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ABSTRACT

A new concept has been developed for designing optimal feedback con-
trollers that will be insensitive to given, arbitrarily large variations
in physical parameters. The method uses as a single figure of merit the
expected value of a quadratic performance index, the minimization of
which determines directly (without trial and error) the desired set of
feedback gains. These values of the feedback gains (where such exist)
guarantee at the outset closed-loop stability for all possible values of
physical parameters in the prescribed domain of uncertainty.

The new method extends the well known method for the optimal requ-
lator design where physical parameters have single, precisely known
values, to the case where they may have a range of values. In addition,’
it encompasses (as a special case) the Minimax design developed also for
handling systems whose physical parameters may have a range of values
(which the Minimax explores by trial and error while the new method
accounts automatically for the entire range).

An essential feature of the new procedure is that it includes
exactly in its cost criterion whatever effects accompany large departures
in the plant parameters from their nominal values. This is why the new
method is able to guarantee stability over the whole range of parameter
values, where perturbation techniques are not.

The feasibility and usefulness of the new design technique are
illustrated by numerical examples in which control systems are designed
for second-order plants each of whose parameters may have a given range
of values. Comparisons which results using standard optimal design and

the Minimax technique are given.
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ABSTRACT (Continued)
Application to high-order systems will need to be accompanied by

further development of appropriate computational procedures.
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I. INTRODUCTION

Development of a usable method for designing feedback controllers
that wi]]vbe insensitive to variations in the parameters of the physical
system being controlled has been a major concern for designers in the
control field. In practice, the problem of sensitivity arises from the
fact that there are always uncertainties in the knowledge of physical
constants characteristic of the dynamical system to be controlled. 1In
addition, certain system parameters may be changed or may vary during
normal system operation. In the design of aircraft flight control sys-
tems in particular, there are uncertainties about the actuator dynamics,
about aerodynamics, and about structural dynamics. Moreover, some of
these will be very different for different speeds and altitudes of
flight. It is apparent that any careful design should incorporate in it
an explicit criterion representing the effect of system variations or
uncertainties. Extensive work has been done in this area but, in gener-
al, no consensus has been reached as to which methods should be used in
approaching the problem of minimum sensitivity control system design
(1-10).*

A direct attack on the problem is to begin with the so-called
modern control approach, a central feature of which is that a single
figure of merit, called a "cost function," is established at the outset,
to replace and represent the many separate performance criteria typical
of classical design. The design objective then reduces ﬁo finding those

control parameters that minimize the cost function. This is called the

*Numbers in parentheses designate references at the end of the paper.
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optimal design, and numerous detailed methods have been developed for
achieving it efficiently when physical parameters are known exactly.

In applying modern control theory to systems whose parameters are
uncertain, two means of incorporating sensitivity are commonly used,
trajectory sensitivity and integrated mean square response. The first
approach consists of augmenting the state vector to include the trajec-
tory sensitivity vector o(t) defined as the derivative of the state
vector with respect to the variable parameters p, evaluated at the nomi-

nal condition Py> i.e.,

T GET 65T 5ZT
e s seees _— 1.
g (t) [6p1 EBE— 5, (1.1)
b =p,
and of augmenting the usual cost functional,
-1 T, T
J(py»x,04) = % /:Ds (t)Ax (t)+u’ (t)Bu(t)Idt (1.2)

to incorporate a quadratic sensitivity term:

3" (R X, )= % w[zT(t)Aﬁ (t)+_gT(t)By_(t)+gT(t)Qg(t)]dt (1.3)
(0]

Different formulations of the linear feedback control Taw in the
state and sensitivity vectors are considered (3-8) for the minimization
of the augmented cost functional J'(Eo’éozﬁ)- It is shown in (2) that
for a linear feedback control of the form u(t)=[Cx(t)+Da(t)]1, no finite
state-independent feédback matrices, C and D, can be found which will
satisfy the necessary conditions of optimality.

The implicit assumption usually made in these approaches is that
all higher order derivatives of the sensitivity vector with respect to

the variable parameters, p, are negligible, consequently restricting
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the range of applicability of the design to a small neighborhood about
the nominal parameter value. Moreover, the development of the control-
ler design requires additional hardware to implement signals that
approximate the trajectory sensitivity state vector (4).

The second common approach to design for insensitivity is based
upon the optimization of an integrated mean square response with an
appropriate choice of the control gains. In this case the effect of
small parameter variations is modeled as a random external disturbance
to the open Toop plant. The variable parameters are often considered as
components of a gaussian distributed random vector with mean at the
nominal value and known covariance (9, 10). Again, small perturbations
of the state vector about the nominal trajectory are assumed to result
from the random disturbances created by the uncertainties in the plant
parameters. The usefulness of this design for relatively large param-
eter variations remains an open question.

This thesis describes a new approach to controller design which
reduces performance sensitivity not just to small, but to large parameter
variations. The main objective of this approach is the desensitization
of the closed Toop system over a finite but arbitrarily large range of
plant variations while retaining the attractive structure of a linear
feedback controller. The method uses the expected value of a normalized
quadratic performance index as a cost function, the minimization of which
determines a set of feedback gains which render the closed Toop plant
asymptotically stable over the entire domain of uncertainties. Further-
more, this design provides a better compromise between the performance

cost and its sensitivity to parameter variations than the Minimax design
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suggested in a recent Honeywell report (1), which has been considered
the best approach to date for handling large parameter variations.

A second order control system is used to illustrate the effective-
ness of design by the new method in reducing the closed loop system
performance sensitivity to variations in plant parameters. Using two
numerical examples, a comparison of the reduction in performance sensi-
tivity is made between the conventional optimal quadratic design based
upon the nominal parameter values, the present design, and the Minimax
design mentioned in (1).

While the examples presented in this thesis demonstrate the con-
ceptual value and rigor of the new method introduced here, numerical
techniques for applying it efficiently, especially for higher order sys-
tems, need to be developed further to make the method an effective de-
sign tool.

The new method is described in Section II and the general procedures
for applying it are outlined in Section III. Added insight is provided
by certain simplifications that obtain for second order systems. These
are developed in Section IV.

In Section V are given the numerical examples and comparisons with
other methods. Section VII recommends several directions for further

work to extend the method and improve its usefulness.
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IT. DESCRIPTION OF THE DESIGN METHOD
The design concept will first be described in some generality and
later applied to specific cases of practical interest. The procedure is
developed within the formalism of state variable modeling techniques
where the controlled plant dynamics are described by the following deter-
ministic equation (Fig. 1),
x(t) = F(p)x(t) + G(p)u(t) (2.1)
with initial condition gﬂto)=50, where
x(t) is a state vector of dimension n
F(p) is an nxn open-loop plant matrix
G(p) is an nxm control distribution matrix
u(t) is a control vector of dimension m
p is a parameter vector of dimension r.
Note that the mathematical development assumes X,..e = 03 that is, the
development is directed toward the closed loop stability of the system,
not its signal following properties. In the following analysis, the
variable parameter p is allowed to take on any constant, state-indepen-
dent values lying in a prescribed region D.
The deterministic plant output responses are given by
y(t) = H(p)x(t) (2.2)
where y{t) is an output vector of dimension q
H(p) is a gxn output distribution matrix.
We assume for simplicity that all states x(t) are accessible for
feedback purposes, and we consider a linear feedback control law of the
form

u(t) = -Cx(t) (2.3)
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where C is an mxn control gain matrix.

The closed Toop plant becomes  x(t) = [F(p)-G(p)CIx(t) (2.4)

It can be shown that if the system is completely controllable (and
p is known), the system closed Toop poles may be assigned arbitrarily by
a proper choice of the linear feedback gain matrix, C. This design
technique is known as the method of pole assignment. A condition for
controllability may be stated as follows (11-18):

The Tlinear time invariant system described in (2.1) is said to be
completely controllable if the controllability matrix

c(p) = [G(p) F(p)G(p) FZ(E)G(E) - Fn'l(E)G(E)] has maximum rank n.

To achieve closed loop stability the controller gains, C, are
chosen such that all the eigenvalues of [F(p)-G(p)C] 1ie in the open
left half of the complex plane. This choice of C also guarantees the
existence and boundedness of the following commonly used quadratic per-
formance index |

J(E,go,g) = 1 _f[xT(t)Ax(t)ng(t)Bg(t)]dt (2.5)
where A is a gxq rea? symmetric positive semi-definite matrix, and B is
an mxm real symmetric positive definite matrix.

In regulator design, the matrices A and B are often chosen initial-
ly according to the following rule of thumb suggested by Bryson and Ho
(11):

_ . 1 .
Aij =0 A . As 5 i=1,2,...,q (2.6)
Y
max
.. 1 .
B.. =0 ,B.. = =1,2,...,m 2.7
i i#] . J (2.7)
J
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where Y; and u, are the maximum permissible magnitudes of the ith
max max
output and jth control, respectively.
Substituting (2.2) and (2.3) into (2.5) yields
L T T T
J(p>x,:C) = /afﬁ (t)[H' (p)AH(p)+C'BCIx(t)dt (2.8)
o}

It can be easily shown that the performance index, J(E}zo,C), can
be written in terms of the initial condition Xg» S (11-18)

I(Bsx0sC) = ax 'S(p,C)x, (2.9)
where the real nxn symmetric positive semi-definite matrix, S(p,C),
satisfies the following Lyapunov matrix equgtion:

$(p,C)F(p)-6(p)CI+LF (p)-6(p)C1TS(p, C)=-[HT (R)AH(p)+CTBCT  (2.10)
which may be solved numerically by the eigenvector decomposition method
suggested by Bryson and Hall (19). Appendix A describes the eigenvector
decomposition method used in the solution of (2.10). The accuracy of
the computed matrix S(p,C) depends heavily on the quality of the eigen-
value-eigenvector subroutine used. A drawback of the eigenvector de-
composition method is that one has to solve for the eigenvalues and
eigenvectors of an augmented system matrix of size 2n. This algorithm
may turn out to be very costly in terms of storage requirements and
computational time for cases where n is large. Alternatively, the solu-
tion S(p,C) to (2.10) may be written explicitly in terms of the stable
closed loop transition matrix (11-18)&3 namely

S(E,C)=.)?exp[F(g)—G(E)C]Tt'[HT(Q)AH(E)+CTBC] . (2.11)
o}

exp[F(p)-G(p)Clt-dt
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The expression given in (2.11) clearly indicates the dependence of
the matrix S(p,C) upon the parameter vector p and on the choice of the
suboptimal control gain matrix C. However, this representation of
S(p,C) is not computationally attractive. For other methods of solving
the Lyapunov matrix equation (2.10), the reader should consult the ex-
cellent text written by Barnett and Storey (21).

So far we have discussed the evaluation of the quadratic perfor-
mance index, J(QQEO,C), in terms of the matrices F(p), G(p), H(p), A, B
and C. We shall now indicate how one may use this cost function to de-
termine a unique set of state variable feedback gains, C. In the con-
ventional optimal quadratic regulator design, the set of feedback gains
is obtained from the minimization of the cost functional J(p.x,5u),
given in (2.5), assuming that the plant parameters have their nominally
chosen values, that is P=p,- This design presumes, then, an exact knowl-
edge of the plant parameters. The resulting optimal feedback gain ma-
trix, C, is given by (11-18)

¢ = 87%6"(p,)s(p, ) (2.12)
where S(Eo) satisfies the well known steady state Riccati equation ob-
tained upon substitution of (2.12) into (2.10), namely

S(pg)F(p, )+F ' (p,)S(,)-5(p, )6(p,)B™ 6! (p,)S(p,) = (2.13)

-H(p, )AH(p,)

It turns out that the choice of the optimal gains is independent of
the initial condition X, (22). In other words, the set of feedback
gains, C, given by (2.12) and (2.13) minimizes the cost function,
J(Eo,gb,C), for any set of initial conditions Xy The impetus behind

the use of a quadratic cost index is that its minimization leads to a
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linear feedback controller of the form given in (2.3). Furthermore,
for a single input system (i.e., u(t) a scalar) the optimal quadratic
controller design possesses the following properties in the frequency
domain: an infinite gain margin and a phase margin of at least 60°
(10, 13).

If the matrices F(p),G(p),H(p) deviate from their nominal values
(i.e., Efgo), the above design is no longer optimal, and the performance
index evaluated at an off-nominal condition may deteriorate significant-
ly. In other words, the regulator which is optimal for the nominal
parameter values may be highly sensitive to parameter variations. This
suggests that one should consider a new criterion in which a trade-off
between the performance index and its sensitivity could be achieved.
This concept is schematically shown in Fig. 2.

‘To include the effect of parameter variations in the performance
index, we consider the following cost function

3(x45C)=ELI(p,x»C) I=EDsx, TS(p,C)x T=x, ELS(p,C)Ix, (2.14)
where E[ ] is the expected value operator over the parameter space Rr,
in which p has the probability density function w(p) defined as follows

wo(E) , peD

w(p) = (2.15)

0 ) p¢D
i.e., the probability that the controlled plant takes on values outside
the specified bounded domain, D, is null, where wo(Q) is an arbitrary

integrable function in R" such that
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w(p) 20

_/I.) wo(g)dg =1

Figure 3 illustrates a case where r=2.

(2.16)

Cost functional (2.14) was mentioned in (2) but not discussed in
any detail. The present study proposes the use of a linear state vari-
able feedback controller of the form given in (2.3) to minimize the cost
functional 3(50,C). The optimization of S(EO,C) will Tead to a set of
feedback controller gains, C, which are dependent upon the initial state
X, Given a particular initial condition Xy» the optimal feedback gains
can be determined. It is clear that a feedback system optimized for one
initial state may not be satisfactory for another. To ensure the valid-
ity of the feedback system for all initial disturbances we introduce a
supremum norm defined as follows

(] =||§2|?=1(§° Tox ) = A (Q) (2.17)
where Q is an arbitrary symmetric positive semi-definite matrix.

It can be seen that E[S(p,C)] in (2.14) is a symmetric positive
semi-definite matrix since S(p,C) is always positive semi-definite if
[F(p)-G(p)C] is a stability matrix (20), and since wO(E) is a non-nega-
tive function of the parameter vector p. Therefore IIE[S(p,C)]li=
Anax(ELS(R,C) 1)20.

The set of feedback controller gains, C, obtained from the minimi-

zation of”SuE—la(éo,C),i.e.,
50_
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Min Sup 3(50,c)=12 MinlIELS(p,C)IN=tMink  (ELS(p,C) 1) (2.18)
C lix =1 C C

guarantees the stability of the feedback control system for all p lying
in the domain D. In general, conditions for the existence of such a set
of controller gains, C, need further study. The examples in Section V
illustrate cases where such gains clearly exist.

As described previously, the insensitive design requires a priori
knowledge of the domain of uncertainties, D, and of the distribution of
uncertainties wO(E). The latter requirement should reflect the level of
confidence the designer has in each of the parameters p, derived pri-
marily from his experience and his understanding of the actual physical
system. Some typical examples of the domain D and of the probability
density function wo(g) one may consider are:

(a) If some statistical properties of the parameter uncertainties
are known, specifically their mean E(Q)=EO and their covariance matrix
E[(ETEO)(ETEO)T]=Rs where R is a symmetric positive definite matrix,
then one might choose (Fig. 4a) ‘

wO(E)= %exp[—(gfgo)TR'l(Efgo)] for all p in D (2.19)
where

D

[H]

{E/(Ergo)TR'l(gfgo)sd,d>0, constant}
{%xp[-(ErEO)TR_l(E:EO)]dg

In general the domain D is a region bounded by a hyperquadratic

\Y

surface 6D of dimension r-1, where 8D is a contour of constant wo(g) in
this case.
(b) If the system parameters p are known to be equally likely to

1ie anywhere within a specified range of uncertainty about their
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nominal value, say p=p *Ap, then (Fig. 4b)

wO(E)= %— for all p in D (uniform distribution) (2.20)
where

D= {P/lP_i-QO.ISAR.i » i=1,2,...,r}
1

ro
v =2 AplAPZ"'Apr

In general the domain D is bounded by a hyper "cube" 8D of dimen-
sion r-1

(c) If a discrete set of parameter values is of interest and the
relative weights o, on each of them are known, then the following

probability density function is appropriate (Fig. 4c):

M
wo(p) = 2:,u1'6(9734) for all p in D (2.21)
i=1
where D is an arbitrary domain containing all the parameters 34(1=1,2,...
M) and &( ) is the Dirac delta function. Note that the coefficients o

are chosen such that

Oéaiél s i=1,2,...,M

M
> a, = 1
i=1

(d) 1If one wants to design a feedback controller to handle the

worst case that may happen to the closed loop system, then (Fig. 4d)

wo(p) = &(p-p,) = é(pl-pwl) 6(p2-pw2)-.. 6(p,.-pwr) (2.22)
- for all p in D, where D is any closed bounded domain containing Bys the
plant parameter corresponding to the worst case.

The worst case parameter is defined as the set of parameter values
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p,, such that (1, 23)
J(Ew’éb’c*) 2 J(p,x,,C*)  for all p in D (2.23)

and
J(Ew’lo’c) > J(Ew,éﬂ,C*) for all C (2.24)

The values of R, and C*, if they exist, can be determined iteratively

using the algorithm suggested in (23).

This approach requires a priori know]édge of the worst case value
of the plant parameters. Determination of these parameter values B,
is difficult when the dimensions n and r are large. This design is
identical to the Minimax design mentioned in (1).

(e) In the special case where one knows precisely the plant
parameters (E;EO), then (Fig. 4e)

w (p) = 8(p-p,) = 6(p1-pol) 6(p2-p02)-..6(pr-p0r) (2.25)
for all p in D where D is any closed bounded domain containing By This
design is, of course, the conventional quadratic regulator design.

The probability density functions wo(g) discussed in cases (a) and
(b) are nonzero over a finite domain of uncertainty. Thus the feedback
control system developed according to (2.18) will be adequately designed
to cope with a changing or unknown environment.

For systems where very large changes in the physical parameters are
expected (e.g., autopilots), the usual procedure is to design programmed
changes in control gains versus flight conditions (for example) as mea-
sured by simple sensors of dynamic pressure, Mach number and the like.
The present method enhances such a procedure by providing reduced sensi-

tivity of system performance to variations in the values of physical
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parameters from the nominal ones associated with each flight condition.
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ITI. DESIGN PROCEDURES

This section will briefly summarize‘the above design technique and
describe its implementation. The design method involves two basic com-
putational processes: evaluation of ELS(p,C)] , and determination of a
set of feedback gains, C, which minimizes the norm of ELS(p,C)].

ITI.1 Evaluation of E[S(p,C)]: Since E[S(E,C)] is a real symmetric

positive semi-definite matrix, only 4Ln(n+l) of its elements need to be
determined in order to completely specify E[S(p,C)1; that is, one has to
evaluate the following %n(n+1) integrals

ELS,:(p,C)1 = f w_(p)S..(p,C)dp for 1£iLjcn (3.1.1)
j p 0B

where the %n(n+1) elements of the matrix S(p,C) are solutions to the
Lyapunov matrix equation given in (2.10). To evaluate (3.1.1) exactly,
the Lyapunov matrix equation must be solved for all values of p in D.
This constitutes the major impediment to a practical implementation of
this technique.
A simple zeroth-order numerical integration scheme applied to

(3.1.1) i]]ustrateé the difficulty encountered in the implementation of
this technique:

E[Sij(B,C)]=./g WO(E)Sij(EaC)dE for 1Licitn

Nel Nep=l Np=d
BN "+(i,+%)h,, ve(i 1L
) "rzfo 1,1;) WoPy"+(1¥adhy, s o p 4 (1 #)h )
Y —

'S45(Py (PN b, (1,40, D (5 He)h ,C)h (3.1.2)

where
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h1 = Integration step size of the 1th parameter and
Sij(p1'+(i1+%)h1,p2'+(i2+%)h2,...,pr'+(ir+%)hr,c) satisfies the Lyapunov

matrix equation (2.10) for

T Vuls s Vg .
P = [pl +(11+1/2)h1’p2 +(12f"1/2)h290--,pr +(1r+1/2)hr] with

-1; 12=0,1,...,N2-1; | =0’1""’Nr_1'

=0,1,...,N -

Bt 1
As a result, to completely evaluate one integral for a given set of

C, we need to solve (2.10) a total of N1N2...Nr times. In order to make

truncation errors in the integration acceptably small, step size hi

(i=1,2,...,r) must be sufficiently small, i.e., N. sufficiently large.

i
Assuming that the number of operations required to solve (2.10) is pro-
portional to n3, then the entire integration cost amounts to approximate-

3 operations where k is a constant of proportionality.

1y kNlNZ“'Nrn

Higher order numerical integration schemes may be used to evaluate
E[S(p,C)]. The real advantage of using higher order quadrature formulas
is that one may be able to reduce the number of integration steps Ni
(i=1,2,...,r) while keeping truncation errors within reasonable bounds,
consequently lowering the overall cost of the design synthesis. Further
investigation into this problem of numerical integration is recommended
for cases where r is large. |

The norm of E[S(p,C)] is found by solving for its largest eigen-
value, which may be efficiently determined using the numerica1’power

method (28) as described in Appendix B.

ITI.2 Determination of the controller gain matrix C: The design tech-

nique outlined above requires the minimization of a cost functional

S(EO’C) with respect to a set of parameters Cij(i=l,2,...,m;
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j=1,2,...,n). If the domain of uncertainty D is a small neighborhood
about the nominal value Ry» then the existence of a set of constant con-
trol gains C which stabilizes the closed Toop system for all p in D may
be asserted. But for arbitrarily large variations in the parameters, it
is not clear whether such a set of gains C can always be found. Further
research into sufficient conditions for the existence of C is needed in
order to broaden the applicability of the sensitivity reduction tech-
nique.

Here we shall simply assume that a set of control gains C which
minimizes the cost function 3(50,C) can be found. Various minimization
techniques for nonlinear functions are available (24). Two approaches to
finding a set of feedback gains, C, which minimizes Sup 3(50,0) or
equivalently the norm of E[S(p,C)], are given. TheyxﬁLzlthe hill descent
method and the Fletcher-Powell method.

IT1.2.a The hill descent, univariate or relaxation method (24): The

minimization procedure consists of the evaluation of the function to be
minimized at a set of points selected according to a sequential proce-
dure. These test points then provide information about the function and
its minimum. The first test point is usually picked in an arbitrary
manner. To minimize computing time, a good initial guess is highly
desirable. The remaining test points are determined iteratively from

the equation

Pl ) (3.2.1)

where g@ is an mn-dimensional vector whose components are the indepen-

dent, unconstrained controller gains Cll’CIZ"“’Cln’C21’C22""’CZn""’

C ,,C .,C_at the ch iteration, hz is a positive constant repre-

mi>“m2°"° mn
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senting the magnitude of the zth’iteration step size and Q% is an mn-
dimensional normalized direction vector. For convenience the initial
step size is chosen to be unity.

In each iteration we employ a fixed sequence of normalized search

direction vectors, in which we change only one coordinate at a time,

that is
_Qz = i!jg (3.2.2)
where
zT
yj =[000...010...01 ,j=1,2,...,mn
4

jth column
If in an iteration the function evaluated at all test points specified
in (3.2.1) exceeds the value of the function found in the previous iter-
ation, then the step size in the next iteration is reduced by half and
the search procedure repeated (Fig. 5). The procedure is terminated
when the step size hQ gets below a certain prescribed margin. This
method was used in the numerical solution of the second order examples
discussed in Section V.

IT1.2.b The Fletcher-Powell method (25-27): This procedure allows the

user to find the minimum of a function of several variables without cal-
culating the derivatives. An approximate conjugate direction is devel-
oped at each iteration to ensure a fast convergence rate from a bad ini-
tial approximate to the minimum. For further details, the reader is re-
ferred to the cited references. This method shows great promise in pro-
viding an efficient computational algorithm for the solution of the

feedback gains C.
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Iv. SIMPLIFICATION OF THE METHOD FOR
A SECOND ORDER CONTROL SYSTEM

Consider a second order control system represented by the following

set of linear differential equations with constant coefficients
(] [o 1 ] (0] o
. = . + u(t) (4.1)
W] [ ] [p®] [

where u(t) is a scalar control input. The variable parameter vector is

T=(f ,f,). The domain of excursions is given by (Fig. 6)
BT

f1 < fef
D: min max (42)

<f

The output response consists of the entire state vector, i.e., y(t)=x(t)
or H=I where I is the identity matrix. We assume a linear controller of
the form

u(t) = —[Clxl(t)+C2x2(t)] (4.3)

where C1 and C2 are to be determined using the design method described
in Section II. Let the weighting matrices A and B be of the following

form

A= and B=(b) (4.4)

where the elements 1158725390 and b may be chosen according to (2.6) and
(2.7). 1In expanded form, the Lyapunov matrix equation (2.10) becomes a
set of linear system equations whose unknowns are the elements of the

symmetric matrix S(p,C).
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N 2
Z(fl—gCl) 512 ——(a11+bC ) (4.5a)
S 1 +(f2-gC2) 512 + (fl-gCl) 322 =-(a12+bC C )(4 5b)
2 512 +2(f2-902) 522 =-(a22+bC2 ) (4.5¢)

The simultaneous solution of (4.5) yields

f,-9C,
. (a12+bC CZ) 207, gC (a22+bC2 (4.6a)
2
C2u™y v 9% (apebe?)
Z(fz"gcz) Z(fl'gcl)
11+bC12
5127 "2(f,-9C)) (4.6b)
' 2 2
+bC +bC
T A S Y (4.6¢)

22~ 2(f2 gCZ) 2(?1 gC )(f2 ng)
For simplicity we assume a uniform probability density function wo(p)

inside D. This is shown in Fig. 6. The magnitude of WO(E) is given by

] é where d; and d, are defined below. Then the integration in (3.1.1)
172
can be evaluated explicitly. We obtain, upon integration of S(p,C),

2 f1 f
a,,*bC, o | “max 1og(f2-gC2) max
E(Sy1)=-(ay,#bC,Co)* 7475 (f1-9C;)
172 f2 f2
2 £ min min
- a51+bCy log(f,-aC,) Zax
—~S5q 2 772
?
f)
min (4.7a)
2 f f
a +bC1 2 | %max 1og(f1-gC1) nax

e SR
* 4d d, (f5-9C,)

2 . .
min min



12)= - —'—Z'd—i‘-—‘ 1og(f1—gC1) (4.7p)

(4.7¢)

where dizfi 'fi (i=1,2).
max min

The norm of E[S(p,C)] is easily found by solving for the largest
eigenvalue. It is given by the following expression

E(Sy ) +E(S,p)+/E
(ELS(p,C)])=—H——28 (4.8)

WELS(p,CYIN =2

where A=[E(S)-E(S,,) 15+ATE(S ) 1%

Note that in this second order case it was possible to obtain analytical
expressions for Sij(léiéjéz) as functions of the parameter vector p and
of the control gains Ci’ An analytical expression for E[S(p,C)] was
then obtained assuming a uniform distribution for p.

For a given controller design (with p known) the performance cost

given in (2.8) is bounded by the following two Timits

Inf J(p,x_,C)<I(p,x ,C)<Sup JI(p,x_,C) (4.9)
. _ -0 -0 N -0
=1 1)l =1
or
Inf tax 1S(p,C)x <d(p,x,»C)SSup tax 1S(p,C)x, (4.10)

150 Fi %0
l.l_)gOH =1 IQ(‘OH 1
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or A (S(R,0)) & 3(p.x ,C) & %A o (S(p,C)) (4.11)

max

with normalized initial conditions Xy i.e., Il X, =1, where

Sy+S,,=VA
m1n(s(ﬂ’c)) = ~11 222 (4.12)
and
S111S,,1VA
max(S(Eﬁ )) = ~11 222 (4.13)
. _ 2
with A = (S11 22) +4S 12

These bounds on the performance cost will be used in the subsequent
comparative study of the optimal regulator design based on nominal
parameter values, the present design, and the Minimax design, for

second order examples.
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V. NUMERICAL EXAMPLES

Consider the following two numerical examples of the second order
control system described in the previous section.
V.1 Case A: 1In this case the open-loop plant is stable. The nominal
parameter values are f1=—2 and f2=-1. The domain D of possible values
of the parameters defined to be

D: {(fl,fz)/-a, < f <05 -2% f25 0} and g = 1.

The parameter values corresponding to the worst case, defined in (2.23),
are found by evaluating the optimal cost function over a finite set of
parameter values in D. The set of parameter values that satisfies
approximately the Minimax condition stated in (2.23) is chosen to be the
worst case for the closed loop system. We get roughly fl =0 and fz =0.

W W
For convenience the following weighting matrices A and B are used

lo 1

The open loop eigenvalues are located at Al 2=-0.5ij1.213. The

[’10
A= } and B = (10), i.e., a11=a22=1,a12=0 and b=10.

Tinear controller gains C corresponding to the optimal regulator design
based upon nominal parameter values, the present design and the Minimax
design, and their associated closed Toop eigenvalues are tabulated in
Table 1. An 1increase in the gain constants is seen to accompany

the reduction in performance sensitivity. Figure 7 shows a root locus
mapping of the region D. Both the ontimal regulator design based upon
nominal parameter values and the present design lead to a stable closed
loop system for all parameter variations in D. The stability boundaries
for each controller design are shown in Fig. 8. The time responses of

the states and of the control effort to the initial condition 50T=(1,O)
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are shown in Fig. 9 for the nominal plant parameter values and in
Fig. 10 for an off-nominal plant parameter value, for the above three
controller designs. A large expenditure in the feedback control effort
u(t) is observed in the Minimax design; thus this design tends to be
more sensitive to measurement noise than the present sensitivity reduc-
tion design. Table 2 illustrates the balance achieved between the per-
formance cost and its sensitivity in the three controller designs.
V.2 Case B: 1In this case the open loop plant is unstable. The nominal
parameter values are f1=—2 and f2=1. The domain D of possible values of
the parameters is defined to be

D: {(f},f,)/ -3 f,€ -150.< f,< 2.5} and g = 1.

Estimates of the worst case parameter values are found to be

1 =-3 and f2 =2.5. For convenience, the weighting matrices given in
W W

case A are used. The open loop eigenvalues of the system are located at

f

A1,2=+0.51j1.323. The linear controller gains corresponding to the above
three designs and their associated closed loop eigenvalues are tabulated
| in Table 3. Figure 11 shows a root locus mapping of the region D.
Clearly the optimal regulator design based upon nominal parameter values
is incapable of handling large parameter variations: The resulting
closed Toop system becomes unstable for some parameter values in D. On
the other hand, the present controller design stabilizes the closed Toop
system for all parameter values in D. The stability boundaries for each
controller design are shown in Fig. 12. The time responses of the states
and the control effort to the initial condition §OT=(1,O) using the above

three controller designs are shown in Fig. 13 for the nominal plant

parameter values and in Fig. 14 for some typical off-nominal plant
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parameter values (not the worst case values). Table 4 jllustrates the
balance achieved between the performance cost and its sensitivity in
the three designs. An infinite cost value for the performance index

represents instability in the feedback-controlled system.
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able 1.

Controller Gains Chosen for Case A by the Three Design Methods

The Cost J Associated with Control Designed for
Case A by the Three Design Methods

Linear Controller | Optimal Design
Gains for F=F0 New Design Minimax Design
C1 0.025 0.121 0.316
C2 0.072 0.210 0.886
Closed loop eigen-| -0.54+j1.32 -0.60+j1.32 | -0.93+£j1.21
values for F=FO
Table 2.

Range of J for the

Range of J for the

Nominal Parameter Values Worst Case Parameter Values
Min J(anx ,C)] Max J(Eﬂ,x ,C) [ Min J(Ew,x ,C)[Max J(Ew,x ,C)
. = =0 z =0 vl ~o - 20
Design Hg&l—l H}Jl-l Hég 1 Hz&l 1
Optimal
Design 0.332 0.885 3.564 144.5
for F=F
0
New
Design 0.375 0.940 1.455 13.48
Minimax
Design 1.175 1.978 0.662 4.971
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Table 3.

Controller Gains Chosen for Case B by the Three Design Methods

The Cost J Associated with Control Designed for

Case B by the Three Design Methods

Linear Controller | Optimal Design
Gains for F=F0 New Design Minimax Design
C1 0.025 0.592 0.017
C2 2.072 3.937 5.026
Closed Toop eigen-i -0.54+j1.32 -1.47+j0.66 | -2.01+j1.23
values for F=FO '
Table 4.

ange of J for

the

Nominal Parameter Values

Range of J for the
Worst Case Parameter Values

Min J(p ,x_,C)[Max J(p_,x_,C) | Min J(p ,x_ ,C)IMax J(p,  ,x ,C)

Design | Iix Ji= 0% xJi = 70*%0 Il =170 IxJl = 1'%
..—.0

Optimal 10.36 20.86 0 e
Design
for F=F0
New
Design 13.41 24.44 27.36 87.05
Minimax
Design 15.78 31.90 25.13 75.60
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VI. CONCLUSION

A minimum sensitivity control system design has been developed.

It provides the control designer a powerful but simple tool in the syn-
thesis of control systems that will be insensitive to large parameter
variations. In contrast to existing sensitivity reduction techniques
which are valid only to a first order approximation, the present con-
troller design ensures stability of the controlled system over the en-
tire design range of possible parameter values, provided only that such
a control exists.

The new method has been shown to produce control systems having
better performance over the possible range of plant parameter values
than would an optimal controller based on the nominal plant parameters.
In particular, cases have been demonstrated where the latter system
becomes unstable for some possible values of the plant parameters, while
the new design provides good stable performance for all values.

There has been shown also a better trade-off in the system per-
formance and its sensitivity with the new design than with the Minimax
design. In the latter, significant Toss in the overall system perfor-
mance occurs due to unnecessarily large control feedback gains. However,
further development of the computational schemes used is still needed
to make this new sensitivity reduction technique into a practical and

useful design tool for higher order systems.
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VII. RECOMMENDATIONS FOR FURTHER STUDY

The following are some recommendations for possible extensions

and applications of the new design concept:

1.

Develop an efficient computer program for the synthesis of the above
minimum sensitivity design for higher order systems with several un-
certain parameters. The program should include efficient numerical
algorithms for the following operations:

- Solution of the Lyapunov matrix equation (2.10)

Numerical integration of E[S(p,C)] in (3.1.1)

Determination of the maximum eigenvalue of E[S(p,C)]
Determination of a set of feedback gains, C, which minimize

Ay (ELS(2,€)7).

Develop a similar insensitive design in which state estimates are

used instead of the actual states in the implementation of the con-
troller. Investigate the dynamic coupling thus developed between
the controller and the estimator.

Based on the above concept of reduced sensitivity design, develop

a similar technique for a discrete-time feedback control system.

In this case the state equation (2.1) is a difference equation and
the feedback control law is now a Tinear function of the full state
evaluated at the sampling times. Extend the results to include a
discrete-time state estimator. Investigate the dynamic coupling
thus developed between the digital controller and the discrete-time
state estimator.

Investigate the possible use of this design concept in the selection

of sampling rate for a digital control system.
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RECOMMENDATIONS FOR FURTHER STUDY (Continued)
Investigate the effect of external disturbances or inputs upon this
minimum sensitivity design.
Extend this design concept to reference-following systems where the

locations of both the poles and the zeros of the closed-loop system

are of interest.
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APPENDIX A.

Solution of the Lyapunov Matrix Equation

The well known Lyapunov matrix equation plays an important role in
the stability theory of linear dynamical systems. For continuous, time
invariant linear feedback control systems,

x(t) = (F-60)x(t) (A.1)
The Lyapunov matrix equation derived in section II has the form

~(F-6¢) Ts-S(F-6C) = HTAH+CBC (A.2)
where (F-GC) is an nxn stability matrix, i.e., its eigenvalues lie in
the open left half of the complex plane, S and (HTAH+CTBC) are nxn
symmetric positive semi-definite matrices. The existence and unique-
ness of S are shown in (20). The solution of (A.2) can be written as

s =qp ! (A.3)

where P and Q are nxn matrices such that the columns of

P
[Q] ’
a 2nxn matrix, form the n eigenvectors of the 2nx2n associated matrix
-(F-GC) 0
HawecTBC  (F-6C) -4)
corresponding to those eigenvalues of R with positive real parts (19,20).
In general, the eigenvalues and eigenvectors of R are complex. If v is
a complex eigenvector corresponding to the complex eigenvalue A, then
vV, the complex conjugate of v, is the eigenvector corresponding to X,

the complex conjugate of X, since the matrix R is real. To avoid the

use of complex arithmetic, we note that the solution S given in (A.3)
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remains invariant under any nonsingular linear transformation of

[P'] . that is, if [P*] - [P] K (A.5)
Q | o]

where K is an nxn nonsingular matrix, then S$*=S, since
sx=q* p*~1=(qK) (PK)~ L=qkk 1p~ 1=gp~I=s (A.6)
Let us choose the matrix K to be of the following form

B K1 0 7

K
K= 2 (A.7)

n o
where Ki is a scalar or a 2x2 matrix block depending on whether the
eigenvectors in the corresponding columns of [g] are real or complex
conjugate pairs. More precisely,
K; = (1) 1f.11 is real

% % . — .
K. if v. and v,.; (sv;) are a pair of complex

conjugate eigenvectors

where j = /-1 .

i =8 4N, Vi, ,=Vs
For complex eigenvectors, V=8t 0ngs YipTYyo and

[P:j = [Eqng - -Eqng eee oo (A.8)
Therefore it is valid to use the real and imaginary parts of the complex
eigenvectors as columns of the matrix 8

The symmetric matrix S is then solved as the solution of the follow-
ing linear equation

SP =Q (A.9)
or PIS = QT ) (A.10)
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APPENDIX B

The Power Method
The power method is an efficient numerical procedure to determine
the largest eigenvalue of an nxn symmetric positive semi-definite matrix

A (28). Let Ai(i=1,2,...,n) be the eigenvalues of A such that

LA L. . L
AEASE L EX (B.1)
and let_éi be the corresponding eigenvectors, i.e., Ax,=k.x, for

i=1,2,...,n. We note that the set of eigenvectors {54,i=1,n} spans the
entire n-dimensional vector space. Llet v be an arbitrary vector which

can be written as a linear combination of the eigenvectors x,, such that

11

n
v, = %g% Qs X « (B.2)

where oy are scalar constants and o is nonzero.
It can be shown by induction that upon repeated multiplication of

the vector Yo by the matrix A, we get

(B.3)
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since AnZAi(i=1,2,...,n), and k is sufficiently Targe. At the (k+1)St
iteration, the approximate value of An is given by
ith component of Ves1

ith component of Yy

for some 1.

An~An(k+1) =

The iterative scheme is terminated when the absolute difference between
successive approximations of An is less than some prescribed value §,
i.e., IAn(k+1)—An(k)I<6. To avoid exceedingly large numbers in the
components Of.!ks the vector vy should be renormalized after a few iter-
ations. The procedure is repeated with the normalized vector_!k.

In our case we apply the power method to the solution of the largest

eigenvalue of E[S(p,C)] given in (3.1.1).
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Fig. 1 Schematic diagram of the feedback control system.
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Fig. 2 Trade-off between measure of perfofmance and sensitivity.
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Fig. 5 A hill descent or univariate search.
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Fig. 6 Weighting distribution function w (p) for the second
order examples.
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Fig. 7 Root locus mapping of the region D for Case A.
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Fig. 8 Stability boundaries of the three closed loop designs in Case A.
(a) Optimal design based upon the nominal parameter values, (b)
New design, (c) Minimax design.
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——— Optimal design based upon the nominal parameter values

--- New design

2.5

(SINI

Fig. 11

RE(S)

Root locus mapping of the region D for Case B.



a f2
Stability boundary UNSTABLE
1
1
STABLE 0
b. fa
2 UNSTABLE
Stability boundary
£y
- \‘\ \?».\\ N
STABLE 0
N
f
c. 3 2
Stability boundary
UNSTABLE
STABLE
w

Fig.12 Stability boundaries of the three closed Toop designs in Case B.

(a) Optimal design based upon the nominal parameter values, (b)
New design, (c) Minimax design. :
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