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Abstract

The increasing utilization of networks, especially wireless networks, for different ap-

plications and in different aspects of modern life, has directed a great deal of attention

towards the analysis and optimal design of networks. Distinguishing features of the

wireless environment and the distributed nature of the network setup have raised

many important challenges in finding the performance limits of different tasks such

as communication, control, and computation over networks. There are also many

design issues concerning the complexity and the robustness of wireless systems that

should be addressed for a thorough understanding and an efficient operation of wire-

less networked systems. This thesis deals with a few of the challenges associated with

the fundamental performance limits and optimal design of wireless networks.

In the first part, we analyze performance limits of two applications for a special

class of wireless networks called wireless erasure networks. These networks incor-

porate some of the essential features of the wireless environment. We look at the

performance limits of two applications over these networks. The first application is

data transmission with two different traffic patterns, namely multicast and broad-

cast. The capacity region and the optimal coding scheme for the multicast scenario

are found, and outer and inner bounds on the capacity region for the broadcast sce-

nario are provided. The second application considered in this thesis is estimation

and control of a dynamical process at a remote location connected through a wireless

erasure network to a sensor observing the process. In this case, we characterize the

minimum steady-state error and its dependency on the parameters of the network.
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The final problem considered in the first part of the thesis concerns power consump-

tion (as a performance measure) in wireless networks. We propose and analyze a

simple scheme based on the idea of distributed beamforming that saves us in terms

of power consumption for dense sensor and ad-hoc networks. We quantify this gain

compared to the case when nodes have isolated communications without participating

in the network.

The second part of the thesis deals with two design issues in the downlink of

cellular wireless networks. The first issue is related to quality of service provisioning

in the downlink scenario. We investigate the problem of differentiated rate scheduling

in which different users demand different sets of rates. We obtain explicit and practical

scheduling schemes to achieve the rate constraints and at the same time maximize

the throughput. These schemes are based on the idea of opportunistic beamforming,

are simple, and require little amount of feedback to the transmitter. We further show

that the throughput loss due to imposing the rate constraints is negligible for large

systems.

The next issue considered in this thesis is the robustness of the capacity region of

multiple antenna Gaussian broadcast channels to the channel estimation error at the

transmitter and the users. These channels are mathematical models for the downlink

of cellular systems. We provide an inner bound on the capacity region of these chan-

nels and show that this inner bound is equivalent to the capacity region of a dual

multiple access channel with a noise covariance that depends on the transmit powers.

This duality is explored to show the effect of the estimation error on the sum-rate

for a large number of users and in the large power regime. Finally, a training-based

scheme for the block fading multiple antenna broadcast channels is proposed.

Thesis Supervisor: Babak Hassibi

Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

The range of applications of wireless technology is no longer limited to transmission of

voice in cellular networks. Numerous types of services, e.g., images, file transfer, and

streaming video, with different Quality of Service (QoS) requirements, are available

in today’s highly heterogeneous cellular networks.

Furthermore, cellular networks are no longer the only type of wireless networks

in use. Wireless local and metropolitan area networks (LAN, MAN) offer connec-

tivity in the office, at home, or among buildings. Wireless networks, such as ad-hoc

and sensor networks, are also deployed for various purposes such as environmental

monitoring, industrial, transportation, and home systems automation, control of dis-

tributed embedded systems (such as robots or Unmanned Aerial Vehicles), and even

medical services [66, 67, 68]. These networks are interconnected systems of devices

that are capable of communication, computation, data storage, and adaptation in a

distributed fashion. Unlike cellular networks, these networks typically operate with-

out any predetermined infrastructure.

The increasing utilization of networks, especially wireless networks, in different

aspects of modern life has redirected the attention from the point-to-point setup

towards the network (or multi-user) setup. There are many features of the wireless

environment and the distributed nature of a network setup that make the analysis

and design of wireless networks a very challenging problem.
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It is already known that the theory and protocols developed for point-to-point

communications channels do not necessarily lead to satisfactory performance in a

network setup. Therefore, new techniques and methodologies, designed specifically

for networks, are required that capture the features of wireless networks and provide

optimal performance in terms of rate, delay, and robustness. Also, because of the lim-

ited amount of available resources, such as power, bandwidth, antenna, and memory,

a new look at the efficient usage of these resources is essential.

In essence, we are seeking the best strategy in the network that combats (and

in many cases exploits [102]) the features of the wireless medium, uses the resources

available as efficiently as possible, and provides the users with different types of

demands. The key point is that in a network setup these tasks should be performed

in a distributed fashion through the cooperation of the users and based on the local

information available to each user.

The work presented in this thesis can be thought of as ways to find these optimal

strategies or to bound the optimal performance for special classes of wireless networks.

Figure 1.1 demonstrates the different sources of challenges in the design and analysis

of wireless networks. In the following section we look at each source in more detail.

1.1 Sources of Challenges in Wireless Networks

Features of the Wireless Medium

There are many features of the wireless medium that distinguish it from other media.

The wireless medium is a shared medium. This means that unlike wireline systems,

where there exists dedicated physical connections between users, every user can es-

sentially receive an attenuated version what other users are transmitting. In such a

system, the manner of transmission is broadcast of the signal and there is interference

in reception of a signal. Another property of a wireless channel is its random time-
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Figure 1.1: Sources of challenges in analysis and design of wireless networks.

varying behavior due to the mobility of users and other objects, as well as obstacles

in the environment. More specifically, the channel to a given user might have poor

conditions at some times and favorable conditions at other times. This is called the

fading behavior of the channel [1]. In many situations, multiple copies of the trans-

mitted signal may be received with different delays and different strengths. This is

referred to as “multipath fading” and can severely deteriorate the performance when

the transmitted signals have shorter duration (e.g., broadband transmission). Con-

ventionally, the goal is to combat the randomness introduced by the environment.

However, in recent years, there has been another view and that is to exploit the in-

herent randomness in the environment to increase the performance [102, 127, 121].

For instance, the multi-user diversity gain in the downlink of cellular systems is based

on this idea, i.e., in a system of many users with random quality of reception (fading),

there exists one user with good quality of reception with very high probability.
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Efficient Use of Resources

Today’s wireless systems are faced with an ever-growing demand for higher rates

and quality of services. However, the available resources such as bandwidth, power,

and number of antennas is limited. Therefore, efficient usage and allocation of these

resources is more important than ever. In many scenarios, from mobile users in

cellular networks to sensor nodes deployed in a remote area, the components of the

network have limited power supplies. In these networks, efficient use of the available

energy (power) supply is a critical issue. Bandwidth is another valuable resource

in wireless systems, especially in high data rate broadband communications. Also,

there has been a great interest in exploiting the spatial degrees of freedom in wireless

systems by deploying multiple antennas at the transmitter and the receiver [109, 150,

148, 105]. The possibility of using multiple antennas in a network (multi-user) setup

have been recently explored [117, 133].

Demands and Services

As mentioned earlier, wireless systems have become highly heterogenous. Different

types of applications such as voice, internet, and video-on-demand, are provided over

wireless networks. Depending on the application, the main performance measure will

vary. For instance, video-on-demand applications not only require high rates but also

are sensitive to delay. For many detection schemes, in ad-hoc networks reliability is

the main concern. In many scenarios, resource allocation in wireless networks aims

at optimizing over two conflicting performance measures at the same time, such as

reliability and rate or delay and rate [154, 155]. Finding strategies that provide these

different demands in an efficient manner is a challenging task.
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Figure 1.2: A simple network with one relay component, one source and one destina-
tion.

Operation In a Network Setup

Finding the optimal strategy for the nodes of a network in order to optimally perform

a given task is very much an open problem. Consider the simple network, with only

three nodes, shown in Figure 1.2. The desired task is reliable communication from the

source to the destination with the aid of the relay node. The relay node is connected

to both the source and destination through communications channels. Even for this

simple network, finding the optimal operation at each node for maximizing the rate

of reliable communication is unsolved [53]. The main difficulty in a network setup is

the distributed nature of the information in the network. Each user has only access

to local information and has to cooperate with other nodes in a distributed fashion

to maximize the performance.

The above sources have raised many important and interesting challenges regard-

ing the performance limits of different tasks such as communications and computation

over networks. In addition, there are many design issues concerning the complexity

and the robustness of the systems that should be addressed for a thorough under-

standing and efficient operation of wireless networked systems.

This thesis deals with a few of the challenges associated with wireless networks.

In the first part of the thesis, Chapters 2 through 6, we analyze the capabilities of

wireless networks for different tasks. More specifically, we look at the limits of rate,

power efficiency, and estimation error for the tasks of reliable data-transmission and
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estimation across wireless networks.

In the second part of the thesis, Chapters 7 and 8, we look at a few design issues for

wireless cellular networks, namely differentiated QoS provisioning and the robustness

issues in downlink scheduling of cellular networks.

1.2 Performance Limits In Wireless Networks

In his ground breaking paper “A mathematical theory of communication,” [2], Claude

E. Shannon revealed the fundamental performance limit of reliable communications,

i.e., capacity, between a transmitter and receiver pair. This work started the new

field of information theory and laid down a foundation for modern digital commu-

nications. Since then, one of the main goals in communications theory has been to

devise practical methods to approach the capacity of point-to-point channels.

As mentioned earlier, the increase in utilization of wireless networks that involves

multiple users rather than a single pair of users for different applications has spurred

a great deal of research in various areas of wireless networks. Multi-terminal informa-

tion theory is an example of these areas that looks at the fundamental performance

limits of reliable communication in a multi-user setup [53]. Furthermore, since tasks

like distributed estimation, computation, and control across communication networks

(channels) are emerging as (primary) applications for many wireless networks, there

has been a great deal of research aiming at finding the fundamental limits of perfor-

mance for these tasks as well [3, 4, 5].

However, unlike single-user information theory, we do not have a complete under-

standing of the optimal performance for these applications. This is mainly because of

the challenges discussed in Section 1.1. Multi-terminal information theory is still in its

early stages. Many problems in multi-terminal information theory are still unsolved.

As mentioned in the previous section, even for the simple network of Figure 1.2, the
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capacity region and the optimal strategy are not known [14]. Finding the performance

limits of different applications is a fundamental task for the following reasons:

• It gives us a measure of the capabilities of the network and sets a standard for

what we should aim for.

• It provides us with intuition on the optimal solution and guides practical strate-

gies for achieving the limits.

• Identifying the limits of performance and the main parameters of the network

affecting those limits gives insights for the optimal design of networks and even

convergence of different applications on the same network.

In the first part of this thesis, we mainly look at the performance limits of different

applications over wireless networks. In Chapters 2 through 6, we consider a simple

model that captures some of the essential features of wireless networks. We look at

two applications, namely data transmission and control and estimation, over these

networks and find the performance limits and optimal operation for these applications.

1.3 Design Issues in Wireless Cellular Networks

The downlink of cellular systems is known to be a major bottleneck for future broad-

band wireless communications. The down-link scenario refers to the case in which

the base station (possibly equipped with multiple antennas) simultaneously provides

service to multiple mobile subscribers in a cell (as shown in Figure 1.3). From

an information-theoretic perspective, broadcast channels [13], and in particular the

Gaussian broadcast channel (GBC), can be used to model the downlink in cellular

systems. There exists an abundance of information-theoretic results describing the

limits of the achievable rates to the users in single-input single-output (SISO) Gaus-

sian broadcast channels (see e.g., [115, 116]). More recently, there has been growing
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interest in the use of multiple antennas (at the transmitter, receivers, or both) for

wireless communication networks. This has led to an interest in the multiple-input

multiple-output (MIMO) Gaussian broadcast channel, where the transmitter and the

various users may be equipped with multiple transmit and receive antennas, respec-

tively. For these channels, the entire capacity region [118] is shown to be achieved by

an interference cancelation scheme referred to as dirty paper coding (DPC) [119].

While dirty paper coding is the optimal transmission scheme, it is computationally

expensive and requires the transmitter to have perfect knowledge of the channel state

information (CSI) for all the users. More importantly, unlike point-to-point multi-

antenna channels, the multi-user capacity depends heavily on whether the transmitter

knows the channel coefficients to each user [121, 117, 118]. For instance, in a Gaussian

broadcast channel with M transmit antennas and n single antenna users, the sum

rate capacity scales like M log log n for large n if perfect channel state information

(CSI) is available at the transmitter, yet only logarithmically with M if it is not.

Therefore, it seems that the performance of the broadcast channels is very sensitive

to the channel knowledge. However, in practice the transmitter and the users do not

have access to the exact channel realization and have only an estimate of it.

Moreover, in today’s cellular systems, users might request different applications

such as voice, internet, or video-on-demand. This implies that the base station has

to provide differentiated services to different users, yet at the same time maximize

the throughput. Therefore, the best operating point on the capacity region will no

longer be the sum-rate capacity point. While achieving the sum-rate capacity point

has been studied before, devising simple and practical schemes that come close to

other points on the capacity region has not been studied in depth.

The issues mentioned above raise the following questions:

• Do there exist simple schemes that require little amount of feedback to the

transmitter and yet maximize the throughput while providing different users
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Figure 1.3: A cellular system with multiple antennas in the transmitter (base station).

with different demands (rates)?

• What is the effect of channel estimation errors at the transmitter and/or users

on the capacity region of MIMO Gaussian broadcast channels?

These questions are mainly dealt with in Chapters 7 and 8. First, we propose

simple scheduling schemes that require little CSI and provide users with different

rates. Then, we look at the performance of broadcast channels with channel estima-

tion error at the transmitter and the receivers and propose a training-based scheme

for these channels.

1.4 Contributions of the Thesis

In this section, we review the contents of each chapter and mention the main contri-

butions. The thesis is organized in such a way that different chapters can be more or

less read independently.

Chapter 2 through Chapter 6 deal with finding performance limits of different

applications over wireless networks.
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In Chapter 2 we introduce a simple model for wireless networks called wireless

erasure networks. This model incorporates the broadcast nature of transmission in

wireless environment, but assumes that there is no interference. This model is rea-

sonable for wireless networks where information is packetized and some interference-

avoidance scheme is in effect. Examples of this scenario can be Software Defined Ra-

dios (SDR) operating based on Orthogonal Frequency Division Multiplexing (OFDM)

techniques [19]. We look at a specific traffic pattern called the multicast problem. In

this problem, a subset of users, denoted by the “destination set,” are interested in

the same message from a user, denoted by the “source node.” The main contribution

of this chapter is to find the multicast capacity of wireless erasure networks with

arbitrary topology and show that it has an interesting interpretation related to the

concept of minimum-cut capacity in flow graphs. However, in our case, the definition

of the cut-capacity should be modified so that it takes into account the broadcast

feature of the network. It is further shown that random linear encoding of received

packets at each node suffices to achieve the optimal performance.

In Chapter 3 we look at another traffic pattern, referred to as the broadcast

problem, over wireless erasure networks. In this problem, a subset of users, denoted

by the “destination set,” demand different types of information from the same user,

called the ”source node.” The goal is to find the capacity region, i.e., set of achievable

rates of communication between the source node and the destinations. First, we find

the capacity region of broadcast problems for a subclass of wireless erasure networks

called erasure broadcast channels. We show that the capacity region of these channels

is achieved by time-sharing between the destinations at each node in the network.

The proof technique used relies on optimization theory and may be extended to more

general networks. We use the result for erasure broadcast channels to find an outer

bound for the capacity region of the broadcast problems for general wireless erasure

networks.
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In Chapter 4 we look back at the multicast problem for wireless networks with

limited operation allowed at each node. More specifically, unlike Chapter 2, we assume

that the nodes can only perform one of two operations. They can either forward the

signal they have received without any attempt to recover the content of the signal, or

they can decode and re-encode the received signal, recover its content, and re-encode

and send it across the network. The second operation is basically what is known as

“routing” (or switching) in today’s conventional network protocols. We first show that

because of the distinguishing features of the wireless medium, routing data across the

network does not necessarily give satisfactory results in a wireless setup. For instance,

a multi-hop approach, in which every relay node decodes the received message, is not

always the best paradigm for wireless networks, and forwarding the signal can increase

the end to end throughput in wireless networks. We then propose a greedy algorithm

that finds the best operation among forwarding and decoding and re-encoding at each

node in order ro maximize the achievable rate in the network.

In Chapter 5 we turn our attention from data communications to estimation and

control across wireless networks. We consider the problem of estimation and control of

a dynamical process at a remote destination node. The destination node is connected

to the sensor that observes the process through a wireless erasure network model

introduced in Chapter 2. The performance measure in this problem is the steady-

state estimation error covariance at the destination node. We find the condition for

stability of the system and the exact performance measure in terms of the parameters

of the process and the network. It is shown that the stability condition resembles a

max-flow min-cut condition; however, the definition of the cut-value is different from

the one introduced in Chapter 2. In addition, we find that the effect of the network on

the performance is mainly through the latency introduced by the network in receiving

recent measurements at the destination. The results of this chapter and Chapter 2

provide guidelines for the design of networks that are optimal for both communication
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and estimation.

Chapter 6 looks at another measure of performance in wireless networks, namely

power consumption. We are interested in the power efficiency of large and random

wireless sensor and ad-hoc networks. The fundamental question that we answer is, “Is

it beneficial in terms of power consumption for nodes to operate in a network setup?”

We show that densely deployed wireless sensors networks can gain in terms of power

consumption by operating in a network and using a simple protocol. The protocol

is essentially based on performing distributed beamforming at different nodes of the

network. We quantify this gain by showing that for large random wireless ad-hoc

network with n users and r ≤ √
n simultaneous source/destination pairs located in a

domain of fixed area, one can support the same rate as a single point-to-point system,

but by expending only 1√
n

the energy. This result shows the value of cooperation

among nodes in terms of power consumption.

Having looked at the performance limits of wireless networks in previous chapters,

we look at two design issues in cellular networks in Chapters 7 and 8.

In Chapter 7 we consider the downlink of wireless cellular systems where users

have different rate demands. We model this scenario as a multiple input multiple

output (MIMO) Gaussian broadcast channel. We assume n homogenous users divided

into K groups. Users in the same group require the same rate. We further assume that

the ratio of the groups’ rates are given. The objective is to design strategies that are

simple, require limited amount of information about the channel at the transmitter,

and maximize the throughput (sum of the rates to all users) while maintaining the

rational rate constraints. In general, this problem appears to be computationally

intractable since the ergodic capacity region is described as the convex hull of (an

infinite) set of rates. We focus on the asymptotic regime of large n where explicit

results can be found. In particular, we propose three scheduling schemes to provide

the rational rate constraints, namely the weighted opportunistic beamforming (WO),
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time division opportunistic beamforming (TO), and superposition coding (SC) for the

single antenna case. In WO, we transmit each beam to the user that has the largest

“weighted” signal to interference plus noise ratio (SINR). In TO, each group has its

own time slot during which the transmitter chooses the user with the best SINR

from the corresponding group. Superposition coding is the scheme that achieves the

information-theoretic capacity region for the single antenna case. For each scheduling

we give an explicit scheme to guarantee the rational rate constraints. We also analyze

the throughput loss due to the rate constraints for all three different schemes. In

particular, we show that the throughput loss compared to the maximum throughput

(i.e., the sum rate capacity without any rate constraints) tends to zero for large n.

Thus, there is not much of a penalty in providing different levels of service to different

users. We also analyze the convergence rate of all the schemes and provide simulations

supporting the theoretical analysis.

In Chapter 8 we look at robustness issues for the downlink scheduling in cel-

lular networks. More specifically, we consider a MIMO Gaussian broadcast channel

with channel estimation error at the transmitter and the receivers. We propose an

achievable region based on the dirty paper coding scheme. We further show that

the achievable region is equivalent to the capacity region of a dual Gaussian multiple

access channel with noise covariance that depends on the transmit powers. We look

at the achievable sum-rate for large broadcast channels with estimation error and

show that as long as the estimation error does not vary with the number of users,

the scaling behavior of the sum-rate is similar to the case with no estimation error.

At the end of this chapter, we analyze the performance of training-based methods

for broadcast channels with estimation error. We find the optimal energy and time

that should be allocated for training. Based on the training scheme, it is shown

that in order to achieve a linear increase in the sum-rate in terms of the number of

transmit antennas in the high SNR regime (also known as the multiplexing gain), a



14

linear fraction of energy should be allocated for the training phase. In other words,

to achieve the multiplexing gain one needs a high fidelity description of the channel

at the transmitter.

Finally in Chapter 9, we discuss a few interesting open problems that have been

brought up by the research undertaken in this thesis.
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Chapter 2

Capacity of Wireless Erasure
Networks

2.1 Introduction

Determining the capacity region for general multi-terminal networks has been a long-

standing open problem. An outer bound for the capacity region is proposed in [53].

This outer bound has a nice min-cut interpretation: The rate of flow of information

across any cut (a cut is a partition of the network into two parts) is less than the

corresponding cut-capacity. The cut-capacity is defined as the maximum rate that

can be achieved if the nodes on each side of the cut can fully cooperate and also use

their inputs as side-information.

The difficulty in multi-terminal information theory is that this outer bound is

not necessarily tight. For instance, for the single relay channels introduced in [8], no

known scheme achieves the min-cut outer bound of [53].

However, for a class of network problems called multicast problems in wireline

networks, it is shown that the max-flow min-cut outer bound can be achieved [9, 10,

54]. A multicast problem comprises one or more source nodes (at which information is

generated), several destinations (that demand all information available at the source

nodes), relay nodes, and directed communication channels between some nodes. It

is assumed that each channel is statistically independent of all other channels. Also,
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as the name suggests, the communication between different nodes is done through

physically separated channels (wires). This means that the communication between

two particular nodes does not affect the communication between others. In this

setup, the maximum achievable rate is given by the minimum cut-capacity over all

cuts separating the source nodes and a destination node. Because of the special

structure of wireline networks, the cut-capacity for any cut is equal to the sum of the

capacities of the channels crossing the cut.

This remarkable result for wireline networks is proved by performing separate

channel and network coding in the network. First, we perform channel coding on

each link of the network, so as to make it operate error-free at any rate below its

capacity. This way, the problem is transformed into a flow problem in a graph where

the capacity of each edge is equal to the information-theoretic capacity of the cor-

responding channel in the original network. If there is only one destination node,

standard routing algorithms for finding the max-flow (min-cut) in graphs [52] achieve

the capacity. However, when the number of destinations is more than one, these

algorithms can fail. The key idea in [9] is to perform coding at the relay nodes.

By [10, 54], linear codes are sufficient to achieve the capacity in multicast problems.

These ideas are formulated in an algebraic framework and generalized to some other

special network problems in [54]. Since then, there has been a great deal of research

on the benefits of coding over traditional routing schemes in networks from different

viewpoints, such as network management, security, etc. [11, 12].

In a wireless setup, however, the problem of finding the capacity region is more

complicated. The main reason is that unlike wireline networks, in which communica-

tion between different nodes is done using separated media, in a wireless system the

communication medium is shared. Hence, all transmissions across a wireless network

are broadcast. Also, any communication between two users can cause interference to

the communication of other nodes. These two features, broadcast and interference,



17

present new issues and challenges for performance analysis and system design. The

capacity regions of many information-theoretic channels that capture these effects

are not known. For instance, the capacity region for general broadcast channels is an

unsolved problem [13]. The capacity of general relay channels is not known. How-

ever, there are some achievable results based on block Markov encoding and random

binning[14]. These ideas have been generalized and applied to a multiple relay setup

in [15] and [16].

In this chapter we look at a special class of wireless networks which only incor-

porates the broadcast feature of wireless networks.1We model each communication

channel in the network as a memoryless erasure channel. We will often assume that

the erasure channels are independent; however, we show that the results also hold

when the various erasure channels are correlated. We require that each node sends

out the same signal on each outgoing link. However, for reception we use a multiple

access model without interference, i.e., messages coming into a node from different

incoming links do not interfere. In general, this is not true for a wireless system.

However, this can be realized through some time, frequency, or code division multiple

access scheme. 2 This simplification is important in making solution of the problem

tractable. Even the capacity of a single relay channel is not known.

Finally, we assume that complete side-information regarding erasure locations on

each link is available to the destination (but not to the relay) nodes. If we assume that

the erasure network operates on long packets, i.e., packets are either erased or received

exactly on each link, then this assumption can be justified by using headers in the

packets to convey erasure locations or by sending a number of extra packets containing

this information. By making the packets very long, the overhead of transmitting the

1[17] and [18] have considered applications of network coding at the network layer for cost (energy)
minimization in lossless wireless ad-hoc networks. In this chapter, we look at wireless features of
the network in the physical layer.

2Emerging technologies like Software-Defined Radio (SDR) based on OFDM techniques [19] also
have these properties.
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erasure locations can be made negligible compared to the packet length. We should

remark that provided that the side-information is available to the destinations, all

results in this work hold for any packet length.

We should mention that our model is appropriate for wireless networks where all

information transmission is packetized and where some form of interference-avoidance

is already in place. Channel coding within each packet can be used to make each

link behave as a packet erasure channel. Although our model does not incorporate

interference (primarily because it is not clear what interference means for erasure

channels) one way, perhaps, to account for interference is to allow the erasure channels

coming into any particular node to be correlated (something that is permitted in our

model).

The main result is that a max-flow min-cut type of result holds for multicast

problems in wireless erasure networks under the assumptions mentioned above. The

definition of cut-capacity in these networks is such that it incorporates the broadcast

nature of the network. We further show that similar to the wireline case, for multicast

problems over wireless erasure networks, linear encoding at nodes achieves all the

points in the capacity region. Working with linear encoding functions reduces the

complexity of encoding and decoding. Building on the results of this work and using

ideas from LT coding [20], it is shown in [21] that it is possible to reduce the delay

incurred in the network. In their scheme, instead of using linear block codes, which

is what we do here, the nodes send random linear combinations of their previously

received signals at each time. This way nodes do not need to wait for receiving a full

block before transmitting, which reduces the delay.

We once more need to emphasize the importance of the side-information on the

erasure locations (or any other mechanism that provides the destination with the

mapping from the source nodes to their incoming signals) for our result to hold.

Interestingly, all the cut capacities of the network remain unchanged by making the
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above described side-information available to the receiver nodes. Thus, in some sense,

what is shown here is that with appropriate side information made available to the

receivers, the min-cut upper bound on capacity can be made tight. It would therefore

be of further interest to see whether for other classes of networks it is possible to come

up with the appropriate side-information to make the min-cut bounds tight.

This chapter is organized as follows. Section 2.2 defines notation used in this

chapter and reviews some graph theoretic definitions of importance. We introduce

the network model in Section 2.3 and the problem setup in Section 2.4. Section 2.5

states the main result for multicast problems over wireless erasure networks with side-

information available at destinations. Section 2.6 includes proofs of these results.

Section 2.7 demonstrates the optimality of linear encoding. Section 2.8 includes

a discussion of our network assumptions. Also, the performance of different coding

schemes when side-information is not available is analyzed and compared. We mention

future directions of our work and conclude in Section 2.9.

2.2 Preliminaries

2.2.1 Notation

Upper case letters (e.g., X, Y , Z) usually denote random variables, and lower case

letters (e.g., x, y, z) denote the values they take. Underlined letters (e.g., x) are used

to denote vectors. Sets are denoted by calligraphic alphabet (e.g., A, B, C). The

complement of a set A is shown by Ac. The transpose of matrix x is shown by x†.

exp(x) is used to denote 2x.

Subscripts specify nodes, edges, inputs, outputs, and time. For instance, v2 and X2

could denote node number two and the output of node number two in the network,

respectively. Unless otherwise mentioned, commas are used to separate time sub-

scripts from other subscripts. Superscripts are also used to refer to different sources.
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V node set
E edge set
S the set of source nodes
D the set of destination nodes

[Vx,Vy] x− y cut-set described by x-set Vx

Xi symbol transmitted from node i
Xn

i a transmitted block of n symbols from node i
Yij channel output of edge (i, j)
Yi symbols received at node i from all incoming channels

w(s) message transmitted from source s
W(s) message index set at source node s

ŵ
(s)
di

estimate at destination di of the message transmitted from s

P
(n)(s)
di

prob. of error in decoding source s at destination di

Table 2.1: Some important notation in this chapter

For example, w(s) could denote the message sent by node s.

Consider a sequence of numbers x1, x2, x3, . . . . We use notation xn to denote the

sequence x1, x2, . . . , xn. We also use notation (xi, i ∈ I) to denote the ordered tuple

specified by index set I. Finally, |X | is the cardinality of set X , and 2X is the set of

all the subsets of X . Table 2.1 summarizes our notation.

2.2.2 Definitions for Directed Graphs

In this Section, we briefly review the concepts and definitions from graph theory used

in this work[22].

A directed graph G = (V , E) has vertex set V and directed edge set E ⊂ V × V .

Without loss of generality, let

V = {1, 2, . . . , |V|}.

We assume that the graph is finite, i.e., |V| < ∞. For each node, v ∈ V , NO(v) and

NI(v) are the set of edges leaving from and the set of edges going into v, respectively.
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Formally,

NO(v) = {(v, u)|(v, u) ∈ E} and

NI(v) = {(u′, v)|(u′, v) ∈ E}. (2.1)

The out-degree dO(v) and in-degree dI(v) of v are defined as dO(v) = |NO(v)| and

dI(v) = |NI(v)|. A sequence of nodes v0, v1, . . . , vn such that (v0, v1), (v1, v2), . . . , (vn, v0)

are all in E is called a cycle. An acyclic graph is a directed graph with no cycles.

An x − y cut for x, y ∈ V is a partition of V into two subsets, Vx and Vy = Vc
x,

such that x ∈ Vx and y ∈ Vy. The x-set Vx (or y-set Vy) determines the cut uniquely.

For the x − y cut given by Vx, the cut-set [Vx,Vy] is the set of edges going from the

x-set to y-set, i.e.,

[Vx,Vy] = {(u, v)|(u, v) ∈ E , u ∈ Vx, v ∈ Vy}.

We also define V∗x as

V∗x = {v|∃u s.t. (v, u) ∈ [Vx,Vy]}.

V∗x is the set of nodes in the x-set that has at least one of its outgoing edges in the

cut-set.

Example 2.1. Consider the acyclic directed graph shown in Figure 2.1. V =

{1, 2, 3, 4} is the set of nodes, and E = {(1, 2), (3, 2), (1, 3), (3, 4), (2, 4)} is the set

of edges. The source and destination nodes are s = 1 and d = 4, respectively. The

out-degree of node 3 is 2, i.e., dO(3) = 2. Looking at the s− d cut specified by s-set

Vs = {1, 3}, the cut-set [Vs,Vd] is the set {(3, 4), (3, 2), (1, 2)}, and V∗s = {1, 3}.

At the end of this section we define the notion of partial ordering of the nodes in

the graph. Consider two distinct nodes i and j of the network. Exactly one of the

following three will occur:
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2

d = 4s = 1

3

d-sets-set

Figure 2.1: A directed acyclic graph with four nodes and five edges. The cut-set
{(3, 4), (3, 2), (1, 2)} is shown by the dashed line.

1. There is a directed path from i to j. In this case we will say that i ≺ j.

2. There is a directed path from node j to node i. In this case we will say that

j ≺ i.

3. There is no directed path from node i to node j or from node j to node i. In

this case we will say that j and i are incomparable.

Note that since we assume acyclic networks, we cannot have directed paths both from

i to j and from j to i. Thus, we have a partial ordering for nodes in the network. For

example, in Figure 2.3 we have 3 ≺ 4, but 2 and 5 are incomparable. Note that the

partial ordering gives us a (non-unique) sequence of nodes starting with s such that

for every node i, all the nodes j that satisfy j ≺ i are before it in the sequence [58].

Call such a sequence T . A possible sequence T for Figure 2.3 is (s, 3, 2, 5, 4, d).
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2.3 Network Model

Wireless Packet Erasure Networks

We model the wireless packet3 erasure network by a directed acyclic graph G = (V , E).

Each edge (i, j) ∈ E represents a memoryless packet erasure channel from node i to

node j. For most of this chapter, we assume that erasure events across different links

are independent. However, as described later, the results go through for correlated

erasure events. For independent erasure events, a packet sent across link (i, j) is

either erased with probability of erasure εij or received without error. We denote the

input alphabet (the set of possible packets) of the erasure channel by X .4

Let Zij,t be a random variable indicating erasure occurrence across channel (i, j)

at time t. For independent erasure events, Zij,t has a Bernoulli distribution with

parameter 1 − εij. If an erasure occurs on link (i, j) ∈ E at time t, the value of Zij,t

will be zero; otherwise Zij,t will be one. Note that the behavior of the network can

be fully determined by the values of Zij,t for all links and all times and the operation

performed at each node.

We assume that transmissions on each channel experience one unit of time delay.

The input of all the channels originating from node i is denoted by Xi chosen from

input alphabet X . Note that with this definition we have required that each node

transmit the same symbol on all its outgoing edges, i.e., all channels correspond-

ing to edges in NO(i) have the (same) input Xi (see Figure 2.2.) This constraint

incorporates broadcast in our network model. The output of the communication

channel corresponding to edge (i, j) ∈ E is denoted by Yij; Yij lies in output alphabet

Y = X ∪ {e}, where e denotes the erasure symbol. We also assume that the outputs

3Throughout this chapter a packet can be of any length. When the length of packets is one, the
channel is a binary erasure channel.

4For simplicity and without loss of generality we consider X = {0, 1} in our analysis and proofs.
However, we should remark that all the results and analysis hold for input alphabet of arbitrary
length.
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of all channels corresponding to edges in NI(i) are available at node i. This condition

is equivalent to having no interference in receptions in the network. Having this,

let Yi = (Yji, (j, i) ∈ NI(i)) be the symbols that are received at node i from all its

incoming channels. We have Yi ∈
∏

j:(j,i)∈E Y . The relation between the Yis and Xis

defines a coding scheme for the network.

Based on the properties of the network mentioned above, if we consider the inputs

and outputs up to time t, then the conditional probability function of the outputs of

all the channels (edges) up to time t, given all the inputs of all the channels up to

time t and all the previous outputs, can be written as follows for all t

Pr

(
(yij,t, (i, j) ∈ E)

∣∣∣∣(xt
l , l ∈ V), (yt−1

ij , (i, j) ∈ E)

)

= P ((Yij = yij,t, (i, j) ∈ E)|(Xl = xl,t, l ∈ V)) .

For independent erasure events, we further have

Pr

(
(yij,t, (i, j) ∈ E)

∣∣∣∣(xt
l , l ∈ V), (yt−1

ij , (i, j) ∈ E)

)
(2.2)

=
∏
i∈V

∏

j: (i,j)∈NO(i)

Pr (Yij = yij,t|Xi = xi,t).

Network Problems

Any network problem is characterized by a collection of information sources, a collec-

tion of source nodes at which one or more information sources are available, and a col-

lection of destination nodes. Each destination node demands a subset of information

sources. More specifically, a network problem is a quintuple P = (M,S,D, Υg, Υr),

where
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2

d = 4ε32

ε24

ε13

s = 1

3

ε12

Y24

Y34

X3

ε34
X3

Figure 2.2: (i): An erasure wireless network with the graph representation of example
2.1. Probability of erasure on link (i, j) is εij. Each node (e.g., node 3) transmits
the same signal (X3) across its outgoing channels. Since the network is interference-
free, node 4 receives both signals Y24 and Y34 completely. (ii): In this network,
cut-capacity for s-set Vs = {1, 3} is C(Vs) = 1− ε12 + 1− ε32ε34.

• M = {m1, . . . ,m|M|} denotes the set of information messages (sources).5 We

assume that each of the information messages is an i.i.d uniformly distribution

random process. Different information messages are assumed to be independent.

• S = {s1, s2, . . . , s|S|} ⊂ V denotes the source nodes.

• Υg : S → 2M, where Υg(si) is the subset of messages generated at source node

si.

• D = {d1, d2, . . . , d|D|} ⊂ V denotes the set of destination nodes.

• Υr : D → 2M, where Υr(dj) is the subset of message demanded at destination

node dj.

We should remark that in the above definition S ∩ D may not be empty, i.e., a node

can be a destination node for one information source and a source node for another.

Also, destination nodes can act as relay nodes for other destination nodes in the

network.

5Throughout this thesis, M and W are used interchangeably to denote the set of information
messages.
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The class of network problems that we consider in this chapter is the multiple

source/multiple destination multicast problem, where each of the destinations de-

mands all of the information sources and source nodes generate disjoint messages.

Mathematically, a multicast problem, Pmc = (M,S,D, Υg, Υr), is a network problem

where Υg(·) is a partition ofM and Υr(di) = M for all destination nodes. In Chapter

3, we look at another type of network problems referred to as broadcast problem.

Side-information at Destinations

In most parts of the chapter we assume that each destination node d ∈ D has complete

knowledge of the erasure locations on each link of the network that is on a path from

the source set to d. In other words, d knows values of the zij,t, for all (i, j) ∈ E
and all times t, for which (i, j) is on at least one path from one of the sources to d.

This serves as channel side-information provided to the destinations from across the

network. In the case when we consider large packets (alphabet), this side-information

can be provided using negligible overhead. More discussion of this model appears in

Section 2.8.

Cut-capacity Definition

Consider an s− d cut given by s-set Vs as defined in Section 2.2.2. We define X(Vs)

and Y (Vs) as

X(Vs) = {Xi|i ∈ V∗s } and (2.3)

Y (Vs) = {Yij|(i, j) ∈ [Vs,Vc
s ]}.

At the end of this section, we define the cut-capacity for wireless erasure networks.

In wireline networks, the value of the cut-capacity is the sum of the capacities of

the edges in the cut-set [54]. Such a definition of cut-capacity in wireline networks
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makes sense because the nodes can send out different signals across their outgoing

edges. However, this is not the case for wireless erasure networks where broadcast

transmissions are required. The following definition of cut-capacity is different from

that in the wireline network settings, and it incorporates the broadcast nature of

transmission in our network.

Definition 2.1. Consider an erasure wireless network represented by G = (V , E) and

probabilities of erasure εij as described in Section 2.3. Let s and dl be the source

and destination nodes, respectively. The cut-capacity corresponding to any s− dl cut

represented by s-set Vs is denoted by C(Vs) and is equal to

C(Vs) =
∑
i∈V∗s

(
1−

∏

j: (i,j)∈ [Vs,Vdl
]

εij

)
. (2.4)

Example 2.2. Consider the network represented by the directed graph of example

2.1. (See Figure 2.2.) For the s − d cut specified by the s-set Vs = {1, 3}, the

cut-capacity is

C(Vs) = 1− ε12 + 1− ε32ε34.

Looking at this example, we see that all edges in the cut-set that originate from a

common node, i.e., edges (3, 2) and (3, 4), together contribute a value of one minus

the product of their erasure probabilities, i.e., 1 − ε32ε34 to the cut-capacity. This

observation holds in general for wireless erasure networks.

Example 2.3. As another example, consider the network shown in Figure 2.3 with

one source s = 1 and one destination d = 6. The cut-capacity corresponding to the

s− d cut specified by Vs = {1, 3, 4} is C(Vs) = 1− ε12 + 1− ε46 + 1− ε35ε32.
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s = 1

2

3

4

5

d = 6ε32

ε12

ε13

ε54

ε24

ε35

ε56

ε46

Figure 2.3: For the cut-set specified by the s-set Vs = {1, 3, 4}, the cut-capacity is
C(Vs) = 1− ε12 + 1− ε46 + 1− ε35ε32.

2.4 Problem Statement

We next define the class of block codes considered. A (d2nR1e, . . . , d2nR|S|e, n) code for

the multicast problem in a wireless erasure network described in the previous sections

consists of the following components:

• A set of integers W(si) = {1, 2, . . . , d2nRie} for each source node si ∈ S. W(si)

represents the set of message indices corresponding to node si. w(s) denotes the

message of source s ∈ S. We assume that the messages are equally likely and

independent.

• A set of encoding functions {fi,t}n
t=1 for each node i ∈ V , where

xi,t = fi,t(w
(i), yt−1

i )

is the signal transmitted by node i at time t. Note that xi,t is a function of

the message w(i) that node i ∈ V wants to transmit in the current block 6 and

all symbols received so far by node i from its incoming channels. If i is not a

source node, we set w(i) = 0 for all blocks and all times.

6The value of w(i) does not change in one block.
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• A decoding function gdi
at destination node di ∈ D,

gdi
: W(di) × Yn

di
× {0, 1}n|E| →

∏
s∈S

W(s)

such that

ŵdi
= (ŵ

(s)
di

, s ∈ S) = gdi
(w(di), yn

di
, (zij,t , (i, j) ∈ E , 1 ≤ t ≤ n)), (2.5)

where ŵ
(s)
di

is the estimate of the message sent from source s ∈ S based on

received signals at di, information source available at di
7, w(di), and also the

erasure occurrences on all the links of the network in the current block.

Note that Xi, Yij, and Yi all depend on the message vector w = (w(s), s ∈ S) that

is being transmitted. Therefore, we will write them as Xi(w),Yij(w), and Yi(w) to

specify what specific set of messages is transmitted.

Associated with every destination node d ∈ D and every information source s ∈ S
is a probability that the message will not be decoded correctly:8

P
(n)(s)
d = Pr (Ŵ

(s)
d 6= W (s)), (2.6)

where P
(n)(s)
d is defined under the assumption that all the messages are independent

and are uniformly distributed over W(s), s ∈ S. The set of rates (Rs, s ∈ S) is said

to be achievable if there exist a sequence of (d2nR1e, . . . , d2nR|S|e, n) codes such that

P
(n)(s)
d → 0 as n →∞ for all s ∈ S and d ∈ D. The capacity region is the closure of

the set of achievable rates.

7If di /∈ S without loss of generality, we set w(di) = 0 and W(di) = {0} for all blocks.
8Note that if d is a source node, we assume without loss of generality that P

(n)(d)
d = 0.
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2.5 Main Results

In this section we present the main results of this chapter.

Theorem 2.1. Consider a single source/ single destination wireless erasure network

described by the directed acyclic graph G = (V , E) and the assumptions of Section 2.3.

Let s ∈ V and d ∈ V denote the network’s source and destination, respectively. Then

the capacity of the network with side-information at the destination is given by the

value of the minimum value s-d cut. More precisely, we have

C = min
Vs:Vsan s−d cut

C(Vs). (2.7)

Remark 2.1. The results presented above are stated for erasure wireless networks

with broadcast property (and no interference). However, based on these results, it is

possible to derive the capacity of multicast problems over error-free networks (with the

broadcast property and without interference), with or without capacitated links.

Remark 2.2. Although we have assumed that the erasure events across the network

are independent, the capacity results also hold for the case when the erasure events are

correlated, i.e. Zij, (i, j) ∈ E are dependent on each other. In that case the definition

of the cut capacity should be modified to

C(Vs) =
∑
i∈V∗s

(
1− Pr (Zij = 0, j : (i, j) ∈ [Vs,Vc

s ])

)
. (2.8)

Example 2.4. Recall the single source / single destination network of example 2.2.

(See Figure 2.2.) By Theorem 2.1, the capacity of this network is

C = min{1− ε12 + 1− ε32ε34, 1− ε34 + 1− ε24, 1− ε12ε13, 1− ε13 + 1− ε24}.

The following theorems generalize the single source/ single destination result to
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general multicast problems.

Theorem 2.2. Consider a multiple source/single destination wireless erasure network

described by directed acyclic graph G = (V , E) and the assumptions of Section 2.3.

Suppose that the destination requests all of the information from all of the sources.

Let S ⊂ V and d ∈ V denote the set of source nodes and the destination node,

respectively. The capacity region of the network with side-information provided at the

destination is given by

C(G,S, d)
4
=

{
(Rs, s ∈ S)

∣∣∣∣0 ≤
∑

s∈V ′∩S
Rs ≤ C(V ′) ∀ V ′ ⊂ V − {d}

}
. (2.9)

In other words, the total rate of information transmission to d across any cut [V ′,Vd]

should not exceed the cut-capacity of that cut.

Example 2.5. Consider the network shown in Figure 2.4 with two sources {1, 2} and

one destination {3}. Then according to Theorem 2.2, the capacity region is

{(R1, R2) ∈ R+ × R+|R1 ≤ 1− ε12ε13, R2 ≤ 1− ε23, R1 + R2 ≤ 1− ε23 + 1− ε13}.

Theorem 2.3. Consider a multicast problem with multiple sources and multiple des-

tinations. Let S,D ⊂ V denote the set of source nodes and destination nodes, re-

spectively. The capacity region of the network with side-information is given by the

intersection of the capacity regions of the multicast problem between the sources and

each of the destinations, i.e,

C(G,S,D) =
⋂

d∈D
C(G,S, d). (2.10)

Corollary 2.3. Consider a multicast problem with one source denoted by s and mul-

tiple destinations denoted by d1, . . . , d|D|. The capacity of the network is given by the
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minimum value of the cuts between the source node and any of the destinations, i.e.,

C = min
di∈D

min
Vs:s−dicut

C(Vs).

Example 2.6. Consider the network shown in Figure 2.2. Suppose that we are

decoding at node 2 and 4, i.e., D = {2, 4}. Based on Corollary 2.3, the capacity of

this network is

C = min{1− ε12 + 1− ε32, 1− ε34 + 1− ε24, 1− ε12ε13, 1− ε13 + 1− ε24}.

The above results show that the capacity region for multicast problems over wire-

less erasure networks has a max-flow min-cut interpretation. This result is similar to

multicast problems in wireline networks [9]; however the definition of the cut-capacity

is different. Recall from [9] that in wireline networks, the cut-capacity is the sum of

the capacities of the links in the cut-set. Since wireless erasure networks incorporate

broadcast, the cut-capacity is the sum of the capacities of each broadcast system that

operates across the cut.

The next theorem states that linear network coding is sufficient for achieving the

capacity region.

Theorem 2.4. Consider a multicast problem with multiple sources and multiple des-

tinations. Then, any rate vector in the capacity region C(G,S,D) of the network

defined in Theorem 2.3 is achievable with linear block coding.

In the next section, we prove Theorems 2.1, 2.2, and 2.3. In Section 2.7, we look

at the performance of the network using random linear coding and prove Theorem

2.4.
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s2 = 2

d = 3

ε12

ε13

s1 = 1 ε23

Figure 2.4: A wireless erasure network with two sources, S = {1, 2}, and one desti-
nation, D = {3}.

2.6 Proof of Theorems

2.6.1 Proof of Theorems 1 and 2

In this section we prove the results stated for multi-source/ single destination network

problems. We start by proving the converse.

2.6.1.1 Converse

We prove the converse part by considering perfect cooperation among subsets of

nodes. Consider the cut specified by d-set Vd. Let all of the nodes in Vd and all of the

nodes in Vc
d cooperate perfectly, i.e., each node has access to all of the information

known to nodes in its set. In this case, we have a multiple input, multiple output

point-to-point erasure channel. Consider all source nodes in Vc
d. Then, clearly the

sum-rate of these source nodes must be less than the capacity of the multiple input

multiple output point-to-point erasure channel. The capacity of this point-to-point

communication channel is

Ccol = max
P (xi, i∈Vc

d
∗)

I((Xi, i ∈ Vc
d
∗); (Yij, (i, j) ∈ [Vc

d,Vd])).
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Since the channels are independent and memoryless, the mutual information is max-

imized when the different Xis are i.i.d. and uniform on the input alphabet X . In

this case, the above mutual information equals the cut-capacity corresponding to the

cut-set [Vc
d,Vd], i.e.,

Ccol = C(Vc
d).

Therefore, for any cut-set [Vc
d,Vd],the sum-rate of the information sources in set Vc

d

satisfies
∑

s∈S∩Vc
d

Rs ≤ Ccol = C(Vc
d).

The complete analysis appears in [57]. The proof follows the same lines as the max-

flow min-cut upper bound of Cover and Thomas for multi-terminal networks [53,

Sec. 14.10].

2.6.1.2 Achievability

In this section we prove that all of the rates arbitrarily close to rates in the capacity

regions given in Theorems 2.1 and 2.2 are achievable for a multiple sources/ single

destination multicast problem. We next use random coding techniques to show this

result.

We employ random block codes in the network. Each node transmits the next

block of n symbols only after it has received all n symbols corresponding to the

present block from each of its incoming channels. Let Lmax denote the length of the

longest path from a source to the destination in the network. Since each transmission

introduces one unit of time delay, the maximal delay between the transmission of a

message from one source and to its receipt at the destination using block codes of

length n is nLmax. We do not use any information from previously decoded blocks

to decode the current set of messages. Also note that since our model assumes that

the reception is interference-free, there is no confusion up among different blocks at
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any node. Therefore, if the network operates for nB units of time (i.e., B blocks of

length-n symbols), then the destination has received all of the information required

for decoding the B − Lmax first messages transmitted from each source s ∈ S, i.e.,

w
(s)
b , b = 1, . . . , B−Lmax. Since the network size is finite, as B →∞, for fixed n, the

rate Rs
B−Lmax

B
approaches Rs.

9

The same codebook and encoding and decoding functions are used for all the

blocks. We explain the coding scheme for transmitting one set of messages from the

sources to the destination. Below we describe the encoding and decoding processes.

• Codebook Generation and Encoding: For each node i ∈ V , the encoding

function

fi : W(i) × Yn
i → X n

is generated randomly as follows. For each yn ∈ Yn
i and for each w(i) ∈ W (i) we

draw the symbols of fi(w
(i), yn) ∈ X n randomly and independently according

to a binary Bernoulli distribution with parameter 1/2 . Thus, the channel input

at node i ∈ V is Xn
i = fi(w

(i), yn) when the message at node i is w(i) and the

incoming sequence is yn ∈ Yn
i . The destination has perfect knowledge of all the

encoding functions fi(.), i ∈ V thus generated.10

• Decoding: The destination “simulates” the network to decode the messages.

Suppose that message vector w0 = (w
(s)
0 , s ∈ S) is transmitted and yn

d (w0)

is received at destination d. By assumption, the receiver knows the erasure

locations on all the links of the network, i.e., (zn
ij, (i, j) ∈ E). Having all of the

9We could also consider the case when different sources transmit different numbers of messages
in B block uses. In that case, if Ls denotes the longest path from s ∈ S to the destination, we could
transmit B − Ls messages from information source s to the destination. However, for simplicity
of notation and analysis we assume that all of the nodes send the same number of messages in a
synchronized fashion.

10Note that the encoding functions thus constructed satisfy a causality condition that is more strict
than what is defined in Section 2.4. Here, each transmitted block is only a function of immediately
previous block of received symbols. In Section 2.3, each transmitted symbol could be a function of
all previous symbols.



36

erasure locations and all of the encoding functions applied at different nodes

in the network,11 the destination can compute the values of Xn
i (w), Y n

ij (w) and

Y n
i (w) for all nodes and edges for any w ∈ ∏

s∈SW(s). If there exists a unique

message vector w ∈ ∏
s∈SW(s) such that the computed value of Y n

d (w) equals

the value yn
d (w0) of the received signal at the destination, then w is declared as

the decoder output. Otherwise, the decoder declares an error.

Since the computed value of Y n
d (w0) for transmitted message w0 always matches

the received signal at the destination, an error occurs if and only if there is

another message vector w 6= w0 for which Y n
d (w) = Y n

d (w0) = yn
d (w0). In the

next section we compute the probability of this event and show that for large

blocks this probability can be made arbitrarily close to zero provided that the

rate vector (Rs, s ∈ S) is inside the capacity region described in Theorems 2.1

and 2.2.

2.6.1.3 Probability of Error

Let Pr (err) be the probability of error averaged over all possible functions fi. In

other words, if P
(n)
e is the probability that ŵ

(s)
0 , the destination’s estimate of the

transmitted message w0, is not equal to w0, then Pr (err) is the expected value of

P
(n)
e over all possible encoding functions at all nodes.12 More precisely,

P (n)
e = Pr (∃s ∈ S s.t. ŵ

(s)
0 6= w

(s)
0 ),

and Pr (err) = E P
(n)
e . Because of the symmetry of the code construction,

Pr (err) = Pr (err|W = w0 is transmitted), (2.11)

11We also assume that the destinations knows the topology of the network.
12Note that if P

(n)
e goes to zero as n grows larger, so will P

(n)(s)
d of (2.6) for every s ∈ S.
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where W = (W (s), s ∈ S). Therefore we will find the average probability of error

when message vector w0 is transmitted from the sources. Recall the notation Xn
i (w0)

and Y n
i (w0) and Y n

ij (w0), (i, j) ∈ E . For each w ∈ W 4
=

∏
s∈SW(s), w 6= w0, define

the following event:

E(w) = {Y n
d (w) = Y n

d (w0)}. (2.12)

Let A(n)
δ (i) be the event that the erasure locations on the channels going out of node

i are jointly δ-strongly typical, i.e.,

A(n)
δ (i) = {(zn

ij, j : (i, j) ∈ E) are jointly δ-strongly typical},

[1, Equation (13.107)] and define

A(n)
δ =

|V|⋂
i=1

A(n)
δ (i).

Note that by the weak law of large numbers [53], Pr (A(n)
δ (i)) → 1 as n → ∞, and

hence for all δ > 0,

Pr (A(n)
δ ) ≥ 1− |V|δ,

for n sufficiently large. Using the definition of the above events, Pr (err) can be

written as

Pr (err)

= Pr (err|W = w0)

= Pr

( ⋃

w∈W−{w0}
E(w)

)

= Pr

( ⋃

w∈W−{w0}
E(w)|A(n)

δ

)
Pr (A(n)

δ ) + Pr

( ⋃

w∈W−{w0}
E(w)|A(n)

δ

c
)

Pr (A(n)
δ

c
)

≤
∑

w∈W−{w0}
Pr (E(w)|A(n)

δ ) + |V|δ. (2.13)
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Therefore, using strong typicality and the union bound on the probability of events,

we only look at network instantiations that are ”strongly typical.” We next bound

the conditional probability of E(w) given A(n)
δ .

Corresponding to each cut in the network represented by d-set Vd 3 d, define the

following event:

B[Vd] =

( ⋂
i∈Vd

{Y n
i (w) = Y n

i (w0)}
) ⋂ ( ⋂

i∈Vc
d

{Y n
i (w) 6= Y n

i (w0)}
)

. (2.14)

The interpretation of the above event is as follows. By definition of E(w), we know

that the received signal at the destination is the same for w and w0, but w 6= w0.

Therefore, we can partition the nodes of the network into two sets: the “distinguish-

able” and the “indistinguishable” set. The “distinguishable” set contains all nodes for

which the signal received at those nodes when w is transmitted differs from the signal

received when w0 is transmitted. All the other nodes for which the received signals

for w and w0 are the same are in the “indistinguishable” set. Clearly, these two sets

define a cut. Event B[Vd] corresponds to the case when the “indistinguishable” set

(containing d) is equal to Vd ⊂ V . Note that these events are all disjoint and also

E(w) =
⋃
Vd:d-set B[Vd].

Define

K(w) = {s|s ∈ S, w
(s)
0 6= w(s)} (2.15)

to be the subset of source nodes for which the corresponding messages in w and w0

are different. Set K(w) is not empty since w0 6= w by assumption. In what follows we

bound the probability of event B[Vd] by considering the edges in the cut-set [Vx,Vc
x],

where Vx
4
= Vc

d ∪ K(w). Note that Vc
x is a d-set since if the destination is a source of

information, it is aware of the message it has transmitted, and so d /∈ K(w).

Consider any edge (i, j) ∈ [Vx,Vc
x]. We know that the transmitted signal Xn

i =

fi(W
(i), Y n

i ) from node i is a function of the message it wants to transmit , W (i), and
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the received signal at its incoming edges, Y n
i . For any node i in Vc

d ∪K(w), either the

received signal Y n
i or message w(i) is different for message vectors w and w0. Thus,

for a randomly designed code, the transmitted signal by node i for message vector w

is independent of the corresponding Xn
i for message vector w0. Using this observation

we next bound the probability of the event E(w) conditioned on A(n)
δ .

Pr (E(w)|A(n)
δ )

= Pr

( ⋃

Vd:d-set

B[Vd]|A(n)
δ

)
=

∑

Vd:d-set

Pr (B[Vd]|A(n)
δ )

=
∑

Vd:d-set

Pr




( ⋂
j∈Vd

{Y n
j (w) = Y n

j (w0)}
) ⋂ ( ⋂

i∈Vc
d

{Y n
i (w) 6= Y n

i (w0)}
)
|A(n)

δ




(a)

≤
∑

Vx:K(w)⊂Vx

Pr (
⋂

i,j:(i,j)∈[Vx,Vc
x]

{(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)), Y n
ij (w) = Y n

ij (w0)}|A(n)
δ )

(b)
=

∑

Vx:K(w)⊂Vx

Pr (
⋂

i∈V∗x

⋂

j:(i,j)∈[Vx,Vc
x]

{(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)), Y n
ij (w) = Y n

ij (w0)}|A(n)
δ )

Here (a) follows since Pr (A,B) ≤ Pr (A) for any events A and B. Instead of looking

at equalities on every edge and every node of the network, we are looking at the nodes

having an edge from [Vx,Vc
x] connected to them, where Vx = Vc

d ∪ K(w). (b) is clear

from the definition of V∗x. Simplifying the probability of error further, we have

Pr (E(w)|A(n)
δ ) (2.16)

(c)
=

∑
Vx

K(w)⊂Vx

Pr

( ⋂
i∈V∗x

⋂

(i,j)∈[Vx,Vc
x]

{Y n
ij (w) = Y n

ij (w0)}
∣∣∣∣A

(n)
δ ,

⋂
i∈V∗x

{(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0))}
)

·Pr ((w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)), ∀ i ∈ V∗s )

≤
∑
Vx

K(w)⊂Vx

Pr

( ⋂
i∈V∗x

⋂

(i,j)∈[Vx,Vc
x]

{Y n
ij (w) = Y n

ij (w0)}
∣∣∣∣A

(n)
δ ,

⋂
i∈V∗x

{(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0))}
)

(d)
=

∑

Vx:K(w)⊂Vx
d/∈Vx

∏
i∈V∗x

Pr

( ⋂

j:(i,j)∈[Vx,Vc
x]

{Y n
ij (w) = Y n

ij (w0)}
∣∣∣∣A

(n)
δ , {(w(i), Y n

i (w)) 6= (w
(i)
0 , Y n

i (w0))}
)

,
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where (c) is clear from the definition of conditional probability and (d) follows from

fact that averaged over all possible functions fi, the conditional events shown in the

equation are independent for different is in V∗x.

Now we bound the expression given in (2.16) for any node i ∈ V∗x. Note that since

(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)) at node i, Xn
i (w) = fi(w

(i), Y n
i (w)) and Xn

i (w0) =

fi(w
(i)
0 , Y n

i (w0)) are chosen independently and uniformly from {0, 1}n. Therefore, the

probability that they are the same in at least αi specific locations is at most 2−αi .

Looking at a fixed node i, Y n
ij (w) = Y n

ij (w0) for all j such that (i, j) ∈ [Vx,Vc
x] only

if all the locations where Xn
i (w) and Xn

i (w0) differ get erased on all these edges.

Because of the δ-strong typicality of the erasure locations on edges (i, j) ∈ [Vx,Vc
x],

the number of locations at which erasure occurs on all the edges of interest, say αi(Vx),

satisfies

∣∣∣∣
1

n
αi(Vx)− Pr (Zij = 0, j : (i, j) ∈ [Vx,Vc

x])

∣∣∣∣ ≤
δ

2|{j:(i,j)∈[Vx,Vc
x]}| ≤ δ.

Therefore, Xn
i (w) and Xn

i (w0) cannot differ in more than n(Pr (Zij = 0, j : (i, j) ∈
[Vx,Vc

x]) + δ) locations, and the probability of this event is no more than

exp (−n(1− Pr (Zij = 0, j : (i, j) ∈ [Vx,Vc
x])− δ)) = exp (−n(1−

∏

j:(i,j)∈[Vx,Vc
x]

εij − δ)).

(2.17)

Combining this with the last equation of (2.16) gives 13

Pr (E(w)|A(n)
δ ) ≤

∑

Vx:K(w)⊂Vx

∏
i∈V∗x

exp (−n(1−
∏

j: (i,j)∈[Vx,Vc
x]

εij − δ))

=
∑

Vx:K(w)∈Vx,d/∈Vx

2n|V∗x |δ · exp (−n
∑
i∈V∗x

(1−
∏

j: (i,j)∈[Vx,Vc
x]

εij))

≤ 2n|V|δ ∑

Vx:K(w)⊂Vx,d/∈Vx

2−nC(Vx). (2.18)

13Using (2.17) it can be easily verified that the arguments that follow will exactly go through for
correlated erasure events with cut-capacity, C(Vx), defined as in 2.8.
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Combining (2.13) and (2.18) together gives

Pr (err) ≤ |V|δ + 2n|V|δ ∑

w∈W−{w0}

∑

Vx:K(w)⊂Vx
d/∈Vx

2−nC(Vx)

= |V|δ + 2n|V|δ ∑
K⊂S

∑

w∈W−{w0}
K(w)=K

∑

Vx:K(w)⊂Vx
d/∈Vx

2−nC(Vx)

= |V|δ + 2n|V|δ ∑
K⊂S

∑
Vx:K⊂Vx

d/∈Vx

∑

w∈W−{w0}
K(w)=K

2−nC(Vx)

= |V|δ + 2n|V|δ ∑
K⊂S

∑
Vx:K⊂Vx

d/∈Vx

∏
s∈K

(d2nRse − 1)2−nC(Vx)

(a)

≤ |V|δ + 2n|V|δ ∑
K⊂S

∑
Vx:K⊂Vx

d/∈Vx

2−n(C(Vx)−Ps∈KRs)

(b)
= |V|δ + 2n|V|δ ∑

Vx:Vx⊂V−{d}

∑
K⊂S∩Vx

2−n(C(Vx)−Ps∈KRs)

(c)

≤ |V|δ + 2n|V|δ ∑

Vx:Vx⊂V−{d}
2|Vx∩S|2−n(C(Vx)−Ps∈S∩Vx

Rs), (2.19)

where we have used the inequality d2nRse − 1 ≤ 2nRs in (a). Also, (b) is derived

by changing the order of summation, and (c) follows from bounding
∑

s∈K Rs by
∑

s∈Vx∩S Rs in (c). Now, by assumption the rate vector (Rs, s ∈ S) is inside the

capacity region given in Theorem 2.2. Therefore, for any partition of the nodes into

Vx and Vc
x 3 d we have C(Vx)−

∑
s∈S∩Vx

Rs > 0. Therefore the exponent in the last

term of the above summation is negative. The above result holds for any δ > 0 and

n sufficiently large. By letting n →∞ and δ → 0, we can make the upper bound on

the probability of error arbitrarily close to zero. Now, by standard coding arguments

we conclude that there exists some deterministic choice of encoding functions that

has an arbitrarily small probability of error for the rates in the achievable rate region

C(G,S, d).
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2.6.2 Proof of Theorem 3

In this section we outline the proof of Theorem 2.3. The analysis is very similar to

Theorem 2.1. The converse part is straightforward. We know that the sources can

be recovered at all the destinations; therefore we have the same argument as the

converse part of Theorem 1 for the sources and any of the destinations. In particular,

for any destination di, i ∈ D, we have (Rs, s ∈ S) ∈ C(G,S, di). Therefore, any

achievable rate vector should be in the intersection of these capacity regions, i.e,

(Rs, s ∈ S) ∈ ∩di∈DC(G,S, di) = C(G,S,D).

Hence, the converse part is done.

In order to prove the achievability of the above rates, we can use the random

coding argument of Section 1. Note that averaged over all the codebooks and func-

tions, the probability of error for each destination goes to zero. Therefore, using the

union bound on probability of events, the probability of having an error in at least

one destination (averaged over all the functions and codebooks) goes to zero. Using

standard arguments, there exists some deterministic choice of codebooks and func-

tions for which the probability of error in the network become arbitrarily small and

that shows the achievability of the rates in C(G,S,D) of Theorem 2.3 for the multiple

destination case.

2.7 Linear Encoding

In Section 2.6.1.2 we showed the achievability of the capacity region as defined in

Theorem 2.2 by using general random coding functions at different nodes of the

network. In this section we restrict our attention to linear encoding schemes. The

advantage of using linear encoding scheme is that the decoding process becomes much
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easier. In this case, the equivalent transfer function of the network from any source

to any destination, having the erasure locations at that destination, is linear. Hence,

decoding at the destination is simply forming and solving a linear system of equations.

In this section we show that linear encoders achieve capacity. Let us first define

the linear block coding scheme with block length of n:

Recall that W(s) = {1, 2, . . . , d2nRse} is the message set for information source

s ∈ S. We assume that different messages are equiprobable and independent of each

other. For any w(s) ∈ W (s), let b(w(s)) be the length-nRs binary expansion of w(s)−1.

The encoding operation is as follows:

Each node i ∈ V transmits n linear combinations of the non-erased symbols re-

ceived from its incoming edges and the binary representation of the message it wants

to transmit across the network. More precisely, node i generates a random binary

matrix Bi of size n × n(dI(i) + Ri), where dI(i) is the in-degree of node i and Ri

is the rate of the codebook used at node i (in the case where i is not a source of

information Ri = 0). Each element of Bi is drawn i.i.d. Bernoulli(1/2). For a given

sequence y, let ỹ be a sequence derived by replacing every e with 0. Note that ỹ

and y have the same length.14 If node i receives Y n
i = yn

i on its incoming edges and

wants to transmit message w(i), then it sends out xi = Bi · [b(w(i)), ỹn
i ]†. (Since the

input-output relation at each node is linear, setting the erased symbols equal to zero

is the same as finding linear combinations of only the non-erased bits.)

Each destination d knows all the matrices Bi and also the erasure locations Zn

on all the links across the network, since each received and transmitted symbol at

any node is a linear combination of the elements of vector b(w)
4
= (b(w(s)), s ∈ S).

Therefore, each destination receives a collection of linear combinations of elements

of b(w). Using {Bi}i∈V and Zn, destination node d can construct the matrix that

corresponds to the linear input-output relation of the network. We denote this matrix

14The corresponding mapping from alphabet GF(q) ∪ {e} to GF(q) again replaces e with 0. This
variation is useful for packet erasure networks.
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by F ({Bi}, Zn), giving Ỹ n
d (w) = F ({Bi}, Zn)·b(w)†. Note that matrix F is a function

of different nodes’ encoding matrices {Bi} and Zn.

Now, upon receiving Y n
d = y ∈ {0, 1, e}ndI(d), the destination node d looks (solves)

for the message vector w ∈ W 4
=

∏
s∈SW(s) such that F ({Mi}, Zn) · b(w)† = ỹ. If

there is a unique w with this property, node d declares it as the transmitted message

vector; otherwise it declares an error. Note that the actual transmitted message

vector, say w0 ∈ W , always satisfies the above property. Therefore, an error occurs

only if there is another message vector w 6= w0 such that Y n
d (w) = Y n

d (w0) = y.

2.7.1 Achievability Result for Linear Encoding

Looking at the achievability proof and probability of error analysis for general random

coding in Sections 2.6.1.2 and 2.6.1.3, it can be easily verified that the linear case

requires the same error events (2.12). Since the erasure vector Zn is available at the

destination, there is no difference between Ỹi and Yi, and we can determine one from

the other. By expanding the conditional error event E(w) given A
(n)
δ for different

cuts in the network, all of the relations up to step (d) of equation (2.16) go through

for the linear case. In fact, the relations up to step (d) only require the independence

of encoding functions for different nodes of the network, which holds for the linear

case. Now, we look at the following probability in (2.16):

Pi
4
= Pr

( ⋂

j:(i,j)∈[Vx,Vc
x]

{Y n
ij (w) = Y n

ij (w0)}
∣∣∣∣A

(n)
δ , {(w(i), Y n

i (w)) 6= (w
(i)
0 , Y n

i (w0))}
)

.

(2.20)

As in the general random coding argument, for a fixed i we have Y n
ij (w) = Y n

ij (w0) for

all j such that (i, j) ∈ [Vx,Vc
x], only if Xn

i (w) and Xn
i (w0) differ in locations where

an erasure occurs on all the edges of the interest. Because of strong typicality, the

number of these location is at most n(
∏

j: (i,j)∈[Vx,Vc
x] εij + δ). Therefore Xn

i (w) and

Xn
i (w0) should be the same in at least n(1 −∏

j: (i,j)∈[Vs,Vc
s ] εij − δ) locations. But
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by our encoding scheme this means that

Bi · ([w(i), Y n
i (w)]† − [w

(i)
0 , Y n

i (w0)]
†)︸ ︷︷ ︸

z

should be zero in at least n(1 −∏
j: (i,j)∈[Vs,Vc

s ] εij + δ) specific locations. Also note

that since (w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)), z is a non-zero vector. From the above

argument we have

Pi ≤ Pr

(
Bi · z be 0 in at least nαi specific locations

∣∣∣∣ z 6= 0

)

(a)

≤ 2−nαi = 2−n(1−Qj: (i,j)∈[Vx,Vc
x] εij−δ), (2.21)

where αi = 1 −∏
j: (i,j)∈[Vx,Vc

x] εij − δ, and (a) follows from the following Lemma and

its Corollary. Proof of this lemma is provided in [57].

Lemma 2.4. Let X be a non-zero vector of size n× 1 from some finite field GF (q).

Suppose that A is a random matrix of size m × n with i.i.d. components distributed

uniformly over GF (q). Then, the coordinates of Y = A ·X are i.i.d. uniform random

variables over GF (q).

Corollary 2.5. The probability that Y = A ·X is zero in k specific coordinates equals

q−k.

Now note that by replacing Pi in (2.20) and (2.16) with its bound from (2.21), we

get the same bound as (2.18) for random linear codes. Therefore, linear operations

are sufficient for achieving the capacity.
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2.8 Discussion

2.8.1 Packet Size and Cycles

We considered binary erasure networks in this work. However, as mentioned earlier,

the obtained results hold for any packet length (or more generally for any input

alphabet size). The theorems stated in Section 2.5 give the maximum achievable rate

per packet. Therefore, if one is interested in the maximum achievable rate per bit,

assuming that the size of each packet is L bits (resp. the alphabet size is M) across

the network, the capacity will be L (respectively log2 M) times the capacity as stated

in the theorems.

Also, we assume that the graph representation of the wireless erasure network is

acyclic. However, the upper bound derived in [57] does not rely on this assumption.

By an approach similar to [9], [54], [23] (Section 11.5.2), it can be shown that the

upper bound is still achievable, and therefore the capacity theorems holds. We do

not get into this problem in detail here.

2.8.2 Side-information at Destination Nodes

The results stated up to now are based on the perfect knowledge of the erasure

locations for each link of the network to be available at destination nodes.

Erasure channels are usually used in modeling networks for which there exists a

mechanism by which the receiver (destination) can be informed of a packet dropping.

Usually, this side-information is provided by using sequencing numbers in the packet

header to detect lost packets. However, if we do not provide the destination with

this side-information, even for the simplest case of point to point communication, the

capacity is not known. In this case, the communication system is usually modeled by

the deletion channel. This channel has been studied by some researchers, and lower

and upper bounds on its capacity are found in [24, 25, 26].
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Looking back at our network, for each block there are n|E| transmissions of packets

across the network. Therefore, the erasure locations on the links of the network can

be represented by n|E| bits. These n|E| should be provided to the destination through

some mechanism. One approach is to use part of each packet as a header to transmit

this information.

If the size of each packet is L bits, then based on our result we are able to send nCL

bits across the network in a block of length n, where C is the minimum cut-capacity of

the network. If the size of the packet, L, is large compared to the size of the network,

or if the network is small, i.e., |E| is small, the amount of side-information required is

negligible compared to the amount of information sent across the network. We should

remark that if one is trying to map a real network to our model, the packet length

and the probability of erasure are closely related, and there will be some trade-off

between them.

A number of techniques can be used to reduce the required overhead for providing

side-information at the destination(s). For instance, consider a wireless erasure net-

work with one destination d. Let C denote the minimum cut-capacity for this node.

Based on Theorem 2.1, this is the maximum achievable rate at d. Now consider Q to

be the subset of nodes for which the minimum cut-capacity is greater than C. If we

decode the messages completely and then re-encode them using random code-books,

we can still achieve the capacity at destination d. However, doing this may reduce

the amount of overhead required at the destination. As an example, let’s look at a

line network (Figure 2.5) from this point of view. The source node is the leftmost

node, and the destination is the rightmost node. The minimum cut-capacity for the

destination is less than or equal to the minimum cut-capacity for every other node.

Therefore, the intermediate nodes can decode without degrading the performance at

the destination d. Further, this approach decreases the amount of overhead required.

In fact, for this special case, by decoding at every node no side-information from
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Figure 2.5: A wireless erasure line network.

previous links is required at the destination. Another technique is scheduling among

the nodes to minimize the average header size needed for sending across the required

side-information. In this scheduling, for any link in the network we determine the

nodes that should include the erasure locations on that link as a header in their

transmitted packets.

Remark: A closer look at the achievability proof of Section 2.6.1.2 reveals that

all that the destination nodes need to know is the mapping from the source nodes

to their incoming signals for every instantiation of the network. (In other words, for

every instantiation of the network, the destinations should be able to unambiguously

compute their output for any given input to the network.) Any mechanism that

provides destination nodes with the knowledge of this mapping will work. Providing

the erasure locations for each link of the network is one possible mechanism. In the

subsequent work of [21], another kind of side-information is considered for the linear

encoding scenario. There, the side information is the global encoding vectors, which

also allow for the input output mapping to be determined.

2.8.3 Achievable Rates Without Side-information

In this section we look at the achievable rate for single source / single destination wire-

less erasure networks under a number of coding schemes when the side-information

is not available at the destination.
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“Forward” and “Decode” Scheme

In this scheme we analyze the performance of wireless erasure networks when limited

operations are allowed at each node. Consider a codebook C of rate R and block size n.

This codebook is available at all the nodes and is used for encoding the information

message. The source node uses this codebook to “encode” the information. We

assume that all the other nodes are allowed to perform one of the following operations:

• Forward: A node operating at this mode forwards received strings unchanged.15

• Decode and re-encode: In this case, the node first decodes the message trans-

mitted from the source node based on what it has received and the codebook C.

Then, it sends out the codeword corresponding to that message in C across its

outgoing links. In this way, each relay node acts as a “source” of information for

other nodes in the network. The need for successful decoding at intermediate

nodes may reduce R the rate of the codebook used.

The main observation is that since the source message is intended to be decoded only

at destination nodes, decoding at one relay node may be sub-optimal. In fact, as it

will be shown in Chapter 4, the distinguishing features of wireless media imply that

decoding at every relay node and operating below the capacity of each link in the

network can result in severe degradation in the achievable rate in the network (for

more examples See [27, 55, 56]). For instance, for the erasure wireless networks con-

sidered here, the maximum rate when all the nodes are decoding the source message

using codebook C is given by the minimum capacity of the links in the network, i.e.,

RAD = 1− max
(i,j)∈E

εij, (2.22)

15In this scheme we consider a modified erasure channel between any two nodes in which the nodes
can forward the erasure symbol without error. In other words, although similar to previous sections;
however the nodes are not allowed to perform coding on erasure symbol, they can inform their local
neighbors of erasure of packets.
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where subscript AD refers to the all decoding case.

In the “forward” and “decode” scheme, instead of requiring all the nodes to decode

the source message, we allow for another operation: “forward”ing. The objective is

to find the optimal operation at every node so as to maximize the achievable rate,

i.e., the rate of the codebook, in this network. In Chapter 4 we propose an efficient

algorithm that finds the optimal rate for this scheme. We use RFD to refer to the

optimal rate using the “forward” and “decode” scheme.

Block Markov Superposition Coding

Cover and El Gamal [14] developed a coding strategy for general single relay channels

based on block Markov coding and random partitioning. This strategy is generalized

and used in a multiple relay setup in [15],[16].

Let π(.) be a permutation on V that fixes the source and destination nodes. This

permutation determines the order in which the nodes decode and encode the infor-

mation. Using this coding strategy, it is shown in [15] that we can achieve

RBM = max
π(.)

min
1≤t≤|V|−1

I(Xπ(1:t); Yπ(t+1)|Xπ(t+1:|V|−1)),

where subscript BM is used to refer to block Markov coding, and π(i : j) = {π(i), π(i+

1), . . . , π(j)}. We should remark that one can choose any distribution on (X1, X2, . . . , X|V|)

in the above result. Applying this result to our case, we show in the following lemma

that the maximum rate is achieved when the Xis are independent and uniformly

distributed.

Lemma 2.6. The maximum achievable rate using block Markov coding for wireless

erasure networks is given by

RBM = min
j∈V

∑

i: (i,j)∈E
(1− εij). (2.23)
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Furthermore, this rate is achieved by applying independent coding at different nodes

of the network.

Proof. As mentioned earlier, the achievable rate using block Markov coding is given

by

RBM = max
π(.)

min
1≤t≤|V|−1

I(Xπ(1:t); Yπ(t+1)|Xπ(t+1:|V|−1)),

where the maximization is over the joint distribution of the (Xi, i ∈ V) and π(.)

permutations of the nodes that keep source and destination fixed. Now, for any

mutual information term in the above equation we have

I(Xπ(1:t); Yπ(t+1)|Xπ(t+1:|V|−1))

= H(Yπ(t+1)|Xπ(t+1:|V|−1))−H(Yπ(t+1)|Xπ(t+1:|V|−1), Xπ(1:t))

≤ H(Yπ(t+1))−H(Yπ(t+1)|Xi, i ∈ V)

(a)
= H(Yπ(t+1))−H(Yπ(t+1)|Xi, (i, π(t + 1)) ∈ E)

(b)

≤
∑

i: (i,π(t+1))∈E
H(Yiπ(t+1))−H(Yiπ(t+1)|Xi)

=
∑

i: (i,π(t+1))∈E
I(Yiπ(t+1); Xi)

(c)

≤
∑

i: (i,π(t+1))∈E
1− εiπ(t+1) (2.24)

where

• (a),(b) follows from the fact the network is memoryless; therefore given Xi (i, j) ∈
E , Yijs are independent from each other and also output of other nodes.

• (c) follows from the fact that the capacity of an erasure channel with probability

of erasure εij is 1− εij.

Using (2.24), we have

RBM ≤ min
j∈V

∑

i: (i,j)∈E
1− εij.



52

2

d = 4s = 1

3

ε0

ε1
ε0

ε1

Figure 2.6: A simple network.

Now we can easily verify that by choosing Xis independent and uniformly distributed

and by considering a permutation that is faithful to partial ordering of the nodes

defined in Section 2.2.2, we can achieve the right-hand side of the above equation.

The above lemma (and in particular (2.23)) suggests that the achievable rate

in block Markov scheme is constrained by the minimum of the sum-capacities of

incoming edges to any node in the network. This constraint is less severe than the

all decoding case in (2.22). Here, instead of requiring all the links to be error-free,

we only require that the relay nodes be able to decode the information. However, the

achievable rate is still constrained by the capability of each relay node to decode the

information. The example that follows demonstrates that block Markov coding is not

always efficient in our network.

There are other strategies such as compress-forward and also partial decoding at

the relay nodes that can be implemented in the network [14, Theorem 6],[28],[16].

Finding the achievable rates for these schemes explicitly and in terms of parameters

of the network is usually intractable since the expressions for these schemes are not

simple and involve a number of auxiliary random variables. In the rest of this sec-

tion we compare the performance of these schemes for a very simple but interesting

erasure broadcast network. The capacity of this simple network is not known to our
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knowledge.

A Simple Example

The network under study here has a graph representation shown in Figure 2.6. It has

two relay nodes and one destination. We assume that the relay nodes are identical

in the sense that their connections to the source (respectively destination) have the

same probability of erasure equal to ε0 (respectively ε1). The capacity of the network

given side-information at the destination is CSI = min{1 − ε2
0, 2 − 2ε1, 2 − ε1 − ε0}.

Using the “forward” and “decode” strategy, the maximum achievable rate is given by

[27]

RFD = max{1−max{ε1, ε0}, 1− (1− (1− ε0)(1− ε1))
2}.

Using (2.23), the block Markov coding scheme achieves rates up to

RBM = min{1− ε0, 2(1− ε1)}.

Another strategy that can be used is for the relay nodes to encode and compress

their received signals, Yi, with rate Ri and send them to the destination node reliably.

Since the received signals at the relay nodes are correlated, the Slepian-Wolf encoding

scheme can be used [29]. However, this scheme works only if the capacity of the

channel between relay node i and the destination is larger than Ri. Combining this

with the Slepian-Wolf rate region [29], we should have

H(Y2|Y3) ≤ 1− ε1 and H(Y2, Y3) ≤ 2(1− ε1).

If the above conditions are satisfied, the destination will have access to both observa-

tions Y2 and Y3, and therefore we can achieve a rate of I(X1; Y2, Y3) in the network.

Now suppose that the distribution on the input signal, X1, is given by vector p.
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It can be verified that H(Y2|Y3) = H(ε0)+ ε0(1− ε0)H(p), H(Y3, Y2) = (1− ε2
0)H(p)+

2H(ε0), and I(X1; Y2, Y3) = (1 − ε2
0)H(p). By choosing the probability distribution

appropriately, we can achieve

RSW = min{1− ε2
0, 2{1− ε1 −H(ε0)}+},

where {x}+ = max{0, x}, and the subscript SW is used to refer to the Slepian-Wolf

coding scheme. Note that this scheme does not work if the quality of the channels

from the relay nodes to the destinations is low, i.e., if ε1 is large. In this case the

second term in the above formula becomes zero, and therefore RSW equals zero.

We have plotted the performance of the above-mentioned strategies for four dif-

ferent scenarios in Figure 2.7. In Figure 2.7.(a), we plot the performance for ε0 =

ε1 ∈ [0, 1]. For small values of ε0, the Slepian-Wolf strategy achieves capacity. Un-

fortunately, this approach performs poorly for large values of ε0 since the quality of

the channel between relay nodes and the destination is not good enough to pass the

compressed data reliably. Figure 2.7.(b) shows the results for ε1 = ε3
0. This choice

corresponds to the case when the quality of the channels from the relay nodes to the

destination is better than the source-to-relay connections. Note that the performance

of the block Markov scheme is not good because of the rate constraint introduced by

decoding at the relay nodes. The Slepian-Wolf scheme works for a larger range of ε0

compared to the network considered in part (a). This is because the channels between

the source and the destination are better than in the former case. In Figure2.7.(c),

we look at one extreme case when ε1 is zero, giving a perfect channel between the

relays and the destination. As the figure shows, the “forward” and “decode” scheme

achieves the capacity in this cases. The rate of the Slepian-Wolf scheme decreases

for intermediate values of ε0, but as we increase ε0 again this scheme achieves the

capacity. This happens because for values of ε around 0.5, the entropy of the re-
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Figure 2.7: Performance of different schemes for four scenarios.
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ceived signals at the relay nodes increases. Therefore, the minimum required rate

for reliable transmission also increases. However, as we increase the value of ε the

required rate decreases, and the compressed signals can pass across without error.

Hence, we achieve capacity. In Figure 2.7.(d) we look at the case when the quality

of channels between the source and relays is better than of those between the relays

and destination. For this, we have chosen ε0 = ε3
1. In this plot, block Markov coding

outperforms other schemes and achieves capacity for large values of ε1.

There are other strategies that can be used that are not analyzed here. For

instance, the authors of [14] propose a compression-based scheme for general relay

channels. The approach is generalized to a multiple relay setup in [16],[28]. This

scheme is based on the Wyner-Ziv compression technique with side-information at

the receiver [30]. One expects this scheme to be more efficient than the Slepian-

Wolf scheme proposed here. However, finding an explicit formula for the achievable

rate requires a seemingly intractable optimization over a number of auxiliary random

variables. Designing efficient and analytically tractable coding schemes based on these

ideas deserves further investigation and can be a subject of further research.

2.9 Conclusion

We have obtained the capacity for a class of wireless erasure networks with broadcast

and no interference at reception. We have generalized some of the capacity results

that hold for wireline networks [9],[54] to these networks. Furthermore, we have

shown that linear encoding suffices to achieve the optimal performance. We see from

the proof that it is not necessary to perform channel coding and network coding

separately from each other. In fact, as we will see in Chapter 4, decoding at the relay

nodes and operating below the capacities of each link can actually significantly reduce

the achievable rate (for more examples, see [27],[55]). Therefore, unlike the wireline
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scenario where each link is made error free by channel coding and network coding is

then employed on top of that, our scheme only requires a single encoding function.

Only the destination has to decode the received signal.

Many problems related to wireless networks remain open. Generalizing the results

in this work for other network problems is one possible extension of this work. It

will also be interesting to see if similar results can be obtained for other types of

networks, such as erasure wireless networks, in which interference is incorporated in

the reception model, networks involving channels other than erasure channels, etc.
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Chapter 3

Broadcast Problems over Wireless
Networks

3.1 Introduction

Different traffic patterns are present in today’s communication networks. In addition

to pairwise communications in the network, it is possible that a collection of users are

interested in the same type of information generated in the network. This scenario

resembles the multicast problem that was considered in Chapter 2 for a specific model

of wireless networks. Another possibility is that a collection of users demand different

types of information from a specific user referred to as source node. We refer to this

problem as the broadcast problem in the network. What is apparent from the above

two scenarios is that unlike point-to-point communication systems, where the source

(transmitter) and the sink (receiver) of the information are specified, in communica-

tion networks a user can be a transmitter and receiver (or even relay) for different

types of information at the same time, and this gives rise to different network prob-

lems. At a high level of generality, a network problem over a communication network

is specified by the set of information messages, the source nodes, and the destina-

tion nodes. Each source node has access to a subset of information messages, and

each destination demands some subset of the information messages. In Section 2.3 of

Chapter 2 we defined a network problem, P by a quintuple P = (M,S,D, Υg, Υr),
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where M is the set of information message, S and D are the set of source and destina-

tion nodes, and Υr (respectively Υg) is the function that specifies the set of messages

requested (generated) at each destination (source).

Note that the above definition is independent of the communication model defined

for the network. A network problem can be defined over wireline and wireless, fixed, or

mobile networks. Given a communication model for the network (which specifies the

connectivity of the users and their communication capabilities), the main questions

regarding a network problem P are

• What is the set of possible rates (for information messages) that can be sup-

ported for P over the network?

• What is the optimal communication strategy to achieve those rate?

As mentioned in Chapter 2, these questions are answered for multicast problems

over wireline networks in [9, 10] and a class of deterministic networks in [32]. We

also looked at multicast problems over a class of wireless networks called wireless

erasure networks and found the capacity region and the optimal strategy in Chapter

2. However, for a general network problem, the answer to the above questions is

unknown. In [33, 23], outer and inner bounds on the capacity region of general

network problems over wireline networks are obtained.

In this chapter we consider broadcast problems. In a broadcast problem one source

has access to multiple information messages. Each of these information messages is

requested by a particular destination. In accordance to our definition, a broadcast

problem Pbc = (M,S,D, Υg, Υr) is a network problem where S = {s}, Υg = M, and

Υr(.) is a partition ofM. There are many scenarios that can be modeled by broadcast

problems. A well-known example is TV broadcasting stations. Downlink of cellular

systems where a base station provides service to different users is another example of

such problems that has received a lot of attention in the past few years. It should be
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noted that the capacity region of a broadcast problem for a general network is still

unknown. In fact, even in the multi-user setup where there are no relays present in

the network and the destinations are directly connected to the source, the broadcast

problem is not completely solved. In this case the problem is referred to as broadcast

channels, which was first introduced by Cover in [13].

In a network setup the broadcast problem is solved for wireline networks with

error-free links in [54]. The capacity region in this case has a min-cut interpretation.

Furthermore, it can be shown that in this case the capacity is achieved by routing,

and no coding at the intermediate nodes is required.

In this chapter we look at broadcast problems over wireless erasure networks.

These networks were introduced in Chapter 2. At the beginning of the chapter we

give the problem statement. We find an achievable region for broadcast problems

over these networks and find the exact capacity region in the multiuser setup. Using

this result we will give an outer bound on the capacity region of broadcast problems

over wireless erasure networks which is tighter than the outer bounds that we get

from the multicast type of arguments.

3.2 Problem Statement

The communication networks considered in this chapter, namely Wireless Erasure

(WE) networks, are modeled by an acyclic directed graph G = (V , E) with node set V
and link (edge) set E ⊂ V × V . Each link (i, j) ∈ E corresponds to a communication

channel between the node i and node j. Looking back at Chapter 2, the input of

all channels originating from node i is denoted by Xi chosen from input alphabet

X . The output of the communication channel corresponding to link (i, j) is denoted

by Yij; Yij lies in alphabet set Yij. We assume interference-free property for all the

incoming links to a node and denote the collection of received signal at node j by
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Yj = (Yij, (i, j) ∈ E) ∈ Yj
4
=

∏
i:(i,j)∈E Yij. Link (i, j) corresponds to an erasure

channel with probability of erasure εij in WE networks.

Let D = {d1, . . . , d|D|} denote the set of destination nodes and s be the source

node for the broadcast problem. Next, we define the class of block codes considered

in this chapter.

A (d2nR1e, . . . , d2nR|D|e, n) code for the broadcast problem in a wireless erasure

network described in previous sections consists of the following components:

• A set of integers W(di) = {1, 2, . . . , d2nRie} that represent the message indices

corresponding to information source intended for destination node di ∈ D. We

assume that all the messages are equally likely. All the information sources are

available at the source node indexed by s ∈ V .

• An encoding function for the source node s: fs :
∏

d∈DW(d) → X n
s .

• A set of encoding functions {fi,t}n
t=1 for each node i 6= s ∈ V , where xi,t =

fi,t(y
t−1
i ) is the signal transmitted by node i at time t. Note that xi,t is a

function of all the received symbols from all its incoming channels up to time

t− 1.

• A decoding function gdi
at destination node di ∈ D, gdi

: Yn
di
×{0, 1}n|E| →W (di)

such that

ŵ(di) = gdi
(yn

di
, (sij,t , (i, j) ∈ E , 1 ≤ t ≤ n)), (3.1)

where ŵ(di) is the estimate of the message sent from source s based on received

signals at di and also the erasure occurrences on all the links of the network in

the current block.

Note that Xi, Yij and Yi, all depend on the message vector w = (w(di), di ∈ D) that

is being transmitted. Therefore, we will write them as Xi(w),Yij(w), and Yi(w) to

specify what specific set of messages is transmitted.
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We define the probability of error as the probability that the decoded message at

one of the destinations is not equal to the transmitted message, i.e.,

Perr = Pr (∃ di ∈ D : Ŵ (di) 6= W (di)). (3.2)

The set of rates (Ri, 1 ≤ i ≤ |D|) is said to be achievable if there exist a sequence

of (d2nR1e, . . . , d2nR|D|e, n) codes such that Perr → 0 as n →∞ . The capacity region,

C(G, {εij, (i, j) ∈ E}), is the set closure of the set of achievable rates.

In the remainder of this chapter we will look at the capacity region for broadcast

problem in WE networks.

3.3 Broadcast Problems Over WE Networks

As we saw in Chapter 2, with an appropriate definition of the cut-capacity, the ca-

pacity of multicast problems over wireless erasure networks has a nice min-cut inter-

pretation. In particular, for a unicast scenario (i.e., single destination) the capacity is

given by the min-cut capacity over all the source destination cuts (see Theorem 2.1).

In the following we propose a time-sharing scheme for broadcast problems based on

the result for unicast problems in wireless erasure networks.

3.3.1 Time-sharing Scheme for WE networks

We consider a scheme where each node in the network performs time-sharing between

the destinations. In other words, each node i ∈ V allocates a fraction αid, d ∈ D
of its block length to transmit to destination d ∈ D. These fractions may not be

the same for different nodes. In fact, as we will see later, in some cases the optimal

fractions are unequal.

In order to analyze the set of achievable rates with the above time-sharing schemes,

it is important to note that given time-sharing parameters αid, d ∈ D, the achievable



63

rate for each destination is given by a min-cut formulation. The only difference to be

taken into account is that the length of the block code used at node i for transmitting

to destination d is of size dαidne ( rather than n in the proof of Theorem 2.1). However,

with a generalized definition of the cut-capacity, a similar min-cut result will still hold

even if the block lengths are not equal across the network. We have stated this result

without proof as the following lemma.

Lemma 3.1. Consider an erasure wireless network with single source and single

destination d. Furthermore, suppose that node i ∈ V uses a block code of length

dαidne, αid ≤ 1 to perform encoding. Then, the capacity of the network with side-

information at the destination and under this coding scheme is given by the minimum

of the cut-capacities over all the s-d cuts, where the cut-capacity of s-d cut Vs is

defined as

C(Vs, {αid}i∈V) =
∑
i∈V∗s

αid(1−
∏

j:(i,j)∈[Vs,Vc
s ]

εij). (3.3)

Now consider our broadcast problem in wireless erasure networks. We represent

any admissible time-sharing policy by α = (αid, i ∈ V , d ∈ D), where, as mentioned

earlier, αid specifies the fraction of the block length allocated by node i for transmis-

sion to destination d. It is clear that for any admissible time-sharing α, we should

have αid ≥ 0 and
∑

d∈D αid = 1 for any i ∈ V and d ∈ D. According to the previous

lemma, the achievable rate region using a fixed time-sharing scheme given by α will

be

RTS(α) = {(Rd, d ∈ D)|∀d ∈ D, 0 ≤ Rd ≤ min
Vs:s-d cut

C(Vs, {αid}i∈V)}, (3.4)

and therefore the achievable rate region using time-sharing in the network is

RTS =
⋃
α

RTS(α), (3.5)
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Figure 3.1: (a): A wireless erasure network with one source and two destination
nodes. (b): Different achievable regions for the network in part (a).

where union is taken over all admissible αs and subscript TS is used to refer to the

time-sharing scheme.

Example 3.1. Consider the wireless erasure network shown in Figure 3.1, with one

source, one relay node, and two destination nodes. Based on the above argument,

the achievable rate region using time-sharing is

RTS = ∪(α,β)








R2

R3




∣∣∣∣
R2 ≤ min{α(1− ε12ε14), α(1− ε12) + β(1− ε42)}

R3 ≤ min{(1− α)(1− ε13ε14), (1− α)(1− ε13) + (1− β)(1− ε43)}





,

where 0 ≤ α ≤ 1 (respectively 0 ≤ β ≤ 1) is the fraction of the block length that

node 1 (respectively 4) allocates to transmit to destination 2. In Figure 3.1.(b), we

have plotted the achievable rate region using the time-sharing scheme described above

for (ε12, ε13, ε14, ε42, ε43) = (0.8, 0.2, 0.6, 0.8, 0.2). As it can be seen from the plot, the

time-sharing region is given by

RTS =

{
(R2, R3)

∣∣∣∣
R3

0.88
+

R2

0.52
≤ 1,

R2

0.4
+

R3

1.6
≤ 1

}
. (3.6)

The dashed line specifies boundaries of the region achievable by time-sharing between

source and one of the destination sub-networks (this corresponds to the case when
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α = β). As we can observe, the optimal time-sharing is not achieved by equal fractions

α and β. Figure 3.1.(b) also compares the time-sharing region to the näıve min-cut

outer bound derived by multicast type arguments, i.e.,

R2 ≤ 0.4,

R3 ≤ 0.88, and

R2 + R3 ≤ 0.904.

Note that the outer bound provided in the example is simply an application of the

outer bound developed for the mutlicast problem in Chapter 2. The counterpart of

this outer bound in wireline networks is tight for broadcast problems [54]. However,

as we will see in the following, this outer bound is not tight for wireless erasure

networks. In the following section, we first look at the performance of the time-

sharing scheme proposed above for a subclass of WE networks referred to as Erasure

Broadcast Channels (EBC). We will show that time-sharing achieves the capacity for

this subclass and then use this result to find tighter outer bounds for a general WE

network.

3.4 Erasure Broadcast Channel

We consider a subclass of wireless erasure networks called erasure broadcast channels.

An (m,n)-erasure broadcast channel (see Figure 3.2.(a)) with channel matrix εm×n is

a broadcast channel with m inputs and n receivers (or destinations). Destination i

is connected to node j with a packet erasure channel with probability of erasure εij.

We can think of an (m,n)-erasure broadcast channel as a wireless erasure network

with n destinations and m intermediate nodes, each connected to the source node

with a link with no erasure and unlimited capacity. We can also consider an (m,n)-
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Figure 3.2: (a):An (m,n)-erasure broadcast channel (b): An (1, n−1)-erasure broad-
cast channel

erasure broadcast channel as the product of m scalar (single input) erasure broadcast

channels. The capacity of the product of two broadcast channels with degraded

components is considered in [37, 38].

The (m,n)-erasure broadcast channel does not in general belong to the classes of

broadcast channels for which the capacity is known, e.g., “degraded,” “more capable,”

and “less noisy” (see [35] for an overview). However, the single input erasure broadcast

channel belongs to the “degraded” class, and its capacity region has been found in [42,

39]. It is shown in [42, 39] that the time-sharing scheme is actually capacity achieving.

Here we look at the general case. Note that for the (m,n)-erasure broadcast channel,

the time-sharing region of (3.5) simplifies to the following:

RT (ε) =
⋃
α

{(R1, . . . , Rn)|0 ≤ Rj <

m∑
i=1

αij(1− εij)}, (3.7)

where the union is over all admissible time-sharing matrices α that satisfy:

(a) αij ≥ 0.

(b)
∑n

j=1 αij = 1 for all inputs 1 ≤ i ≤ m.
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3.4.1 Degraded (m,n)-Erasure Broadcast Channels

Here we try to find necessary and sufficient conditions so that an (m,n)-erasure

broadcast channel with erasure matrix ε belongs to the ”degraded” class.

Definition 3.1. Channel i with probability transition matrix Pr i(Y |X) is a statisti-

cally “degraded” version of channel j with transition matrix Pr j(Z|X) iff there exists

a channel Pr (Y |Z) such that

Pr i(Y |X) =
∑

Z

Pr j(Z|X)Pr (Y |Z).

In this case we write Pr i(·|·) ¹ Pr i(·|·).

Now note that if channel i is a degraded version of channel j, then for any distri-

bution on X we should have

I(X; Yj) ≥ I(X; Yi).

Therefore, for an (m,n)-erasure broadcast channel, if the i-th user is a “degraded”

version of j-th user, then we should have I(X; Yj) ≥ I(X; Yi) for any distribution on

X. In particular, if we keep all the inputs except the k-th one constant and let Xk

be an i.i.d. Bernoulli(1
2
), the following condition should hold:

εkj ≤ εkj ∀ k ∈ {1, . . . , m}.

It can be easily checked that this condition is also sufficient for channel i being a

“degraded” version of channel j. Hence,

Lemma 3.2. An (m,n)-erasure channel with erasure matrix ε belongs to “degraded”
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class iff there exists some permutation π(·) on {1, 2, . . . , n} such that

εiπ(j) ≤ εiπ(j+1), ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Now, we show that the capacity of the degraded erasure broadcast channels is

given by the time-sharing scheme described in Section 3.3.1. In doing so, we use the

following lemma, the proof of which we omit.

Lemma 3.3. Suppose U, V, X, and Y are random variables with probability distribu-

tion of form

Pr(U, V, X, Y ) = Pr(U, V, X)Prε(Y |X),

where Prε(.|.) is the transition probability of an erasure channel with probability of

erasure ε. Then

I(U ; Y |V ) = (1− ε)I(U ; X|V ).

Theorem 3.1. The capacity region, Cg(ε), of a degraded (m,n)-erasure channel with

erasure matrix ε is given by time-sharing between the receivers at each input, i.e.,

Cg(ε) = RT (ε),

where RT (ε) is given in (3.7).

Proof. Without loss of generality let us assume that for i < j, receiver j is a “de-

graded” version of receiver i. According to [40], the capacity of the degraded broadcast

channel is given by the convex hull of the closure of the (R1, . . . , Rn) satisfying

0 ≤ Rj ≤ I(Uj; Yj|Uj+1, . . . , Un)

for j = 1, 2, . . . , n, where U = (U1, . . . , Un) and X = (X1, . . . , Xm) and U −X − Y1−
· · · − Yn forms a Markov chain.
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Now consider the following maximization problem:

S?(µ) = max
(R1,...,Rn)∈Cg(ε)

n∑
j=1

µjRj,

where µ = (µ1, . . . , µn) ≥ 0. Note that every point on the boundary of the capacity

region is the maximizing solution for some µ ≥ 0. Also, the maximizing solution

of the above optimization problem corresponds to a boundary point of the capacity

region.

Using chain rule for mutual information, we can write

S?(µ) ≤ max
P (U,X)

n∑
j=1

µjI(Uj; Yj|Uj+1, . . . , Un) (3.8)

= max
P (U,X)

n∑
j=1

µjI(Uj; Y1j, Y
′
j |Uj+1, . . . , Un)

= max
P (U,X)

( n∑
j=1

µjI(Uj; Y
′
j |Uj+1, . . . , Un)

+
n∑

j=1

µjI(Uj; Y1j|Uj+1, . . . , Un, Y ′
j )

)

= max
P (U,X)

( n∑
j=1

µjI(Uj; Y
′
j |Uj+1, . . . , Un) (3.9)

+
n∑

j=1

µj(1− ε1j)I(Uj; X1|Uj+1, . . . , Un, Y ′
j )

)
,

where Y ′
j = (Y2j, . . . , Ymj) for all 1 ≤ j ≤ n, and (3.9) follows from Lemma 3.3.

Defining X ′ = (X2, . . . , Xm), it can be easily verified that (U1, . . . , Un, X1) − X ′ −
Y ′

1 − · · · − Y ′
n. This Markov property implies that

H(X1|Uj, . . . , Un, Y
′
j−1) = H(X1|Uj, . . . , Un, Y

′
j )− I(Y ′

j−1; X1|Uj, . . . , Un, Y
′
j ). (3.10)
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Therefore,

H(X1|Uj, . . . , Un, Y ′
j−1) ≤ H(X1|Uj, . . . , Un, Y

′
j ).

Using the above inequality, one can show that

n∑
j=1

I(Uj; X1|Uj+1, . . . , Un, Y ′
j ) ≤ H(X1).

Therefore, the second weighted sum of (3.9) is at most maxj µj(1 − ε1j)H(X1), and

replacing this in (3.9), we have

S?(µ) ≤ max
P (U,X′)

n∑
j=1

µjI(Uj; Y
′
j |Uj+1, . . . , Un) + max

j
µj(1− ε1j). (3.11)

The first summation in the right hand side of the inequality corresponds to the max-

imum weighted sum rate of an (m − 1, n)-degraded broadcast channel obtained by

excluding the connections from the first input of the transmitter to all the receivers.

Using similar arguments for the new (m − 1, n)-degraded broadcast channel, it can

be verified that

max
P (U,X′)

n∑
j=1

µjI(Uj; Y
′
j |Uj+1, . . . , Un) ≤

m∑
i=2

max
j

µj(1− εij). (3.12)

Using this in (3.11), we have

S?(µ) ≤
m∑

i=1

max
j

µj(1− εij). (3.13)

Now, the right hand side value can be achieved by time-sharing. For that, input i

transmits only to the receiver with maximum µj(1 − εij). Therefore ,each boundary

point of the capacity region can be achieved by time-sharing and Cg(ε) = RT (ε).
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3.4.2 Non-degraded (m,n)-Erasure Broadcast Channel

In this section we show that the capacity region of the general erasure broadcast

channel is given by time-sharing. In [38], the capacity of the product of two reversely

degraded broadcast channels is characterized. Using this result it can be easily verified

that the capacity region of (2, 2)-erasure broadcast channel is given by time-sharing.

However, applying and specializing the technique of [38] for the general (m,n)-erasure

broadcast channel does not seem plausible. Instead, in this chapter we use another

argument to show that every boundary point of the capacity region for general erasure

broadcast channel is achieved by time-sharing. The argument used here is very close

to the one used in [118] to prove that the capacity of the MIMO Gaussian broadcast

channel is given by Dirty Paper coding (DPC) introduced in [119].

Consider an (m,n)-erasure broadcast channel with erasure matrix ε = [εij]. Let

Cg(ε) denote the capacity region of this general erasure broadcast channel. For every

boundary point R′, there exist positive µ1, . . . , µn such that R′ is the optimal solution

of

max
(R1,...,Rn)∈Cg(ε)

n∑
j=1

µjRj.

The idea is to construct for each value of µ1, . . . , µn a degraded (m,n)-erasure broad-

cast channel with channel matrix ε? whose capacity region, Cg(ε
?), contains the capac-

ity region of the original channel, Cg(ε). Moreover, we require that the time-sharing

region of both channels meet at some specific point(s) on the boundary.

Let us look at the (2, 2)-erasure broadcast channels first. Suppose that the channel

is not degraded. Without loss of generality, assume that

ε11 ≤ ε12, ε21 ≥ ε22.
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Consider the following maximization problem:

max
(R1,R2)∈Cg

µ1R1 + µ2R2. (3.14)

We construct a (2, 2)-degraded erasure broadcast channel that contains the capacity

region Cg. For this, we consider the following two cases separately.

• µ1

µ2
≥ 1: In this case, consider the erasure broadcast channel with the erasure

matrix constructed from ε as follows:

ε? =




ε11 ε11

ε21 ε22


 .

First note that the above channel is degraded. Moreover, the erasure proba-

bilities on every edge of this new channel are less than or equal to that of the

corresponding edge in the original channel. Therefore, the capacity region of

the degraded channel contains Cg. Now let’s look back at the maximization

problem in (3.14). Based on the above discussions we know that the optimal

solution is less than

max
(R1,R2)∈Cd

µ1R1 + µ2R2,

where Cd is the capacity region of the obtained degraded channel with era-

sure matrix ε?. Based on Theorem 3.1, the maximum of the above problem is

achieved by time sharing, and it equals

max{µ1(1− ε21), µ2(1− ε22)}+ max{µ1(1− ε11), µ2(1− ε11)}.

Since µ1 ≥ µ2, we can write the above rate as

max{µ1(1− ε21), µ2(1− ε22)}+ µ1(1− ε11).
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Looking closely at the above rate, we observe that we can achieve the above rate

in the original erasure channel by time-sharing as well. Input 1 transmits only

to the first receiver, and the second input sends to the maximum of the to terms

appearing in the above formula. Therefore, the boundary point corresponding

to µ1, µ2 is achieved by time-sharing.

• µ1

µ2
< 1: In this case, consider the (2, 2)-erasure broadcast channel with the

following erasure matrix:

ε? =




ε11 ε12

ε22 ε22


 .

Similar to the first case, the broadcast channel represented by ε? is degraded,

and its capacity region contains Cg. Also, the solution of (3.14) coincides with

the solution of the same cost function over region Cd. Thus, the boundary point

corresponding to µ1, µ2 is achieved by time-sharing.

Based on the above results and Theorem 3.1, we have the following result.

Theorem 3.2. The capacity region of any (2, 2)-erasure broadcast channel is given

by time-sharing.

We can generalize the preceding arguments to general (m,n)-erasure broadcast

channels by finding a degraded erasure broadcast channel that contains the capacity

region of the original channel and its time-sharing region coincides with that of the

original one at a specific point. We have stated the above result as a theorem:

Theorem 3.3. Consider an (m,n)-erasure broadcast channel with channel matrix ε.

The capacity region, Cg(ε), of this broadcast channel is given by time-sharing between

the receivers at each input, i.e.,

Cg(ε) = RT (ε),
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where RT (ε) is defined in (3.7).

Proof. Similar to previous discussions, we need to show that every boundary point

of the capacity region is achieved by time-sharing. For any µ ≥ 01, consider the

following maximization problem:

fg(µ, ε) = max
(R1,...,Rn)∈Cg(ε)

n∑
j=1

µjRj, (3.15)

where the maximization is over the capacity region of the erasure broadcast channel

with channel matrix ε. We construct a degraded (m,n)-erasure broadcast channel

with channel matrix denoted by ε? from the original channel such that

• its capacity region Cg(ε
?) contains that of the original channel and, therefore,

fg(µ, ε) ≤ fg(µ, ε?), and (3.16)

• the following maximization problem over the time-sharing region

fT (µ, ε) = max
(R1,...,Rn)∈RT (ε)

n∑
j=1

µjR, (3.17)

gives the same values for both channels, i.e.,

fT (µ, ε) = fT (µ, ε?). (3.18)

Combining (3.16) and (3.18) we get

fg(µ, ε) ≤ fg(µ, ε)
(a)
= fT (µ, ε?) = fT (µ, ε),

where (a) follows from Theorem 3.1 and the fact that ε? corresponds to a degraded

1Here, by a ≥ 0 we mean every component of a should be greater than equal zero.
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channel, and this proves that time-sharing is capacity-achieving.

Before we start constructing the degraded channel, we should remark that the

solution to the optimization problem in (3.17) can be written explicitly as

fT (µ, ε) =
m∑

i=1

max
1≤j≤n

µj(1− εij). (3.19)

Next, we claim that there exists at least one input i and two receivers j, k such

that

µj ≤ µk, εik < εij.

If not, then it can be easily verified that for all is, εijs are ordered in the reverse order

that µjs are ordered and, therefore, the erasure matrix ε satisfies the constraint of

Lemma 3.2 with the permutation that sorts µjs in decreasing order; hence our (m,n)-

erasure channel is “degraded.” But, in that case we already know from Theorem 3.1

that the capacity region is achieved by time-sharing. Therefore, let i∗, j∗, and k∗ be

such numbers. Consider a new (m,n)-erasure channel with erasure matrix ε(1) derived

from ε by replacing εi∗j∗ with εi∗k∗ in the i∗j∗ coordinate of ε. In other words, each

coordinate of the new matrix is as follows:

ε
(1)
ij = εij + (εi∗k∗ − εi∗j∗)δ(i− i∗)δ(j − j∗),

where δ(·) denotes the Dirac’s delta function. This new channel has the following

properties:

• Its capacity region, Cg(ε
(1)), contains Cg(ε), since a link is replaced by a link

with lower probability of erasure; therefore,

fg(µ, ε) ≤ fg)(µ, ε(1)).
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• The value of (3.19) remains unchanged for the new channel, i.e., fT (µ, ε) =

fT (µ, ε(1)). To see this, first notice that

max
1≤j≤n

µj(1− ε
(1)
i∗j) = max{µj∗(1− ε

(1)
i∗j∗), max

1≤j 6=j∗≤n
µj(1− ε

(1)
i∗j)}

= max{µj∗(1− εi∗k∗), max
1≤j 6=j∗≤n

µj(1− εi∗j)}

= max{µj∗(1− εi∗k∗), µk∗(1− εi∗k∗) max
1≤j 6=j∗,k∗≤n

µj(1− εi∗j)}

= max{µk∗(1− εi∗k∗) max
1≤j 6=j∗,k∗≤n

µj(1− εi∗j)}

= max
1≤j≤n

µj(1− εi∗j),

where we have used our initial assumption that µj∗ ≤ µk∗ .

Now we repeat the above process and obtain erasure channels ε(l) for l ≥ 1, until

we cannot find any input i, receivers j, k with (µj ≤ µk) and (εik < εij) at round

l = l0.
2 In that case, we know that channel ε? = ε(l0) is degraded. Furthermore, its

capacity region Cg(ε
?) contains the capacity region of all previously derived channels

(in particular the original channel), and the value of (3.19) for it remains unchanged,

i.e.,

fT (µ, ε?) = fT (µ, ε).

Based on Theorem 3.1, for the derived degraded channel we have

fg(µ, ε?) = fT (µ, ε?).

Putting these together, we get fT (µ, ε) = fg(µ, ε). This completes the proof.

Remark 3.4. Theorem 3.3 can be stated in another form. That is, the capacity region

of a general (m,n)-erasure broadcast channel is the Minkowski sum of the capacity

regions of the scalar (single input) erasure broadcast channels between each input and

2It is clear that this process comes to an end since at each step of the process the number of
triplets (i, j, k) that µj ≤ µk, εij ≥ εik is reduced.
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Figure 3.3: Illustrating the proof technique.

the receivers, where The Minkowski sum of two set A and B in n−dimensional vector

space is the result of adding every element of A to every element of B, i.e. the set

A⊕ B = {a + b|a ∈ A, b ∈ B}.

In mathematical terms, Cg(ε) can be written as

Cg(ε) = ⊕m
i=1Cg(εi),

where εi is the i-th row of ε and corresponds to a single input erasure channel with n

receivers.

Remark 3.5. The above statement of Theorem 3.3 can be generalized to a broader

class of channels. Using very similar techniques, it is possible to show that the ca-

pacity region of broadcast problems for the product of a number of degraded broadcast

channels with arbitrary degradation order is given by the Minkowski sum of the capac-

ity regions of the degraded broadcast channels between each input and the receivers.

This is a generalization of the result reported previously in [37].
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3.4.3 Discussion

In the previous section, we showed that the capacity region of erasure broadcast chan-

nels is achieved by the time-sharing scheme introduced in Section 3.3.1. This result

will enable us to provide tighter outer bounds on the capacity region of broadcast

problems over general wireless erasure networks. However, before we proceed to pro-

vide the outer bounds, we point out some important remarks regarding the previous

result and the proof method.

3.4.3.1 Correlated Erasures

The result of Theorem 3.3 is for independent and memoryless erasure events. One

might think that the result goes through for correlated erasure events across the

links. However, this is not true. In fact, we can show that time-sharing is not

capacity-achieving even for “degraded” channels.

Consider an (m,n)-erasure channels with correlated erasure events.3 We model

the correlated event as follows. For each set A ⊆ {1, . . . ,m}, Pr j(A) denotes the

probability that the transmitted signals from inputs i ∈ Ac are erased and signals

from i ∈ A are received successfully at receiver j. In the following Proposition, we

look at the necessary and sufficient conditions for “degraded“-ness.

Proposition 3.1. Considering the previous notation, receiver j is a degraded version

of receiver k iff for any subset U of the power set of {1, . . . , m}, with the property that

B ∈ U , A ⊆ B =⇒ A ∈ U ,

we have
∑
A∈U

Pr j(A) ≤
∑
A∈U

Pr k(A). (3.20)

3Since the capacity region of broadcast channels with average probability of error constraint only
depends on the marginals [35], we assume that different users’ channels are independent from each
other.
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Proof. It is not hard to check that Pr j(·) is a degraded version of Pr k(·) if and only if

there exists a stochastic matrix γ(·, ·) of dimension of 2m×2m indexed by the subsets

of {1, . . . ,m} with γ(S, T ) = 0 for S, T , S * T such that

Pr j(A) =
∑
B⊆A

γ(A,B)Pr k(B)

for all A,B subsets of {1, . . . , m}.
With this, the necessity of (3.20) is clear. To prove the sufficiency, we use an argu-

ment used in [44]. The idea is based on constructing a max-flow network. Apart from

source s and destination t, there are two nodes l(A) and r(A) for eachA ⊆ {1, . . . , m}.
s is connected to l(A) with a link with capacity Pr k(A). r(A) is connected to t with

a link with capacity Pr j(A). Finally, l(A) and r(B) are connected with a link of

unlimited capacity if and only if B ⊆ A. Consider a cut [Vs,Vt] of finite capacity in

this network. Let Vt = V l
t ∪ Vr

t be the partition of Vt to the nodes in the l side and

the r side. Now, because of the finiteness of the capacity of the cut, we should have

r(B) ∈ Vr
t , B ⊆ A =⇒ l(A) ∈ V l

r.

Therefore, if we define V∗ = {A|∃ r(B) ∈ Vr
t s.t. B ⊆ A}, we have

Vr ⊆ r(V∗) and l(V∗) ⊆ V l
t . (3.21)

The cut-capacity C(Vs) can be written as

C(Vs) =
∑

l(A)∈Vl
t

Pr k(A) + 1−
∑

r(B)∈Vr
t

Pr j(B)

≥ 1−
∑
B∈V∗

Pr j(B) +
∑
A∈V∗

Pr k(A)

≥ 1,
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where the second line follows from (3.21), and the last line follows from (3.20). This

suggests that the value of min-cut is equal to one, and the minimum cut is the one

that isolates either s or t from the rest of nodes. In this case, using the max-flow

min-cut theorem, the max-flow is also one. Therefore, the flow in each of the links

between s (respectively t) and the intermediate nodes is equal to the capacity of the

corresponding link. Defining the flow between l(A) and r(B) as γ(B,A) ·Pr k(A), we

can easily see that γ(·, ·) is the desired stochastic matrix.

Remark 3.6. As mentioned earlier, for the independent erasure case, different no-

tions of “degraded,” “more capable,” and “less noisy” are equivalent. However, it

is not clear whether the same is true for the case when erasures are correlated. In

Proposition 3.1 we identified the class of “degraded” channels. However, characteriz-

ing the class of “more capable” channels is not an easy task. In order to see it, note

that channel j is “more capable” than channel k if and only if for any distribution on

the input X = (X1, . . . , Xm) we have

I(X; Yk) ≤ I(X; Yj).

For (possibly correlated) erasure channels, the above condition can be written as a

linear inequality involving the joint entropies of subsets of inputs, i.e.,

0 ≤
∑
A

(Pr j(A)− Pr k(A))︸ ︷︷ ︸
α(A)

H(Xi, i ∈ A),

where
∑

A α(A) = 0. Therefore, to identify the class of “more capable” channels, one

should be able to characterize the set of all valid linear inequalities over the entropies

of subsets of m random variables. However, the later problem has proved to be a very

challenging problem. Identifying the set of linear inequalities over the space of entropy

vectors is still an unsolved problem for m ≥ 4 [46, 47, 23].
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Now consider a 2 by 2 degraded erasure broadcast channel with probability of

erasure events as shown in table . Consider the supporting hyperplane µ = (µ1, µ2),

and let us look at the boundary point corresponding to this point.

It is not hard to check that the boundary point of the time-sharing region corre-

sponding to this hyperplane is

(R1, R2) =

(
max
i=1,2

{
µi(Pr i({1}) + Pr i({1, 2}))

}
, max

i=1,2

{
µi(Pr i({2}) + Pr i({1, 2}))

})
.

On the other hand, using the Bergman’s formula [40], we know that the rate

vectors in the capacity region of this degraded channel should satisfy

R1 ≤ I(Y1; X|U) = Pr1({1, 2})H(X1, X2|U) + Pr1({1})H(X1|U) + Pr1({2})H(X2|U)

R2 ≤ I(Y2; U) = Pr 2({1, 2})I(X1, X2; U) + Pr 2({1})I(X1; U) + Pr 2({2})I(X2; U),

for some joint distribution Pr (U,X = (X1, X2)).

To find the boundary point of the capacity region corresponding to hyperplane

µ = (µ1, µ2), we have to solve the following optimization problem

f(µ) = max
Pr (U,X)

µ1R1 + µ2R2.

One can further write

f(µ) = max
Pr (U,X)

µ2Pr 2({1, 2})H(X1, X2) + µ2Pr 2({1})H(X1) + µ2Pr 2({2})H(X2) +

aH(X1, X2|U) + bH(X1|U) + cH(X2|U),

where a = (µ1Pr 1({1, 2}) − µ2Pr 2({1, 2})), b = (µ1Pr 1({1}) − µ2Pr 2({1})), and

c = (µ1Pr 1({2}) − µ2Pr 2({2})). We can upper bound f(µ) by substituting H(X1),
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H(X2), and H(X1, X2) with 1, 1, and 2 respectively. This gives

f(µ) ≥ max
Pr (U,X)

aH(X1, X2|U) + bH(X1|U) + cH(X2|U) (3.22)

+ 2µ2Pr 2({1, 2}) + µ2Pr 2({1}) + µ2Pr 2({2}).

The optimization problem in (3.22) can be equivalently viewed as a Linear Program

(LP) over the set of entropy vectors h = (H(X1, X2|U), and H(X1|U), H(X2|U)),

subject to the following constraints

H(X1, X2|U) ≤ H(X1|U) + H(X2|U),

H(Xi|U) ≤ H(X1, X2|U), i = 1, 2,

0 ≤ H(Xi|U) ≤ 1, i = 1, 2.

Solving this LP gives the following upper bound for f(µ):

f(µ) ≥ max{0, a+b, a+c, a+b+c, 2a+b+c}+2µ2Pr 2({1, 2})+µ2Pr 2({1})+µ2Pr 2({2}).

Furthermore, the following upper bound can be always achieved by considering X1, X2

to be i.i.d. uniform and letting U be a member of {∅, X1, X2, (X1, X2), X1 ⊕X2}. It

can be checked that the first four possibilities for U correspond to performing time-

sharing. However U = X1 ⊕X2 does not correspond to time-sharing. Based on the

above argument we have the following result.

Proposition 3.2. The capacity region, C, of a degraded (2, 2)-erasure broadcast chan-

nel with correlated erasure events is

C = conv (RTS ∪ {(1− Pr 1(∅), Pr 2({1, 2}))}) ,

where RTS denotes the time-sharing region and conv (A) represents the convex hull
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A ∅ {1} {2} {1, 2}
Pr 1(·) 0 0.35 0.35 0.3
Pr 2(·) 0.5 0.15 0.15 0.2

Table 3.1: Probability of erasure events for Example 3.2.

of set A.

Example 3.2. Consider a degraded (2, 2)-erasure channel with probability of erasures

shown in Table 3.1. Using Proposition 3.2, we have plotted the capacity region of

this channel in Figure 3.4. The time-sharing region is also shown in the same figure.

Note that for this channel the capacity region is strictly greater than the time-sharing

region.

3.4.3.2 Generalizing the Proof Technique

The main idea behind the proof of Theorem 3.3 is in understanding and exploiting

the structure of the achievable region (here given by the time-sharing scheme). First,

it is shown that for the “degraded” case, time-sharing is capacity achieving. Next,

it is shown that for any point, R, on the boundary of the time-sharing region one

can find another (erasure) broadcast channel that is “degraded,” its capacity region

contains the capacity region of the original channel and shares the same boundary

point R with the time-sharing region of the original channel (see Figure 3.3).

Now, turning our attention to general broadcast channels, the capacity region of

these channels is still unknown. The best known inner bound is given by Marton [49].

The Marton inner bound is tight for all the cases that the capacity region is known.

It is possible to generalize the approach taken above is a systematic way as follows.

Consider a general broadcast channel g with n users and transition probability matrix

Pr g(Y1, . . . , Yn|X), and let RMT (g) denote the Marton region introduced in [49].
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Figure 3.4: Capacity region of the degraded (2, 2)-erasure broadcast channel of Ex-
ample 3.2.

Consider the following optimization problem for a given µ ≥ 0 vector:

fMT (µ, Pr g(·|·)) = max
(R1,...,Rn)∈RMT (g)

n∑
i=1

µiRi. (3.23)

Let Ag be the set of all channels (defined over the same input and output alphabet

as g) for which g is a degraded version of, i.e.,

Ag = {Pr h(Y1, . . . , Yn|X)|Pr g(·|·) ¹ Pr h(·|·)}.

Furthermore, let Bg(µ) be a subset of Ag such that for any channel h in Bg(µ) we

have

fMT (µ, Pr g(·|·)) = fMT (µ, Pr h(·|·)).

Now, if one can prove that Bg(µ) is not empty, then the boundary point of the
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capacity region of g corresponding to the supporting plan µ is achievable with the

Marton coding scheme [49].

However, we should remark that the challenge in the aforementioned approach

is in characterizing the Marton inner bound region. This is not an easy task since

the cost function appearing in (3.23) should be maximized over the distribution of

the input and a number of auxiliary random variables present in the Marton region

formula. In general, this optimization problem is not convex. As a matter of fact, both

in the erasure broadcast channel analyzed here and the MIMO Gaussian broadcast

channel considered in [118], the optimization problem of (3.23) can not be solved

explicitly. Rather, in both cases one constrains the joint probability distribution of

the transmitted signal and the auxiliary random variables to a particular form and

perform that optimization over the smaller space of probability distributions, e.g.,

i.i.d. Bernoulli random variables in erasure broadcast channels and jointly Gaussian

random variables in the MIMO Gaussian broadcast channel. In both cases, one can

find channels in Ag that share the same boundary point. The hope is that one can

take the approach proposed here for other classes of broadcast channels and use the

well-developed tools in optimization theory to find their capacity region.

3.5 Tighter Outer bounds for WE networks

In this section we will give tighter outer bounds for the capacity region of a general

wireless erasure network. We will use the result derived in the previous section re-

garding the capacity region of erasure broadcast channels. The bound presented in

this section is similar to the edge-cut bounds proposed in [45].

Consider a wireless erasure network represented by the acyclic directed graph

G = (V , E). Let E ′ ⊆ E be a collection of links in the network. Let D(E ′) ⊆ D denote

the subset of destination nodes that will be disconnected from s by removing the edges
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in E ′ from the network. For each destination node dl in dl ∈ D(E ′), J (dl, E ′) ⊆ E ′ is

a subset of links from E ′ with the following properties:

• Removing J (dl, E ′) from the network disconnects dl from s.

• No two edges in J (dl, E ′) lie on the same path from s to dl.

In a sense, J (dl, E ′) is a minimal edge-cut for dl. We should remark that J (dl, E ′)
may not be unique. It is possible that there are more that two minimal edge-cuts. In

this case, considering any of them will lead to an outer bound on the capacity region

of the wireless erasure network.

Now, it is possible to construct a multiple input, multiple output erasure broadcast

channel corresponding to E ′ and find a bound for the simultaneous rate of destinations

in D(E ′).
We construct the corresponding erasure broadcast channel as follows. Let V(E ′) ⊆

V denote the set of vertices that are the originating node of at least one edge in E ′.
The corresponding erasure broadcast channel has one input for each node in V(E ′)
and one receiver (destination) for each node in D(E ′). Consider a (the) minimal edge-

cut for each of the destinations in D(E ′). For each edge (i, v) in J (dl, E ′), we connect

input i to receiver dl through a packet erasure channel with probability of erasure

εiv. Note that if more than one link originating from the same node is in J (d, E ′),
without loss of generality, we can put one link in the corresponding erasure broadcast

channel with the probability of erasure equal to the product of the probabilities of

erasure of those links. This way we will get an erasure broadcast channel. We refer

to the channel matrix of this broadcast channel as ε (J (d, E ′), d ∈ D(E ′)) (or ε (E ′)
whenever the edge-cuts are uniquely defined.)

Example 3.3. Let us revisit the wireless erasure network shown in Figure 3.1.(a). Let

E ′ = {(1, 2), (1, 3), (1, 4)}. In this case, D(E ′) = {2, 3}, J (2, E ′) = {(1, 2), (1, 4)}, and

J (3, E ′) = {(1, 3), (1, 4)}. The broadcast channel corresponding to this choice of E ′ is
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Figure 3.5: (a): Erasure broadcast channel derived from E ′ = {(1, 2), (1, 3), (1, 4)}
for the network in Figure 3.1. (b): Erasure broadcast channel constructed from
E ′ = {(1, 2), (1, 4), (4, 3)} for the same network as in (a).

shown in Figure 3.5.(a). For E ′ = {(1, 2), (1, 4), (1, 3), (4, 3)}, we have D(E ′) = {2, 3}.
A possible edge-cut for each destination is J (2, E ′) = {(1, 2), (1, 4)} and J (3, E ′) =

{(1, 3), (4, 3)}. The broadcast channel corresponding to this choice of E ′ is shown in

Figure 3.5.(b).

Example 3.4. Consider the wireless erasure network shown in Figure 3.6.(a). In

this network, node 1 is the source node, and the destination set is given as D =

{5, 6}. Let E ′ = {(1, 3), (2, 3), (2, 5), (4, 3), (4, 6)}. In this case, D(E ′) = {5, 6} and

V(E ′) = {1, 2, 3, 4}. Furthermore, the edge-cut sets for destinations are J (6, E ′) =

{(4, 3), (4, 6), (1, 3), (2, 3), (4, 6)} and J (5, E ′) = {(2, 5), (1, 3), (4, 3), (2, 3)}. The era-

sure broadcast channel corresponding to this choice of edge-cuts is shown in Fig-

ure 3.6.(b).

The following theorem provides an outer bound on the capacity region of broadcast

problems for WE networks based on the previous construction.

Theorem 3.7. Consider a broadcast problem over wireless erasure network G =

(V , E) with source node s and destination set D = {d1, . . . , d|D|}, and let E ′ be any

subset of the edges. If (R1, R2, . . . , R|D|) is a set of achievable rates for the broadcast

problem, we should have

(Rd, d ∈ D(E ′)) ∈ C(ε (J (d, E ′), d ∈ D(E ′))), (3.24)
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Figure 3.6: (a): A wireless erasure network with two destinations. (b): Erasure
broadcast channel derived form E ′ = {(1, 3), (2, 3), (2, 5), (4, 3), (4, 6)} for the network
of part (a).

where C(ε (J (d, E ′), d ∈ D(E ′))) denotes the capacity region of the erasure broadcast

channel corresponding to edge-cuts J (d, E ′) for all d ∈ D(E ′).

Proof. For each destination d ∈ D(E ′), consider the received signals on the links in

J (d, E ′), i.e., Y (J (d, E ′)) = (Yij, (i, j) ∈ J (d, E ′)). Now consider any sequence of

block codes defined in Section 3.2 whose average probability of error goes to zero as

the block length, n, increases. It can be shown that Wd− Y n(J (d, E ′))− Y n
d forms a

Markov chain. This is true because the network is acyclic and J (d, E ′) disconnects s

and d. Hence, using Data Processing Inequality [53], we have

I(Wd; Y
n
d ) ≤ I(Wd; Y

n(J (d, E ′))).

Now we have

nRd = H(Wd)

= I(Wd; Y
n
d ) + H(Wd|Y n

d )

≤ I(Wd; Y
n
d ) + nζn

≤ I(Wd; Y
n(J (d, E ′))) + nζn, (3.25)
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where we have used the Fano’s inequality in the third line, and ζn will go to zero as

the block length n goes to infinity. By noting that the capacity region of a broadcast

channel depends on the marginals only, it becomes clear that the last inequality in

(3.25) suggests that (Rd, d ∈ D(E ′)) is an achievable rate vector for the broadcast

channel constructed from edge-cuts J (d, E ′) for all d ∈ D(E ′), and this proves the

theorem.

Remark 3.8. As we can see from the above theorem, the outer bound is in fact

intersection of some time-sharing regions, each corresponding to a subset of nodes

and edges in the original network. However, unlike the time-sharing scheme of Sec-

tion 3.3.1, our outer bounding technique does not take into account the fact that

operation of a node across different subset of nodes and edges should be the same in

all these time-sharing regions. In other words, the time-sharing parameters used for

each node across different subsets of nodes and edges is different from each other and,

therefore, these parameters loose their operational meaning in the original network.

This is the main difference between our outer bound and the achievable region given

in Section 3.3.1.

The above theorem enables us to provide tighter outer bounds for the capacity

region of general wireless erasure networks. We illustrate this fact in the following

example.

Example 3.5. Let us consider the wireless erasure network shown in Figure 3.1.(a)

again. As in Example 3.1, we set the erasure probabilities across the network to

(ε12, ε13, ε14, ε42, ε43) = (0.8, 0.2, 0.6, 0.8, 0.2). Using Theorem 3.7, we can derive the

following four new bounds for any point in the capacity region of the network shown
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in Figure 3.1.(a):

(R2, R3) ∈ C1
4
= C(ε({(1, 2), (1, 4)}, {(1, 3), (1, 4)})),

(R2, R3) ∈ C2
4
= C(ε({(1, 2), (1, 4)}, {(1, 3), (4, 3)})),

(R2, R3) ∈ C3
4
= C(ε({(1, 2), (4, 2)}, {(1, 3), (4, 3)})), and

(R2, R3) ∈ C4
4
= C(ε({(1, 2), (4, 2)}, {(1, 3), (1, 4)})).

Any achievable (R2, R3) should be in the intersection of the capacity region of the

above four broadcast channels. We can describe each of the capacity regions Ci, 1 ≤
i ≤ 4, using Theorem 3.3 as follows:

C1 =

{
(R2, R3)

∣∣∣∣
R3

0.88
+

R2

0.52
≤ 1

}

C2 =

{
(R2, R3)

∣∣∣∣{
R3 − 0.8

0.8
}+ +

R2

0.52
≤ 1

}

C3 =

{
(R2, R3)

∣∣∣∣
R2

0.4
+

R3

1.6
≤ 1

}

C4 =

{
(R2, R3)

∣∣∣∣{
R2 − 0.2

0.2
}+ +

R3

0.88
≤ 1

}
,

where {x}+ = max{0, x}. Hence, the capacity region of broadcast problem for this

wireless erasure network is bounded as

C(G, {εij, (i, j) ∈ E}) ⊆ ∩4
i=1Ci =

{
(R2, R3)

∣∣∣∣
R3

0.88
+

R2

0.52
≤ 1,

R2

0.4
+

R3

1.6
≤ 1

}
.

However, this outer bound and the time-sharing achievable region of (3.6) coincide

for the particular choice of εij, (i, j) ∈ E considered in this example. Therefore, the

capacity region of the wireless network shown in Figure 3.1.(a) is given by time-sharing

scheme of Section 3.3.1.

Example 3.6. Consider the network shown in Figure 3.1.(a) again. Assume the
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Figure 3.7: Time-sharing region and different outer bounds for Example 3.6.

erasure probabilities are as follows: (ε12, ε13, ε14, ε42, ε43) = (0.5, 0.8, 0.1, 0.8, 0.5). In

Figure 3.7 we have plotted the time-sharing region of Section 3.3.1, the outer bound

given by Theorem 3.7, and the multicast type min-cut outer bound. As we see from

the figure, the outer bound of Theorem 3.7 is tight for some regions; however, the

min-cut outer bound is not tight anywhere.

3.6 Conclusion

In this chapter we considered a special class of network problems defined as broadcast

problem over wireless erasure networks. In a broadcast problem one source has access

to multiple information messages. Each of these information messages is requested

by a particular destination. Downlink of cellular systems and TV broadcasting sta-

tions are examples of these problems. We proposed an achievable region based on

time-sharing for these problems. We further showed that the time-sharing scheme



92

is capacity-achieving in the multiuser setup, where the destinations are connected

directly to the source node. The proof technique in this case requires understand-

ing the structure of the achievable (time-sharing) region and borrows insights from

optimization theory.

Using the capacity result for the multiuser setup, we gave an outer bound on the

capacity region of broadcast problems over wireless erasure networks. This bound is

tighter than the outer bounds that we get from the multicast type of arguments.

Finding the capacity region of broadcast problems over general wireless erasure

networks remains an open problem. In order to find the capacity region, we require

tighter outer bounds. Towards this end, an optimization theory viewpoint of the

problem seems promising.
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Chapter 4

A Practical Scheme for Wireless
Networks

4.1 Introduction

In a wireline network having a single source and a single destination, we can think

of information flow in the same terms as fluid flow and obtain a max-flow min-cut

result to get capacity. This treatment closely follows that of the Ford-Fulkerson

[52] algorithm to give us a neat capacity result. This has been well understood for

many years. However, until recently, similar min-cut capacity results were not known

for any other class of network problems. The remarkable results of [9, 10] say that

in a wireline network setting, we can indeed achieve the min-cut upper bounds for

multicast problems. These problems were defined in Chapter 2. Furthermore, it

is shown that separation of channel coding and network coding does not degrade

performance. This means that one can first perform channel coding for each link in

the systems so as to make it error-free. By employing network coding on the resulting

error-free network we achieve the min-cut capacity.

In Chapter 2 we also looked at the capacity of multicast problems for a class of

wireless networks called wireless erasure networks. We showed that the capacity has a

nice min-cut interpretation. Furthermore, it was shown that linear combining of data

at intermediate nodes of the network achieves capacity. We further saw that separate
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channel coding and network coding is not necessary for achieving the capacity.

In this chapter we will look into the effect of separation of channel and network

coding for wireless networks. In the early sections of this chapter, we will present

simple wireless networks where this principle of separation fails. Thus we will show

that operating wireless networks in a multihop manner, where each relay node decodes

the message it receives, is not necessarily the right approach. This observation was

first made in [55, 56]. We will also suggest some schemes of operation that will

outperform those that require the ability of relay nodes to decode.

We will focus attention on two specific wireless network models. The important

features that characterize a wireless network are broadcast and interference. The

first model has Gaussian channels as links and incorporates broadcast as well as

interference. The second model is the wireless erasure network introduced in Chapter

2 and has erasure channels as links and incorporates broadcast, but not interference.

For these models, we will show that making links error-free can sometimes degrade the

performance. In fact, asking nodes to simply forward their data rather than decoding

it is sometimes more advantageous. This tells us that wireless networks need to be

understood differently from wireline networks. We will see some explanations as to

why this is the case later in the chapter.

In our study of wireless networks, we propose a scheme of network operation that

permits only two operations at nodes . One is decoding to get the original data and

then resending the same message as the source. The other is forwarding the data

as is received. Since each node has two options, we have an exponential-sized set of

possible operations. We will present an algorithm that goes over each node at most

once to find the optimal operation among this set of restricted operations. This will

be a greedy algorithm that avoids searching over the exponential-sized set of possible

operation allocations. We also present an algorithm that can approach the best rate

arbitrarily closely in an iterative manner. This will be a “decentralized” algorithm
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in the sense that each node needs only one bit of information from the destination in

every iteration and no knowledge of the rest of the network in order to determine its

own operation.

The organization of this chapter is as follows. In Section 4.2 we present two

wireless network models. These will be the Gaussian wireless network and the wireless

erasure networks studied in Chapter 2. In Section 4.3 we show that with these wireless

models, making links or sub-networks error-free can be sub-optimal. In Section 4.4 we

will formally state the two operations that nodes will be permitted to perform. With

this setup, we will state our problem of allocating appropriate operations in Section

4.5. In Section 4.6 we will see how rates are calculated for all nodes in the network

and how asking certain nodes to decode and others to forward can affect the rate of

the network. In Section 4.7 we will state our algorithm to find the optimal policy.

In Section 4.8 we will prove optimality of the algorithm. We will see some examples

in Section 4.9 that will show that the gap between the “all nodes decode” strategy

and our method can be significant. In Section 4.10 we will discuss the decentralized

algorithm. We present upperbounds on the rate achievable by our scheme in Section

4.11. Conclusions and further questions are presented in Section 4.12.

4.2 Two Wireless Network Models

In this section we formalize two wireless network models considered in this chapter.

In both cases the network consists of a directed, acyclic graph G = (V , E) where

V = {1, . . . , |V|} is the set of vertices, and E is the set of directed edges where each

edge is a communication channel.

In this chapter we assume that there is only one source and one destination, i.e.,

we have a unicast problem. Without loss of generality, let s = 1 be the source node
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and d = |V| be the destination.1 The remaining nodes are the relay nodes which

must aid communication between s and d. We will assume that every edge is on some

directed path from s to d. If we have edges other than these, we remove them, and

what remains is our graph G. We will denote the message transmitted by node i by

Xi and that received by node j by Yj. Figure 4.1 represents a network with 6 vertices

d

v4 v5

X5

s

v2 v3

Y2

Figure 4.1: Example of a network.

and 9 edges where 1 is the source s and 6 is the destination d. X5 is the message

transmitted by node 5 and Y2 is that received by node 2.

(a) Gaussian Wireless Networks In these networks each edge (i, j) of the net-

work is a Gaussian channel with some fixed attenuation factor hi,j associated

with it. In a practical system, this may be some pathloss that depends on the

physical distances between the nodes. We will assume hi,j to be a non-negative

constant. We will assume that nodes broadcast messages, i.e., a node transmits

the same message on all outgoing edges. Assuming that Figure 4.1 represents

a Gaussian wireless network, X5 is the message transmitted on edges (5, 3) and

(5, 6). We will also assume interference, i.e., the received signal at node i is the

sum of all the signals transmitted on edges coming in to it and additive white

Gaussian noise ni of variance σ2
i . Therefore, in general, we have

Yi = ni +
∑

j:(j,i)∈E
hj,iXj.

1The results of this chapter can be generalized easily for a multicast problem.
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All nis are assumed independent of each other as well as the messages. For

Figure 4.1 this implies that Y2 = h1,2X1 + h4,2X4 + n2. We will assume that all

transmitting nodes have a power constraint of P .

(b) Wireless Erasure Networks

These networks were introduced in Chapter 2. In Chapter 2, the multicast ca-

pacity of these networks were found. To remind ourselves, in these networks

each edge (i, j) of the network is a binary erasure channel with erasure proba-

bility εij. In this chapter we further assume that nodes (other than the source

node) can transmit erasures e. If an edge takes e as input, the received signal

on that edge is always e. In short, the channel for edge (i, j) (for i 6= s) is

modified as in Figure 4.2 compared to the one in Chapter 2. We incorporate

broadcast in the model, i.e., each transmitting node must send out the same

signal on each outgoing edge. However, we assume that the is no interference.

(1− εij)

0 0
(1− εij)

1 1

εij

εij

1
e e

Figure 4.2: Modified Erasure Channel.

4.3 Optimizing Over Sub-networks Does Not Work

Theorem 4.1. For the wireless networks described in Section 4.2, making sub-networks

error-free can be suboptimal.

Proof. We give some examples to demonstrate this.
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• Gaussian Relay Networks: Consider a Gaussian parallel relay network con-

sisting of two relay nodes and one source-destination pair. See Figure 4.3(a).

All four channel coefficients are assumed to be 1. The relay nodes 2 and 3 are

solely to aid communication from source to destination. We assume that the

noise power at each receiver is σ2, and the transmit power at each node is P .

Let ρ , P
σ2 be the Signal to Noise Ratio (SNR).

One way to view the network is as a cascade of a broadcast channel (from s to

{2, 3}) and a multiple access channel (from {2, 3} to d). This is equivalent to

assuming that the relays decode their messages correctly and code them again

and transmit. If the relays are receiving independent information at rates R1

and R2, we have R1 + R2 ≤ log(1 + ρ) as the capacity region. These rate

pairs (R1, R2) can be supported by the multiple access channel, and hence the

maximum rate from s to d is no greater than log(1 + ρ). If the relays are

receiving exactly the same information from the source, the maximum rate of

this is log(1+ ρ). In this case, the multiple access channel is used for correlated

information and can support rates up to log(1 + 4ρ). In either case, asking the

relay nodes to decode limits the rate from s to d to log(1 + ρ). (We note also

that the broadcast sub-network is the bottleneck in both cases.)

Now consider another strategy in which the relay nodes do not decode but only

normalize their received signal to meet the power constraint and transmit it to

the destination. In this case the received signal at the destination is

Y4 =

√
P

P + σ2
(2X1 + n2 + n3) + n4,

where X1, Y4, n2, n3, n4 are, respectively, the transmitted signal from the source,

the received signal at the destination, and the noises introduced at nodes 2, 3

and d. Thus, the signal received by d is a scaled version of X1 with additive
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Gaussian noise. The maximum achievable rate, denoted by Rf , is

Rf = log

(
1 +

4P 2

P+σ2

σ2 + 2Pσ2

P+σ2

)
= log

(
1 +

4ρ2

3ρ + 1

)
,

where ρ is as before. Here, the subscript f stands for forwarding.

Comparing Rd and Rf , we can see ρ = 1 is a critical value in the following

sense. For ρ > 1, we have superior performance in the forwarding scheme, and

for ρ < 1 we have better rate with relay nodes decoding and re-encoding. This

implies that making a sub-network error-free (in this case the broadcast section,

or the links (1, 2) and (1, 3)) can sometimes be sub-optimal.

We note that decoding at one of the relay nodes and forwarding at the other is

always sub-optimal.

In general, if we have k(≥ 2) relay nodes in parallel rather than two, it can be

easily checked that

Rd = log(1 + ρ) and Rf = log

(
1 +

k2ρ2

(k + 1)ρ + 1

)
.

With this we get a critical value of ρ = 1
k2−k−1

, below which decoding is better

and above which forwarding is better. Clearly, this goes to zero for large k.

Therefore, in the limit of k →∞, it is always favorable to forward.

It turns out that this fact is also true for Gaussian relay networks in the presence

of fading. The work of [55] shows that for fading Gaussian relay networks with

n nodes, the asymptotic capacity achievable with the relay nodes decoding (and

re-encoding) scales like O(log log n), whereas with the forward scheme it scales

like O(log n).

Similar problems are considered in [60] and [91]. The former considers bounds

and achievable rates for the Gaussian network with two parallel links, and the
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latter considers a network with a single source and destination and the other

nodes acting as relays. The second result shows that the maximum rate achiev-

able is O(log n). This is the same as that achieved by forwarding in our scheme.

s

v3

v2

d

(a) Graph representation of a relay net-
work with two relay nodes.
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(b) Critical value of erasure probability for k relay
nodes.

Figure 4.3: Proof of Theorem 4.1.

• Erasure Relay Network: Consider, once again, the network of Figure 4.3(a),

where, now, each link represents an erasure channel with erasure probability

εij = ε. Since we have broadcast, node s transmits the same messages to relay

nodes 2 and 3. If the relay nodes decode and re-encode, the rate is bounded by

the sum-rate capacity of the broadcast system, which gives

Rd = 1− ε.

If the relay nodes simply forward what they receive, it is easy to see that the

destination sees an effective erasure probability of (1− (1− ε)2). (We will spell

out how to do this calculation for a general network in Section 4.6.) Forwarding

erasures is possible since we are assuming the modified erasure channel of Fig-
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ure 4.2. With this we have Rf = 1− (1− (1− ε)2)2. Comparing Rf and Rd, we

can see that ε = 3−√5
2

is a critical value, above which decoding and re-encoding

is better and below which forwarding is better.

Thus we see that for this network also, making the broadcast sub-network error-

free is not always optimal.

In general, if we have k relay nodes in parallel rather than two, we have

Rd = 1− ε and Rf = 1− (1− (1− ε)2)k,

and the critical value of e is as plotted in Figure 4.3(b). Below this, forwarding

is better, and above this, decoding is better. In the limit of large k, it is always

better to forward.

From this we see that making links or sub-networks error-free does not ensure optimal

network operation. It can sometimes be provably sub-optimal.

In this proof a simple operation like forwarding the received data proved to be

better than decoding it. We understand this as follows. Because of the broadcast

present in wireless networks, the same data naturally gets passed on to the destination

along many different paths. Therefore, some nodes receive better versions of the data

on incoming links than other nodes and are automatically in a better position to

decode. Forcing all the nodes to decode and be error-free only imposes additional

bottlenecks on the rate. Therefore, it is beneficial to carefully check the quality of

the effective signal that various nodes get to see and then decide whether to ask them

to decode or not.
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4.4 A Possible Set of Network Operations

It follows from the previous discussions that to obtain the optimum rate over wireless

networks, the nodes must perform operations other than just decoding. Determining

what the optimum operation at each node should be, especially for a general wireless

network, appears to be a daunting task. We shall therefore simplify the problem

by allowing one of only two operations at every node. One will be the decode and

re-encode operation as before. The other is the far simpler operation of forwarding

the received data as is. The first operation, viz., decode and re-encode is typically

the only operation used in multihop networks and many wireline networks. In effect,

we are attempting to attain higher rates by introducing the additional operation of

forwarding.

We will assume that the network operates in blocks of length n. We assume that

the source s has a set of message indices

Ω = {1, 2, . . . , 2bnRc}

and an encoding function

f : Ω → X n,

where X is R for the Gaussian wireless network and {0, 1} for the erasure wireless

network. To transmit message i ∈ Ω, the source transmits f(i). With this the source

operates at rate R. {f(1), f(2), . . . , f(2bnRc)} is the set of codewords or possible

transmitted messages. This set is called the codebook and is denoted by C. We

assume that all nodes have the codebook. For the Gaussian network we will assume

that the codebook meets the power constraint, i.e., E‖f(i)‖2 ≤ P .

Here we restrict the relay nodes to two operations. These have been introduced

in the examples of Section 4.3, viz., “forward” and “decode and re-encode.” We now
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state them formally.

(a) Decode and Re-encode: This operation implies that when node i receives

message Yi it performs ML decoding of Yi to determine which message index

was transmitted by s. Since it has the codebook, it re-encodes the message

using the same codeword that the source s would have used and transmits the

same codeword. In short, it should act like a copy of the source.

However, for this to happen, we need that the decoding be error-free. This

implies that the rate R at which the source operates should be no greater that

the maximum rate at which node i can decode. We will see the relevance of

this constraint in Section 4.5.

(b) Forward: We will describe this operation separately for the two network mod-

els. In the Gaussian network, node i receives message Yi given by

Yi = ni +
∑

j:(j,i)∈E
hj,iXj. (4.1)

“Forwarding” implies that the node normalizes this signal to meet the power

constraint and then transmits the message. Therefore, it transmits Xi given by

Xi =

√
P

E‖Yi‖2
Yi.

We will assume that E‖Yi‖2 is known to i.

For the erasure network, nodes either decode without error and transmit the

original codeword or “forward” the received data. Consider node i which sees

data coming in on several edges in the form of n-length blocks of bits and

erasures. For the b-th bit of such a block, it either sees erasures on every edge

(and this sees an effective erasure) or gets to see the bit on at least one incoming

edge. (It cannot happen that the node sees 1 on a particular edge and 0 on
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another edge for the b-th position. This is because of our assumption that

whenever an earlier node decodes it does so without error.) Therefore, in our

interference-free model, every relay node sees an effective erasure channel from

the source, i.e., it sees the codeword transmitted by the source with some bits

erased. “Forwarding” means broadcasting this sequence of bits and erasures.

Note that the effective erasure probability seen by node i is a function of the

network topology and parameters, εij. We will see in Section 4.6.2 how this

effective erasure probability can be calculated.

By restricting ourselves to only two operations, we have ensured that all nodes in

the network see a Gaussian channel (with some effective SNR) or erasure channel

(with some effective erasure probability) with respect to the transmitted codeword.

Therefore, they can do ML decoding or typical set decoding if R is no greater than

the rate that they can support. We will always ensure that R satisfies this constraint.

We can think of both operations as specific forms of network coding. In both net-

works and with both operations, all the information coming in at a node on different

edges gets pooled together – this happens automatically in the Gaussian network and

is done by the node itself in the erasure network. But the node has the choice of trying

to decode, thus imposing a rate constraint, or can simply forward the information,

hoping that some other node would have a better chance of decoding.

Having described the two operations permitted to the relay nodes in the two

networks, we are now ready to formally state the problem.

4.5 Problem Statement

Since we allow only two operations to nodes, viz., “decode and re-encode” and “for-

ward,” and every relay node must perform one of these, it is enough to specify the set

of relay nodes that “decode and re-encode” in order to completely specify the working
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of the network. The source and destination will always be excluded from this set.

If a set D ⊆ V − {s, d} is the set of nodes 2 that “decode and re-encode,” we will

call D a policy for network operation.

Under policy D, each node of the network sees an effective (Gaussian or erasure)

channel from the source. Let the effective SNR that node i sees under policy D be

denoted by ρD(i) for Gaussian networks. For erasure networks we denote the effective

erasure probability seen by node i under policy D by εD(i). Therefore, the rate that

node i can support under policy D is log(1 + ρD(i)) or (1 − εD(i)) for Gaussian or

erasure networks, respectively. In general we will call this RD(i). Nodes in D as well

as the destination must be able to perform error-free decoding. This means that the

rate at which the source transmits must be no greater than the rates at which these

nodes can decode. This tells us that under policy D, the rate R at which we can

operate the network is constrained by

R ≤ min
i∈D∪{d}

RD(i). (4.2)

We denote this minimum by RD. So,

RD = min
i∈D∪{d}

RD(i). (4.3)

Intuitively, asking some nodes to decode means that there are more copies of the

source in the network, and hence the rate which the destination can support increases.

On the other hand, asking a node to decode introduces a constraint on the rate R.

This is the tradeoff for any policy D. For instance, in Figure 4.1 consider nodes 2 and

4. If 4 forwards, node 2 sees an effective erasure probability of ε42ε12 + ε14ε12(1− ε42).

(We will see how this has been calculated in Section 4.6.2.) On the other hand, if 4

2The set D should not be confused with the set of destinations defined in Chapter 2. Here, since
we are looking at unicast problems, there exists only one destination d.



106

decodes, node 2 is at an advantage since it sees a lower effective erasure probability,

viz., ε12ε42. However, asking 4 to decode puts a constraint on the rate as seen by (4.2)

since the rate that 4 can support is only (1− ε14). This constraint is RD ≤ 1− ε14.

Our problem is to find the policy that gives the best rate, i.e., to find D such that

RD is maximized, viz.,

max
D

min
i∈D∪{d}

RD(i).

First we need to address the question of finding RD(i), i.e., of finding the rate

at node i under policy D. Recall that Xi and Yi are the transmitted and received

messages at node i. If we are using policy D, we will denote these by XD(i) and

YD(i). We may drop the subscript D if it is clear which policy we are referring to.

Note that for the source, the transmitted message is X1 irrespective of the policy.

4.6 Determining the Rate at a Node – RD(i)

In this section we describe a method to find the rate at an arbitrary node i when the

set of decoding nodes is given by D. Therefore, we need to find the effective SNR

or erasure probability of the received signal YD(i). In order to do that, we need the

concept of a partial ordering on the nodes introduced in Section 2.2.2.

Next we address the issue of determining the rate under a particular policy. We

discuss this separately for Gaussian wireless networks and Erasure wireless networks.

4.6.1 Finding the Rate in Gaussian Wireless Networks

Recall that YD(j) is the received signal at vj under policy D. Once we know YD(j),

we can determine the signal power and the noise power in it. Denote these by PD(j)

and ND(j), respectively. Consider node j. If it is decoding, XD(j) = X1. If it is
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forwarding,

XD(j) =

√
P

E‖YD(j)‖2
YD(j) =

√
P

PD(j) + ND(j)
YD(j).

We now outline a method for finding the rate for all the nodes by proceeding in

the order given by T defined in Section 2.2.2. Without loss of generality, assume

that the nodes are already numbered according to a partial ordering. Therefore

T = (s, 2, . . . , d). Then, for 2 we only have an edge coming in from s, and hence

YD(2) = h1,2X1 + n2.

Let our induction hypothesis be that we know YD(j) for j = 1, . . . , i − 1. For YD(i)

we now have

YD(i) = ni +
∑

j:(j,i)∈E
hj,iXD(j) (4.4)

= ni +
∑

j:(j,i)∈E,j∈D∪{s}
hj,iX1 +

∑

j:(j,i)∈E,j /∈D∪{s}
hj,iXD(j)

= ni +
∑

j:(j,i)∈E,j∈D∪{s}
hj,iX1 +

∑

j:(j,i)∈E
j /∈D∪{s}

hj,i

√
P

PD(j) + ND(j)
YD(j).

By our hypothesis, we know all the YD(j) that occur in the last summation; Substi-

tuting for these, we get YD(i). Careful observation indicates that this will be a linear

combination of X1 and the noise terms n2, . . . , ni.

In general, if this linear combination is given by

YD(i) = aDX1 +
i∑

j=2

aD,j(i)nj,

we have PD(i) = a2
DP and ND(i) =

∑i
j=2 a2

D,j(i)σ
2
j . Once these are known, the SNR
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is simply ρD(i) = PD(i)
ND(i)

, and the rate can be calculated as RD(i) = log(1 + ρD(i)).

Clearly, the complexity of this procedure is O(|V|).

4.6.2 Finding Rate in Erasure Wireless Networks

We first put this problem in a graph theoretic setting. We are given a directed, acyclic

graph where certain nodes act as sources. For us, the set D ∪ {s} is the set of source

nodes. All the edges of the graph have certain probabilities of failing, i.e., of being

absent. For us, these are the erasure probabilities of the channel. With this setup, for

every node v in the network (excluding s, but including those in D) we need to find the

probability that there exists at least one directed path from some source node to this

node. This is the Network Reliability problem in one of its most general formulations

[59, 61]. This is a well-studied problem and is known to be #P -hard [61]. Although

no polynomial-time algorithms to solve the problem are known, efficient algorithms

for special graphs are known. An overview of the network reliability problem can

be found in [62]. In the rest of this section we propose two straightforward methods

to compute the probabilities of connectivity that we are interested in. We will also

mention some techniques that can reduce the computation involved in these methods.

Assume we have a policy D. Consider a node i of the network. To find RD(i)

we need to find εD(i). A bit is erased at node i if it is erased on all incoming links.

Remember from Chapter 2 that the erasure event of link (i, j) is represented by Zij.

This random variable takes the value 0 when a bit is erased and the value 1 when a

bit is not erased. Thus, it is a Bernoulli random variable with probability (1− εij).

Consider all the directed paths from s to i. Let there be ki paths. Denote the paths

by B1, . . . , Bki
. Let path Bj consist of lj edges. We specify path Bj by writing in order

the edges it traverses, i.e., with the sequence ((vj1 , vj2), (vj2 , vj3), . . . , (vjlj
, vjlj+1

)). We

know that s = vj1 and i = vjlj+1
. Consider the set of vertices excluding i that are on

path j, i.e., {vji
: i = 1, . . . , lj}. Some nodes in this set may belong to D, i.e., they
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are decoding nodes. In this case we know that they transmit the original codeword

exactly. Let t be the largest index in this set such that vjt decodes. Therefore, i will

not receive bit b along path Bj only if an erasure occurs on an edge that comes after

vjt in the path. We associate with path Bj the product of the random variables that

affect this, viz.,

Z?
j = Zjt,jt+1 · Zjt+1,jt+2 · · · · · Zjlj

,jlj+1
.

This product is zero if one of the Z random variables takes value zero, which, in turn,

means that an erasure occurred on that edge.

Now, i sees an erasure only when none of the paths from s to itself manage to

transmit the bit to it. Therefore, i sees an erasure when Z?
j = 0 for all the paths

Bj, j = 1, . . . , ki. Therefore we have

RD(i) = 1− εD(i)

= 1− Pr (

ki⋂
j=1

(Z?
j = 0))

= Pr (

ki⋃
j=1

(Z?
j 6= 0))

One way to evaluate this is by checking all possible combinations of values that

the Z variables can take and finding the total probability of those combinations that

satisfy
⋃ki

j=1(Z
?
j 6= 0). This procedure has complexity O(2|E|). One observation that

can make this procedure more efficient is the following – if we know that setting a

certain subset of the Z variables to 1 is enough to make the event
⋃ki

j=1(Z
?
j 6= 0)

happen, then for every superset of this subset, setting all the Z variables in that

superset to 1 is also enough to make the event
⋃ki

j=1(Z
?
j 6= 0) happen. With this, we

may have to check out fewer than the 2|E| possible combinations of values for the Z

variables and reduce the complexity.

Another way to evaluate this is by using the Inclusion Exclusion Principle [58].
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This gives us

Pr (

ki⋃
j=1

Z?
j 6= 0) =

ki∑
r=1

∑

1≤j1<···<jr≤ki

(−1)r+1Pr (Z?
j1
6= 0, . . . , Z?

jr
6= 0).

Since we have ki paths, the above expression has 2ki − 1 terms. A general term

of the form Pr (Z?
j1
6= 0, . . . , Z?

jr
6= 0) can be evaluated by first listing all the Z

variables that occur in at least one of the r terms. Say these are Zi1j1 , · · · , Ziqjq . Now

Pr (Z?
j1
6= 0, . . . , Z?

jr
6= 0) is given by the product (1 − εi1j1) × · · · × (1 − εiqjq). This

procedure has complexity O(|E|2k) where k is the maxi ki. In this procedure, the

complexity of listing all the variables in a certain set of r terms can be reduced by

storing the lists that one makes for sets of (r − 1) terms and simply adding on the z

terms from the r-th term to the appropriate list.

4.7 Algorithm to Find Optimum Policy

In general, since we have |V| − 2 relay nodes and each node has two options, viz.,

“forwarding” and “decoding and re-encoding,” we have 2|V|−2 policies. To find the

optimum policy we can analyze the rate for each of these policies and determine the

one that gives us the best rate. This strategy of exhaustive search requires us to

analyze 2|V|−2 policies.

Here, we propose a greedy algorithm that finds the optimum policy D which

maximizes the rate. This algorithm requires us to analyze at most |V| − 2 policies.

In the next section we will give a proof of correctness for this algorithm.

(a) Set D = ∅.
(b) Compute RD(i) for all vi ∈ V . (Use techniques of Section 4.6.)

Find RD = mini∈D∪{d} RD(i).

(c) Find M = {i|i /∈ {s, d} ∪D, RD ≤ RD(i)}.
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(d) If M = ∅, terminate. D is the optimal strategy.

(e) If M 6= ∅, find the largest D′ ⊆ M such that ∀v ∈ D′, RD(v) = maxi∈M RD(i).
Let D = D ∪D′.
Return to 2.

At each stage of the algorithm we look for nodes that are seeing a rate as good as

or better than the current rate of network operation. If there are no such nodes, the

algorithm terminates. If there are such nodes, we choose the best from among them.

Thus, in every iteration, the nodes we add are such that they do not put additional

constraints on the rate of the network. Therefore, the rate of the network can only

increase in successive iterations.

Note that since we assume a finite network, this algorithm is certain to terminate.

Also, since D cannot have more than (|V| − 2) nodes, the algorithm cycles between

steps 2 to 5 at most (|V| − 2) times. This is significantly faster than the strategy of

exhaustive search that requires us to analyze 2|V|−2 policies.

The complexity of the algorithm depends on how fast the computation of RD(i)

can be done. We have seen techniques for this computation in Section 4.6.

4.8 Analysis of the Algorithm

We first prove a Lemma regarding the effect of decoding at a particular node on the

rates supportable at other nodes.

Lemma 4.1. When node v is added to the decoding set D, the only nodes i that may

see a change in rate are v ≺ i. This change can only be an increase in rate, i.e., ∀i
such that v ≺ j we have RD(i) ≤ RD∪{v}(i). Every other node j is unaffected, i.e.,

RD(j) = RD∪{v}(j).

Proof. We give a proof for the Gaussian Network. We omit the proof for erasure

networks since it uses the same ideas.
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Gaussian Network : Recall the computation of ρD(i) described in Section 4.6.1.

The computation for YD(i) depends only on (some of) the YD(j) where (j, i) is an

edge. Therefore, inductively, it is clear that YD(vi) (and hence ρD(i)) depends only on

the nodes v where v ≺ i. Therefore, the only nodes that are affected when v changes

its operation (from “forwarding” to “decoding and re-encoding”) are v ≺ i. The rest

are unaffected.

Consider one of the XD(j) terms in (4.4). Note that each of these are of power

P of which some power is the signal power and the rest is the noise power. If node

j changes its operation from forwarding to decoding, XD(j) = X1, i.e., the signal

power increases to P and the noise power goes to 0. If node j is forwarding, XD(j)

is only a scaled version of YD(j). Since it is always of power P , if the SNR at node j

increases, the signal power in XD(j) increases while the noise power decreases. From

(4.4) we see that in both these cases, there is an increase in the signal power of YD(i)

and a decrease in the noise power. This implies an increase in the SNR.

Therefore, when v is added to D, by induction, for all nodes v ≺ i, the SNR, if

affected, can only undergo an increase. Naturally, we have the same conclusion for

the rate.

This Lemma tells us that adding nodes to the set of decoding nodes can only

increase the rate to other nodes. While this sounds like a good thing, it also puts

a constraint on the rate as indicated by (4.2). It is this tradeoff that our algorithm

seeks to resolve by finding the optimal set of decoding nodes.

4.8.1 Proof of Optimality

Theorem 4.2. The algorithm of Section 4.7 gives us an optimal set of decoding nodes.

Proof. Let S be an optimal set of decoding nodes. Let D be the set returned by the

algorithm. We will prove that RD ≥ RS. Then, since S is optimal, we will have
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RD = RS.

We prove RD ≥ RS in two steps. First we show that RS∪D ≥ RS. Then we show that

S ∪D −D = ∅, i.e., S ∪D = D. This will complete the proof.

Step 1: In every iteration, the algorithm finds subsets D′ and adds them to D.

Denote by Di the subset that is added to D in the i-th iteration. Assuming the

algorithm goes through m iterations, we have D = D1 ∪ · · · ∪Dm where the union is

over disjoint sets. In the algorithm, when Di is added to D, all the nodes in it are

decoding at the same rate, which is RD1∪···∪Di−1
(v) for v ∈ Di. We will call this rate

Ralgo,i. Consider the smallest i such that Di * S, i.e., Di is not already entirely in S.

Claim: Adding Di to S does not decrease the rate, i.e., RS∪Di
≥ RS.

Proof. Because of the acyclic assumption on the graph, we will have some nodes v ∈ S

such that ∀u(6= v) ∈ S, we either have v ≺ u, or v and u are incomparable. Let

L be the set of all such nodes v. Note that by Lemma 4.1, node v supports a rate

RS(v) = R∅(v). By (4.3), for every v ∈ L we have the necessary condition

RS ≤ RS(v) = R∅(v). (4.5)

Also note that D1, . . . , Di−1 are all in S, and by the definition of L and Lemma 4.1

we have

R∅(v) = RD1∪···∪Di−1
(v). (4.6)

We now consider two cases.

• If for some w ∈ L we also have w ∈ Di, then from (4.5) and (4.6) we have

RS ≤ RS(w) = R∅(w) = RD1∪···∪Di−1
(w) = Ralgo,i.

• On the other hand, if none of the nodes in L are in Di, pick any node v ∈ L.

We have v /∈ Di. We now consider two subcases.

– Let v /∈ D1, . . . , Di−1. We note from Steps 3 and 5 of the algorithm that
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it picks out from the set of nodes not in D, all nodes with the best rate.

Since v does not get picked, we have Ralgo,i > RD1∪···∪Di−1
(v). This along

with (4.5) and (4.6) gives us RS ≤ RD1∪···∪Di−1
(v) < Ralgo,i.

– The other possibility is that v ∈ D1∪· · ·∪Di−1. Since the Dis are disjoint,

there is a unique j such that v ∈ Dj. Since v ∈ L, by Lemma 4.1,

Ralgo,j = RD1∪···∪Dj−1
(v). With the same argument as that for (4.6), we

have R∅(v) = RD1∪···∪Dj−1
(v). But since the algorithm never decreases rate

from one iteration to the next, we have Ralgo,i ≥ Ralgo,j. Putting these

together we get Ralgo,i ≥ Ralgo,j = RD1∪···∪Dj−1
(v) = R∅(v). With (4.5) this

gives us RS ≤ RS(v) = R∅(v) ≤ Ralgo,i.

Therefore, in every case, we have shown that RS ≤ Ralgo,i. This implies that adding

the rest of the nodes from Di to S will not put additional constraints on RS and,

hence, cannot decrease the rate. Therefore, we have RS∪Di
≥ RS.

Since S is optimal, this proves that S ∪ Di also achieves optimal rate. We can

now call this set S, and for the next value of i such that Di * S, we can prove that

S ∪Di has optimal rate. Continuing like this we have that S ∪D is optimal, or, in

other words, RS∪D ≥ RS.

Step 2: Next we wish to show that S ⊆ D, i.e., S ∪D −D = ∅. Let us assume the

contrary. Let T = S∪D−D. Therefore, T ∩D = ∅, but T ⊆ S. Thus, D∪S = D∪T ,

where D and T are disjoint. Consider v ∈ T such that ∀u(6= v) ∈ T , we either have

v ¹ u, or v and u are incomparable. We have RD∪T (v) = RD∪S(v). By Lemma

4.1, RD∪T (v) = RD(v). Also, the constraint of (4.2) tells us that RD∪S ≤ RD∪S(v).

Finally, note that since the algorithm terminates without adding v to D, we have

RD > RD(v). Putting these inequalities together we have RD > RD(v) = RD∪T (v) =

RD∪S(v) ≥ RD∪S. But this contradicts the fact that S ∪D is optimal. Thus we have

S ⊆ D, i.e., S ∪D = D.
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From Steps 1 and 2 we have RD ≥ RS. But since S was an optimal policy, D is also

an optimal policy. This proves that the algorithm does indeed return an optimal set

of decoding nodes.

The only case in which this proof does not go through is when the algorithm returns

D = ∅ and S 6= ∅. In this case, consider node v ∈ L ⊆ S, where L is as defined

earlier. Since the algorithm does not pick up v, we have R∅ > R∅(v). But, RS ≤
RS(v) = R∅(v) from (4.5). Thus, RS < R∅; however, this contradicts the optimality

of S. Therefore, if there exists an optimal, non-empty S, the algorithm cannot return

an empty D.

Corollary 4.2. The algorithm of Section 4.7 returns the largest optimal policy D.

Proof. In the proof above, we have shown that for any optimal policy S, we have

S ⊆ D. This implies that D is the largest optimal policy.

Remark 4.3. In this chapter we consider a unicast problem. However, it is possible

to easily generalize the algorithm of Section 4.7 for single source multicast problems

where there is more than one destination. The only difference in the algorithm would

be in the definition of RD defined in (4.3) . For a multicast problem with destination

nodes d1, . . . , dk, RD should be defined as RD = mini∈D∪{d1,...,dk} RD(i).

4.9 Examples

In this section we present some examples of networks and show how the algorithm

runs on them.

4.9.1 Multistage Erasure Relay Networks

In Figure 4.4(a) we have depicted a multistage relay network. In this we have a single

source and destination and k layers of relay nodes. The i-th layer consists of li nodes.
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Between the i-th and the (i + 1)-th layer we have a complete bipartite graph where

all the edges are directed from the i-th layer to the (i + 1)-th. We assume that each

of these edges has erasure probability εi. The source is connected to all the nodes

in the first layer by erasure channels with erasure probability ε0, and all the nodes

in the k-th layer are connected to the destination by erasure channels with erasure

probability εk. We will also call d the (k + 1)-th layer and lk+1 = 1.

Because of the structure of this network, finding the rate under a particular policy

is easier than indicated in Section 4.6.2. Denote by Qi,j the probability that in layer i

there are j nodes that do not see an erasure. This defines Qi,j for i = 1, 2, . . . , (k+1),

and j = 0, 1, . . . , li. With this, for i = 1 we obtain

Q1,k =

(
l1
k

)
εl1−k
0 (1− ε0)

k. (4.7)

For i > 1, we can show the recursion below:

Qi,k =

(
li
k

) li−1∑
t=0

ε
t(li−k)
i−1 (1− εt

i−1)
kQi−1,t. (4.8)

Denote by ei the probability that the at least one node in the i-th layer does not see

an erasure. We can show that

ei =

li∑

k=0

Qi,k

(
1− k

li

)
.

Note that, by symmetry, whenever a node decides to decode, all the nodes in that

layer decode. When layer i decides to decode, we set Qi,li = 1 and Qi,j = 0 for j 6= li

and continue with the recursion of (4.8) for the other layers. This also extends to the

case when more than one layer decodes.

Now, our algorithm proceeds as before, but operates on layers rather than nodes,

and the effective erasure probability at layer i is ei. As an explicit example, consider
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(a) Model of a multistage relay network.
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(b) Maximum rate as given by the algorithm.

Figure 4.4: Multistage relay network.

a multistage relay network with four layers between the source and destination. Let

l1 = 3, l2 = 6, l3 = 4, l4 = 5 and ε0 = p, ε1 = p2, ε2 = p, ε3 = p3, ε4 = p, where p is

any number in the interval [0, 1]. For a fixed value of p, we can find the optimum

policy for the network, and this will give us the optimal rate. Figure 4.4(b) shows

this optimal rate for the parameter p going from 0 to 1 (solid curve). This is not a

smooth curve. The point where the right and left derivatives do not match is where

either the optimum policy or the rate-determining layer changes. The rate with all

nodes decoding has also been plotted (dashed curve). This rate is 1 − p, and we see

that the algorithm gives us dramatically higher rates.

4.9.2 Multistage Gaussian Relay Networks

We consider a multistage network similar to the one of the previous section, but

in which the links represent Gaussian channels with fading coefficients hi and with

additive noise σ2
i at layer i. The indexing is identical to that in the erasure network.

Because of the structure of the network, it is easy to compute SNRs. Let ρ(i)

denote the SNR at layer i. Then, in the situation where all the nodes are forwarding,
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the following recursion gives us the SNR. We initialize the recursion as follows:

a(1) = h2
0P b(1) = σ2

1 ρ(1) =
a(1)

b(1)
.

For the rest of the layers, i.e., i ≥ 2 we have

a(i) = a(i− 1)
h2

i l
2
i

1 + 1
ρ(i−1)

b(i) = b(i− 1)
h2

i li
1 + 1

ρ(i−1)

+ σ2
i

ρ(i) =
a(i)

b(i)

As with the erasure relay network, whenever a node decides to decode, all the nodes

in that layer decode. If some layers decide to decode, a simple modification of the

above recursion gives us the new rates. If i is the smallest number such that the i-th

layer decodes, then, clearly, the above recursion gives us rates for layers l1 to li. For

li+1, we set a(i + 1) = h2
i l

2
i P and b(i + 1) = σ2

i+1. We have ρ(i + 1) = a(i + 1)/b(i + 1)

as before, and we can continue with the recursion above for layers (i + 2), etc. We

repeat this modification for each layer that decodes.

Once the SNR at a layer is known, the rate is given by log(1 + ρ) as usual. With

this procedure for calculating rates, we use the algorithm of Section 4.7. It now

operates on layers rather than nodes.

As an explicit example, consider a multistage relay network with three layers

between the source and destination. Each node is restricted to using power P = 1.

Let l1 = 2, l2 = 5, and l3 = 3 and h0 = 0.7, h1 = 10, h2 = 0.1, and h3 = 1. We will

have σ2
1 = m2, σ2

2 = m,σ2
3 = m3, and σ2

4 = m2, where m can be any positive real

number. For a fixed value of m, we can find the optimum policy for the network,

and this will give us the optimal rate. Figure 4.4(b) shows this optimal rate for the

parameter m going from 0.5 to 1.5 (solid curve). As with the multistage erasure
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network, the curve is not smooth at points where the optimum policy or the rate-

determining layer changes. We also see the advantage compared to the case when all

nodes decode (dashed curve).

4.9.3 Erasure Network with Four Relay Nodes

Consider the relay network of Figure 4.5(a). All the links have the same erasure

probability p, where p is any number between 0 and 1. For this range of p, the

algorithm has been used to find the optimum rates and policies. The rate is plotted

in Figure 4.5(b) (solid curve). Throughout, the optimal policy is D = {2, 3, 5}. The

rate with all nodes decoding is 1− p and is also plotted (dashed curve). As expected,

the algorithm outperforms the all-decoding scheme.

d
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(a) Erasure network with four relay nodes.
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(b) Maximum rate as given by the algorithm.

Figure 4.5: Erasure network with four relay nodes.

4.9.4 Gaussian Network with Three Relay Nodes

In Figure 4.6(a) we see a Gaussian network with three relay nodes. We assume that

each node is restricted to use power P = 1. Let the additive noise variances be

σ2
2 = m,σ2

3 = m3, σ2
4 = m2, and σ2

5 = m1 where m can be an arbitrarily chosen real

number. In Figure 4.6(b) we see the rate returned by the algorithm for the optimal
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(b) Maximum rate as given by the algorithm.

Figure 4.6: Gaussian network with three relay nodes.

policy for m ∈ [0.5, 1.5] (solid curve). The rate with all nodes decoding is also plotted

(dashed curve). In the region m ∈ [0.5, 0.58] we see that the optimal policy is in

fact that of decoding at all nodes and the two curves match. After that, the optimal

policy changes, and hence we see that the optimal rate curve is not smooth.

4.9.5 Gaussian Network with Four Relay Nodes

In Figure 4.7 we see a Gaussian network with four relay nodes. Each node, including

the source, is restricted to using power P = 1. The attenuation factors associated with

the edges are h1,2 = 1, h1,4 = 2, h4,2 = 3, h2,3 = 4, h4,3 = 5, h4,5 = 1, h3,6 = 3, h5,3 = 2,

and h5,6 = 4. The additive noise variances associated with the nodes are σ2
2 = m,σ2

3 =

m3, σ2
4 = m2, σ2

5 = m, and σ2
6 = m3, where m can be any positive real number. In

Figure 4.10 we see the rate returned by the algorithm for the optimal policy for

m ∈ [1, 3] (solid curve). The rate with all nodes decoding is also plotted (dashed

curve). We see that the forward/decode scheme gives us significant improvements in

the rate.
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Figure 4.7: Gaussian network with four relay nodes.
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Figure 4.8: Rates for the Gaussian network of Figure 4.7.

4.10 A Distributed Algorithm for the Optimal Pol-

icy

The algorithm as proposed in Section 4.7 requires that the network parameters (viz.,

noise variances or erasure probabilities) be known before the network operation begins

so that the optimum policy is known beforehand. With the algorithm in its current

form the nodes cannot determine for themselves if they should decode or forward.

In this section we propose a scheme that can permit nodes to determine their own

operation.

The algorithm works iteratively to converge to a rate. In each iteration, the rate

of operation of the network is incremented or decremented depending on whether the
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previous transmission was successful or not. In every iteration, all the nodes get to

decide their operation for themselves.

Let R∗ be the maximum rate of the network. This is not known beforehand.

We assume that parameters R, δ, and N are known to all the nodes beforehand.

The blocklength n is also predetermined and known to all the nodes. In addition,

we require that the nodes have a common source of randomness so that they can

generate the same random codebook individually. With this, consider the following

algorithm:

(a) All nodes generate the (same) codebook for rate R. They all set k = 0.

(b) s transmits a randomly chosen codeword X1.

(c) Every relay node i attempts to decode the received message Yi.
If it can decode without error, it transmits the decoded codeword. 3

Otherwise, it forwards the received message (with appropriate scaling, for the
Gaussian network).

(d) The destination attempts to decode the received message.
If it decodes without error, it sends back bit 1 to all the other nodes to indicate
successful decoding.
Otherwise, it sends back bit 0 to all other nodes.

(e) All nodes increment k. k = k + 1.
If transmitted bit was zero, all nodes set R = R− δ/2k.
If transmitted bit was one, all nodes set R = R + δ/2k.

(f) While k ≤ N , go to Step 1.

Theorem 4.3. If the maximum rate of the network, viz. R∗ is in the range [R −
δ, R + δ], the algorithm above converges to it with an accuracy of δ

2N .

3One method of error detection is for a node to perform typical set decoding and assume an error
if it finds more than one codeword that is jointly typical with the received message. Other methods
of error detection are the introduction of Cyclic Redundancy Checks (CRCs) or an ARQ protocol,
e.g., [63].
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Proof. The source starts by transmitting at rate R. Each relay node receives messages

on all incoming links and decodes the message if it can. If it cannot, it simply forwards

what it has received. With this procedure, nodes decide their own operation. (The

order in which they decide this is a partial order in the sense defined in Section

2.2.2.) After the destination receives all its incoming messages, it tries to decode. If

R > R∗, the destination will definitely not be able to decode. If R ≤ R∗, we claim

that the destination will be able to decode. This is because when a node decodes, it

only improves the rates for other nodes. Also, note that an arbitrary node v decides

whether to decode or not only after all the nodes before it in the partial order have

already determined if the rate they can support is greater or smaller than R. Since,

by Lemma 4.1, these are the only nodes that affect the rate for v and they decode

whenever they can, node v always gets to see the best situation it can as far as rate

R is concerned. This is true for the destination also.

Therefore, depending on whether the destination can decode or not, we can say if

R∗ is greater or smaller than R. If this bit of information is transmitted back to the

source and other nodes, they can accordingly decide whether to increase or decrease

the rate for the next transmission. Thus, we have a decision tree of rates such that

the ability or inability of the decoder tells us which path to traverse in that tree we

can finally converge on a rate sufficiently close to the actual rate R.

This algorithm provides a very natural mode of network operation that obviates

the need for a central agent to know the entire network and decide the optimum

policy. Although some communication from the destination to the source and other

nodes is required, this is minimal and should be easily possible in a practical network

setting.

We mention that the algorithm we present can be made more sophisticated such

that it works for all values of R∗, rather than just those in the interval [R− δ, R + δ].

We omit the details in the interests of brevity.
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4.11 Upperbounds On the Maximum Rate

The algorithms of Section 4.7 as well as Section 4.10 converge to the maximum rate

possible with the decode/forward scheme, but we have no way of simply looking at

the network and saying what this maximum rate will be. In this section we present

upperbounds on the rate achievable with the limited operations that we use in this

chapter.

Before we derive upperbounds, let us remind ourselves of the notion of a cut-set

defined in Section 2.2.2. An s − d cut is defined as a partition of the vertex set V
into two subsets, Vs and Vd = V − Vs, such that s ∈ Vs and d ∈ Vd. The cutset

[Vs,Vd] is the set of edges passing across the cut. Also, V∗s is the subset of nodes in

the source set that have an edge in the cutset. Similarly, V∗d is the subset of nodes in

the destination set that have an edge in the cutset.

4.11.1 Upperbound for Gaussian Networks

For Gaussian networks, it is evident that making the additive noise zero at certain

nodes can only increase the maximum rate available at d. In particular, let us make

the additive noise zero at all nodes except V∗d . Therefore, the received messages (and

the transmitted messages) at all nodes in Vs are exactly the same as that transmitted

by the source. Now, if we permit the nodes in the destination set to decode co-

operatively, the rate at which they can decode will give us an upperbound on the rate

that the destination can decode.

Note that the SNR at node vj ∈ V∗d is

P

σ2
j


 ∑

i:(i,j)∈[Vs,Vd]

hi,j




2

.

Since our codebook and noise are Gaussian distributed, the optimum scheme for
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decoding co-operatively is taking a suitable linear combination of received messages

and then decoding that. For optimal decoding, we find the linear combination that

gives us the best SNR. It is easy to show that the best SNR possible is the sum of

the SNRs seen by each node in V∗d .

Therefore, an upperbound on the rate is

R ≤ log


1 +

∑

j∈Y (Vs)

P

σ2
j


 ∑

i:(i,j)∈[Vs,Vd])

hi,j




2


for every cut Vs.

4.11.2 Upperbound for Erasure Networks

As in the above section, we can obtain an upperbound on the rate for erasure networks

by making certain links perfect, or free of erasures. Therefore, we can obtain an

upperbound on the rate by making all edges other than those in [Vs,Vd] perfect.

With this, all the received (and transmitted) messages in Vs are exactly the same as

the codeword transmitted by the source. Now, it is clear that the rate at which the

nodes in V∗d can decode co-operatively is an upperbound on the rate available at the

destination.

Clearly, the effective erasure probability seen by the set of nodes V∗s is
∏

(i,j)∈[Vs,Vd] εij.

This gives us an upperbound on the rate. We have

R ≤ 1−
∏

(i,j)∈[Vs,Vd]

εij

for every cut Vs.

Note that in Chapter 2 a different min-cut upperbound was proposed and was

shown to be achievable. This gives the capacity of the network under the assumption

that the destination has perfect side-information regarding erasure locations from
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across the network. This is very different from the setup of this chapter.

4.12 Conclusions

To summarize, we have shown that making each link error-free in a wireless network

is sub-optimal. Thus, a multihop approach, in which every relay node decodes the

received message, is not necessarily the correct approach for all wireless networks. We

have proposed a scheme for network operation that is of use in practical networks and

in which operations performed by a node are restricted to decoding and forwarding

– both of which are common operations performed in a network setting. We have

suggested an algorithm that finds the optimum policy without exhaustive search over

an exponential number of policies and also proposed a method to converge to the

correct policy without having a central decision-making agent.

The algorithm of Section 4.7 can find the maximum rate and optimum policy

for any Gaussian or wireless erasure network. In addition, the bounds presented in

Section 4.11 give us some idea of what sort of optimal rates to expect. However,

we still do not know what sort of policies are optimal in what ranges of erasure

probabilities or SNR. The examples of Section 4.3 suggest that when the links are

poor (high erasure probabilities or low SNR), it is better to decode. It would be

interesting to know if this is true for general networks and what thresholds exist

below which a certain operation is always preferred.

Also, Corollary 4.2 tells us that the algorithm returns the largest decoding set.

Since decoding is the more costly of the two operations considered here, an algorithm

that finds the smallest decoding set such that the maximum rate is obtained is of

interest.

Finally, we note that in this chapter we considered only two types of operations.

However, it is possible to imagine a larger set of operations and the optimal choice
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of operation from among these. Finding practical schemes that improve upon the

present algorithm is an interesting avenue for future work.
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Chapter 5

Estimation over Wireless Erasure
Networks

5.1 Introduction

Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology have pro-

vided us with cheap, low power, customizable sensors capable of sensing, signal pro-

cessing, and communication in wireless media (for university and industrial prototype

of these sensors, see [64, 65]). These advances have given rise to an increasing number

of applications for networks of sensors in different aspects of our life. As mentioned

earlier in Chapter 1, examples of these applications appear in environmental monitor-

ing, industrial, transportation, and home systems automation, control of distributed

embedded systems (such as robots or UAVs), and even medical services [66, 67].

One important feature of these applications is that not in all of them the main

objective is high-data rate communication between components of the network. Dif-

ferent tasks such as distributed computation, detection, and control can be the main

purpose for deploying these networks.

Given the increasing use of wireless sensor networks for different tasks other than

data communication, a theoretical framework for analysis of the ultimate performance

and the optimal schemes of operation for each of these tasks is required.

Towards this end, recently a great deal of attention has been directed towards
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networked control systems in which components communicate over wireless links or

communication networks that may also be used for transmitting other unrelated data

(see, e.g., [68, 69] and the references therein). The estimation and control performance

in such systems is severely affected by the properties of the communication channels.

Communication links introduce many potentially detrimental phenomena, such as

quantization error, random delays, data loss, and data corruption to name a few, that

lead to performance degradation or even stability loss. As emergent applications in

distributed control mature, these issues have gained a lot of focus from the community.

In the previous chapters of this thesis, we looked at the performance of different

classes of wireless networks for different network problems. In these problems the main

objective is maximizing the reliable rate of communication between the nodes of the

network. In this chapter, we look at another task, namely control and estimation,

over these networks. We are interested in the problem of estimation and control of

a dynamical process across the wireless erasure network model introduced in Section

2.3. We consider dynamical process evolving in time that is being observed by a

sensor. The sensor needs to transmit the data over a network to a sink (destination)

node, which can either be an estimator or a controller. However, the links in the

network stochastically erase packets.

Prior work in this area has focused on studying the effect of packet erasures by a

single link in an estimation or control problem. Assuming certain statistical models

for the packet erasure process, stability and control performance of such systems were

analyzed in [70]-[73]. To counteract the degradation in performance, some approaches

have been proposed in the literature [74]-[79]. In particular, in [76], a sub-optimal

estimator and regulator is proposed that minimizes a quadratic cost. This approach

was later extended by [77, 78]. [79] also considered the related problem of optimal

estimation across a packet erasure link that erases packets in an independent and

identically distributed (i.i.d.) fashion, and obtained bounds on the expected error
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covariance.

Most of the above designs aimed at designing a packet-loss compensator. The

compensator accepts those packets that the link successfully transmits and comes up

with an estimate for the time steps when data is lost. If the estimator is used inside

a control loop, the estimate is then used by the controller. A more general approach

is to design both an encoder and a decoder for the communication link to counteract

the effect of stochastic packet erasures. This was considered for the case of a single

communication link in [80] and [81]. It was demonstrated that using encoders and

decoders can improve both the stability margin and the performance of the system.

In this chapter, we consider the design of encoders and decoders for wireless era-

sure network model introduced in Chapter 2. The optimal transmission strategy over

general networks for the purpose of estimation and control is largely an open prob-

lem. In [82], Tatikonda studied some issues related to quantization rates required

for stability when data was being transmitted over a network of digital memoryless

channels. Also relevant is the work of Robinson and Kumar [83], who considered

the problem of optimal placement of the controller when the sensor and the actuator

are connected via a series of communication links. They ignore the issue of delays

over paths of different lengths (consisting of different number of links), and under a

Long Packet Assumption come up with the optimal controller structure. There are

two main reasons why the problem of encoding data for transmission is much more

complicated in the case of transmission over a network:

• If the intermediate nodes are allowed to process data, it introduces an element of

memory. The network is not equivalent to an erasure channel with probability

of successful transmission as the reliability of the network.

• There are potentially many paths from the source to any node that offer data

with varying amounts of delay.
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We begin by proving a separation principle that allows us to separate the control

problem into one of designing a state-feedback optimal controller, and another of

transmitting information across unreliable links. This also allows us to identify the

information that needs to be made available to the controller for achieving optimal

performance. We then propose a simple recursive algorithm that ensures that this

information is available to the controller. Even though the algorithm requires a

constant amount of memory, transmission, and processing at any node, it is optimal

for any packet erasure pattern and has many additional desirable properties that we

illustrate. The analysis of the algorithm identifies a property of the network called

the max-cut probability that is relevant for the purpose of stability of the control

loop. We also provide a framework to analyze the performance of our algorithm. The

main contributions of this chapter are as follows:

(a) We identify the optimal information processing strategy that should be followed

by the nodes of the network to allow the sink to calculate the optimal estimate

at every time step. This algorithm is optimal for any packet erasure process,

yet requires a constant amount of memory, processing, and transmission by any

node per time step. Due to a separation principle, the algorithm also solves the

optimal control problem.

(b) We analyze the stability of the expected error covariance for this strategy when

the packet erasure events are independent from one time step to the next and

across channels. For any other scheme (e.g., transmitting measurements without

any processing), our conditions are necessary for stability. For channels with

correlated erasures, we show how to extend this analysis.

(c) We calculate the performance for our algorithm for channels that erase packets

independently. We provide a mathematical framework for evaluating the per-

formance for a general network and provide expressions for networks containing
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links in series and parallel. We also provide lower and upper bounds for the

performance over general networks. For any other strategy, these provide lower

bounds for achievable performance.

Our results can also be used for synthesis of networks to improve estimation per-

formance. We consider a simple example in which the optimal number of relay nodes

to be placed is identified for estimation performance. We also consider optimal rout-

ing of data in unicast networks.1 Simulation results are provided to illustrate the

results.

The chapter is organized as follows. In the next section, we set up the problem

and state the various assumptions. Then, we state a separation principle that allows

us to focus on the optimal estimation problem. In Section 5.4 we identify a recursive

yet optimal processing and transmission algorithm. We then specialize to the case

of packet erasure events occurring in a memoryless fashion and independently across

different links. We first do a stability analysis of the algorithm in Section 5.5 to

obtain conditions on the packet erasure probabilities under which the estimate error

at the sink retains a bounded covariance. Following that, in Section 5.6 we analyze

the performance of the algorithm. We derive an expression for general networks and

evaluate it explicitly for specific classes of networks. We also provide bounds for

general networks. We then illustrate the results using some examples. Finally, we

consider some extensions of the analysis by considering correlated erasures and using

the results already derived for optimal routing in unicast networks and for network

synthesis.
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Figure 5.1: The set-up of the control across communication networks problem. For
most of the discussion in the chapter, we will ignore the network between the controller
and the actuator. See, however, Section 5.4.2.

5.2 Problem Setup

Consider the arrangement in Figure 5.1. Let a discrete-time linear process evolve

according to the equation

x(k + 1) = Ax(k) + Bu(k) + w(k), (5.1)

where x(k) ∈ Rn is the process state, u(k) ∈ Rm is the control input, and w(k) is the

process noise assumed to be white, Gaussian, and zero mean with covariance matrix

Rw.2 The initial condition x(0) is assumed to be independent of w(k) and to have

mean zero and covariance matrix R(0). The state of the plant is measured by a sensor

that generates measurements according to the equation

y(k) = Cx(k) + v(k). (5.2)

The measurement noise v(k) is white, zero-mean, Gaussian (with covariance matrix

Rv), and independent of the plant noise w(k). We assume that the pairs (A,B) and

1Unicast network in this chapter refers to routing the data over only one particular path in the
network.

2The results we present continue to hold for time-varying systems, but we consider the time-
invariant case to simplify the presentation.
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{A,R
1
2
w} are stabilizable and the pair (A, C) is observable.

The sensor communicates with a controller across a wireless erasure network that

was introduced in Chapter 2. The sensor constitutes the source node and is denoted

by s. The controller is designated as the sink, or the destination node d. As in

Chapter 2, the network is represented by a directed graph G = (V , E). The edges

of the graph represents packet erasure channels. We do not make any assumptions

a priori regarding the erasure process across the network. The following remarks

regarding the model are in order:

• We assume that the links take in as input a finite vector of real numbers.

Therefore, the assumption is that sufficient bits per data packet and a high

enough data rate are present so that quantization error is negligible.

• We will nominally consider the delays introduced by the channel to be less than

one time step according to which the discrete-time dynamical process evolves.

Most of the results in the chapter can, however, be extended to the case when

delays are present. In particular, the algorithm in the case of delays is provided

in Section 5.4.1.

• In this chapter we also assume a global clock so that each node is synchronized.

If the packet erasure process is independent for different links and also from one time

step to the next (or, in other words, memoryless), the probability of dropping a packet

on link (i, j) ∈ E is given by εij independent of time. More sophisticated models of

erasure process such as erasures occurring according to a Markov chain to capture

the bursty nature of them can readily be thought of and will be considered towards

the end of this chapter.

We refer to individual realizations of the erasure process as a packet drop (erasure)

sequence. The operation of the different nodes in the network at every time-step k

can be described as follows:
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(a) Every node computes a function of all the information it has access to at that

time.

(b) It transmits the function on all the out-going edges. We allow some additional

information in the message that tells us the time step j such that the function

that the node transmits corresponds to the state x(j). The sink node calculates

the control input u(k) based on the information it possesses.

(c) Every node observes the messages from all the incoming links and updates its

information set for the next time step. For the source node, the message it

receives at time step k corresponds to the observation y(k).

Note that the time line we have proposed ensures a strictly causal operation. Thus,

at time step k, the function that the source node transmits depends on measurements

y(0), y(1), · · · , y(k − 1). Similarly, even if there was no packet erasure, if the sink

node is d hops away from the source node (i.e., the shortest path from the source

node to the sink node involves d edges), its control input u(k) at time k can only

depend on measurements y(0), y(1), · · · , y(k−d−1). Thus, unlike the model in [83],

every communication edge consumes one hop, or in other words, one time step, as

data is transmitted over it. We can easily adapt the discussion presented below to

the causal case.

The controller at every time step calculates a control input u(k) and transmits it

to the actuator. For the time being, we ignore any communication channel between

the controller and the actuator. We will revisit the presence of a controller - actuator

channel later in the chapter and show how simple modifications to our design can

take care of them. The controller aims at minimizing a quadratic cost function

JT = E

[
T∑

k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)
+ xT (T + 1)P c

T+1x(T + 1)

]
, (5.3)
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where the expectation is taken over the uncorrelated variables x(0), {w(k)} and

{v(k)}. Note that the cost functional JT above also depends on the random packet

drop sequences in each link. However, we do not average across packet-drop pro-

cesses; the solution we will present is optimal for arbitrary realizations of the packet

dropping processes. For considering the stability of the system, we will consider the

infinite horizon cost

J∞ = lim
T→∞

JT

T
.

Without the communication network, the problem is thus the same as the classical

LQG control synthesis problem. The presence of the network, however, alters the

problem drastically. It is unclear a priori what the structure of the optimal control

algorithm should be and in what way the links in the network should be used to

transmit information. We aim to solve the following problems:

(a) Identify the optimal processing and transmission algorithm at the nodes that

allow the controller to minimize the cost JT . Clearly, sending measurements

alone might not be the optimal thing to do, since in such a scheme, erasing

a packet would mean loss of information that cannot be compensated for in

the future. We are particularly interested in strategies that do not entail an

increasing amount of transmission and memory at the nodes.

(b) Identify the conditions on the network that would lead to a stable system.

(c) Identify the best possible performance of the system in terms of the quadratic

cost that can be achieved.

For future reference, we will denote this problem set-up as problem P1.
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5.3 Preliminary Results

We wish to construct the optimal control input and the optimal information pro-

cessing algorithm at each node that minimizes the cost function JT . If the packet

dropping links were not present, the optimal performance would have been achieved

if every node in the network transmitted the latest measurement it received and the

controller calculated the LQ optimal control input based on the estimate obtained

by using a Kalman filter. However, the presence of packet erasures disrupts this op-

eration since the Kalman filter requires continuous access to measurements, which

is denied by the packet erasures. To solve for the optimal controller design and the

optimal information processing algorithm at each node, we begin by introducing some

notation.

For the node i, denote by I i(k) the information set that it can use to generate

the message that it transmits at time step k. This set contains the aggregate of the

information the node has received on the incoming edges at time steps t = 0, 1, · · · ,
k − 1. As an example, for the source node s,

Is(k) = {y(0), y(1), · · · , y(k − 1)}.

Without loss of generality, we can restrict our attention to information-set feedback

controllers, i.e., controllers of the form u(k) = u(Id(k), k). For a given information set

at the destination Id(.), let us denote the minimal value of JT by J?
T (Id). The packet

drops occur according to a random process. Let λpq(k) be the binary random variable

describing the packet erasure event on link (p, q) ∈ E at time k. λpq(k) assumes the

value “dropped” if the packet is dropped on link (p, q) at time k, and “received”

otherwise. For a network with independent and memoryless packet erasures, λpq(k) is

distributed according to Bernoulli with parameter ppq. We define λpp(k) = “received′′.

Given the packet drop sequences in each link, at time step k we can define a time
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stamp ti(k) for node i such that the packet erasures did not allow any information

transmitted by the source after ti(k) to reach the i-th node in time for it to be a part

of I i(k).

Now consider an algorithm A1 that proceeds as follows. At time step k, every

node takes the following actions:

(a) Calculate the estimate of state x(k) based on the information set at the node.

(b) Transmit its entire information set on the outgoing edges.

(c) Receive any data successfully transmitted along the incoming edges.

(d) Update its information set and affix a time stamp corresponding to the time of

the latest measurement in it.

When this algorithm is executed for a particular drop sequence, the information set

at node i will be of the form

I i(k) = {y(0), y(1), · · · , y
(
ti(k)

)},

where ti(k) < k is the time stamp as defined above. This is the maximal information

set I i,max(k) that the node i can possibly have access to with any algorithm. For any

other algorithm, the information set will be smaller than this since earlier packets,

and hence measurements, might have been dropped.

Note that for two information sets Id(k, 1) and Id(k, 2) related by Id(k, 1) ⊆
Id(k, 2), we have J?

T (Id(k, 1)) ≤ J?
T (Id(k, 2)). Thus, in particular, one way to achieve

the optimal value of JT is through the combination of an information processing

algorithm that makes the information set Id,max(k) available to the controller and a

controller that optimally utilizes the information set. Further, one such information

processing algorithm is the algorithm A1 described above. However, this algorithm

requires increasing data transmission as time evolves. Surprisingly, in a lot of cases,
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we can achieve performance equivalent to this näıve solution using a constant amount

of transmission and memory.

To see this, we first state the following separation principle. For any random

variable α(k), denote by α̂ (k|β(k)) the minimum mean squared error (mmse) estimate

of α(k) given the information β(k).

Proposition 5.1. [Separation Principle] Consider the packet-based optimal control

problem P1 defined in section 5.2. Suppose that each node transmits all the measure-

ments it has access to at every time step, so that the decoder has access to the maximal

information set Id,max(k) at every time step k. Then, for an optimizing choice of the

control, the control and estimation costs decouple. Specifically, the optimal control

input at time k is calculated by using the relation

u(k) = ûLQ

(
k|Id,max(k), {u(t)}k−1

t=0

)
,

where uLQ(k) is the optimal LQ control law and ûLQ

(
k|Id,max(k), {u(t)}k−1

t=0

)
denotes

the minimum mean squared error (mmse) estimate of uLQ(k) given the information

set Id,max(k) and the previous control inputs u(0), · · · , u(k − 1).

Proof. The proof is along the lines of the standard separation principle (see, e.g., [84,

Chapter 9]; see also [77, 80]) and is omitted for space constraints.

Informally, the separation principle states that if every node transmits all previous

measurements at every time step, then the controller design consists of an estimator

(e.g., a Kalman filter) that calculates the minimum mean squared error estimate of

the current state value using all available measurements and the previous control

inputs together with an LQ optimal controller. There are two reasons this principle

is useful to us:

(a) We recognize that the optimal controller does not need to have access to the in-
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formation set Id,max(k) at every time step k. The encoders and the decoder only

need to ensure that the controller receives the quantity ûLQ

(
k|Id,max(k), {u(t)}k−1

t=0

)
,

or equivalently, x̂
(
k|Id,max(k), {u(t)}k−1

t=0

)
.

(b) If we can ensure that the controller has access to this quantity, the controller

design part of the problem is solved. The optimal controller is the solution to

the LQ control problem.

Thus, the controller needs access to the estimate x̂
(
k|Id,max(k), {u(t)}k−1

t=0

)
based

on the information set Id,max(k) (that is of the form {y(0), y(1), · · · , y(j)} for some

j < k) and the previous control inputs. We can make another simplification in the

problem by separating the dependence of the estimate on measurements from the

effect of the control inputs. In the context of our problem, this is useful since the

nodes in the network do not then need access to the control inputs and can concentrate

solely on the effect of measurements. The effect of the control inputs can be taken

care of by the decoder or the controller that has access to all previous control inputs.

To this end, we state the following Theorem.

Theorem 5.1. Consider the problem P1 defined in section 5.2. The quantity

x̂
(
k|Id,max(k), {u(t)}k−1

t=0

)
, where Id,max(k) is of the form {y(0), y(1), · · · , y(j)} for

some j < k, can be calculated as the sum of two quantities:

x̂
(
k|Id,max(k), {u(t)}k−1

t=0

)
= x̄(k) + ψ(k),

where x̄(k) depends only on Id,max(k) and should be provided to the controller by

the network and ψ(k) depends only on the control inputs and can be computed by a

recursive linear filter at the controller. Further, term x̄(k) that the network needs to

deliver is, in fact, the mmse estimate of the state x(k) of a process evolving as

x(k + 1) = Ax(k) + w(k), (5.4)
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given the measurements y(0), y(1), · · · , y(j) that are assumed to originate from a

sensor of the form (5.2).

Proof. The proof of the above theorem is provided in [90].

As mentioned above, the advantage of separating the effects of measurements and

the control inputs is that the nodes in the network can concentrate on delivering x̄(k)

to the controller, the controller (which has access to all the control inputs) can then

calculate ψ(k) and, in turn, x̂
(
k|{y(t)}j

t=0, {u(t)}k−1
t=0

)
. The nodes in the network do

not need access to the control inputs.

Thus, consider an alternative estimation problem P2. A process of the form (5.4)

is observed by a sensor of the form (5.2). There is an estimator across the network

that needs to estimate the state x(k) of the process in the mmse sense at every time

step k. The network is modeled in the same manner as in the original problem P1.

We can once again define the information set I i(k) that the node i has access to

at time k and the corresponding maximal information set I i,max(k). What is the

optimal information processing algorithm to be followed by each node that allows the

estimator to calculate the estimate of x(k) based on the information set Id,max(k)?

By the arguments above, the optimal information processing algorithm for the nodes

in the network in the problems P1 and P2 is identical. For the presentation of the

algorithm and analysis of its properties, we will consider this equivalent problem P2

while keeping in mind that, to solve problem P1, the controller can then calculate

ψ(k) to include the effect of the previous control inputs and, finally, the new control

input u(k) by utilizing the separation principle. We now move on to present the

algorithm.
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5.4 Optimal Encoding at Each Node

We saw that one algorithm that ensures that the estimator (or the sink node) has ac-

cess to Id,max(k) and hence can calculate the mmse estimate of x(k) is A1. However,

that algorithm involves an increasing amount of memory and transmission at each

node. We will now describe an algorithm A2 that achieves the same performance at

the expense of constant memory, processing, and transmission (modulo the transmis-

sion of the time stamp). The algorithm proceeds as follows. At each time step k,

every node i takes the following actions:

(a) Calculate its estimate x̂i(k) of the state x(k) based on any data received at

the previous time step k − 1 and its previous estimate. The estimate can be

computed using a switched linear filter, as shown later.

(b) Affix a time stamp corresponding to the latest measurement used in the cal-

culation of the estimate in step 1, and transmit the estimate on the outgoing

edges.

(c) Receive data on the incoming edges, if any, and store it for the next time step.

To prove that algorithm A2 is indeed optimal, we need the following intermediate

result.

Lemma 5.2. Consider any edge (i, j) and any packet drop pattern. At time step k,

let the node i transmit the measurement set

Sij = {y(0), y(1), · · · , y(l)}

on the edge (i, j) if algorithm A1 is executed. If, instead, algorithm A2 is executed,

the node i transmits the estimate

x̂
(
k|Sij

)
= x̂(k|{y(0), y(1), · · · , y(l)})
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along the edge (i, j) at time step k.

Proof. The proof readily follows by induction on the time step k. For time k = 1,

the source node s transmits {y(0)} along all edges of the form (s, .) while following

algorithm A1 and the estimate x̂(1|y(0)) while executing algorithm A2. If any edge

is not of the form (s, .), there is no information transmitted along that edge in either

algorithm. Thus, the statement is true for k = 1. Now assume that the statement is

true for k = n. Consider the node i at time k = n + 1. If the node i is the source

node, the statement is true by an argument similar to that at k = 1. Let us assume

that node i is not the source node. Consider all edges that transmitted data at time

step k = n to node i. Let each of the edges (j, i) ∈ NI(i) transmits the measurement

set

Sji = {y(0), y(1), · · · , y(t(j))}

if algorithm A1 is being executed. Also, denote the measurement set that the node i

has access to from time step k = n− 1 as

Sii = {y(0), y(1), · · · , y(t(i))}.

Note that at time step k = n, the node i transmitted the set Sii along all outgoing

edges in NO(i). Let v be the node for which

t(v) = max{t(i) ∪ {t(j)|(j, i) ∈ NI(i)}}.

Then at time k = n+1, the node i transmits along all outgoing edges the measurement

set

S1 = {y(0), y(1), · · · , y(t(v))}.

Now consider the case when algorithm A2 is being executed. By the assumption of
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the statement being true at time step k = n, the edges (j, i) transmit the estimate

x̂(n|Sji) = x̂(n|{y(0), y(1), · · · , y(t(j))})

for all node js such that (j, i) ∈ NI(i). Also, since at time k = n the node transmitted

Sii on any edge (i, .) in algorithm A1, it has access to the estimate x̂(n|Sii) when

algorithm A2 is executed. Clearly, the set Svi is the superset of all sets Sii and Sji

where (j, i) ∈ NI(i) and v have been defined above. Thus, the estimate that the node

i calculates at time k = n + 1 is x̂(n + 1|Svi). But the measurement set Svi is simply

the set S1. Hence, at time step k = n + 1, the node i transmits along all outgoing

edges the estimate x̂(n + 1|S1). Thus, the statement is true at time step k = n + 1

along all edges of the form (i, .). Since the node i was arbitrary, the statement is true

for all edges in the graph. Thus, we have proven that if the statement is true at time

k = n, it is true at time k = n + 1. But it is also true at time k = 1. Thus, by the

principle of mathematical induction, it is true at all time steps.

Note that we have also shown that if at time step k, the node has access to the

measurement set Sii from time step k−1 when algorithm A1 is executed, it has access

to the estimate x̂(k− 1|Sii) from time step k− 1 when algorithm A2 is executed. We

can now state the following result.

Proposition 5.2. The algorithm A2 is optimal in the sense that it leads to the min-

imum possible error covariance at any node at any time step.

Proof. Consider a node i. At time k, let j ∈ {i} ∪ {q|(q, i) ∈ NI(i)} such that

λji(k − 1) = “received′′. Denote the measurement set that is transmitted from node

j to node i at time step k under algorithm A1 by Sji. As in the proof of Lemma 5.2,

there is a node v such that Svi is the superset of all the sets Sji. Thus, the estimate
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of node i at time k under algorithm A1 is

x̂A1(k) = x̂(k|Svi).

From Lemma 5.2, when algorithm A2 is executed at time step k, the node i has access

to the estimates x̂(k− 1|Sji). Once again, since Svi is the superset of all the sets Sji,

the estimate of node i at time step k is simply

x̂A2(k) = Ax̂(k − 1|Svi) = x̂(k|Svi).

Thus we see that for any node i, the estimates x̂A1(k) and x̂A2(k) are identical for

any time step k for any packet drop pattern. But algorithm A1 leads to the minimum

possible error covariance at each node. Thus, algorithm A2 is optimal.

The following remarks regarding the above algorithm are in order:

(a) The step of calculating the estimate at each node in the algorithm A2 can

be implemented as follows. The source node implements a Kalman filter and

updates its estimate at every time step with the new measurement received.

Every other node i checks the time-stamps on the data coming on the incoming

edges. The time-stamps correspond to the latest measurement used in the

calculation of the estimate being transmitted. Then, node i updates its time-

stamp using the relation

ti(k) = max
j∈{q|(q,i)∈NI(i)}∪{i}

λji(k − 1)tj(k − 1). (5.5)

Suppose the maximum of (5.5) is achieved by node n ∈ {q|(q, i) ∈ NI(i)}∪ {i}.
Then the node i updates its estimate as

x̂i(k) = Ax̂n(k − 1),
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where x̂t(k) denotes the estimate of the state x(k) maintained by the node t.

Thus, the processing can be done as a switched linear filter.

(b) We have made no assumptions on the packet drop pattern. The algorithm

provides the optimal estimate based on Id,max(k) for an arbitrary packet drop

sequence, irrespective of whether the packet drop can be modeled as an i.i.d.

process or a more sophisticated model like a Markov chain or even adversar-

ial. The algorithm results in the optimal estimate at every time step for any

instantiation of the packet drop sequence, not merely in the optimal average

performance. We also do not assume any knowledge of the statistics of the

packet drops at any of the nodes.

(c) We have proved that the algorithm is optimal for any node. Thus we do not

need to assume only one sink. The algorithm is also optimal for multiple sources

if all sources have access to measurements from the same sensor. For multiple

sources with each source obtaining measurements from a different sensor, the

problem remains open.

(d) Any received data vector x̂(k|j) “washes away” the effect of all previous packet

drops. It ensures that the estimate at the receiving node is identical to the case

when all measurements y(0), y(1), · · · , y(j) were available, irrespective of which

previous data packets had been dropped.

(e) A priori we had not made any assumption about a node transmitting the same

message along all the out-going edges. It turned out that in this optimal algo-

rithm, the messages are the same along all the edges. This property is especially

useful in the context of wireless communication, which is inherently broadcast

in nature.

(f) The communication requirements can be reduced by adopting an event-based
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protocol in which a node transmits only if it updated its estimate based on

data arriving on an incoming edge. This will not degrade the performance but

reduce the number of transmissions, especially if packet drop probabilities are

high.

In a sense our algorithm corresponds to communication of information over a

digital channel, while the strategy of using no encoding is an analog communication

scheme. Our algorithm allows the intermediate nodes to play the role of repeaters

that help to limit the effect of the channel by decoding and re-encoding the data

along the way. In analog channels, repeaters make no difference in the received SNR

and hence the signal quality. Similarly, in our setting, if raw measurements are being

transmitted, presence of intermediate nodes does not help in improving the estimation

performance.

5.4.1 Presence of Delays

If the links introduce random delays, the algorithm remains optimal irrespective of the

possibility of packet rearrangements. Each node, at every time step, still calculates

the estimate of the state x(k) based on any information received at that time step and

the previous estimate from its memory, affixes the correct time stamp, and transmits

it along out-going edges. Further, if the graph is finite, the stability conditions of the

algorithm we present in the next section also do not change.

5.4.2 Channel Between the Controller and the Actuator

If we look at the proof of the separation principle given above, the crucial assumption

was that the controller knows what control input is applied at the plant. Thus,

if we have a channel between the controller and the plant, the separation principle

would still hold, provided there is a provision for acknowledgment from the receiver to
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the transmitter for any packet successfully received over that channel.3 The optimal

information processing algorithm presented above carries over to this case as well. We

can also ask the question of the optimal encoder-decoder design for the controller-

actuator channel. The optimal decoding at the actuator end will depend on the

information that is assumed to be known to the actuator (e.g., the cost matrices Q

and R and the measurements from the sensor). Design of the decoder for various

information sets is an interesting open problem.

For Sections 5.5 and 5.6, we will analyze the stability and performance of the

above algorithm by assuming that packets are erased independently from one time

step to the next and are uncorrelated in space. We will return to more general packet

dropping processes in Section 5.8.

5.5 Stability Analysis

We are interested in stability in the bounded second moment, or the mean squared

sense. Thus, for the problem P1, we say that the system is stable if E [J∞] is bounded,

where the expectation is taken over the packet dropping processes in the network.

For the problem P2, denote the error at time step k as

ed(k) = x(k)− x̂d(k),

where x̂d(k) is the estimate of the destination node. We can compute the covariance

of the error e(k) at time k as

Rd(k) = E
[
ed(k)(ed(k))T

]
,

3Note that we do not require acknowledgements for the sensor-controller channel.



149

where the expectation is taken over the initial condition x(0), the process noise w(j),

and the measurement noise v(j). We can further take the expectation with respect

to the packet dropping process in the network and denote

P d(k) = E
[
Rd(k)

]
.

We consider the steady-state error covariance in the limit as k goes to infinity, i.e.,

P d(∞) = lim
k→∞

P d(k). (5.6)

If the limit exists and is bounded, we will say that the estimate error is stable;

otherwise it is unstable.4 Note that because of the separation principle, the cost JT

and the estimation error covariance Rd(k) are related through the equation

JT = E
[
xT (0)S(0)x(0)

]
+ tr

(
S(0)Rd(0)

)
+ (5.7)

T−1∑

k=0

tr
(
S(k + 1)Rw +

(
AT S(k + 1)A + Q− S(k)

)
Rd(k)

)
,

where S(k) is the Riccati variable that arises because of the LQ optimal control being

calculated and evolves as

S(k) = AT S(k + 1)A + Q− AT S(k + 1)B
(
BT S(k)B + R

)−1
BT S(k + 1)A.

Because of the stabilizability assumptions, S(k) would tend to a constant value S as

the horizon T becomes longer. Thus, in the limit as T →∞, we obtain

J∞ = tr (SRw) + tr
((

AT SA + Q− S
)
Rd(∞)

)
.

4Our definition of stability requires the average estimation error or quadratic control cost to be
bounded. Other metrics that require the probability density function of the cost to decay at a fast
enough rate are also possible.
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If we now take the expectation with respect to the packet dropping processes in the

network, we obtain

E [J∞] = tr (SRw) + tr
((

AT SA + Q− S
)
P d(∞)

)
. (5.8)

Thus, the stability conditions for problems P1 and P2 are identical. We now proceed

to evaluate these conditions.

For node d and time k, let td(k) denote the time-stamp of the most recent obser-

vation used in estimating x(k) at the destination node d. This time-stamp evolves

according to (5.5). The expected estimation error covariance at time k at node d can

thus be written as

P d(k) = E
[
ed(k)(ed(k))T

]

= E
[(

x(k)− x̂d(k)
) (

x(k)− x̂d(k)
)T

]

=
k∑

l=0

E
[(

x(k)− x̂d(k|td(k) = l)
) (

x(k)− x̂d(k|td(k) = l)
)T

]
Pr

(
td(k) = l

)
,

where in the final equation we have evaluated the expectation with respect to the

packet dropping process, and x̂d(k|td(k) = l) denotes the estimate of x(k) at the

destination node given all the measurements {y(0), y(1), · · · , y(l)}. We see that the

effect of the packet dropping process shows up in the distribution of the time-stamp

of the most recent observation used in estimating x(k). For future use, we denote the

latency for the node d at time k as

ld(k) = k − 1− td(k).

Also, denote the mmse estimate of x(k) given all the measurements {y(0), y(1), · · · ,
y(k − 1)} by P (k). It is well-known that P (k) evolves according to the Riccati
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recursion

P (k + 1) = AP (k)AT + Rw − AP (k)CT
(
CP (k)CT + Rv

)−1
CP (k)AT .

We can now rewrite the error covariance P d(k) as

P d(k) =
k−1∑

l=0

E
[(

x(k)− x̂d(k|ld(k) = l)
) (

x(k)− x̂d(k|ld(k) = l)
)T

]
× Pr

(
ld(k) = l

)

=
k−1∑

l=0

[
AlP (k − l)

(
Al

)T
+

l−1∑
j=0

AjQ
(
Aj

)T

]
× Pr

(
ld(k) = l

)
. (5.9)

The above equation gives the expected estimation error covariance for a general net-

work with any packet dropping process. The effect of the packet dropping process

appears in the distribution of the latency ld(k). As we can see from (5.9), the sta-

bility of the system depends on how fast the probability distribution of the latency

decreases.

To analyze the stability, we use the following result from [80] restated here for

independent packet drops.

Proposition 5.3. Consider a process of the form (5.4) being estimated using mea-

surements from a sensor of the form (5.2) over a packet-dropping link that drops

packets in an i.i.d. fashion with probability ε. Suppose that the sensor calculates the

mmse estimate of the measurements at every time step and transmits it over the chan-

nel. Then, the estimate error at the receiver is stable in the bounded second moment

sense if and only if

ε|ρ(A)|2 < 1,

where ρ(A) is the spectral radius of the matrix A appearing in (5.4).
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5.5.1 Network with Links in Parallel

We begin by considering a network consisting only of links in parallel. Consider the

source and the sink node being connected by a network with m links in parallel with

the probability of packet drop in the i-th link being εi. Since the same data is being

transmitted over all the links, the distribution of the latency in (5.9) remains the

same if the network is replaced by a single link that drops packets when all the links

in the original network drop packets and transmits the information if even one link

in the original network allows transmission. Thus, the packet drop probability of

this equivalent link is ε1ε2 · · · εm. The necessary and sufficient condition for the error

covariance to diverge thus becomes

ε?|ρ(A)|2 < 1,

where

ε? = ε1ε2 · · · εm.

5.5.2 Necessary Condition for Stability in Arbitrary Net-

works

Using the result for parallel networks, we can obtain a necessary condition for stability

for general networks as follows.

Proposition 5.4. Consider a process of the form (5.4) being estimated using mea-

surements from a sensor of the form (5.2) through a wireless erasure network. Now,

for each s-d cut-set [Vs,Vc
s ] define the equivalent erasure probability as

ε(Vs) =
∏

(i,j)∈[Vs,Vc
s ]

εij. (5.10)



153

Then, a necessary condition for the error covariance to converge is

εnet|ρ(A)|2 < 1,

where εnet is the network erasure probability defined as

εnet = max
Vs:s−d cut

ε(Vs). (5.11)

Proof. Denote the given network by G1. Consider a cut-set of this network with source

set Vs. Form another network G2 by replacing all links in E − [Vs,Vd] by perfect links,

i.e., links that do not drop packets and additionally do not consume one time step to

transmit data across. Now, for any packet drop pattern, denote the information sets

that the destination node has access to at any time step k over networks G2 and G1

by Id,G2(k) and Id,G1(k), respectively. It is obvious that

Id,G1(k) ⊆ Id,G2(k).

Thus, the estimate error covariances at the destination node for the two networks are

related by

P d(k|Id,G1(k)) º P d(k|Id,G2(k)).

Hence, by considering the stability of error covariance over network G2, we can obtain

a necessary condition for the stability of error covariance over network G1. Since the

edges within each source and the destination sets do not introduce any delay or error,

G2 consists of the source and the sink joined by parallel edges in the cut-set only, i.e.,

[Vs,Vd]. The condition for the error covariance across G2 to converge is thus

ε(Vs)|ρ(A)|2 < 1,
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where ε(Vs) is defined in (5.10). This is thus a necessary condition for error covariance

across G1 to be stable. One such condition is obtained by considering each cut-set.

Thus, a necessary condition for the error covariance to converge is

εnet|ρ(A)|2 < 1,

where εnet is defined in (5.11).

5.5.3 Network with Links in Series

Consider a network consisting of two links in series with probability of packet drops

εsr and εrd, where the relay node is denoted by r, and s and d denote the source and

destination nodes. Denote the estimate at node i at time k by x̂i(k). Also, let es(k)

be the error between x(k) and x̂r(k). Similarly, let er(k) be the error between x̂r(k)

and x̂d(k). We are interested in the second moment stability of es(k)+er(k). Clearly,

a sufficient condition is that both es(k) and er(k) individually be second moment

stable. Applying Theorem 5.3, this translates to the condition

εsr|ρ(A)|2 < 1

εrd|ρ(A)|2 < 1.

If ε? is the greater of the probabilities εsr and εrd, the sufficient condition thus is

ε?|ρ(A)|2 < 1.

But this is identical to the necessary condition stated in Theorem 5.4. Thus, the

condition above is both necessary and sufficient. Clearly this argument can be ex-

tended to any finite number of links in series. If there are m links in series with the

probability of drop of the i-th link being εi, then a necessary and sufficient condition
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for the estimate error to converge at the sink node is

ε?|ρ(A)|2 < 1,

where

ε? = max(ε1, ε2, · · · , εm).

5.5.4 Sufficient Condition for Arbitrary Networks

We now proceed to prove that the condition stated in Theorem 5.4 is sufficient as

well for stability.

Theorem 5.3. Consider the assumptions of Theorem 5.4 on the erasure process and

the network. Then the estimation error covariance under algorithm A2 will be stable

if

εnet|ρ(A)|2 < 1,

where εnet is defined in (5.11).

Proof. First note that if a packet erasure link between two nodes u and v with prob-

ability of erasure εuv is replaced by two parallel links with erasure probabilities p
(1)
uv

and p
(2)
uv such that puv = p

(1)
uv p

(2)
uv , then the average error covariance of the estimation

under algorithm A2 will not change at any node. This is true simply because the

probability distribution of the latency in (5.9) will not change with this replacement.

Next consider the set Γ = {γ1, γ2, · · · γm} of all simple directed paths from the

source to the destination in the network graph. Note that these paths may share

edges. Consider the following optimization problem

min
βj

m∏
j=1

βj, (5.12)



156

subject to the following constraints

∏

j:(u,v)∈γj

βj ≥ εuv ∀ (u, v) ∈ E (5.13)

1 ≥ βj ≥ 0 ∀j = 1, 2, · · · ,m.

A simple change of variables,

ψj = − log βj, (5.14)

transforms the above optimization problem into the following linear program in the

variables ψj’s:

max
ψj

m∑
j=1

ψj (5.15)

subject to

∑

j:(u,v)∈γj

ψj ≤ − log εuv ∀ (u, v) ∈ E

ψj ≥ 0 ∀j = 1, 2, · · · ,m.

The solutions of the optimization problems (5.12) and (5.15), denoted by {β?
j } and

{ψ?
j}, are related through the relation

ψ?
j = − log β?

j .

The structure of the linear program (5.15) is the same as the one used for finding the

maximum flow possible in a fluid network [85, Page 59], which has the same topology

as our packet dropping network with the capacity of the link (u, v) equal to − log εuv.

The solution to the problem of finding the maximum flow through a fluid network

is well-known to be given by the max-flow min-cut theorem. Using this fact, we see
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that the solution to the optimization problem (5.15) is given by

ψ?
j = min

Vs:s−d cut

∑

(u,v)∈[Vs,Vc
s ]

− log εuv.

Thus, for the optimization problem (5.12), the solution is given by

β?
j = max

Vs:s−d cut

∏

(u,v)∈[Vs,Vc
s ]

− log εuv (5.16)

= max
Vs:s−d cut

ε(Vs)

= εnet,

where ε(Vs) and εnet have been defined in (5.10) and (5.11), respectively.

Consider the paths in the set Γ. Form a new set B of all those paths γjs for which

the associated optimal variable β?
j is strictly less than one. The remaining paths in

Γ have equivalent erasure probability as unity and can thus be ignored. Now form

a new network G ′ as follows. The node set of G ′ is the union of those nodes of the

original network G that are present on any path in B. Each pair of nodes (u, v) in

the node set of G ′ is connected by (possibly) multiple links. If an edge (u, v) between

two nodes u and v is present in a path γj ∈ B, we add an edge between nodes u and

v in G ′ and associate with it an erasure probability β?
j . By considering all the edges

in G and following this procedure, we construct the edge set of G ′. The following

properties of G ′ are easily verified.

• By construction, G ′ can be presented as a union of edge-disjoint paths. Each

path in G ′ corresponds to one path in B. Furthermore, for each path, the

probabilities of packet erasure on all the links of that path are equal.

• By virtue of (5.16) and the procedure followed to construct G ′, the product of

the probabilities of packet erasure of the different paths is equal to the equivalent

probability of the network, εnet, for the network G.
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• For any pair of nodes that were connected by a link in G, the product of the

probabilities of packet erasure of the links in G ′ connecting these two nodes is

greater than or equal to the erasure probability of the link between the same

pair of nodes in G. This can be seen from the first inequality constraint of

(5.13).

Therefore, the estimate error covariance at the sink by following algorithm A2 in the

original network G is less than or equal to the error covariance by following A2 in the

new network G ′. Thus, to obtain a sufficient condition on stability, we can analyze

the performance of A2 in the network G ′. For this we consider another algorithm,

which we denote as A3. In this algorithm we consider the disjoint paths given in G ′

and assume that estimates on different paths are routed separately. Thus, if a node

lies on many paths, on each path it forwards the packets it received on that path only.

Clearly, the performance A3 cannot be better than A2 since in A2 we send the most

recent estimate received from different paths at any node compared to forwarding the

estimates on different paths separately from each other.

Therefore, to prove the theorem we only need to show the stability of estimation

using protocol A3, assuming that the condition of Theorem 5.4 holds. Since we do

not mix the estimates obtained from different paths in A3, the network can be con-

sidered as a collection of parallel paths, with each path consisting of links with equal

drop probability. Therefore, using the stability analysis of serial networks presented

earlier, each path (from a stability point of view) can be viewed as an erasure channel

with drop probability equal to the drop probability of one link in that path. Using

the stability analysis of parallel networks, we see that the stability of the new net-

work under algorithm A3 is equivalent to the stability of a packet erasure link with

probability of erasure equal to the product of the drop probabilities of different paths,
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which as mentioned earlier is εnet. Thus, if

εnet|ρ(A)|2 < 1, (5.17)

the network G ′ is stable under protocol A3. But the performance of A3 cannot be

better than of A2. Thus G ′ is stable under A2. Therefore, the original network G is

stable under protocol A2 assuming (5.17) is satisfied.

The following remarks are in order:

(a) We have provided a necessary and sufficient condition for the expected error

covariance to remain bounded for a network of arbitrary topology. For any

other causal data processing algorithm, it provides a necessary condition for

stability.

(b) Let us, in particular, compare the stability conditions for the algorithm A2 to

those for a simpler algorithm Ā in which the intermediate nodes do not have

any memory. At each time step k, the source node forwards the measurement

y(k−1). The intermediate nodes compare the time stamps of the measurements

they received at the previous time step along different incoming edges and

forward the most recent one. If they did not receive any measurement on the

last time step, they do not transmit anything. It is clear that the probability

that the destination node receives any particular measurement y(k) from the

source over the network is upper-bounded by the reliability of the network (see,

e.g., [86]). Let us consider a simple example of a line network in which n

edges each with drop probability ε are combined in series. With our optimal

algorithm, the necessary and sufficient condition for expected estimate error

covariance to be stable is ε|ρ(A)|2 < 1. On the other hand, in algorithm Ā,

the probability that any measurement is received by the destination node is
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q = 1− (1− ε)n. By a method similar to the one used in [79], it can be proven

that a necessary condition for stability is q|ρ(A)|2 < 1. As an example, for

n = 5 links and drop probability p = 0.2, q = 0.67. Thus, our algorithm yields

a huge improvement for the stability margin, from ρ(A) ≤ 1.22 for the simple

algorithm to ρ(A) ≤ √
5 for our algorithm. This is an instance of the effect of

having “repeaters” in the path as mentioned above.

5.6 Performance Analysis

In this section we calculate the performance of the algorithmA2 for drops independent

in time and uncorrelated in space. Once again, from (5.8) we realize that the cost

function for the problem P1 can be calculated easily as long as we are able to calculate

the steady-state expected estimate error covariance defined in (5.6). We now provide

a framework to calculate the expected error covariance at any node.

Let Luv(k) be the difference between k and the time at which the last successful

transmission before time k occurred on link (u, v):

Luv(k) = min{j ≥ 1|λuv(k + 1− j) = “received′′}.

By convention, we adopt Luu(k) = 1. Thus, the last time that any message is received

at node v from link (u, v) is k−Luv(k) + 1, and that message has time-stamp tu(k−
Luv(k)). Then, (5.5) can be rewritten as

tv(k) = max
u∈{j|(j,v)∈NI(v)}∪{v}

tv(k − Luv(k)).

Now Luv(k) is distributed as a truncated geometric random variable with the density
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function

Pr (Luv(k) = i) =





(1− εuv)ε
i−1
uv ∀ k > i ≥ 1

1−∑k−1
i=1 Pr (Luv(k) = i), k = i.

As an example, for the source node s, without extending the definition we have

ts(k) = k − 1 for k ≥ 1. We can get rid of the truncation by extending the definition

of tu(k). For all k < 0, we define tu(k) = 0. Thus, using the extended definition,

ts(k) = (k − 1)+for all k, where x+ = max{0, x}. In general, using the extended

definition of tu(k) for all k and for any node u, we can easily verify that

tv(k) = max
u∈{j|(j,v)∈NI(v)}∪{v}

tu(k − Luv(k)), (5.18)

where Luv(k)’s are now independent random variables distributed according to a

geometric distribution with parameters εuvs. Thus

Pr (Luv(k) = i) = (1− εuv)ε
i−1
uv ∀i ≥ 1,∀k. (5.19)

Since Luv(k)s do not depend anymore on k from now on, we will omit the argument

k. From (5.18) we can write tv(k) in terms of the time-stamp at the source node

(k − 1)+ as

tv(k) = max
P :an s-v path

(k − 1−
∑

(u,v)∈P

Luv)
+, (5.20)

where the maximum is taken over all paths P in the graph G from source s to the

node v. Therefore, the latency at node v can be written as

lv(k) = k − 1− tv(k) = min{k − 1, min
P :an s-v path

(
∑

(u,v)∈P

Luv)}.

Since we are interested in the steady-state expected error covariance, we consider
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the steady-state behavior of the latency lv(k). As k → ∞, the distribution of lv(k)

approaches that of the variable lv defined as

lv = min
P :an s-v path

(
∑

(u,v)∈P

Luv). (5.21)

Let us now concentrate on the destination node.5 For the destination node d, we refer

to ld as the steady-state latency of the network. From (5.9), the steady-state error

covariance can now be rewritten as

P (∞) =
∞∑

l=0

Pr (ld = l)

[
AlP ?Al +

l−1∑
j=0

AjQAj

]
, (5.22)

where P ? is the steady-state estimation error covariance of x(k) based on {y(0), y(1),

· · · , y(k−1)} and is the solution to the Discrete Algebraic Riccati Equation (DARE)

P ? = AP ?AT + Rw − AP ?CT (CP ?CT + Rv)
−1CP ?AT .

Since the pair {A,R
1
2
w} is stabilizable, the rate of convergence of P (0) to P ? is ex-

ponential [87], and the substitution of P ? for P (k − 1) in (5.9) does not change the

steady-state error covariance.

Let us define the generating function of the complementary density function G(X)

and the moment generating function F (X) of the steady state latency ld

G(X) =
∞∑

l=0

Pr (ld ≥ l + 1)X l, and F (X) =
∞∑

l=0

Pr (ld = l)X l, (5.23)

where X is an arbitrary matrix. Thus

F (X) = (X − I)G(X) + I. (5.24)

5If we are interested in the error covariance at some other node v, simply denote v as the
destination node.
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On vectorizing (5.22), we obtain

vec (P (∞)) = F (A⊗ A) vec (P ?) + G (A⊗ A) vec (Q)

= ((A⊗ A− I)G(A⊗ A) + I) vec (P ?) + G(A⊗ A)vec (Q) ,(5.25)

where A⊗B is the Kronecker product of matrices A and B. Thus, the performance

of the system depends on the value of G(X) evaluated at X = A⊗ A. In particular,

the system is stable if and only if G(X) is bounded at A ⊗ A. Since G(X) is a

power series, boundedness of G(x) at A⊗A is equivalent to the boundedness of G(x)

(evaluated for a scalar x) at the square of the spectral radius of A. We thus have the

following result.

Theorem 5.4. Consider a process of the form (5.4) being observed using a sensor

of the form (5.2) through a wireless erasure network. Let the packet erasures be

independent from one time step to the next and across links. Then, the minimum

expected steady-state estimation error covariance at the receiver is given by (5.25).

Furthermore, the error covariance is stable in the sense of bounded expected steady-

state error iff |ρ(A)|2 lies in the region of convergence of G(x), where ρ(A) is the

spectral radius of A.

The above theorem allows us to calculate the steady state expected error covari-

ance for any network as long as we can evaluate the function G(X) for that network.

We now consider some special networks and evaluate the performance explicitly. We

start with a network consisting of links in series, or a line network.

5.6.1 Networks with Links in Series

In this case, the network consists of only one path from the source to the destination.

Thus, we have

F (X) = E
[
X ld

]
= E

[
X
P

(u,v) Luv

]
,
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where the summation is taken over all the edges in the path. Since the drops across

different links are uncorrelated, the variables Luvs are independent. Thus, we have

F (X) = E
[
X
P

(u,v) Luv

]
=

∏

(u,v)

E
[
XLuv

]
,

where we have used the independence of Luvs. Since Luv is a geometric random

variable (5.19),

E
[
XLuv

]
= (1− εuv)X (I − εuvX)−1 ,

provided that ρ(X)εuv < 1, where ρ(X) is the spectral radius of matrix X. Therefore,

F (X) = E
[
X ld

]
=

∏

(u,v)

[
(1− εuv)X (I − εuvX)−1] .

Using partial fractions and the relation in (5.24), we then obtain

G(X) =
n−1∑
i=0

X i + Xn
∑

(u,v)

cuv
εuv

1− εuv

(I − εuvX)−1,

where

cuv = (
∏

(r,s)6=(u,v)

(1− εuv

εrs

))−1.

Therefore, the cost can be written as

vec (P (∞)) =
∏

(u,v)

[
(A⊗ A)

(
I − εuvA⊗ A

1− εuv

)−1
]

vec (P ?) + G (A⊗ A) vec (Q) .

(5.26)

We can also see from the above argument that the system is stable if for every link

(u, v) we have εuv|ρ(A)|2 < 1 or, equivalently, max(u,v) εuv|ρ(A)|2 < 1. This matches

with the condition in section 5.5 Also note that for the case that some of εuvs are

equal, a different partial fraction expansion applies. In particular, for the case when



165

there are n links all with the erasure probability ε, we obtain

vec (P (∞)) = (A⊗ A)n

(
I − εA⊗ A

1− ε

)−n

vec (P ?)

+
n−1∑
i=0

[
ε

1− ε
(A⊗ A)n

(
I − εA⊗ A

1− ε

)−i−1
]

vec(Q) +
n−1∑
i=0

(A⊗ A)ivec(Q). (5.27)

Finally, when there is only one link between the source and the destination, the cost

reduces to a particularly simple form. It is easily seen that, in that case, the steady

state error covariance will be the solution to the Lyapunov equation

P (∞) =
√

εAP (∞)
√

εA + (Q + (1− ε)AP ?A) .

This expression can alternately be derived using Markov jump linear system theory

as in [80].

5.6.2 Network of Parallel Links

Consider a network with one sensor connected to a destination node through n links

with probabilities of erasure ε1, . . . , εn. Since the same data is being transmitted over

all the links, using (5.21) the steady state latency can be written as

ld = min
1≤i≤n

(Li).

Since Lis are all independent geometrically distributed variables with parameters εis

respectively, their minimum is itself geometrically distributed with parameter εeq =
∏

i εi. Thus, F (X) can be evaluated as

F (X) = (1− εeq)X(I − εeqX)−1,
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and G(X) can, in turn, be written as

G(X) = (I −
∏

i

εiX)−1.

Thus, the steady-state error can be evaluated using (5.25). Note that the region of

convergence of G(X) enforces for stability
∏

i εi|ρ(A)|2 < 1, which again matches with

the condition in Section 5.5.

5.6.3 Arbitrary Network of Parallel and Serial Links

We can similarly find the steady-state error covariance of any network derived from

the parallel and serial concatenations of sub-networks using the following two simple

rules. Let ld(G) denote the steady-state latency function of network G. Also, given

two subnetworks G1 and G2, denote their series combination by G1 ⊕ G2 and their

parallel combination by G1‖G2.

(a) Suppose the network G can be decomposed as a series of two subnetworks G1

and G2. Since packet erasures in the two subnetworks are independent of each

other, we have

ld(G1 ⊕ G2) = ld(G1) + ld(G2).

Thus, we obtain

FG1⊕G2 (X) = E
[
X ld(G1⊕G2)

]

= E
[
X ld(G1)+ld(G2)

]

= E
[
X ld(G1)

]
E

[
X ld(G2)

]

= FG1 (X) FG2 (X) .

Finally, using (5.24), the complementary density function of the network G is
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given by

GG1⊕G2 (X) = (X − I)−1 (FG1⊕G2 (X)− I)

= GG1 (X) (X − I)GG2 (X) + GG1 (X) + GG2 (X)

= (X − I)GG1 (X) GG2 (X) + GG1 (X) + GG2 (X) ,

where in the last line we have used the fact that

G(X)(X − I) = (X − I)G(X).

(b) If the network G can be decomposed as parallel combination of two sub-networks

G1 and G2, we have

ld(G1‖G2) = min{ld(G1), l
d(G2)}.

Once again, the erasures in the two subnetworks are independent of each other.

Thus

Pr
(
ld(G1‖G2) ≥ l

)
= Pr

(
ld(G1) ≥ l

)
Pr

(
ld(G2) ≥ l

)
.

Thus, we see that if

GG1(X) =
∞∑
i=0

aiX
i and GG2(X) =

∞∑
i=0

biX
i,

then

GG1‖G2(X) =
∞∑
i=0

aibiX
i.

Thus, we can use (5.25) in conjunction with the above two rules to derive the steady

state error of any network consisting of links in series and in parallel with each other.

As an example, consider the network depicted in Figure 5.2. In this case
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Figure 5.2: Example of a network of combination of parallel and serial links.

G = (((G0 ⊕ G1)‖G2)⊕ G3)‖G4) ,

where each of the sub-networks Gi is just a link with probability of packet drop ε. The

generating function of a link with erasure probability ε is given by G(X) = (I−εX)−1.

Moreover, for a subnetwork with generating function G(X) in parallel with a link

with erasure probability ε, the generating function of the entire network is given

by Lε(G)(X), where Lε is an operator such that Lε(G)(X) = G(εX). Thus, the

generating function of the network can be written as

G(X) = Lε(Lε(G0 ∗G1) ∗G3)(X),

where

Gi(X) = (I − εX)−1, i = 0, 1, 3

is the generating function for the i-th link and Gi∗Gj denotes the generating function

of the series combination of link i and j. The steady state error covariance can thus

be evaluated.

5.6.4 Networks with Arbitrary Topology

In this section, we consider the performance of general networks. Finding the distri-

bution of the steady-state latency ld of a general network is not an easy task because



169

different paths may overlap. This can introduce dependency in the delays incurred

along different paths and the calculation of the minimum delay and, hence, the steady-

state latency becomes involved. However, using a method similar to the one used in

Section 5.5, we can provide upper and lower bounds on the performance. We first

mention the following intuitive lemma without proof.

Lemma 5.5. Let P∞(G, {εuv, (u, v) ∈ E}) denote the expected steady-state error

of a system with a communication network represented by graph G = (V , E) and

probabilities of packet drop εuv, (u, v) ∈ E. Then, the expected steady-state error is

non-increasing in εuvs, i.e., if εuv ≤ quv ∀ (u, v) ∈ E :

P∞(G, {εuv, (u, v) ∈ E}) ¹ P∞(G, {quv, (u, v) ∈ E}),

where A ¹ B means that B − A is positive semi-definite.

5.6.4.1 Lower Bound

Using the above lemma we can lower-bound the steady-state error by making a subset

of links erasure free. This is similar to the method we used to obtain a necessary

condition for stability in Section 5.5. Thus, once again consider any s-d cut Vs of the

network. Setting the probability of erasure equal to zero for every link except those

crossing the cut (i.e., of the form (u, v) ∈ [Vs,Vc
s ] ) gives a lower bound on the error.

Therefore,

P∞(G, {εuv, (u, v) ∈ E}) º P∞(G, {quv, (u, v) ∈ E}),

where

quv =





εuv (u, v) ∈ [Vs,Vc
s ]

0 otherwise.
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Now P∞(G, {quv, (u, v) ∈ E}) can be evaluated using the results given above for a

network of parallel links. By considering the maximum along all possible cut-sets, we

obtain the closest lower bound.

5.6.4.2 Upper Bound

We use a method similar to the one used to obtain the sufficient condition for stability

in Section 5.5. In the proof of Theorem 5.3, it is shown that the performance of the

network G is lower-bounded by the performance of another network G ′ that has series

and parallel links only and has the following properties:

• G and G ′ have the same node set.

• G ′ is the combination of edge-disjoint paths from the source to destination.

• The value of the max-cut in G ′ is the same as in the original network G.

The performance of G ′ can be computed based on the results given above for arbitrary

networks composed of subnetworks in series and parallel. This provides an upper

bound on the performance of the original network.

5.7 Examples

We now illustrate the above results using some simple examples. Consider a scalar

process evolving as

x(k + 1) = 0.8x(k) + w(k)

that is being observed through a sensor of the form

y(k) = x(k) + v(k).
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The noises w(k) and v(k) are assumed zero-mean, white, independent, and Gaussian

with unit variances.

Suppose that the source and the destination nodes are connected using two links in

series, each with a probability of packet erasure p. Figure 5.3 shows the performance

of our strategy for the estimation problem P2 as the probability p is varied. The

simulation results refer to data generated by a random run averaged over 100000

time steps, while the theoretical values refer to the value predicted by (5.25). We can

see that the two sets of values match quite closely.
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Figure 5.3: Simulated and theoretical results for a line network.

We also carried out a similar exercise for the source and destination nodes con-

nected by two links in parallel, each with packet erasure probability p. The results

are plotted in Figure 5.4. We can once again see that the simulated values match

quite closely with the theoretical values.

Finally, we consider the source and destination nodes connected by a bridge net-

work shown in Figure 5.5. We assume all the links in the network to have probability

of erasure p. This network cannot be reduced to a series of series and parallel sub-

networks. We can, however, calculate the performance analytically in this particular

case and compare it to the upper and lower bounds presented earlier. The networks
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Figure 5.4: Simulated and theoretical results for a parallel network.
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Figure 5.5: Bridge network and the networks used for calculating lower and upper
bounds.
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used for calculating the bounds are also shown in Figure 5.5. The bounds can be

computed analytically from series and parallel network results. Figure 5.6 shows a

comparison of the analytical and simulated values with the lower and upper bounds.

We can see that the bounds are quite tight.
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Figure 5.6: Simulated values and theoretical bounds for the bridge network.

We can also compare the performance of our algorithm with that obtained if no

encoding were done and only measurements were transmitted. Consider the process

x(k + 1) =




1.25 0

1 1.1


 x(k) + w(k)

being observed by a sensor of the form

y(k) = x(k) + v(k),

where w(k) and v(k) are white independent Gaussian noises with means zero and

covariance identity. We consider transmission of data across a series of n channels.

Figure 5.7 shows the difference in simulated performance of the algorithm in which

no encoding is done and for our algorithm for various values of n. It can be seen
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that the error covariance is much higher if no encoding is being done, even for a few

number of links and moderate values of drop probability. For each point we did 50000

simulations, with each simulation being 1000 time steps long. As a final example, we
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Figure 5.7: Simulated difference in performance between algorithm in which no en-
coding is done and our optimal algorithm for series connection of n links.

consider the process

x(k + 1) = 1.2x(k) + u(k) + w(k)

being observed through a sensor of the form

y(k) = x(k) + v(k),

which communicates with the controller over a series network of n links each with

packet drop probability p. The controller is interested in minimizing the quadratic

cost

J = lim
K→∞

1

K
E

[
K∑

k=0

xT (k)Qx(k) + uT (k)Ru(k)

]
.

The cost matrices Q and R as well as the noise variances Rw and Rv are assumed to

be unity. Figure 5.8 shows the variation of the cost with the probability for different
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number of links n. The loss in performance is very rapid with the increase in number

of links.
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Figure 5.8: Loss in performance as a function of packet drop probability for n links
in series.

5.8 Generalizations

In this section we consider problems that are related to the problem set-up we con-

sidered above.

5.8.1 Correlated Erasure Events

Even though the algorithmA2 is optimal for any packet dropping pattern, the stability

and performance analysis so far assumed that the erasure events are memoryless

and independent across different links in the network. We could thus formulate the

performance in terms of a generating function of the steady-state latency distribution

as defined in (5.21). We now look at the effect of dropping these assumptions.
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5.8.1.1 Markov Events

If we assume that the erasure events on each link are governed by a Markov chain

(but are still independent of other links), we can obtain the performance as follows.

Suppose that the packet drop event on link (u, v), denoted by λuv(k) = “dropped′′

evolves according to a Markov chain with transition matrix Muv. We further assume

that Muv is irreducible and reversible. Let us first consider the case where the initial

distribution of packet erasure on each link is the stationary distribution of the Markov

chain on that link. Then we can rewrite (5.5) in a similar fashion as (5.20), with Ll

being a geometric random variable with distribution

Pr (Luv = l) =





αuvMuv(1, 2)Muv(1, 1)l−2 ∀ l ≥ 2

1− αuv l = 1

,

where αuv is the probability of packet drop based on the stationary distribution of

link e = (u, v), and Muv(i, j) as the (i, j)-th element of Muv. Thus, all the previous

analysis goes through. In particular, the stability condition is

max
Vs:s−dcut

∏

(u,v)∈c

Muv(1, 1)|ρ(A)|2 < 1.

Now, if the initial distribution is not the stationary distribution, the variables Luv(k)

will not be time-independent, and the analysis does not goes through. However, since

for large k the Markov chains will approach their stationary distribution, the stability

condition remains unchanged.

5.8.1.2 Spatially Correlated Events

Suppose that the erasure events are correlated across the network but memoryless

over time. In other words, at each time step k, the packet erasure occurs accord-
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ing to distribution Pr (λuv, (u, v) ∈ E). Now, Luv(k)s are not independent across

the network, and hence finding the steady-state error covariance does not seem to be

tractable. However, we can find the condition for stability. For this we define a gener-

alized notion of equivalent probability of packet drop for correlated events. Consider

a cut-set with source set Vs. Then, the equivalent probability of packet drop for this

cut is

εeq(Vs) = Pr (λuv = “dropped′′, ∀ (u, v) ∈ [Vs,Vc
s ]).

The value of the max-cut for the network is the maximum of εeq(Vs) over all the cuts,

εnet(G) = maxVs:s−dcut εeq(Vs). We can then show that the condition for stability of

the system is εnet(G)|ρ(A)|2 < 1. To see this, consider the scenario when only one

packet is to be routed from the source to destination starting at time t0. For each

time-step t ≥ t0, let Vr(t) denote the set of nodes that have received the packet at

time t. Clearly Vr(t0) = {s}. We want to bound the probability that at time t0 + T ,

the destination node has not yet received the packet. Note that for every time-step

between t0 and t0 + T , Vr(t) defines a cut-set since it contains s and not d. Now,

the size of Vr(t + 1) does not increase with respect to time-step t iff all the links that

cross the cut generated by Vr(t) drop packets. However, by the definition of εnet(G),

the probability of this event is at most εnet(G). Therefore, we have

|Vr(t + 1)|





≥ |Vr(t)|+ 1 with prob. at most εnet(G)

= |Vr(t)| with prob. at least 1− εnet(G)

Thus, for large T the probability that at time t0 + T the destination node has not

received the packet is upper-bounded by n(1− εnet(G))nT nεnet(G)T−n, where n is the

number of nodes in the network. Although a new packet is generated at the source at

each time step, the importance of the packets is increasing with time; hence the error

can be upper-bounded by considering that the network is only routing the packet
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generated at time k − l. The probability that the latency is larger than l grows

like f(l)εnet(G)l, where f(l) is polynomial in l with bounded degree and thus the

sufficiency of the stability condition follows. The necessity part involves similar ideas

and is omitted.

5.8.2 Synthesis of a Network

One can use the performance results above to design networks for the purpose of esti-

mation and control. To consider a simple example, consider a scalar system observed

by sensor s. Assume that the destination is located at distance d0 from the sensor.

The probability of dropping a packet on a link depends on its physical length. A rea-

sonable model for probability of dropping packets is given by6 ε(d) = 1− exp(−βdα),

where β and α are positive constants. α denotes the exponent of power decay in

the wireless environment. We are interested in the optimal number n of relay nodes

that we should place between the sensor and the destination so as to minimize the

expected steady-state error covariance (or in turn to minimize the cost J∞). Clearly,

there is a trade-off involved since more nodes will reduce the probability of erasure

but at the same time lead to a higher delay before the destination receives a packet.

Assuming that n sensors are uniformly placed, there are n+1 links each with erasure

probability q. Thus, from (5.27), P (∞) can be written as

P (∞) =

(
a2(1− q)

1− qa2

)n+1

(P ? +
Rw

a2 − 1
)− Rw

a2 − 1
.

Thus, the optimal number of relay nodes, (assuming that a2 > 1) is the solution to

the problem

min
n

(
a2(1− ε( d0

n+1
))

1− ε( d0

n+1
)a2

)n+1

.

6This expression can be derived by considering the probability of outage in a Rayleigh fading
environment.
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If a2 < 1, then the minimization in the above problem is replaced with maximization.

5.8.3 Unicast Networks

So far, we have assumed that the topology of the network was fixed and that a node

could transmit a message on all the out-going edges. We can consider networks that

are unicast in the sense that each node should choose one out of a set of possible

edges to transmit the message on. There are two parts of the problem:

(a) Choose the optimal path for data to flow from the source node to the sink node.

(b) Find the optimal information processing scheme to be followed by each node.

The two parts can clearly be solved separately in the sense that given any path, the

optimal processing strategy is the algorithm described in Section 5.4.

To choose the optimal path, we need to define a metric for the cost of a path. We

can consider two choices:

(a) If the metric is the condition for stability, then the problem can be recast as

choosing the shortest path in a graph with the length of a path being given by

its equivalent probability of packet drop. Thus, we need to find the path that

has the minimum εpath. Since each path is just a line network, this reduces to

the problem minP :s−d path max(u,v)∈P εuv. The above problem is well studied in

the computer science community and can be solved as a shortest-path problem

over a min-max semi-ring in a distributed fashion [88].

(b) If the metric is performance, the problem is more complicated in general. We

can consider the special case of a scalar system and no process noise. In this

case, from (5.26), we have for path q

log Pq(∞) =
∑
e∈q

log(
(1− εe)a

2

1− εea2
)
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Now the problem is equivalent to

min
q:s-d path

∑
e∈q

log(
(1− εe)a

2

1− εea2
).

This problem can also be solved in a distributed way [89].

5.9 Conclusions

In this chapter we considered the problem of estimation and control of a dynamical

process across a wireless erasure network. We identified the optimal information pro-

cessing strategy to be followed by each node in the network that allows the estimator

to calculate the best possible estimate in the minimum mean square sense and the

controller to minimize a quadratic cost. The recursive algorithm that we propose

requires a constant amount of memory, processing, and transmission at every node in

the network per time step, yet is optimal for any erasure process and at every time

step. It has numerous other important properties as well, such as being able to take

care of delays and packet reordering. For the case when the erasure probabilities are

memoryless and independent across links, we also carried out the stability and per-

formance analysis for this algorithm. The results can also be used for the problems

of routing of data through a network and synthesis of networks for the purpose of

estimation and control.

The work in this chapter can be extended in many ways. We have ignored issues

of quantization so far. Finding stability condition and performance bounds for a

limited bit rate erasure channels is a possible avenue. Another important extension

is analysis of stability conditions for the case that more than one sensor is providing

measurements in the network. This seems like a very challenging and interesting

problem that merits further investigation.
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And finally, at a more general level, given the variety of tasks, e.g. communication,

computation, estimation, and control that wireless networks are deployed for today, a

mathematical framework capable of analyzing their ultimate performance is necessary.

Such a framework enables us to find the important features of the network affecting

the performance of each of these tasks and design networks that are efficient for

different applications. The work presents in the present and previous chapters is a

step toward this goal.
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Chapter 6

Power Efficiency of Sensor and
Ad-Hoc Networks

6.1 Introduction

In recent years, there has been great interest in the analyses of capabilities of wireless

networks from different aspects. Most of the analysis have dealt with the analysis of

the following two types of networks [91], [92]:

(a) Sensory networks: A sensory network consists of n + 1 fixed nodes with a

single receiver that collects data/information from the sensor nodes. At any

given time, there can be at most one sensory transmitter. All other nodes in

the network can be thought of as relay nodes. (See Figure 6.1.(a).)

(b) Ad-hoc networks: At any time, an ad-hoc network consists of n fixed relay

nodes and r fixed simultaneous transmitter/receiver pairs, where r ≤ n. In

this network relay nodes cooperate for transmission of information from one

transmit node to the corresponding receiver node. (See Figure 6.1.(b).)

Unfortunately, finding the exact ultimate performance of a general wireless net-

work for different applications, e.g., communications, estimation, and control, is very

much open. For instance, finding the maximum reliable rate of communication for

a network with only one relay is still open [53]. Therefore, most of the research
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Figure 6.1: Sensory and Ad-hoc wireless networks.

for wireless sensory and ad-hoc networks involves asymptotically large networks and

gives scaling laws for performance measures such as capacity or distortion rather than

exact results for general networks. For instance, it is shown in [91] that for a sensory

network, the capacity scales as Θ(log n).1 For ad-hoc networks, the problem is much

more challenging. The groundbreaking work of [92] shows that the capacity grows

at least as Θ(
√

n). Using information theoretic tools, it is shown in [93, 94, 95] that

under some mild assumptions on the channel model, Θ(
√

n) is an upperbound on

the sum-capacity in the extended wireless networks, i.e., networks where the density

of the nodes per area does not increase with the number of nodes. In both sensory

and ad-hoc wireless networks, these results are discouraging from a practical point

of view because they suggest that for sensory and ad-hoc wireless networks, the per-

user capacity scales as Θ( log n
n

) and Θ(
√

n
n

), respectively. This represents rewards that

rapidly diminish to zero as the number of nodes (users) in the network increases.

Therefore, one interesting problem is to see whether there exists any favorable

scalings in ad-hoc and sensory wireless networks. In other words, are there any

1The following notation will be used in this thesis. For two functions f , g defined on natu-
ral numbers, we have f(n) = O(g(n)) if limn→∞ inf f(n)/g(n) < ∞; we have f(n) = Ω(g(n)) if
limn→∞ inf f(n)/g(n) > 0; and we have f(n) = o(g(n)) if limn→∞ inf f(n)/g(n) = 0. Finally, we
have f(n) = Θ(g(n)) if f(n) = Ω(g(n)) and f(n) = O(g(n)).
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scenarios in which it is actually beneficial to form a sensory or ad-hoc network and

obtain increasing gains as the network size grows? Several researchers have looked

at this problem from different points of view. In [96] the authors look at a wireless

network in which users are mobile (not fixed), and they show that the total capacity

of such a network scales like Θ(n). The work in [97],[98] and [99] also consider the

feasibility of wireless networks from a distributed source coding point of view.

In previous chapters we were concerned with performance analysis of special

classes of wireless networks (mainly wireless erasure networks) with arbitrary size.

We found exact ultimate performance measures for applications like communications

and estimation across the network. In this chapter we look at a more general class of

wireless networks, but instead of finding the exact performance measure for arbitrary

size networks, we analyze the performance for random and asymptotically large size

networks. The performance measure considered in this chapter, unlike the references

mentioned above, will be the power consumption in the network.

Power consumption is one of the main concerns in wireless networks, especially in

sensory networks [100]. Since the source of energy for each user is limited (usually a

battery)[65], users in these networks need to use power efficiently. Two major sources

of power consumption at each node are the computation power and the transmit

power. We only consider the power consumption due to transmission and not due

to computation. However, we should mention that it is not clear whether at low

SNR (where many wireless networks usually operate at) the computation power is

negligible compared to transmit power. Incorporating computation power as well is

very interesting and can be a subject of research in itself.

We will show that it is beneficial to form large networks of users in terms of power

consumption. We consider sensory and ad-hoc wireless networks where the users are

placed randomly in a domain of fixed area A. We show that users in these networks

can support the same rate as a single user system, but by expending less power.
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Furthermore, the power that each user needs to expend decreases as we increase the

size of the network where the rate of communication is kept fixed. To look at the

power efficiency of these networks we will follow the same approach and concept as

in [101]. The power efficiency η of a communications channel is defined as the ratio

between the capacity (data rate) of the channel and the transmit power (energy rate).

For AWGN channels, this is given by

η =
log(1 + σ2

s/σ
2
n)

σ2
s

, (6.1)

where σ2
s represents the transmit power and σ2

n represents the noise power. Clearly,

for fixed σ2
n as σ2

s → ∞, the value of η approaches zero, meaning that we are highly

power inefficient at high SNR. On the other hand, we are power efficient at low SNR

and, in fact,

max
σ2

s

η = lim
σ2

s→0
η =

log e

σ2
n

. (6.2)

This implies that, at low SNR, capacity is proportional to the transmit power. In

[101], the power efficiency (or capacity per unit cost as the author defines it) of several

other communication systems is computed.

In this chapter we will find a lower bound for the power efficiency of sensory and

ad-hoc wireless networks formed in a domain of fixed area. For this, we will propose

a protocol for communication among the nodes. The key idea used in the proto-

col is to exploit features of wireless networks and operate the network at low SNR

(thereby avoiding the logarithmic scaling of the capacity). The main features that

distinguish wireless networks from wireline networks are path-loss, fading, and inter-

ference. Path-loss has been exploited in cellular networks. Fading also is exploited

in multi-user systems by scheduling transmissions when a user has favorable channel

conditions [102, 103]. However, most current approaches avoid interference in the

network. For instance, in [92] most of the emphasis is on interference-avoidance and
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the construction of a multi-hop network. In our protocol we will exploit the interfer-

ence and fading inherent in any wireless network for achieving good power efficiency.

Also, the protocol proposed in this chapter is a double-hop protocol. Although it is

thought that the power efficiency of multi-hop networks is better than that of double-

hop, networks it can be shown that if the nodes are placed in a domain of fixed area,

this is not true. A similar observation is made in [104]. The authors have observed

that the most energy-efficient protocol to use depends on the network topology and

the radio parameters of the system.

We have shown in [105] that for sensory and ad-hoc wireless networks for which

the channel coefficients between users can be modeled by independent zero-mean, unit

variance, and bounded fourth order moment random variables, the power efficiency

scales at least as Θ(
√

n). However, the model used for channel coefficients in this

chapter is more general. We will see that even with this general model we are still

able to achieve a power efficiency that scales favorably as the size of the network grows.

The net result is that under some mild assumptions on the channel coefficients that

will be mentioned in Section 6.2.2, with high probability the power efficiency of a

random network, i.e., the data rate per energy rate, scales as Θ(
√

n) for each user.

This chapter is organized as follows. Section 6.2 describes the system model and

assumptions and presents the statement of the problem considered in this chapter. In

Section 6.3 we will compute the power efficiency of a multi-antenna communication

system for comparison. In Section 6.4 we consider the power efficiency of sensory wire-

less networks. We describe the proposed “Listen and Transmit” protocol for achieving

scalable power efficiency for sensory networks. In Section 6.5 power efficiency of ad-

hoc wireless networks is considered and analyzed. We first present a generalization of

the ”Listen and Transmit” protocol for ad-hoc networks and then optimally allocate

powers to achieve a scalable power efficiency for the network. At the end of this sec-

tion we will compare the performance of our protocol with an interference suppression
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scheme that requires complete knowledge of the channel. Conclusions and proposals

of further work are provided in Section 6.6.

6.2 Notation and System Model

6.2.1 Notation and Definitions

Throughout this chapter matrices and vectors are denoted by boldface characters.

tr (A), λmax(A), and λmin(A) denote the trace, the maximum eigenvalue, and the

minimum eigenvalue of a square hermitian matrix A. The superscript ∗ denotes

conjugate transposition for matrices and complex conjugate for scalars. Complex

conjugation for matrices is shown by using bar. Transposition is also denoted by

superscript T . A∗, AT , and Ā are the conjugate transpose, transpose, and conjugate

of the matrix A, and α∗ is the complex conjugate of the scalar α. Ir is the r × r

identity matrix. For a matrix A, vec (A) denotes the vector obtained from stacking

all the columns of A, one on top of another. For a vector g = (g1, . . . , gn), diag (g)

denotes the n × n diagonal matrix with i-th diagonal element equal to gi. We may

also write diag (g) as diag (g1, . . . , gn). Finally, ‖g‖ denotes the Euclidean norm of

vector g.

We consider random wireless networks over a fixed area A. We randomly select

points in A to form the nodes of the network (either as transmitters, receivers, or relay

nodes). Since the network is wireless, the connections between any two nodes will be

subject to fading. Thus, the randomness in the network will be due to two sources:

the random choice of points in A, and the random fading between the connections.

When we fix the position of the nodes, we denote the expectation over channel fading

by Ef [.]. The expectation over the location of some set of the nodes, say P , in

a random network is denoted by E P [.], which from now on we shall call the spatial

average . For instance, the spatial average of the mean value of the channel coefficient
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between node i and node j, hij, over the position of node i while node j is fixed, can

be written as E {i|j}[Ef [hij]]. The expectation over the location of all the nodes is

denoted by E loc, and whenever E [.] is used without any subscript, expectation over

both fading and the location of the nodes is implied. Channel coefficients are denoted

by h, g, or c depending on the context. Usually c is used as a generic channel between

two arbitrary points in the domain.

6.2.2 System Model and Problem Statement

Sensory Networks

As mentioned earlier, by a sensory wireless network we mean one with n relay nodes

and a single transmitter/receiver pair (see Figure 6.1). We assume that the nodes

are placed randomly and independently according to some distribution function (not

necessarily uniform) in a domain of fixed area, say A. We denote the channel coeffi-

cient from the transmitter to the relay node i by gi, and the channel coefficient from

the relay node i to the receiver by hi. We assume that, averaged over the fading,

different channels are independent. Furthermore, we assume that each node i knows

only its local connections hi, gi, but not the other connections in the network.

Ad-hoc Networks

As mentioned earlier, for ad-hoc networks we assume that at any time there are n

relay nodes and at most r simultaneous transmit/receive pairs in the network. The

nodes are placed randomly and independently according to some distribution function

(not necessarily uniform) in a domain of fixed area, say A. The channel coefficient

from transmitter i (i = 1, . . . , r) to relay node j (j = 1, . . . , n) is denoted by gij,

and from relay node j to receive node k (k = 1, . . . , r) is denoted by hjk. Similar

to the sensory case, we assume that, averaged over the fading, distinct channels are
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independent. Furthermore, if we fix the location of the transmitters and the receivers

and randomly choose relay nodes j and j′, the channel coefficients {gij, hjk} and

{gij′ , hj′k} are independent for all i and k. As with the sensory case, we assume that

all the relay nodes know their local connections, but not the remaining connections

in the network. In other words, node j knows all the connections {gij, i = 1, . . . , r}
and {hjk, k = 1, . . . , r}.

Additional Assumptions for Ad-hoc Networks

For ad-hoc networks, we have a few more assumptions. Thus, denote the channel

coefficient between two points xi and xj by cij. With this notation, we have the

following additional assumptions:

A. E {x5|x2}[Ef [c52]] = 0, ∀x2 ∈ A

B. E {x5|x1,x2}[Ef [c51c
∗
52]] = 0 ∀x1 6= x2 ∈ A

C. E {x5|x1,x2,x3,x4}[Ef [c∗51c
∗
52c53c54]] = 0 ∀x1, x2, x3, x4 ∈ A at least 3 ofxi are distinct.

Note that the above conditions are clearly met if the fading is zero mean. In general,

however, there may be line-of-sight between different nodes in the network, and the

fading may be nonzero mean. The above conditions are more general and do not

require zero mean fading. The first assumption says that the spatial average of the

mean of a channel coefficient between a random point and a fixed point is zero. The

second assumption is that the channel coefficients between one random point, x5, and

two different points, x1, x2, are uncorrelated when averaged over both the fading and

the point placement of x5. In other words, although the channels c51 and c52, given

that x1 and x2 are fixed, are not independent and may be correlated, the spatial

average of the correlation between these two channels is zero. The last condition

also says that the expectation of the product of the channel coefficients between one

random point and four fixed points averaged over the location of the random point
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Figure 6.2: Condition on the channel coefficients.

is zero (See Figure 6.2). These assumptions appear to be reasonable, especially if we

assume that the environment is rich in scattering. We obtain two achievable bounds

for the power efficiency of ad-hoc networks. The first bound (Theorem 6.9) relies only

on the first and second assumptions, and the second bound (Theorem 6.12) requires

the last assumption as well.

Power Assumptions

In the sensory network we assume that the transmit power is p. For ad-hoc networks

we assume that all the transmitters transmit with the same power p. In both cases,

we will assume that the relay nodes transmit with identical power σ2
r . The noise

introduced in every reception is an additive white circularly-symmetric Gaussian noise

with zero mean and variance σ2
n, which is denoted by CN (0, σ2

n).

Path Loss

In this work we will not be concerned with explicit path loss models. The main reason

is that since we consider a fixed domain A, the only characteristics of the path-loss

that enter our analysis are the second and fourth order moments of the channel. In

fact, a strength of our results is that the asymptotics are not sensitive to the path-loss
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Figure 6.3: Single-hop versus Multi-hop.

model (the model and the geometry of the domain A affect the constants but not the

scaling behavior). We further discuss path-loss models when comparing single-hop

and multi-hop systems below.

Single-hop vs. Multi-hop Communication

The proposed protocol in this work achieves a power efficiency that scales with the

number of nodes, n. The communication model that we are using is a double hop

(transmit and relay) communication protocol. In this protocol, which will be ex-

plained in detail later on, the communication is done in two intervals. In the first

interval, the transmit node(s) sends their data signal. In the second interval, relay

nodes send a signal based on what they have received in the first interval.

Typically, in order to increase power efficiency in wireless networks, one must

move toward a multi-hop system so as to avoid long hops (which are subject to severe

path loss) [106], [107]. While this is certainly true for networks that grow in physical

size as the number of nodes increases (thereby increasing the size of the hops), it is

not true for networks in which the physical domain is fixed while the number of nodes

increases.2 In this case, there is nothing to be gained by using multi-hop schemes in

which the number of hops scales with the number of nodes in the network and the

2If the area of the network increases with the number of nodes, a combination of multi-hop routing
and the “Listen and Transmit” protocol described here is necessary to achieve a power efficiency
that scales with the number of nodes.
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length of the hops becomes shorter and shorter as the number of nodes increases. To

make this more explicit, we use the following qualitative argument. Suppose that n

nodes are located in a domain of fixed area A. Consider two nodes (users) of distance

d which want to communicate with each other (Figure 6.3.(a)). Assume that the

channel is AWGN and that the power loss between any two points is a decreasing

function of their distance d and is denoted by f(d). In this case, the relation between

the transmitted signal s from A and the received signal y at B is

y =
√

f(d)s + v.

The capacity is clearly log(1+f(d) p
σ2

n
), and the power efficiency achieved at low SNR

is

η =
f(d)

σ2
n

.

Assume now that we employ a multi-hop scheme to communicate between A and

B where each node relays to its nearest neighbor (Figure 6.3.(b)). Since we have n

nodes, the distance to a nearest neighbor will be d′ = O( 1√
n
)d, and the number of

hops will be of Ω(
√

n). Here each relay will communicate at rate log(1 + f(d′) σ2
r

σ2
n
),

and since the total transmit power is Ω(
√

n)σ2
r , the power efficiency achieved at low

SNR will be

η
′
=

f(d′)
σ2

nΩ(
√

n)
=

f(dO( 1√
n
))

σ2
nΩ(

√
n)

.

For any reasonable path-loss model limd→0 f(d) = constant.3 Therefore, the power

efficiency of the multi-hop system scales like O( 1√
n
) as n increases. This says that

for a fixed-size network, increasing the number of hops in fact reduces the power

efficiency.

Remark 6.1. Note that if the size of the domain also increases with n, then d will

3Note that the common power law function used in literature, f(d) = 1
dn n ≥ 2, does not satisfy

this property since this model is only valid for far field approximation.
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also increase. In this case, since

η′

η
=

f(dO( 1√
n
))

f(d)Ω(
√

n)

depending on the path-loss model f(.) and how d scales with n, it may be more power

efficient to use multi-hop.

Channel Knowledge and Synchronicity

As mentioned earlier, we have assumed that the nodes have knowledge of their local

connections. This is a much more reasonable assumption than the nodes knowing

the entire network. However, it does require that the network remain relatively

stationary in time so that the local connections can be learned via the transmission

of pilot symbols, etc. Furthermore, we assume a synchronous system. In other words,

all the transmissions and receptions are synchronized. Later on we will argue that

the system performance is not very sensitive to timing errors and lack of perfect

synchronicity.

6.3 An Example: Multi-antenna Systems

In order to obtain some insight into how the power efficiency of a sensory or ad-hoc

wireless network might scale, it is useful to look at the example of a multi-antenna

system. For more details see [108].

Consider an n transmit single receive multi-antenna channel, described by the

channel vector

H =

[
h1 h2 . . . hn

]
,

where hi denotes the channel coefficient from the i-th transmitter to the receiver.

(Assume that the channel coefficients are zero-mean and unit variance and have fourth



194

order moment κ.) Two cases can be envisioned.

• The channel matrix is known to the transmitter: In this case the optimal scheme

is for beam-forming. Thus, if each antenna transmits with power p, the power

efficiency becomes

η =
E log

(
1 + p

σ2
n
(
∑n

i=1 |hi|2)2
)

np
.

This is maximized when p → 0, which yields

η =
log e

nσ2
n

E (
n∑

i=1

|hi|2)2

=
log e

nσ2
n

(nκ + n(n− 1)) = Θ(n). (6.3)

• The channel matrix is unknown to the transmitter. In this case, beam-forming

cannot be done. However, the capacity is known from [109], and so the power

efficiency becomes

η =
E log

(
1 + p

σ2
n

∑n
i=1 |hi|2

)

np
.

Looking at the low SNR we have

η =
log e

nσ2
n

E (
n∑

i=1

|hi|2) =
log e

nσ2
n

n = Θ(1). (6.4)

What distinguishes an n×1 multi-antenna system from an n node sensory network

is that the n antenna elements are allowed to cooperate, but the n nodes in a sensory

network are not. What the above result says is that when the nodes are allowed to

cooperate and the nodes know the channel coefficients, the power efficiency scales as

Θ(n). However, even if the nodes are allowed to cooperate, as long as they do not

know the channel coefficients, the power efficiency does not improve over Θ(1). But

what about a sensory network where the nodes are not allowed to cooperate but know
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the local channel coefficients? Moreover, what about ad-hoc networks? These are the

questions we shall address.

6.4 Sensory networks

We begin by describing a simple protocol that achieves a power efficiency of Θ(
√

n)

for random sensory and, as we shall see in the next section, with some modification

for ad-hoc wireless networks. As mentioned earlier, the protocol assumes synchronous

transmission and receptions, as well as local channel knowledge at the nodes.

6.4.1 “Listen and Transmit” Protocol

Consider a random sensory network with n relay nodes and one transmitter/receiver

pair. We are interested in a probabilistic bound for the achievable power efficiency

in this network, i.e., a bound that with high probability is achievable for a random

network in the domain. We begin by explaining the protocol that achieves power

efficiency of Θ(
√

n) for sensory wireless networks. In this, so called “Listen and

Transmit,” protocol communication is done in two intervals:

(a) Listen interval: In this interval the transmitter sends the data and the relay

nodes only listen. Relay node i receives:

ri = gis + vi i = 1, 2, . . . , n, (6.5)

where vi is CN (0, σ2
n).

(b) Transmit interval: Each node, using its knowledge of the local connections,

transmits a scaled version of the signal it has received in the first interval:

ti =
σrg

∗
i h

∗
i

|gi||hi|
√
|gi|2p + σ2

n

ri i = 1, 2, . . . , n. (6.6)
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The scalar is chosen so that the relay node power is σ2
r and so that the signal

parts coherently add at the receiver.

This protocol is similar to the protocol proposed in [110]. In [110], the relay nodes

transmit the exact signals they have received, scaled to meet the power constraint. In

the “Listen and Transmit” protocol, the channel coefficients can be complex. There-

fore, the relay nodes change the phase of their received signal appropriately so that

the signal parts of the received signal (at the receiver) add up coherently. The received

signal at the receiver is:

y =
n∑

i=1

hiti + w

=
n∑

i=1

σr|gi||hi|√
|gi|2p + σ2

n︸ ︷︷ ︸
α

s +
n∑

i=1

σr|hi|g∗i
|gi|

√
|gi|2p + σ2

n

vi + w

︸ ︷︷ ︸
w′

,
(6.7)

where w is CN (0, σ2
n). From (6.7) it is clear that the signal part from different relay

nodes adds up coherently, but the noise part does not. In this sense, the “Listen and

Transmit” protocol can be regarded as performing distributed beamforming.

6.4.2 Finding a Lower Bound

We break α, defined in (6.7), into ᾱ and α̃ = α− ᾱ, where ᾱ = Ef [α] and Ef [α̃] = 0.

Now, if we rewrite (6.7) as y = ᾱs+α̃s+w′, then as it is shown in [111], the capacity of

this system can be lower-bounded by the capacity of the AWGN channel y = ᾱs+w′′,

where w′′ is a Gaussian noise with variance equal to the variance of α̃s + w′ (in this

analysis we assume that the receiver is provided with the mean of α). Therefore, the

capacity of the system in (6.7) may be lower-bounded by

C ≥ 1

2
log

(
1 +

|ᾱ|2p
Varf [w′] + Varf [α̃]p

)
. (6.8)
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Note that the 1
2

in front of the logarithmic term comes from the fact that the trans-

mitter transmits half of the time. By substituting ᾱ, Varf [w′], and Varf [α̃] in (6.8)

with

ᾱ = Ef [α] = σr

n∑
i=1

Ef
|gi||hi|√
|gi|2p + σ2

n

,

Varf [α̃] = Varf [α] = σ2
r

n∑
i=1

Ef
|gi|2|hi|2
|gi|2p + σ2

n

− σ2
r

n∑
i=1

(
Ef

|gi||hi|√
|gi|2p + σ2

n

)2
, and

Varf [w′] = σ2
n

(
1 + σ2

r

n∑
i=1

Ef
|hi|2

|gi|2p + σ2
n

)
,

and rearranging the terms, we get

C ≥ 1

2
log

(
1 +

σ2
rp

( ∑n
i=1 Ef

|gi||hi|√
|gi|2p+σ2

n

)2

σ2
n + σ2

r

( ∑n
i=1 Ef |hi|2 −

∑n
i=1 p

(
Ef

|gi||hi|√
|gi|2p+σ2

n

)2)
)

. (6.9)

Define ci = Ef
|gi||hi|√
|gi|2p+σ2

n

and bi = Ef |hi|2. By ignoring the negative term in the

denominator we can rewrite (6.9) as

C ≥ 1

2
log

(
1 +

n2σ2
rp

(Pn
i=1 ci

n

)2

σ2
n + nσ2

r

(Pn
i=1 bi

n

)
)

. (6.10)

The above lower bound holds for every fixed network. For a random network, the

capacity, the power efficiency, and the above lower bound are random variables de-

pending on the placement of the nodes in the network. Since the nodes are placed

independently and according to the same distribution on the available area, the bis

and cis are i.i.d random variables for different relay nodes (i.e., different is). Therefore,
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denoting the transmitter and receiver location by {t, r}, we have

E loc(
n∑

i=1

bi) = E {t,r}
n∑

i=1

E {i|t,r}[bi] = nE loc[b]

Var loc(
n∑

i=1

bi) = E {t,r}
n∑

i=1

E {i|t,r}([b
2
i ]− [bi]

2) = nVar loc[b]

E loc(
n∑

i=1

ci) = E {t,r}
n∑

i=1

E {i|t,r}[ci] = nE loc[c]

Var loc(
n∑

i=1

ci) = E {t,r}
n∑

i=1

E {i|t,r}([c
2
i ]− [ci]

2) = nVar loc[c],

where c = Ef
|g||h|√
|g|2p+σ2

n

and b = Ef |h|2 are the random variables depending on the

channel coefficients between one random point and two other random points. Now,

for any ε > 0, using Chebyshev’s inequality and the union bound on the probability

of the events, we have

Pr

{∣∣∣∣
∑n

i=1 ci

n
− E locc

∣∣∣∣ ≤ ε,

∣∣∣∣
∑n

i=1 bi

n
− E locb

∣∣∣∣ ≤ ε

}
≥ 1−Var loc[b] + E loc[c

2]

nε2
. (6.11)

The inequality of (6.11) shows that as n → ∞, the quantities
Pn

i=1 ci

n
and

Pn
i=1 bi

n

behave like their spatial averages. This implies that with high probability, C in

(6.10) is bounded by

1

2
log

(
1 +

n2σ2
rpE 2

loc[c]

σ2
n + nσ2

rE loc[b]

)
.

Remark 6.2. Note that E loc[b] and E loc[c] depend only on the domain A on the

fading characteristics and on the distribution of the points, and they do not depend

on n. Thus, for fixed p and σ2
r , as n → ∞ the lower bound on capacity with high

probability behaves like

1

2
log n + O(1).

Note that this is the same asymptotic growth obtained for Gaussian relay channels

in [91]. Thus, we conclude that the “Listen and Transmit” protocol (i.e., distributed
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beamforming) achieves the optimal asymptotic capacity growth. We, of course, are

not primarily interested in capacity, but rather in power efficiency.

Now we will focus on how to optimally allocate the powers (p and σ2
r as a function

of n) to maximize the power efficiency. As mentioned earlier, E loc[b] and Var loc[b] do

not depend n. Using the Taylor series expansion of E loc[c] and E loc[c
2] in p, we have

E loc[c] =
E locE |h||g|

σn

− E locE |h||g|3
σ3

n

p + o(p)

E loc[c
2] =

E locE |h|2|g|2
σ2

n

− E locE |h|2|g|4
σ4

n

p + o(p).

(6.12)

Note that |h| and |g| do not depend on n, so the only dependence of E loc[c] and

E loc[c
2] on n can be through p. Since the total power consumed in the network is

1
2
(p + nσ2

r) (1
2

comes from the fact that each node is sending only half of the time),

the power efficiency is

η =
2C

p + nσ2
r

.

From (6.11) and (6.10) we can find a probabilistic lower bound for the power efficiency

of the network. In other words, for a random placement of the nodes in the domain

we have

Pr

{
η =

2C

nσ2
r + p

≥ 1

p + nσ2
r

log

(
1+

n2σ2
rp

(
E loc[c]− ε

)2

σ2
n + nσ2

r

(
E loc[b] + ε

)
)}

≥ 1−Var loc[b] + E loc[c
2]

nε2
.

By choosing the transmit power, p = 1√
n
, and the relay node power, σ2

r = 1
n
√

n
, we

have from (6.12) and the above equation that

Pr

{
η ≥

√
n

2
log

(
1 +

(β1 + o( 1√
n
)− ε)2

σ2
n + E loc[b]+ε√

n

)}
≥ 1−

Var loc[b] + β2 + o( 1√
n
)

nε2
,

where β1 = E locE |h||g|
σn

and β2 = E locE |h|2|g|2
σ2

n
are some constants independent of n. Close

inspection of the above inequality reveals that the term in the logarithm is of order
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one. This says that the capacity achieved with the “Listen and Transmit” protocol

is of Θ(1). Moreover, there exists a constant K1 ≥ 0 such that

Pr {η ≥ K1

√
n} ≥ 1−

Var loc[b] + β2 + o( 1√
n
)

nε2
. (6.13)

From the above inequality we can see that for a random placement of the nodes in

A, with a high probability that approaches one as the number of nodes increases , we

can achieve a power efficiency that grows like
√

n. Also, the rate achieved is of Θ(1).

The choice of transmit and relay node power in this case is p = nσ2
r = 1√

n
.

6.4.3 Finding an Upper Bound

We can also find an upper bound on the achievable rates using the “Listen and

Transmit” protocol. For this, we consider the case where the receiver in (6.7) knows

{hi, gi, vi} for i = 1, 2, . . . , n. In this case we have

C = sup
p(s)

I (y; s) ≤ sup
p(s)

I (s; y|{hi, gi, vi}), (6.14)

where I (y; s) is the mutual information between y and s. Now, if the receiver knows

the channel coefficients and the vis, then the system in (6.7) becomes an AWGN

channel and therefore

sup
p(s)

I (s; y|{hi, gi}) =
1

2
Ef {hi,gi}

[
log

(
1 +

|α|2p
σ2

n

)]
. (6.15)

The vis do not contribute to the noise power in the denominator of (6.15) since the

receiver has complete knowledge of them and can cancel out their effect. Combining

(6.14) and (6.15) and using the convexity of the log function, we may write

C ≤ 1

2
log

(
1 +

Ef |α|2p
σ2

n

)
. (6.16)
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Substituting the value of α from (6.7) in the above equation gives

C ≤ 1

2
log

(
1 +

σ2
rp

σ2
n

Ef (
n∑

i=1

|gi||hi|√
|gi|2p + σ2

n

)2

)
,

where again the expectation is taken over the fading of the channels for a fixed

placement of the nodes. Without loss of generality we can ignore the |gi|2p term in

denominator and rewrite the above equation as

C ≤ 1

2
log

(
1 +

σ2
rp

σ4
n

Ef (
n∑

i=1

|gi||hi|)2

)
. (6.17)

Since, averaged over the fading, the |hi||gi|s are independent for different is, we have

Ef (
∑n

i=1 |gi||hi|)2 ≤ (
∑n

i=1 Ef |gi||hi|)2 +
∑n

i=1 Ef |hi|2|gi|2, and therefore

C ≤ 1

2
log

(
1 +

n2σ2
rp

σ4
n

(∑n
i=1 Ef |gi||hi|

n

)2

+
nσ2

rp

σ4
n

∑n
i=1 Ef |hi|2|gi|2

n

)
. (6.18)

Given that the location of the transmitter and the receiver is fixed, Ef |hi||gi| and

Ef |hi|2|gi|2 for all i depend only on the placement of the relay nodes and are i.i.d

random variables. Thus, according to the law of large numbers, their average con-

verges to their statistical mean. More specifically, for any ε > 0, using Chebyshev’s

inequality and the union bound on the probability of the events we have,

Pr

{∣∣∣∣
∑

i Ef |hi||gi|
n

− κ

∣∣∣∣ ≥ ε,

∣∣∣∣
∑

i Ef |hi|2|gi|2
n

− µ

∣∣∣∣ ≥ ε

}

≥ 1− Var locEf |h||g|+ Var locEf |h|2|g|2
nε2

, (6.19)

where κ = E |h||g| and µ = E |h|2|g|2. Combining (6.19) and (6.18) gives

Pr

{
η ≤ 1

p + nσ2
r

log

(
1 +

nσ2
rp

σ4
n

(
n(κ + ε)2 + µ + ε

))}

≥ 1− Var locEf |h||g|+ Var locEf |h|2|g|2
nε2

. (6.20)
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It can be easily verified that for the extreme point of the above upper bound (with

respect to p and nσ2
r), we have p = nσ2

r . Therefore,

η ≤ max
p

{
1

4p
log

(
1 +

(n(κ + ε)2 + µ + ε)p2

σ4
n

)}
. (6.21)

By defining x =

√
n(κ+ε)2+µ+ε

σ2
n

p , (6.21) may be written as

η ≤
√

n(κ + ε)2 + µ + ε

4σ2
n

max
x

log(1 + x2)

x︸ ︷︷ ︸
<2

. (6.22)

Since κ, µ, ε, and σ2
n do not depend on n, it is clear from the above equation that

η ≤ O(
√

n). Also the maximization over x is uniquely achieved by some constant x

in the interval [0, 2]. Therefore, from the definition of x, the optimal value of p, and

hence nσ2
r , is Θ( 1√

n
). Thus, we have shown that for a random placement of nodes in

the domain A, the “Listen and Transmit” protocol with high probability achieves a

power efficiency of at most of order
√

n.

6.4.4 Main Result: Sensory Case

In previous sections we found a lower bound on the power efficiency of sensory net-

works. Combining these bounds together, we have the following theorem.

Theorem 6.3. Consider a random sensory network with a transmitter/receiver pair

and n relay nodes where all the nodes are placed randomly and independently on a

domain of fixed area A. Assume that averaged over the fading, the various chan-

nels are independent, i.e., for every two different channels c1, c2 we have Ef [c1c2] =

Ef [c1]Ef [c2], and the measurement noises are all i.i.d CN (0, σ2
n). Furthermore, as-

sume that the relay nodes have knowledge of their channels to and from the receiver

and the transmitter and that the receiver knows the mean of α in (6.7). Then, with
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high probability the power efficiency of the network is at least Θ(
√

n), i.e., there exists

a scheme such that

Pr {K2

√
n ≥ η ≥ K1

√
n} ≥ 1− K

n
, (6.23)

where K1, K2, and K are constants depending on the domain and the fading charac-

teristics, but not on n. Moreover, the listen transmit protocol achieves η = Θ(
√

n)

with the power allocation p = nσ2
r = Θ( 1√

n
).

Remark 6.4. It was shown that in the “Listen and Transmit” protocol the rate of

communication is of order constant. Therefore we are getting the same rate of commu-

nication as the case when the transmitter and the receiver communicate in isolation.

The difference is that in the former protocol, the total power consumption is of order

Θ( 1√
n
) which is

√
n time less than the power consumption in the later case. Thus, we

are getting a fixed rate with less power consumption.

Remark 6.5. Implicit in the “Listen and Transmit” protocol there is a notion of

fairness: nodes in relay mode consume, n times less power that the node in transmit

mode.

Remark 6.6. Comparing the power efficiency achieved in the sensory networks with

the power efficiency of multi-antenna systems, we observe that it is better than the

power efficiency of a n × 1 multi-antenna system with no channel knowledge at the

transmit antennas where unlike the sensory case, cooperation between different an-

tennas is allowed. However, as we expected it is worse than the power efficiency of a

n× 1 multi-antenna system with perfect knowledge at the transmit antennas.

6.4.5 Discussion on Synchronicity

The key idea in the “Listen and Transmit” protocol is to scale the received signals

at the relay stage in such a way that the information-bearing signal parts add up
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coherently at the receiver. Therefore, the protocol is sensitive to any error in the

phase, and hence to synchronicity. In this section we try to make a qualitative

analysis of the effect of asynchronicity on the “Listen and Transmit” protocol.

Instead of considering an asynchronous system, we consider the lack of synchronic-

ity by introducing a phase error in the channel knowledge used by the relay nodes.

More precisely, we assume that instead of knowing the channel hi perfectly, the i-th

relay node uses hie
jδi for processing its received signa, where δi is the phase error that

models the time lag corresponding to the transmission from i-th relay node to the

receiver. We assume that the phase errors are i.i.d random variables and independent

from the channel coefficients. Furthermore, we assume that E [ejδi ] is not zero and

is equal to some constant |λ| 6= 0. In other words, we assume that by the aid of

the receiver and by using a training sequence, the relay nodes have some estimate of

their time lag and therefore the phase error is not distributed uniformly over the unit

circle.

In this case, the received signal at the receiver is

y =
n∑

i=1

hitie
jδi + w,

where ti, defined in (6.6), is the transmitted signal in the case of perfect synchronicity.

By plugging in ti from (6.6) and using the same approach as before, we have

C ≥ 1

2
log


1 +

n2σ2
rp

∣∣∣∣ 1
n

∑n
i=1 Ef

|gi|hi|√
|gi|2p+σ2

n

ejδi

∣∣∣∣
2

σ2
n + σ2

r

∑n
i=1 Ef |hi|2


 (6.24)

Note that the lack of synchronicity appears as the phase errors ejδi in the lower bound.

Looking at the numerator of the lower bound, since the phase errors are independent
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of the channels, we can see that as we increase n

1

n

n∑
i=1

Ef
|gi|hi|√
|gi|2p + σ2

n

ejδi → λE loc[Ef
|gi|hi|√
|gi|2p + σ2

n

] a.s. .

In other words, as the number of nodes increases, for any random network, the term

in the numerator of (6.24) with high probability is close to its average over the phase

error and the location of the points. Therefore, using the same approach as in the

previous section, with high probability, the power efficiency is lower-bounded by

√
n log(1 + K ′|λ|2),

where K ′ depends only on the geometry of the domain and the fading characteristics.

From the above discussion, we have the following observations:

• As |λ| decreases, i.e., as we become more and more uncertain about the phase

of the channel, the power efficiency also decreases. For the case where |λ| = 0,

i.e., the case where we have no estimate of the phase, the lower bound on the

achieved power efficiency become zero.

• In terms of n, we see that, as long as |λ| 6= 0, the asymptotics of the lower

bound do not change, and we can still achieve a power efficiency of Θ(
√

n) with

the “Listen and Transmit” protocol.

6.5 Ad-hoc Networks

We now turn our attention to ad-hoc networks. The key difference, compared to

the sensory networks, is that we now have r simultaneous transmitter/receiver pairs.

Therefore, we are interested in the following question. Assume that in isolation,

to maintain some fixed communication rate, each transmitter/receiver pair needs
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to operate at some power. Now, if the r transmitter/receiver pairs are required to

communicate simultaneously and are members of a random wireless network with n

nodes, how much can the total power consumption in the network be reduced (from

the power consumption required in isolation) to maintain the same communication

rate between the transmitters and receivers? We remark that since the capacity of

an ad-hoc wireless network scales as Θ(
√

n) [92, 93, 94, 95], to maintain a fixed rate

for each transmitter/receiver pair we need to assume that r ≤ √
n. This will be our

standing assumption throughout. To answer the question above, we will construct an

extension of “Listen and Transmit” protocol developed for sensory networks. As in

the sensory case, the main idea is to exploit interference in the network. For ad-hoc

networks the power efficiency is defined as the ratio between the sum of the mutual

information of different transmitter/receiver pairs and the total power consumption

of the network:

η =
Ctotal

P0

.

Note that both Ctotal and P0 are random variables that depend on the placement of the

points. We first consider an alternative form of power efficiency, namely η′ = Ctotal

E loc[P0]
,

where the denominator is averaged over all point placements in the network. The

reason is that it is easier to establish scaling laws for η′. We then show that similar

scaling laws apply to η.

6.5.1 “Listen and Transmit” Protocol

As in the sensory case, the communication in the “Listen and Transmit” protocol is

divided into two intervals.

(a) Listen interval: Each of the r transmit users transmit the signal si, where

{si} are independent random variables. All other nodes listen. Relay node j
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receives:

rj =
r∑

i=1

gijsi + vj i = 1, 2, . . . , r j = 1, 2, . . . , n. (6.25)

(b) Transmit interval: Each relay node j transmits tj, a scaled version of what

it has previously received:

tj = σrdjrj j = 1, 2, . . . , n,

where the scalar dj can depend only on the local knowledge of the channel

coefficients at relay node j. Before describing the particular choice of {dj}, it is

instructive to consider what can be accomplished by having the relay nodes just

scale their received signals. To this end, if, for a particular choice of the {dj},
we focus on the r × r channel matrix relating the r transmit signals to the r

receive signals, it is clear that the entries of this matrix are linear combinations

of the {dj} (see Section 6.5.7 and (6.64) below). Since the channel matrix

has r2 entries, if n ≥ r2, then we have enough free parameters in the {dj} to

“generically” make the channel matrix diagonal. This totally suppresses the

interference and yields r independent channels. Therefore, in principle, a sum-

rate of order r is achievable.4

The problem with this approach is that it requires complete knowledge of all the

channel coefficients at every node of the network (so that each node can solve

the system of linear equations required to diagonalize the channel). Since this

is not acceptable, we need to introduce a method that only uses local channel

4Of course, one should worry about satisfying the power constraints. As we will see later, this
scheme is not power efficient.
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knowledge, and so we propose the following choice for dj

dj =

( ∑r
i=1 g∗ijh

∗
ji

)

√
rκ1σ2

n + r((r − 1)κ2 + κ3)p
, (6.26)

where κ1, κ2, and κ3 are defined as

κ1 = E {j}(E {γ|j}Ef |gγj|2)2 (6.27)

κ2 = E {j}(E {γ|j}Ef |gγj|2)3

κ3 = E {j}(E {γ|j}Ef |gγj|2E {γ|j}Ef |gγj|4),

where γ is a location of a random point in the domain. Note that these param-

eters do not depend on n and r and depend only on the geometry of the domain

and the fading characteristics.

With the above choice of djs, the operation of the relay nodes can be regarded

as performing distributed performing. It can be further shown that with this

choice of dj, the average transmit power for the relay nodes of the random net-

work is σ2
r , where the averaging is over both placement of the network as well as

channel fading [113]. Since dj depends only on the local knowledge of the chan-

nel coefficients at relay node j, the djs are identical and independent random

variables when the location of the relay nodes is random and the transmitters

and the receivers are fixed. We will use this fact later on in our results. Finally,

we remark that the above mentioned scheme may be interpreted as follows:

• Each relay node estimates each of the r transmitted signals as

ŝj
i = g∗ijrj i = 1, 2, . . . , r j = 1, 2, . . . , n.

Of course, these are very inaccurate estimates.
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• Each node attempts to coherently add its estimate of signal si for i-th

receiver via multiplication by h∗ji and normalize the sum to power σ2
r :

tj =
1√

rκ1σ2
n + r((r − 1)κ2 + κ3)p

r∑
i=1

ŝj
ih
∗
ij.

Note that in both steps of the protocol, we are exploiting interference. Since the

wireless medium is a shared medium, each relay node can estimate each of the r

transmitted signals. Also, because of the interference, each receiver will receive a

summation of the scaled versions of the signals that the relay nodes have sent. So

there are n indirect paths for the signal transmitted from transmitter i to receiver i,

each passing through one relay node. Each of the relay nodes has transmitted a signal

that has a part that adds coherently for receiver i. Therefore, there are n signal parts

that add up coherently at receiver i.

The received signal at receiver k is

yk =
n∑

j=1

hjktj + wk =
n∑

j=1

σrhjkdjrj + wk =
n∑

j=1

σrhjkdj(
r∑

i=1

gijsi + vj) + wk

= σr

r∑
i=1

(
n∑

j=1

gijhjkdj)

︸ ︷︷ ︸
αk

i

si + σr

n∑
j=1

hjkdj︸ ︷︷ ︸
βk

j

vj + wk.
(6.28)

We should remark that αk
i for all i is a sum of n independent random variables. Also

notice that since the relay nodes are placed independently and the βk
j s depend only on

the channel coefficients between relay node j and the transmitters and the receivers,

they are independent for different j’s.

6.5.2 Finding Upper and Lower Bounds

By using the same technique as Section 6.4.1, we can find a lower and upper bound

for the mutual information between yk and sk. Using the results of [111] again,
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the maximum value of the mutual information Ck = supp(sk) I (yk; sk) can be lower-

bounded by the capacity of the AWGN channel with input/output equation:

y = σrEf [αk
k]sk + w′

k, (6.29)

where w′ is a zero mean complex Gaussian noise with variance

Varf [w′
k] = Varf [σr(α

k
k − Ef [αk

k])sk + σr

r∑

i=1,i6=k

αk
i si + σr

n∑
j=1

βk
j vj + wk]

= Varf [αk
k]σ

2
rp + (

r∑

i=1,i6=k

Ef |αk
i |2)σ2

rp + (σ2
r

n∑
j=1

Ef |βk
j |2 + 1)σ2

n.

(6.30)

Therefore, we have

Ck = sup
p(sk)

I (yk; sk) ≥ sup
p(sk)

I (y; sk) =
1

2
log

(
1 +

σ2
rp|Ef [αk

k]|2
Varf [w′

k]

)
. (6.31)

Note that the 1
2

in front of the logarithmic term comes from the fact that the trans-

mitters transmit half of the time. We can obtain an upper bound on Ck, considering

the case that the receiver k knows {vj, si, i = 1, . . . , r, i 6= k, j = 1, . . . , n} and all

the channel coefficients. For this case we have

Ck = sup
p(sk)

I (yk; sk) ≤ sup
p(sk)

I (yk; sk|{vj, si, i 6= k, gij, hjk}) =
1

2
Ef {gij ,hjk}

[
log

(
1+
|αk

k|2σ2
rp

σ2
n

)]
.

(6.32)

Using the convexity of the log function, we may rewrite the above equation as

Ck = sup
p(sk)

I (yk; sk) ≤ 1

2
log

(
1 +

Ef |αk
k|2σ2

rp

σ2
n

)
. (6.33)

In order to compute the lower and the upper bound in (6.31) and the above equation,

first and second order moments of {αk
i } and {βk

j } are required. In the following lemma

we give probabilistic bounds on Varf [w′
k] and Ef [αk

k]. The proof of this lemma can
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be found in [113].

Lemma 6.7. For every domain A of fixed area and every placement of the nodes of

the network, there exist constants Bi, i = 1, . . . , 8, κ, κ1, and κ′ (κ′ ≤ κ) that depend

only on the domain A and the fading characteristics such that for every positive εi,

i = 1, . . . , 5 that ε4 < B7√
r(κ1σ2

n+rpκ)
and every positive ρ and ζ, we have the following

relations:

Pr

{
|Ef [αk

k]| > n(
B7√

r(κ1σ2
n + rpκ)

− ε4)

}
≥ 1− B8

nε2
4(κ1σ2

n + rpκ′)

Pr

{
Ef |αk

k|2 < n(
B2

rκ′p + κ1σ2
n

+ ε2) + n2(
B7√

r(κ1σ2
n + rκp)

+ ε4)
2

}

≥ 1− (
B8

nε2
4(κ1σ2

n + rpκ′)
+

3B3

nε2
2(κ

′rp + κ1σ2
n)2

)

Pr

{
Var [w

′
k] < σ2

rp(nε2 + nrε3 +
nr(B2 + B5)

κ′rp + κ1σ2
n

+ nρrζε5) + σ2
n(1 + nσ2

r(ε1 +
κ

κrp + κ1σ2
n

))

}

≥ 1− 1

(κ′rp + κ1σ2
n)2

(
3B1

nε2
1

+
3B3

nε2
2

+
3(r − 1)B4

nε2
3

+ h(n, r, ε5)

)
,

(6.34)

where

h(n, r, ε5) =





rn(κ′rp+κ1σ2
n)

nρrζε5
Using Assumptions A,B

rn(r+n)B6

n2ρr2ζε25
Using Assumptions A,B,C.

Using Lemma 1, we can combine (6.31) and (6.33) to get upper and lower bounds

for Ck. For this, define

Clower =
1

2
log

(
1+

n2σ2
rp( B7√

r(κ1σ2
n+rpκ)

− ε4)
2

pσ2
r(nε2 + nrε3 + nr(B2+B5)

κ′rp+κ1σ2
n

+ nρrζε5) + σ2
n(1 + nσ2

r(ε1 + κ
κrp+κ1σ2

n
))

)

Cupper =
1

2
log

(
1+n

σ2
rp

σ2
n

(
B2

rκ′p + κ1σ2
n

+ ε2) + n2σ2
rp

σ2
n

(
B7√

r(κ1σ2
n + rκp)

+ ε4)
2

)
.

(6.35)
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then we have the following relations as probabilistic lower and upper bounds for Ck:

Pr {Ck ≥ Clower} ≥ 1−

(
3B1

nε21
+ 3B3

nε22
+ 3(r−1)B4

nε23
+ B8(κ′rp+κ1σ2

n)

nε24
+ h(n, r, ε5)

)

(κ′rp + κ1σ2
n)2

Pr {Ck ≤ Cupper} ≥ 1− (
B8

nε2
4(κ1σ2

n + rpκ′)
+

3B3

nε2
2(κ

′rp + κ1σ2
n)2

).

(6.36)

In the “Listen and Transmit” protocol, since there are r transmitters and n relay

nodes and all the nodes are transmitting half of the time, the average total power

consumption is 1
2
(rp + nσ2

r). The total capacity of the network is Ctotal =
∑r

k=1 Ck.

Therefore, the power efficiency of the network is

η′ =
2Ctotal

rp + nσ2
r

=
2
∑n

k=1 Ck

rp + nσ2
r

. (6.37)

Remark 6.8. As mentioned earlier in Lemma 1, the constants Bi and κ, κ1, and κ′

do not depend on n and r. Now, if we fix σ2
r , p, and εi i = 1, 2, 5, and set ε3 = 1

r
,

ε4 = B7

2
√

r(κ1σ2
n+rpκ)

and ζ = 0 in (6.35) and (6.36), then the total capacity achieved by

the “Listen and Transmit” protocol is bounded probabilistically as

Pr {Ctotal ≥ K ′
1r log(1 +

n2

r2(n + nρ)
)} > 1− rK ′

2

r2
(
r3

n
+

r

n2(ρ−1)
),

where K ′
1 and K ′

2 are some constants and we have considered assumptions A, B, and

C in Section 6.2.2. Therefore, by setting ρ = 1 + θ, θ > 0, we have

Pr {Ctotal ≥ K ′
1r log(1 +

n1−θ

r2
)} ≥ 1−K ′

2(
r2

n
+

1

n2θ
).

Now note that the maximum of the bound is achieved for r = Θ(n
1−θ
2 ), and in that

case we have

Pr {Ctotal ≥ K ′
1n

1−θ
2 } ≥ 1− K ′

2

nθ
∀ θ > 0. (6.38)
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From (6.38) we see that, with high probability, by using the “Listen and Transmit”

protocol we can get arbitrarily close to the Θ(
√

n) result of [92]. This result is inter-

esting since we are only using the local knowledge of the channel coefficients at the

relay nodes, and the protocol is very simple (it is double-hop and requires no routing).

6.5.3 Power Allocation

We will now focus on how to optimally allocate the transmit and relay node powers

(i.e., p and σ2
r as functions of r and n) to maximize the power efficiency. Define

η′lower = 2rClower

rp+nσ2
r

and η′upper = 2rCupper

rp+nσ2
r

. By using union bound on the probability

of events, we get the following probabilistic lower and upper bounds for the power

efficiency of the network using the “Listen and Transmit” protocol:

Pr {η′lower ≤ η} ≥ Pr {Clower ≤ Ck k = 1, . . . , r} ≥ 1− rPr {Ck < Clower}

Pr {η′upper ≥ η} ≥ Pr {Cupper ≥ Ck k = 1, . . . , r} ≥ 1− rPr {Ck > Cupper}.
(6.39)

We will consider the lower bound first. We try to choose the values for p, σ2
r , ζ, and

ρ so that with high probability we can achieve a power efficiency that scales with the

number of nodes in the network. For this goal we take ε1,ε2,ε3, and ε5 all to be equal

to a positive constant denoted by ε. We also choose ε4 = B7

2
√

r(κ1σ2
n+rκp)

. We further

consider the network operating in the low SNR regime so that rp is at most constant

(in terms of how it scales with n). Later on, when we are looking at the upper bound,

we will show that the optimal operating point for this protocol is indeed when rp is

of O(1). Using these assumptions in (6.35) and adding K3rp to the denominator, we

have the following lower bound for the power efficiency η′

η′lower =
r

rp + nσ2
r

log

(
1 +

K1
n2

r
σ2

rp

pσ2
r(n + nrK2 + nρrζ)ε + σ2

n + K3(nσ2
r + rp)

)
.

Pr {η′lower ≤ η} ≥ 1− r

(
rK4

nε2
+ g(n, r, ε)

)
.

(6.40)
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Ki, i = 1, . . . , 5 are constants and do not depend on r or n. g(n, r, ε) is also derived

from h(n, r, ε) after applying the simplifications:

g(n, r, ε5) =





K5rn
nρrζε

Using Assumptions A,B

rn(r+n)B6

n2ρr2ζε2
Using Assumptions A,B,C.

(6.41)

Looking at (6.40), the following conditions are necessary in order to have Pr {η′lower ≤ η′} →
1 for large n and r

r2

n
→ 0 g(n, r, ε)r → 0. (6.42)

Therefore, from the above equation it is clear that this analysis is valid for the case

where r = O(
√

n). ζ and ρ should be chosen so that the second condition in (6.42)

is satisfied. These two parameters determine the rate of convergence in probability.

By looking at (6.41) we observe that the second condition in (6.42) implies that

1
nρ−1rζ−1 → 0 an n grows. In this stage we maximize the power efficiency with respect

to the total transmit power, rp, and total relay power, nσ2
r , and subject to the

constraints in (6.42). It can be easily verified by taking partial derivatives with

respect to rp and nσ2
r that the expression is maximized for rp = nσ2

r = x. Hence, we

can write the maximization problem as

η?
lower = max

rp,nσ2
r

η′lower = max
x≥0

r

2x
log

(
1+

K1
n
r2 x

2

σ2
n + 2K3x + (n + nrK2 + nρrζ)εx2

)
. (6.43)

Let x = Θ(nα), α ≤ 0, and r = Θ(nν), 0 ≤ ν ≤ 1/2. Using the fact that α ≤ 0 and

1
nρ−1rζ−1 → 0 in (6.43), we can write

η?
lower = Θ

(
max

α
nν−α log

(
1 +

n1+2α

n2ν(σ2
n + nρ+2α+ν(ζ−1)−1)

))
. (6.44)
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With the following constraints:

α ≤ 0, ν ≤ 1

2
,





ρ− 1 + ν(ζ − 2) > 0 If using assumptions A, B

ρ− 1 + ν(ζ − 1) > 0 If using assumptions A, B, C,

(6.45)

where the last two constraints are consequences of (6.42).

Consider that we use assumptions A, B, and C. Later on, we analyze the perfor-

mance of the protocol when only assumptions A and B are used. Set ρ−1+ν(ζ−1)

fixed and equal to µ. In this case, the rate of convergence in the probability expres-

sion of (6.40) is min {1− 2ν, µ}. Now we are interested in the maximum achievable

power efficiency for a fixed µ. We consider the following cases:

(a) µ + 2α ≤ 0: In this case we can see that ρ + 2α + ν(ζ − 1)− 1 ≤ 0. Therefore,

the noise power is dominant to the interference in (6.44), and we can simplify

the expression as

η?
lower = Θ

(
nν−α log(1 + n1−2(ν−α))

)
= Θ

(
nβ log(1 + n1−2β)

)
, (6.46)

where β is defined as β = ν − α. Note that we have µ + 2ν ≤ 2β. Now we

consider the following cases:

• β ≥ 1
2
: In this case the power of n in the log function in (6.46) is negative,

so it is of Θ(n1−2β). Therefore we have

η?
lower = Θ(n1−β).

The total rate of transmission Rsum is of Θ(nν+1−2β) in this case. The

maximum order of power efficiency is achieved when β takes its small-

est possible value, i.e., β = max {1
2
, µ+2ν

2
}. For this case, the maximum
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achievable power efficiency and the total rate of transmission Rsum are

respectively

η?
lower = Θ(n1−max { 1

2
, µ+2ν

2
}) and

Rsum = Θ(nmin {ν,1−(ν+µ)}).

The transmit power and the relay node power for achieving the maximum

power efficiency are

rp = nσ2
r = Θ(nα) = Θ(nν−β) = Θ(nmin { 2ν−1

2
,−µ

2
}) = Θ(min { r√

n
,

1√
nµ
}).

(6.47)

Therefore, with the choice of the transmit and relay node power as above,

we have

Pr {η′ = Θ(n1−max { 1
2
, µ+2ν

2
})} ≥ 1−Θ(

1

nmin {µ,1−2ν} ). (6.48)

• β < 1
2
: In this case, (6.46) can be rewritten as

η?
lower = Θ(nβ log n1−2β) = (1− 2β)Θ(nβ log n).

Now, since log n grows slower than any polynomial function in n, and β is

strictly less than 1
2
, the maximum achievable power efficiency in this case

cannot be better than the previous case, and thus operating the network

in this region is not favorable.

(b) µ+2α ≥ 0: For this regime the interference will be the dominant term in (6.44),

and therefore we have

η?
lower = Θ

(
nν−α log(1 + n1−(2ν+µ))

)
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As we can see from the above equation, the power efficiency is maximized when

α takes is greatest possible value α = −µ
2

. In this case, the power efficiency of

the network is

η?
lower = Θ

(
n

2ν+µ
2 log(1 + n1−(3ν+µ))

)
. (6.49)

It can be easily checked that the maximum power efficiency achieved in this

region is always less than or equal to the case where µ + 2α ≤ 0.

The discussion above gives the probabilistic lower bound of (6.48) for power ef-

ficiency when assumptions A,B, and Cfrom Section 6.2.2 can be used. If only as-

sumptions Aand Bcan be used, then applying the same technique as above, we can

easily check that the power efficiency is maximized when the network operates in the

noise-dominant regime (i.e., µ+ν+2α ≤ 0) rather than interference-dominant regime

(i.e., µ + ν + 2α ≥ 0). Also, similar to the previous discussion, β , ν − α should be

greater than equal to 1
2
.

In this region ρ+2α + ν(ζ − 1)− 1 ≤ 0, and we are in the noise dominant regime.

Hence, we can simplify (6.44) to

η?
lower = Θ

(
nν−α log(1 + n1−2(ν−α))

)
. (6.50)

Therefore, we have µ + 3ν ≤ 2β. Also, since β ≥ 1
2
, the power of n in the log(.)

function in (6.50) is negative, so it is of Θ(n1−2β). Therefore, we have

η?
lower = Θ(n1−β) and

Rsum = Θ(nν+1−2β)

The best achievable power efficiency is for the case when β takes its smallest possible

value. In this case, β = max {1
2
, µ+3ν

2
} and the maximum achievable power efficiency
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and the total rate of transmission Rsum are respectively

η?
lower = Θ(n1−max { 1

2
, µ+3ν

2
})

Rsum = Θ(nmin {ν,1−(2ν+µ)}).

The transmit power and the relay node power for achieving the maximum power

efficiency are

rp = nσ2
r = Θ(nmin { 2ν−1

2
,−ν−µ

2
}) = Θ(min { r√

n
,

1√
nµr

}). (6.51)

With this choice of transmit and relay node power we have the following probabilistic

lower bound on the power efficiency (using assumptions A and B only):

Pr {η = Θ(n1−max { 1
2
, µ+3ν

2
})} ≥ 1−Θ(

1

nmin {µ,1−2ν} ). (6.52)

6.5.4 Main Result: Ad-hoc Case

The analysis in the previous section shows the following result:

Theorem 6.9. Consider an n node random ad-hoc network where the nodes are

placed randomly and independently on a domain of fixed area where, averaged over

the fading, the various channels are independent, i.e., for every two different channels

c1, c2 we have Ef [c1c2] = Ef [c1].Ef [c2]. Furthermore, assume conditions A, B , and

C given in Section 6.2.2 and that at any given time there are r = O(nν) ν ≤ 1
2

transmit/receive pairs. Also, the measurement noises are all i.i.d CN (0, σ2
n). If we

denote the power efficiency of the network by η′ (i.e, η′ = Ctotal

E loc[P0]
), then for every

µ > 0

Pr {η′ ≥ K1(n
1−max { 1

2
, µ+2ν

2
})} ≥ 1− K2

nmin {1−2ν,µ} , (6.53)

where K1 and K2 are independent of n and r but depend on the domain and the fading
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characteristics. Moreover, the listen transmit protocol achieves this lower bound. The

transmit and the relay node powers that achieve this power efficiency are given in

(6.47).

The following corollary is an immediate consequence of Theorem 6.9 by setting

µ = 1− 2ν.

Corollary 6.10. Consider the network model described in Theorem 6.9. If the num-

ber of transmitter/receiver pairs in the network is of O(n
1−ε
2 ), where ε > 0, then we

have

Pr {η ≥ K3

√
n} ≥ 1− K4

nε
, (6.54)

where K3 and K4 are independent of n and r but depend on the domain and the

fading characteristics. Moreover, by choosing the transmit and relay node powers as

rp = nσ2
r = Θ( r√

n
), the listen and transmit protocol achieves this lower bound.

Remark 6.11. Note that from (6.54), we can see that there is a trade-off between the

number of transmitter/receiver pairs r and the rate of convergence. As we increase r

from Θ(1) to Θ(
√

n), the convergence slows down.

For the case, when only assumptions A and B are used, we have the following

result from (6.51) and (6.52):

Theorem 6.12. Consider an n node random ad-hoc network in a domain of fixed area

where, averaged over the fading, the various channels are independent. Furthermore,

assume conditions A, B given in Section 6.2.2 and that at any given time there are

r = O(nν) ν ≤ 1
2

transmit/receive pairs. Also, the measurement noises are all i.i.d

CN (0, σ2
n). If we denote the power efficiency of the network by η′ (i.e., η′ = Ctotal

E loc[P0]
),

then for every µ > 0

Pr {η′ ≥ K5 n1−max { 1
2
, µ+3ν

2
}} ≥ 1− K6

nmin {1−2ν,µ}
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where K5 and K6 are independent of n and r and depend on the domain and fading

characteristics. Moreover, the listen transmit protocol achieves this lower bound. The

transmit and relay node powers achieving this power efficiency are given in (6.51).

By considering the case where µ + 3ν = 1, we have the following corollary:

Corollary 6.13. Consider the network described in Theorem 6.12. If the number of

transmit/receive pairs in the network is of O(n
1−ε
3 ), where ε > 0, then we have

Pr {η′ ≥ K7

√
n} ≥ 1− K8

nε
,

where K7 and K8 only depend on the domain and fading characteristics. Moreover,

by choosing the transmit and relay node powers as rp = nσ2
r = Θ( r√

n
), the listen and

transmit protocol achieves this lower bound.

Corollary 6.13 implies that the maximum number of transmit/receive pairs that

the network can support with power efficiency of Θ(
√

n) is Θ(n
1
3 ). On the other

hand, considering the maximum power efficiency of the network with the number of

transmit/receive pairs up to n
1
2 , one can write the following corollary by setting µ

equal to 1 − 2ν in Theorem 6.9. We should also remark that comparing Corollaries

6.10 and 6.13, we see that the effect of assumption C is on the number of simultaneous

transmitter/receiver pairs that can be in the network.

Corollary 6.14. Consider again the network described in Theorem 6.12. If the num-

ber of transmit/receive pairs in the network is of Θ(n
1−ε
2 ), where 0 < ε < 1, then we

have

Pr {η′ ≥ Kn( 1+ε
4

)} ≥ 1− K ′

nε
,

where K,K ′ are some constants. Therefore, in this case if the number of trans-

mit/receive pairs is near to
√

n, we can achieve a power efficiency that scales like

n
1
4 .
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The previous discussion shows that:

• If the number of the transmitter/receiver pairs is less than
√

n, it was shown

that a power efficiency that scales with the number of nodes, n, is achievable.

The rate per transmitter/receiver pair in this case is of order constant. If we

increase the number of simultaneous transmissions to more than
√

n, we can still

achieve power efficiency of
√

n using time-sharing and “Listen and Transmit”

protocol together. In this case, at each time instant
√

n of the transmitters

transmit and all the others act as relay nodes. However, in this case, the rate

per transmitter/receiver will not be of order constant, but of order 1√
n
. This is

in agreement with the result of [92, 93, 94] in that achieving a constant rate per

node in this case would require a total sum-capacity larger than Θ(
√

n), which

is not possible.

• There is a notion of fairness implicit in the protocol in the sense that nodes in

the relay mode consume r
n
-th the power of the nodes in the transmit mode.

• For the case where r = Θ(n
1−ε
2 ) (or r = Θ(n

1−ε
3 ), if we do not have assumption

C in Section 6.2.2, the optimal choice of the transmit power and relay power is

p = Θ( 1√
n
), σ2

r = Θ( 1
n
). The total power consumption is Θ( r√

n
), and the total

rate is Θ(r).

• In the case of ad-hoc networks, by using the “Listen and Transmit” protocol,

we can see that the we are keeping the rate of transmission for each transmit-

ter/receiver fixed and of order Θ(1), but the total power consumption decreases

as the number of nodes grows larger, as long as r = O(n
1−ε
2 ) for some positive

ε. If we do not have assumption C on the channel coefficients, we still have this

property for r = O(n
1−ε
3 ) for some positive ε.

We should mention that with high probability we cannot get a better power ef-

ficiency for ad-hoc networks with this protocol. We can show this by using (6.35),
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(6.36), and (6.39) to find a probabilistic upper bound. With an argument like the

one for the lower bound or the one in [105], we can show that with high probability

the maximum achievable power efficiency with this protocol is O(
√

n).

6.5.5 A Further Result

As mentioned earlier, the power efficiency that was considered up to now was defined

as the ratio between the sum rate capacity for a specific placement of the nodes of the

network and the average of the power consumption over all possible point placements

of the network. In other words, for a specific placement of the nodes with sum

rate capacity of Ctotal and power consumption of P0 we defined power efficiency as

η′ = Ctotal

E loc[P0]
. An alternative to this definition is to consider the ratio between the rate

and power consumption for a specific network, i.e., η = Ctotal

P0
as the power efficiency.

In this case, the power efficiency η is a random variable depending on the placement

of the nodes. However, because of the law of large numbers, as the size of the network

increases, η will be close to its average, and we observe the same behavior as η′ for the

power efficiency. In order to state this formally, we will need the following lemma.

We should remark that in proving this lemma one only needs assumptions A and

B of Section 6.2.2. This lemma gives a bound on the power consumption at the relay

stage.

Lemma 6.15. Consider an n node ad-hoc network with assumptions provided in

Theorem 6.9; then for any specific placement of the nodes in the network, the total

power consumption at relay nodes Pr can be bounded as

Pr {|Pr − nσ2
r | <

n1+γσ2
r√

r
(σ2

n + rp)} ≥ 1− K ′

n2γ(κ1σ2
n + rκp)2

, (6.55)

where γ is any positive number, and K ′, κ, κ1 are constant independent of n and r.

Using this lemma and the fact that the network operates at low SNR regime, i.e.,
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rp << 1, we can bound the total power consumption of the network P0 = rp + Pr as

follows

Pr {P0 ≤ (1 +
nγ

√
r
)(rp + nσ2

r)} ≥ 1− K

n2γ
.

Therefore, for η = Rsum

P0
we have

Pr {(1 +
nγ

√
r
)−1η′ ≤ η} ≥ 1− K

n2γ
. (6.56)

One can combine this relation with the results on the power efficiency η′ to get

new bounds on η. The following theorems are immediate consequences of (6.56),

Theorem 6.9 and Theorem 6.12.

Theorem 6.16. Consider an n node random ad-hoc network where the nodes are

placed randomly and independently on a domain of fixed area where, averaged over

the fading, the various channels are independent, i.e., for every two different channels

c1, c2 we have Ef [c1c2] = Ef [c1].Ef [c2]. Furthermore, assume conditions A, B and,

C given in Section 6.2.2 and that at any given time there are r = O(nν) ν ≤ 1
2

transmit/receive pairs. Also, the measurement noises are all i.i.d CN (0, σ2
n). For a

specific placement of the nodes of the random network, let Ctotal be the total rate of

communication and P0 be the total power consumption in the network. Then, for

every µ, γ > 0, the power efficiency of the network defined as η = Ctotal

P0
satisfies

Pr {η ≥ K1
(n1−max { 1

2
, µ+2ν

2
})

1 + nγ√
r

} ≥ 1− K2

nmin {1−2ν,µ,2γ} , (6.57)

where K1 and K2 are independent of n and r but depend on the domain and the fading

characteristics. Moreover, the listen transmit protocol achieves this lower bound.

By setting γ = ν
2

and µ = 1− 2ν, we have the following corollary.
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Corollary 6.17. For the network described in Theorem 6.16, we have

Pr {η ≥ K1

√
n} ≥ 1− K2

nmin {1−2ν,ν} . (6.58)

Therefore, it becomes clear that by considering the power efficiency as the ratio

between the sum-rate of transmission and the total power consumption for specific

placement of the nodes in the network, we still have similar scaling behavior.

Remark 6.18. We should remark that the rate of convergence obtained for the prob-

ability of the event in (6.58) is not tight (for small r). One expects that as r, the

number of pairs requesting service from the network, decreases, the rate of conver-

gence improves (for instance, we can see from Theorem 6.3 that for sensory networks

in which r = 1, the rate of convergence is proportional to 1
n
). Looking at (6.58),

we observe that as r decreases to constant, the convergence slows down. This is an

artifact of our approach in bounding η.

If we use only assumptions A and B in Section 6.2.2, then we can write the following

theorem using (6.56) and Theorem 6.12.

Theorem 6.19. Consider an n node random ad-hoc network where the nodes are

placed randomly and independently on a domain of fixed area where, averaged over

the fading, the various channels are independent, i.e., for every two different channels

c1, c2 we have Ef [c1c2] = Ef [c1].Ef [c2]. Furthermore, assume conditions A, B given in

Section 6.2.2 and that at any given time there are r = O(nν) ν ≤ 1
2

transmit/receive

pairs. Also, the measurement noises are all i.i.d CN (0, σ2
n). For a specific placement

of the nodes of the random network, let Ctotal be the total rate of communication and

P0 be the total power consumption in the network. Then, for every µ, γ > 0, the

power efficiency of the network defined as η = Ctotal

P0
satisfies

Pr {η ≥ K5
(n1−max { 1

2
, µ+3ν

2
})

1 + nγ√
r

} ≥ 1− K6

nmin {1−2ν,µ,2γ} , (6.59)
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where K5 and K6 are independent of n and r but depend on the domain and the fading

characteristics. Moreover, the listen transmit protocol achieves this lower bound.

By setting γ = ν
2

and µ = 1− 3ν, we have the following corollary:

Corollary 6.20. Consider the network model described in Theorem 6.19. Then, for

r = O(nν) ν ≤ 1
3

we have

Pr {η ≥ K1

√
n} ≥ 1− K2

nmin {1−3ν,ν} . (6.60)

6.5.6 Discussion on Synchronicity

Similar to the sensory case, the key idea of the “Listen and Transmit” protocol used for

ad-hoc networks is the coherent and synchronous reception of the signals. Therefore,

the protocol is sensitive to synchronicity. In this section we discuss the effect of

asynchronocity on our protocol.

Like sensory networks, instead of considering an asynchronous system, we consider

the lack of synchronicity by introducing a phase error in the channel knowledge used

by the relay nodes. More precisely, we assume that instead of knowing the channel

hji perfectly, the j-th relay node uses hjie
jδji for processing its received signal. δji

is the phase error that models the time lag, corresponding to the transmission from

j-th relay node to the i receiver. We assume that the phase errors are i.i.d random

variables and are independent from channel coefficients. Furthermore, we assume

that E [ejδli ] is not zero and is equal to some constant λ. In other words, we assume

that by the aid of the receivers and by a using training sequence, the relay nodes

have some estimate of their time lag and therefore the phase error is not distributed

uniformly over the unit circle.
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In this case, the scalar d̂k used by the k-th relay node is proportional to

r∑

l=1

g∗lkh
∗
kle

−jδlk .

Using these d̂ks, we can find the new αi
ks and βi

ks (6.28) in terms of δli. Following

the lines of Section 6.5.1 and Section 6.5.2, it can be verified that we will still have

the same asymptotic behavior for power efficiency in terms of n (i.e., the asymptotic

behavior of the achieved power efficiency is still like
√

n), but the constants appearing

in the relations will now depend on λ as well. Therefore, similar to the sensory case

as |λ| decreases, the power efficiency will also decrease and, finally,for the limiting

case of |λ| = 0, the lower bound on the achieved power efficiency also becomes zero.

6.5.7 Complete Knowledge of the Channel

In the “Listen and Transmit” protocol we assumed that relay nodes have only local

knowledge of the channels, i.e., they only know their connections to the transmitter

and receiver nodes. We addressed another scenario in the previous sections, where the

nodes have complete knowledge of all the channel coefficients and try to diagonalize

the channel matrix between the transmitters and their corresponding receivers. In

this section we analyze the effect of perfect knowledge of the channel on the power

efficiency achieved by diagonalizing the channel matrix.

In this section we make an additional assumption that the channel coefficients

are independent complex random variables with zero mean and unit variance. Using
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(6.25) and (6.28), we can describe our protocol by the following matrix relations

r = sG + v

t = rD

y = sGDH + vDH + w

p tr (D∗G∗GD) + σ2
ntr (D∗D) = nσ2

r

(6.61)

where s ∈ C1×r is the transmitted vector, y ∈ C1×r is the received vector, and

r, t ∈ C1×n are the respective received and transmitted vectors at the relay stage. w ∼
CN (0, σ2

nIr) and v ∼ CN (0, σ2
nIn) are the corresponding vectors of noise introduced

at the receivers and at the relay stage, respectively. G ∈ Cr×n is the channel matrix

between the transmitters and the relay nodes, and H ∈ Cn×r is the channel matrix

between the relay nodes and the receivers. Finally, D = diag (d1, . . . , dn) ∈ Cn×n is

a diagonal matrix with diagonal entries corresponding to the scalars chosen by the

relay nodes. Notice that the djs depend on the channel gains. The last equation

in (6.61) is a consequence of the power constraint for the relay nodes. We remark

that the power constraint considered here is more general than what was assumed in

previous sections.

From (6.61), the equivalent channel matrix between the transmitters and the

receivers is GDH. Therefore, diagonalizing the channel matrix amounts to finding

diagonal matrix D such that GDH = αIr for some complex scalar α. The number

of complex equations is r2, and the number of variables is n. Therefore, generically,

this equation has a solution for r2 ≤ n. In this case, by looking at (6.61) we can write

the received signal at receive node k as

yk = αsk + wk +
n∑

j=1

hjkdjvj.

We can find an upper bound on the achievable rates using the scheme described
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above by considering that the receiver node has knowledge of the different noises

introduced in the relay stage. Hence, we can bound the capacity of the channel

between the transmit/receive pair k as

Ck ≤ 1

2
Ef log(1 +

|α|2p
σ2

n

) ≤ 1

2
log(1 +

pEf |α|2
σ2

n

).

The power efficiency can be bounded as follows:

η′ =
2
∑r

i=1 Ci

rp + nσ2
≤ 2r

rp + nσ2
r

log(1 +
Ef |α|2p

σ2
n

). (6.62)

Thus, we only need to find the mean of the maximum possible value of |α|2 subject

to the following constraints

GDH = αIr and

p tr (D∗G∗GD) + σ2
ntr (D∗D) = nσ2

r .

(6.63)

First, we try to solve the first equation in (6.63). Define d = [d1, . . . , dn]t, b = vec (Ir).

(6.63) can be written in terms of d and b as

Ad = αb and

d∗Λd = nσ2
r ,

(6.64)

where it can be easily verified that A ∈ Cr2×n and Λ ∈ Cn×n are

Ar2×n =




HT 0 . . . 0

0 HT . . . 0

... . . . . . .
...

0 0 . . . HT




r2×rn

·




diag (G1)

diag (G2)

...

diag (Gr)




rn×n

,

Λn×n = diag (p‖g1‖2 + σ2
n, . . . , p‖gn‖2 + σ2

n). (6.65)
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Gi, i = 1, . . . , r, and gj, j = 1, . . . , n, denote the i-th row and j-th column

of G, respectively. If we define Br2×n = AΛ−1
2 by using QR-type decomposition

[112] for B∗, we can write B∗ = Q




R

0


, where Qn×n is unitary matrix (i.e., QQ∗ =

Q∗Q = In), and Rr2×r2 is a lower triangular matrix with diagonal elements equal to

unity. By writing Q∗Λ
1
2d =




d
(1)

r2×1

d
(2)

(n−r2)×1


, we can rewrite (6.64) as

R∗d(1) = αb and

‖d(1)‖2 + ‖d(2)‖2 = nσ2
r .

(6.66)

Now notice that R is invertible and therefore we can find d(1) from (6.66), and by

substituting its value in the second relation of (6.66) we get

|α|2b∗(R∗R)−1b + ‖d(2)‖2 = nσ2
r .

It can be easily verified that R∗R = BB∗ = AΛ−1A∗. Also, the maximum of |α|2 is

when d(2) = 0n−r2×1. Therefore,

|α|2max =
nσ2

r

b∗(AΛ−1A∗)−1b
. (6.67)

Now, using the following inequality for positive definite matrix B and any vector x

([112], page 452)

(x∗Bx)(x∗B−1x) ≥ (x∗x)2,

we have

|α|2max ≤
nσ2

r(b
∗(AΛ−1A∗)b)

(b∗b)2
.
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b∗b = r and 1
σ2

n
In −Λ−1 is positive semi-definite. Therefore, we have

Ef |α|2max ≤
nσ2

r

r2σ2
n

Ef [b∗(AA∗)b]. (6.68)

Using the structure of matrix A in (6.65), it can be verified that

Ef [b∗(AA∗)b] =
r∑

i,j=1

Ef [b∗i H
T diag (Gi)diag ∗(Gj)H̄bj],

where bi is the i-th column of Ir. Now since the entries of H and G are indepen-

dent from each other, the expectation inside the above summation is zero for i 6= j.

Therefore we have

Ef [b∗(AA∗)b] =
r∑
i

Ef [b∗i (H
∗H)Tbi]

= Ef tr ((H∗H)T ·
r∑

i=1

bib
∗
i )

= Ef tr ((H∗H)T · Ir)

= nr,

(6.69)

where we have used the fact that tr (AB) = tr (BA). Using the above result in (6.68),

we have

Ef |α|2max ≤
n2σ2

r

rσ2
n

. (6.70)

Combining (6.70) and (6.62) we have

η′ ≤ r

rp + nσ2
r

log(1 +
n2σ2

rp

rσ2
n

). (6.71)

Using an argument to previous sections (e.g., Section 4.3), we know that the maximum

of the right hand side expression is less than κ
√

n for some constant κ dependent on
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Figure 6.4: Power efficiency for interference suppression case.

σ2
n. Therefore,

η′ ≤ κ
√

n,

which is the same as the case when we have only local knowledge of the channel

and “Listen and Transmit” protocol is used. We have found the upper bound for

the maximum power efficiency, η′, using the actual value for Ef |α|2 from (6.67) and

Matlab simulation. We have plotted the ratio log(η′)
log n

for different values of r ≤ √
n for

n = 100, 400, 900, and 1600. As we can see from the plots, the upper bound suggests

that we cannot do better than
√

n (or equivalently 1
2

in the Figure 6.4). Also, as the

number of the simultaneous transmitter/receiver pairs, r, increases, the upper bound

on the power efficiency of the interference cancelation method becomes smaller. This

suggests that this method is not power efficient.

Based on the above argument we have the following theorem.

Theorem 6.21. Consider a wireless ad-hoc network with n relay nodes and r trans-

mit/receive pair in which r2 ≤ n. Moreover, assume the channel coefficients can be
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modeled by independent zero mean unit variance complex random variables. Also as-

sume that the relay nodes have complete knowledge of the channel coefficients; then,

if the relay nodes cancel out the interference at the receiver nodes, the power efficiency

scales as O(
√

n).

6.6 Conclusion

In this chapter we address the power efficiency of random sensory and ad-hoc wireless

networks formed in a domain of fixed area. Under some assumptions on the moments

of the channel coefficients, we show that asymptotically, as the number of nodes in

the network, n, grows larger, with high probability we can achieve a power efficiency

of Θ(
√

n) for sensory networks. For ad-hoc networks, if the number of transmit-

ter/receiver pairs is of O(
√

n), we can achieve the same result. We also described the

protocol used to achieve this power efficiency. Although the best results for capacity

per node in sensory and ad-hoc wireless networks decrease as the size of networks

grows larger [91], [92], we can see that it pays off to consider these networks in terms

of power efficiency.

We can think of the protocol used in this chapter as a simple yet powerful memory-

less linear coding scheme for the relay nodes, i.e., the relay nodes simply relay a

scaled version of what they have heard. One can generalize this protocol by using

other coding schemes for relay nodes. Another interesting problem is to look at the

spectral efficiency of sensory and ad-hoc networks and its trade-off with the power

efficiency. Partial results about the optimal trade-off is reported in [114].
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Chapter 7

Differentiated Rate Scheduling for
Cellular Systems

7.1 Introduction

The downlink scheduling in cellular systems is known to be one major bottleneck

for future broadband communication systems. From an information-theoretic per-

spective, broadcast channels [53], and in particular the Gaussian broadcast channels

(GBC), can be used to model the downlink in a cellular system. There exist an abun-

dance of information-theoretic results describing the limits of the achievable rates1 to

the users in single-input single-output (SISO) Gaussian broadcast channels (see e.g.,

[115, 116]). For example, in a homogeneous network, i.e., a network where the fading

and noise distributions of all the users are identical, if the transmitter wants to max-

imize the throughput (or the sum of the rates to all the receivers2), it is well known

that the optimal strategy is to transmit to the user with the best channel condition at

each channel use. This is often referred to as the opportunistic transmission strategy

[102].

More recently, there has been growing interest in the use of multiple antennas (at

the transmitter, receivers, or both) for wireless communication systems. The initial

1In the remainder of this work, we assume that the channel is ergodic and rate refers to the
average rate over all channel realizations.

2We use users and receivers interchangeably.
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focus has been on point-to-point communications, where it has been shown that the

use of multiple antennas can significantly increase the rate and reliability of a wireless

communication link. Given this, both the research and industrial communities have

begun to study the use of multiple antenna systems in wireless networks. A most

obvious application is in cellular systems, where the use of multiple antennas at the

base station can potentially increase the capacity of each cell. This has led to an

interest in the multiple-input multiple-output (MIMO) Gaussian broadcast channel,

where the transmitter and the various users may be equipped with multiple trans-

mit and receive antennas, respectively. First, the sum-rate of the MIMO broadcast

channel, i.e., the maximum possible sum of the rates to all users [117], and then the

entire capacity region [118], were shown to be achieved by an interference cancelation

scheme referred to as dirty paper coding (DPC) [119].

Thus, from a theoretical point of view, the limits of reliable communication in

MIMO Gaussian broadcast channels is well understood. Fortunately, the same is

true if one takes a computational point of view. In other words, it is well known how

to computationally obtain any point on the boundary of the capacity region. In a

nutshell, the methodology can be explained as follows. Each point on the boundary of

the capacity region is characterized by a set of covariance matrices (corresponding to

how DPC is used at that particular boundary point). To obtain the desired covariance

matrices, one may construct a dual multiple-access (MAC) system [120] where, due

to the polymatroid structure of the problem, the solution can be found via standard

convex optimization techniques [103].

While the aforementioned results gives a good mathematical understanding of the

scheduling for downlink of cellular systems, there are many design issues and practical

limitations that are not taken into account. For an efficient design of the downlink of

cellular systems, these issues and limitations should be addressed. Examples of these

issues follow:
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• Channel state information: A crucial assumption in all the aforementioned

results is that the channel coefficients to all the users is known–an assumption

referred to as full channel state information (CSI)–at the transmitter. In fact,

it is easy to show that with no CSI at the transmitter there is no capacity gain

to be had by employing multiple antennas at the transmitter (provided all the

users have single antennas) [121]. However, in practice, obtaining full CSI at

the transmitter may not be feasible, especially for systems where the number of

users is large and/or the users are mobile so that the channel coefficients vary

rapidly with time.

• Computational complexity: When the number of users is large, the compu-

tational complexity of DPC, and even the convex optimization steps required

to determine the optimal covariance matrices from the dual MAC, may become

prohibitively large. Therefore there is interest in developing simple schemes that

require little CSI at the transmitter, yet deliver on most of the capacity offered

by the MIMO broadcast channel. One such scheme that achieves most of the

throughput (sum-capacity) in MIMO broadcast channels in certain regimes is

described in [121].

• Differentiated Quality of Service: In homogenous networks, the sum-rate

point is a symmetrical point on the boundary of the capacity region, and so

treats all the users equally. In systems which are provisioned to provide differ-

entiated services to different users, the transmitter has to give different services

(or rates) to different subsets of receivers, and yet at the same time maximize

the throughput (see e.g., [122] for a discussion of the SISO case). Giving differ-

entiated rates to users clearly means operating at non-symmetrical boundary

points of the capacity region.

In the present and the following chapters, we will look at two of these issues. In
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this chapter we consider different quality of service provisioning in the downlink of

cellular systems. More specifically, we look at a MIMO broadcast channel where the

transmitter has to provide different rates to different subset of receivers, and yet at

the same time maximizes the throughput.

As mentioned earlier, this problem can, in principle, be solved since the duality to

the MAC allows one to attain any point on the capacity region. However, since this

solution requires full CSI at the transmitter and potentially prohibitive computations

when the number of users is large, the main goal of this chapter is to develop simple

schemes that require very little CSI, give differentiated rates to the users, and that

operate close to the boundary of the capacity region.

We should also mention that in this chapter we will only be dealing with homoge-

nous networks, in the sense that the SNR of the different users are assumed to have the

same probability distribution. Of course many networks are, in fact, heterogenous,

with different users having different distributions for their SNRs. The methodology

of this paper (and many of the results, we suspect) can be straightforwardly carried

over to the heterogenous case, with the caveat that the development will be much

more involved and cumbersome. For this reason, and for reasons of space, although

quite important in practice, we deem the heterogenous case beyond the scope of the

current work. We only remark that a common practice to make a heterogenous net-

work appear homogenous is to use an appropriate power control (after which all our

results will directly apply).

In the first part of the chapter we consider channels with a small number of users

(i.e., n = 2, 3). It turns out that the problem of determining a schedule that satisfies

the rate constraints becomes analytically intractable as the number of users grows

beyond 3. Therefore, in the second part of the chapter, we assume that the number

of users is large. This is, of course, of practical interest since many systems operate in

such a regime. Furthermore, it allows us to obtain explicit results in the asymptote
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of large number of users, i.e., n.

7.2 Problem Formulation

We consider a fading Gaussian broadcast channel with M antennas at the transmitter

and n users, each with N = 1 receive antennas.3 The channels to each user are

assumed to be block fading with a coherence interval of T ; in other words, the channels

remain constant for T channel uses, after which they change to different independent

values.4 Furthermore, over different users the fading is assumed to be independent.

Thus, during any coherence interval, the signal to the i-th user, i = 1, 2, . . . , n, can

be written as

xi(t) =
√

ρHis(t) + wi(t), t = 1, . . . , T, (7.1)

where Hi ∈ C1×M is constant during the coherence interval and has i.i.d CN (0, 1)

entries. For the purposes of this chapter it will not matter how the channels change

from block to block, other than the fact that they vary in some stationary and ergodic

way.5wi(t) is additive white noise with distribution CN (0, 1), and s(t) ∈ CM×1 is the

transmit symbol satisfying E‖s(t)‖2 = M . In other words, the transmit power is

assumed to be M . Therefore, the received signal to noise ratio (SNR) of the i-th user

will be E ρ|His(t)|2 = P = Mρ; however, to simplify the notation we refer to ρ as the

SNR of the users.

In terms of channel knowledge, we assume that Hi is known perfectly at the

receiver. Also, we assume that the transmitter is provided with error-free information

about the channel states. We denote the (average) rate of the i-th user, i = 1, . . . , n,

3It is possible to extend our results to N 6= 1 in a straightforward fashion. However, for simplicity,
we shall not do so here. From a practical point of view N = 1 is also very reasonable.

4We should remark that, although the assumption of a constant channel for T channel uses is
critical, the requirement that the channels vary independently from one coherence interval to the
next is not.

5This is because our focus is on the rate. If we had focused on other performance measures, such
as delay, then how the channels vary with time would have been important.
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Figure 7.1: A MISO broadcast channels with differentiated rate users.

over the different channel realizations by Ri.

In this chapter we are interested in analyzing differentiated rate scheduling schemes

for broadcast systems with n users. We consider a partitioning of the users into K

groups G1, . . . ,GK , as shown in Figure 7.1, where different groups require different

rates from the transmitter. We also assume that the sizes of the groups are all of

the same order and, hence, the cardinality of Gk is αkn where K and αk’s are fixed

numbers such that
∑K

i=1 αi = 1.

Assuming that the average rate of a user in the k-th group is denoted by Rk,6

without loss of generality we may assume R1 < . . . < Rk. We further impose the

constraint that the average rate of a user in the k-th group is βk times the average

rate of a user in the K-th group. β1 < . . . < βK−1 < βK = 1 are fixed numbers

independent of n. In general we are interested in the following problem.

Problem 7.1. Consider the fading MIMO Gaussian broadcast channel described

above. Let Ri denote the rate to i-th user and Rk denote the rate to a user in group

6Throughout the chapter we use superscript k to refer to any user in Gk.
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k. Then construct a transmission scheme such that

max
(R1,...,Rn)∈CBC

n∑
i=1

Ri

subject to
Rk

RK
= βk, k = 1, . . . , K, (7.2)

where CBC is the capacity region of the broadcast channel given by Dirty Paper coding

(or superposition coding in the single antenna case) [118, 40].

Clearly, the solution to Problem 7.1 is given by the intersection of the line Rk/RK =

βk, k = 1, . . . , K − 1 with the boundary of the capacity region of the broadcast chan-

nel. Using the duality between the capacity region of Gaussian broadcast channel

and multiple access channel shown in [120, 133, 137], Problem 7.1 can be solved using

bisection method in the following way.

(a) Choose a set of rates R′k satisfying the rate constraints of (7.2).

(b) By appealing to the dual MAC, solve the problem, min
∑

pi, subject to the
rates R′k.

(c) If the minimum sum of powers, min
∑

pi, is less than total transmit power, ρM ,
then the rate vector is achievable. Increase the rate proportionately (according
to vector β = (β1, . . . , βK)) and go to (a).

(d) Otherwise decrease the rates proportionately (according to vector β = (β1, . . . , βK))
and go to (a).

While this is all fine, the algorithm is computationally-intensive (even though the

problem in step 2 is convex, it is time-consuming if n is large), requires full CSI, and

finally requires implementation of DPC. Furthermore, the solution to Problem 7.1

does not give us insight into how much throughput loss we would incur by imposing

the rate constraints.
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In this chapter we look into devising simpler scheduling schemes such as time-

sharing and opportunistic transmission. We also compare the performance of different

scheduling schemes in terms of their sum-rate.

It is clear that there is a price to pay in terms of throughput (sum-rate) to maintain

the rate constraints. This is due to the fact that we are not working on the sum-

capacity point and, therefore, the throughput will be reduced compared to the case

where we had no rate constraint. In other words, we are interested in

Throughput Loss =
n∑

i=1

Ri

(R1,...,Rn)∈CBC

−
n∑

i=1

Ri

(R1,...,Rn)∈CBC and (7.2)

(7.3)

for different scheduling schemes.

In Section 7.4 we consider a channel with a small number of users, namely n = 2

and n = 3 and single antenna at the transmitter, i.e., M = 1. We also focus on

the rate region achieved by weighted-opportunistic (WO) scheduling in which we

transmit to the user that has the maximum “weighted” signal to noise ratio (SNR).

We obtain the relationship between the weights for WO scheduling and the ratio of

the rates. It turns out that finding an explicit relationship between the weights as a

function of the given ratios is analytically intractable for n > 3, even if we allow for

simplifying assumptions such as considering the low SNR regime. We further look

into the throughput loss due to the rate constraints in (7.2).

In order to obtain explicit solutions, in the second part of the chapter we consider

a system with many users and, rather than attempting to solve Problem 7.1 and

optimization problem (7.2) directly, we propose three scheduling schemes to provide

the rational rate constraints, namely weighted opportunistic beamforming (WO), time

division opportunistic beamforming (TO), and superposition coding (SC) for single

antenna systems. In WO, a generalization of opportunistic random beamforming

scheduling, a beam is assigned to the user that has the largest “weighted” signal to



241

noise and interference ratio (SINR) corresponding to that beam. In TO, each group

has its own time slot in which the transmitter chooses the user with the best SINR

from the corresponding group. Superposition coding (SC) is the scheme that achieves

the information-theoretic capacity region for a single antenna broadcast channel. For

each scheduling we give an explicit scheme to guarantee the rate constraints. We also

analyze the throughput loss due to the rate constraints for all three different schemes.

At the end of the chapter, we will provide simulation results showing the performance

of the developed scheduling schemes.

7.3 Preliminary Results for MIMO GBC

In this section we will review some of the results for MIMO Gaussian broadcast

channels (GBC). In particular, we will look at the sum-capacity of these channels. We

will review the concept of “opportunistic” beamforming and analyze the difference

between the achievable sum-rate using “opportunistic” beamforming and the sum-

capacity point for large systems, i.e., large n.

7.3.1 The Capacity Region of MIMO GBC

The capacity region of MIMO Gaussian broadcast channels was recently found in

[118]. It is shown that the capacity region of these channels is given by a precoding

scheme at the transmitter, called Dirty Paper Coding (DPC)[119]. Furthermore, it is

shown in [120, 133, 137] that the capacity region of the MIMO GBC is equal to the

capacity region of a dual multiple access channel (MAC) with sum-power constraint

equal to the GBC power constraint. Using this duality result we can write the capacity
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region of the broadcast channel of (7.1) as

CBC =
⋃

{P :
P

Pi≤Mρ}

{
R|

∑
j∈A

Rj ≤ log det(I +
∑
j∈A

H∗
j PjHj) ∀A ⊆ {1, . . . , n}

}
,

(7.4)

where R = (R1, . . . , Rn) and P = (P1, . . . , Pn). In particular, the ergodic sum-

capacity of the channel is

Csum = E max
0≤Pi:

Pn
i=1 Pi≤Mρ

log det(I +
n∑

i=1

H∗
i PiHi), (7.5)

where the expectation is over all the channel realizations.

Sum-Capacity Scaling Laws

In point-to-point multi-antenna systems, the throughput scaling is often equivalent

to the “multiplexing gain,” defined as limP→∞ Csum

log P
where Csum denotes the ergodic

sum-rate capacity (or throughput) of the channel achieved by coding over several

coherence intervals.

In broadcast channels, as the number of users can also be large, two different

throughput scaling laws can be envisioned with respect to P = Mρ (or equivalently

SNR) and with respect to the number of users n.

Theorem 7.1. (Large Power Regime)[124] Consider the fading MIMO Gaussian

broadcast channel of Section 7.2 with received SNR of P = Mρ. Then, for a fixed M

and n, we have

lim
P→∞

Csum

log P
= M. (7.6)

Theorem 7.2. (Large Number of Users Regime)[125] Consider the fading MIMO
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Gaussian broadcast channel of Section 7.2. Then, for fixed M and ρ, we have

lim
n→∞

Csum

log log n
= M, (7.7)

where Csum refers to the maximum possible sum of the rates to all n users.

These are clearly two very different regimes and both confirm that the sum-rate

is linearly scaled with the number of transmit antennas M . We argue that, from

a practical perspective, the latter regime may be more interesting. There are three

reasons that come to mind.

(a) Many practical systems operate with a large number of per-cell users (n could

be in the hundreds, whereas M may be no more than two, three, or four).

(b) Significant rates can be obtained even at low to moderate SNR, P = Mρ.

(c) The first gain requires channel knowledge with very high fidelity at the trans-

mitter (indeed a fidelity that grows with the transmit power) [126], whereas the

latter requires very little CSI (see, e.g., [121] and Chapter 8).

In view of the above, in this paper we will focus on the large n regime.

Note that in order to perform DPC to achieve the sum-capacity (or any other point

in the capacity region), the transmitter requires exact knowledge of the channels. In

the following, we briefly describe “opportunistic” beamforming, a simple scheme that

achieves most of the sum-capacity in some regimes and yet requires very little CSI at

the transmitter. For a complete study of this scheme, see [121, 127].

7.3.2 Opportunistic Beamforming

The main idea behind opportunistic beamforming is to exploit the multi-user di-

versity available in the network and transmit to the users with the best quality of
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reception. In this beamforming, during any coherence interval the transmitter con-

structs M random beams and transmits each beam to the user with the highest signal

to interference plus noise ratio (SINR). Let φm(M × 1), for m = 1, . . . ,M , be M ran-

dom orthonormal vectors generated according to an isotropic distribution [149]. The

transmitted signal is

s(t) =
M∑

m=1

φmsm(t), t = 1, . . . , T,

where each sm(t) is a scalar signal (with average unit power, i.e., E |sm|2 = 1) intended

for one of the users. Assuming the users know their own channel coefficients (a much

more reasonable assumption than the transmitter knowing all the channel gains to

the different users), each user can compute its signal-to-interference-plus-noise-ratio

(SINR) for every beam as

SINRi,m =
|Hiφm|2

1
ρ

+
∑

l 6=m |Hiφl|2
, m = 1, . . . , M. (7.8)

If each user (or, in fact, only those users who have favorable SINRs) feeds back

its best SINR and corresponding beam index to the transmitter, the transmitter can

assign each beam to the user that has the best SINR for that beam (see [121] for

more details.).

For this scheme the following result can be shown.

Theorem 7.3. [121] Consider the fading MIMO Gaussian broadcast channel of Sec-

tion 7.2 and let Cob denote the sum-rate obtained by the opportunistic beamforming

technique described above. Then, for fixed P and M

lim
n→∞

Cob

log log n
= M. (7.9)
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However, for fixed n and M

lim
P→∞

Cob

log P
= 0. (7.10)

In other words, opportunistic beamforming is order-optimal in the large n regime,

but not in the large P regime. The reason is that opportunistic beamforming is

interference-dominated, and so the sum-rate does not scale with the logarithm of

the power. (In fact, to obtain the multiplexing gain of M at high power requires

essentially eliminating the interference, such as is done by a zero-forcing solution.)

Before we proceed further, it is useful to mention that the probability distribution

function (PDF) of SINRi,m, denoted by fs(x), can be written as [121]

fs(x) =
e−x/ρ

(1 + x)M
(
1

ρ
(1 + x) + M − 1). (7.11)

We can also calculate the cumulative distribution function (CDF) of SINRi,m, Fs(x),

as

Fs(x) = 1− e−x/ρ

(1 + x)M−1
, x ≥ 0. (7.12)

7.3.3 Tighter Scaling Laws

In this section we give a tighter result regarding the convergence of the sum-rate of

opportunistic beamforming scheme to the sum-capacity.

Theorem 7.4. Consider the fading MIMO Gaussian broadcast channel of Section

7.2. For fixed ρ and M

Csum = M log log n + M log ρ + o(1), (7.13)

where Csum refers to the sum-capacity of the broadcast channel with n users and o(1)

is with respect to growing n.
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Proof. Using (7.5), we can write the sum-capacity as capacity as

Csum = E maxPn
i=1 Pi=Mρ,Pi≥0

log det

(
IM +

n∑
i=1

H∗
i PiHi

)

≤ E maxPn
i=1 Pi=Mρ,Pi≥0

M log

(
1 +

1

M
tr (

n∑
i=1

H∗
i PiHi)

)
,

= E maxPn
i=1 Pi=Mρ,Pi≥0

M log

(
1 +

1

M

n∑
i=1

Pi‖Hi‖2

)
,

= E M log
(
1 + ρ max

i
‖Hi‖2

)
, (7.14)

where we have used the Hadamard’s inequality for A º 0 that states det (A) ≤
( tr (A)

M
)M [129]. It is worth mentioning that ‖Hi‖2s have χ2(2M) distribution and

they are independent. Therefore, using order statistics results [128], we can show

that the random variable maxi ‖Hi‖2 with high probability behaves as log n. More

precisely,

Pr
(
log n + 2(M − 2) log log n ≤ max

i
‖Hi‖2 ≤ log n + 2M log log n

)
= 1−O

(
1

(log n)2

)
.

(7.15)

We can split the expectation in the right hand side of (7.14) in two parts; one is the

expectation conditioned on maxi ‖Hi‖2 being less than or equal to log n+2M log log n,

and the other is the expectation conditioned on maxi ‖Hi‖2 being greater than log n+

2M log log n. This way, we can upper bound the expectation as

E log
(
1 + ρ max

i
‖Hi‖2

)
≤ log (1 + ρ(log n + 2M log log n))

+

∫ ∞

log n+2M log log n

log (1 + ρx) fm(x)dx, (7.16)

where fm(x) is the distribution of x = maxi ‖Hi‖2. It is quite straightforward to show

that the second term in the right hand side behaves like o(1) for large n, and the first
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term scales like log log n + log ρ + o(1). This shows that

Csum ≤ M log log n + M log ρ + o(1).

To complete the proof we need a lower bound that has the same behavior. It turns

out that the desired lower bound can be obtained by employing opportunistic beam-

forming. The required result is the next theorem.

Theorem 7.5. Consider the setting of Theorem 7.4. Then, if we use opportunistic

beamforming

Cob = M log log n + M log ρ + o(1). (7.17)

Proof. In order to write the sum-rate achieved by random beamforming, we have to

take into account the probability that there can be a user that has the best SINR

for two different beams. One can lower bound the sum-rate by sending to one of the

M best SINRs for each beam such that the user has not been chosen before. Using

this selection, we make sure there is no user with the best SINRs for two beams;

obviously, there is a rate hit, as we may transmit to the user that has the M -th best

SINR as opposed to the best SINR. This, however, has little effect on the sum-rate, as

the asymptotic behavior of the M -th best and the best of the SINRs is quite similar

(when M is fixed and n grows). In particular,

Cob ≥ ME log

(
1 + ρ

M
max
1≤i≤n

SINR1,i

)

≥ M log (1 + ρ(log n− 2M log log n)) Pr

(
M

max
1≤i≤n

SINR1,i > log n− 2M log log n

)

︸ ︷︷ ︸
=1−O( 1

log n
)

= M log log n + M log ρ + o(1),
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where maxM xi denotes the M ’th maximum of xi’s. Using theorem 7.4, Cob matches

the upper bound, and that completes the proof.

Theorems 7.4 and 7.5 imply that the difference of the sum-rate achieved by beam-

forming and DPC tends to zero, i.e.,

lim
n→∞

(Csum − Cob) = 0, (7.18)

which is a much stronger result than being simply order optimal. In fact, a careful

analysis of the different in the sum-rates shows that

(Csum − Cob) = O(
log log n

log n
). (7.19)

For the rest of this chapter we look at the differentiated rate scheduling problem.

7.4 Channels with a Small Number of Users

In this section we start with characterizing the achievable rate region using weighted-

opportunistic (WO) scheduling for single antenna (i.e., M = 1) systems. In WO, at

each channel use we send to only the user that has the maximum weighted signal to

noise ratio, i.e., the user for which

max
1≤i≤n

µi|hi|2. (7.20)

Let us look at the rate transmitted to one of the users, say the first user (denoted by

Rw
1 ). Clearly,

Rw
1 =

∫ ∞

0

log(1 + x)fs(x)Pr (µ1x1 ≥ µixi, i = 2, . . . , n|x1 = x)dx,
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where xi = ρ|hi|2, i = 1, . . . , n and fs(·) is the PDF of the SNR defined in (7.11).

The probability of the event inside the above integral can be written as

Pr (µ1x1 ≥ µixi, i = 2, . . . , n|x1 = x) =
n∏

i=2

(1− e
−µ1x

µiρ ).

Replacing this expression into the formula for Rw
1 yields

Rw
1 =

∫ ∞

0

log(1 + x)
e−x/ρ

ρ

n∏
i=2

(
1− e

−µ1x
µiρ

)
dx. (7.21)

The rates to the other users can be found in a similar fashion. Let us now focus on

(7.21) for the case of two and three users.

7.4.1 Case 1: Two-User Channels

In this case (7.21) simply reduces to

Rw
1 =

∫ ∞

0

log(1 + x)
(
1− e

−µ1x
µ2ρ

) e−x/ρ

ρ
dx. (7.22)

Similarly, the rate for the second user is as in (7.22), with the only difference that

µ1 should be exchanged by µ2. We would like to find µ1 and µ2
7 such that the rate

constraint, i.e.,
Rw

1

Rw
2

= β, is satisfied.

We can simplify (7.22) as

Rw
1 =

∫ ∞

0

log(1 + x)
e−x/ρ

ρ
d x−

∫ ∞

0

µ2

µ1 + µ2

log

(
1 +

µ2

µ1 + µ2

x

)
e−x/ρ

ρ
d x

= −e
1
ρ Ei (−1

ρ
) +

µ2

µ1 + µ2

e
µ1+µ2

ρµ2 Ei

(
−µ1 + µ2

ρµ2

)
, (7.23)

where we used the definition of the exponential integral function defined as−Ei (−x) =

7It is worth mentioning that without loss of generality we can set the sum of µis equal to 1.
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∫∞
1

e−tx

t
d t. We can similarly write the rate for the second user as

Rw
2 = −e

1
ρ Ei (− 1

P
) +

µ1

µ1 + µ2

e
µ1+µ2

ρµ1 Ei

(
−µ1 + µ2

ρµ1

)
. (7.24)

In order to find the µ1 that satisfies the rate constraint of (7.2), we need to solve the

following non-polynomial equation:

−e
1
ρ Ei (−1

ρ
) + (1− µ1)e

1
ρ(1−µ1) Ei

(
− 1

ρ(1−µ1)

)

−e
1
ρ Ei (−1

ρ
) + µ1e

1
ρµ1 Ei

(
− 1

ρµ1

) = β. (7.25)

It does not seem that (7.25) has a closed form solution because it involves the expo-

nential integral. We can numerically evaluate β versus µ1, as shown in Figure 7.2.

Since µ1 + µ2 = 1, here we assume that µ1 is varying between zero and one.

The generalization to a system with n > 2 users is straightforward: We simply

need to expand the products in (7.21) into a summation of exponentials and then

repeatedly use the exponential integral. Applying the rate constraints will lead to a

non-polynomial system of equations with n−1 equalities and n−1 variables. Although

it may be possible to solve numerically such a system of equations, it gives us little

insight into the problem.

In order to find more explicit results, in the next section we simplify the system

(7.25) by assuming that ρ is small (low SNR regime).

7.4.2 Case 2: Low SNR Regime

Assuming that the system is working in the regime of small ρ, the instantaneous rate

can be approximated to first order as ρ|hi|2 (instead of log(1 + ρ|hi|2)). It turns out

that this leads to a system of polynomial equations, which can be theoretically dealt

with using Groebner bases.8 Given a finite set of multivariate polynomials over a

8Groebner bases method was introduced by Bruno Buchberger in 1965 [130].



251

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

µ
1

lo
g(

β)

Figure 7.2: β versus µ1 for a channel with n = 2.

field, a new set of polynomials with good properties can be found by an algorithm of

Buchberger, called the Groebner basis, which can be used to find the solutions of the

polynomial system. This method has been extensively studied, developed, and has

been implemented on all major computer algebra systems.

In a channel with two users, the rates can be written as

Rw
1 =

∫ ∞

0

x(1− e
−µ1x

µ2ρ )
e−x/ρ

ρ
d x = ρ(2− µ1)µ1. (7.26)

Similarly,

Rw
2 = ρ(1− µ2

1). (7.27)

Therefore, the boundary of the rate region is characterized by (7.26) and (7.27). This

parametric characterization can be made explicit by eliminating µ1 from (7.26) and

(7.27) as

1

4

(
1− Rw

2

ρ
+

Rw
1

ρ

)2

= 1− Rw
2

ρ
. (7.28)
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Now, given the ratio of the rates and (7.28), we can easily obtain µ1 such that the

ratio of the rates will be equal to β.

This framework can be easily generalized to the case of more than two users. We

omit the details and simply state that for n = 3, we may write the rates as

Rw
1

ρ
= 1− µ2

µ1 + µ3

− µ3

µ1 + µ2

+
µ2µ3

µ2µ3 + µ1µ3 + µ1µ2

,

Rw
2

ρ
= 1− µ1

µ2 + µ3

− µ3

µ2 + µ1

+
µ1µ3

µ2µ3 + µ1µ3 + µ1µ2

,

Rw
3

ρ
= 1− µ1

µ2 + µ3

− µ2

µ3 + µ2

+
µ1µ2

µ2µ3 + µ1µ3 + µ1µ2

,

1 = µ1 + µ2 + µ3,

To find the explicit characterization of the rate region, we have to eliminate the

µis from the above set of polynomial equations. This can be done with the aid of

Groebner bases using, say, Mathematica. However, the complexity of the algorithm

becomes formidable, even for the case of n = 3.

On the other hand, it is possible to attempt to solve the above system of equations

numerically. This, in principle, will allow us to map a set of rate constraints to a set

of weights for the schedule. However, as mentioned earlier, this gives little insight

and, moreover, it too can be quite complex for large n.

7.4.3 Throughput Loss

As mentioned earlier, it is clear that there is a price to pay in terms of throughput

(sum-rate) to maintain the rate constraints. In this part, we numerically evaluate the

throughput degradation due to imposing the rate constraint of β for a channel with

two users. Assuming that the rate of the first user is β times the rate of the second

user, Figure 7.3 shows the ratio of the throughput of the WO scheduling over the

sum-rate capacity versus β.
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Figure 7.3: Ratio of the throughput with rate constraints over the sum-rate capacity
versus β for a channel with n = 2.

Clearly, when β equals one, the WO scheduling achieves the sum-rate capacity,

and, therefore, throughput will be equal to the sum-rate capacity. As β increases,

the throughput loss will be more. It is quite interesting to observe that even for

very large β (e.g., close to 70), the throughput is above 80 percent of the sum-rate

capacity. Therefore, the throughput does not seem to be too much affected by the

differentiated rate scheduling. In the next section, we look into this throughput loss

in the regime of large number of users.

7.5 Channels with Many Users

In Section 7.4 we observed that finding an explicit relationship between βis and the

µis in WO scheduling becomes very complicated, even for the case of n = 3.

Therefore, for the remainder of the chapter, we look into the regime of large

number of users. We first characterize the optimal differentiated opportunistic beam-



254

forming scheme for maximizing the sum-rate and at the same time satisfy the rational

rate constraints.

Then, we consider WO and TO scheduling schemes for multiple antenna GBCs

and analyze the performance of superposition coding for single antenna systems for

large number of users. It will turn out that having a large number of users will

simplify the derivations and lead to explicit results.

7.5.1 Optimal Differentiated Opportunistic Beamforming Scheme

In this section we characterize the optimal random opportunistic beamforming scheme

for providing different rates to different groups of users. By opportunistic, we mean

that the transmitter based on its available knowledge about the channel realization,

allocates a fraction of time to transmit each beam to each user. The goal is to

maximize the sum-rate and at the same time satisfy the rational rate constraints of

(7.2).

Let X(m) = (SINRi,m, 1 ≤ i ≤ n) be the vector of instantaneous SINRs for trans-

mitted beam m of different users. We define a general opportunistic schedule with

parameters τi(X
(m)) for i = 1, . . . , n, where τi(X

(m)) is the fraction of the coherence

interval that the transmitter assigns beam m to user i, given that the instantaneous

SINRs for different receivers correspond to entries of X(m). Clearly,

n∑
i=1

τi(X
(m)) = 1, τi(X

(m)) ≥ 0

As an example, for the opportunistic beamforming scheme of Section 7.3.2, we

have that for each beam m

τi(X
(m)) = 1

(
i = arg max

j
X

(m)
j

)
,
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where 1(a = b) is one if a = b and zero otherwise. It is not hard to persuade oneself

that WO and TO beamforming are also special cases of the schedule defined here.

With this definition, the average rate assigned to user i is

Ri = ME
(
τi(X

(m)) log(1 + X
(m)
i )

)
,

where the expectation is over the distribution of SINRs for a particular beam, say, m

at different users, i.e., X(m). Therefore, we can write Problem 7.1 in terms of τi(·)’s
as follows

max
τi(X

(m))
M

n∑
i=1

E
(
τi(X

(m)) log(1 + X
(m)
i )

)
, (7.29)

subject to

E
(
τi(X

(m)) log(1 + X
(m)
i )

)
= βiE

(
τn(X(m)) log(1 + X(m)

n )
)

i = 1, . . . , n− 1

τi(X
(m)) ≥ 0 ∀X(m) ∈ Sn, i = 1, . . . , n

n∑
i=1

τi(X
(m)) = 1 ∀X(m) ∈ Sn, (7.30)

where without of loss of generality we have assumed that user n is in group GK and

for user i in group k, βi refers to the βk defined in Section 7.2.

Looking at (7.29) and (7.30), we can see that the maximization problem is a linear

program in τi(·). The following theorem describes the optimal choice of functions τi(·).

Theorem 7.6. Consider a MIMO Gaussian broadcast channel with the assumptions

stated in Section 7.2. Then, the optimal differentiated opportunistic scheduling in the

sense defined in (7.29) and (7.30) is given by

τi(X
(m)) = 1

(
i = arg max

j
γj log(1 + X

(m)
j )

)
,

where γjs are scalar chosen to satisfy the rational rate constraints of (7.30). In other
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words, the optimal differentiated opportunistic scheduling is to assign beam m to the

user with the highest “weighted” instantaneous rate in decoding information symbol

carried on that beam.

Proof. We use dual form of the linear program in (7.29) and (7.30) to prove the

theorem. The dual linear program can be written as

min
ηi(X

(m)),λi, ζ(X(m))
ME (ζ(X(m)))

subject to

ηi(X
(m)) ≤ 0 ∀X(m) ∈ Sn, i = 1, . . . , n

(1 + λi) log(1 + X
(m)
i ) = ηi(X

(m)) + ζ(X(m)) ∀X(m) ∈ Sn, i = 1, . . . , n− 1

(1−
n−1∑
i=1

λiβi) log(1 + X(m)
n ) = ηn(X(m)) + ζ(X(m)),

where λi, ηi(X
(m)), and ζ(X(m)) represent dual variables for the first, second, and

third constraint given in (7.30). We can further simplify the above minimization

problem to

min
λi, ζ(X(m))

ME (ζ(X(m))) (7.31)

subject to

(1 + λi) log(1 + X
(m)
i ) ≤ ζ(X(m)) ∀X(m) ∈ Sn, i = 1, . . . , n− 1

(1−
n−1∑
i=1

βiλi) log(1 + X(m)
n ) ≤ ζ(X(m)) ∀X(m) ∈ Sn. (7.32)

Now, for a fixed choice of λis, the minimizing ζ(X(m)) is maxi γi log(1+X
(m)
i ), where
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we have defined

γi =





1 + λi 1 ≤ i ≤ n− 1,

1−∑n−1
i=1 βiλi i = n.

(7.33)

Looking at the KKT conditions [131] at the optimal point (η?
i (·), ζ?(·), τ ?

i (·), λ?
i ) , we

should have

η?
i (X

(m))τ ?
i (X(m)) = 0 ∀X(m) ∈ Sn, 1 ≤ i ≤ n

ζ?(X(m)) = max
j

(γ?
j log(1 + X

(m)
j )) ∀X(m) ∈ Sn

τ ?
i (X(m)) = 1

(
i = arg max

j
(γ?

j log(1 + X
(m)
j ))

)
, ∀X(m) ∈ Sn, 1 ≤ i ≤ n,

where γ?
j is defined from λ?

j according to (7.33). Now, based on the above conditions,

it is clear that the maximizing solution is the one that assigns each beam to the user

with maximum γ?
j log(1 + X

(m)
j ), and this completes the proof.

Remark 7.7. It is interesting to note that since log(1+x) ≈ x for x ¿ 1, in the low

SNR regime, the optimal schedule becomes equivalent to WO beamforming.

It turned out that analyzing the above optimal scheme does not lead to explicit so-

lution for γ−j’s. Therefore, we look at the performance of TO and WO beamforming

next and devise explicit schemes for these beamforming schedules.

7.5.2 Time-Division Opportunistic (TO) Beamforming

The simplest scheme to give differentiated rates to different users is to assign different

lengths of channels uses to different users, i.e., time-sharing. This should be done

opportunistically to maximize the sum-rate. In particular, we divide each coherence

interval into K slots of duration tk each, k = 1, . . . , K. During the k-th subinterval,

the transmitter performs opportunistic beamforming to only the αkn users in the k-th

group. If αks are fixed and n grows, it is not hard to convince oneself that to satisfy
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the rational rate constraints, we must have

tk
T

=
αkβk∑K
l=1 αlβl

, k = 1, . . . , K. (7.34)

Intuitively, since each group has a size of order n, the sum-rate for each group

scales like M log log n. Therefore, in order to satisfy the rate constraints, we need to

only take into account the size of the group, i.e., αi, and the rate ratio βi. Therefore,

using (7.34), we can easily show that

lim
n→∞

Rk

RK
= βk, k = 1, . . . , K − 1. (7.35)

We can state the following result that quantifies the sum-rate loss due to the rate

constraints and also the sum-optimality of the scheduling.

Theorem 7.8. Consider the fading MIMO Gaussian broadcast channel of Section

7.2. Let M , ρ, αk, and βk be fixed, and let the subintervals be chosen as (7.34).

Then, the rational rate constraints are met and

lim
n→∞

(Csum − Ctdob) = Θ

(
1

log n

)
, (7.36)

where Ctdob represents the sum-rate for the time-division opportunistic scheme.

Proof. That the rational rate constraints are met is fairly straight forward. As for

the sum-rate we have,

Ctdob =
K∑

k=1

αkβk∑K
l=1 αlβl

(M log log nαk + M log ρ + o(1))

=
K∑

k=1

αkβk∑K
l=1 αlβl


M log log n + log

(
1 +

αk

log n

)

︸ ︷︷ ︸
=o(1)

+M log ρ + o(1)




= M log log n + M log ρ + o(1).
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Now, in order to find the difference between the throughputs in the two cases we have

Cob − Ctdob =

∫ ∞

0

M log(1 + x)nfs(x)

(
Fs(x)n−1 −

K∑

k=1

αktk
T

Fs(x)αkn−1

)

︸ ︷︷ ︸
h(x)

d x.

Define

l− = ρ(log n− (M + 3) log log n), l+ = ρ(log n + (M + 3) log log n). (7.37)

We break the integral into the following three regions: I1 = [0, l−], I2 = [l−, l+] and

I3 = [l+,∞]. It can be easily checked that

∣∣∣∣
∫

I1

h(x)d x

∣∣∣∣ = O(log log n

∫

I1

Mnfs(x)Fs(x)min{αk}n−1d x) (7.38)

= O(log log nFs(x)min{αk}n|l−0 )

= O

(
log log n

(
1− (log n)M+3

n(1 + ρ log n)M−1

)min{αk}n
)

= O(log log n · e−(log n)4).

As for the third region, we have

∣∣∣∣
∫

I3

h(x)d x

∣∣∣∣ ≤
∫

I3

Mn log(1 + x)fs(x)d x (7.39)

≤ 1

(ρ log n)M−1

∫

I3

Mn log(1 + x)
e−x/ρ

ρ
d x

= O

(
n

(ρ log n)M−1

(
− log(1 + x)e−

x
ρ |∞l+

)
− e

1
ρ Ei (− l+

ρ
)

)
,

where Ei (−x) = − ∫∞
x

e−y

y
d y is the exponential integral. For large x we have
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Ei (−x) = Θ(− e−x

x
). Using this identity in the previous inequality gives

∣∣∣∣
∫

I3

h(x)d x

∣∣∣∣ = O(
log log n

(log n)2M+2
).

Now we move on to the integral over I2. Using integration by parts we have

∫

I2

h(x)d x = log(1 + x)(F (x)n −
K∑

k=1

tk
T

F (x)αkn)|l+l−

−M

∫

I2

F (x)n −∑K
k=1

tk
T

F (x)αkn

1 + x
d x.

We can further simplify the integral to

∫

I2

h(x)d x = Θ(
log log n

(log n)2M+2
)

− M

ρ log n

(
1−O(

log log n

log n
)

) ∫ l+

l−

(
F (x)n −

K∑

k=1

tk
T

F (x)αkn

)
d x.

Next, we show that the last integral in the above equation is of order constant.

Suppose i = arg mink{αk}. Note that with this condition αi ≤ 1
2
. It can be verified

that

∫ l+

l−

(
F (x)n −

K∑

k=1

tk
T

F (x)αkn

)
d x = Θ

(∫ l+

l−
(F (x)n − F (x)αin) d x

)
(7.40)

(a)
= Θ

(∫ (2M+2) log log n

−4 log log n

(1− e−y

n(1 + O( log log n
log n

))M−1
)n − (1− e−y

n(1 + O( log log n
log n

))M−1
)αind y

)

(b)
= Θ

(∫ (2M+2) log log n

−4 log log n

exp (−ν(n)e−y)− exp (−ν(n)αie
−y)d y

)

(c)
= Θ

(∫ (log n)4ν(n)

1

(log n)2M+2 ν(n)

e−z − e−αiz

z
d z

)

(d)
= Θ(ln αi +

log log n

log n
) = Θ(1),

where (a) follows by a change of variable y = x
ρ
− log n + (M − 1) log log n, and (b)
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holds because

(1− e−y

n(1 + Θ( log log n
log n

))M−1
)n = Θ

(
(1−O(

(log n)4

n
))exp (−ν(n)e−y)

)
,

for large n, ν(n) = (1+O( log log n
log n

))M−1, and for y in the range defined in the integral.

(c) follows after change of variable of z = ν(n)e−y, and (d) is a direct consequence of

the following asymptotic expansions for −Ei (−x) =
∫∞

x
e−t

t
d t for small and large x,

respectively [129]:

Ei (−x) = ln x + γ0 + O(x), x ¿ 1, Ei (−x) = −e−x

x
(1 + O(

1

x
)) x À 1.

Putting Equations (7.38) to (7.40) together we get

(Cob − Ctdob) = Θ(
1

log n
).

This Theorem implies that rate constraint does not drastically degrade the sum-

rate of the systems as long as the group sizes are order n and n is large. It also raises

the question whether the difference between the sum-rate of TO beamforming and

sum-rate capacity can be improved or not.

7.5.3 Weighted Opportunistic (WO) Beamforming

In the weighted opportunistic scheme we weigh the SINR of each user according to

its group by µk, k = 1, . . . , K. Then, during each coherence interval, the transmitter

assigns the M random beams to the M users that have the largest weighted SINR.

More specifically, let the SINR corresponding to beam m and user i be denoted by

xi,m. The distribution of xi,m was given in (7.11). With this notation, beam m is
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assigned to the user l0 from group k0 such that

(k0, l0) = arg max
(k,i):i∈Gk

µkxi,m.

Equivalently, one can see that beam m assigned to group k0 such that

k0 = arg max
1≤k≤K

µk max
i∈Gk

xi,m. (7.41)

In the WO beamforming scheme there are two questions to be answered: first, how

to determine the weights such that the rational rate constraints are met (Here, unlike

the TO case, the answer is not trivial), and second, what is the rate loss compared

to the unconstrained sum-rate capacity of the broadcast channel itself?

The following theorems settle the aforementioned questions.

Theorem 7.9. Consider the fading MIMO Gaussian broadcast channel of Section

7.2. Consider the WO beamforming scheme with

µk = 1 +
log βk

log n− (M − 1) log log n
. (7.42)

Assuming, M , ρ, αks and βks are fixed, we have

lim
n→∞

Rk

RK
= βk, k = 1, . . . , K. (7.43)

Proof. Without loss of generality let us look at the average transmitted rate to the

first user in the first group (denoted by R1). Clearly,

R1 = M

∫ ∞

0

log(1+x)fs(x)Pr

(
µ1x1,m ≥ µkxi,m, ∀ k, i s.t. 1 ≤ k ≤ K, i ∈ Gk

∣∣∣∣x1,m = x

)
d x.
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Using the independence of the SINRs for different users, the probability of the event

defined inside the above integral can be written as

K∏

k=1

∏

i∈Gk,i6=1

Pr

(
xi,m ≤ µ1

µk

x

)
= Fs(x)α1n−1

K∏

k=2

F (
µ1

µk

x)αkn.

Accordingly, we have

R1 = M

∫ ∞

0

log(1 + x)fs(x)Fs(x)α1n−1

K∏

k=2

Fs(
µ1

µk

x)αkn

︸ ︷︷ ︸
h1(x)

d x.

We further split the above integral to three integrals over the intervals I1 = [0, l−],

I2 = [l−, l+], and I3 = [l+,∞], where l− and l+ are defined in (7.37). The integral

over the first region can be written as

∫

I1

h1(x)d x
(a)
= O(log log n

∫

I1

Mfs(x)Fs(x)α1n−1d x)

= O(
log log n

n
Fs(x)α1n|l−0 )

= O(log log n · e−(log n)4),

where (a) follows from the fact that 0 ≤ Fs(x) ≤ 1. Similarly, it can be shown that

for the integral over the third region we have

∫

I3

h1(x)d x = O(
log log n

(log n)2M+2
).

Hence, the main contribution is due to the integral over the second interval. Looking
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at the behavior of Fs(
µ1

µk
x)αkn for x ∈ I2 we have

Fs(
µ1

µk

x) = Fs

(
µ1

µk

(y + ρ(log n− (M − 1) log log n))

)
(7.44)

(a)
= Fs

(
ρ

(
y(1 + O(

1

log n
)) + log(

β1

βk

) + log n− (M − 1) log log n

)
+ O(

1

log n
)

)
,

where (a) follows by defining y = x
ρ
− log n+(M−1) log log n, where y ∈ I ′2 = [(2M +

2) log log n,−4 log log n], and using the definition of µk’s in the theorem statement.

Further simplification gives

(
Fs

(
µ1

µk

x

))αkn
(b)
=


1− βk

β1

e−y(1+O( 1
log n

))(1−O( log log n
log n

))

nρM−1




αkn

= exp


αkn log


1− βk

β1

e−y(1+O( 1
log n

))(1−O( log log n
log n

))

nρM−1







= (1−O(
log log n

log n
))exp (− αkβk

β1ρM−1
e−y),

where (b) follows by substituting Fs(x) in (7.44) with its expression from (7.12) and

noting that for y ∈ I ′2 we have (1 + y
log n

)1−M = 1 − O( log log n
log n

). The last equality is

obtained by expanding the logarithm. Using similar arguments, it can be shown that

for y ∈ I ′2,

fs(ρy + ρ(log n− (M − 1) log log n)) = (
1

ρMn
−O(

log log n

n log n
))e−y.

Using the above asymptotic expressions for Fs(
µ1

µk
x)αkn and fs(x), the integral over
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I2 can be written as

∫

I2

h1(x)d x = M
log log ρn

nρM−1

(
1 + O(

log log n

log n
)

) ∫

I′2
e−yexp (−

∑k
k=1 αkβk

β1ρM−1
e−y)d y

= M
log log ρn

nρM−1

(
1 + O(

log log n

log n
)

) ∫ (log n)4

(log n)−2M−2

exp (−
∑k

k=1 αkβk

β1ρM−1
z)d z

(a)
= M

log log ρn

nρM−1

(
1 + O(

log log n

log n
)

)
e−A0z

A0

∣∣∣∣
(log n)−2M−2

(log n)4

= M
log log ρn

ρM−1A0n
(1−O(

log log n

n log n
))

= M
β1∑K

k=1 βkαk

log log ρn

n
+ O(

log log n

n log n
),

where A0 = −
Pk

k=1 αkβk

β1ρM−1 in (a) and z = e−y.

Putting these integrals together we have

R1 = M
β1∑K

k=1 βkαk

log log ρn

n
+ O(

log log n

n log n
).

Similarly, we can check that for a user in group k the average transmitted rate is

Rk = M
βk∑K

k=1 βkαk

log log ρn

n
+ O(

log log n

n log n
),

and hence the rational constraints are readily obtained. Also notice that achievable

sum-rate using WO beamforming is

Cwob =
K∑

k=1

αknRk = Mn

∑K
k=1 βkαk∑K
j=1 βjαj

log log ρn

n
+O(

log log n

log n
) = M log log ρn+O(

log log n

log n
).

Comparing this with the sum-capacity we see that

lim
n→∞

(Cwob − Cob) = 0.
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Remark 7.10. Theorem 7.9 asserts that the average rates of users are quite sensitive

to the change of µis. In order to further understand the impact of a change in µis on

the rates, we consider a two-group system. Following the methodology in the proof of

Theorem 7.9, we can prove the following results. If

µ1

µ2

= 1− o

(
1

log n

)

then,

lim
n→∞

R1

R2
= 1,

where Rk is the average rate provided to a user in group k. Moreover, if

µ1

µ2

= c < 1

then,

lim
n→∞

R1

R2
= 0,

where c is a constant independent of n.

The above Theorem also shows that, as in the case of TO beamforming, WO

beamforming achieves the sum-rate of the unconstrained broadcast channel as n →
∞. As a matter of fact, the simulation results of Section 7.6 suggest that throughput

of the WO beamforming is much closer to the sum-capacity than the throughput of

the TO beamforming.

In the next lemma we show that for a two group case, the difference between the

throughput of WO and the sum-rate of opportunistic beamforming with no rational

rate constraints scales at most inversely proportional to log n. Carrying the proof

over to more than two groups is a possible, however a cumbersome, task.

Lemma 7.11. Consider the setting of Theorem 7.9 and assume that there are two
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groups present in the network. Let Cwob denote the sum of the rates obtained by the

weighted opportunistic beamforming scheme. Then, for any group size αin, and any

βi’s for i = 1, 2, the sum-rate loss of WO tends to zero with a convergence rate at

least as fast as 1
log n

, i.e.,

lim
n→∞

(Csum − Cwob) = O

(
1

log n

)
. (7.45)

Proof. For each beam m, let xm and ym denote the maximum SINR in groups G1 and

G2, respectively. Furthermore, assume that β1 ≥ β2. We can write the loss in the

throughput as

Cob − Cwob =
M∑

m=1

E log

(
1 + xm1(xm ≥ ym) + ym1(xm < ym)

1 + xm1(xm ≥ µ2

µ1
ym) + ym1(xm < µ2

µ1
ym)

)
.

The difference can be further simplified to get

Cob − Cwob =
M∑

m=1

E

(
log(

1 + ym

1 + xm

)|ym ≥ xm ≥ µ2

µ1

ym

)
.

Note that for ym ≥ xm ≥ µ2

µ1
ym we have

1 + ym

1 + xm

≤ 1 + ym

1 + µ2

µ1
ym

≤ µ1

µ2

.

Therefore, the sum-rate loss is upper-bounded as

Cob − Cwob ≤
M∑

m=1

log(
µ1

µ2

) · Pr (ym ≥ xm ≥ µ2

µ1

ym).
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Using the fact that Pr (ym ≥ xm ≥ µ2

µ1
ym) = Θ(1) and µ1

µ2
= 1 + Θ( 1

log n
), we get

Cob − Cwob = O(
1

log n
),

and this completes the proof.

In the next subsection we look into a scheme that employs superposition coding

and clearly leads to the best throughput for single antenna systems as we actually

work on the boundary of the capacity region. As the analysis becomes complicated,

we just consider two groups and obtain a scheduling that maximizes the throughput

while maintaining the rational rate constraints of (7.2). It should be mentioned that

the ergodic capacity region of a broadcast channel with two users has been studied in

[115]; here we look at a generalization of the result of [115] in which we have n users

divided into two groups with different rate demands.

7.5.4 Superposition Coding for Single Antenna Broadcast

Channels

In this section we analyze the performance of superposition coding for the case when

there are only two groups of users G1,G2 with sizes α1n and α2n. We assume that

the average rate provided to a user in the first group is required to be β > 1 times

the rate provided to a user in the second group.

In order to maximize the rate (sum-rate) while keeping the ratio of different group

rates fixed and equal to β, we need to find the point on the boundary of the capacity

region of the Gaussian broadcast channel with short-term power constraint ρ that

satisfies the differentiated rate constraint. We know that every boundary point is the
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solution to a maximization problem of form

max
(R1,...,Rn)∈CBC

n∑
i=1

µiRi

for some positive values of µ1, . . . , µn. In our case, because of the symmetry among

the users in each group, the values of µis will be the same for the users in the same

group. Therefore, we only need to characterize the boundary points that are the

maximizing solution to the problem

max
(R1,...,Rn)∈CBC

µ1(
∑
i∈G1

Ri) + µ2(
∑
i∈G2

Ri)

for µ1, µ2 > 0. The following lemma characterizes such boundary points. The proof

of this lemma uses the duality of the broadcast channel and the multi-access channel

for scalar channels explained in Section 7.3.

Lemma 7.12. Consider a scalar Gaussian broadcast system with the model described

in Section 7.2. Consider the following optimization problem:

max
(R1,...,Rn)∈CBC

µ1(
∑
i∈G1

Ri) + µ2(
∑
i∈G2

Ri), (7.46)

where CBC is the ergodic capacity region of broadcast channel with short-term power

constraint ρ, and µ1 ≥ µ2 are two positive numbers. Then, the solution of the above

optimization problem is

α1nRi = E(log(1 + ρx)|µ1x ≥ µ2y) +

E(log(
(µ1 − µ2)y(1 + ρx)

µ1(y − x)
)|(x, y) ∈ R) (7.47)
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for i ∈ G1. Similarly, for i ∈ G2 we have

α2nRi = E(log(1 + ρy)|µ1x ≤ µ2y)−

E(log(
(µ1 − µ2)x(1 + ρy)

µ2(y − x)
)|(x, y) ∈ R), (7.48)

where x = maxi∈G1 |hi|2, y = maxi∈G2 |hi|2, and region R is defined as

R = {(x, y) ∈ R+ ×R+|0 ≤ µ2

(µ1 − µ2)x
− µ1

(µ1 − µ2)y
≤ ρ}. (7.49)

Proof. The duality between the broadcast channel and the multi-access channel for

the scalar case in [120] (and in (7.4)) states that

CBC =
⋃

P
i Pi(·)=ρ

CMAC(P1(h), . . . , Pn(h)),

where h = (h1, . . . , hn), Pi(h) is the power allocation function of user i, and the union

is over all the permissible power allocation functions. Furthermore,

CMAC(P1(h), . . . , Pn(h)) =

{
R :

∑
i∈S

Ri ≤ log(1 +
∑
i∈S

Pi(h)|hi|2),∀S ⊂ {1, . . . , n}}.

Using the above region, we can rewrite (7.46) as a maximization problem over all

the power allocation functions and all the corresponding rate vectors in the capacity

region of the dual multi-access channel. Based on this, it can be verified that the

maximum of (7.46) occurs when we send only to the users with the best channel in

each group. Therefore,

Vo = E max
Px,Py

Px+Py=ρ

(µ1 − µ2) log(1 + Pxx) + µ2 log(1 + Pxx + Pyy),
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(µ1−µ2)ρ
µ2

1
y

1
x

slope: µ2
µ1

R2

R

R1

Figure 7.4: The decision region for power allocation in the superposition coding in
two group case: If (x, y) ∈ R1, all the power is allocated to the best user of group one.
If (x, y) ∈ R2, all the power is allocated to the best user of group two. If (x, y) ∈ R,
then power is split between the best users of the two groups as in (7.50).

where x = maxi∈G1 |hi|2 and y = maxi∈G2 |hi|2. Performing the maximization over

Px, Py, we have one of the following possibilities:

(a) If µ1x ≥ µ2y, we assign all the power to the best user of the first group.

(b) If 0 ≤ µ2

(µ1−µ2)x
− µ1

(µ1−µ2)y
≤ ρ, then we split the power between the two best

users in the two groups as

Px =
(µ1 − µ2)Pxy + µ1x− µ2y

µ1(y − x)x
, Py = ρ− Px. (7.50)

(c) If µ2

(µ1−µ2)x
− µ1

(µ1−µ2)y
> ρ, all the power is assigned to the best user in G2.

We have plotted the decision region for power allocation in the ( 1
x
, 1

y
) region in Fig-

ure 7.5.4. In the weighted opportunistic scheduling, the power allocation policy would

be to send to the best user in the first group if (x, y) is in R1, and to send to the best

user in the second group if (x, y) is in R∪R2.

The question that remains to be answered is to figure out how to choose µ1 and

µ2 such that the rate constraint in (7.2) is satisfied. This is answered in the following



272

theorem.

Theorem 7.13. Suppose β > 1 is fixed, µ1 = 1, and µ2 = 1 − 1
(log n)γ where γ =

1 + 1
α1β+α2

(i.e., 1 ≤ γ ≤ 2); then

lim
n→∞

R1

R2
= β. (7.51)

Proof. Consider the first terms in the rate expressions for groups one and two in

(7.47) and (7.48), respectively. Based on Remark 7.10, since µ2

µ1
= 1 − o( 1

log n
), it

can be easily checked that these two terms are of order α1 log log n and α2 log log n,

respectively. Now we look at the second expectation in (7.47):

A? = E

(
log(

y(1 + ρx)

((log n)γ − 1)(y − x)
)|(x, y) ∈ R

)
.

It can be verified that for (x, y) ∈ R the term inside the logarithm is greater than one.

Hence, A? is positive. Furthermore, similar to previous cases, the main contribution

of the expectation comes from values of x and y around log n. Therefore, we can

simplify write A? as

A? = E

(
log(

y(1 + ρx)

((log n)γ − 1)
)|(x, y) ∈ R

)
− E(log(y − x)|(x, y) ∈ R)︸ ︷︷ ︸

B?

= (2− γ) log log n(1−O(
log log n

log n
)) · Pr ((x, y) ∈ R)−B?

It can be shown that Pr ((x, y) ∈ R) = α2 − o(1). In the following we show that the

expectation term in the above equation is O(1). We have

B? = Θ




∫ l2

l1

α2ne−y(1− e−y)α2n−1

∫ y(1− 1
(log n)γ

)

y(1− 1
(log n)γ

)

1+
ρy

(log n)γ

log(y − x)α1ne−x(1− e−x)α1n−1d xd y


 ,

where l1 = log n − 4 log log n, and l2 = log n + 4 log log n. Defining y − x = z and
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w = y − log n, B? can be simplified to

B? = Θ

(∫ 4 log log n

−4 log log n

α2e
−w(1− e−w

n
)α2n−1

∫ (log n)2−γ

(log n)1−γ

log(z)α1e
ze−w(1− eze−w

n
)α1n−1d zd w

)

= Θ

(∫ 4 log log n

−4 log log n

α2e
−wexp (−α2e

−w)

∫ (log n)2−γ

(log n)1−γ

log(z)α1e
ze−wexp (−α1e

ze−w)d zd w

)
.

Integration by part of the inner integral and further simplification gives

B? = Θ

(
α2(γ − 1) log log n−

∫ 4 log log n

−4 log log n

α2
exp (−α2e

−w)

ew

∫ (log n)2−γ

(log n)1−γ

exp (−α1e
ze−w)

z
d zd w

)

(a)
= Θ

(
α2(γ − 1) log log n− α2

∫ (log n)2−γ

(log n)1−γ

exp (−α1e
z 1

(log n)4
)

(α2 + α1ez)z
d z

)

(b)
= Θ

(
α2(γ − 1) log log n− α2

∫ 1

(log n)1−γ

1

(α2 + (1− α2)ez)z
d z

)

(c)
= Θ

(
α2(γ − 1) log log n− α2

∫ 1

(log n)1−γ

1

z
d z

)

= O(1),

where (a) follows by integrating over w first. Equality (b) follows because in the

interval [1, (log n)2−γ], the integrand is upper-bounded by e−z, and therefore the con-

tribution of the integral in this interval is of order constant. Also, for [(log n)1−γ, 1],

the numerator of the integrand is 1 − o(1). Finally, (c) follows by verifying that the

integral is increasing in α2 and in both extremes, i.e. α2 = 1 and α2 = 0 the integral

is (γ − 1) log log n + O(1).

Putting the evaluated values of A? and B? together we get the following rate for

a user in group G1:

R1 = (1 + (2− γ)
α2

α1

)
log log n

n
(1−O(

log log n

n log n
)). (7.52)
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Similarly, for a user in group G2 we have

R2 = (γ − 1)
log log n

n
(1−O(

log log n

n log n
)). (7.53)

Therefore, to meet the ratio constraints between the rates of users in different groups,

we should have

(γ − 1)

(1 + (2− γ)α2

α1
)

=
1

β
,

or accordingly

γ = 1 +
1

α1β + α2

.

This completes the proof.

Finally, we look into the throughput loss due to the constraint of (7.2) using

superposition coding. It is clear that the convergence rate for the superposition

coding should be faster than or equal to TO and WO beamforming. In the next

lemma, we provide a bound on the difference between the sum-capacity and the sum-

rate obtained by the scheduling discussed in this section.

Lemma 7.14. Suppose β > 1 is fixed and µ1, µ2 are chosen as in Theorem 7.13.

Then ∫ ∞

0

n log(1 + ρx)e−x(1− e−x)n−1 −
n∑

i=1

Ri = O

(
1

(log n)2γ−1

)

Proof. Here is the outline of the proof. Using (7.47), we can write the throughput

under constraints of (7.2) as 9

E log (1 + ρx1(x ≥ µy) + ρy1(x < µy)) + E log

(
(1 + ρx)y

(1 + ρy)x
|(x, y) ∈ R

)
,

where x and y are defined in Lemma 7.12. Therefore, ∆(n), the difference of the

9In this proof we refer to µ2 as µ.
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sum-capacity and the throughput given above, can be written as

0 ≤ ∆(n) = E log

(
1 + ρx1(x ≥ y) + ρy1(x < y)

1 + ρx1(x ≥ µy) + ρy1(x < µy)

)
−E log

(
(1 + ρx)y

(1 + ρy)x
|(x, y) ∈ R

)
.

We can simplify the right hand side of the above equation to get

∆(n) = E log

(
1 + ρy

1 + ρx

∣∣∣∣y ≥ x ≥ µy

)
+ E log

(
(1 + ρy)x

(1 + ρx)y
|(x, y) ∈ R

)
.

It can be easily checked that the second term is positive over region R defined in

(7.49). Therefore, we have

∆(n) ≤ E log

(
1 + ρy

1 + ρx

∣∣∣∣y ≥ x ≥ µy

)

≤ E log

(
1 + ρy

1 + ρµy

∣∣∣∣y ≥ x ≥ µy

)

≤ E log

(
1 +

ρ(1− µ)y

1 + ρµy

∣∣∣∣y ≥ x ≥ µy

)

≤ log(1 +
1− µ

µ
) · Pr (y ≥ x ≥ µy)

= − log µ · Pr (y ≥ x ≥ µy). (7.54)

Now, using the techniques developed so far, it can be shown that

Pr (y ≥ x ≥ µy) = O

(
1

(log n)γ−1

)
.

Therefore, substituting µ with its value in (7.54), we have

∆(n) = O

(
− log

(
1− 1

(log n)γ

)
1

(log n)γ−1

)
= O

(
1

(log n)2γ−1

)
,

and this completes the proof.
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7.6 Simulation Results

In this section we present simulation results for the three scheduling schemes studied

in this chapter. We will show their performance in terms of satisfying the rational

rate constraints and also the difference of their throughput with the sum-rate with

no constraints present.

The first set of simulations are for M = 1, K = 2, and β = 2, i.e., one group

requires twice the rate of the second group. We consider the groups to be of equal

size. Figure 7.5 shows the sum of the transmitted rate for WO, TO, and SC as a

function of the number of users. As expected, all show a log log n growth rate. In

fact, the sum of the transmitted rates of WO and SC are quite close to the actual

sum-rate capacity, signifying that the rate constraints do not lead to much of a rate

hit on the throughput.

Figure 7.6 shows the ratio of the rates transmitted to the two groups as a function

of the number of users for the WO and SC schedules. As we see, the rate of conver-

gence of the SC to the desired ratio is slower than the WO beamforming. TO is not

shown, as it clearly gives the correct ratio of β = 2.

The second set of simulations are for the same broadcast channel but with β = 4.

The results are shown in Figure 7.7 and Figure 7.8.

Next we consider the performance for multiple antenna broadcast channels. For

this set of simulations we consider a broadcast channel with two antennas at the

transmitter, M = 2. We consider two groups of different size with α2 = 2α1, and

different rate requirements as β2 = 2β1. Figure 7.9 shows the achievable throughput

for TO and WO and compares it with the sum rate of opportunistic beamforming

with no rate constraints. We have shown the ratio between the rates of users in

different groups in Figure 7.10. As we see, WO schedule converges fast to the desired

ratio. In Figure 7.11, we have shown the ratio of the rate for smaller size networks in
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Figure 7.5: The sum of the transmitted rates for WO, TO, and SC, as well as the
sum-rate capacity of the single antenna broadcast channel as a function of the number
of users for a system with K = 2 and β = 2.
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Figure 7.6: The ratio of the rates transmitted to the two groups of users as a function
of the number of users for WO and SC for a system with β = 2.
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Figure 7.7: The sum of the transmitted rates for WO, TO, and SC, as well as the
sum-rate capacity of the single antenna broadcast channel as a function of the number
of users for a system with K = 2 and β = 4.
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Figure 7.8: The ratio of the rates transmitted to the two groups of users as a function
of the number of users for WO and SC for a system with β = 4.
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Figure 7.9: The sum of the transmitted rates for WO, TO, as well as the opportunistic
for a broadcast channel with M = 2, K = 2, α2

α1
= 2, and β1

β2
= 1

2
as a function of the

number of users.

more detail. As we see, the ratio of the rates converges to the desired ratio even for

small to moderate size networks. For instance, for a network of size n = 50, the ratio

of the rates is 1.95 (only 0.05 off from the desired value).

Finally, the last set of simulation is done for a broadcast channel with two antennas

at transmitter and three groups of users, i.e., K = 3 with equal size. The desired

ratio is given as β1 = 1, β2 = 2, and β3 = 3. In Figure 7.12 we have plotted the

achievable sum-rate for TO and WO scheduling. In Figure 7.13 we have shown the

achieved ratio of rates for different groups.

7.7 Conclusion

In this chapter we consider one of the design issues in the downlink of wireless cellular

systems, namely differentiated quality of service provisioning. We consider a MIMO

broadcast channel with fading, where users have different rate demands. In partic-
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Figure 7.10: The ratio of the rates transmitted to the two groups of users as a function
of the number of users for WO and TO for a system with M = 2, K = 2, α2
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Figure 7.11: A closer look at the ratio of the rates transmitted to users in different
groups for the example in Figure 7.10.



281

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

1.2

1.4

1.6

1.8

2

2.2

n

su
m

−
ra

te

WOB
TDOB
OB

Figure 7.12: The sum of the transmitted rates for WO, TO, as well as the oppor-
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function of the number of users for WO and TO for a system with M = 2, K = 3,
and β1 = 1, β2 = 2, and β3 = 3.
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ular, we assume n homogenous users that are divided into K groups, each group of

which requires the same rate, and where the ratio of the groups’ rates are given. The

transmitter would like to maximize the throughput (sum of the rates to all users)

while maintaining the rational rate constraints. In general, this problem appears to

be computationally intractable since the ergodic capacity region is described as the

convex hull of (an infinite) set of rates. Furthermore, finding the exact capacity re-

gion requires complete knowledge of the channel states at the transmitter. Therefore,

we are interested in simple schemes that require a little amount of information about

the channels at the transmitter and operate close to the optimal capacity-achieving

scheme. In particular, we propose three scheduling schemes to provide the rational

rate constraints, namely weighted-opportunistic scheduling (WO), time-division op-

portunistic (TO), and superposition coding (SC) for single antenna systems. WO

is a generalization of the opportunistic scheduling in which we transmit to only the

user that has the largest “weighted” signal to noise plus interference ratio (SNIR). In

TO, each group has its own time slot in which the transmitter chooses the user with

the best SNIR from the corresponding group. Superposition coding is the scheme

that achieves the information-theoretic capacity region. We first consider systems

with n = 2 and n = 3, where each user requires a different rate. We focus on the

achievable region by using the aforementioned WO. It turns out that determining the

explicit relationship between the appropriate weights of the schedule and the desired

ratios of the rates is analytically intractable even for the case of n = 3. For this rea-

son, and also because most practical systems have many users, much of the chapter

focuses on the asymptotic regime of large n, where explicit results can be found. For

each scheduling we give an explicit scheme to guarantee the rational rate constraints.

We also analyze the throughput loss due to the rate constraints for all three different

schemes. In particular, we show that the throughput loss compared to the maximum

throughput (i.e., the sum rate capacity without any rate constraints) tends to zero for
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large n. Thus, there is not much of a penalty in providing different levels of service to

different users. We also analyze the convergence rate of all the schemes and provide

simulations supporting the theoretical analysis.

There are many directions in which this work can be extended. In this chapter we

considered homogenous networks, i.e., networks where different users have the same

quality of reception statistics. However, many practical network are heterogenous.

Generalizing the schedules considered in this chapter to a heterogenous case is an

important problem. Looking at other Quality of Service (QoS) requirements such as

delay and reliability and also studying the existing trade-off between these measure

are also very challenging and interesting problems.
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Chapter 8

MIMO Gaussian Broadcast
Channel with Estimation Error

8.1 Introduction

There has recently been a great deal of research on the capacity region of the MIMO

Gaussian broadcast channels (GBC) (e.g., see [117],[132]-[137]). These channels are

of practical importance since they can be used as a model for the downlink of cellular

systems equipped with multiple antennas at the transmitter and the receiver side. In

[118], the authors show that the entire capacity region is achieved by the dirty paper

coding scheme first introduced in [119].

While dirty paper coding is the optimal transmission scheme, it is computationally

expensive (although suboptimal schemes such as channel inversion or Tomlinson-

Harashima precoding [151, 152, 153] give relatively close performance to the optimal

scheme) and also requires the transmitter to have perfect knowledge of the channel

state information (CSI) for all the users. As mentioned in the previous chapter, for a

complete and optimal design of cellular systems, there are many practical issues that

still need to be answered. Identifying the critical CSI needed at the transmitter and

the amount feedback required for providing this CSI, finding computationally-efficient

scheduling schemes, and providing different quality of service to different users in the

network, are examples of these issues.
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In Chapter 7 we looked at one of these issues, namely differentiated quality of ser-

vice provisioning in cellular systems. We proposed simple scheduling schemes based

on random beamforming that requires little amount of side-information at the trans-

mitter and provides different users with different rates.

In this chapter we look at another design issue mentioned above, namely the issue

of the robustness of the capacity result with respect to error in channel state informa-

tion. As mentioned in Chapter 7, the capacity of broadcast channels highly depends

on the amount of channel state information in the transmitter (CSI). If perfect CSI

is available at the transmitter, the throughput scales linearly with the number of

transmit antennas (as the transmit power or the number of users increases). Com-

paring this result to a MIMO point-to-point system, we see that in the presence of

perfect CSI, there is nothing to be lost by lack of cooperation among the receivers.

On the other hand, if there is no CSI available at the transmitter, employing multiple

antennas does not increase the throughput significantly. This is unlike the capacity

result for MIMO point-to-point channels, where it is shown that even if the trans-

mitter (or the receiver) does not know the channel, the capacity still scales with the

number of antennas in the system [150, 109, 148, 140]. From a practical point of view,

simple and effective scheduling schemes that are robust against noisy channel state

information (and/or require partial knowledge of the channel) and also have a good

performance are desirable [146]. There has been some progress on devising simple

scheduling schemes that operate close to boundary points of the capacity region with

limited feedback [121, 142, 145, 143]. However, the requirement of having accurate

channel estimation is a strict constraint.

In this Chapter we consider the effect of channel estimation error on the capacity

of MIMO Gaussian broadcast channels. We assume that the receivers have access

to only an estimate (or noisy version) of their channels, and these estimates are fed

back to the transmitter. We propose an achievable region based on the dirty paper



286

coding scheme. This scheme is essentially similar to the one proposed for MIMO

point-to-point and multi-access channels with uncertainty in channel measurements

[111, 140]. We further show an interesting duality between the achievable rate region

and the capacity of a multi-access channel where the noise covariance is dependent

on the transmit power at different users. This duality is explored to show the effect

of the estimation error on the sum-rate for large number of users and in the large

power regime. It is shown that, for large number of users, as long as the estimation

error is fixed with respect to the number of users, we achieve the same scaling law as

if there was no estimation error. Of course, there is a loss due to the estimation error

in the sum-rate which is obtained as a function of the covariance of the estimation

error. However, in the large power regime, if the quality of our estimate does not

increase with the transmit power, our achievable rate does not scale with the number

of antennas. This is because in the large power, the system will be in the interference-

dominated regime. As a matter of fact, in [126], the authors have shown that, unlike

point-to-point systems, the sum-capacity of a broadcast channel with two users and

two transmit antennas and with estimation error does not scale linearly with the

number of antennas.

Based on the achievable rate region derived earlier, we analyze the performance

of a training-based scheme for block fading models. We show that if the transmitter

is willing to invest a fixed fraction of power in observing and training the channel,

the sum-rate scales with the number of antennas at the transmitter. We also find the

optimal training scheme that gives this linear scaling of the sum-rate in terms of the

number of antennas.

The remainder of this chapter is organized as follows. After introducing the system

model in the next section, we provide an achievable rate region for MIMO Gaussian

broadcast channels with estimation error in Section 8.3. Section 8.4 looks at the

optimal power allocation. In Section 8.5 we analyze the effect of the estimation error
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on the asymptotic behavior of the sum-rate for large number of users. Section 8.6

considers the achievable sum-rate based on training schemes and the conclusion comes

in Section 8.7.

8.2 System Model

We consider a block fading MIMO Gaussian broadcast channel with channel estima-

tion error. The transmitter employs M transmit antennas. We assume that there

are n users in the system, each equipped with ri, i = 1, . . . , n antennas. The channel

matrix between the transmitter and user i is an M × ri matrix and is denoted by Hi.

A block fading model with coherence interval of length T is considered. We assume

that the channel coefficients for each user are zero-mean jointly Gaussian random

variables with covariance matrix cov (Hi) = E (vec Hi)(vec Hi)
∗ = RH . The received

signal at user i is given by

Yi = Hix + ni,

where ni is additive white Gaussian noise with zero mean and identity covariance

matrix. x is the input vector with power constraint E [x∗x] ≤ P .

In this chapter, the users and the transmitter do not have exact knowledge of the

channel matrices. We assume that user i estimates its channel to Ĥi. This estimate is

fed back to the transmitter through a perfect channel (see Figure 8.1). The channel

estimation error H̃i which is equal to Hi − Ĥi, is assumed to be uncorrelated from

the estimate Ĥi (i.e, MMSE estimation). The coordinates of H̃i are assumed to be

jointly Gaussian random variables with covariance matrices of form

cov(H̃i) = AT
i ⊗Ki, (8.1)

where Ai and Ki are positive semi-definite M ×M and ri × ri matrices. The above
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Figure 8.1: Multi-antenna Gaussian broadcast channel with channel estimation error.

covariance matrix models the possible correlation at the transmitter and the receiver

side (see [144]). The capacity region of the aforementioned broadcast channel is known

when Hi is available to the transmitter and to the i-th receiver for i = 1, . . . , n [118].

Assuming the noise covariance matrix Ni for the i-th user, and under the transmit

covariance matrix constraint, i.e., E [x x∗] ¹ S, the capacity region is given by dirty

paper coding and can be written as

C(S, {Ni}, {Hi}) = conv

{ ⋃

π, {Bi}
R(π, {Bi}, {Ni}, {Hi})

}
,

where the union is over all permutations on set {1, . . . , n} and all positive semi-definite

covariance matrices B1, . . . , Bn such that
∑n

i=1 Bi ¹ S and

R(π, {Bi}, {Ni}, {Hi}) =

{
(R1, . . . , Rn)

∣∣∣∣

0 ≤ Rπ(i) ≤ log
|Nπ(i) + Hπ(i)(

∑i
k=1 Bπ(k))H

∗
π(i)|

|Nπ(i) + Hπ(i)(
∑i−1

k=1 Bπ(k))H∗
π(i)|

}
.

Finally, the capacity region of the broadcast channel with average total transmit
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power constraint P , i.e., tr (S) ≤ P , is given by the

C(P, {Ni}, {Hi}) =
⋃

S:tr (S)≤P

C(S, {Ni}, {Hi}).

In order to compute any point on the boundary of the capacity region, [132, 133]

establish a duality between the capacity region of broadcast and multiple access chan-

nels under sum power constraints. This duality is considered in a more general sce-

nario and based on the mini-max (and the Lagrangian) duality in [136, 137]. These

results are very useful since the multi-access channel capacity region has a nice poly-

matroid structure [34] that makes it much easier to work with [103].

8.3 Inner Bound on the Capacity Region

In this section we give an inner bound on the capacity region of the MIMO Gaussian

broadcast channel with estimation error. Here we assume that the transmitter and

the receiver have access to an estimate of the channel rather than the actual channel.

The uncertainty in the estimate is modeled as a Gaussian random variable. The

results are based on the fact that the worst uncorrelated noise with given covariance

matrix has Gaussian distribution. This was in fact used previously to obtain lower

bounds on the capacity of MIMO point-to-point channels and multi-access channels

in [111, 140].

Theorem 8.1. Consider a MIMO Gaussian broadcast channel described in Sec-

tion 8.2 where the estimated channel for the i-th user is denoted by Ĥi. We as-

sume that Ĥi is known to the transmitter and the corresponding user. Then, the

capacity region of this broadcast channel includes the capacity region of a MIMO

Gaussian broadcast channel with channel matrices Ĥi and effective noise covariances

I + tr (Ai(
∑n

l=1 Bl))Ki (as shown in Figure 8.2.) In other words, the capacity region
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Figure 8.2: Inner bound on the capacity region with estimation error.

includes the following region

conv

{ ⋃

π,{Bi}
tr (
P

i Bi)≤P

R
(

π, {Bi}, {I + tr (Ai(
n∑

l=1

Bl))Ki}, {Ĥi}
)}

.

Proof. The proof follows a similar approach to the dirty paper coding scheme. Note

that Ĥi is the measurement (estimate) of the channel Hi, and H̃i is the error in

measurement. We can write the received signal at user i as

y
i
= Ĥix + H̃ix + ni︸ ︷︷ ︸

vi

. (8.2)

Without loss of generality, suppose π(·) is the identity permutation, i.e., π(i) = i for

all i ∈ {1, . . . , n}. Let us consider a broadcast channel with no channel estimation

error and with channel coefficients {Ĥi} and noise covariance matrices {Ni, eq}, where

Ni, eq =
n∑

l=1

tr (BlAi)Ki + I, i = 1, . . . , n, (8.3)

and B1, . . . , Bn are positive definite matrices with
∑n

l=1 tr (Bl) ≤ P . Ki and Ai are

defined in (8.1). We will refer to this broadcast channel as BCeq. The received signal
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at user i in BCeq is

y
i, eq

= Ĥix + ni, eq, (8.4)

where ni, eq is zero-mean a Gaussian noise with covariance Ni, eq.

Using the dirty paper coding approach and the result of [138] concerning the

capacity of memoryless channels with a random state known non-causally at the

transmitter, we know that for BC eq there exist Gaussian random vectors {xi, i =

1, . . . , n} and {ui, i = 1, . . . , n} with the following properties

• xis for different is are independent zero-mean Gaussian random vectors with

covariance matrix Bi.

• ui is a Gaussian random vector that is a function of xj for i ≤ j ≤ n and

Ĥj, i ≤ j ≤ n.

• The rate for user i in BCeq can be written as

Ri, eq = I(ui; yi, eq
)− I(ui; si) = log

|Ni, eq + Ĥi(
∑i

k=1 Bi)Ĥ
∗
i |

|Ni, eq + Ĥi(
∑i−1

k=1 Bi)Ĥ∗
i |

, (8.5)

where si =
∑n

j=i+1 xj is the state known non-causally at the transmitter.

Now, looking back at the original broadcast channel with estimation error, we will

use the same set of {xi} and {ui} for coding and show that the rates achieved by

the coding scheme of [138] are lower-bounded by the rates achieved for channel BCeq,

i.e., Req shown in (8.5). The transmitter will send x =
∑n

i=1 xi, where xi is the signal

intended for user i. It can be easily checked that vi in (8.2) and xjs are uncorrelated

from each other, i.e.,

Ψvx = E vix
∗
j = 0, j = 1, . . . , n.
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This suggests that vi and ui are also uncorrelated

Ψvu = E viu
∗
i = 0. (8.6)

Furthermore, the covariance of vi in (8.2) can be written as

cov (vi) = E vi + v∗i

= I + E H̃ixx∗H̃∗
i

= I + E H̃i(
n∑

l=1

Bl)H̃
∗
i (8.7)

= I +
n∑

l=1

tr (BlAi)Ki

= Ni, eq.

In other words, the covariance matrix of vi is equal to the covariance matrix of the

Gaussian noise ni, eq present in BC eq.

For the covariance of y
i
in (8.2)we have

cov (y
i
) = cov (vi) + Ĥi(

n∑

l=1

Bl)Ĥ
∗
i = cov (y

i eq
).

Therefore, the covariance matrices of the received signals in the original broadcast

channel and BC eq are equal.

Now, the rate achieved with coding of [138] is equal to

Ri = I(ui; yi
)− I(ui; si) (8.8)

for each user i. Comparing (8.5) with (8.8), we see that only the first mutual infor-

mation term is different for the two channels. The first term in (8.8) can be written
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as

I(ui, yi
) = h(ui)− h(ui|yi

).

We have the following upper bound on h(ui|yi
) in terms of the covariance matrix

cov (ui|yi
) = E |y

i
(ui − E |y

i
ui)(ui − E |y

i
ui)

∗:

h(ui|yi
) ≤ log det πecov (ui|yi

), (8.9)

since among all random vectors with the same covariance matrix, the one with a

Gaussian distribution has the largest entropy.

The following lemma gives an important property of cov (ui|yi
), the proof of which

can be found in [147].

Lemma 8.2. Let ûi = f(y
i
) be any estimate of ui given y

i
. Then we have

cov (ui|yi
) ≤ E (ui − ûi)(ui − ûi)

∗.

Substituting the Linear MMSE estimate ûi = Ψuycov (y
i
)y

i
(Ψuy denotes the

cross-covariance of ui and y
i
) in the above lemma yields

cov (ui|yi
) ≤ cov (ui)−Ψuycov (y

i
)Ψyu. (8.10)

Ψuy can be calculated as follows:

Ψuy = E uiy
∗
i

= E ui(Ĥix + vi)
∗

= ΨuxĤ
∗
i + Ψuv

= ΨuxĤ
∗
i

= E uiyi, eq
= Ψuyeq .
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Therefore, the cross-covariance of ui and y
i
is equal to the cross-covariance of ui and

y
i,eq

in BCeq. Combining (8.10) and (8.9) we have

h(ui|yi
) ≤ log det πecov (ui|yi

)

≤ log det πe(cov (ui)−Ψuycov (y
i
)Ψyu)

(a)
= log det πe(cov (ui)−Ψuyeqcov (y

i, eq
)Ψyueq)

(b)
= h(ui|yi, eq

),

where in (a) we have used the facts that covariance matrices of yi and yi, eq are the

same and Ψuy = Ψuyeq . Also, (b) is a consequence of the random vector ui given y
i, eq

being a Gaussian and, therefore, MMSE estimate being the optimal estimate.

The above inequality suggests that

I(ui; yi
) ≥ I(ui; yi, eq

),

and hence, from (8.8) and (8.5) we have

Ri ≥ Ri, eq

for all users. This completes the proof.

Remark 8.3. Note that although we proved Theorem 8.1 for estimation error co-

variances of form AT
i ⊗Ki, the theorem can be easily generalized for error covariance

matrices of general form. In the general case, the equivalent noise covariance is given

by (8.7), and the achievable set of rates is given in (8.5).
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8.4 Optimal Power Allocation

In the previous section an achievable rate region for MIMO broadcast channels with

estimation error was given. This region is based on dirty paper coding and is equal

to the capacity region of a broadcast channel with noise covariances that depend on

the covariance of the transmitted signal. It is well known that the dirty paper coding

region is not convex in input covariance matrices, and finding the boundary points of

the capacity region directly from the dirty paper coding regime is not computationally

tractable. However, using the duality of the broadcast and multiple access channels

[132, 133] and the mini-max duality introduced in [136, 137], it is possible to find the

boundary points of the capacity region under some class of power constraints using

convex optimization. In this section we consider finding the power allocation for any

boundary point on the achievable rate region described in Theorem 8.1.

It is worth mentioning that since in our case the effective noise covariance matrices

also depend on the input covariance matrices, the transformations used in [133] do

not go through. As a matter of fact, the transformation used in [133] is valid only

for a sum power constraint. For the presentation of this chapter we provide duality

results in the following two cases.

For all users Ai = I:

It can be easily shown that any boundary point on the region described in Theorem

8.1 is achieved when
∑n

i=1 tr (Bi) = P . Therefore, if Ai = I for all the channels, the

effective noise of (8.3) does not depend on Bis anymore and is given by I + PKi. In

this case, one can use the duality of multiple access and broadcast channels with sum

power constraints. Hence, the region of Theorem 8.1 is equal to the capacity region

of a Gaussian Multiple access channel with sum power constraint P and channel

coefficients Ĥ∗
i (I + PKi)

− 1
2 . Therefore, any point on the boundary can be computed
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Figure 8.3: A dual representation of the inner bound of the capacity region with
estimation error.

using convex optimization. We have summarized this result as follows.

Theorem 8.4. Consider the setting of Theorem 8.1. Further assume that the covari-

ance matrix of the estimation error for i-th channel is of the form cov (H̃i) = I ⊗Ki.

Then, the capacity region of the channel includes the capacity region of a multiple

access channel with sum power constraint P and channel coefficients Ĥ∗
i (I +PKi)

− 1
2 .

MISO Broadcast with Estimation Error, ri = 1:

In the rest of this chapter we consider the achievable rates for MISO broadcast chan-

nels with estimation error. For this case, we can state the achievable region based on

the capacity region of a dual multiple access channel.

Theorem 8.5. Consider a MISO Gaussian broadcast channel with estimation error

covariance Ai Â 0 for user i and total transmit power constraint of P . Then, the

capacity region includes the capacity region of a multiple access channel shown in

Figure 8.3 with one antenna at each transmitter and M antennas at the receiver.

The channel coefficient vector for transmitter i is Ĥ∗
i . The noise covariance is I +

∑n
i=1 PiAi, where Pi is the transmit power for user i, with

∑
i Pi ≤ P .
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Proof. We will use the approach taken in [136]. Instead of looking at the achievable

rates, we will look at the feasibility of a set of SINR constraints in the broadcast and

the dual multi-access scenario. Similar to [137], we consider beam-forming with dirty

paper precoding. The transmitted signal in this case can be written as

x =
∑

i

φ
i
si,

where φ
i

is the i-th beam that carries si, the information for user i. Without loss

of generality we assume that E |si|2 = 1. Looking back at the definition of Bi in

Theorem 1, here we have assumed that Bi = φ
i
φ∗

i
. Next we consider the problem of

minimizing total transmit power subject to a set of SINR constraints for broadcast

channel

LBC = min
P, φ

i

P

subject to
|hiφi

|2∑
j>i |hiφj

|2 + 1 +
∑n

l=1 w∗
l Aiφl

≥ γi

n∑
i=1

φ∗
i
φ

i
≤ P.

Similarly, we can write the following problem for the dual multiple access channel.

The SINRs shown below are achieved by using ϕ
i
as a filter for i-th user information

and using interference cancelation.

LMA = min
Pi≥0, ϕ

i

n∑
i=1

Pi

subject to
Pi|hiϕi

|2∑
j<i |hjϕi

|2 + ϕ∗
i
(
∑n

l=1 PlAl)ϕi

≥ γi

Following the steps of [137], we can show that both of the above problems have the
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following dual

max
Pi≥0

n∑
i=1

Pi

subject to
∑
j<i

Pjh
∗
jhj +

n∑

l=1

PlAl + I º Pi

γi

h∗i hi.

Furthermore, the strong duality holds, and the two problems have the same minimum

power and are equivalent. Therefore, the achievable rate region of MISO broadcast

channel is equivalent to the capacity region of a multiple access channel with M

antennas at the receiver, total power constraint P , and a noise covariance Qeq that

depends on the different users’ transmit powers in the following form

Qeq = I +
n∑

l=1

PlAl,

and this proves Theorem 8.5.

Clearly, Theorem 8.5 implies that for a homogeneous system, where Ai = A for

all users, the capacity region of this channel includes the capacity region of a multiple

access channel with total transmit power P and noise covariance matrix I + PA.

8.5 Scaling Laws of the Achievable Sum-rate

Using Theorem 8.5, we know that the following sum-rate is achievable for homoge-

neous MISO broadcast channels:

Rsum = max
Pi≥0Pn

i=1 Pi≤P

log
|I + PA +

∑n
i=1 PiĤ

∗
i Ĥi|

|I + PA| (8.11)

This optimization problem is convex in the Pis and can be therefore solved when

n is not too large. The achievable ergodic sum-rate for fading channels is just the
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expectation of Rsum over all channel realizations. Clearly, when n is large, computing

the average sum-rate becomes computationally intensive. In what follows, we obtain

the scaling law of the ergodic sum-rate for large number of users.

Defining Gi = Ĥi(I + PA)−
1
2 , the ergodic sum-rate is given by

R? = E(Rsum) = E max
Pi≥0,

Pn
i=1 Pi≤P

log |I +
n∑

i=1

PiG
∗
i Gi|, (8.12)

where the expectation is over Gis for i = 1, . . . , n. Here Gis are independent Gaussian

vectors with covariance matrix

E (G∗
i Gi) = (I + PA)−

1
2 (RH − A)(I + PA)−

1
2 . (8.13)

Note that (8.12) is in fact the ergodic sum-capacity of a MISO broadcast channel

where channels have a Gaussian distribution with covariance matrix given in (8.13).

The ergodic sum-capacity of MISO broadcast channels with spatial correlation in

channel coefficients is analyzed for a large number of users in [139]. Assuming that

RH and A are fixed (in terms of n), one can use the result of [139] to state the

following Theorem.

Theorem 8.6. Consider the setting of Theorem 8.5. Assume the channel covariance

matrix is RH and estimation error covariance is A ¹ RH . Then, as the number of

users n goes to infinity, the achievable sum-rate scales like

R? = M log log n + M log
P

M

+ log det(RH − A)− log det(I + PA) + o(1). (8.14)

Theorem 8.6 suggests that as long as the estimation error covariance matrix is

fixed in terms of n, one gets the same scaling as the case where the channel is known
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perfectly at the receivers and the transmitter. In fact, the effect of estimation error

shows up as a constant hit in the achievable rate.

At the end, we should remark that since for a homogeneous network, the equivalent

noise in Theorem 8.5 is linear in the transmit power, in the high SNR regime (and

for a fixed number of users), the achievable sum-rate will be of constant order (see

also [126]).

8.6 Training

The results obtained so far are based on a given estimation error covariance. To

estimate the channel, a training phase is often required. During this phase, some

portion of the transmission interval and transmit power is used to send known training

signals. In this section we consider training for block fading MISO broadcast channels

with M transmit antennas, coherence interval of T ≥ M , and total transmit power

of P . We further assume that the channel coefficients are independent zero mean

unit variance Gaussian random variables. We find the optimum amount of time and

power that should be allocated for training to maximize our achievable sum-rate.

During the training phase, the transmitter sends Tτ training vectors with total

transmit energy of PτTτ . Let Xτ be the M × Tτ matrix consisting of the training

vectors. We have

tr (X∗
τ Xτ ) = PτTτ . (8.15)

The received signal at user i can be written as

yi,τ = hiXτ + vi,τ .

At the end of the training phase, each user finds the LMMSE estimate of its channel
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and feeds it back to the transmitter. In order to obtain a meaningful estimate of hi,
1

we need at least as many measurements as unknowns, which implies that Tτ ≥ M .

The estimate can be written as

ĥi = yi,τ (I + X∗
τ Xτ )

−1X∗
τ .

Note that y1,τ , . . . , yn,τ are independent and identically distributed. The estimation

error covariance for each user is

Aτ = cov(h̃i) = I −X∗
τ (I + X∗

τ XτXτ )
−1Xτ

= (I + XτX
∗
τ )−1.

Let Td = T − Tτ and PdTd = PT − PτTτ . After the training phase, the transmitter

starts sending data over the Td time samples left and with total transmitter energy

PdTd. Therefore, for a fixed Pτ , Tτ , using the result of Theorem 8.5, the following

sum-rate is achievable:

Rτ =
Td

T
E max

Pi≥0,
P

i Pi≤Pd

log
|I + PdAτ +

∑n
i=1 Piĥ

∗
i ĥi|

|I + PdAτ | , (8.16)

where his are independent vectors whose elements are jointly Gaussian random vari-

ables with covariance matrix I−Aτ (which follows from the orthogonality principle).

Now consider the eigenvalue decomposition of XτX
∗
τ = UΩU∗, where U is unitary

and Ω is diagonal. From (8.15) we have tr (Ω) ≤ PτTτ . After some manipulation of

(8.16) we can rewrite the achievable rate as

Rτ =
Td

T
E max

Pi≥0P
i Pi≤Pd

log
|I + (1 + Pd)Ω

−1 +
∑n

i=1 Pig
∗
i gi|

|I + (1 + Pd)Ω−1| . (8.17)

1Throughout this section we use hi rather than Hi to represent the channel vector for i-th user.
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The gis are independent vectors whose elements are independent zero mean unit

variance Gaussian random variables, and the expectation is over gi. Now let us

consider the case where Ω is a scaled version of identity. Using the trace constraint

we have

Ω =
PτTτ

M
I.

This Ω corresponds to the case where the training matrix Xτ is a multiple of a matrix

with orthonormal columns. Using this Ω and simplifying (8.17), the following rate is

achievable:

Rτ =
Td

T
E max

Pi≥0,
P

i Pi≤Peff

log |I +
n∑

i=1

Pig
∗
i gi|, (8.18)

where for each i, gi is a vector of i.i.d zero-mean unit-variance Gaussian random

variables. Peff is the effective power and is given as

Peff =
PdPτTτ

PτTτ + (1 + Pd)M
.

We can maximize the achievable lower bound of (8.18) over power and time allocated

for training. Note that for a fixed Tτ (and Td), the optimal power allocation is one

that maximizes the effective transmit power Peff . By maximizing Peff over Pτ and Pd

we get

P ?
eff(Td) =

(PT )2

(√
(PT + Td)M +

√
(M + PT )Td

)2 . (8.19)

Also, the maximizing Pτ is given by

P ∗
τ (Td) =

PT
√

(Td + PT )M

(T − Td)(
√

(PT + Td)M +
√

(M + PT )Td)
. (8.20)

In order to maximize the achievable rate over Td we have to solve the following
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optimization problem:

R? = max
Td,0≤Td≤T−M

Td

T
E {gi}f(P ?

eff(Td)), (8.21)

where P ?
eff(Td) is given in (8.19), and f(x) is defined as

f(x) = max
pi,
P

i pi≤1
log |I + x

n∑
i=1

pig
∗
i gi|.

It is shown in the following lemma that the cost function in (8.21) is increasing in Td.

This suggests that the optimal Td is T −M .

Lemma 8.7. The cost function of (8.21) is an increasing function in Td.

Proof. The claim is that the following function is increasing in Td:

C(Td) =
Td

T
E {gi}f(P ?

eff(Td)),

where f(x) is defined in the equation right after (8.21). To show this, we differentiate

with respect to Td:

d

dTd

C(Td) =
1

T
E {gi}

[
f(P ?

eff(Td)) + Td
d

dTd

P ?
eff(Td)f

′(P ?
eff(Td))

]
.

In order to show that C(Td) is increasing (or equivalently d
dTd

C(Td) > 0), it suffices

to show that the term inside the expectation is greater than zero for any value of

P ?
eff(Td). Using (8.19) after some manipulation we have

Td
d

dTd

P ?
eff(Td) = −P ?

eff(Td)

√
Td(M + PT ) +

√
MT 2

d

Td+PT√
Td(M + PT ) +

√
M(PT + Td)︸ ︷︷ ︸

z

.
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It can be readily verified that z < 1. Therefore, it is enough to show that

f(x)− xf ′(x) ≥ 0,

or equivalently to show that f(x)
x

is decreasing. Note that log(1+ax)
x

is decreasing in

x. Suppose we write the f(x + y) in terms of the eigenvalues of the optimal matrix.

Thus,

f(x + y) =
n∑

i=1

log(1 + (x + y)λi)

≤
n∑

i=1

x + y

x
log(1 + xλi)

≤ x + y

x
log det(I + x

n∑
i=1

pig
∗
i gi)

≤ x + y

x
max

pi
Pn

i=1 pi≤1
log det(I + x

n∑
i=1

pig
∗
i gi)

=
x + y

x
f(x).

This completes the proof.

The next theorem summarizes the above arguments.

Theorem 8.8. Consider a block fading MISO broadcast channel with M transmit

antennas, coherence interval of T ≥ M , and total transmit power of P . Further, as-

sume that the channel coefficients are independent zero-mean unit-variance Gaussian

random variables. Then, the following sum-rate is achievable using training:

R? =
T −M

T
E {gi} max

pi,
P

i pi≤1
log |I + P ?

eff(T −M)
n∑

i=1

pig
∗
i gi|, (8.22)

where P ?
eff(·) is defined in (8.19). Furthermore, this rate is achieved by using orthog-

onal and fixed power training vectors over the first M time samples and transmitting
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data over the remaining portion of the coherence interval. The power of each training

vector is P ?
τ (T −M) and is given in (8.20).

The following Corollary gives further insights on the behavior of the sum-rate in

different regimes.

Corollary 8.9. Consider the MISO broadcast channel model described in Theorem

8.8. Then, the achievable sum-rate

• for large P and fixed n scales like

R? = min{M, n}(1− M

T
) log P ;

• for small P and fixed n scales like

R? =
Tc log e

4M
P 2,

where c is the mean of the maximum of n i.i.d random variables with χ2(2M)

distribution; and

• for large number of users, n, and fixed P scales like

R? = M(1− M

T
) log(1 + P ?

eff(T −M) log n).

Corollary 8.9 shows that using training-based schemes, one can achieve the mul-

tiplexing gain of a MIMO point-to-point channel with M transmit and n receive

antennas in the high SNR regime. However, the power invested in the training phase

increases linearly with P (see (8.20) for large P ). Also, the required feedback rate for

sending the estimates to the transmitter should increase with P . Therefore, the above

scheme suggests that as long as the transmitter is willing to invest a fixed fraction of

the available power for learning the channel, good multiplexing gains can be achieved.
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8.7 Conclusion

This chapter considers an important design issue in the downlink of cellular systems,

that is the effect of channel estimation error on the capacity region of MIMO Gaus-

sian broadcast channels. In practical systems, the mobile users and the base station

(transmitter) have only an estimate of the channel available. For this case, an achiev-

able rate region based on dirty paper coding is derived. It is further shown that for

MISO case, this region is equivalent to the capacity region of a multi-access channel

with noise covariance matrix that depends on the transmit power and the estimation

error. A training-based scheme for block fading MISO Gaussian broadcast channels is

analyzed, and the optimal length of training interval and the power used for training

is derived. Designing practical schemes in the presence of channel estimation error

is an important future work. Also, finding outer bounds on the capacity region of

broadcast channels with estimation error is an interesting problem (see [126]).
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Chapter 9

Future Work

Networks, and especially wireless networks, are changing the very fabric of our lives

in different aspects. We are moving towards a networked world where everyone at

any place and at all times is connected and can access and process information seam-

lessly. However, in order to reach the promised networked world, there are many

issues regarding the capabilities and the design of wireless networks that should be

addressed.

In this thesis, we analyze the performance limit of a few applications over spe-

cial classes of wireless networks and look at a few design issues in cellular wireless

networks. The results in the thesis have brought up a few interesting open problems.

• QoS Provisioning in Cellular Systems: Because of the highly heteroge-

neous nature of today’s cellular systems, Quality of Service (QoS) provisioning

is of great importance. In Chapter 7, we looked at this problem by modeling

various QoS demands with differentiated rate requirements among users. How-

ever, in many applications rate requirement is not the main issue. Delay and

reliability requirements can be strict and more important for delay-sensitive

and robust applications. An important open problem is proposing a unified

framework that integrates all different requirements and allows scheduling of

heterogeneous networks with diverse demands.
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In Chapter 8 we gave an inner bound on the capacity region of broadcast chan-

nels with channel estimation error. Finding outer bounds on the capacity region

of broadcast channels with channel estimation error and with limited feedback

from the users to the transmitter is also a challenging and important task.

• Optimization Theory View of Multi-terminal Information Theory:

As mentioned earlier, multi-terminal Information Theory has fallen short of

characterizing the absolute limits of communication in general networks. Part

of the problem arises from the fact that the current standard tools for providing

outer bounds on the achievable rates in a network setup are based on arguments

developed for point-to-point communication systems. Usually, the outer bounds

are based on information-theoretic cut-set bounds that assume full cooperation

of users in each side of the cut. The multicast min-cut bound of Chapter 3

is an example of these bounds. In these bounds the fact that information is

distributed in the network is neglected.

One major challenge is to provide a methodology that considers the distributed

nature of information in networks and gives potentially tighter outer bounds on

the set of achievable rates in a multi-terminal setup. One promising approach

is applying optimization theory tools (such as duality and convex optimization)

for providing outer bounds on the capacity region of multi-user and network

setups. A special case of this method was proposed and used in Chapter 3. A

first attempt could be finding equivalent forms of information theory techniques

(such as cut-set bounding, Data Processing inequality, etc.) in the optimization

domain.

• Analysis of Coding over Networks: The benefits of coding at intermedi-

ate nodes of the network is mostly investigated for the multicast scenario. In

Chapter 3 we looked at the capacity region of broadcast problems over wireless
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erasure networks and provide inner and outer bounds. However, as we saw in

Chapter 2, in a general setting destinations can demand different subsets of in-

formation messages, and there can be multiple copies of an information message

available in the network. It is important to explore the benefits of coding for

general network problems in wired and wireless networks.

The first step in analyzing the performance of coding over wireless networks is

the modeling of the interference present in these networks. One possible ap-

proach is to investigate models that incorporate the interference in the network

layer rather than the physical layer, which deserves further investigation. For

instance, in the wireless erasure network model introduced in this chapter, a

possible way to take into account the interference is through the erasure prob-

abilities.

Another interesting topic in this area is identifying the critical side-information

in a network setup. In Chapter 2 it was shown that by providing a certain side-

information to the destination node we can achieve the min-cut upperbound.

Presence of this side-information is critical for achieving the capacity. It would

be interesting to find similar side-information for other types of networks.

• Communication, Control, and Computation in Wireless Ad-hoc Net-

works: Sensor and ad-hoc wireless networks are moving toward systems of

interconnected devices (such as sensors, actuators, and controllers) that are

capable of communicating among themselves and can perform computational

tasks and estimation in a distributed manner.

In Chapter 5 of this thesis, we looked at estimation of a single dynamical process

at a remote location that is connected to a sensor through an erasure wireless

network. We characterize the optimal (minimum) steady-state error and its

dependency on the parameters of the network. As a continuation of this work,
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the following important problem can be considered:

– What are optimal coding schemes for control and estimation of multiple

dynamical systems in more general networks?

At a more general level, for a resource-efficient operation in these networks, a

unified view of computation, communication, and control is required. Therefore,

one fundamental challenge is to provide a theoretical framework that integrates

various tasks and makes the analysis of different performance measures (and

their trade-offs) possible. The work in Chapters 2, 5, and 6 is a first step

towards this goal. The following important extensions of the results of these

chapters merits further investigation:

– What is a practical model for analyzing power-efficient schemes that take

into account the computation and communication power consumption si-

multaneously?

– How can one efficiently compute a function of the information available at

different nodes in a distributed fashion in wireless networks?
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