
Automating Resource Management for
Distributed Business Processes

Thesis by

Roman Ginis

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2002

(Defended October 25, 2001)

ii

c© 2002

Roman Ginis

All Rights Reserved

iii

Acknowledgements

Many thanks to all of my wonderful teachers, specifically: To my research advisor K. Mani Chandy,

for continuously inspiring me to look for the “big idea,” for giving the opportunity and encouragement

to explore a wide range of topics and for teaching by example to identify the essence in research

problems. To Jason Hickey, Jim Arvo, Leonard Schulman and Niles Pierce, members of my thesis

committee, for helping me to distill key insights and offering alternative perspectives. To Michel

Charpentier, who taught me the discipline of rigor in proofs and the rewards that go with it. To

John Thornley, for pragmatic advice on the clarity of academic expression. To Victor Fay-Wolfe, for

opening the door to a freshman and introducing me to research. To Geri Lifshey and Mary Alice

Walsh for teaching me to communicate during my first steps in the new land and for encouraging

me to always shoot for the stars. Additional thanks to the members of my research group: Eve

Schooler, Joseph Kiniry and Daniel Zimmerman for being good friends and colleagues. Finally, I

would like to thank my family for always supporting me with love, wisdom and advice, especially

my mother who has always demanded the very best and my dad who continues to raise the bar in

intellectual, social and personal achievement, and who has always been my hero.

The research in this thesis was supported in part by grants from the Air Force Office of Scientific

Research, the Lee Center for Advanced Networking and a National Science Foundation Graduate

Research Fellowship.

iv

Abstract

A distributed business process is a set of related activities performed by independent resources of-

fering services for lease. For instance, constructing an office building involves hundreds of activities

such as excavating, plumbing and carpentry performed by machines and subcontractors, whose ac-

tivities are related in time, space, cost and other dimensions. In the last decade Internet-based

middleware has linked consumers with resources and services enabling the consumers to more effi-

ciently locate, select and reserve the resources for use in business processes. This recent capability

creates an opportunity for a new automation of resource management that can assign the optimal

resources to the activities of a business process to maximize its utility to the consumer and yield

substantial gains in operational efficiency.

This thesis explores two basic problems towards automating the management of distributed

business processes: 1. How to choose the best resources for the activities of a process (the Activity

Resource Assignment - ARA - optimization problem); and 2. How to reserve the resources chosen for

a process as an atomic operation when time has value, i.e., commit all resources or no resources (the

Distributed Service Commit problem - DSC). I believe these will become the typical optimization

and agreement problems between consumers and producers in a networked service economy.

I propose a solution to the ARA optimization problem by modeling it as a special type of Integer

Programming and I give a method for solving it efficiently for a large class of practical cases. Given

a problem instance the method extracts the structure of the problem and using a new concept of

variable independence recursively simplifies it while retaining at least one optimal solution. The

reduction operation is guided by a novel procedure that makes use of the recent advances in tree-

decomposition of graphs from the graph complexity theory.

The solution to the DSC problem is an algorithm based on financial instruments and the two-

phase commit protocol adapted for services. The method achieves an economically sensible atomic

reservation agreement between multiple distributed resources and consumers in a free market envi-

ronment.

I expect the automation of resource management addressed in my thesis and elsewhere will pave

the way for more efficient business operations in the networked economy.

v

Contents

Acknowledgements iii

Abstract iv

List of Definitions viii

List of Examples ix

1 Introduction 1

1.1 Compositional Business Processes . 2

1.2 Activity Resource Assignment . 4

1.2.1 Specification . 4

1.2.2 Solution . 5

1.3 Distributed Service Commit . 6

1.3.1 Specification . 6

1.3.2 Solution . 7

1.4 Key Contributions . 8

1.5 Thesis Outline . 9

2 Background 10

2.1 Business Process Automation . 10

2.2 Economic Perspective . 11

2.3 Relationship to Integer Programming . 12

2.4 Other Related Problems . 13

3 Model and Problem Specification 14

3.1 Overview . 14

3.2 Resource Constraints . 14

3.3 Relationships . 15

3.4 Assumptions . 16

vi

3.5 Reservation Model . 16

3.5.1 Properties of the Distributed System Model 16

3.5.2 Dealing with Time . 17

3.5.3 Instances of distributed systems . 17

3.6 Optimization Model . 18

3.6.1 Informal Description . 18

3.6.2 Formal Specification . 19

3.7 Complexity of the Problem . 19

3.7.1 ARA-decision is NP-complete . 19

4 Optimization (Intuition) 21

4.1 The Main Operator . 21

4.1.1 Dependency Separation . 22

4.2 Dependency Graphs . 23

4.3 Graph Decomposition . 24

4.4 Relaxation Order . 25

4.5 Order by Heuristic . 26

4.6 Carrying out the Optimization – Applyingthe Relaxation Process 26

4.7 A Complete Solution to the Example Problem . 26

5 Optimization via Relaxation 29

5.1 The Main Operator . 29

5.1.1 The Property of ρ . 30

5.1.2 The Relaxation Process . 30

5.1.3 Computing ρ . 31

5.2 Dependency Separation . 33

5.3 Dependency Graphs . 37

5.4 Vertex Elimination Process . 38

5.5 Relaxation + Elimination Complexity Relationship 39

6 Relaxation Order 41

6.1 Graph Decomposition . 41

6.1.1 Notation . 41

6.1.2 Tree-decomposition properties . 42

6.1.3 Decomposition Process . 43

6.2 Relaxation Order . 45

6.3 Main Result . 45

vii

6.4 Greedy Heuristic Search . 46

6.5 Open Issues . 47

7 Simulations 49

7.1 Experiment Setup . 49

7.2 Experiment 1 (Small Problems with Known Optimal Cost) 50

7.3 Experiment 2 (Large Problems of Variable Complexity) 52

7.4 Experiment 3 (Comparison of Greedy Heuristics) . 53

7.5 Observations . 54

8 Atomic Resource Reservation using Call Options 55

8.1 Entities (operational overview) . 57

8.1.1 Consumer . 57

8.1.2 Directory . 57

8.1.3 Resource . 57

8.2 Distributed Transaction . 58

8.3 Program Notation . 59

8.4 Programs . 60

8.4.1 Directory . 60

8.4.2 Resource . 60

8.4.3 Consumer . 61

9 Applications 63

9.1 Crisis Management . 64

9.2 Travel . 64

9.3 Building Construction . 66

10 Conclusion 68

10.1 Summary . 68

10.1.1 Activity Resource Assignment . 68

10.1.2 Distributed Service Commit . 69

10.2 Limitations . 69

10.3 Future Work . 69

Bibliography 71

Index 74

viii

List of Definitions

5.1 Variable Assignment . 29

5.2 Relaxation Function . 29

5.3 Independence . 29

5.4 Independence Property . 30

5.5 Ordering, Ordered Structure . 30

5.6 X-Relaxation . 30

5.7 Relaxation Process . 31

5.8 Dependency Graph . 37

5.9 Neighbors . 38

5.10 Vertex Elimination Function . 38

5.11 Ordered Graph . 38

5.12 Elimination Process . 38

6.1 Decomposition Tree . 42

6.2 Tree-Width . 42

6.3 Minimal Separators . 43

ix

List of Examples

1.1 Six-Variable Problem . 5

6.1 Graph Decomposition . 44

x

List of Figures

1.1 Solution Outline . 6

4.1 The Solution Process . 22

4.2 Preserving a Maximum . 23

4.3 Example Problem Dependency Graph . 27

5.1 Vertex elimination of V1 . 38

6.1 Tree Decomposition of a Graph . 42

6.2 Example Problem Dependency Graph . 44

6.3 Non-optimality of the heuristics. 47

7.1 MaxClique and Optimal comparison for 8 variable problems. 50

7.2 MinDegree and Optimal comparison for 8 variable problems. 50

7.3 Example of problem with MaxClique=3 and optimal cost=5 51

7.4 Relaxation of a problem with MaxClique=3 and Optimal cost=5 51

7.5 Example of problem where all three measurements differ 52

7.6 Relaxation of the problem with MaxClique = 4, Optimal = 5 and MinDegree = 6 . 52

7.7 Histogram of the MinDegree % difference from MaxClique for large graphs 52

7.8 Dependency graph for 100 variable problem with 100 relationships of 3 arguments each 53

7.9 Histogram of % difference between MinEdgesCreated and MinDegree 54

9.1 Dependency graph for European Trip Problem . 67

xi

List of Tables

3.1 Functional representation of a binary relationship . 16

6.1 Classes of graphs with known treewidth computation time, from Bodlaender[8] 43

7.1 Sample simulation results . 53

1

Chapter 1

Introduction

This thesis addresses a problem which I believe will become central to the world economy over the

next decade: how to better automate and optimize resource management in business operations, as

the global economy goes online. The solutions I present here make it possible to quickly identify

and reserve the optimal resources to maximize the objectives of business processes operating in a

networked, service-oriented economy.

Business processes are sets of related activities (or tasks). For example, constructing a new

office building is a business process that involves activities such as digging, carpentry and plumbing.

Processes arising in crisis management, vehicle manufacturing and travel also consist of discrete

activities. An individual traveling to another city performs the activities of flying to and from the

destination and using a hotel and a rental car while there. The resources needed for the activities can

be people, machines, organizations and even information access rights. The relationships connecting

the activities into a process are usually in time, distance, capability, load and cost. For instance,

for a traveler there is a time dependency between the arrival of her flight and the check-in time of

the hotel room. Viewing this dependency as a function from the flight and hotel choices to value,

would probably give a good value if the time difference is small and a progressively poor value with

the larger difference. Similarly, a relationship in cost between the ‘to’ and ‘from’ flights could be

represented by a function that may have a high value if the flights are operated by the same provider

and low otherwise.

I assume that the parties who execute business processes (from now on consumers) operate in

a service-oriented, free-market economy and can locate the potential resources to communicate and

negotiate with them electronically. The parties can lease the services of machines, individuals and

organizations to perform each of the activities of a process and educe a value from a completed

process depending on the degree to which the chosen resources satisfy the relationships among the

activities. I call the processes executed in this way compositional business processes.

The problems I examine are different from many problems in Operations Research in that the

resources in our problems are bought and sold in a dynamic marketplace by many independent

2

buyers and sellers, consumers have a choice among resources to employ in a given activity, and

resources have qualities that make them more or less desirable for a given business process.

I propose two key problems associated with managing these processes: First, the Activity Re-

source Assignment, is an optimization problem that formalizes the selection of optimal resources for

the activities of a given process based on an objective function expressed as an algebraic composi-

tion of relationships among the activities. The problem is a special type of Integer Programming

for which I give a new solution method that finds an optimal solution in polynomial time for many

seemingly intractable instances. The exponent of the polynomial in the algorithm is related to the

tree-width of a relationship graph that can be constructed for any given process specification.

The second, the Distributed Service Commit problem, addresses the need to coordinate the

resources chosen by an optimization to carry out the business process. Since the resources are

distributed, independent and traded in a marketplace, achieving an atomic distributed agreement

among them requires both an algorithmic and an economic approach. We offer a solution that

combines distributed computing techniques with financial derivatives to achieve the required collec-

tive agreements. It is a generalization of the two-phase commit synchronization protocol with the

American call option financial instrument.

Together the solutions to these two basic problems, intrinsic to their environment, can help

automate and efficiently optimize resource management for many business processes.

1.1 Compositional Business Processes

The new capabilities in the networked service economy create new opportunities and challenges.

The key opportunity for any business is to specialize in what it does best, and to outsource all other

business functions. An important challenge is to find a way to manage a company where the bulk

of its operations are done by external service providers.

Specialization has been the trend even before Adam Smith wrote his “Wealth of Nations” more

than two centuries ago and it has accelerated significantly in the last decade. A global networked

service economy will take business specialization to the extreme. If services can be automatically

located, selected and reserved, there will be less motivation to do those tasks “in-house.” With more

companies setting up the infrastructures for doing business online, this has become more possible

than ever, and the trend is very likely to continue.

From an engineering perspective making compositional business processes work involves solving

four fundamental issues: connectivity, correctness, selection and commitment.

Connectivity deals with infrastructures and everything related to setting up the “wires” and in-

terfaces between services and consumers. One such infrastructure technology is Object Man-

agement Group’s CORBA (Common Object Request Broker Architecture) [26] that abstracts

3

the network to distributed client/server interactions. Another is Sun Microsystems’ Java Mes-

sage Service[33] that offers distributed peer-to-peer communications. In the last several years

numerous American corporations, most notably the banking system, have “wrapped” their

services using such infrastructures precisely to make service composition possible.

Correctness concerns what can be said about a system of components or services when they are

put to work together. Specifically, given the characteristics and the logical properties of each

component, the researchers ask what predicates are satisfied in composition. The correctness

properties are critical when designing the specifications for any composite system or business

process. Without a formal, systematic approach any brute force method is almost certainly

doomed to failure for all but the most trivial cases. On the other hand, doing formal modeling

of distributed systems and proving their correctness is currently a rather sophisticated art.

Thus, the correctness of composition today is a lively area of research.

Selection is the optimization aspect of composition. It addresses how to choose the best resources

for a business process. Namely, once a process has been designed and proved correct, and

all the infrastructure issues have been worked out, the task is to choose the best resources to

execute the process. For example, if an activity of a process involves leasing a plumber for

3 hours as part of a new house construction and there are a dozen plumbers available in the

area, one may like to choose the most experienced plumber at the least cost and who fits into

the construction schedule.

Selection issues have been extensively studied for specialized settings, such as for factory job

scheduling [32]. However, they are usually limited to one or two dimensional constraints (such

as time and mode of operation) and these solutions are not easily generalizable.

Commitment between the resources and a consumer who runs a business process becomes paramount

when the resources are independent, distributed and whose state (such as availability) changes

often. To make a set of resources work for a business process each resource must agree to

perform its function at the required time, place and cost. We require that all resources must

enter an agreement for a process to succeed and therefore we need a global commitment among

the chosen resources and the consumer. Since resources are for lease, one can compute an op-

portunity cost for any segment of their time. The opportunity cost of resource r during time

t is the value that the owner of the resource could have earned by leasing it during that time.

Typical distributed agreement algorithms do not take time into account, whereas here time has

a direct value and using an algorithm that requires resources to wait without compensation

defeats its viability.

This issue is intrinsic to management of any distributed resources and it emerges vividly when

the resources become tradeable commodities.

4

In this thesis we focus on the latter two problems: Selection, defined earlier as the Activity

Resource Assignment (ARA) problem, and the Commitment problem, which we call Distributed

Service Commit (DSC). In the next two sections we outline our solutions.

1.2 Activity Resource Assignment

1.2.1 Specification

Let business process P be defined by a set of activities 1, ..., n. Suppose that each activity i can

be performed by any of M resources. For example if i is the ‘plumbing’ activity in a building

construction project, then there are m different plumbers who could potentially do this work. For a

carpentry activity j there are also m carpenters to choose from. If there are fewer than m resources

for a given activity, then we assume that there are “fake” resources to bring the total upto m where

the fake resources have exorbitant costs over exorbitant time.

We can associate a variable xi with each activity i that can take one of m values. That is, if

xi = 3 then the ‘third plumber’ from M is chosen. Assigning a value to each xi for all 1 ≤ i ≤ n

makes a solution. That is, exactly one resource has been assigned to each activity.

There are usually relationships among the activities. Suppose we want to specify that a plumber

(activity i) must start work after the carpenter (activity j) is done and we prefer the plumbing to

begin as soon as possible. We can represent this by a relationship function f1(xi, xj) to indicate

our time preference. For each of the m2 combinations of plumbers and carpenters it gives a ‘value’

that shows how well each pair satisfies our ‘as soon as possible’ relationship. For example, for a

given carpenter, say xj = 4, the plumbers who are available sooner than others after the carpenter

completes his job would have higher relationship value than those who can only start later. Of course,

for a different carpenter the value of the relationship for each plumber may be entirely different.

The relationships can be n-ary, forming functions of up to n parameters. A problem can have

many relationships among the activities. To assign priorities among the relationships, there is one

objective function φ that is an algebraic composition of the relationship functions. For instance,

a process with five activities {1, ..., 5} and three relationships {f1, f2, f3} can have the objective

function defined as φ = f1(x1, x2) ∗ f2(x1, x3) + f3(x3, x4, x5). The goal is to find a solution (an

assignment of values to variables x1, ..., xn) so as to maximize the value of φ.

In sum, a business process optimization problem (ARA) is given by a triple: (X,F, φ), where

the set X = {x1, ..., xn} contains variables corresponding to the activities, the set F contains the

relationship functions and φ is an objective function. This is demonstrated by the following example:

5

Example 1.1 (Six-Variable Problem)

Given X,F and φ where X = {x1, x2, x3, x4, x5, x6},

F =




f1 : x1 × x2 × x3 → R
+

f2 : x1 × x3 → R
+

f3 : x4 × x5 → R
+

f4 : x1 × x2 × x6 → R
+

f5 : x3 × x4 × x5 → R
+

and φ = ff2
1 + f5f3 + f4

Find an n-vector xopt = (ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6) that maximizes φ, where ẋi represents an assignment

to xi of a value from 1, ...,m for all 1 ≤ i ≤ n.

1.2.2 Solution

We propose a deterministic method to solve a class of discrete non-linear optimization problems

relevant to business process optimization. The first key idea behind the method is a reduction

operation (which we call relaxation) that recursively transforms a problem instance to a simpler

one while preserving an optimal solution. We define a relaxation operator, ρx(S) which returns an

optimal value of variable x ∈ X for any assignment of variables in S ⊆ X with respect to φ. Thus

when a variable x is relaxed, we replace it by ρx(S) everywhere in φ, making φ no longer a function

of x. With S carefully chosen (as will be shown shortly) the relaxation reduces the problem by one

variable, at a computation cost of O(m|S|+1), yet at least one maximum is preserved.

The function ρx(S) can be generated for any x ∈ X because the problem is discrete and it is

straightforward how to do it when S = X. Merely attempt every possible assignment of variables

X −{x} and solve φ for an optimal x. However, the computation time to produce ρx(S) would then

be exponential in |X|. The second key idea in our method is an observation that for any x we can

find a set Dx ⊆ X, which we call the dependent set, such that ρx(X) = ρx(Dx) and it is often the

case that |Dx| � |X|, making the time to generate ρx(S) tractable. We can determine Dx from

the structure of φ and we show how to do that for all algebraic φ. The final computation cost of

the complete reduction is the sum of the costs to generate the relaxation functions ρx(S) for each

variable.

Unfortunately relaxing a variable x in this way has a price – it makes all of the variables in

Dx mutually dependent. Thus, relaxing the variables in the “wrong order” can lead to a much

costlier route to an optimal than needs to be. The third key insight we offer is a way to choose

the order of variable relaxation such that the computation time could be reduced. We propose two

approaches: one based on tree-decomposition of graphs that allows us to partition the variables into

special sets and then apply the relaxations separately to each set, yielding a dynamic programming

solution. The second approach consists of two heuristics that select the variables to relax in a greedy

6

way based on simple local properties: a) relaxing the variables with the least number of dependent

variables first, and b) relaxing the variables which create the least number of new dependencies first.

The tree-decompositon method is optimal cost (note that either way we always find the optimal

resource assignment, merely at different costs) for certain types of problem topologies, and it works

reasonably well for many others. The heuristics work remarkably well on all the cases that we have

tried and compared to the optimal cost, but they are provably not optimal (see chapter 6 for a

counter example).

Structural Analysis
 (dependency graph)Problem = (X, F, φ)

relaxation order
 + complexity

Solution Process
 (relaxation)

 Solution
xopt = (x1,...,xn)

Figure 1.1: Solution Outline

The solution method is outlined in Figure 1.1. It has a nice property that given a problem

instance one can first obtain the complexity of solving it without carrying out the solution. The

Structural Analysis step in the figure works in linear time and determines whether it has a “good”

topology for both the tree-decomposition method (due to [15], [23], [35], [29] and others) and the

heuristics. It computes the exponent of the computation polynomial without even running the

optimization. This allows one to choose the better method for each problem instance.

The worst case is φ = f1(x1, ..., xn) where all the variables are dependent on each other and

|Dx| = |X|, yielding m|X| computation time for our method (of course, the size of the input is

exponential in this case). Fortunately, the typical problems that seem to arise in the applications

we consider often have the topologies that make fast solutions possible.

The tree-decomposition approach allows us to tap a well-developed field of graph complexity to

classify optimization problems and to find efficient solutions for a large class of discrete non-linear

optimization problems. We give a mapping between the optimization problem topologies and graph

topologies (section 4.2) and show how to use it on problems relevant to our applications. This seems

to be a novel approach to solving these types of optimization problems, and while the cases we

present here are sufficient for our purposes there is much room for further research.

1.3 Distributed Service Commit

1.3.1 Specification

A resource is a service or an entity that can perform some function. It can be scheduled or reserved

for a duration of time relative to some “universal” clock and it has a unique name – a URL (Universal

Resource Locator). Furthermore, it is supervised by a software ‘manager’ that enables other entities

to reserve and release the resource and to determine when the resource is available. An example of

a resource is a carpenter, whose software manager is a program that maintains his schedule.

7

A consumer is any entity that attempts to reserve one or more resources to perform a business

process. For example, a construction company behaves as a consumer when it reserves some car-

penters, plumbers, electricians, etc. to build a house. It can also act as a resource, when some other

firm hires it to erect a building complex, along with possibly other service providers, such as an

accounting firm to oversee the operation and a bank to loan the money for the construction.

A distributed system is a set of computers able to exchange messages. It can be as small as

a system that supports a workgroup in a company or as large as the Internet. The fundamental

property that makes it harder to engineer applications for distributed systems than programs for

personal computers is the uncertainty about the state of the system. Namely, because of the intrinsic

delay in communication between any two computers, no computer in a system knows the exact state

of its peers. For example, no bank computer knows for certain whether its ATM machines are

operating correctly at any given moment, because even though they can exchange messages, by the

time an ATM’s message reaches the bank, the ATM may have lost power.

To deal with this uncertainty numerous algorithms have been invented to coordinate computers

in distributed systems. These solve common problems that designers face when developing their

applications. One such classic problem is the Distributed Agreement Problem. It requires a predicate

to be established among a set of computers in a given system. For example, a common problem that

banks face is keeping the databases between the main office and the branch offices synchronized. The

standard solutions use a variety of special messages that travel between the computers of the system

placing them into certain states when messages are received. This way it is possible to transition

the computers from state to state and to compute a function that yields the required predicate.

Now, if we model the resources and the consumers as a distributed system, the state of interest

to the consumers is (at least) the availability of the resources they select for their business processes.

The Distributed Service Commit problem we introduce here requires a consumer to obtain a com-

mitment from a resource for each activity in order to execute the process. A commitment by each

resource to provide a service at a specified time is a type of distributed agreement that the consumer

must achieve in its distributed system.

Unfortunately, no standard algorithms can be used to solve this instance of the distributed agree-

ment problem because of the additional property that our resources operate in a service economy.

The standard solution methods ignore time, instead promising to achieve an agreement eventually.

However, in an environment where resources are for lease, time has value (there is an opportunity

cost associated with time). Therefore, the traditional algorithms are unacceptable for this problem.

1.3.2 Solution

We propose an economically-inspired method to solve the distributed agreement problem. The idea

is to use short-term financial contracts to mitigate risks and opportunity costs during transactions

8

between consumers and resources.

Consider a consumer C and a set of resources ẋ1, ..., ẋn, which the consumer wants to reserve.

We require the consumer to reserve all n resources atomically, all together or none of them, for

the business process to succeed (if the problem instance permits for a subset of the resources to be

reserved atomically instead of all of them, the DSC problem is still relevant for that subset). To do

this, C can send messages to any ẋi and attempt to reserve it. Two types of messages are possible:

either the consumer requests a commitment from ẋi (if it is available), or it asks the resource to wait

until it ensures that all the other resources are also available and are in a waiting state. In this way

the consumer can either get all the resources into a waiting state called “poised to be reserved,” or

at least one of them is unavailable and the agreement among this set of resources is not possible.

While this protocol of interaction could work well in the typical resource allocation problems,

it is unreasonable to expect that the resources in an economy would want to be in a waiting state

for free while some consumer is attempting its atomic reservation. From the point of view of the

resource, asking the resource to wait is equivalent to using the resource. There is an opportunity

cost associated with waiting and either the consumer or the resources must absorb it. To address

this problem we propose using a financial instrument we call Micro-Option during the reservation

process. Micro-Option is derived from the common American Call Option instrument adapted

to services instead of commodities and integrated with our expected mode of consumer-resource

interaction. A Micro-Option is a short-term right to reserve a resource at some specific time in the

future for a specific price. This right has a duration (e.g. a few seconds or minutes) and a value

which, in a free market, is closely related to the opportunity cost of the resource for that duration.

Micro-Options can be implemented efficiently with very low transaction costs.

Thus, a consumer who wants to reserve n resources can execute a two-phase algorithm where he

first attempts to purchase the rights to reserve the resources, and if he is successful at obtaining all

the rights, he then proceeds with the reservation. In this way, the resources can get compensated

for waiting while they are being evaluated for reservation and the consumers need not waste funds

by paying for the reservations without knowing that all the resources are obtainable.

1.4 Key Contributions

In this thesis we identify two problems that we believe to be fundamental to any applications that

require resource management in a networked service economy. We propose a solution for each one

that we believe to be general yet practical for the applications we consider. Specifically the thesis

contains:

9

• A formal model for resource management of business processes.

• An exact method for optimal assignment of resources to activities (ARA).

• A method to determine a priori the computational complexity of finding an optimal solution

with the given method without performing the optimization search.

• A method for an atomic reservation of a group of resources (DSC) when time has value.

1.5 Thesis Outline

Chapter 2 describes how our two problems (ARA and DSC) relate to the existing body of research.

Chapter 3 describes each problem precisely, mapping the general requirements into a formal specifi-

cation and contains a proof the optimization problem is NP-hard. Chapter 4 explains the intuition

for the ARA problem solution. Chapters 5 and 6 contain a formal treatment of the optimization

problem. Chapter 7 contains some simulation results of applying our optimization method to a

number of generated problems. In Chapter 8 we give a solution to the reservation problem and

present some applications in Chapter 9. The conclusions and future work ideas can be found in

Chapter 10.

10

Chapter 2

Background

2.1 Business Process Automation

I am writing this document in the first months of the 21st century. Much has happened to the role of

computers in our society. In just a few decades computers have gone from an oddity, to necessity, to

main source of entertainment and to some they have even become a new window to the world. The

1950’s and 60’s saw the beginning of computing automation in the United States. Computers left the

confines of military applications and found numerous uses in business. One of the most prominent

drivers of automation through computing was Dantzig’s Linear Programming model and the Simplex

optimization algorithm [12]. It has been applied millions of times to optimize resource allocation and

is still one of the most widely used techniques in solving resource management problems. The Critical

Path Method (CPM)[18], the Program Evaluation and Review Technique (PERT)[9], Job-Shop and

the Resource Constrained Project Scheduling (RCPS)[32] models, invented a few years later, have

enabled businesses to optimize their project management, production and supply lines even further.

In the 1970’s and 80’s database technology was developed, refined and finally made into off-the-

shelf products available to everyone – from “Mom ’n Pop” shops to multinational corporations.

Larger storage capacities have enabled businesses to store the state of their day-to-day operations,

intellectual property and key information on reliable computers.

The 1990’s may go down in history as the infrastructure decade. Thousands of miles of fiber

have been laid across the world and the Internet, via TCP/IP, HTML and XML, has given the

businesses and individuals the potential to communicate using a standard data exchange technology

at acceptable speeds. The financial and legislative infrastructures have not been far behind. Seeing

the opportunity to drive the early electronic markets the banks scrambled to offer micro-payment

services and the 42nd President of the United States, William Jefferson Clinton, signed a Digital

Signature Act into law, making it possible for the first time to make legal business transactions

entirely in the digital realm.

The computer has shown its potential to automate business processes. However, what exists now

11

is just a precursor to a much larger opportunity to automate processes not only on the scale of an

enterprise, but on the scale of the entire economy.

2.2 Economic Perspective

The U.S. economy is currently one of the most advanced capitalist economies in the world. Though

not perfect, it came a long way since the economy described in Adam Smith’s “Wealth of Nations”

over two hundred years ago. A work in progress, it is continuously perfected to be able to handle

the complexities of human and business interactions far greater than ever conceived by Mr. Smith.

In recent years, starting in mid 80’s with the age hailed as ‘computerization,’ businesses around the

country have undergone a fundamental restructuring of their internal operations by delegating the

storage and retrieval of their vital business information from humans and paper folders to a network

of computers. As inter-business networks have grown and the Internet has swept popular culture,

first computer scientists and then CIO’s of many high-tech firms realized the potential of the network

and have begun to imagine a world where most inter-business transactions would eventually take

place entirely on-line. These were assigned catchy acronyms like (B2C - business to consumer and

B2B - business to business) and a myriad startups sprinted to revolutionize business operations.

The initial approach was the most obvious one. The reasoning went, since the network was the

cheapest medium of information exchange, if we build it they will come. Namely, the assumption

was that if the businesses could “do business” over the network, they definitely would. To this end,

a wrapper standard emerged (XML) and for a while was hailed as a breakthrough. However, the

migration to an on-line business model is taking much longer than expected.

There was a problem: the inefficiency in the market that a computer B2B network was supposed

to alleviate was too insubstantial compared to the investments required to implement the network.

When a company makes an order of 100,000 widgets, it does so in a transaction with another

company that lasts for months until the next transaction. For such substantial transactions, the

cost or the speed of doing it over the e-mail, phone or Fedex versus a specialized trading network is

virtually immaterial. Namely, if $1000 is saved on a transaction of $10 million, it is not sufficient

for the transacting companies to invest millions of dollars to computerize this process. It is not to

say that it should not, or would not be computerized eventually, but not immediately. Thus, the

main reason why the simple networking of companies has failed to deliver new medium for business

is because the existing communication between businesses is only marginally inefficient compared

to the proposed new one. It would not be the communication capabilities but applications built

on top of the new network, offering new ways to bid for, trade and optimize the assignment and

management of resources, that can (and do) yield substantial improvements in efficiency.

The promise of computerization (or automation) is to remove inefficiencies in business processes.

12

Therefore, the question that many have asked: “how should we build a network to enable businesses

to make transactions using computers?” should be replaced by: “how can we remove inefficiencies

in the current business processes using technology?” The difference here, is the focus on the disease

- business inefficiency rather than on a cure - a computer, network or XML. A true innovation must

eliminate substantial inefficiencies in the existing business processes to make an important difference.

An efficient business process can be described as one where all activities of the process are

executed with the highest utility and the relationships between activities are satisfied to the best

degree possible. The relationships can be in time, space, combined resource usage or any other

dimensions. The important inefficiencies in business processes today are in the myriad of “small”

and “short term” transactions that businesses want to do with each other on a daily or hourly basis.

These transactions involve communication between people and their transportation from place to

place, energy utilization and having enough for employees, consultants and contractors to work on.

There lie the real inefficiencies, and they can be solved by a new type of computerization: novel

systems and optimization algorithms that not only allow one computer database to talk to another,

but that efficiently manage the resources used for different tasks – namely people’s time, energy,

communications and physical facilities of the firms.

Such capabilities can become possible if the following conditions hold:

1) There are many more types of resources available for lease

2) There are electronic markets for exchanging these resources

3) There exist financial instruments designed for trading services

4) Optimization algorithms exit that allow one to choose the best resources for a given task.

5) There exists a common taxonomy of resources and activities

Up to now, businesses have been trading services in large “chunks” and long timeframes. For

example, people are employed for months or years and network connections are sold on monthly

contracts. One of the reasons for this is the management difficulties in dealing with a large number

of different business components. However, if this hassle were reduced by new automation technology,

the opportunity to make businesses leaner may drive companies to achieve a new economic optimum.

2.3 Relationship to Integer Programming

The Activity Resource Assignment problem is a special case of Integer Programming. We can

represent any instance of ARA as IP as follows:

For example, let PARA = (X,F, φ) be an instance of ARA where X = {x1, x2, x3}. The goal of

the problem is to find an assignment of variables {x1, x2, x3}, each taking a value in {1, ...,m}, that

maximizes φ.

The corresponding IP problem can be set up as follows: Let Y be a set of variables where yijk ∈ Y

13

takes the value of 0 or 1 and the i, j and k stand for an assignment of the activity variables x1, x2

and x3 respectively. For example, y147 = 1 if and only if x1 = 1, x2 = 4, x3 = 7. Furthermore let

there be a variable cijk ∈ R
+ such that cijk = φ(x1 = i, x2 = j, x3 = k). Then, for any instance of

ARA the Integer Programming problem can be stated as follows:

Maximize φ′ = cT y, subject to
∑

ijk yijk ≤ 1, yijk = 0 or 1.

2.4 Other Related Problems

Problems related to the Activity Resource Assignment problem include job-shop scheduling and

problems in a new area of research referred to as Market-Based Control [10] .

The Job Shop problem is NP-complete [14]. It can be specified as a set J of jobs each of which

has to be performed on machines M1, ...,Mm. Each job consists of a set of activities A, where each

activity a has to be done uninterrupted on a different machine Mi and takes da time. The sequence

in which the activities are performed on the machines differs from job to job and there are precedence

constraints among the activities of each job. The objective is to find an ordering of activities for

each machine to minimize the total makespan for all the jobs.

There are variations on the problem, such as Open-Shop where the activities have no ordering and

Flow-Shop where all the acclivities have the same ordering. Furthermore, Sprecher [32] presents a

more general case of Job Shop called Generalized Resource-Constrained Project Scheduling problem

that allows perishable and non-perishable resources associated with activities as well as different

modes of operation for each machine.

The problems associated with Market-Based Control explore the concept of using market mech-

anisms such as auctions in simulated markets to allocate resources.

These problems are not directly applicable to solve our ARA problem because the specifications

are substantially different. A major difference is that the resources in the Job Shop problem are

machines that are not traded in a marketplace.

14

Chapter 3

Model and Problem Specification

3.1 Overview

Our goal is to model business processes consisting of several related activities. We assume that

each activity requires some resources to commence. A process completes when all of its activities

complete. Furthermore, the processes we consider have the following basic properties: 1) For each

activity there are a number of resource choices (for instance, in a trip the choices could be different

flights available between the given source and destination locations), 2) the activities are related

to each other in some important dimensions, such as time, space and cost incentives, 3) resources

must be chosen for each activity, and 4) the total utility of the business process to the consumer is a

function of a) the fitness of the chosen resources with respect to a specification and of b) the degree

to which the relationships between the activities are satisfied in composition.

We present a formal model for such business processes. We give an algorithm for optimal selection

of resources for the activities and a method to reserve them atomically. We also provide proofs that

the solutions found by the algorithm are optimal and show evidence that the algorithm finds an

optimal solution in polynomial time for many typical instances. The degree of the polynomial for a

given problem instance is determined by the complexity of the relationships between the activities

in the process and the form of the objective function.

3.2 Resource Constraints

Each resource used in a business process often needs to satisfy some constraints. For example,

airline flights that are part of a business trip may be required to start and end on a specific day.

This requirement is absolute and immediately restricts the set of possible options. On the other

hand, the requirement may be lax, specifying only the week of departure and a set of acceptable

sources and destinations. This may be convenient when the source and/or destination cities have

multiple airports in the vicinity. Thus, the key effect of resource constraints is the restriction of

15

options for each activity.

It may be possible and desirable to define a function that compares one resource to another

as options for a given activity. For example, one could define an ordering relation that states a

consumer preference for flights of one airline company over the flights of another. This function

could map specific flights to values, allowing different flights to be compared. In our model we

incorporate these preferences in functions that reflect not only the preferences between resources

within an activity, but the utility of resources in combinations. The next section describes these

forms of relationships.

3.3 Relationships

A consumer is interested in identifying the resources that maximize the utility of his business pro-

cess based on some subjective preferences. This utility and the preferences can be specified as 1)

the resource constraints described earlier, as 2) utility relationships favoring the choice of specific

configurations of resources among several activities and 3) they can also be given by an objective

function, which we discuss in the next section.

The simplest type of relationship is a binary relationship between two activities. For instance,

in the travel business process a flight activity can be related to the hotel activity in time and space.

That is, the consumer may prefer the flight resource and hotel resource chosen as part of a solution

to be no more than a few hours apart between the flight arrival and the start of the hotel, as well as

the hotel to be as close to the airport as possible. Thus, we are interested in comparing specific pairs

of flight and hotel resources to other such pairs, to determine which are better for the consumer.

We can model this type of relationship formally as a function fi : x1 × x2 −→ R
+, where x1

represents flights and x2 stands for hotel room reservations, which takes the resources for each

activity and gives a value of the relationship for each pair. From the optimization standpoint, it

is irrelevant why a certain hotel and a certain flight give a higher value for fi. Thus, we assume

an existence of a tool that would map from the semantics of a given problem to the algebraic

specification.

More generally, one can define a relationship fj that takes as parameters any number of activities

(including all of them). This allows the model to describe a wide range of physical and economic

relationships between the activities of a business precess. For instance, in the travel example, it is

possible to model a price discount if some specific configuration of flights and hotels were chosen

(such as if they were operated by the same firm). Since cost is often a factor in the utility of a

resource to the consumer, the values of such ‘discount’ relationships would be higher for ‘same firm’

resource configurations.

16

x1 x2 utility
1 1 5
1 2 10
1 3 2
2 1 20
2 2 16
2 3 8
3 1 1
3 2 9
3 3 11

Table 3.1: Functional representation of a binary relationship

3.4 Assumptions

The values for a given activity are discrete and the number of values is bounded. A function that

relates two activities, x1 and x2, and assigns utilities for different resource configurations can be

represented by a table as shown in Table 3.1. The function representing any relationship can be

absolutely arbitrary – we make no assumptions about how they were derived and our algorithms do

not make any assumptions about the function shapes.

The key concept in our model is that the consumer preferences for resources in business process

activities can be described by such relationship functions. Since we allow the functions to be arbitrary

and the relationships to be n-ary, these assumptions are not too restrictive.

We describe the formal models for the reservation (DSC) and the optimization (ARA) problems

next.

3.5 Reservation Model

3.5.1 Properties of the Distributed System Model

A distributed system consists of physically independent computers connected by a communication

network. It has three primary properties:

1. Concurrent operation

All computers in the system execute concurrently.

2. Communication infrastructure

Processes, running on the computers, can communicate with each other using messages. There

are two primary modes of communication: synchronous and asynchronous. In synchronous

communication, two processes exchange messages only if both processes are waiting syn-

chronously for the exchange. In the asynchronous mode each computer can be thought of

as having an Inbox and an Outbox where messages are queued until they are processed by the

17

receiving computer’s logic (in the case of the Inbox) or delivered to their destination (in the

case of the Outbox). The most common Internet protocol, TCP/IP, supports both synchronous

and asynchronous modes of communication [11].

3. No Global Knowledge

The key property of distributed systems is that no process has access to more than its own

state. Specifically, no process at any time “knows” the exact state of its peers. This is a direct

result of the communication delay between entities, their concurrent computation assumption

and physical performance difference. What can be known is some earlier state of another

process (e.g., from an earlier communication). Thus, all distributed computation is done using

“old” knowledge about the states of the other computers in the system. (This will become

important when we discuss the distributed atomic transactions in Chapter 8).

3.5.2 Dealing with Time

We assume that transactions between consumers and resources in our model can have temporal

constraints and refer to future events. For example, a consumer can ask for the hotels available

“during the next 2 weeks” and the Micro-Option right to reserve lasts for s minutes from “now.”

For this reason, both the resources and consumers should have access to a “universal” clock so that

temporal references mean the same thing to everyone.

Earlier we have stated that entities in distributed systems do not share knowledge. A “universal”

clock is knowledge shared by everyone. Though we cannot achieve a “true” universal clock, an

approximate one is sufficient for our problem, as long as the clock skew does not exceed any time

unit of significance. There are hardware and software solutions in existence that can guarantee very

tight clock synchronization with a high degree of probability [13].

3.5.3 Instances of distributed systems

Currently, the most ubiquitous distributed system is the Internet. It consists of a myriad computers

connected by a network and communicating with a specific network protocol: TCP/IP. There are

numerous software packages that utilize the network and the protocol to communicate data in certain

standardized formats such as HTML, XML and higher level protocols such as HTTP and FTP.

There are more advanced distributed systems that offer additional services and capabilities to

many applications. One such is Object Management Group’s CORBA (Common Object Request

Broker Architecture) [26] that abstracts the network to client/server interactions between entities

modeled using Object Oriented design principles. Another, is the Caltech Infospheres Infrastructure

[11] that uses peer-to-peer communications between entities, and offers additional capabilities for

designers to better compose, model and reason about distributed object systems.

18

3.6 Optimization Model

3.6.1 Informal Description

The search for optimal resources for a business process is an optimization problem. Posing it

formally abstracts away the notions of resources and processes and allows us to concentrate on its

key properties.

First, we assume that a business process consists of n activities, each of which requires one

resource. Furthermore, we assume there are at most m different resources available for assignment

to each activity. Thus, we model each activity as a variable xi, 1 ≤ i ≤ n that takes values in the

set M = {1, ...,m}. Namely, by x5 = 7 we mean that activity #5 is assigned resource #7 out of the

m available for it.

We represent the relationships between resources as functions fi, 1 ≤ i ≤ k as described in the

earlier section. A function fi takes as parameters a set of activities and gives a value describing

the user preference for each configuration of resources that could be chosen for the activities. For

instance if function f1(x1, x2) is specified for the problem, it gives a positive real value for every

assignment of resources for activities 1 and 2. It can be described as a table of size m×m rows. For

example, f1(x1 = 1, x2 = 3) = 27, f1(x1 = 2, x2 = 3) = 6.

These relationship functions are given as input to the problem. We assume that they are gen-

erated from consumer preferences. In the business trip example, the airlines may offer cost savings

to the consumer if he were to choose the same airline for all flights in the trip. This informa-

tion can be translated into a function f1 that relates all the flight resources in the business trip

process. For example, if the business trip has two flights (to and from some destination) des-

ignated as activities x1 and x2, then the “same airline” discount can be represented as follows:

f1(x1 = “united”, x2 = “united”) = 100, f1(x1 = “delta”, x2 = “delta”) = 70 otherwise f1 = 0.

This implies that f1(x1 = “united”, x2 = “delta”) = 0.

The last part of specification is the objective function φ. It establishes the importance of various

relationships to each other. While we do not restrict the shape of φ, its “topology” (the arrange-

ment of relationship functions and operators on them) has major implications on the computational

complexity of our solution method. We discuss this rigorously in section 4.1.1.

Finally, a solution to the problem is an assignment of a resource to each activity, and the optimal

solution xopt is an assignment that maximizes φ. It describes which resource needs to be assigned

to which activity to get the most benefit to the consumer based on the specified preferences.

19

3.6.2 Formal Specification

Let X = {x1, ..., xn} and M = {1, ...,m}, such that xi takes values in M . Let F = {f1, ..., fk}
be a set of functions, where each fi(

∏
x∈Xi

) : M |Xi | → R
+, 1 ≤ i ≤ k and ∅ ⊂ Xi ⊆ X. Let

φ : [R+]k → R = f [f1, ..., fk] be the global objective function.

Problem 3.1

ACTIVITY-RESOURCE ASSIGNMENT (ARA): Given X,F and φ find an n-vector xopt = (ẋ1, ..., ẋn)

that maximizes φ.

3.7 Complexity of the Problem

Our problem specification covers a subclass of the discrete non-linear optimization problems (DNLPs)

most of which are NP-hard [3] [14][37]. In this section we show that our problem is at least as hard

as 3-SAT. However, while it is intractable in the worst case, there are many instances of interest to

us that can be solved quite quickly. When the objective function φ and the relationships fi’s of a

problem have a certain ‘topological structure,’ we can use this structure to reduce the search time.

A method to do this is presented in the next chapter. In this section we show that the Activity

Resource Assignment decision problem: “Is there a variable assignment that yields the value of φ of

at least B?” is NP-complete by mapping 3-SAT into it.

3.7.1 ARA-decision is NP-complete

Theorem 3.1

The ARA decision problem is NP-complete.

Proof: First, ARA-decision ∈ NP since given a variable assignment we can easily test in

polynomial time whether φ ≥ B by evaluating it. The cost to evaluate each fi is constant and the

algebraic operations on them are inexpensive.

We transform 3-SAT into ARA-decision. Let U = {u1, u2, ..., un} be a set of variables and

C = {c1, c2, ..., cp} a set of clauses where |ci| = 3 for 1 ≤ i ≤ p, making up an arbitrary instance of

3-SAT. The corresponding instance of ARA has X = {x1, x2, ..., xn} as variables where xj relates to

uj and |M | = 2, such that each xj takes values in the set {0, 1}. Furthermore, φ =
∑p

i=1 fi, where

each fi : xv × xw × xz → {0, 1} has as parameters the variables corresponding to the variables in

clause ci ≡ (uv ∨ uw ∨ uz). The variables in ci can appear literally or negated, where the negation

is indicated by a bar above the variable name. Let each fi be 1 if and only if at least one of its

parameters xq is 1, if the corresponding variable uq in ci appears literally, or xq is 0 if uq appears in

ci as negated. We need to show that φ ≥ p if and only if the 3-SAT instance is satisfiable.

20

” ⇒ ” : There are p clauses in the 3-SAT problem and therefore p functions in the corresponding

ARA problem. Each fi is at most 1, thus the only way φ could become larger or equal to p is when

all fi’s evaluate to 1. Now, the rule for the value of fi makes it 1 only when the corresponding clause

ci evaluates to truth. When all the clauses are satisfied, their conjunction is satisfied. Thus, the

problem instance is satisfiable when φ ≥ p.

” ⇐ ” : When a 3-SAT problem with p clauses is satisfiable, there exists an assignment of

variables U such that each clause ci evaluates to truth. By the above rule for fi, the function

becomes 1 only when its corresponding clause ci is satisfied. Since there is a single function fi for

each clause ci and p of them are satisfied, then
∑p

i=1 fi = p. Hence φ = p when the 3-SAT instance

is satisfiable.

Finally, the transformation from 3-SAT to ARA-decision is clearly polynomial, since the function

corresponding to each clause is computed independently. Thus, 3-SAT can be transformed to ARA-

decision. Therefore ARA-decision is NP-complete.

The ARA optimization is, of course, at least as hard as the decision problem. Nevertheless, some

instances of ARA are easier than others and we show how to solve those relevant to our applications

quickly.

21

Chapter 4

Optimization (Intuition)

A problem instance is a triple (X,F, φ), where the objective function φ maps all possible resource

assignments for the activities of a business process, represented by variables xi ∈ X, 1 ≤ i ≤ n, into

real utility values. For any assignment xsol = (ẋ1, ..., ẋn), φ(xsol) returns a value that represents

how well this configuration of resources satisfies the preferences of the consumer who specified the

process.

The solution method proceeds in five stages (see Figure 4.1). First, we analyze the structure

of the problem in step 1, represent it in a graph form in step 2, extract the topology by graph

decomposition or a greedy heuristic in step 3, find a roadmap to the solution in step 4 and finally

apply the roadmap to solve the original problem in step 5.

4.1 The Main Operator

Our goal is to find a solution that maximizes the objective function φ. φ is defined over a discrete

n-space of variables in X, and computed through a set of component functions f ’s that take the

variables as parameters. Now, we make an observation that it is possible to create a new function

φ′ with only n − 1 variables that will share at least one maximum with φ if we replace the missing

variable, say xk, by a special function ρk that always returns the best value for xk in φ for any

assignment of the other variables.

For example, let φ = f(x1, x2) = cos x1 ∗ cos x2 for discrete x1, x2 (see Figure 4.2). Then we can

form a φ′ = f(x1, ρx2(x1)) such that max φ = max φ′, if ρx2(x1) always returns a value for x2 where

for any x1, φ(x1, ρx2(x1)) ≥ φ(x1, ẋ2) for all assignments ẋ2 of x2. Then we can find a maximum of

φ by simply iterating over all values of x1.

Thus, we can reduce the ‘complexity’ of φ from being a function of n variables to just a function

of one by systematically replacing all the variables by the appropriate ρ functions. We call ρ a

relaxation operator and a recursive application of ρ to a problem to reduce it to its base case a

relaxation process.

22

Decomposition Tree
{x1,x5}

{x1,x2,x5}
{x1,x4}

{x1,x3,x4} {x1,x4,x5}

Relaxation Order

φ(x1,x2,x3,x4,x5)

φ(x5)

Relaxation Process

Solution
xopt = (x1,x2,x3,x4,x5)

1

2

3

5

4

X1

X3

X4
X5

X2

Dependency Graph

{x2,x3,x1,x4,x5}π =

, , ,ρx2 ρx3 ρx1ρx4

φProblem = (X,F,)
Dependency Separation

{Dx1,...,Dxn}

Figure 4.1: The Solution Process

Formally, the operator takes a variable xi ∈ X and represents it in terms of the other variables

by creating a new function ρxi
: mX−{xi} → m, where m is the number of values that each variable

in X can take. Then applying it to φ can be written as φ(x1, ..., xi = ρxi
, ..., xn), where ρxi

replaces

all instances of xi in the syntactic form of φ.

4.1.1 Dependency Separation

Now, it is possible to compute such ρxi
functions for our problems because all the variables in X

are discrete. However, the brute-force approach would take m|X| time. If we make no assumptions

about the shapes of the component functions f ’s an exhaustive search seems like the only option.

Yet, if φ has a certain structure, for instance being a sum of products of f ’s, then we could do

better by identifying for any given xi a set of dependent variables Dxi
⊆ X, with the property that

ρxi
(x1, ..., xi−1, xi+1, ..., xn) = ρxi

({x |x ∈ Dxi
}). This implies, that all the independent variables,

D̄xi
= X − Dxi

, are irrelevant in finding the maxima of φ with respect to xi and can therefore be

‘omitted’ in the search by being set to any legal values.

For the fastest computation of ρxi
we want |Dxi

| to be as small as possible, as the cost of

computing ρxi
is then m|Dxi

|. To this end, we have found a set of rules to identify the dependent

variables for common structures for φ (see Section 5.2). While, this is not always possible, for many

23

0
2

4
6

8
10

x1
0

2

4

6

8

10

x2

-1
-0.5

0
0.5
1

f�x1,x2�

0
2

4
6

8x1

Figure 4.2: Preserving a Maximum

applications the sizes of the dependent sets are substantially smaller than n. Thus, there is a clear

value in finding a good dependency separation for all variables in X and it is the first step in our

optimization solution (Figure 4.1).

4.2 Dependency Graphs

Not only can the dependency separation help in reducing the computation time for the relaxation

operators, there is even more important information to be found in the interaction between the

dependent sets. This is interesting to us because the relaxation process can take a substantially

different computation time depending on the order in which we choose to relax the variables. The

difference can range from an exponential time to a low-degree polynomial. To help decide which xi

to relax when we can represent the dependencies among the variables in a dependency graph.

An undirected, simple graph G = (V,E) is a dependency graph for an optimization problem

R = (X,F, φ) if there exists a bijection between the variables X and the vertices V and there is an

edge (vi, vj) ∈ E if and only if xi depends on xj (corresponding to the vertices vi and vj via the

bijection) or visa versa.

The purpose of the graph is to help us analyze the dependencies among variables and in particular

what happens to them during a relaxation process. To do this we define a function ηvi
that transforms

a graph G into Gvi
, the dependency graph after the relaxation of variable xi. ηvi

is a graph dual

of the relaxation operator ρxi
and it adjusts the vertices and edges in the dependency graph G

after a relaxation to maintain the problem-graph correspondence. Specifically, relaxing a variable xi

removes it from X and creates a new function ρxi
which makes all the variables in Dxi

dependent on

each other if they were not so before. Similarly, the transform ηvi
removes the vertex vi from V and

24

connects by edges all the neighbors of vi that were not already connected. We call this operation

a vertex elimination. Since the neighbors of vi always correspond to Dxi
, when xi is relaxed all

of its neighbors appear in a newly formed ρxi
as parameters, which creates new dependencies and

therefore new edges. From this we establish an equivalence relation between the relaxation process

on a problem and a vertex elimination process on its dependency graph.

Now, as stated earlier the computational complexity of generating the function ρxi
is O(m|Dxi

|+1).

Since each vertex in the dependency graph corresponds to a variable in X and since there is an equiv-

alence between the relaxation and elimination processes, we can also express the cost of relaxing xi

in terms of the neighbors of vi, Nvi
, namely m|Dxi

| = m|Nvi
|.

This is significant because for certain large classes of graphs it is possible to find good bounds

on the total cost of a vertex elimination process, and therefore on the cost of the relaxation process

on φ. Thus, if we eliminate vertices in the order that minimizes the cost, then the same relaxation

order for variables in X would give us a bounded cost on carrying out the relaxation process (i.e.

the time complexity to solve the optimization problem).

4.3 Graph Decomposition

In general, finding a polynomial relaxation order – an ordering of variables in X for a relaxation

process to solve a given problem in polynomial time – for an arbitrary graph is difficult. We

believe that it is likely to be NP-hard. However, we can often get a good upper bound on the cost

of the relaxation process by performing a tree-decomposition on the dependency graph. A tree-

decomposition yields a constant tw, called tree-width, which is a good metric for graph complexity.

Tree-decomposition theory has been worked on by Tarjan[35] in the context of speeding up Gaussian

elimination and later generalized by Robertson[29], Seymour[30] and others to show that many NP-

hard graph problems can be solved in polynomial time for graphs with known tree-width. Here

we show how to use tree-decomposition (step 3 in Figure 4.1) to guide our search for an optimal

assignment.

A graph decomposition for a dependency graph G constructs a decomposition tree D = (T,V),

where T is a tree and V = {Vt}t∈T is a family of vertex sets Vt ⊆ V (G), indexed by the vertices

t ∈ T. Each node t ∈ T corresponds to a set of vertices Vt ≡ V(t) in G. The tree-width tw of D is

the number of vertices in the largest Vt.

For example, in Figure 4.1 the tree in step 3 corresponds to the graph in step 2. Its leaves contain

all the vertices of G, and the internal nodes, the sets {x1, x5} and {x1,x4}, separate the graph into

cells such that there are no edges in G between the vertices from the separate cells. In this way each

leaf of T corresponds to a cell in G.

This ‘vertex isolation’ property is exactly what is important to us for an efficient time complexity

25

relaxation. Because the vertices in separate cells of the graph share no edges, we can eliminate all

the vertices within a cell without creating any edges other than to the other vertices in the same

cell. In relation to relaxation, this means that if we relax the variables corresponding to the vertices

in a cell, then all the new dependencies created will be to other variables within the same cell.

This property allows us to bound the cost of eliminating the vertices and correspondingly relaxing

the variables to solve our optimization problem to at most O(φc ∗ n ∗mtw), where φc is the number

of algebraic operations in φ, and the relaxation of each of n variables takes at most mtw.

There are a number of algorithms to decompose graphs into cells with this property [15],[27]. A

clique-decomposition method due to Tarjan[35] with a later improvement by Leimer[22] can separate

certain types of graphs (for example chordal graphs) in polynomial time or report that they are

not separable. Also, Matausek[23] gave a fast method to identify and separate graphs with tree

widths ≤ 3. A summary of known decomposition algorithms and graphs they can separate can be

found in Table 6.1.

Graph decomposition remains a hot area of research in the graph complexity community, however

we have found that the existing algorithms work well to decompose the dependency graphs of many

cases that we simulated that we consider will be typical in practice.

Now, the last step to do before carrying out the relaxation process is translating a tree decom-

position into a relaxation order that can give a polynomial solution to the optimization problem.

4.4 Relaxation Order

Once we have a tree decomposition of the dependency graph, we can immediately find a relaxation

order with the following algorithm:

Input: Let D =(T,V) be a tree decomposition of G. Then,

1. Find a vertex v that appears in exactly one leaf Vt and label it as next (starting at 1).

2. Remove v from Vt; set Vt := Vt − {v} and if Vt − {v} exactly equals to its parent in T (the

separator of Vt in the decomposition) then remove the leaf Vt from V.

3. If V is not empty, repeat step 1.

Output: a vertex ordering π.

Intuitively, the algorithm constructs an ordering such that when a vertex is chosen for elimination

(its corresponding variable for relaxation), it appears in exactly one leaf of the decomposition tree.

In this way, we effectively “dissolve” all the cells of a graph (corresponding to the leaves) from

outside in, by eliminating all the vertices inside each cell.

26

4.5 Order by Heuristic

An alternative to tree-decomposition to find a relaxation order is to use a vertex selection heuristic

that somehow chooses the order of vertices for elimination. We experimented with several heuristics

(see chapter 7) that rely on vertex degrees to choose the vertices for elimination at each step of

the relaxation process. The results are surprisingly good, giving computation costs similar to those

from tree-decomposition for simpler problem instances and even beating them for many complex

instances.

4.6 Carrying out the Optimization – Applying

the Relaxation Process

Given a variable ordering π a relaxation process can directly compute the ρ functions in the specified

order. The variable x ∈ X with largest assigned number in π is the last variable in φ. To find a

max of φ with respect to its only remaining variable x can be done by iterating over all m of its

values and computing the value of φ for each. The assignment of x that yields that largest value

of φ determines the rest of the variables. This is an optimal solution to the optimization problem

because each ρx preserves a maximum of the objective function.

4.7 A Complete Solution to the Example Problem

The following is a solution to the Example problem 1.1 using the outlined method. For convenience

we restate the problem:

Problem 4.1

Given X,F and φ where X = {x1, x2, x3, x4, x5, x6},

F =




f1 : x1 × x2 × x3 → R
+

f2 : x1 × x3 → R
+

f3 : x4 × x5 → R
+

f4 : x1 × x2 × x6 → R
+

f5 : x3 × x4 × x5 → R
+

and φ = ff2
1 + f5f3 + f4

Find an n-vector xopt = (ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6) that maximizes φ.

Solution: We solve the problem using the five steps outlined above:

27

{v1,v2}

v1

v6 v2

v4

v3

v5

{v1,v2,v6}

{v1,v2,v3}

{v2,v3}

{v2,v3,v4} {v3,v4,v5}

{v3,v4}

(a) (b)

Figure 4.3: Example Problem Dependency Graph

1. Dependency Separation

Dx1 = {x2, x3, x6},
Dx2 = {x1, x3, x4, x6},
Dx3 = {x1, x2, x5},
Dx4 = {x2, x5},
Dx5 = {x3, x4},
Dx6 = {x1, x2}

For example, the dependent set of x1 is {x2, x3, x6} because f1 has x1 as parameter along with

x2 and x3; and f4 has it with x6.

2. Dependency Graph

See Figure 4.3 (a). Here the corresponding vertex v1 has edges to v2, v3 and v6.

3. Graph Decomposition

The graph in (a) can be decomposed into (b) such that the leaves are the cells of the graph

and the internal nodes are the separators. For example, {v1, v2} separates v6 from the rest of

the graph. There are no edges from v6 to any vertices outside of its parent separator.

4. Relaxation Order

For the graph from Step 3, we can assign the order as follows: 1) v5 appears only in one

leaf, the {v3, v4, v5}, so we can assign the #1 to v5. After the assignment, we remove v5 from

{v3, v4, v5} and observe the new leaf {v3, v4} is the same as its parent separator. From step 2

in the algorithm we then remove it from the tree.

Next, v6 appears only in one leaf, {v1, v2, v6}, so we assign it the #2. And so on, to get the

final solution sequence π = {v5, v6, v1, v4, v2, v3}.

28

5. Applying the relaxation order π to φ

φ0 = f1(x1, x2, x3)f2(x1,x3) + f5(x3, x4, x5)f3(x4, x5) + f4(x1, x2, x6)

relaxing x5 =⇒ max φ1 = max φ0 | x5 = ρx5(x3, x4) with cost m3

φ1 = f1(x1, x2, x3)f2(x1,x3) + f5(x3, x4, ρx5(x3, x4))f3(x4, ρx5(x3, x4)) + f4(x1, x2, x6)

relaxing x6 =⇒ max φ2 = max φ1 | x6 = ρx6(x1, x3) with cost m3

φ2 = f1(x1, x2, x3)f2(x1,x3) + f5(x3, x4, ρx5(x3, x4))f3(x4, ρx5(x3, x4)) + f4(x1, x2, ρx6(x1, x2))

relaxing x1 =⇒ max φ3 = max φ2 | x1 = ρx1(x2, x3) with cost m3

φ3 = f1(ρx1(x2, x3), x2, x3)f2(ρx1 (x2,x3),x3)+

+f5(x3, x4, ρx5(x3, x4))f3(x4, ρx5(x3, x4)) + f4(ρx1(x2, x3), x2, ρx6(ρx1(x2, x3), x2))

relaxing x4 =⇒ max φ4 = max φ3 | x4 = ρx4(x2, x3) with cost m3

φ4 = f1(ρx1(x2, x3), x2, x3)f2(ρx1 (x2,x3),x3)+

+f5(x3, ρx4(x2, x3), ρx5(x3, ρx4(x2, x3)))f3(ρx4(x2, x3), ρx5(x3, ρx4(x2, x3)))

+f4(ρx1(x2, x3), x2, ρx6(ρx1(x2, x3), x2))

relaxing x2 =⇒ max φ5 = max φ4 | x2 = ρx4(x3) with cost m2

φ5 : x3 → R
+ : base case with cost m. done.

Total computing: 4 ∗ (4 ∗ m3 + m2 + m) time, because φc = 4.

Now, xopt = (ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6) where

ẋ1 = ρx1(ρx4(ρx3()), ρx3())

ẋ2 = ρx4(ρx3())

ẋ3 = ρx3()

ẋ4 = ρx4(ρx4(ρx3()), ρx3())

ẋ5 = ρx5(ρx3(), ρx4(ρx4(ρx3()), ρx3()))

ẋ6 = ρx6(ρx1(ρx4(ρx3()), ρx3()), ρx3())
computed from the above derivation.

29

Chapter 5

Optimization via Relaxation

5.1 The Main Operator

Let X = {x1, ..., xn} and M = {1, ...,m}, such that xi takes values in M for all 1 ≤ i ≤ n. Let

F = {f1, ..., fk} be a set of functions, where each fi(
∏

x∈Xi
) : M |Xi | → R

+, 1 ≤ i ≤ k and

∅ ⊂ Xi ⊆ X. Let φ : [R+]k → R = f [f1, ..., fk] be the global objective function.

Definition 5.1 (Variable Assignment)

Let S ⊆ X. We define α(S) :
∏

S → M |S| to be an assignment of S, which chooses a value for each

variable of S. We also use the notation, s = α(S, xi = ẋi), where ẋi is a value of xi, to represent

an assignment of variables in S with xi necessarily set to ẋi.

Definition 5.2 (Relaxation Function)

Let x ∈ X and S = X − {x}. We define a relaxation function

ρx(S) : Mn−1 → M � ẋ such that ∀ẍ ∈ M : φ(ẍ, S) ≤ φ(ẋ, S) (5.1)

that returns an optimal value of x (that maximizes φ) for any assignment of S. When the parameter

S is X − {x} we omit it from the argument, using simply ρx. We also use ρx(ẋi ∪ s) to mean an

assignment of s = α(S, xi = ẋi) as parameter to ρx.

Notation 5.1

We write φ(xi = ρxi
) to represent the function φ where every appearance of xi was replaced by the

expression ρxi
.

Definition 5.3 (Independence)

Let xi �= xk ∈ X and S = X − {xi, xk}. Then, xi is independent of xk if and only if

∀s = α(S) : ∀ẋk, ẍk ∈ M : φ(xi = ρxi
(ẋk ∪ s), ẋk, s) = φ(xi = ρxi

(ẍk ∪ s), ẋk, s) (5.2)

30

otherwise, it is said to be dependent on xk.

The definition of independence states that the two values ẋi = ρxi
(ẋk ∪ s) and ẍi = ρxi

(ẍk ∪ s)

can be different (which can happen when φ has more than one maximum), but as assignments for

xi they both produce the same value of φ. Also, given an x ∈ X, all the variables in X − {x} are

divided into dependent and independent sets with respect to x.

Definition 5.4 (Independence Property)

We denote the set of dependent variables of x ∈ X as Dx and the set of independent ones D̄x. Then

the following is an invariant:

X = Dx ∪ D̄x ∪ {x} ∧ Dx ∩ D̄x = ∅ ∧ x /∈ Dx ∧ x /∈ D̄x. (5.3)

5.1.1 The Property of ρ

The main property of the relaxation operator ρ is that regardless of which variable x ∈ X is chosen,

replacing x by ρx in φ preserves at least one of its maximal solutions (albeit at the expense of the

other maxima).

Theorem 5.1

max φ = max φ(xi = ρxi
, s), where s is an arbitrary assignment of all other variables X − {xi}.

Proof: Suppose not. Then there exists an xopt = (ẋ1, ..., ẋi, ..., ẋn) such that φ(xopt) = max φ

and a corresponding xsol = (ẋ1, ..., xi = ρxi
(s), ..., ẋn) with s = (ẋ1, ..., ẋi−1, ẋi+1, ..., ẋn) where

φ(xi = ρxi
) ≡ φ(xsol). Then, φ(xopt) > φ(xsol). Now, from the definition of ρ in 5.1 we have

∀ẍ ∈ M : φ(ẋ1, ..., xi = ẍ, ..., ẋn) ≤ φ(ẋ1, ..., xi = ρxi
(s), ..., ẋn). In particular, this implies that

φ(ẋ1, ..., ẋi, ..., ẋn) ≤ φ(ẋ1, ..., xi = ρxi
(s), ..., ẋn) ≡ φ(xopt) ≤ φ(xsol). Contradiction.

5.1.2 The Relaxation Process

Definition 5.5 (Ordering, Ordered Structure)

For a structure R = (X,F, φ) an ordering of X is a bijection π : {1, 2, ..., n} ↔ X and we call Rπ

an ordered structure. Thus, xi ∈ X in Rπ is the ith variable with respect to ordering π.

Definition 5.6 (X-Relaxation)

The relational structure Rx obtained from R by replacing every instance of variable x in φ with the

expression ρx is an x-relaxation of R represented by

Rx = (X − {x}, F ∪ ρx, φ(x = ρx)) (5.4)

31

Definition 5.7 (Relaxation Process)

For an ordered relational structure Rπ we define a relaxation process

P (Rπ) = [R = R0, R1, ..., Rn] (5.5)

as a sequence of relaxation structures defined recursively by R0 = R, Ri = (Ri−1)xi
for 1 ≤ i ≤ n.

Theorem 5.2

A P (Rπ) finds an optimal solution to the optimization problem.

Proof: Induction on i, applying x-relaxation to each x in order π.

Now we have a deterministic process for finding an optimal solution. However, we also want to

be able to find it quickly. Next we show how to compute the relaxation functions ρ fast for certain

common problem topologies.

5.1.3 Computing ρ

The main implication of the dependency property 5.2 for a given x is that the value returned by ρx,

the “best” value of xi for each assignment of the other variables, is the same regardless of the values

of all the independent variables D̄x. This is shown in the following theorem:

Theorem 5.3

Let x ∈ X and u = α(Dx) be some assignment of the dependent variables of x. Then,

∀v = α(D̄x) ∧ v′ = α(D̄x), v �= v′ : φ(x = ρx(u ∪ v), u, v) = φ(x = ρx(u ∪ v′), u, v) (5.6)

Proof: Let xi, xj ∈ D̄x be two variables independent with respect to x. First, we show that

these variables are together independent of x. That is, the independence property 5.2 holds for each

one with respect to x regardless of the value chosen for the other. Namely, from the definition of

independence, we have

∀s = α(X − {x, xi}) : ∀ẋi, ẍi ∈ M :

φ(x = ρx(ẋi ∪ s), ẋi, s) = φ(x = ρx(ẍi ∪ s), ẋi, s)
(5.7a)

and
∀s = α(X − {x, xj}) : ∀ẋj , ẍj ∈ M :

φ(x = ρx(ẋj ∪ s), ẋj , s) = φ(x = ρx(ẍj ∪ s), ẋj , s)
(5.7b)

32

We want to show that:

∀s = α(X − {x, xi, xj}) : ∀ẋi, ẍi, ẋj , ẍj ∈ M :

φ(x = ρx(ẋi, ẋj ∪ s), ẋi, ẋj , s) = φ(x = ρx(ẍi, ẍj ∪ s), ẋi, ẋj , s)
(5.7c)

Suppose not. Let s′ = α(X − {x, xi, xj}) be an assignment and ẋi, ẍi, ẋj , ẍj be the four values such

that φ(x = ρx(ẋi, ẋj ∪ s′), ẋi, ẋj , s
′) �= φ(x = ρx(ẍi, ẍj ∪ s′), ẋi, ẋj , s

′) (negation of 5.7c). For this

assignment, we have

φ(x = ρx(ẋi, ẋj ∪ s′), ẋi, ẋj , s
′) = φ(x = ρx(ẍi, ẋj ∪ s′), ẋi, ẋj , s

′) (5.7d)

and

φ(x = ρx(ẋi, ẍj ∪ s′), ẋi, ẋj , s
′) = φ(x = ρx(ẍi, ẍj ∪ s′), ẋi, ẋj , s

′) (5.7e)

from 5.7a. This is directly from the definition of independence 5.2, where s = α(X − {x, xi}) =

{ẋj ∪ s′} and s = {ẍj ∪ s′} respectively. Similarly, we also have

φ(x = ρx(ẋi, ẋj ∪ s′), ẋi, ẋj , s
′) = φ(x = ρx(ẋi, ẍj ∪ s′), ẋi, ẋj , s

′) (5.7f)

and

φ(x = ρx(ẍi, ẋj ∪ s′), ẋi, ẋj , s
′) = φ(x = ρx(ẍi, ẍj ∪ s′), ẋi, ẋj , s

′) (5.7g)

from 5.7b. Also directly from independence, where s = α(X −{x, xj}) = {ẋi ∪ s′} and s = {ẍi ∪ s′}
respectively. Then,

φ(x = ρx(ẋi, ẋj ∪ s′), ẋi, ẋj , s
′)

= φ(x = ρx(ẍi, ẋj ∪ s′), ẋi, ẋj , s
′)

= φ(x = ρx(ẋi, ẍj ∪ s′), ẋi, ẋj , s
′)

= φ(x = ρx(ẍi, ẍj ∪ s′), ẋi, ẋj , s
′)

(5.7h)

Contradiction. And so, we have 5.7c. Now, we simply induct on the number of variables in D̄x.

For example, for three variables xi, xj , xk ∈ D̄x and s′ = α(X−{x, xi, xj , xk}) the equality is derived

as follows:
φ(x = ρx(ẋi, ẋj , ẋk ∪ s′), ẋi, ẋj , ẋk, s′)

= φ(x = ρx(ẍi, ẋj , ẋk ∪ s′), ẋi, ẋj , ẋk, s′)

= φ(x = ρx(ẋi, ẍj , ẋk ∪ s′), ẋi, ẋj , ẋk, s′)

= φ(x = ρx(ẋi, ẋj , ẍk ∪ s′), ẋi, ẋj , ẋk, s′)

(5.7i)

33

and
φ(x = ρx(ẍi, ẍj , ẍk ∪ s′), ẋi, ẋj , ẋk, s′)

= φ(x = ρx(ẋi, ẍj , ẍk ∪ s′), ẋi, ẋj , ẋk, s′)

= φ(x = ρx(ẍi, ẋj , ẍk ∪ s′), ẋi, ẋj , ẋk, s′)

= φ(x = ρx(ẍi, ẍj , ẋk ∪ s′), ẋi, ẋj , ẋk, s′)

(5.7j)

immediately from the independence properties for each variable. Finally, we also have

φ(x = ρx(ẋi, ẍj , ẍk ∪ s′), ẋi, ẋj , ẋk, s′) = φ(x = ρx(ẋi, ẍj , ẋk ∪ s′), ẋi, ẋj , ẋk, s′) (5.7k)

from the 2-variable case, which links 5.7i and 5.7j. Thus, they are all equal, contradicting the

dependence assumption and by induction the theorem holds.

Now we are allowed to use the ρ functions computed only from the dependent variables instead

of the ρ over all the variables everywhere in the relaxation process above. This is what allows us

to gain the first type of substantial savings in solving the optimization problem via the relaxation

process.

5.2 Dependency Separation

The relaxation process is predicated on our ability to correctly separate X into the dependent and

independent sets with respect to a given variable. We now give some exact methods for separating

the variables for the following forms of the objective function φ:

1. φ = a sum of f ’s or a product of f ’s.

2. φ = sum of products, product of sums

3. φ = sum of exponents, exponent of sums

4. φ = product of exponents, exponent of products

To prove that each separation is correct, we need to show that the results satisfy the independence

property 5.2. First, some notation:

Notation 5.2

We use the syntax fi(A)[B] for some A,B ⊆ X to represent a function in F that has variables in A

as parameters and may have any variables in B as additional parameters. For example, fi(xj)[xk, S]

means that fi has at least xj as parameter and may also have any variables in {xk} ∪ S as addi-

tional parameters. The statement fi(ẋj)[ẍk, s] denotes a function evaluation for the corresponding

34

fi(xj)[xk, S] where ẋj and ẍk are assignments of xj and xk respectively and s is some assignment

of S.

Notation 5.3
∑

fi∈C fi(A)[B] where A,B ⊆ X and C ⊆ F denotes a sum of functions each having at least the

variables in A as parameters. However, each function may have different subsets of B as additional

parameters. For example,
∑

fi∈C fi(x1)[x2, x3, x4] can represent the expression f1(x1)+f2(x1, x3)+

f3(x1, x4). Similarly, the expression
∑ ∏n

i=1 fi(A)[B] represents a sum of products of such functions.

Lemma 5.1

Let φ =
∑n

i=1 fi and let xi �= xj ∈ X. Then xi is independent of xj if there does not exist an

Xt, 1 ≤ t ≤ k, such that xi, xj ∈ Xt.

Proof: Let x ∈ X and let D̄x be formed by the above rule. That is,

∀xind ∈ D̄x :� ∃Xt : x, xind ∈ Xt for 1 ≤ t ≤ k. (5.8a)

Suppose the opposite is true. Then there exists an xind ∈ D̄x that fails to satisfy the independence

property 5.2. Namely, the following is true (negation of independence): Let S = X − {x, xind}

∃ s = α(S) : ∃ ẋind, ẍind ∈ M : φ(x = ρx(ẋind ∪ s), ẋind, s) < φ(x = ρx(ẍind ∪ s), ẋind, s) (5.8b)

which in this case implies that for these s, ẋind and ẍind, if we let ẋ = ρx(ẋind ∪ s), ẍ = ρx(ẍind ∪ s)

then we have
n∑

i=1

fi[ẋ, ẋind, s] <

n∑
i=1

fi[ẍ, ẋind, s] (5.8c)

directly from 5.8b, replacing the general φ by the assumed structure φ =
∑n

i=1 fi. Now, the

independent set formation rule 5.8a allows us to separate 5.8c as follows:

∑
fi∈Ex

fi[ẋ, s] +
∑

fi∈Ēx

fi[ẋind, s] <
∑

fi∈Ex

fi[ẍ, s] +
∑

fi∈Ēx

fi[ẋind, s] (5.8d)

where fi ∈ Ex iff x ∈ Xi; otherwise fi ∈ Ēx. With some algebraic manipulation this simplifies to

∑
fi∈Ex

fi[ẋ, s] <
∑

fi∈Ex

fi[ẍ, s] (5.8e)

On the other hand, from the definition of ρx we have

∀x′ ∈ M : φ(x′, ẋind, s) ≤ φ(ẋ, ẋind, s) and ∀x′ ∈ M : φ(x′, ẍind, s) ≤ φ(ẍ, ẍind, s) (5.8f)

35

which can be expanded and separated as earlier from 5.8a and the structure of φ into:

∀x′ ∈ M :
∑

fi∈Ex
fi[x′, s] +

∑
fi∈Ēx

fi[ẋind, s] ≤
∑

fi∈Ex
fi[ẋ, s] +

∑
fi∈Ēx

fi[ẋind, s]

≡ ∀x′ ∈ M :
∑

fi∈Ex
fi[x′, s] ≤ ∑

fi∈Ex
fi[ẋ, s]

(5.8g)

and

∀x′ ∈ M :
∑

fi∈Ex
fi[x′, s] +

∑
fi∈Ēx

fi[ẍind, s] ≤
∑

fi∈Ex
fi[ẍ, s] +

∑
fi∈Ēx

fi[ẍind, s]

≡ ∀x′ ∈ M :
∑

fi∈Ex
fi[x′, s] ≤ ∑

fi∈Ex
fi[ẍ, s]

(5.8h)

Combining 5.8g and 5.8h we have:

∑
fi∈Ex

fi[ẋ, s] =
∑

fi∈Ex

fi[ẍ, s] (5.8i)

And, from 5.8e and 5.8i we have a contradiction. Thus, the independent variables of x identified for

φ =
∑n

i=1 fi via the parameter overlap rule are indeed independent.

Lemma 5.2

Let φ =
∏n

i=1 fi and let xi �= xj ∈ X. Then xi is independent of xj if there does not exist an

Xt, 1 ≤ t ≤ k, such that xi, xj ∈ Xt.

Proof: The proof has the same structure as for lemma 5.1, except equations 5.8d, 5.8g and 5.8h

have multiplication instead of addition.

Lemma 5.3

Let φ =
∑ ∏n

i=1 fi and let x �= xj ∈ X. Then x is independent of xj if there does not exist an

Xt, 1 ≤ t ≤ k, such that x, xj ∈ Xt AND φ cannot be written as

φ =
∏

fi∈B

fi(x)[S] ∗
∏

fi∈A

fi(xj)[S] +
∏

fi∈D

fi(x)[S] ∗
∑ ∏

fi∈C

fi(xj)[S] +
∑ ∏

fi∈E

fi[x, xj , S] (5.9)

where A,B,C,D,E ⊆ F and S = X − {x, xj} and sets C and E could be empty.

Proof: If there is no function in F that has both x and xj as parameters, then a φ of the form
∑ ∏n

i=1 fi can take only be of the following three forms:

a)
∏

fi∈A fi(x)[S] +
∑ ∏

fi∈B fi(xj)[S] for some A,B ⊆ F

b)
∏

fi∈A fi(x)[S] ∗ ∏
fi∈B fi(xj)[S] +

∑∏
fi∈E fi[xj , S]

c) and the form given in equation 5.9.

36

We will show that if φ can be written as the types a) or b) then x is independent of xj . As

previously, the argument is by contradiction. Suppose the opposite is true. Then there exists some

φ which is not of the form 5.9 and an x ∈ X with D̄x formed by the above rule. That is,

∀xind ∈ D̄x :� ∃Xt : x, xind ∈ Xt for 1 ≤ t ≤ k. ∧ NOT eq. 5.9 with xind replacing xj (5.10a)

Where there exists an xind ∈ D̄x that fails to satisfy the independence property 5.2. Namely, the

following is true (negation of independence): Let S = X − {x, xind}

∃ s = α(S) : ∃ ẋind, ẍind ∈ M : φ(x = ρx(ẋind ∪ s), ẋind, s) < φ(x = ρx(ẍind ∪ s), ẋind, s) (5.10b)

which in this case implies that for these s, ẋind and ẍind, if we let ẋ = ρx(ẋind ∪ s), ẍ = ρx(ẍind ∪ s)

then we have ∑ ∏
fi[ẋ, ẋind, s] <

∑∏
fi[ẍ, ẋind, s] (5.10c)

Now, if φ is of type a) then we can rewrite 5.10c as:

∏
fi∈A

fi(ẋ)[s] +
∑ ∏

fi∈B

fi(ẋind)[s] <
∏

fi∈A

fi(ẍ)[s] +
∑ ∏

fi∈B

fi(ẋind)[s]

for some A,B ⊆ F , leading to ∏
fi∈A

fi(ẋ)[s] <
∏

fi∈A

fi(ẍ)[s] (5.10d)

or if φ is of type b) as:

∏
fi∈A

fi(ẋ)[s]∗
∏

fi∈B

fi(ẋind)[s]+
∑ ∏

fi∈E

fi[ẋind, s] <
∏

fi∈A

fi(ẍ)[s]∗
∏

fi∈B

fi(ẋind)[s]+
∑ ∏

fi∈E

fi[ẋind, s]

for some A,B,E ⊆ F leading, again to equation 5.10d via an algebraic reduction.

On the other hand, from the definition of ρx we have

∀x′ ∈ M : φ(x′, ẋind, s) ≤ φ(ẋ, ẋind, s) and ∀x′ ∈ M : φ(x′, ẍind, s) ≤ φ(ẍ, ẍind, s) (5.10e)

which can be expanded and separated as follows: if the structure of φ is a) then we have

∀x′ ∈ M :
∏

fi∈A fi(x′)[s] +
∑ ∏

fi∈B fi(ẋind)[s] ≤
∏

fi∈A fi(ẋ)[s] +
∑ ∏

fi∈B fi(ẋind)[s]

≡ ∀x′ ∈ M :
∏

fi∈A fi(x′)[s] ≤ ∏
fi∈A fi(ẋ)[s]

37

and

∀x′ ∈ M :
∏

fi∈A fi(x′)[s] +
∑ ∏

fi∈B fi(ẍind)[s] ≤
∏

fi∈A fi(ẍ)[s] +
∑ ∏

fi∈B fi(ẍind)[s]

≡ ∀x′ ∈ M :
∏

fi∈A fi(x′)[s] ≤ ∏
fi∈A fi(ẍ)[s]

and combining the two we obtain

∏
fi∈A

fi(ẋ)[s] =
∏

fi∈A

fi(ẍ)[s] (5.10f)

which contradicts the equation 5.10d derived earlier.

Similarly, when φ is of type b) we have

∀x′ ∈ M :
∏

fi∈A fi(x′)[s] ∗ ∏
fi∈B fi(ẋind)[s] +

∑ ∏
fi∈E fi[ẋind, s]

≤ ∏
fi∈A fi(ẋ)[s] ∗ ∏

fi∈B fi(ẋind)[s] +
∑ ∏

fi∈E fi[ẋind, s]

≡ ∀x′ ∈ M :
∏

fi∈A fi(x′)[s] ≤ ∏
fi∈A fi(ẋ)[s]

and
∀x′ ∈ M :

∏
fi∈A fi(x′)[s] ∗ ∏

fi∈B fi(ẍind)[s] +
∑ ∏

fi∈E fi[ẍind, s]

≤ ∏
fi∈A fi(ẍ)[s] ∗ ∏

fi∈B fi(ẍind)[s] +
∑ ∏

fi∈E fi[ẍind, s]

≡ ∀x′ ∈ M :
∏

fi∈A fi(x′)[s] ≤ ∏
fi∈A fi(ẍ)[s]

yielding the same contradiction via equation 5.10f.

Thus, we have a contradiction for types a) and b) of φ and the theorem holds.

The proofs for the sums of exponents and products of exponents follow the steps of the above

lemma. For the product of exponents, we merely need to take the log function of both sides.

Now, with the dependency sets we can proceed to represent them in graph form for the next step

in our optimization solution.

5.3 Dependency Graphs

Definition 5.8 (Dependency Graph)

Let G = (V,E) be an undirected simple graph with V the set of vertices and E the set of edges. Let

R = (X,F, φ) be an optimization problem instance. Then if

1. there exists a bijection β : V ↔ X

2. 〈∀x ∈ X : ∀x′ ∈ Dx : ∃(β(x), β(x′)) ∈ E and not otherwise〉
(5.11)

we call G a dependency graph for R.

38

Definition 5.9 (Neighbors)

Let x ∈ X and let v = β(x). Then Nv �
⋃

x′∈Dx
{β(x′)} is the set of neighbors of v in G.

Note that |Nv| = |Dx| because β is a bijection.

Definition 5.10 (Vertex Elimination Function)

Let G = (V,E) be the dependency graph for a relational structure R = (X,F, φ). Let x ∈ X and

v = β(x). Let A =
⋃

v′,v′′∈Nv
(v′, v′′) be the set of edges forming a clique among all neighbors of v and

let B =
⋃

v′∈Nv
(v, v′) be the set of all edges incident on v in G. We define a vertex elimination

function η on G as

Gv � ηv(G) where

Gv = (V − {v}, E ∪ A − B)
(5.12)

and it is a graph dual of the relaxation function ρx on φ.

Figure 5.1: Vertex elimination of V1

In Figure 5.1 the vertex V1 and all its edges are removed and a new edge (V3, V6) is added to

E(G).

Similarly to the relaxation process we can define a vertex elimination process on G as follows:

Definition 5.11 (Ordered Graph)

Let G = (V,E) be the dependency graph for a relational structure R = (X,F, φ). Then an ordering

of V is a bijection π : {1, 2, ..., n} ↔ V and we call Gπ an ordered graph. In this way, vi ∈ V in

Gπ is the ith vertex with respect to ordering π.

5.4 Vertex Elimination Process

Definition 5.12 (Elimination Process)

For an ordered graph Gπ we define a vertex elimination process

PG(Gπ) = [G = G0, G1, ..., Gn] (5.13)

as a sequence of derived graphs defined recursively by G0 = G, Gi = (Gi−1)vi
for 1 ≤ i ≤ n.

39

Now, we need to make sure that as we apply η to G it corresponds exactly to the dependencies

among variables after applying a relaxation ρ to φ. And, inductively, that the graph is always in

correspondence with the transformations taking place on φ.

Lemma 5.4

Let G be the dependency graph for a problem instance R = (X,F, φ). Let x ∈ X and v = β(x).

Then Gv is the dependency graph for Rx.

Proof: Recall that Gv = ηv(G) = (V − {v}, E ∪ A − B) from definition 5.12 and Rx =

(X − {x}, F ∪ ρx, φ(x = ρx)) from definition 5.4. First, in Rx the variable x is removed from

X and the corresponding v is removed from V . When v is removed, all the edges in G incident

on v are removed via set B, which follows that no variable in X is dependent on x after x is

relaxed. Second, in the relaxation of x a new function is created, ρx, which has all variables in Dx

as parameters (definition 5.1). Now, all the variables present as parameters to a function in F as

mutually dependent, based on the dependency separation rules in section 4.1.1. Thus, there must be

a an edge in Gv for each pair (v, v′) where v, v′ ∈ Nv, which is insured with set A in the definition.

Corollary 5.5

Let π be an ordering for Gπ and Rπ such that vi = β(xi). Then Gvi
is the dependency graph for

Rxi
for all 1 ≤ i ≤ n.

Proof: immediate from the definitions 5.5, 5.13 of P and PG and lemma 5.4 by induction on i.

Corollary 5.6

If Gv is the dependency graph for Rx then |Dx| = |Nv|

Proof: Immediate from definition 5.11 and lemma 5.4.

5.5 Relaxation + Elimination Complexity Relationship

At this point, with the dependency graph and the relational structure in agreement, we can define

a cost relationship between ρ and η. Now, here is a key insight

Theorem 5.4

Let π be an ordering for Gπ and Rπ such that vi = β(xi). Then the computational complexity of

a relaxation process Rπ is O(
∑

1≤i<n m|Nvi
|+1), when it follows the vertex elimination process Gπ.

Note, that Nvi
is the set of neighbors of vi in Gi.

40

Proof: As stated in section 4.1.1 the computation cost to perform ρx for some x ∈ X is m|Dx|+1.

From corollary 5.6 we have m|Dxi
|+1 = m|Nvi

|+1, where vi = β(xi).

G0 = (V,E)
ηv1(G0)−→ G1 = (V − {v1}, E ∪ A − B)

ηv2(G1)−→ · · · ηvn−1(Gn−1)−→ Gn

� � �

R0 = (X,F, φ)
φ(ρx1)−→ R1 = (X − {x1}, F ∪ ρx, φ(x = ρx1))

φ(ρx2)−→ · · · φ(ρxn−1)−→ Rn

(5.14)

The value of the above theorem is that it allows us to express the computational complexity

of the solution to our optimization problem purely in terms of neighbors in the corresponding

dependency graph. The equation 5.14 shows the relationship between the optimization problem and

its dependency graph lockstep transformation. Now, if we find a way to order the vertices to produce

a small degree polynomial for the sum of complexities, O(
∑

1≤i<n m|Nvi
|+1), in terms of neighbors,

performing the relaxation process in same order would give us a low degree polynomial solution for

the optimization problem.

To find good vertex orderings we propose two heuristics, one based on graph decomposition

techniques and the other based on local properties of the dependency graph.

41

Chapter 6

Relaxation Order

In the previous chapter we showed a method for finding an exact optimal solution to any instance

of ARA using the relaxation operation. However, the computational performance of the method

depends on the order in which the relaxations are carried out. In this chapter we propose two

methods for finding relaxation orders which seem to produce good results in practice.

The relationship between the relaxation operation and vertex elimination in graphs established

in theorem 5.4 allows us to look for a relaxation order in the structure of the dependency graphs.

We propose two approaches: a recursive graph decomposition via separators and a greedy search

based on vertex degrees.

6.1 Graph Decomposition

Recent advances in graph complexity theory provide a set of tools to analyze graphs through tree

decomposition. We first show the properties of tree decompositions and then refer to two of several

known algorithms, one based on clique separators and originally due to Tarjan[35] with improvements

by Leimer [22], and another based on minimal separators which can be identified with techniques

by [4] and [23]. We then show how to use the decompositions produced with these techniques to

extract good relaxation orders.

6.1.1 Notation

Let G = (V,E) be an undirected, simple graph. Let U ⊆ V , then G(U) � (U,E(U)) is the subgraph

of G induced by U , where E(U) � {{v, w} ∈ E : v, w ∈ U}. A path between v and v′ in G is denoted

by vGv′ and if v′′ is a vertex on the this path, then v′′ ∈ vGv′. C(U) denotes the set of connected

components of G(V \U).

G(U) is a clique, if ∀v, w ∈ U : ∃{v, w} ∈ E. Also, the empty set ∅ is a clique. A graph is a clique

if its vertex set is a clique. U ⊆ V is a separator for A,B ⊆ V − U , if every path between a ∈ A

and b ∈ B contains a vertex in U . U is a separator for G if there are non-empty sets A,B ∈ V − U

42

such that U is a separator for A and B. A graph G that has a clique separator is called reducible,

otherwise it is prime.

6.1.2 Tree-decomposition properties

Definition 6.1 (Decomposition Tree)

A decomposition tree of a graph G is a pair D = (T,V), where T is a tree and V = {Vt}t∈T is a

family of vertex sets Vt ⊆ V (G), indexed by the vertices t ∈ T that satisfy the following:

(T1) V (G) =
⋃

t∈T Vt

(T2) ∀(v, w) ∈ E(G) : ∃ t ∈ T : v ∈ Vt ∧ w ∈ Vt

(T3) ∀t1, t2, t3 ∈ T : t2 ∈ t1T t3 ⇐⇒ Vt1 ∩ Vt3 ⊆ Vt2

(6.1)

V t6

V t7Vt8

V
t9

V
t5

V
t1

V t4
V t2

Vt3

t8 t7

t9

t6

t5

t4

t1

t2 t3

Figure 6.1: Tree Decomposition of a Graph

Definition 6.2 (Tree-Width)

A width of a tree decomposition (T,V) is

max{|V(t)| − 1 : t ∈ T} (6.2)

and the tree-width of G, denoted by tw(G), is the least integer w such that G admits a tree-

decomposition of width w. Graphs of tree-width ≤ k are called k-decomposable.

Remark 6.1

For example, tw(G) ≤ 1 if and only if G is a forest; tw(G) ≤ 2 if and only if it is series parallel;

and the complete graph Kn has tw(G) = n − 1.

Some of what is known about tree decompositions is summarized in [23] as follows: 1) many

NP-hard graph problems can be solved in polynomial time when a tree decomposition is given 2) if

tw is part of input, the decision problem “is tw(G) ≤ w?” is NP-complete [1]. 3) For every fixed w

there exists an O(|V (G)|2) algorithm for deciding whether tw(G) ≤ w, though the proof is merely

existential. 4) There are linear algorithms to determine whether tw(G) ≤ w, where w = 1, 2, 3

43

Class Treewidth
Bounded degree N[8]
Trees/Forests C
Series-parallel graphs C
Outerplanar graphs C
Halin graphs C[36]
k-Outerplanar graphs C[7]
Planar graphs O
Chordal graphs P(1)
Starlike chordal graphs P(1)
k-Starlike chordal graphs P(1)
Co-chordal graphs P[8]
Split graphs P(1)
Bipartite graphs N
Permutation graphs P[5]
Circular permutation graphs P[5]
Cocomparability graphs N[2],[17]
Cographs P[6]
Chordal bipartite graphs P[20]
Interval graphs P(2)
Circular arc graphs P[34]
Circle graphs P[19]

P = polynomial time solvable. C = constant (linear time solvable). N = NP-complete. O = Open
Problem. (1) The treewidth of a chordal graph equals its maximum clique size minus one. (2) The
treewidth of an interval graph equals its its maximum clique size minus one.

Table 6.1: Classes of graphs with known treewidth computation time, from Bodlaender[8]

and when the result is positive to construct the tree. Finally, there is a variety of approximate

decomposition algorithms as well as some that find less than optimal decompositions, such as one

returning at most 4 ∗ tw [28]. Bodlaender in [8] provides a summary of classes of graphs for which

there are known treewidth results (see Table 6.1).

Definition 6.3 (Minimal Separators)

U ⊆ V is called an ab-separator if there exist vertices a ∈ V and b ∈ V that are in different

connected components of C(U). The set U is a minimal ab-separator if no proper subset of U is

an ab-separator. Finally, U is a minimal separator if there is some pair a, b ∈ V for which U is

a minimal ab-separator. Separators that are cliques are called clique separators. The nodes of the

decomposition tree derived via clique separators are called simplical summands.

6.1.3 Decomposition Process

A decomposition of a simple connected graph G = (V,E) works by finding a minimal separator U that

breaks G into two or more connected components C(U). Then each component is augmented with

the subgraph induced by the separator. We repeat the decomposition process on each component

recursively until no longer possible. Namely, until all the resulting components are prime.

44

In general the decompositions are not unique, since often a graph can be split along several dif-

ferent separators. This yields different decomposition trees of different widths. If the separators are

chosen to be minimal clique separators, then any decomposition gives the same prime components,

though not necessarily of optimal width. Developing methods for choosing the separators to yield

the lowest width decompositions is currently of primary interest for our algorithm to work efficiently,

as well as for many other applications.

Tarjan[35] proposed a polynomial-time algorithm that decomposes a graph by systematically

choosing minimal clique separators. Berry[4] showed a way to identify all the minimal separators

of a graph at the cost of O(n3) per separator, any of which could be chosen for decomposition. We

simulated a number of graphs choosing minimal separators at random and this approach has shown

to give low width decompositions for many practical problem instances.

Example 6.1 (Graph Decomposition)

Figure 6.2 is an application of a clique decomposition of our example problem 4.1 with minimal

separators.

v1

v6 v2

v4

v3

v5

v1

v2

v4

v3

v5

v2

v4

v3

v5
Simplical Summands:
{v1,v2,v6},{v1,v2,v3},
{v2,v3,v4},{v3,v4,v5}

Figure 6.2: Example Problem Dependency Graph

In Figure 6.2, the first clique is {v1, v2} which separates the graph into a prime subgraph

{v1, v2, v6} and the remaining part {v1, v2, v3, v4, v5}. The next clique separator is {v2, v3} and

so on. In this way, the decomposition produces the irreducible subgraphs indicated in the figure.

45

6.2 Relaxation Order

Now, the final step is to extract a good vertex elimination ordering from the prime subgraphs

produced by a graph decomposition. We propose the following 2-step algorithm:

Algorithm 6.1 Input: Let (T,V) be a tree decomposition of G. Then,

1) Find a vertex v that appears in exactly one prime subgraph Vt and label it as next (starting at

1).

2) Remove v from Vt; Vt := Vt −{v} and if Vt −{v} is the separator of Vt in the tree decomposition

then remove the leaf Vt from V.

3) If V is not empty, repeat step 1.

Output: a vertex ordering π.

Lemma 6.2

In step 1 of algorithm 6.1 a v ∈ V that appears in exactly one prime subgraph always exists.

Proof: Suppose not. Then we have a tree where every vertex of G appears in at least two

leaves, namely ∀v ∈ V : ∃Vt, V
′
t ∈ V : v ∈ Vt ∧ v ∈ V ′

t . This is only possible when v ∈ C and C is a

separator for Vt and V ′
t . Thus, all the vertices must be in some separators. Impossible, since initially

a) by definition a separator C divides a graph into subgraphs A and B, both non-empty, such that

A ∩ B = ∅ and b) step 2 removes the Vt when all the separated vertices have been removed.

Lemma 6.3

The algorithm 6.1 enumerates all the vertices in G.

Proof: Clearly all the non-separator vertices are enumerated, since they satisfy the condition in

step 1 directly. So, we only need to show this for all the vertices in the separators. Now let v ∈ V

be such that there exists a separator C where v ∈ C. Then there exists some set of prime subgraphs

V 1
t , ..., V k

t where v ∈ V i
t for 1 ≤ i ≤ k. From step 2 we know that a prime subgraph is removed from

V when all its vertices but those in its separator have been removed. These subgraphs are going to

be removed in some order, and since vertices are never added to any subgraphs, there will eventually

be a the last one, say V j
t , that is the only one containing v. But this would satisfy the condition in

step 1 and v will then be enumerated.

6.3 Main Result

The following theorem completes the relationship between the optimization problems and their

dependency graphs. It ties the complexity in terms of neighbors in Theorem 5.4 with a standard

graph complexity metric of tree-width.

46

Theorem 6.1

Let D be a tree-decomposition of the dependency graph G for problem R of width w, producing an

ordering π. Then, the computational complexity to find an optimal solution to R via the relaxation

process in the order π is O(φc ∗ n ∗ mw+1).

Proof: From theorem 5.4 we have that for any ordering π, performing the relaxation process Rπ

has a computational complexity of O(
∑

1≤i<n m|Nvi
|+1), where Nvi

is the set of neighbors of vi in

Gi of the corresponding vertex elimination process Gπ. To show the bound in terms of tree width

w, we only need to show that each vertex vi being eliminated has |Nvi
| ≤ w in Gi.

Now, a tree decomposition D of G of width w has the property that for each leaf t ∈ T, |V(t)| ≤ w.

Its other property (from definition T2 in 6.1) is that ∀v ∈ V(t) − C(t) : ∀v′ ∈ Nv : v′ ∈ V(t), where

C(t) is the separator for t. Namely, all the neighbors of any v in V(t) − C(t) belong to the same

prime subgraph V(t). Therefore, the cost to eliminate any vertex v in V(t) − C(t) is O(mw+1).

Now, the ordering π produced by algorithm 6.1 is such that when any vertex v is removed, it is

not a separator, i.e. it appears in only one leaf. Thus, in the worst case, the total cost to eliminate

all the vertices in the order π is O(
∑

1≤i<n mw+1) = O(n ∗ mw+1) and, the relaxation process Rπ

has the same computational complexity. QED.

6.4 Greedy Heuristic Search

A local ordering method is an algorithm that finds a relaxation order for a dependency graph,

enumerating the vertices by computing some function of their degrees and those of their neighbors.

An optimal ordering is one that produces the smallest total computational cost for the optimization

problem when carrying out the relaxation process in that order.

We propose two ‘immediate’ greedy heuristics. Both algorithms take a graph generated previously

via a dependency separation process and output a vertex ordering to guide the relaxation.

The algorithms follow this structure:

Algorithm 6.2 Greedy Elimination Ordering

1. Let i = 0.

2. Choose the next vertex k via a heuristic

3. Assign i + 1 to k.

4. Perform the vertex elimination on k – remove it from the graph and connect all of its neighbors

5. If there are any more vertices, then go to step 1; otherwise, stop.

Algorithm 6.3 Smallest Degree First

2. Find the vertex k with the least degree (if more than one, choose at random)

47

Algorithm 6.4 Least Edges Created

2. Find the vertex k such that the number of edges created after the relaxation of k is least. This

value for any vertex j is d∗(d−1)
2 − m, where d = Deg[j] and m is the number of edges that exist

between the neighbors of j.

The greedy method makes a locally optimal decision at each step, where the “best” vertex is

chosen depending on the heuristic. The basic problem with this approach is the following: when a

vertex is removed its former neighbors are fully connected and as a result can make the graph more

complex than it needs to become. In the worst case, a what looks like a good local relaxation can

unnecessarily create a new largest clique in the graph, making the total complexity proportional to

its size. Since finding the largest clique in a graph is NP-complete[14], testing for an increase is

hard.

1

2

3

4

5
6

7

8

13

4

5
6

7

8

13

5
6

7

8

13

5 7

8

3

5 7

8

5
7

8

7

8

1

2

3

4

5
6

7

8

13

4

5
6

7

8

13

5
6

7

8

13

5 7

8

3

5 7

8

5
7

8

7

8

sequence=82, 3, 1, 4, 5, 6, 7< complexity=84, 5, 6, 5, 4, 3, 2< max=6

sequence=82, 4, 6, 1, 3, 5, 7< complexity=84, 5, 5, 5, 4, 3, 2< max=5

1
23

4

5
6 7

8

9

1
2

4

5
6 7

8

9

1
2

4

5

7
8

9

1
4

5

7
8

9

4

5

7
8

9 5

7

8

9

7

8

9

8

9

sequence=83, 6, 2, 1, 4, 5, 7, 8< complexity=85, 6, 6, 6, 5, 4, 3, 2< max=6

1
23

4

5
6 7

8

9

23
4

5
6 7

8

9

3
4

5
6

7
8

9

3
4

6
7

8

9

4

6
7

8

9

6
7

8

9

7

8

9

8

9

sequence=81, 2, 5, 3, 4, 6, 7, 8< complexity=87, 7, 5, 6, 5, 4, 3, 2< max=7

a)

b)

Smallest Degree First

Least Edges Created

Smallest Degree First

Least Edges Created

Figure 6.3: Non-optimality of the heuristics.

Neither heuristic is optimal and Figure 6.3 demonstrates two counterexamples. The sequence set

indicates the order in which the vertices are removed and the complexity set the corresponding cost

to remove the variables in that order. The part a) of the figure shows a graph where the Least Edges

heuristic is better. The b) graph shows that the Smallest Degree First is better. The sequences of

graphs show how the dependency graphs evolve in response to the relaxation processes.

6.5 Open Issues

There are two main directions open for further investigation. First, it is desirable to find efficient

dependency separation rules for more objective function types. Second, we would like to find a way

48

to better choose minimal separators for the most common problem instances. Third, we conjecture

that any selection heuristic for the greedy search, computed from vertex degrees alone, will likely

yield about the same quality orderings as the two we showed above.

49

Chapter 7

Simulations

To see how well our relaxation method works we simulated a number of problem instances which we

believe are likely to appear in practice. We looked at a range of problems, including problems with

as few variables as 8 and as many as 100 with a varying number of relationship functions. For each

generated instance we followed the solution process in Figure 4.1, namely:

1. Carried out the dependency separation following the algorithms in Section 5.2 to produce a

dependency graph

2. Applied the graph decomposition from Section 6.1 and the greedy search heuristics to the

graph as described in Section 6.4

3. Generated the relaxation orderings as in Section 6.2

4. Extracted the computation costs for the optimal solution search via both methods.

The following three experiments present our findings.

7.1 Experiment Setup

We implemented a relaxation simulator in Mathematica 4.1 with the extended combinatorica.m

package from Skiena [31]. It consists of a random problem generator, our relaxation algorithm and

two vertex elimination heuristics: MinDegree and LeastEdgesCreated. For decomposition we used

a MSVS simulator developed by Koster [21].

A random problem is generated from three parameters: number of variables, number of relations

and the number of arguments for each relation. For each relationship we randomly select a set of

parameters, avoiding duplicates and duplicate relationships. Though a real-world problem would

likely have relationships with different arity, we believe we can generate a diverse set of problems of

varying complexity by changing the number of relations and keeping the number of arguments fixed.

50

7.2 Experiment 1 (Small Problems with Known Optimal Cost)

For small problems (8 variables or less) it is possible to find the optimal (fastest) relaxation order-

ing via brute-force in reasonable time, trying all possible variable assignments and computing the

objective function. We generated 420 problems of 8 variables, between 4 and 10 relationships of 3

arguments each. The number of random relationships, on average, roughly controls the density of

the dependency graph and the complexity of the problem. For each problem we computed 1) the

size of the maximum clique of the dependency graph, an optimal relaxation sequence by exhaustive-

search, and the cost of the relaxation order produced by the Min-Degree heuristic. The results of

the simulation, shown in Figures 7.1 and 7.2, give us a measure of how well the heuristic and max

clique values predict the optimal.

10 20 30 40 50
% difference from optimal

0

50

100

150

200

250

300

#
o
f
p
r
o
b
l
e
m
s

Figure 7.1: MaxClique and Optimal comparison for 8 variable problems.

10 20 30 40 50
% difference from optimal

0

100

200

300

400

#
o
f
p
r
o
b
l
e
m
s

Figure 7.2: MinDegree and Optimal comparison for 8 variable problems.

The “% difference from optimal” was computed as (Opt−MaxClique)∗100
Opt for the maximum clique

51

in Figure 7.1 and similarly for the min-degree case. The variance for the MaxClique difference is

155, standard deviation of 12.4 and the median of 0. The variance for the MinDegree difference is

6, standard deviation 2.4 and the median of 0.

Figure 7.3 shows an example of a problem with MaxClique 3, an Optimal cost of 5 and MinDegree

of 5.

2

3

4

5

1

7

6

Figure 7.3: Example of problem with MaxClique=3 and optimal cost=5

The MinDegree heuristic gives a relaxation sequence of {2, 1, 3, 4, 5, 6} with the corresponding

cost sequence {4, 5, 5, 4, 3, 2}. Namely, it costs O(m4) to relax the first vertex (#2). The execution

of the relaxation sequence is given in Figure 7.4.

2
3

4

5

1

7

6

3

4

5

7

6

4

5

7

6

3

4

5

1

7

6 5

7

6

7

6

Figure 7.4: Relaxation of a problem with MaxClique=3 and Optimal cost=5

Figure 7.5 shows a problem with MaxClique = 4, Optimal = 5 and MinDegree = 6, with the

Min Degree relaxation sequence {1, 2, 3, 4, 5, 6, 7}, cost sequence {5, 5, 6, 5, 4, 3, 2} and the execution

of the relaxation in Figure 7.6. The graph decomposition algorithm separates this graph first with

separator (4, 7, 5, 8, 1), isolating vertex 2 on one side of the separator and vertices 3 and 6 on the

other. Then with separator (4, 6, 1, 5, 7), with vertex 3 on one side and vertex 8 on the other. This

gives a relaxation order of (2, 3, 8, 1, 4, 5, 6, 7) and gives the relaxation cost of 6.

The data shows that the MinDegree heuristic is a much better predictor of the optimal than

MaxClique for this set of problems. However, more importantly, we do not think there is a phase

transition as the size of the graph increases, therefore the same should hold for larger graphs as well.

52

2

3

4

5

1

7

6

8

Figure 7.5: Example of problem where all three measurements differ

2

3

4

5

1

7

6

8

2

3

4

5 7

6

8

3

4

5 7

6

8 4

5 7

6

8

5 7

6

8

7

6

8

7

8

Figure 7.6: Relaxation of the problem with MaxClique = 4, Optimal = 5 and MinDegree = 6

7.3 Experiment 2 (Large Problems of Variable Complexity)

A lower bound on the computation cost of a problem instance, using the relaxation method, is the

size of the largest clique in the dependency graph. For graphs of less than 100 nodes and moderate

density it is possible to search for the size of the maximum clique within a few minutes,using the

modern processors. This enables us to determine the “ball-park” of the performance of the greedy

and graph decomposition heuristics as relaxation ordering selection strategies.

100 200 300 400 500
% difference from optimal

0

20

40

60

80

#
o
f
p
r
o
b
l
e
m
s

Figure 7.7: Histogram of the MinDegree % difference from MaxClique for large graphs

53

Problem size MaxClique MinDegree MinEdgesCreated Decomposition
100 nodes 20 relations 3 3 3 3
100 nodes 40 relations 3 4 3 5
100 nodes 60 relations 4 9 8 12
100 nodes 80 relations 4 13 12 19
100 nodes 100 relations 4 22 20 25

Table 7.1: Sample simulation results

The histogram in Figure 7.7 shows the result of 160 problems of 100 variables and 20 to 100

relationships. We generated an equal number of problems for each 10 relationship increment. The

high spike showing 0% difference is primarily due to the “sparse” graphs, while the “Gaussian-like”

tail is due to the more complex ones. Figure 7.8 shows the dependency graph for one of the more

complex instances.

Degree sequence: {1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 7, 7, 7, 8, 8,

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 16}.

Figure 7.8: Dependency graph for 100 variable problem with 100 relationships of 3 arguments each

Table 7.1 shows the simulation results for a sample set of problems. It shows that the two

greedy heuristics and a minimal graph decomposition give approximately the same results, with the

decomposition doing slightly worse.

7.4 Experiment 3 (Comparison of Greedy Heuristics)

In Section 6.4 we gave two greedy heuristics: Smallest Degree First (MinDegree) and Least Edges

Created (MinEdges). In this experiment we compared the results of two heuristics on 200 of the

54

100-node problems discussed in the previous section. Figure 7.9 shows a histogram of the percent

difference between the heuristics.

10 20 30 40
% difference

0

20

40

60

80

#
o
f
i
n
s
t
a
n
c
e
s

Figure 7.9: Histogram of % difference between MinEdgesCreated and MinDegree

The heuristics give practically identical results (relaxation orders of very similar quality), with

a slight advantage to MinDegree (it is the better heuristic in almost all of the instances).

7.5 Observations

The heuristics show that the relaxation algorithm can be effective as a method for a number of

randomly generated problem instances. We expect that in practice the results would be even better,

because the business processes designed by humans will likely have more order. We also expect the

problems to fall into one of the classes with low treewidth, as given in Table 6.1. Finally, other

minimal decomposition algorithms may give better results. A comparison of them for this problem

is needed.

55

Chapter 8

Atomic Resource Reservation
using Call Options

For applications where resources are physically distributed, a consumer attempting to commit more

than one of them into a simultaneous agreement, to participate in a business process, runs into the

fundamental issue in network computing: the distributed agreement problem. The problem arises

because resources are physically separated and though the consumers can communicate freely with

each resource, there is a time delay in any communication which gives the resource an opportunity

to change state while messages are in transit. This means that a consumer always has only the “old”

information about the resource state (availability in particular). Yet, we need to establish a global

predicate on the system – a collective agreement to execute a business process, and therefore need

a mechanism to solve the problem reliably regardless of how and when the states may change.

Uncertainty about the states of the resources in a distributed system forces us to create protocols

for communication and operation for all the participants to follow. Otherwise, if the protocols are

violated or nonexistent, the system is said to be faulty and it can be shown that no agreement is

then possible [16]. The traditional methods create protocols that involve special messages, called

tokens, that the participants (in our case the consumers and resources) can exchange to help with

synchronization. For example, in a common technique called two-phase-commit used to synchronize

transactions among distributed databases, a ‘coordinator’ database first sends a ‘preparation’ token

to the other databases asking them to ‘prepare’ to commit. It then waits to receive acknowledgement

tokens from everyone, signifying that they are ready. In the second phase it sends the ‘commit’ tokens

to signal the event, and then waits again for acknowledgments that everyone has indeed committed.

If any of the participants have failed for whatever reason, all others are asked to roll-back (cancel)

the transaction.

While such techniques work well from the correctness point of view, namely the databases go

from one consistent state to another after a two-phase-commit, they cannot be applied directly to

coordinating resources that operate both in a logical system and in an economy. The economic

56

aspect adds the extra requirement that is not accounted for in the standard algorithms. Therefore,

we need to solve the distributed agreement problem in a new way such that the economics make sense

as well. Specifically, since the resources are leased for time, any period that they stay unassigned

has an ‘unearned’ value to each resource proprietor, which is what the economists call opportunity

cost .

Traditional distributed algorithms are not concerned with time, focusing exclusively on the log-

ical consistency. The specification of a distributed agreement algorithm typically states that an

agreement will be reached eventually, if certain properties are true about the system, such as the

system is not faulty and the communication channels deliver all messages. In our system, however,

sending a token to a resource and asking it to wait until some other message arrives is reasonable

only if the waiting time is somehow paid for. If the ‘money constraint’ is not satisfied, no resources

will be offered for lease and the model breaks.

The opportunity cost must be absorbed by either the resource, as ‘part of doing business,’ or by

the consumer who is attempting to reserve it for a business process. In the existing U.S. economy,

different sectors of the industry have resolved this in either of the two directions. In the hotel

industry one can place and cancel reservations for free if the cancellations take place a day or more

before the service is rendered. Otherwise, the hotels charge a cancellation fee. In this way, the hotels

absorb the opportunity cost of holding the room for the customer who requested it until a certain

threshold, when this cost becomes too high. The airline industry sells several types of tickets. The

fully-refundable ones have the opportunity cost built into the price. The non-refundable ones leave

all the risk on the consumer.

Opportunity costs and risk management are subjects extensively studied in micro economics and

finance. However, what makes the Distributed Service Commit problem new is the goal of achieving

a commitment among several resources from a finite pool where time has value.

The solution we present here consists of algorithms for the consumer, resource and directory

entities. In this thesis our focus is almost entirely on the consumer and the algorithms for the

resource and the directory are little more than skeleton behaviors that a consumer needs to be able

to interact with them. However, algorithms for the resources and the directories could be quite

sophisticated. For example, designing distributed databases for the directories to efficiently store

data about resources is a research field in its own right. One could also invent resource algorithms

to perform elaborate computations to decide what prices to set on their resources. However, here

we focus only on the interaction between consumers and resources towards achieving an atomic

agreement. The algorithms are presented next.

57

8.1 Entities (operational overview)

8.1.1 Consumer

A consumer interacts with resources and a directory and its behavior consists of the following basic

steps:

1. Ask the directory service for information about the resources that satisfy some given constraints

2. Request the availability information from each prospective resource

3. Run the optimization algorithm with the collected resource instance information.

4. Make a reservation of the optimal resources as an atomic transaction

In the first step the consumer seeks to locate all the resources that it could potentially use for

its business process. To do this, it sends specifications of the resources it requires to a Directory.

The directory returns a set of resource locators (URLs) that satisfy the consumer’s constraints. For

example, all the plumbers with at least 5 years experience within 20 miles of the construction site.

If this set is empty (that is, the directory did not find any resources matching the query) then we

assume that the client terminates (fails).

In step 2, the consumer directly contacts the resources whose locators it acquired in step 1,

asking for their availability information. The resources respond by sending back to the consumer

lists of their available time slots and pricing information. At this stage, the consumer has all the

information it needs about each resource to be able to determine which ones it could use best. In

step 3, the consumer algorithm uses this information to find an optimal solution. Finally, in step 4,

the consumer entity negotiates with the resources chosen in step 3 to perform reservations according

business process specification.

8.1.2 Directory

A directory entity has a message loop and responds to messages from consumers. The single type

of message expected by the directory is a query for resources based on a set of constraints. This is

similar to a database lookup, where the consumer specifies the constraints in arbitrary detail and

expects the directory to identify all the resources matching them. When a directory receives such

a request, it queries its own internal database and possibly the databases of other directories and

returns a (possibly empty) set of resources as a result.

8.1.3 Resource

A resource in our model registers with a directory so that consumers could find and consider it for

their business processes. It then proceeds to wait for a message from a consumer. There are two

58

categories of messages: information request and reservation/release messages. A resource receives

the first type when a consumer in its step 2 asks for its availability. It replies to that by sending its

availability time list. The second message type is invoked when a resource enters a negotiation for

reservation. One type of reservation message requests a right for a consumer to reserve this resource

some time in the future and to hold this right for some small amount of time (the Micro-Option

request). The second is the actual reservation request (and an optional matching reservation release)

if the consumer chooses to exercise their reservation option.

8.2 Distributed Transaction

We now present an algorithm for commencing an atomic distributed reservation transaction between

a resource and a consumer. We assume that the consumer is at its final stage, where it has chosen a

set of resources for reservation. By a set reservation we mean an atomic operation, such that either

all the resources in the set become reserved or none of them. For instance, if a consumer has chosen

the resources for a trip process and the return flight were not available when the consumer becomes

ready to make a reservation, then he would not be interested in a partial reservation of just the

unidirectional flight, a hotel and car. Only the reservation of the whole process is of interest.

The reason why such a reservation commitment is tricky is because the resource and the consumer

entities are in a distributed system and the information they have about each other is always aged.

In particular, the availability of a resource may have changed between the time a consumer has

requested that information (in step 2) and the time of attempting the reservation. Thus, when

the consumer attempts to make the reservation, it would fail for that resource. Because a process

consists of a number of resources that all have to be reserved (or not reserved) together, it is not in a

consumer’s interest to start reserving a process and failing some time in the middle. To remedy this,

one needs a mechanism that would give the consumer an insurance that its attempt at reserving a

process would succeed with high probability (it is not possible to offer an absolute guarantee, since

any entity in the system could, for example, loose its network connection, rendering it unreachable).

We propose a solution for a distributed atomic transaction based on a financial instrument called

American Call Option [24]. We define an option in our model as a right, that can be purchased by a

consumer, to reserve a resource for some specific time in the future. An option has a fixed expiration

date T (the date when the right expires), a strike price K (the cost of the actual reservation) and

a premium U (the amount a consumer must pay to purchase the right to reserve). An option,

when purchased, is binding to the resource for which it was purchased, but it is not binding to the

consumer. By buying an option for a resource, the consumer has a right, not an obligation to reserve

that resource.

Using this reservation tool, it now becomes possible for a consumer to purchase short-lived

59

tentative reservation commitments from resources by paying them to hold the time blocks that it is

interested in. Now, the algorithm for the atomic reservation transaction can be outlined as follows.

Suppose a consumer C wants to make a reservation of resources for some process P . Then it

performs the following steps:

1. send a message to each resource in P asking to purchase an option for a specific time block

2. wait for a confirmation from all the resources or stop the reservation if a negative response is

received or the wait times out with some of the resource confirmations missing.

3. if the reservation stopped in step 2 then fail, otherwise send reservation messages to each

resource in P .

4. wait for a confirmation from all the resources or roll-back (cancel all) the reservation if no

response is received from any of the resources in the allotted time.

Note that no explicit releasing of resources is necessary, since all reservations are done for a fixed

amount of time. Option prices are going to be determined by the market and, in a free-market,

likely to be close the opportunity cost. If the option costs are significant, the algorithm can be

easily modified to consider only the sets of resources for which the consumer can afford to pay the

reservation cost, namely, buying the options.

This algorithm ensures an atomic transaction between a consumer and a resource if 1) the

conditions for commencing the actual resource reservations in step 3 have been met, 2) the option

expiration date for the resources was sufficiently far into to the future for the reservation requests to

reach the resources, and finally 3) the infrastructure was able to deliver the messages successfully.

In the sections that follow we give a pseudo-code programs for the entities. The code is a high

level implementation of the functionality for each entity of the distributed system

8.3 Program Notation

As stated in Chapter 2, we assume the presence of an infrastructure capable of delivering messages

from one entity to the other. Our entities are entirely message-driven: each entity has an event loop

constantly waiting for messages. When one arrives, an entity executes its program code to handle

the message and immediately returns back to waiting. The messages received while an entity is

handling an earlier message are queued in FIFO order and become available to the entity when it

returns to the message loop.

We use receive MessageName(M) time-out in X expression to denote the readiness of an

entity to receive a message of type MessageName. Each message can be though of as a structure

capable of carrying arbitrary information. When a message is processed (or accepted), its payload

60

can be found in variable M. The message variable M also contains a special attribute, sender, referred

to as M.sender, that identifies the source of the message. We also assume that a message can carry

arbitrarily complex data – a list, a matrix, etc. If a receive statement has the time-out extension

it signifies that the entity executing it should process messages of type MessageName until X units

of time have expired. After that it should stop processing messages of this type and continue its

computation. On the other hand, the receive statements without the time-out check the message

queue of the calling entity and continue immediately if no messages matching their type are present.

We use send M to E expression to signify the entity’s intent on sending a message M to some

other entity E. The send command is asynchronous and returns immediately, allowing the sending

entity to continue its computation. The send M to E in X is an instruction to deliver message M

to entity E in X time units. An entity can use this to send alarm messages to itself.

8.4 Programs

The following are the programs for the three entities in our model:

8.4.1 Directory

1. wait for messages:

2. receive ResourceLocationsRequest(M):

3. R := resources satisfying M.constraints in local database

4. send ResouceLocators(R.URL) to M.sender

8.4.2 Resource

1. Let A be a list of available time blocks

2. wait for messages:

3. receive AvailabilityRequestMessage(M):

4. send AvailabilityInformation(A) to M.sender;

5. receive ReserveOptionRequest(M):

6. if M.time block in A then // if block is available

7. remove M.time block from A; mark M.time block as optioned;

8. send OptionExpired(M.time block) to self in M.dt; // set option expiration alarm

9. charge M.sender for the option

10. send ReserveOptionCommit(M.time block) to M.sender;

11. end if

12. receive OptionExpired(M):

13. // check if the consumer has reserved its block

14. if(M.time block is not marked reserved) then

61

15. mark M.time block as free // option has expired

16. add M.time block to A // add it back to the free list

17. send OptionExpiredMessage(M) to M.sender

18. end if

19. receive ReservationRequestMessage(M):

20. if (M.time block in A OR M.time block marked optioned) then

21. mark M.time block reserved

22. charge M.sender for the reservation

23. send ReservationSuccessfulMessage(M) to M.sender;

24. else

25. send ReservationFailedMessage(M) to M.sender;

26. receive ReservationCancellationMessage(M):

27. if (M.time block marked as reserved) then

28. add M.time block to A

29. unmark M.time block

30. charge M.sender for the cancellation

31. end if

8.4.3 Consumer

1. Let Resources be a list.

2. send ResourceLocationsRequest(graph, resource constraints) to Directory

3. wait for messages:

4. receive ResourceLocators(M) timeout in X:

5. for R in M.resources:

6. send AvailabilityRequestMessage to R;

7. end for

8. receive AvailabilityInformation (M) timeout in Y:

9. add M.information to Resources;

10. solution = Find optimal resources for the process; // see Chapter 5

11. // atomic reservation

12. for resource in solution do:

13. send ReserveOptionRequest(time block, dt) to resource;

14. end for

15. wait for messages:

16. receive ReserveOptionCommit(M) timeout in X:

17. mark resource as optioned

18. if all resources are optioned then:

19. for resource in process do:

62

20. send ReservationRequestMessage(time block) to resource;

21. end for

22. else

23. break;

24. end if

25. wait for messages:

26. receive ReservationSuccessfulMessage(M) timeout in X:

27. mark resource as reserved

28. if all resources are reserved then:

29. SUCCESS

30. exit;

31. else

32. FAILURE

33. // cancel all reservations and pay penalties

34. for resource in solution do:

35. send ReservationCancellationMessage(time block) to resource;

36. end for

37. end if

63

Chapter 9

Applications

The application that inspired this work is Crisis Management. Our goal has been to automate

information and resource management in crisis situations. In 1998 our example case was the crash

of TWA flight 800 in New York, where dozens of agencies in the local, state and federal governments

had to come together to deal with the disaster. Unfortunately, the September 11 event has redefined

the meaning of disaster. The need for automating as many aspects of the crisis management as

possible has never been greater.

In a crisis, government agencies, businesses and individuals have to communicate and do their

respective jobs as efficiently as possible. From the resource management point of view, each job

(process) needs numerous resources, and choosing the best is of paramount importance. For example,

rushing a victim to the nearest available hospital on the closest ambulance can make the difference

between life and death.

As we started to develop a model for the problem, we realized that businesses face their own

kind of crisis in every-day operations. In a crisis time is the scarce resource; the same is true in

business, with cost as an additional constraint. The difference in the specification is in semantics,

not the formalism. Just as an efficient resource assignment can save a victim of a disaster, the same

can save a corporation from closing its doors and laying off hundreds of employees. If businesses can

find and use better resources, they become more efficient and productive. If these resources are the

services provided by other companies, then there is a clear value for any business in optimizing the

selection and management of services it uses for its business processes.

Today the American economy is more than 80% a service economy. Different sectors are more

or less conducive to optimization via the model we propose. In order to use the model we require

a communication infrastructure between the resources and the consumers. Both the resources and

the consumers need to be “on-line” so that they can find and communicate with each other. If a

network is in place, then we provide a method for the consumers to choose the best resources and

then a way to reserve them all together.

We propose a way we envision this technology could be used for crisis management. We also

64

give two applications for different industries that are both very service oriented, however only one –

Travel – currently satisfies the “connectedness” requirement. The other is on its way, offering some

communication ability, but no automated infrastructure in place. However we believe all three

applications can directly benefit from our model and the related optimization methods.

9.1 Crisis Management

In a crisis individuals and organizations who may have never had any business in common have to

come together to deal with the disaster. For example, in the TWA crash NYNEX provided hard

phone hookups for the mobile and temporary command vehicles, AT&T provided cell phones for

site personnel and the Long Island Lighting Company provided generators for electrical power to

the command vehicles.

The number one lesson learned from the Flight 800 investigation, according to the NY State

Emergency Management Office, is “The need for implementation of the Incident Command System

(ICS) when responding to a single agency or multi-agency/multi-jurisdictional incident”[25]. Under

an Incident Command System the response would be organized in four sections: operations, planning,

logistics and finance/administration, all geared towards efficient communication and management

of resources.

We believe that software technology can play a key role in ICS if it offers at least the following

three capabilities: 1) a reliable communication infrastructure between the parties who must talk to

one another, 2) a condition detection and event notification system that identifies the important

events and forwards them to the decision makers, and 3) an automatic system for assigning the

optimal resources to tasks. The first capability can be provided by an instant wireless network

connected to the Internet at the low level, with an object oriented or database middleware on top.

The second capability is currently being developed by companies like iSpheres Corp., that creates

products for enterprise command and control. This thesis offers a way to achieve the third capability

– optimal resource assignment of agencies’ resources, related in time, space, load and capability.

9.2 Travel

Online travel reservations is one of the few services that most consumers would identify as a truly

useful application of the Internet technology. Companies that offer these services, such as Travelocity,

Expedia and Orbitz are selling millions of tickets each year. On these sites the entire transactions

take place online without direct participation of the seller. While this is not a new phenomenon for

goods (e.g. automated Coke machines), it is a debut for services, especially on this scale.

The travel services have a means of electronic communication with the customers – via a web

65

browser over the Internet, and the resources offer their availability information upon request. Thus,

the infrastructure is in place to apply our model. Specifically, the resources that most consumers

are interested in leasing for different segments of their trips are flights, hotels and rental cars. The

relationships between them are in time, location and cost incentives. For example, the airline indus-

try usually gives substantial discounts for round-trip ticket fares compared to one way. Therefore

all the flights of a trip can be linked by a “price discount (cost)” relationship. These relationships

can be directly represented with our model as we have suggested throughout this document.

Figure 9.1 shows a dependency graph for an example trip to Europe from Los Angeles, where a

sales person visits three cities, London, Paris and Rome, and returns back home. The dependencies

are time, distance and cost that the person needs to consider when making the bundle selection and

reservation of all the services.

Formally his problem can be specified as follows:

Problem 9.1

Given a business process “European trip” that has 13 activities and 18 relationships we formalize it

as follows:

Let X = {x1, ..., x13}, where the variables have the following meanings:

Variable Activity

x1 LA Airport Car Garage

x2 Shuttle to LA Terminal

x3 Shuttle from LA Terminal

x4 Flight from LA to London

x5 Flight from Rome to LA

x6 Hotel in London

x7 Rental Car in London

x8 Chunnel Train from London to Paris

x9 Hotel in Paris

x10 Rental Car in Paris

x11 Flight from Paris to Rome

x12 Hotel in Rome

x13 Rental Car in Rome
and let the relationships F be defined as follows:

66

F =




Relationship Meaning

f1 : x1 × x2 → R
+ time (start / end)

f2 : x1 × x3 → R
+ time (start / end)

f3 : x2 × x3 → R
+ cost (same company discount)

f4 : x2 × x4 → R
+ time (start / end)

f5 : x3 × x5 → R
+ time (start / end)

f6 : x4 × x6 → R
+ time, distance

f7 : x6 × x8 → R
+ time (start / end)

f8 : x7 × x8 → R
+ time (start / end)

f9 : x8 × x10 → R
+ time (start / end)

f10 : x8 × x9 → R
+ time (start / end)

f11 : x6 × x9 × x12 → R
+ Hotel cost (same company discount)

f12 : x9 × x11 → R
+ time (start / end)

f13 : x10 × x11 → R
+ time (start / end)

f14 : x11 × x12 → R
+ time, distance

f15 : x11 × x13 → R
+ time (start / end)

f16 : x7 × x10 × x13 → R
+ Car cost (same company discount)

f17 : x13 × x5 → R
+ time (start / end)

f18 : x4 × x11 × x5 → R
+ Flight cost (same company discount)

and φ =
∑18

i=1 fi. Find an n-vector xopt = (ẋ1, ..., ẋ13)that maximizes φ.

The dependency graph of the problem has a maximum clique of 3 and the MinDegree greedy

heuristic yields a complexity of O(12 ∗ m4).

9.3 Building Construction

Building construction is a well-structured business process that relies both on material resources and

services. Often the construction of a large office building involves a managing construction company

that subcontracts certain jobs to other firms. Internally, it manages dozens of human and vehicle

resources to get the job done. These include carpenters, architects, electricians, digging equipment

and cranes that operate with time and space relationships to each other. For example, two cranes

cannot occupy the same part of the construction site.

There are several online services that exist for the construction industry. For example, Build-

Point.com helps find general contractors, subcontractors, suppliers, equipment and professionals of

all trades. Another company, BuilderAct.com is an online procurement hub that attempts to connect

contractors with suppliers.

67

Shuttle from
garage to airport

terminal in LA

Flight from LA
to London

LA Airport Car
Parking Garage

Shuttle to garage
from airport

terminal in LA

Hotel
in London

Rental Car
in London

Chunnel Train
from London

to Paris

Hotel
in Paris

Rental Car
in Paris

Flight from
Rome to LA

tim
e

time

cost

tim
e

tim
e

time

Hotel
in Rome

Rental Car
 in Rome

time

Flight from
Paris to Rome

time

time

time,

distance

time

time,

distance

time

costcost cost

costcost cost

time, distance

cost

cost cost

tim
e

Figure 9.1: Dependency graph for European Trip Problem

These online services, among others, are moving the construction segment of the industry to

an electronic infrastructure. Because of the structure of the business process and specialization

of resources already present in the construction business, we believe it is a good candidate for

optimization in the near future.

68

Chapter 10

Conclusion

10.1 Summary

In this thesis we identified two problems, the Activity Resource Assignment and the Distributed

Service Commit, which we believe to be basic to all distributed applications in a networked service

economy. We provided a formal model and a solution to each, making them immediately useful in

practice.

10.1.1 Activity Resource Assignment

We specified the ARA problem, a type of Integer Programming, in a form that enabled us to find

a special structure of the problem for many practical instances. We gave a method to search for

an optimal by recursively reducing a problem instance without loosing at least one of the optima.

We also gave an explicit way to represent the structure of a problem using the notion of variable

independence. We showed two methods for finding solutions using the structure representation (de-

pendency graph) and the reduction (relaxation) technique : two greedy search heuristics (MinDegree

and MinEdgesCreated) and a method that builds on the existing work in graph complexity theory

to guide the search via graph decomposition techniques. Both approaches can find exact solutions

to many ARA instances in polynomial time.

We showed that the ARA-decision problem is NP-complete, which implies that the same solution

method can be used to solve certain classes of other NP-complete problems in polynomial time.

The degree of the polynomial depends on the ‘complexity’ of a given problem instance, which our

method can compute quickly before proceeding to solve the problem. This two-stage approach to

optimization allows a user to decide whether the method is acceptable for the given problem before

carrying out the optimization.

69

10.1.2 Distributed Service Commit

The DSC problem addresses the issue of achieving an agreement among several parties in a networked

environment when time has value. We described a new financial instrument, the Micro-Option,

derived from the American Call Option adapted for services, which when used as part of a distributed

agreement algorithm can secure a commitment from all the parties if one is possible. The need for

this new approach arose because the resources required by the consumers in our model operate as

services traded in a free-market economy. The time in this model has value, and our agreement

algorithm explicitly addresses the resources’ need to be compensated for their time during the

reservation process. The traditional approaches do not take the time into account and therefore

cannot be put to practical use in this environment.

Together the two solutions we offer can help automate resource management for many business

processes that exist today and those we envision in the future. We believe they would pave way for a

more efficient business operations and ultimately higher productivity for businesses and individuals

alike.

10.2 Limitations

Specifying a business process may be hard without the help of semi-automated tools developed

for individual industries. For the construction industry and crisis management, for example, only

experts in the field can produce such a specification. For travel the situation may be somewhat

easier. While this is a barrier to adoption, we believe the benefits of this form of automation would

drive the development of ‘template’ business process specifications for many industries.

Our optimization method to solve the ARA problem works well for problems with relations

defined on small subsets of X and with few interactions among relations in the objective function.

The worst case is where all the variables are dependent, making the dependency graph a clique,

which would happen if the specification were to contain a relation that expresses a global property

that involves all the activities.

The reservation method requires that the economic infrastructure be sufficiently lean to make

the costs of Micro-Options be close to the opportunity costs and virtually insignificant compared to

the cost of the reserving the whole resource. This assumption is realistic, since call and put option

prices on the standard market exchanges closely reflect the risks associated with their duration.

10.3 Future Work

First, in our optimization solution we identify four types of objective functions for which we can find

the dependency sets efficiently. These functions are sufficient for our applications, however other

70

types should be explored as well. The larger the set of treatable objective functions the larger range

of problems one could solve with this method. Thus, there is a clear value in doing further research

in this direction.

Second, it would be useful to modify the first part of the optimization algorithm to not only

give a complexity metric, but also suggest possible ways to change the constraints to reduce the

complexity value. It may be possible to ‘process’ the relationships, combining them in certain ways

that would reflect the user’s desires almost as well as the original specification, but would yield a

better complexity for our method.

71

Bibliography

[1] Arnborg, S., Corneil, D., and Proskurowski, A. Complexity of finding embeddings in

a k-tree. SIAM J. Algebraic Discrete Methods 8 (1987), 277–284.

[2] Arnborg, S., Corneil, D., and Proskurowski, A. Complexity of finding embeddings in

a k-tree, 1987.

[3] Belegundu, A. D., and Chandrupatla, T. R. Optimization Concepts and Applications in

Engineering. Prentice-Hall, 1999.

[4] Berry, A., Bordat, J. P., and Cogis, O. Generating all the minimal separators of a graph.

International Journal of Foundations of Computer Science 11, 3 (2000), 397–403.

[5] Bodlaender, H., Kloks, T., and Kratsch, D. Treewidth and pathwidth of permutation

graphs, 1995.

[6] Bodlaender, H., and Mohring, R. The pathwidth and treewidth of cographs, 1993.

[7] Bodlaender, H. L. Some classes of graphs with bounded treewidth. Bulletin of the European

Association for Theoretical Computer Science 36 (1988), 116–126.

[8] Bodlaender, H. L. A tourist guide through treewidth. Acta Cybernetica 11 (1993), 1–21.

[9] Booz, Allen & Hamilton consulting firm. Program evaluation and review technique

[pert], 1958.

[10] Clearwater, S. H., Ed. Market-Based Control: A Paradigm for Distributed Resource Allo-

cation. World Scientific, 1996.

[11] Compositional Systems Group. Infospheres Infrastructure version 2.0 Users Guide, 2 ed.

California Institute of Technology, 1998.

[12] Dantzig, G. Linear programming and extensions, 1963.

[13] Fetzer, C., and Cristian, F. An optimal internal clock synchronization algorithm. In

Proceedings of the 10th Annual IEEE Conference on Computer Assurance (Gaithersburg, MD,

June 1995), pp. 187–196. http://www-cse.ucsd.edu/users/cfetzer/OCS/ocs.html.

72

[14] Garey, M. R., and Johnson, D. S. Computers and Intractability A Guide to the Theory of

NP-Completeness. Bell Telephone Laboratories, 1979.

[15] Gavril, F. Algorithms on clique separable graphs, 1977.

[16] Gray, J. N. Operating Systems: An Advanced Course, vol. 60 of Lecture Notes in Computer

Science. Springer-Verlag, 1978, ch. Notes on Database Operating Systems.

[17] Habib, M., and Mohring, R. Treewidth of cocomparability graphs and a new ordertheoretic

parameter, 1992.

[18] Kelley, J. The critical–path method: Resources planning and scheduling, 1963.

[19] Kloks, T. Treewidth of circle graphs.

[20] Kloks, T., and Kratsch, D. Treewidth of chordal bipartite graphs. J. Algorithms 19, 2

(1995), 266–281.

[21] Koster, A., Bodlaender, H. L., and van Hoesel, S. P. Treewidth: Computational

Experiments. ZIB Report 01-38. Konrad-Zuse-Zentrum fr Informationstechnik Berlin, 2001.

[22] Leimer. Optimal decomposition by clique separators. DMATH: Discrete Mathematics 113

(1993).

[23] Matousek, J., and Thomas, R. Algorithms finding tree-decompositions of graphs. Journal

of Algorithms 12 (1991), 1–22.

[24] Neftci, S. N. An Introduction to the Mathematics of Financial Derivatives, 2 ed. Academic

Press, April 2000.

[25] NYSEMO. After action report on the crash of the twa flight 800. Tech. rep., The New York

State Emergency Management Office, http://www.nysemo.state.ny.us/TWA/LESSONS.HTM,

1998.

[26] Object Management Group(OMG). The Common Object Request Broker: Architecture

and Specification (CORBA), revision 2.0, 1998.

[27] Ohtsuki, T., Cheung, L., and Fujisawa, T. Minimal triangulation of a graph and optimal

pivoting order in a sparse matrix, 1976.

[28] Robertson, N., and Seymour, P. Graph minors. xiii. the disjoint paths problem. Journal

of Combinatorial Theory Series B 63 (1995), 65–110.

[29] Robertson, N., and Seymour, P. D. Graph minors. ii. algorithmic aspect of tree-width.

Journal of Algorithms 7 (1986a), 309–322.

73

[30] Robertson, N., and Seymour, P. D. Graph minors. iv. tree-width and well-quasi-ordering.

Journal of Combinatorial Theory B 48 (1990a), 227–254.

[31] Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Math-

ematica. Cambridge University Press, 2003. combinatorica.m.

[32] Sprecher, A. Resource-Constrained Project Scheduling. Springer-Verlag, 1994.

[33] Sun Microsystems. Java Message Service API. http://java.sun.com/products/jms/index.html.

[34] Sundaram, R., Singh, K. S., and Rangan, C. P. Treewidth of circular-arc graphs. SIAM

Journal on Discrete Mathematics 7, 4 (1994), 647–655.

[35] Tarjan, R. E. Decomposition by clique separators. Discrete Mathematics 55 (1985), 221–232.

[36] Wimer, T. V. Linear Algorithms on k-Terminal Graphs. PhD thesis, Clemson University,

Dept. of Computer Science, 1987.

[37] W.J. Cook, W.H.Cunningham, W., and A.Schrijver. Combinatorial Optimization. John

Wiley and Sons, 1998.

74

Index

assignment, 29

consumer, 57

decomposition tree, 42

dependency graph

formal definition, 37

dependency separation, 33

intuition, 22

directory, 57

distributed atomic transaction, 58

example problem, 26

graph

decomposition of, 24

dependency, 23

graph decomposition example, 44

heuristics, 46

greedy defined, 46

least edges, 47

smallest degree, 46

independence

definition of, 29

property of, 30

integer programming

mapping to, 12

job shop

relationship to, 13

Market-Based Control, 13

Micro-Option, 58

opportunity cost, 56

optimization (intuition)

chapter, 21

ordering, 30

relationships, 15

relaxation

order, 25

relaxation function

computing of, 31

definition of, 29

property of, 30

relaxation order, 45

graph decomposition, 41

relaxation process, 31

resource, 57

travel application, 65

tree-width, 42

vertex elimination

function, 38

process, 38

	Acknowledgements
	Abstract
	List of Definitions
	List of Examples
	Introduction
	Compositional Business Processes
	Activity Resource Assignment
	Specification
	Solution

	Distributed Service Commit
	Specification
	Solution

	Key Contributions
	Thesis Outline

	Background
	Business Process Automation
	Economic Perspective
	Relationship to Integer Programming
	Other Related Problems

	Model and Problem Specification
	Overview
	Resource Constraints
	Relationships
	Assumptions
	Reservation Model
	Properties of the Distributed System Model
	Dealing with Time
	Instances of distributed systems

	Optimization Model
	Informal Description
	Formal Specification

	Complexity of the Problem
	ARA-decision is NP-complete

	Optimization (Intuition)
	The Main Operator
	Dependency Separation

	Dependency Graphs
	Graph Decomposition
	Relaxation Order
	Order by Heuristic
	Carrying out the Optimization -- Applying the Relaxation Process
	A Complete Solution to the Example Problem

	Optimization via Relaxation
	The Main Operator
	The Property of
	The Relaxation Process
	Computing

	Dependency Separation
	Dependency Graphs
	Vertex Elimination Process
	Relaxation + Elimination Complexity Relationship

	Relaxation Order
	Graph Decomposition
	Notation
	Tree-decomposition properties
	Decomposition Process

	Relaxation Order
	Main Result
	Greedy Heuristic Search
	Open Issues

	Simulations
	Experiment Setup
	Experiment 1 (Small Problems with Known Optimal Cost)
	Experiment 2 (Large Problems of Variable Complexity)
	Experiment 3 (Comparison of Greedy Heuristics)
	Observations

	Atomic Resource Reservation using Call Options
	Entities (operational overview)
	Consumer
	Directory
	Resource

	Distributed Transaction
	Program Notation
	Programs
	Directory
	Resource
	Consumer

	Applications
	Crisis Management
	Travel
	Building Construction

	Conclusion
	Summary
	Activity Resource Assignment
	Distributed Service Commit

	Limitations
	Future Work

	Bibliography
	Index

