards the depression representing the f i r s t  symmetric position. 

When this merger  becomes complete, the f i rs t  symmetric position will 

become a saddle point, and will thus lose i ts  stability. 



At this point, the antisymmetric equilibrium positions will have 

ceased to exist. In o rder  to determine the value of rotational spring 

constant a t  which this  occurs,  consider equation ( 2 0 ) ,  which is 

where 

- - Z P  (? P r  4- s in-  pn cos -) Pn - -T 8 sin 2 & 
D2 - 7T 2 2 

Sh 
2 

p i s  assumed to have been determined f rom equation (14). 

Consider f i r s t  the expression for  D2. F rom equation (14) and 

Figure 5 it can be seen that the lowest possible value of P for anti- 

s y r m e t r y  i s  P = 2. This simply corresponds to an  end thrust  equal 

to the second Euler  buckling load for the s t r ip  when K' = 0. Thus D2 

will always be positive. 

Now consider the expression for D l =  If antisymmetric equi- 

l ibrium positions a r e  to exist, D must  be negative. Fo r  arches  with 
1 

2 
any appreciable r i se ,  r will be relatively large (approximately 1600 

for the a r ch  used in the experiment). Thus for  M' small  enough, 
D l  

will indeed be negative, and antisymmetric solutions will exist. 

The value of Ks a t  which antisymmetric positions will cease 

to exist may be found by setting D - 0. Thus 
1 - 
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Substituting for A2 f rom equation (12a) gives 

P r  2 P r  2 r ( K I P  sin - + 6 cos -Z-) 2 

This equation can be put in t e rms  of 63 alone by solving equation (14) 

for  K1. Thus 

2 
- Z' sin - P r  

Kt = 2 

- "P cos - P r  - sin 
2 2 

p.- 
2 

Substituting (33) into ( 3 2 )  gives a transcendental equation for P. The 

lowest root of this equation will then give the critical value of KIP 

when substituted back into ( 3 3 ) .  The lowest value of must  be used, 

a s  this root will be the last  to disappear with increasing K'.  This 

may be realized by considering the equation for D2. 

The fact that only the originai position exists for  the clamped 

a r c h  implies that a l l  symmetric positions will likewise disappear with 

increasing K'.  When this occurs,  equation (16) will no longer possess 

any real  roots. 
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IV. RESULTS 

As stated previously, the a r ch  employed in the experimental 

par t  of the work had a central r i se  of 23 /32 in. It was 15 in. long, 1 

in. wide, and 1/32 in. thick. Four different stiffnesses of torsion 

rods were used, having experimentally measured spring constants of 

K = 85.0, 75.0, 48.8 and 22.5 in-lbs/rad,  corresponding to non- 

dimensional values of K' = 5.29, 4.67, 3.04 and 1.40 respectively. 

An axial spring with a spring constant of 16, 600 lbs/ in was also 

included. 

1. Deflectionshapes 

In o rder  to see  how closely the theory predicted the static 

equilibrium a r ch  shapes, measurements were made of the vertical 

deflection of the a r c h  in the snapped through position. The measure-  

ments were  made a t  a number of stations near  the a r ch  center using 

a pair  of dividers. The resul ts  a r e  presented in Figures 8a-d. It can 

be seen that in most  cases  the agreement between the theoretically 

predicted deflection curves and the experimentally measured values 

i s  quite good. 

Along with this,  an  attempt was made to determine experi- 

mentally that cr i t ical  value of rotational spring constant above which 

a stable snapped through position could not exist. It was found that 

for  K = 100 in-lbs / rad,  the a r ch  would not remain in the snapped 

through position, but tended to spring back into i t s  original shape when 

released. Since a stable snapped through position was achieved for 

K = 85.0 in-lbs/rad,  the critical value is  surmised to lay somewhere 

between K = 85- 100 in-lbs /rad. 



26 

Using equations (32), ( 3 3 )  the theoretical cr i t ical  value was 

calculated. This gave K = 633 in-lbs/rad.  The wide discrepancy 

between the theoretical and experimental values will be discussed 

la ter .  

2. Uniform Impulsive Loading 

The impulsive loading experiments were conducted by laying 

15" s t r ips  of explosive-sprayed Mylar onto the a r ch  to be loaded. 

These were then ignited with a zenon flash tube, a s  described 

previously, Plots  of a r ch  central  deflection vs. total irnpulse applied 

to the a r c h  a r e  given in Figures 9a-d and 10. It may be observed that 

the experimental points exhibit a good deal of scat ter .  This i s  in par t  

due to the inaccuracies inherent in the deflection measuring apparatus. 

Another source of e r r o r  a r i s e s  f rom the fact that the a r ch  central 

deflection may not in a l l  cases give a good indication of the magnitude 

of the a r ch  response. Cheung (Ref. 6 ) ,  for example, uses  a s  a 

measure  of a r ch  response the a r e a  between the deformed and un- 

deformed a r ch  shapes. 

It may be seen f rom the plots, however, that for  some rather  

narrow range of impulse level, there  i s  a large jump in a r ch  central 

deflection. This type of response i s  typical of the dynamic buckling 

phenomenon. 

In o rder  to make a comparison with theory, dynamic buckling 

was said to have occurred experimentally when the central a r ch  

deflection reached a value of 0.6 in. Corresponding values of total 

impulse were then read f rom Figure 10. These a r e  plotted a s  total 

initial energy imparted to the a r c h  in Figure 12. Also plotted here  
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a r e  the s train energies corresponding to the f i r s t  th ree  equilibrium 

positions (those having the lowest values of P). Theoretically, the 

curve corresponding to the f i r  s t  antisymmetric position represents  a 

lower bound on the initial energy required for buckling. It can be seen 

that the experimental values a r e  in fact quite a bit higher than this 

curve. 

3 .  Experiments with Nonuniform Loadings 

In addition to conducting t e s t s  with uniformly-distributed 

impulsive loading s ,  several  experiments were made with nonuniform 

loadings. Instead of using 15 in. s t r ips  of explosive which covered the 

length of the arch ,  shorter  4 in. s t r ips  were used which loaded only a 

portion of the a r ch  length. 

For  the f i r s t  of these tes ts ,  the 4 in. s t r ips  were placed along 

the central section of an  a rch  having K = 48.8 in-lbs/rad.  The 

deflection response vs. total applied impulse i s  plotted in Figure 11, 

along with the resul ts  for the same K using 15 in. s tr ips.  It may be 

seen that much l ess  total impulse was necessary to buckle the a r c h  

with the 4 in. s t r ip  than with the 15 in. strip.  Again, a value of 

cr i t ical  impulse was obtained from Figure 11, converted to initial a r ch  

energy by means of equations (30) and (31), and plotted in Figure 12. 

I t  can be seen that this value i s  much closer  to the theoretically 

predicted lower bound than those values obtained by uniform loadings. 

For  the second test ,  the dri l l  chucks holding the torsion rods 

were loosened so that the ends of the a r ch  were free to rotate. In this 

way, it was hoped to approximate simply supported boundary conditions, 

The 4 in, s t r ips  were then placed alternatively along the central  section 
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of the arch,  o r  a t  one-quarter of the length from the end of the arch. 

The responses a r e  plotted in Figure 12. It  can be seen that the 

critical impulse for the a rch  loaded along one side is  somewhat l ess  

than for the a r c h  loaded in the center. This i s  to be expected from 

theoretical considerations, since it was shown previously that an a r ch  

required less  initial energy to buckle in an antisyrnmetric shape than 

a symmetric shape. Loading the a rch  along one side apparently tends 

to drive the a r ch  along a more  antisyrnmetric trajectory than would be 

the case if the a r ch  were centrally loaded. 

As before, the approximate critical values of total impulse a r e  

plotted a s  initial energy imparted to the a r ch  in Figure 12. 
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V. DISCUSSION 

A theoretical and experimental investigation of the buckling of 

a shallow a r c h u n d e r  an  impulsive load has been carr ied  out. Elastic 

rotational res t ra in ts  were attached to the ends of the a r ch  and an axial 

spring was included. 

1. Deflection Shapes 

F rom the ra ther  good agreement between the theoretically 

predicted and experimentally measured deflection shapes (Figures 8a-  

d) ,  i t  must  be concluded that the static equilibrium positions of the 

unloaded a r c h  a r e  well characterized by the analysis presented in 

Section 111. 

An experiment was performed to determine that cr i t ical  value 

of rotational spring constant above which stable snapped through 

positions ceased to exist. This value was found to lie somewhere in 

the range K = 85- 100 in-lbs/rad.  On the other hand, a theoretical 

analysis predicted a cr i t ical  value of K = 633 in-lbs/rad.  The wide 

discrepancy between these two values may be explained by considering 

Figure 7 ,  It i s  observed that although the s t ra in  energy curves for the 

f i r s t  symmetric  and f i r s t  antisymmetric positions merge  into one 

another,  they do so very  slowly. Consequently there  exists a consider 

able range of K fo r  which these two curves l ie  quite closely together. 

The f i r s t  symmetric  position corresponds to the stable snapped 

through position, and the f i r s t  antisymmetric position i s  unstable. 

Thinking in t e rms  of energy surfaces,  this  means that the depression 

in the surface containing the f i r s t  symmetric  position i s  ve ry  shallow. 
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Thus any smal l  disturbance m a y  suffice to j a r  the a r c h  f rom this  

depression and into an  unstable configuration. It goes without saying 

that the physical world i s  full of such disturbances.  Therefore,  the 

stability of the snapped through equilibrium position will practically 

exis t  only for  much smal l e r  values of rotational spring constant than 

would be indicated theoretically. Also, and possibly m o r e  importantly, 

the a r c h  i s  a n  imperfect  physical s t ruc ture ,  and this  will a l so  reduce 

the cr i t ical  value of rotational spring constant. 

It was found that the inclusion of an  axial spring in the theoret i -  

ca l  analysis affected the equilibrium positions and the s t r a in  energy of 

these positions to only a negligible extent. The reason for this  m a y  be 

made c lear  by considering equation (16). The effect of the axial spring 

enters  only through the f i r s t  t e r m  in the equation. F o r  the axial spring 

constant of 16, 600 lbs- in,  C i s  approximately equal to 0.2. Thus for  

low values of 63, the f i r s t  t e r m  i s  completely dominated by the r 2 

ten-n, which is approximately 1, 600. The axial spring t e r m  s imi iar ly  

plays little par t  in the s t ra in  energy expression. The effect of the axial 

spring will only be felt for  very  soft axial  springs o r  for  low initial 

a r c h  r i ses .  

2. Uniform Impulsive Loading 

An a r c h  with different values of rotational spring constant was 

subjected to a s e r i e s  of uniformly distributed impulsive loadings. The 

response curves a r e  plotted together in  Figures 9a-d and 10. Increas-  

ing the value of the rotational spring constant i s  seen to have only a 

slight effect on the cr i t ical  impulsVe required for  buckling. Generally, 
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however, the grea ter  the spring constant, the higher the level of 

impulse required for buckling, 

Also, no significant change in the shape of the response curve 

can be noted with increasing spring constant. No experiments were 

conducted using rotational spring constants for  which stable snapped 

through positions could not be achieved. Cheung, however, in 

reference 6 presented response curves for a clamped a r ch  under a 

uniform impulsive load. The shape of these curves a r e  somewhat 

flatter than those in Figure 10, but there  i s  otherwise no qualitative 

difference. Cheung ' s curves s imilarly demonstrate a significant 

increase in deflection for a relatively smal l  increase of applied im-  

pulse, which i s  a characteris t ic  of the dynamic buckling phenomenon. 

This i s  an interesting resul t  in view of the fact that the clamped a r ch  

cannot exhibit dynamic buckling in the mathematical sense of Hsu. 

However, since a "dynamic buckling-type" behavior i s  exhibited by 

the clamped a rch ,  for which K 4 E K ~ ~  it i s  not surprising that the 

response curves should show little variance for  values of K which a r e  

relatively close together. 

It should additionally be noted that the use  of Hsu's cr i ter ion 

provides a very  conservative lower bound on the cr i t ical  impulse 

needed for buckling. In actuality, buckling occurred a t  a n  impulse 

level approximately three t imes a s  grea t  a s  indicated by the lower 

bound. 

3 . Nonunifo rrn Loading 

Fo r  the f i rs t  of these experiments,  4 in. explosive s t r ips  were 

placed on the central portion of an a r ch  with rotational springs having 
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K = 48.8 in - lbs l r ad ,  A significant reduction in the total  impulse 

necessa ry  to buckle the a r c h  was noted. A possible explanation i s  

that loading the a r c h  along i t s  central  portion only tends to dr ive the 

a r c h  through the second symmetr ic  equilibrium position. The second 

symmetr ic  position i s  comparable to the shape of a column under the 

third Euler  buckling load, that i s ,  one and one-half sine waves 

symmetr ic  about the a r c h  center.  It can be seen f rom Figure 7 that 

for  K'  = 3 .  04, the second symmetr ic  position has  only a slightly 

higher energy than the f i r s t  an t i symmetr ic  position, which represents  

a lower bound on initial energy necessa ry  for buckling. Thus, in 

essence,  the t ra jec tory  of the a r c h  over  the energy surface was 

"aimed" in such a manner  a s  to  reduce the initial energy required for 

buckling. 

Another experiment of this  type was ca r r i ed  out using approxi- 

mate  simple support boundary conditions. The reason for  this was 

that a t  M = 0, the s t ra in  energy curves for  the f i r s t  ant isymmetric  

and the second symmetr ic  equilibriunpositions show the i r  grea tes t  

difference in magnitude. Theoretically,  i f  one could "aim" the a r c h  

t ra jec tory  through the second symmet r i c  position and then through the 

f i r s t  symmetr ic  position, the a r c h  aimed through the symmetr ic  

position should have the higher buckling load. 

This was attempted experimentally by loading the a r c h  with 4 

in, s t r ips  f i r s t  in i t s  central  portion to t r y  to dr ive i t  through the 

second symmetr ic  position. Then the a r c h  was loaded along one side 

to  t r y  to drive it through the f i r s t  ant isymmetric  position, which looks 



something like a full sine wave. A reduction in buckling load for  the 

off-center loadings was indeed noticed. 
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