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ABSTRACT 

Recent observations of the geometries of growing and collapsing bubbles over 

axisymmetric headforms have revealed the complexity of the "microfluidmechanics" 

associated with these flows (Hamilton et al., 1982, Brian~on Marjollet and Franc, 1990, 

Ceccio and Brennen, 1991). Among the complex features observed were bubble to bubble 

interaction, cavitation noise generation and bubble interaction with the boundary layer 

which leads to the shearing of the underside of the bubble and alters the collapsing 

process. All of these previous tests were performed on small headforrn sizes. The focus 

of this research is to determine the dynamics governing the growth and collapse of 

traveling bubbles and to analyze the scaling effects due to variations in geometry size, 

Reynolds number and cavitation number. For this effect, cavitating flows over Schiebe 

headforms of different sizes (5.08cm7 25.4crn and 50.8cm in diameter) were studied in the 

David Taylor Large Cavitation Channel (LCC). This thesis presents the scaling effects 

captured on high-speed film and electrode sensors as well the noise signals generated 

during the collapse of the cavities. The influence of each of these parameters on the 

dynamics involved in the growth and collapse phases of the traveling bubble are presented, 

along with the acoustical impulse produced during the collapse of the bubble. 

In order to model and analyze the dynamics of the three-dimensional bubble 

deformation in the presence of the pressure field around the Schiebe headform, an 

unsteady numerical code using traveling sources has been developed. This thesis presents 

calculations of the interaction between the irrotational flow outside the boundary layer of 

the headform and individual traveling bubbles. An error estimation of the method and 

comparisons with the LCC experiments are presented. This method is shown to predict 

some of the features of three-dimensional bubble growth and collapse dynamics 



remarkably well. Furthermore, analysis of these computations allow a better 

understanding bubble interaction and event rate prediction. 
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NOMENCLATURE 

.......................................................... Distance from the point i to the source Q [-I 

Pressure coefficient, Cp = 
2(p - p,) 

[-I ................................................................. 
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........................... Bubble maximum radius at the base of the hemispherical cap [ml 
R 

Dimensionless bubble radius r = - ................................................................... [-I 
D 

U,D ............................................................................ Reynolds number Re = - [-I 
v 
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........................................................................... Surface tension S=0.07 17 [kg/s21 

...................................................................................... Free-stream velocity [m/s] 
v ......................................................................... Dimensionless velocity v = - [-I 
u, 



v 
V ...................................................................... Dimensionless bubble volume - [-I 
v, 

p ~ 2 , ~  We Weber number We = - ............................................................................. 
S 

[-I 

......................................... Attachment coordinate along the axis of revolution [ml 

.............................................. Collapse coordinate along the axis of revolution [ml 

.................... Bubble thickness in the direction normal to the headfonn surface [ml 

Normal distance to the headform of the bubble surface point i ........................... [-I 

................................................................................... Bubble sphericity, E=&/R [-I 

......................................................... Displacement of the bubble surface node i [-I 

............................................................................... Global coverage parameter [-I 

............................... Dimensionless electrode duration parameter for electrode i [-I 

Dimensionless panel strength per unit surface for i" ring panel .......................... [-I 

Kinematic viscosity ( ~ ~ 8 . 5 3 3 7 -  at ambient temperature). ........................ [m2/s] 

....................................... Water density ( ~ ~ 9 9 6 . 3  at ambient temperature) [kg/m3] 

Cavitation number, o = 
2(p_ - P") ................................................................... [-I 

pU-3 

.............................................................................. CTi Inception cavitation number [-I 

T 
tu, Dimensionless time z = - ............................................................................. 
D 

[-I 

............................ AT Dimensionless bubble travel time between electrodes 1 and 2 [-I 

................................................................................. zw Acoustic impulse duration [-I 

As a general rule the parameters written in lower case are dimensionless unless otherwise 

stated. 



A. GENERAL CONSIDERATIONS 

A.l  INTRODUCTION 

Recently Ceccio and Brennen (1989, 199 1) and Kumar and Brennen (1991) have 

performed a number of experiments to deteimine the interactions between the boundary 

layer and traveling cavitation bubbles. It appeared quite obvious that the headform and 

boundary layer shape significantly affected the dynamics involved in the growth and 

collapse phases of individual bubbles. The experiments were performed on a 5.08cm 

diameter axisymmetric headform and revealed a surprising complexity in the flow around 

single cavitation bubbles. Among the phenomena observed during those experiments were 

the fact that the bubbles have an approximately hemispherical shape and are separated 

from the solid surface by a thin film of Liquid. This general conformation persists during 

the growth phase, though especially with the larger bubbles the thin film appears to 

become unstable and may begin to shear off the underside of the bubble leaving a cloud of 

smaller bubbles behind. On the other hand, the collapse phase is quite complex and 

consists of at least three processes occurring simultaneously, namely collapse, shearing 

due to the velocity gradient near the surface and the rolling up of the bubbles into vortices 

as a natural consequence of the first two processes. These processes tend to produce 

sinall transverse vortices with vapor/gas filled cores. It was noted that the collapse phase 

was dependent on the shape of the headform and the details differed between the ITTC 

headform (Lindgren and Johnson, 1966) which possesses a laminar separation and the 

Schiebe body (Schiebe, 1972; Meyer, Billet and Holl, 1989) which does not. 

All of these previous experiments were, however, conducted in the same facihty 

with the same headform size (5.08cm in diameter) and over a fairly narrow range of flow 

velocities (around 9 d s ) .  Clearly this raises the issue of how the phenomena identified 

change with speed, scale and facility. There are very real questions as to how the 



observed phenomena might scale with both headform size and with tunnel velocity. The 

experiments described here represent one effort to answer some of these questions for the 

case of cavitation occurring on simple axisymmetric headforms. This thesis will focus on 

traveling bubble cavitation, and the interaction between the flow and the dynamics and 

acoustics of individual bubbles. The current investigation employed Schiebe headfonns 

with a minimum pressure coefficient on the surface of Cpmi,= -0.78. We note that such 

scaling experiments are dif%lcult to undertake since they require the testing of several 

geometries. Billet and Holl(1979) have performed such experiments on a series of NACA 

and Joukowski hydrofoils. They mostly observed data for the desinent cavitation number, 

o,, and observed an increase of this quantity as the Reynolds number was increased. 

In chapter B of this thesis we will investigate the spherical bubble dynamic model 

developed by Plesset (1949) and apply it to the case of the flow over the Schiebe 

headform, in order to gain some insight as to what dynamics govern the growth and 

collapse of a cavitation bubble. Presented in chapter C are the scaling experiments 

performed in the Large Cavitation Channel (LCC) over three Schiebe headforms of 

different sizes. In light of the complexity of the dynamics of the traveling bubbles and the 

important bubble-to-bubble interactions seen (particularly over the larger headforrns) it 

becomes clear that the spherical Rayleigh-Plesset model cannot reproduce many of the 

phenomenon observed. For understanding this effect a novel unsteady three-dimensional 

numerical code has been developed and is presented in chapter D. This model attempts to 

reproduce the three-dimensional bubble-flow interactions in the presence of the pressure 

gradient field induced by the headform. h error estimation of the method is then 

presented along with some computational results. These results are also compared with 

the experimental data taken in the LCC. 



A.2 SCHIEBE HEADFORMS 

The cavitating flow around Schiebe headforms (Schiebe, 1972) has been widely 

studied for small headform sizes (Meyer et al., 1985, Ceccio, 1989, Kumar, 1991) and has 

therefore become a useful geometry to compare cavitation data taken from various 

research laboratories. The shape of this headform is the solution of the geometry induced 

by a potential disc-source placed perpendicular to a uniform flow. This headform presents 

relatively smooth but strong adverse pressure gradients and the boundary layer has 

therefore the property of being relatively robust to laminar detachment, unlike the ITTC 

body (Lindgren and Johnson, 1966). As a guide to interpretation of the flow over this 

headform, a panel method was developed to solve the axisymmetric potential flow in the 

absence of cavitation. Some results from these calculations are presented in figure A.1, 

which shows the isobars in the low pressure region on the surface of the headform. The 

minimum pressure coefficient on this headform has a value 

Cp,,=-0.78. Note the large pressure gradient normal to the surface of the headform in 

the vicinity of the minimum pressure point and the elongated shape of the isobars as the 

pressure decays. This pressure gradient distribution wdl be shawn in later sections of this 

thesis to be a determinant factor for the bubble deformation. 



Figure A.l Pressure distribution around the Schiebe headform 
This figure shows the solution of the flow around the headform using an 
axisymmetric potential flow calculation. The low pressure region near the nose 
of the headform is shown with lines of constant Cp. The minimum calculated 
pressure is shown as Cp,,= -0.78. 



B. SPHERICAL BUBBLE DYNAMICS 

A simple approach to understand the dynamics of growing and collapsing 

cavitation bubbles is made by considering the case of an expanding bubble in an infinite 

incompressible fluid (Plesset, 1949). The driving pressure perturbations causing the 

growth or collapse of the cavity are applied through changes in the medium pressure at 

in f i ty ,  P,. The nuclei from whch the bubble grows is assumed to be typically a micron- 

size gas bubble and is initially in equilibrium with the surrounding medium. Such a model 

has been widely used to predict some features of bubble cavitation in various flows 

(Plesset and Prosperetti 1977, Hamilton et al. 1982, Kumar and Brennen 1992), and 

remains an extremely useful tool to understand the underlying dynamics of complex three- 

dimensional viscous cavitating flows. In this chapter we will attempt to use this model to 

predict some features of the cavitation bubbles traveling over Schiebe headforms. 

B. 1 RAYLEIGH-PLESSET MODEL 

By writing the force balance on the surface of the spherical bubble and integrating 

the momentum equation from the bubble surface to an m f i t e  radius, we can derive the 

Rayleigh-Plesset equations for spherical bubble dynamics (Plesset, 1949). 

Where R, is the initial radius of the nucleus in its equilibrium state, R is the current bubble 

radius, Pv is the water vapor pressure at ambient temperature and P, is the pressure at 

infiity. This equation includes the partial pressure of the gas inside the bubble which is 

assumed to follow a polytropic law (power k term), the surface tension effects (S term), 

the viscous growth effects (v term) and the fluid inertia terms. The gas in the initial 

nucleus has been assumed to be air which behaves isentropically, so that the gas polytropic 



constant k=1.4. The compressibility, gas diffusion and thermal effects have been omitted 

in this analysis. 

Using the length (diameter, D) and time scale (free-stream velocity, U,) of the 

flow over an axisymmetric beadform, it is possible to write the Rayleigh-Plesse t equation 

in the following dimensionless form 

where Cp, is the pressure coefficient, We the Weber number, Re the Reynolds number, T 

the dimensionless time, and r the dimensionless radius and are defined as 

P-P, 
, T=-  

R 
,; We=- S v D 

Knowing the pressure distribution over the Schiebe headform (see figure A.1), we can 

follow a streamline close to the surface of the headform and obtain the pressure coefficient 

time history Cp(z) that a traveling nucleus would encounter. If we crudely approximate 

that the pressure field in the vicinity of the bubble is isotropic and that the local pressure 

the nucleus experiences may be considered as an infinite reference pressure, we can then 

substitute the term Cp,(z) by Cp(z) in equation B.2. It then becomes possible to 

numerically solve the dimensionless Rayleigh-Plesset equation B.2 using a standard 

adaptive finite difference method with a fourth-order Runge-Kutta algorithm to find the 

radius of the bubble as a function of time r(z). The results of such computations are 

presented as a function of time, z, in figure B.l for various cavitation numbers and the 

following cavitation conditions: R0=100pm, D=50.8cm, U,=ll.Sm/s, with an initial 

nucleus position at x,=- 1. 



od.40 Increasing 
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Figure B. l  Rayleigh-Plesset bubble radius as a function of time 
The computed bubble base radius from the Rayleigh-Plesset spherical bubble 
model is shown as a function of time. The calculation uses the pressure 
distribution on the surface of the headform. Conditions shown are for 
We=93x 1 04, Re=6.8x 106 and for cavitation numbers ranging from 0=0.40 
to 0=0.60. The time origin z=0 corresponds to a nucleus position upstream of 
the headform at x,=-1. 



B.2 NUCLEUS STABILITY CRITERIA OVER HEADF'ORMS 

A stable equilibrium state of the nucleus may be found by setting all the first and 

second time derivatives of the bubble radius to zero in the Rayleigh-Plesset equation B.2. 

The equilibrium radius re is thus given by 

Solutions for this equation do not exist when the critical pressure coefficient drops below 

the value for which dre/dcp_ = -. Therefore, for pressures less than this critical value 

both the first and second time derivative of the bubble radius have to be of the same 

positive sign in equation B.2, indicating a bubble explosion. The h i t  of stability is thus 

given by the critical pressure 

with 

The critical bubble equilibrium radius, re - ,, was first identified by Blake (1949) and 

Neppiras and Noltingk (1951). The critical pressure coefficient, Cpmait, is often referred 

to as Blake's threshold pressure. If the minimum pressure coefficient along a streamline is 

below the Blake's critical pressure coefficient Cp,, < Cp,,, the nucleus is bound to 

become unstable. 

This criteria is useful to define a critical nucleus radius above which all nuclei wdl 

become unstable and explode. Using equations B.6 and B.4, the critical initial radius, 

ro-Crit, is found as the solution of the following equation 



We note that Ceccio and Brennen (1991) observed that for the isothermal case (k=l), a 

solution of this equation for the critical radius adheres fairly closely to the following 

expression 

where the factor K is close to unity. This expression can be easily derived if we assume 

that or, - ,,,We < 4 which is the case for the smallest headform (D=5.08cm) at most 

cavitation numbers, but becomes erroneous for the larger headforms. 

In the case of the Schiebe headform, potential flow calculations (Z. Liu et al., 

1993) have shown that the minimum pressure decays as a function of the normal distance, 

6, to the headform as Cp- (6) = Cp,,, - 10 6(Cp,, - 1). Thus, using equation B. 1 1 we 

find that 

cp,. (r,) = cp,, + 5r: 4-. 
Using Ceccio and Brennen's approximation (equation B.8) then yields 

This equation gives the critical initial streamtube radius within which a nucleus of 

miuimum radius r, will encounter low enough pressures to cause it to become unstable. In 

figure B.2 are presented solutions of this equation and are referred to as "Critical nucleus 

stability criteria" curves, for various cavitation numbers for the 5.08cm headform and 

U,=11.5m/s (We = 93.10~). Note that all these curves attain an asymptotic value as r, 

becomes large. This value is independent of the Weber number and is given by 

A great Limitation of this critical radius theory comes from that fact that it assumes 

that the nucleus remains spherical until it becomes unstable and explodes. We will show 

that, in fact, for many nucleus initial upstream positions and initial radius values, r,, the 

value of the critical radius, re - ,,,, is larger than the distance of the nucleus pathline from 



the headform. Consequently the nucleus is not allowed to grow spherically to the critical 

radius and the previous assumption is erroneous. Examine a streamline starting far 

upstream from the headform with an initial off-axis dimensionless radius ri. From the 

continuity and Bernoulli equations, the dimensionless distance, 6, between the streamline 

and the headfom surface around the minimum pressure coefficient point is 
-2 

Obviously the nucleus cannot remain spherical when its radius becomes larger than a 

fraction of its distance, 6, to the headforrn. The maximum limiting case occurs when the 

nucleus would touch the surface of the headform, i.e., when 6=r, - ,,i,. Inserting this 

condition in equation B. 11 yields critical values of initial streamline radii of 

For the case when ri<riUi,,,,, the nucleus stability theory becomes invalid because the 

nucleus would intersect the surface of the headform before it becomes unstable. We note 

that, for a given headform shape, this critical radius is only a function of the initial nucleus 

radius r, and the product owe. In figure B.2 are also presented the values of the critical 

initial off-axis radius, r,-,,,,,,,,, as a function of the nucleus radius, r,, for various values of 

owe.  These curves are referred to as the "Interaction with headform criteria" curves. 

The region under each one of these curves represents conditions for which a spherical 

nucleus would overlap the headform surface before it reaches its critical unstable radius. 

Comparing the two sets of curves in figure B.2, we can see that the initial 

streamtube radius region within which the instability criteria does not apply can be 

substantial for certain conditions, especially for the low o w e  values. We may consider, 

for example, the 5.08cm headform under the following conditions: ~ = 0 . 4 5  and 

U_=11.5m/s (owe  = 42. lo3). If we look at all the nuclei in the upstream flow field of 
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Figure B.2 Initial streamtube radius versus critical equilibrium nucleus 
radius 
Thefirst set of curves represents the standard equilibrium solution to the critical 
unstable nucleus radius. The figure represents this nucleus radius versus the 
initial upstream radial distance it came from, thus indicating the minimum 
pressure it will encounter. The second set of curves indicates the limit of 
validity of this criteria due to interaction of the nucleus with the headform. 



size approximately R,=25 pm that could become unstable and cavitate according to the 

spherical stability criteria (considering the flow rate in the streamtube to follow U,nri2), 

25% may not since they intersect the headform before becoming unstable. This value rises 

to 40% for nuclei of size R,=50 pm and 100% of the nuclei larger than R0=100pm will 

intersect the headform. This headform interaction effect can therefore be significant in 

estimating event rates, particularly for the smaller headforms. Further study of the 

stability of deformed nucleus therefore needs to be done in order to take this effect into 

account. 

B.3 PRESSURE IMPULSE DURING COLLAPSE 

The acoustic noise produced at a distance R by a spherical bubble of varying radius 

R(t), may be modeled by the pressure induced by a monopole source of varying strength, 

Q(t). The potential induced at a distance R by such a source is 

From the unsteady Bernoulli equation, the solution for the pressure perturbation induced 

by the source is 

In a manner similar to equation B.2, using the length and time scale of the flow over the 

headform, it is possible to write this equation in the following dimensionless form 

Examining the pressure far from the bubble (neglecting the fourth order term in rlr) we 

find that 



where v is the dimensionless volume of the bubble and Q the dimensionless source 

strength (Q=Q/D2U,). 

The amplitudes of the acoustic pressure pulses generated from a collapsing bubble 

at a distance R can quantified by defining the impulse, I(R), as the integral of the 

instantaneous pressure perturbation, from the beginning of the collapse pulse to the 

moment when the pressure returns to its mean value. Thus 
end at p =p, 

I(R) = J ( P ( ~ , R )  - ~ _ ) d t .  
begin at p =p- 

Consider the pressure seen at the center of the headform (thus roughly at a distance D/2 

from the collapsing bubble). The pressure at t h s  location will be referred to as PC,,. The 

importance of defining this pressure we become clear later since it is the one that is 

recorded by the hydrophone located in the center of the headform. We know from 

equation B.16 that the pressure perturbation decays inversely with the distance, r, to the 

bubble source. The pressure induced by the collapsing bubble at any point in the flow is 

thus related to the pressure in the center of the headform as 

The impulse at the center of the headform is then 
end atp=p, 

2R 
Ice,, = (pcenter (t) - pm )dt = _I('). 

Y 
begin at p=p, 

If we define the dimensionless pressure impulse, i(r), as 
end at Cp=O 

i(r> = J ~ p ( r , r ) d z  
begin at Cp=O 

then we find that it relates to the dimensional impulse as 



To compare the noise signals from cavitation bubbles over different headform sizes, we 

may refer all the impulses to that which we would record at the center of the headform, 

R=D/2. This impulse will be referred to as the dimensionless center impulse, where 

Another way to compare signals over different headform sizes is to refer the recorded 

impulses to that which we would record at a unit radius R=lm from the cavitation noise 

source. This impulse will be refet~ed to as the unit impulse, where 

This impulse has the unit of length, [m]. In the next section both of these impulses shall be 

used to analyze the noise signals recorded by the inner hydrophone. 

In order to estimate theoretical values of these impulses, numerical calculations of 

the growth and collapse of bubbles were carried out using the same method as presented 

in section B. 1. For these calculations, the time steps were chosen particularly small, such 

that the maximum radius change of the bubble per time step does not exceed 1/10000fi of 

its current radius. For these calculations, variations of the Weber number, Reynolds 

number or initial nucleus radius, r,, have shown little effect on the computation of the 

dimensionless center impulse. Numerical results for icenter are thus shown in figure B.3 for 

We = 93 x lo4,  Re = 6.8 x lo6, r, = 1.9 x and different cavitation numbers, o. 

As expected, the impulse increases with decreasing cavitation number. The reason 

for the small influence of We, Re or r, on the impulse can be explained as follows. From 

equation B. 16, the impulse may be rewritten as 

We observe from numerical calculations that the bubble growth velocity just after rebound 

has roughly the same magnitude as the collapse velocity (within 20%). Indeed, as the 

end at Cp =0 dv elid at Cp =O encl at Cp =O 

ice,= I ~ ~ ( r , r = O . 5 ) d . i = - -  (B .24) 

begin at Cp =O 72 d7 begin at Cp =0 



radius of the bubble tends to zero during collapse (r + O) ,  the partial pressure of the gas 

term dominates all the other terms in the Rayleigh-Plesset equation B.2. Thus 

It follows from equation B.25, that during rebound the second derivative of the bubble 

radius with time is mostly dependent on the radius of the bubble itself, thus yielding almost 

identical bubble collapse and growth rates. We note that in effect, the rebound velocity is 

slightly smaller than the collapse velocity by about 20% due to viscous dissipative effects. 

Thus we have roughly 

'1 Cp=O at rebound = 'ICp=O at collapse 

and therefore the impulse is mostly dependent on the collapse radius rate of change 

ice, = sr2  7 
dz Cp=O at collapse 

We also notice that the Weber number, Reynolds number and relative nucleus size ro terms 

become quickly negligible in the Rayleigh-Plesset equation B.2 as the bubble explodes and 

grows beyond a few times its initial nucleus size. The radius rate of change of the bubble 

is thus fairly insensitive to these parameters during the growth and collapse phases. 

Therefore the theoretical dimensionless impulse icenteI is mostly a function of the cavitation 

number and remains about the same for all headform sizes, D, or nucleus radius, Ro. 
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Figure B.3 Dimensionless impulse, ice,,,,, , as a function of the cavitation 
number 
Calculated dimensionless center impulse, ice,,, , based on the Rayleigh-Plesset 
spherical bubble model. 



C. SCALING EXPERIMENTS IN THE LCC 

C. 1 INTRODUCTION 

The experiments performed by Ceccio and Brennen (1989, 1991) and Kumar and 

Brennen (1991) over various headforms showed a great complexity in the fluid mechanics 

associated with traveling cavitation bubbles and need to be mentioned here. On the ITTC 

headform, when some of the larger bubbles pass the point of laminar separation they 

induce an attached "streak" of cavitation at the lateral extremes of the bubble as 

represented in figure C. 1. These streaks stretch out as the bubble proceeds downstream, 

being anchored at one end to a point on the body surface along the laminar separation line 

and at the other end to the "wing-tips" of the bubble. The main bubble then collapses, 

leaving the two streaks it induced to persist longer. 

The directional terminology used in describing the traveling bubble is as follows. 

The exterior surface of the bubble corresponds to the bubble side furthest from the 

headform surface. The interior of the bubble corresponds to the bubble surface exposed 

to the headform. The upstream side of the bubble is located in the upstream direction with 

respect to the uniform flow. This side is the side on which the streaks appear and is also 

referred to as the wake side or the trailing surface of the bubble. The downstream side is 

also referred to as the leading surface of the bubble. 

One of the important consequences of these variations in the details of the collapse 

processes is the effect on the noise produced by a single cavitation event (Ceccio and 

Brennen, 1992; Kumar and Brennen, 1992). Bubble fission can produce several bubble 

collapses and therefore several acoustic pulses. Presumably this would also effect the 

cavitation damage potential of the flow. Kumar and Brennen (1991-1992) have further 
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Figure C.l Schematic diagram of an attached traveling bubble 
This schematic shows the development of attached separation streaks shed in the 
wake of the traveling bubble. 



examined the statistical properties of the acoustical signals from individual cavitation 

bubbles on two different headforms in order to learn more about the bubble/flow 

interactions. They were also able to demonstrate a relationship between the number of 

cavitation events and the nuclei number distribution measured by holographic methods in 

the upstream flow. 

We note that questions on the scaling of cavitation have been asked for many years 

but particularly in the aftermath of the ITTC comparative tests conducted by Lindgren and 

Johnsson (1966) who showed how disparate the appearance of cavitation was at different 

speeds, in different facilities and at different water "qualities". This characterization refers 

to the number of cavitation nuclei present in the water, where most of these nuclei usually 

consist of very small air bubbles in the range of 5 to 300pm. As O'Hern et al. (1985, 

1988) have shown, the nuclei are similar in size distribution in most deaerated water 

tunnels and in the ocean. This causes one set of scaling questions since the ratio of body 

size to the nucleus size will change with the body size. The other set of scaling issues 

derives from the complex interactions between the bubbles and the flow close to the 

headform, where the flow is Reynolds number dependent. Scaling effects will thus be 

caused by the changes in both body size and tunnel velocity. In order to address this 

problem, the present experiments were conducted in the Large Cavitation Channel of the 

David Taylor Research Center in Memphis Tennessee, on geometrically similar Schiebe 

headforms which are 5.08, 25.4 and 50.8cm in diameter for speeds ranging up to 15mls 

and for a range of cavitation numbers. 

C.2 EXPERIMENTAL SETUP 

C.2.1 Large Cavitation Channel 

We were fortunate to have the opportunity to examine some cavitation scaling 

effects by conducting experiments in a new facility called the Large Cavitation Channel, 





which has just been constructed for the David Taylor Research Center (Morgan, 1990). 

Briefly this facility is a very large water tunnel with a working section which is 

3.05m x 3.05m in cross-section. It is capable of tunnel speeds above 15mIs and the 

pressure control allows operation at sufficiently low pressures in the working section to 

permit cavitation investigations. Polished lucite windows are located along the side walls 

of the test section and in the corners at the top and bottom. Figure C.2 shows a schematic 

of the water tunnel indicating the overall dimensions. 

C.2.2 Headforms 

Three Schiebe headforms of diameter 5.08cm, 25.4cm and 50.8cm were machmed 

out of solid blocks of clear lucite. The instrumentation used is identical for all three 

headforms and consists of a series of electrodes and an inner hydrophone. A second 

hydrophone was also placed in the 25.4cm headform. The interiors of the headforms were 

hollowed out in order to place the hydrophones in the center and as close as possible to 

the cavitation. The insides were then filled with water at atmospheric pressure. Lucite 

was chosen for its good acoustical match with water in addition to its electrically 

insulating properties required for the electrodes. Figure C.3 shows a schematic of the 

headform with its instrumentation. The dimensionless quantities represented are identical 

for d l  headforms. These headforms were mounted in the center of the working section 

using after-bodies and a supporting strut as shown in figure C.4. 

C.2.3 Electrode bubble detection 

Silver epoxy electrodes were machined flush in the lucite headform as presented in 

figure C.3 and can be seen on the photographs of figure C.17. A pattern of alternating 

voltages is applied to the electrode pairs, and the electric current from each electrode is 

monitored. When a bubble passes over one of the electrodes, the impedance of the flow is 

altered, causing a drop in current (Ceccio 1989). Thirteen of these electrodes take the 
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Figure C.3 Schematic diagram of the headform 
Presented here are the dimensionless locations of the electrodes and 
hydrophone. The same locations were used for all three headforms. 
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Figure C.4 Schematic diagram of the three headform setup 
Also shown are the after-bodies with stabilizing fins and supporting strut. The 
same strut was used for all three headforms, placing them in the tunnel 
centerline. 



form of small circular patches (about 1mm in diameter) at different axial locations. In 

addition, three ring electrodes covering the entire circumference of the body are installed 

at particular axial locations in order to measure the cavitation event rate over the entire 

headfonn. An electronic Schmitt trigger peak detector box connected to one of the 

electrodes allows us to detect the presence of a traveling bubble. The trigger pulse is then 

fed to both the digital recorders and to the photographic setup. 

C.2.4 High speed photography and flash 

Two cameras, triggered simultaneously, were set up in order to take flash pictures 

of individual cavitation bubbles at different angles and different enlargements. Four 

powerful EG&G model SS166 flash heads with SS162-165 energy storage racks were 

used. The filrn exposure time was of the flash duration and was measured to be about 

3 0 ~ s .  Triggering can be done either manually or through a computer controlled lock-out 

system connected to the electrode peak detector signal. A variable delay unit was 

employed in order to take photographs of bubbles at various times after passing an 

electrode. The delay time can be adjusted by increments of 1Ops and up to 1Oms. In 

addition, a CCD video camera was focused on the top surface of the headform. The 

EG&G flash heads were used in strobing mode, synchronized with the video camera 

framing rate in order to make a video recording for each operating condition. 

C.2.5 Hydrophones 

An International Transducer Corporation hydrophone model ITC-1042 with a flat 

isotropic gain response of +2dB out to 80kHz was installed inside each of the headforms. 

The center of the hydrophone was placed on the axisymmetric axis, one headforrn radius 

from the front stagnation point. In addition a Bruel & Kjaer 8103 hydrophone with similar 

performances was placed sideways inside the 25.4cm headform in order to record local 

noise signals. The 64 kbyte digital pressure signal acquisitions of the collapsing bubbles 

were made at a sampling rate of 1MHz with a 16 bit resolution. By filling the interior of 



the headform with water, the intention was to provide a fairly reflection and reverberation 

free acoustic path between the cavitation and the hydrophone. Ceccio (1989) successfully 

checked this technique earlier by comparing the signals from a single cavitation event 

using hydrophones installed inside and outside the headform. In the present tests, a similar 

check was performed by comparing the internal hydrophone signals with those from two 

Sonatech STI-01-02 hydrophones (with a flat frequency response up to 100kHz). These 

ST1 hydrophones were mounted in a water-filled polyurethane encapsulation, flush in a 

recess in the side wall of the test section, one upstream and the other downstream from 

the headfom. In addition, using each of the ITC and ST1 hydrophones in turn as a 

transmitter and a receiver over a range of frequency from lkHz to 100kHz, it was possible 

to accomplish reciprocity type calibrations. Results of these calibrations are presented 

later in the thesis. 

C.2.6 Water nuclei measurement 

C.2.6.a Susceptibility meter 

The David Taylor cavitation susceptibility meter (Shen and Gowing, 1984) was 

installed in the lower upstream part of the test section. Such devices cause the water to 

cavitate by pumping it through a venturi where it undergoes sufficiently low pressures. 

The cavitation number in the venturi can be adjusted by varying the flow rate through the 

venturi. Susceptibility measurements are made by counting the number of bubble 

cavitation events per volume of water passing through the venturi, over a range of 

cavitation numbers. In the present experiments the inlet tube is connected to a 5.08cm 

diameter hole in the test section tunnel wall. The flow then passes through the venturi, a 

variable speed pump, a flow-meter and is then exhausted back through another port hole 

to the LCC. The diameter of the venturi at the throat is 2mm. The flow rate through the 

venturi is regulated by varying the pump speed. The cavitation number in the venturi is 

calculated by measuring the flow velocity with the flow-meter and by monitoring the 



pressure just upstream of the venturi nozzle using a Sensotec 430 pressure transducer. 

Individual cavitation events are counted by the means of a high frequency hydrophone 

(band-passed between 10 and 100kHz) located next to the venturi. 

C.2.6.b Particle Dynamics Analyzer 

A Dantec Particle Dynamics Analyzer was set up to measure the nuclei distribution 

about 3 meters upstream from the headform This device is similar to a Laser Doppler 

Velocimeter but in addition uses measurements of the spatial distribution of light scattered 

by particles crossing the control volume. Phase information of light scattered at different 

angles by bubbles passing through the control volume is collected via three 

photomultipliers. The Bragg theory of light scattering through spherical micro-bubbles of 

different radii allows, in principle, to correlate this phase information with the actual size 

of the bubble. In our case the PDA optics had a focal length of 150cm which allowed the 

control volume to be located close to the tunnel centerline. 

C.2.6.c Dissolved air content 

Two bypass water lines connected to two Orbisphere type probes monitored the 

dissolved oxygen content. This value is then referred to percentages of dissolved air 

contents relative to atmospheric conditions at ambient temperatures, P,,. The dissolved 

oxygen content of the tunnel water was being varied by pumping the water through 

vertical dearation tanks. Water temperature was also constantly monitored and recorded 

for each condition. 

C.3 HYDROPHONE CALIBRATION 

Acoustic calibration was performed for both the internal hydrophone (ITC), 

mounted in the center of the Schiebe headforms and the outer hydrophone (STI-02), 

mounted on the upper side wall of the test section, just ahead of the headforms. In order 

to achieve consistent data comparisons, the same ITC hydrophone model was installed in 



all three headforms. For the purpose of these calibrations, both hydrophones have no 

signal pre-amplification and are fed directly into the digital recorders. A spectrum 

analyzer has been used to measure the transfer function gain between the hydrophones at 

frequencies ranging from 3kHz to 100kHz. Both hydrophones were used as a receiver 

and as a transmitter, allowing us to perform reciprocity calibrations. Furthermore the 

specification curves supplied by the hydrophone manufacturers allow us to versFy the 

voltage-to-pressure transfer gain between the hydrophones, in the following manner. 

Using one of the hydrophones (hydrophone A) as a transmitter and the other 

(hydrophone B) as a receiver we may write the overall transfer function between the 

transmitted input voltage signal through A, V,:, and the received output voltage signal 

through B , v:, , as 

v:,(f)=~$ans(f).M(f).~,R,~(f).~;(f) (c.1) 

where H:,(f) is the transfer function of hydrophone B in the receiving mode which 

includes the pressure to voltage signal conversion [dB re lVolt/pPa]. The transfer 

function of hydrophone A in the transmitting mode is given by HtanS (f) which includes the 

voltage to pressure signal conversion [dB re lm.pPa/Volt]. Finally M(f) is the medium 

transfer function between hydrophones A and B. This term includes the intluence of the 

water between both hydrophones and the iilfluence of the tunnel setup including the 

headform and its supporting structure. The transmitted voltage signals were obtained for 

frequencies between 3 H z  to lOOKHz by frequency increments of one third octave. AU 

the input and output voltage measurements are given in dB relative to 1Volt. Reciprocity 

test in the STI to ITC direction and in the ITC to ST1 direction were performed for all 

three headforms. The table in figure C.5 presents the data from these calibration tests. 

For each headfom we may write the following two reciprocal transfer function 

equations 

v;F(f) = ~ z k ( f ) .  ~(f ) .~; : ( f ) .  vF1(f)  



Figure C.5 Hydrophone calibration results 
For each headform the input and output voltage is shown in dB re lVolt using 
each hydrophone as a transmitter and a receiver. The positive dB values 
correspond to the transmitted signal, VOu, , and, the negative dB values to the 
received signal, V,,. Also shown in the first three columns are the manufacturer 
hydrophone specifications. 



Dividing the transmitted voltage signal (hydrophone A) by the received signal 

(hydrophone B) yields the overall transfer function gain, GA->B(f). This gain includes all 

effects from one end of the hydrophone lead to the other, for signals transmitted in both 

directions. Thus 
GSTI->ITC (f) = HE~(~) .M(~) .H :F (~ )  

GITC->ST1 (f) = ~ ~ ~ ( f ) . M ( f ) - ~ ~ ~ ( f ) *  

Both of these transfer function gains are presented in figure C.6 as a function of 

frequency, for all three headforms. 

A system is known to be reciprocal if the overall transfer function from 

hydrophone A to B can be scaled with the overall transfer function from B to A, over the 

entire frequency range. This condition has to be met in the present experiment since the 

hydrophones and the medium impedance are all known to be reciprocal (Albers 1902). 

Thus we should find that 
GSTI->ITC 

(f ) G ~ ~ ~ - ' ~ ~ ~  (f) = C 

where C is a constant independent of the frequency. Figure C.7 presents this theoretical 

constant value, C, for the frequency range between 3kHz to 100kHz. We observe from 

this figure the flat shape of the curves over the measured frequency range for all three 

headforms. This constant value C is about -9dB with a noise measurement less than 

rt5dB. Reciprocity calibration has therefore proven successful with a rt5dB noise level. 

This noise level will thus be representative for the cavitation noise data presented in a later 

section. 

In addition to reciprocity, the hydrophones calibration transfer functions, H(f), 

[pPa to Volts] supplied by the hydrophone manufacturers can be verified in the following 

way. Among the hydrophone transfer functions supplied are the ITC transfer functions in 

both the transmitter and receiver mode  HE^(^) and H::F(f)) and the ST1 transfer 
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Figure C.6 Voltage gain, G, between hydrophones 
The gains are shown as a function of the frequencies measured. Gains are 
shown in dB from the ITC to the STI and from the STI to the ITC hydrophones 
for all three headforms. 
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F'igure C.7 Reciprocity test between the hydrophones 
The system is said to be reciprocal if the reciprocity constant C is independent 
of frequency. This figure shows a reciprocal constant value C= -9dB with a 
t 5 d B  noise level over this frequency range. 
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Figure C.8 Medium acoustic impedance, M(f) 
The medium acoustic impedance is shown as a fknction of frequency, for all 
three headforms. 



function in receiver mode (H;:(f)). These functions are summarized in the table in figure 

C.5 for discrete frequencies. From equation C.2 we are able to determine the medium 

acoustic impedance as 

where all the hydrophone transfer functions are known. Figure C.8 shows the values of 

M(f) for all three headforms for frequencies up to 100kHz. 

We notice that all the data points have a value of about -10dB with a noise level of 

about +8dB. This impedance appears roughly the same for all the three headform 

configurations, indicating that the presence of the lucite headform and the different after- 

bodies do not have a significant impact on the acoustical properties of the tunnel. A 

theoretical value of M(f) may be estimated by assuming that the medium consists of water 

whose impedance is independent of frequency for this frequency range (Albers, 1902, 

Coates, 1989) and whose point source noise transfer gain decreases as 1/R, where R is the 

distance between the two hydrophones (as in equation B.16). Knowing that distance for 

the three different headform setups, we find the following theoretical values of M. 

We observe that theoretical values of M are close to the average -10dB medium 

value obtained from figure C.8. This agreement therefore validates the calibration curves 

 HE^ (f) and H:: (f) given by the manufacturers within an overall measurement noise of 

about +8dB. We note that this +8dB noise level is also that given by the frequency 



response curve of the ST1 hydrophone and therefore probably originates mostly from that 

hydrophone. The inner ITC hydrophone transfer function gain given is said to be accurate 

to +2dB. The conversion of the recorded acoustical cavitation signals from Volts to 

Pascals using the ITC manufacturer calibration curves should therefore be somewhat 

accurate (within frequencies up to IOOldIz) 

C.4 EXPERIMENTAL ANALYSIS 

C.4.1 Test conditions 

All three headforms (D=50.8cm, D=25,4cm and D=5.O8cm) were tested for 

similar conditions. The test matrix included the three dissolved air contents (P,,=80%, 

Pair=50% and Pair=30%) and three velocities (U,=9m/s, U,=11.5mls and U,=15m/s). 

Combined effect of the headform size and flow velocity thus allowed a Reynolds number 

range from Re=0.54x106 to Re=9.41x106. For each of these conditions about five 

cavitation numbers were investigated, ranging from bubble inception to fully attached 

cavitation. 

C.4.2 Cavitation inception data 

Figure C.9 presents the observed cavitation inception numbers, Oi, as a function of 

the headform diameter, D, tunnel velocity, U,, and dissolved air content, Pair. Inception 

was based on an arbitrarily chosen event rate of about 50 cavitation events per second. 

The events were detected by means of the first upstream flush-mounted patch electrode, 

the current from which was moderated by the presence of a bubble (Ceccio and Brennen, 

1989- 1991). 

The trends in figure C.9 are fairly clear. All the curves can been seen to have an 

asymptote value equal to the magnitude of the minimum pressure coefficient on the 

surface of the headform (Cpmi,= -0.78). The inception number increases with increasing 



Figure C.9 Cavitation inception numbers Gi 
Data shows measurements for all velocities, headform diameters and air 
contents. 
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headform size. This headform size effect is a consequence of the fact that the flow rate of 

water passing through the low pressure region increases with larger headforms. More 

nuclei are thus susceptible to initiate cavitation and therefore, for a specific event rate, the 

value of Gi is larger. The values of Gi also increase with an increase in air content for a 

similar reason, namely more nuclei at the larger air contents. In order to illustrate the 

important difference in cavitation inception and event rate scaling effects with headform 

size, we contrast in figure C.10 the cavitation patterns over the three headforms for 

identical cavitation conditions. This figure shows photographs of all three headforms 

scaled to the same relative size, for the same cavitation number, 0=0.51, the same 

dissolved gas content, P,,=30%, and the same flow velocity, U,=11.5m/s. 

We note from figure C.9 that these conditions correspond to inception cavitation 

conditions on the smallest headform, and are thus conditions where we very occasionally 

observe a traveling bubble. Figure C.10 shows one of these bubbles on the smallest 

headform. In contrast, on the 25.4cm headform we already observe the presence of 

bubbles and patch type cavities. Finally, on the 50.8cm headform, for the same cavitation 

conditions, we observe quite extensive cavitation patterns. Scaling effects with headform 

size are therefore very significant. Figure C.9 also demonstrates that the cavitation 

inception n u d e r  increases with decreasing tunnel velocity. This effect is not so readily 

explained. However it is clear that in order to achieve the same cavitation number at a 

lower velocity one requires a lower tunnel pressure. It may therefore be that the nuclei 

concentration in the tunnel increases considerably with decreasing operating pressure. 

Hamilton et al. (1982) had also observed similar trends over 5.08cm headforms with 

increasing free stream flow velocities and had also attributed this effect to the decrease in 

tunnel velocity. They also found incipient cavitation numbers which were substantially 

higher than the ones presented here (oi=l.l). Billet and Holl (1979) had observed 



Figure C.10 Cavitation photographs over all three headforms 
All three headforms are presented for identical cavitation conditions: Pai,=30%, 
~=0 .51 ,  U ,  = 11.5ds. Scaled to the same relative size are presented, from top 
to bottom, D=50.8cm, D=25.4cm., D=5.08cm. 
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Figure C.11 Average number of observable events on the headform 
Data shows measurements for all velocities and headform diameters as a 
function of the cavitation number. 



desinent cavitation numbers that were very close to the ones presented here (around 0.6) 

for different air contents of 3ppm and 9ppm. Higher air contents also yielded higher 

desinent cavitation numbers. 

C.4.3 Event rate observations 

Both the photographs and the video tapes were analyzed in order to explore the 

variations in the cavitation event rates with headform size and tunnel velocity. The event 

rates were evaluated by counting the number of individual bubbles (or events) observable 

in a single frame and averaging this number over many frames. This allowed construction 

of figure C . l l  in which the average number of observable events is plotted against the 

cavitation number, o,  for each of three velocities (9, 11.5 and 15mIs) for the three 

headforms (this data is for 30% dissolved air content). 

Not surprisingly, the number of events increases with decreasing cavitation number 

and with increasing headform size. Not so predictable is the tendency for the number of 

events to decrease with increasing speed. The data on the number of events may be 

converted to cavitation event rates using bubble lifetimes obtained from the knowledge of 

the local velocity of the bubble over the headform (using the panel method potential flow 

calculations) and the measured locations of bubble appearance and collapse (presented 

later in the thesis in figures C.21 and C.20 as a function of o). The resulting event rate 

data for 30% dissolved oxygen content is presented in figure C.12. It is clear that this is 

consistent with the cavitation inception data of figure C.9 given the selected criterion of 

50 eventslsec. 

As previously stated, one of the purposes of the present investigations was to 

demonstrate the connection between the event rate (and the inception number) and the 

nuclei number distribution. It is instructive to present the event rate data of figure C. 12 in 

the following modified form. Let us estimate that a l l  the nuclei which pass through an 
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Figure C.12 Cavitation event rate as a function of the cavitation number 
Data shows measurements for all velocities and headform diameters. 
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Figure C.13 Number of excited nuclei per unit liquid volume 
Data shows measurements for all velocities and headform diameters as a 
,function of the cavitation number. 



annular stream-tube bounded on the inside by the headform and on the outside by the 

stream-surface which just touches the Cp=-o isobar (see Fig. A.l) cavitate and form 

observable bubbles. Then, using the pressure distribution from figure A.1 and the 

potential flow calculations of the streamtube shapes (therefore neglecting boundary layer 

effects) extended in the upstream direction, we can calculate the volume flow rate of liquid 

in the stream-tube for each cavitation number operating condition. Dividing the data of 

figure C.12 by these values we obtain an estimate of the number of cavitation nuclei per 

unit liquid volume. This data is presented in figure C. 13. 

It is significant that some of the variation with cavitation number, headform size 

and tunnel velocity which was present in figures C. 1 1 and C. 12 has now been substantially 

removed. Indeed, with several exceptions a fair fraction of the data of figures C. 11 and 

C.12 would now appear to correspond to a nuclei concentration of 0.1 nuclei/cm3. The 

most noticeable deviation from this uniform value occurs at the highest speed (U,=15m/s) 

with the two larger headforms. The fact that most of the data appears to correspond to 

the same nuclei concentration is simultaneously encouraging and puzzling. It is 

encouraging because it suggests that a more careful analysis which begins with the same 

nuclei number distribution and follows each nucleus along its streamline may allow 

synthesis of the event rates and the inception numbers. But it is also puzzling because the 

concentration of 0.1 nuclei/cm3 is at least an order of magnitude smaller than most of the 

measurements of cavitation nuclei would suggest. 

Referring to Billet's (1985) useful review on the subject of nuclei concentrations 

and distributions, one method for counting nuclei is the cavitation susceptibility meter in 

which the liquid is drawn through an orifice (or other device) and is subjected to low 

pressures. The device is of sufficiently small size so that cavitation events occur 

individually. Then the concentration of actual cavitation nuclei (as opposed to potential 

nuclei) is obtained from the measured event rate and the known volume flow rate. Billet's 

review indicates that the typical concentrations measured by susceptibility meters is 



usually of the order of one nuclei per cm3, significantly smaller than the concentrations 

obtained by holographic methods. While this may suggest that only a fraction of the 

potential nuclei actually cavitate, the data is, as yet, inadequate to support any firm 

conclusion. The other principal and most reliable method for observation of nuclei 

(micro-bubbles and particles) is obtained by systematically surveying the reconstructed 

holograms of volumes of tunnel water, taken while the tunnel is in operation (for example 

Gates et al., 1979). For de-aerated tunnel water, such inspections typically reveal 

concentrations of the order of 20 nuclei/cm3 with sizes ranging from about 5ym to about 

200ym. However the next question to ask is what fraction of these potential nuclei do, in 

fact, cavitate when subjected to sub-critical pressures. Here the answer is quite unclear. 

In the present experiments a number of measurements have been made using the 

David Taylor susceptibility meter simultaneously with the cavitation measurements 

performed on the headform. The cavitation number in the venturi is defined as 

where Po is the stagnation pressure upstream of the venturi and V, is the average throat 

velocity in the venturi. For a given flow condition in the LCC test section the cavitation 

number in the venturi of the susceptibility meter was being varied by varying the flow rate. 

For different venturi cavitation numbers, o,,, the number of cavitation events per minute 

was counted. By decreasing o,, the event rate in the nozzle was varied from none to 

about 50/min. Knowing the flow rate we can thus calculate the number of events per 

liquid volume. Figure C. 14 shows the measurements taken for different tunnel conditions 

and different headforms. 

A number of trends may be observed from this figure. For each condition, as the 

cavitation number is increased, we notice a decrease in the number of cavitation events, 

which is to be expected. The conditions from this figure seem to be split in two 
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Figure C.14 Number of events in the susceptibility meter 
Thisfigure shows the number of cavitation events occurring in the venturi nozzle 
per volume of water pumped. The cavitation number in the nozzle is reduced for 
each tunnel condition, increasing the event rate. Shown here are measurements 
for various tunnel operating conditions. 
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Figure C.15 Water susceptibility cavitation number 
This figure shows the susceptibility cavitation number o,,,,, as a function of the 
LCC test section centerline pressure. Presented here are data for different 
headform sizes and different dissolved air contents. 



categories. The first category of data already shows a high number of events per cm3 for 

high cavitation numbers (around 0,-1.2), indicating that the water has a tendency to 

"cavitate easily." The other category requires cavitation numbers around 0.5 to cavitate. 

We note that observing events for cavitation numbers above unity is surprising since it 

indicates that we already observe events for venturi throat pressures which are above 

vapor pressure. This would indicate that this device is also capable of measuring large air 

bubbles passing through the venturi. In order to summarize these curves and to quantify 

the water susceptibility for a given tunnel condition we define the susceptibility cavitation 

number, o,,,,, as the venturi cavitation number for which we measure 0.01 events per 

cm3. Figure C.15 presents this cavitation number versus the tunnel test section centerline 

pressure, for the same tunnel conditions as presented in figure C. 14. 

It appears clearly from this figure that the conditions at higher dissolved air content 

(100%) are much more susceptible to cavitate than the 30% air content conditions, For 

the conditions at 30% air content, a sudden increase of susceptibility is observed as the 

tunnel pressure is lowered below 60kPa. It suggests that the nuclei population is 

substantially larger when the facility is operated at the lower pressures. These 

observations correlate well with the headform event rates shown in figure C. 13 where we 

observed an increase in cavitation events with higher dissolved air contents. We also 

observed in figure C.13 an increase in the event rates with a decrease in tunnel velocity 

and thus with a decrease in tunnel pressure needed to achieve the same cavitation numbers 

at a lower velocity. Visual observation of the tunnel at those lower pressures also 

indicated a substantial increase in the larger free stream bubbles. We do observe though, a 

few data points at 30% air content which indicate low water susceptibility even for 

relatively low pressures (represented on the figure as "30% air settled"). Careful analysis 

of these points indicate that these measurements were taken at times when the tunnel has 

been just started after a few days settling time, or when the tunnel has just been emptied 

and refilled again. Therefore, it appears as though running the tunnel for long periods of 



time at low pressures will tend to increase the water susceptibility. However decisive 

conclusions would require more tests in the tunnel, and the understanding of the evolution 

of the dissolved nuclei population in time remains a difficult problem to address. 

In the present experiments a Dantec Particle Dynamics Analyzer was also set up to 

measure the nuclei distribution about 3 meters upstream from the headform, but provided 

no reliable data. Due to the extreme sensitivity of this instrument to various settings we 

were unable to produce sufficiently reproducible signals. Part of the problem came from 

the fact that the LCC lucite windows were subjected to deformations at different pressures 

as the cavitation number was varied, which forced us to constantly realign the laser beams. 

Results of these measurements are therefore not presented here. 

Ceccio (1991) described a model to calculate the cavitation event rate which is 

based on a known nuclei number distribution function and follows all the possible sizes of 

nuclei along the streamlines on which cavitation might occur. This model may be 

corrected and improved by including other effects which may be important such as the 

effect of the boundary layer and the screening effect which occurs in the stagnation point 

flow and was first described by Johnson and Hsieh (1966), or by taking into account the 

intersection with the headform criteria described earlier in chapter B. A brief preview of 

these results is given here. If one assumes a typical nuclei number distribution function, 

N(R) of the form N(R) = 10-5 / R3.5 for R < 200pm, then typical event rates for the 

Schiebe headform are shown in figure C. 16. 

Qualitative comparison of figure C. 16 with figure C. 12 reveals significant areas of 

both agreement and disagreement. Note first that the trends in event rate with headform 

size and with cavitation number are quite similar. However the trend with tunnel velocity 

predicted by the model is contrary to the trend in most of the experiments. This 

discrepancy appears to be caused by assuming a common nuclei distribution for all 

operating conditions when, in fact, the nuclei population may be much higher at the low 



Figure C.16 Calculated event rates for the Schiebe headform 
Data shows measurements for all velocities and headform diameters. The 
bubble screening efSects are not included here. They are known to reduce these 
values by a factor of about 2 to 5. 



tunnel velocities than at the high as stated earlier. The other area of disagreement to 

which reference was made earlier is that the event rates in the model are much higher than 

in the experiments. 

C.4.4 Cavitation appearance 

A typical bubble cavitation event consists of the growth and collapse of a bubble as 

it travels through the low pressure region close to the headform surface. The shape and 

size the bubble will assume are dependent on the cavitation number and the pressure 

coefficient history it experiences along its trajectory. In this section we shall describe in 

more detail the observations made during a study of the photographs and video 

recordings. The following observations were made at dissolved air contents of 30%. 

C.4.4.a Bubble shape 

For cavitation numbers close to the minimum pressure coefficient 0~0.78,  the 

bubble Me-time is very short. In figure C.9 we noted that the highest inception cavitation 

numbers occur for the largest bodies at the lowest velocities. Figure C.17.a shows a 

cavitation bubble for such conditions (0iz0.77; D=50.8cm; 9mIs; 30% dissolved air 

content). All the bubbles assume a very thin disc-like geometry. For such cavitation 

numbers there is little or no growth normal to the headform surface. The bubble grows 

almost entirely in the plane parallel to the headform. At the end of its lifetime the center 

of the bubble does not collapse first. Instead we observe the evanescence of the bubble's 

leading edge. There seems to be a f i e d  location on the headform at which the cavity 

collapses, creating a fairly straight leading edge on the bubble. At these cavitation 

numbers we can see from figure A. 1, that the critical isobar Cp=-o is very elongated and 

close to the body surface, The region below vapor pressure is quite similar to the shape 

the bubbles assume. It appears that the bubbles are prevented from growing in the 

direction perpendicular to the body surface by the high normal pressure gradients normal 



Figure C.17 High speed photography of cavitation events 
50.8cm diameter headform (distance between two patch electrodes: 2.54cm) : 

Figure a: U,  = 9 d s ,  0=0.77; Figures b-c-d-e-f: U_ =15ds,  0=0.60; 

Figures g-h: U ,  = 15m/s, ~=0.54;  Figure i: U,  = 15m/s, 0= 0.51 



Figure C.17 High speed photography of cavitation events 
25.4cm diameter headform (distance between two patch electrodes: 1.27cm) : 

Figures j-k: U, = 15m/s, 0=0.55; Figures I-m-n: U_ = 15m/s, 0=0.53; 

Figure o: U ,  = 15m/s, 0=0.49 



to the surface. On the other hand, since the smallest headform has much smaller cavitation 

inception numbers (significantly less than 0.78), the bubbles observed on this headform do 

not assume such a flattened shape, even under inception conditions. 

As the cavitation number is decreased below Gi, the bubbles grow in volume (in 

diameter and in height) and assume the roughly hemispherical shape typified by figure 

C. 17.b. The maximum volume is mostly cavitation number dependent. As the bubbles 

approach their collapse phase their thickness, 6, normal to the headform surface decreases 

faster than their base radius, R, and the leading edge collapses most rapidly along a fairly 

straight front (figures C. 17.j, C. 17j.l). At this stage they appear thin and close to the 

headform surface (see also Ceccio, 1989) and look similar to the bubbles observed under 

inception conditions. 

One unique feature of the present experiments was the appearance of wave-like 

circular dimples on the exterior of the hemispherical cap (figures C. 17.b, C. 17.e, C. 17.f, C 

.17.g, C.17.j, C.17.1, C.17.m). The dimples seem to become more pronounced as the 

volume of the bubble increases. They are absent during the growth phase as seen in figure 

C'17.q and appear early in the collapse phase. Their ring shape could be interpreted as a 

precursor of a collapsing reentrant jet, but we note that the center of the dimple retains a 

concave curvature at all times. The dimple seems quite stable, and remains on the bubble 

until the very last stage of collapse. The reason for its presence is unclear, although they 

might be due to a local over-pressure that forms early during the growth phase on the 

exterior of the bubble, as wiU be discussed later in chapter D. On the 50.8cm headform 

the dimples sometimes also appear in pairs on the largest bubbles. On the smallest 

headform they are not as pronounced and thus were never observed in the past 

experiments performed by Ceccio and Brennen (1989) and by Kumar and Brennen (1990). 

Measurements of the bubbles on all three headforms show that the radius at the 

base of the hemispherical cap R, scales linearly with the headform diameter D, thus, at the 

same cavitation number, the ratio R/D appears to be the same for all three headforms. We 



do not observe any variation of R/D with the velocity U, either. Furthermore the 

dimensionless collapse location is approximately the same for all headforms. This appears 

to be true as long as the interactions between bubbles, or between bubbles and patch 

cavities remains limited. Therefore simple size scaling of the base diameter of the bubble 

cap with the headform size seems to be possible. This simple scaling applies only to the 

bubble's base radius though, since the shape of the bubble, its thickness 6 ,  the amount of 

shear on its base and the cavitation event rate vary greatly from one headform to the other. 

C.4.4.b Bubble tail and patches 

Figure C.17.a shows the presence of streaks of vapor or "tails" extending behind 

both sides of the bubble. It appears as though the bubble is sheared in the region 

extremely close to the headform surface leaving the tails behind in its wake. The 

undersides of some bubbles appear roughened towards the trailing and leading edges. The 

structure of the tails is always extremely wavy and turbulent, and they seem to be attached 

to the headform surface (fig. C. 17.c). They always appear early in the growth phase of the 

bubble. As the bubble is convected downstream it continues to "feed vapor" into the tails, 

allowing them to extend in length and height (figures C.17.c, C.17.d7 C.17.e, 

C.17.f). Ultimately the larger bubbles will collapse leaving behind patch-like cavities. It 

seems clear that whether a bubble will be sheared or not is determined early in the growth 

phase. If a bubble does not exhibit the trailing edge streaks early in its passage as seen in 

figure C.17.q it will grow and collapse with a smooth cap shape (fig C.17.b, C.17.j, 

C.17.1). For this reason, at fixed cavitation conditions, the leading edge of the streaks are 

always located around the same position on the headform (fig. C.17.c7 (3. 17.d, C. 17.e, 

C.17.f). The same statement can thus be made for the leading edge of the patches. If the 

thickness of those streaks is small, the dynamic of the final collapse of the bubble appears 

unaffected by them and appears similar to the process described in the previous paragraph 

and seen in figure C.17.m. However, for small enough cavitation numbers the patch can 



out-grow the bubble and swallow it leaving behind a patch-like cavity (fig. C.17.k, 

C. 17.n). At this point it is not clear if all the patch cavitation structures are generated by 

traveling bubbles. Some of them evidently are, and can be recognized by a planform 

shape, similar to a "V" with its vertex pointing downstream. The fmal length and 

thickness of the patch cavity are dependent on the bubble that generated it, and therefore 

vary with the headform diameter and cavitation number. For cavitation numbers close to 

the minimum pressure coefficient o = 0.78, no patches and very few bubble tails are 

observed as in figure C.17.a. For these conditions the tails seem unable to grow 

sufficiently to form a patch-like cavity. Figures C.17.k and C.17.n show two typical 

patches at lower cavitation numbers. We notice that the patch on figure C.17.k (higher 

cavitation number) is thinner and does not extend as far downstream as that of figure 

C.17.k. The collapse mechanism of the patch itself is quite unclear. In the video 

recordings they vanish entirely between two frames (1130 seconds). Is the entire patch 

swept downstream once the bubble head has vanished, or does it entirely collapse on the 

headform? The current investigation has not, as of yet, been able to answer these 

questions. 

The number of sheared bubbles seems to increase with the cavitation number, 

headform diameter and flow velocity. Since the ratio of the laminar boundary layer 

thickness to headform size will scale with Re-112, we would expect that the shearing of the 

cavitation bubbles would increase as the relative boundary layer thickness decreases. 

However, at the highest Reynolds number of lo7, we note that the theoretical laminar to 

turbulent transition comes close to the low pressure region and might cause further 

disruptive effects. 

C.4.4.c Bubble-patch interactions 

When the cavitation number is sufficiently reduced, the transient patches become 

fairly stable and remain on the headform, thus creating attached cavities for periods of up 



to a few seconds. As their number increases the patches will merge to create larger 

attached structures. Favre and Avellan (1987) have shown that those attached cavities 

disturb the initial pressure distribution in such a way that they actually extend downstream 

beyond the original Cp=-CYi isobar. Those attached cavitation pockets have been seen to 

shed large structures downstream without "disrupting" the upstream original attachment 

point to the headform. The cavitation number at which this phenomenon happens varies 

considerably from one headform to the other. It can be seen in figure C.17.i at a 

cavitation number of about 0.5 for the 50.8cm headform. By contrast, at the same 

cavitation number, the 25.4cm headform produces just a few bubbles and patches (figure 

C. 17.0) and the 5.08cm headform shows no cavitation. At this point we note that the 

transient cavitation patch phenomenon was never observed on the smallest headform. 

That headform seems to exhibit an abrupt switch from traveling bubble cavitation (some of 

which have long trailing tails) to persistent attached cavities. The attachment location of 

these cavities on the smallest headform is fixed for all conditions, and usually corresponds 

to a roughness element. This has not been observed on the larger headforms, even though 

the polished finish was identical to that of the 5.08cm body. Roughness scaling appears to 

be a very critical parameter for the attached cavitation scaling of these bodies. 

For all test conditions on the larger headforms at cavitation number below 0.7 we 

noticed the coexistence of the two different kinds of cavitation patterns: traveling bubbles 

and transient patches. Quite remarkably, even for the conditions at which we observe 

many patch-type cavities, some very smooth hemispherical traveling bubbles are still 

present (figure C.17.b7 C.17.h). We can see in figures C. 17.g, C. 17.h, C. 17.i bubble type 

cavitation riding above fully attached cavities. 

Comparing the shape of the bubbles encountering patch cavities with those which 

do not, it is clear that the shapes differ because the former are not subjected to the 

boundary layer shear which the latter experience. Bubbles which do encounter patches or 

attached cavities will eventually collapse and merge completely with the larger structure 



upstream of its closure region. By doing so they appear to perturb the attached cavity 

shape, as has been observed by Briangon-Marjollet et al. (1990). 

C.4.5 Bubble dimensions 

In order to examine the relative size of the bubbles on the three headforms and at 

different cavitation numbers, various bubble dimensions were measured from the still 

photographs and the video tape recordings. The base of an individual bubble (surface next 

to the headform) at the point of maximum bubble growth, being close to circular, was 

characterized by its radius R,,. The height, 6, of the bubble in a direction normal to the 

headform surface was also estimated, as was the location of bubble collapse at an axial 

distance, Xc, from the front stagnation point. First we present in figure C. 18 the ratio of 

maximum base radius to headform diameter, r,,=R,,/D as a function of the cavitation 

number. We can see that the velocity has very little influence on the non-dimensional 

bubble size. Furthermore, for all three headforms, this non-dimensional bubble size 

parameter remains roughly the same for a fixed cavitation number. This result can be 

explained by analysis of the Rayleigh-Plesset equation for spherical bubble growth. Once 

the nucleus has begun to grow, viscous (Reynolds number) and surface tension (Weber 

number) effects soon become negligible and the dimensionless bubble growth rate, 

(dRldt)/U, (where R is the spherical bubble radius, and U, is the reference free stream 

velocity) depends only on the cavitation number, o, and the pressure coefficient history, 

Cp(t). Moreover the bubble's travel time "t" available for growth in the low pressure 

region scales like D/U, and so the equations yield values for R,,/D which depend only 

on the headform shape (as manifest in Cp) and a. To obtain the necessary input to this 

calculation, namely Cp along a streamline, the potential flow around the Schiebe headform 

was obtained using a panel method. Substitution of the pressure coefficient history on a 

streamline close to the headform surface into the Rayleigh-Plesset equation produced the 
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Figure C.18 Bubble maximum radius as a function of the cavitation 
number 
This figure shows measurements for all velocities and headform diameters. Also 
included is the theoretical radius calculations based on the Rayleigh-Plesset and 
on the traveling source model. 



theoretical maximum bubble radius result included in figure C.18. It is remarkable that, 

despite the very non-spherical shape of the actual cavitation bubbles, the Rayleigh-Plesset 

equation yields values which are close to the base radius of the actual bubbles. It is as if 

the headform surface acts as a plane of symmetry for the growth of the bubble and the 

pressure distribution parallel to the surface are the sole driving terms in that plane. For the 

low cavitation numbers though the Rayleigh-Plesset model departs from the experimental 

data and yields larger bubble sizes. Also presented on this figure is the result of the bubble 

radius calculated using the single source model and will be discussed in the next chapter. 

The only experimental data in figure C. 18 which differs substantially from the rest 

are that for the D=5.08cm headform at U,=9m/sec. This might be due to measurement 

errors since the gas coming out of solution at these low pressures make an accurate 

reading of the small bubble radius difficult. Finally we note that for inception conditions 

the bubbles on the smaller headform appear larger relative to the size of the headform 

because the inception cavitation number oi is lower for that smaller headform. 

The bubble sphericity, as measured by E=~ /R  at the point of maximum growth of 

the bubble, also changes substantially with cavitation number as seen in figure C.19. The 

difference in sphericity between the two larger headforms at the same cavitation number is 

not clear. On the larger diameter headforms, we observed that bubbles appeared 

extremely thin for cavitation numbers close to inception. The Cp distribution curves 

above the headform in figure A. 1, show that the isobars near the minimum pressure region 

Cp=-0.78 are extremely elongated and close to the surface. Hence there exists a high 

normal pressure gradient close to the headform surface. Rayleigh-Plesset calculations for 

a nucleus experiencing pressures along a streamline extremely close to the headform show 

that for cavitation numbers higher than 0.6, a hemispherical bubble would grow to a radius 

that exceeds at all times the height of the critical isobar Cp=-o. This over-pressure on the 

exterior of the bubble forces it to be flattened. The three-dimensionality of the bubble for 
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Figure C.19 Bubble sphericity at the maximum size of the bubble 
Thisfigure shows measurements for all velocities and headform diameters as a 
function of the cavitation number. 



those conditions therefore has to be very important. For smaller cavitation numbers, the 

critical isobar is considerably further from the headform surface and it transpires that even 

the exterior of the bubble experiences pressures below the vapor pressure for some time, 

allowing it to grow in the direction normal to the headform surface. The cavitation 

inception number for the 5.08cm headform is around 0.55 . Therefore all the bubbles we 

have observed on this headform are quite hemispherical since the Cp=-o isobar is far from 

the surface at this cavitation number. We note that even in this case the pressure gradient 

normal to the surface remains much larger than that parallel to the surface (figure A. 1) and 

the bubble height 6, in the direction normal to the headform surface, will decay faster than 

its base radius R in the collapse phase. Therefore, for any cavitating condition, the 

sphericity of a bubble will always decrease towards the collapse phase. Also presented on 

this figure is the result of the bubble radius calculated using the single source model. 

Measurements of the non-dimensional location of bubble collapse as represented 

by x,=XJD are presented in figure C.20 and exhibit a clear dependence on cavitation 

number with little dependence on the body diameter or the free-stream velocity. The 

Rayleigh-Plesset calculations provided similar results and the location of collapse is in fair 

agreement with the observations for high cavitation numbers. We note that as soon as the 

attached cavities appear for low cavitation numbers, the pressure distribution is modified 

and the bubbles tend to merge into these cavities at locations further upstream making 

these measurements more difficult. 

The influence of the Reynolds number on the non-dimensional attachment location 

of cavitation x,=XJD is shown in figure C.21. The data in that figure include 

measurements made on all three headforms and all cavitation numbers. 

The attachment position appears to be the same for both trailing tails on traveling 

bubbles, for the leading edge of transient patches or for the separation of attached cavities. 

We note that this location is mostly Reynolds number dependent, and is affected very little 

by the cavitation number. 



Figure C.20 Dimensionless bubble collapse location, x, 
The data are shown for all velocities and headform diameters as a function of 
the cavitation number. Also included are the theoretical radius calculations 
based on the Rayleigh-Plesset theory. 
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Figure C.21 Attachment point coordinate along the x axis 
Data show measurements for all cavitation numbers and headform diameters as 
a function of the Reynolds number. 
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Figure C.22 Average void fraction area over the nose of the headform 
Data show measurements for all velocities and headform diameters as a 
function of the cavitation number. 



As the cavitation number is reduced, the number of cavitating bubbles appearing 

on the surface in a still photograph increases. The fraction of the surface in the low 

pressure region which is covered by bubbles was estimated from the pictures and plotted 

against o in figure C.22. Note that the increase in the void fraction at lower o is mostly 

due to the presence of patches and attached cavities; bubbles do not contribute 

significantly to this void fraction. Examining this graph, we see that the void fraction 

increases with headform diameter. Clearly this void fraction depends on the cavitation 

nuclei number distribution in the incoming stream. We should address the possible 

reasons for the trend toward an increasing number of patches or extent of attached 

cavitation for larger headforms and lower velocities. While the explanation is not at all 

conclusive, it seems reasonable to suggest that this trend is related to the boundary layer 

thickness in the region in which cavity attachment may occur. If attachment were related 

to the ratio of the boundary layer thickness (proportional to (DIU)112) to the size of a 

typical roughness (about the same for all headfonns) then this might explain the observed 

trends. 

C.4.6 Cavitation noise 

For a range of cavitation numbers between inception and a value at which the 

cavitation patches persisted, it was possible to identify w i t h  the hydrophone output the 

signal produced by each individual bubble collapse. In order to isolate individual bubble 

signals it was found necessary to digitally high-pass filter the signals using a cut-off 

frequency of 5kHz in order to reduce the effect of vibration and noise caused by cavitation 

at the top of the supporting strut. This filtering did not, however, substantially effect the 

results. The processing ampMier gain response was calibrated and applied to the results. 

The noise from the cavitation was analyzed in several ways. We present first a spectral 

analysis which is the traditional approach normally taken toward cavitation noise. 



However more fundamental information can be gained from an analysis of the pressure 

pulses produced by individual cavitation events as will be described later. 

C.4.6.a Spectral analysis 

FFT analyses of the signals from individual events were performed for different 

cavitation conditions for Nyquist frequencies up to 5OOkHz. In order to compare the 

shape of the Power Spectral Density for different cavitating conditions the values have 

been non-dimensionalized by the number of sampled points, N, multiplied by the mean 
- 

squared power amplitude, PSD , where 
i=N/2-1 

PSD = - c2(f,) + cz(fW2) + 2 c2(fi) . 
N~ - ' I  i=l I 

The dimensionless PSD curves are presented in figure C.23 and consist of data averaged 

over several cavitation events, 

First we notice that, for all headforms and tests conditions, the measured spectral 

shape varies little with the operating condition and cavitation number as was reported by 

Arakeri and Shanmuganathan (1985). Most of the data represented here was taken close 

to inception. The influence of the hydrophone cutoff frequency above 80kHz can be 

observed in all signals. The measured decay between lkHz and 80kHz in the present data 

appears roughly constant, with a value of about -22dBldec for all conditions. This value is 

similar to the value of -24dBldec (or f-6/5) obtained earlier by Kumar and Brennen (1992) 

and by Ceccio and Brennen (1991,1992) in the Caltech Low Turbulence Water Tunnel. 

By way of comparison we note that the spectra obtained by Blake et al. (1977) for 

cavitation on a hydrofoil show a comparable frequency dependence of -2OdBldec (or f-l), 

though there is also a consistent dip in their spectra at 10kHz. Arakeri and 

Shanmuganathan (1985) have presented data with a similar frequency dependence though 

the slope also increases from about -12dBldec (or f-3/5) to -30dBldec (or f-312) as the 

bubble interactions increase. None of this data is very close to the value of -8dBldec 
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Figure C.23 Averaged dimensionless power spectral density signals 

Data presented for the 50.8cm headform diameter and 30% dissolved air. 

U,  =9m/s, 0=0.66; U,  =11.5m/s, 0=0.64; 
------------ U, =15m/s, 0=0.61. 
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Figure C.24 Average power spectral density slope decay [dB/dec] 
The decay has been measured between IkHz and 80kHz. Measurements for 
difSerent headform diameters and velocities as a jiinction of the cavitation 
number. 



which Fitzpatrick and Strasberg (1956) predicted for the range 10 to 100kHz based on a 

Rayleigh-Plesset analysis. Taking fluid compressibility into account yields decays as low 

as -4OdBldec (f-2) for the very high frequencies (around 100kHz and up), but these 

frequencies are beyond the capability of the hydrophone used in the present experiments. 

Measurement of the frequency decay as a function of the cavitation number for 

different cavitating conditions is shown in figure C.24. We observe that this slope seems 

to decrease as the cavitation number value is reduced below 0.6. For some cavitation 

conditions the slope can be as low as -35dBldec. This change is consistent with the 

effects of bubble interactions observed by Arakeri and Shanmuganathan (1985). It 

appears as though increasing bubble interactions destroy the coherent structure of the 

pressure fronts, thus reducing their high frequency content. 

C.4.6.b Acoustic pressure pulses 

As described in chapter B in equation B.17, the amplitudes of the acoustic pressure 

pulses were measured by defining the impulse, I, as the integral of the pressure time 

history from the beginning of the collapse pulse to the moment when the pressure returns 

to its mean value. Since the impulse varies inversely with the distance of the hydrophone 

from the noise source, we formed a dimensionless impulse, i,,,, in equation B.22 by 

dividing the impulse recorded by the inner hydrophone by the headform radius, the free- 

stream velocity and the fluid density as indicated by the Rayleigh-Plesset analysis. We also 

defined a unit impulse in equation B.23 as the impulse one would measure at a unit 

distance from the cavitation noise source. The hydrophone output for each of the 

experimental conditions was examined in order to identify at least 40 of the larger pulses 

associated with a bubble collapse. The average values of the impulses obtained in this way 

are plotted against cavitation number in figure C.25 and C.26. All these points were taken 

for a 30% dissolved air content. 
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Figure C.25 Average acoustic impulse, ice,,,,,, and impulse duration 
The average dimensionless maximum center impulse, ice,,,, and the impulse 
duration tw [ps] are presented for all three headforms and all flow velocities as 
a function of the cavitation number, 
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Figure C.26 Average acoustic impulse, i,, 
The average dimensionless maximum unit impulse, i,,, and the standard 
deviation of that impulse are presented for all three headforms and all $ow 
velocities as a function of the cavitation number. 



We observe that the dimensionless center impulse increases with lower cavitation 

numbers as is expected. Comparing the value of these impulses with the theoretical values 

presented in figure B.3 we notice that they are substantially lower (by almost two orders 

of magnitude). The complexity of the fluid dynamics involved during the collapse of real 

bubbles (viscous shearing, interaction with headform, interaction with other bubbles ...) 

therefore appear to result in a smaller impulse than for the ideal spherical case. We have 

to note that the discrepancy also certainly comes in large part from the poor frequency 

response of the hydrophone above 100kHz, and from the high-pass filtering that was 

required to "clean" the signals. Even with these Limitations, valuable information can be 

gained by comparing the different impulses with one another. 

If we compare the unit impulse for all three headforms we observe that it is the 

same order of magnitude. This impulse calculation might therefore be more suitable to 

model the scaling effects. We observe that it initially increases as the cavitation number is  

decreased below inception. However most of the data also indicates that the unit impulse 

ceases to increase and, in fact, decreases when o is decreased below a certain value 

(ope& = 0.43, 0.50 and 0.62 for the 5.08cm, 25.4cm and 50.8cm diameter headform). 

The decrease at low cavitation numbers might be caused by the increasing presence of 

attached cavitation patches, damping the bubble collapse mechanism. The conditions at 

which the impulses are maximum seem to correspond well to circumstances in which the 

cavities cover about 20% of the surface area of the headform in the neighborhood of the 

minimum pressure point. Higher void fractions increase the interactions between the 

bubbles and the patches and considerably reduce the acoustic impulse. Such an effect was 

previously reported by Arakeri and Shanmuganathan (1985) who noticed strong 

interaction effects for void fraction values larger than 25%. The location of the peaks 

appears to be somewhat shifted towards higher cavitation numbers for lower velocities. 

This trend is consistent with the previous observations from figure C.22 of the average 



void fraction over the headform at constant cavitation numbers, which exhibited an 

increase with a decrease in velocity. 

The unit impulse standard deviation also shown in figure C.25 is substantial, 

around 40% of the average value. Therefore for identical cavitation conditions the 

cavitation noise may vary considerably from one event to another. The dimensional 

duration of the impulse tw, presented in figure C.25, reveals a cavitation number 

dependence similar to that observed for the impulse. It appears to be of the sane order of 

magnitude for all velocities and diameters. Examining this data it should be recalled that 

the typical response time of the hydrophone is about 3ps and is not negligible compared 

with the measured duration, 

In summary, we fmd that the acoustic impulse produced by a single bubble 

collapse, while exhibiting considerable variability, nevertheless scales with headform size 

and tunnel velocity in the way which is expected on the basis of the Rayleigh-Plesset 

analysis. Moreover, when the bubble concentration exceeds a certain value the noise from 

individual events becomes attenuated. Because of this attenuation a unit impulse scaling 

has been shown to be more suitable for comparing the signals from different headfonn 

sizes. 

C.4.6.c Electrode signal analysis 

When a bubble is located over a particular electrode, denoted by the index "i", it 

modifies the water electrical impedance in its vicinity which eventually yields a voltage 

signal vi(t), from that electrode. Figure C.27 presents an example of the signals over the 

50.8cm diameter headform from the first and second patch electrodes (located at axial 

distances of 5.08 and 7.62cm from the headform stagnation point). The corresponding 

noise signal is plotted on the same figure, time shifted by 1 7 0 ~ s  whch corresponds to the 

time necessary for the acoustic noise to travel from the headform surface to the 



Figure C.27 Electrode and the corresponding acoustic noise signals 
The electrode signals from upstream patch electrodes 1 and 2 and the 
corresponding acoustic noise signals are shown simultaneously. The signals 
plotted correspond to the bubbles presented in photographs C. 17. b and C. 17.d. 



hydrophone. The signals from an unsheared bubble (seen in photograph C. 17.b) and from 

a sheared bubble developing attached streaks (seen in photograph C.17.d) are contrasted 

in this figure. 

Analyses of these electrode signals sheds additional light on the mechanism of the 

bubble collapse. Sheared bubbles produce much longer electrode signals. Moreover, the 

trace from the first electrode will vanish before that from the second electrode, indicating 

that the collapse mechanism always proceeds in a downstream direction. Whether the 

cavity disappears by collapsing on the headform itself or detaches and is convected away 

by the flow is unclear. The time interval between the ends of the two electrode signals is 

often comparable to that measured for the case of unsheared traveling bubbles. This might 

suggest that the leading edge of the patch detaches first and the cavity is convected away 

by the flow. 

The typical time during which a bubble covers an electrode is given by 
t= end of signal 

max 
t=O 

and can be written in dimensionless form by defining an electrode signal duration 

parameter yi=xiU,ID. Clearly a bubble with attached streaks or patches will yield 

substantially larger yi values than single unattached bubbles. Therefore yi provides a 

valuable indicator of the type of event which has occurred. The global coverage 

parameter y groups the electrode duration parameters of the first two upstream patch 

electrodes and is defined as 

Non-sheared bubbles have all been observed to have coverage parameters typically less 

than 0.01. 

For single traveling bubbles, the duration parameters over the first and the second 

upstream patch electrode are strongly correlated. Figure C.28 represents a plot of y 



Figure C.28 Dimensionless electrode signal duration 
Presented here are the durations on the first and second upstream electrodes 
(located at axial coordinates xl=O.l and x2=0.15). Data show measurements 
for variousfiow velocities and cavitation numbers. 



versus the dimensionless electrode duration for the first electrode, yl, for a wide range of 

cavitation numbers and velocities. Clearly there exists a strong correlation between both 

electrode durations y1 and y2. It follows that a long (or short) duration at the first 

electrode leads to a long (or short) duration at the second electrode. Therefore we may 

conclude from figure C.28 that trailing streaks or tails (which cause larger duration) only 

appear very early in the bubble evolution and that, if they do not appear, the bubble will 

continue without a tail for the rest of its lifetime. This conclusion was also reached from 

studies of photographs and video observations. Note that the above implies that the 

leading edges of the attached patches are always upstream of the first electrode. 

The instant at which a bubble passes over the electrode "i" is denoted by ti and 

may be defined by the quantity 
t= end of signal t= end of signal 

ti = J vi / tl:i (t)dt. 
t=O 

Then the non-dirnensional interval (or bubble travel time) between the signals from 

electrodes 1 and 2 can be thus defined as 

Data about this quantity are presented in figure C.29. For all conditions we see that the 

non-dimensional interval is concentrated around a value of Az=0.043. Panel method 

calculations of the non-dimensional travel time along a streamline between electrode 1 and 

electrode 2 yield an exactly identical value of Az=0.043 for the streamline closest to the 

headform. This travel time increases only slightly as the streamline is located further from 

the headform. From the photographs we estimated that a typical non-dirnensional bubble 

thickness for cavitation numbers around 0.65 is about 6=0.01 and the potential flow travel 

time for streamlines located at that distance above the headform surface is Az=0.044. The 

agreement between the measured travel time for non-sheared bubbles (represented by y 



Figure C.29 Travel time between the two first electrodes 
Non-dimensional electrode peak interval, AT, for various flow velocities and 
cavitation numbers. 



values less than 0.01) and the potential flow calculation thus indicates that there is no slip 

between the bubble and the inviscid flow outside the boundary layer. The bubbles appear 

to ride over the boundary layer and travel at the same velocity as the outer flow. 

For y coverage parameters less than 0.005 which correspond to the smallest 

bubbles at the highest cavitation numbers (o 2 0.70) some scatter can be observed. For 

those conditions photographs indicate that many bubbles collapse before they reach the 

second electrode. The signals measured on the second electrode may therefore be 

generated by rebounded bubbles. At the other extreme the large values of y (>0.01) 

correspond to long sheared bubbles with tails attaching to the headform surface. Note 

from figure C.29 that the scatter in AT increases significantly with y and that there is a 

trend toward greater travel times indicating that the bubble velocity is slower than that of 

the flow outside the boundary layer. This is consistent with part of the bubble being 

within the boundary layer. Part of the reason also originates from the difficulty to pinpoint 

a precise bubble passage instant for these conditions. 

Since the electrodes and the hydrophone signals were recorded simultaneously, it 

is possible to correlate the acoustic output of each event with the y value for that event in 

order to explore the effect of bubble attachment on the noise. Figure C.30 presents the 

coverage parameter y as a function of the unit acoustic impulse, init, for the 50.8cm 

headform at 30% dissolved oxygen content. Most of the data is confined to cavitation 

numbers close to inception (low event rates) in order to ensure no overlap between events. 

This figure leads to several conclusions. First we focus on the data on the left- 

hand side for values of y less than 0.01. These correspond to unattached bubbles with the 

smallest bubbles having the smallest values of y. In this regime the impulse increases with 

increasing y (i.e., decreasing cavitation ilumbers and increasing bubble size) as previously 

suggested by many authors, for example Fitzpatrick and Strasberg (1956) and Hamilton et 

al. (1982). The data here clearly exhibit an upper bound or envelope on the impulse. 
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Figure C.30 Unit acoustic impulse, id,, as a function of y 
The data is presented for the 50.8cm headform diameter, for electrode signal 
coverage parameters, y, ranging from 0.001 to 0.1. Data show measurements 
for various flow velocities and cavitation numbers. 



Ceccio and Brennen (1989, 1991) also demonstrated that the impulse may be much 

smaller than this maximum. Vogel et ul. (1989) have also reported that the cavitation 

noise increases for the case of unsheared bubbles as the ratio of the maximum bubble 

radius to the distance to the headform increases. The present data adds to these earlier 

studies in that it shows a clear decline in the impulse when the value of y exceeds about 

0.02. These y values correspond to bubbles which have attached streaks and patches and 

it is apparent that this results in a decrease in the impulse associated with the collapse of 

these events. The largest coverage parameters, y, correspond to the lowest cavitation 

numbers and thus to the largest patch cavities. The reduction in cavitation noise for these 

types of events can probably be attributed to the fact that the collapse is much less 

coherent, producing high pressure nodes which are much smaller in magnitude. 



D. UNSTEADY 3-D BUBBLE DYNAMICS MODEL 

"For every problem there is one solution 
which is simple, neat and wrong. " 

H.L. Menckel 

D.l INTRODUCTION 

The purpose of the following method is to model the three dimensional dynamics 

of the growth and collapse of bubbles as they travel through the low pressure region in a 

nominally steady flow. Several studies have attempted to model the geometry of 

collapsing bubbles in simple quiescent flows such as a bubble in the vicinity of a solid wall, 

or a group of bubbles placed in a symmetric pattern, or a bubble placed in the vicinity of a 

vortex core (G. Chahine et al., 1993). The method presented here takes into account the 

presence of a pressure gradient in the flow over an axisymmetric headform and observes 

the deformations that occur in the shape of the bubble. The numerical model is unsteady, 

three dimensional and inviscid. The shearing and vorticity resulting from the interactions 

with the boundary layer have been omitted. The method therefore models the type of 

traveling bubble that has been observed to grow outside the boundary layer and does not 

seem to be too affected by its presence. The attached trailing streaks seen in the wake of 

some of the bubbles are not modeled here. 

A solution to the non-cavitating steady potential flow over the headform may be 

found using a classical panel method approach (Kellogg, 1953, Kuethe and Chow, 1986). 

The three-dimensionality of the bubbles observed in the LCC experiments indicates that a 

large number of three-dimensional panels meshed on the surface of the traveling bubble 

would be necessary to model the dynamics of the flow accurately. Such a method has 

been developed by Chahine (1977) in which several boundary elements are distributed on 

the surface of the bubble. The computational time and memory required to solve such a 



complex model is very large and limits the solution to a small number of bubbles with a 

small number of mesh points and simple flow cases. 

This present work demonstrates that it is, in fact, possible to model the dynamics 

of the bubble using a single traveling three-dimensional source whose intensity and 

position will be determined by averaged conditions on the bubble surface. The 

deformation of the bubble surface will be entirely determined by the axisymmetric velocity 

flow field over the headform on which is superimposed the traveling variable intensity 

source representing the bubble. An image source of identical strength is added inside the 

headform and travels along with the bubble source. Its position is at all times 

symmetrically located with respect to the headform surface. This source is added to 

ensure "smoother" conditions for the zero normal velocity conditions on the headform. 

D.2 DESCRIPTION OF NUMERICAL METHOD 

D.2.1 Potential flow over axisymmetric headform 

D.2.1.a Potential ring panel method 

For the incompressible and irrotational flow considered here, a velocity potential cp 

may be defined such that 

v2cp = 0. 

Due to the linear nature of Laplace's equation we can apply the principle of superposition 

in order to model the flow field for complex geometries. The potential flow around an 

axisymmetric headform may be modeled by the superposition of a uniform free-stream 

velocity U, and a series of ring sources distributed over the surface of the headform. The 

intensity of these rings is uniform over their circumference. For the present case of the 

flow over a Schiebe headform, the density distribution of the panel rings has been 

increased in the low pressure region on the surface of the headform as shown in 

figure D. 1. 
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Figure D.l Distribution of ring panels on the surface of the Schiebe 
headform 
This figure shows the location of the Np panels on the headform surface and 
their increased concentration near the low pressure region. The total number of 
panels, N,, has been set to 93. 



For the purpose of simplifying calculations each ring source has a uniform intensity 

distribution per unit surface, Mi [mls]. A normalized panel intensity, pi, may be defined 

using the free-stream velocity : pi=Mi/U,. The potential flow theory allows us to 

calculate the induced velocity of each ring panel at any point in the flow field. 

Superposition further allows us to add the contribution of each panel to determine the 

flow over the complete headform. 

In order to fmd the induced velocity of the ith ring panel at the point C we need to 

integrate the potential over both the entire width and circumference of the ring. Consider 

a source ring of thickness dx and radius R (which can be visualized as a ciscular wire) with 

a total intensity 2nRpidx as shown in figure D.2. The integration of the induced potential 

over the entire circumference of the wire proceeds as follows. The induced potential of 

the wire at the point C is 

~ i d x  dpi = f 4 s  (D.2) 
a 

where a is the distance from the control point C to the point on the ring represented by the 

angle 8 with respect to the vertical axis and can be written as 

a2 = ~ ~ + R ~ + ( X , - - X ) ~ - ~ ~ ~ R C O ~ ~ .  (D.3) 

The induced axial and radial velocity components are derived from the potential pi as 

Due to the symmetrical nature of the problem we need only integrate the potential 

equation D.2 over half of the wire so that 

X, - X  
dv, = - 2 ~ p ~ d x j  d8. , I/I; + R2 + (xC - x)' - 2rCRcos 8 



Figure D.2 Schematic of the ring panel induced velocity at the control 
point C 
This figure shows the layout of the irk ring panel and the variables used to 
integrate the potential and velocityfield at the point C. 



The radial velocity term dv,, may be rewritten as 

Furthermore, Kellogg (1953) has shown that it is possible to solve these equations in 

terms of elliptic integrals by defining the quantities pZ = (r, + R)' + (x, - x ) ~  and 

2 q2 = (I, - R)' + (x,. - x ) ~  and letting q = 1 -92 . We thus find that 
p2 

whereE q,- is the complete elliptic integral of the first kind. Similarly we can write i :I 
that 
7C de 2 de 

/ d r c 2 + R 2 + ( x c - ~ ) 2 - Z b R ~ ~ B  

is the complete elliptic integral of the second kind. Thus we find the 

following expressions for the potentia1 and velocity fields in terms of the complete elliptic 

integrals 

d ~ ,  = 
P 

-4Rpidx (x, - X) 
dv, = 

dvri = 
'CP 

Expressions for the complete elliptic integrals can be found using Hastings' 

approximations 



In order to fmd the total potential and velocity vector components at the control 

point C due to the ring panel "i" we stdl need to integrate the wire over the width of the 

panel. Since we assume that the intensity of the source is uniform on the panel we can 

write 

In the present calculations, these integrals were evaluated numerically using Simpson's rule 

of integration. 

D.2.1.b Establishment of a linear system 

In order to find the flow at the control point C induced by the entire headform, we 

superimpose the influence of each of the ring panels, as well as the uniform flow, U_, in 

the direction of the x axis. The dimensionless equations for the uniform stream can be 

simply written as 

For simplicity we extract from equation D.8 the following potential and velocity influence 

coefficients for the i& panel at the point C. 



These integral coefficients were numesically evaluated for each of the N, panels. By 

superposition, the potential and velocities at the point C are given by 

(D. 11) 

D.2.l.c Resolution of the linear system 

Our system consists of the Np source strengths pi as unknowns. These are 

detemined so that the boundary condition of zero normal velocity on the surface of the 

headform is satisfied. To this effect we establish N, linearly independent conditions to 

obtain a closed system. The Np zero nomal velocity boundary conditions are chosen at 

the center of each sing panel. Consider j to be the control point for the boundary 

condition located in the middle of the i~ panel, as shown in figure D.3. 

The same set of equations is applied to calculate the velocity at the control point j. 

In doing so, though, we must take into account the fact that the point j is located on the 

panel singularity itself. Indeed we need to exclude the immediate vicinity of the point j 

when we use Simpson's integration to integrate over the width of the jh panel in order to 

calculate the self-influence coefficients AjTj, Ajxj and Ajj. The boundary condition requires 

that 

~ r n - 1  1 j = (I (D.12) 

which can be written as 

vJ,cosaj-v3,sinaj = O  



Figure D.3 Schematic illustrating the zero normal velocity condition 
The ring panels are represented b y  the indices "in. The zero normal velocity 
conditions are imposed at the control points denoted b y  the indices "j" located 
at the center of the panels. 



where 

Therefore 

x p ~ i p i  - tan a, - x p ~ i i p i  = tan a,. 

Therefore, the N, linear equations which must be solved can be written in matrix form as 

Aijpi = t j  (D.16) 

where A,j = tan aj and tj  = tan a j .  

The algorithm employs a standard successive orthogonalization method to solve this set of 

linear equations . This has the advantage of only requiring one additional dummy vector 

of sire ~ ; / 4 .  

D.2.2 Unsteady three dimensional source 

In order to model the dynamics of the individual traveling bubble, a three 

dimensional source is placed in the oncorning uniform stream. A corresponding image 

source is located inside the headform, at the same distance from the headforin surface as 

the original source. The intensity of the image source is identical to that of the original 

source at all times, thus ensuring that the combined effect of both sources on the velocity 

at the headform surface approximately cancels out. The intensity and exact position of the 

source as a function of time is determined by the conditions on the surface of the bubble 

and is discussed later. 

The effect of a three dimensional source of strength Q on the potential and velocity 

flow field is as follows 



(D. 17) 

where a, is the distance of the control point C from the source Q and can be written as 

2 2 2 2 a, =d (xc -xq )  +(rCcos0,-rq) +re sin 0, .  

The source strength Q represents the dimensionless volumetric rate of fluid emitted by the 

source 

(D. 19) 

where V and v are the dimensional and dimensionless bubble volumes. Later we compare 

the value of the source strength Q to the sum of the strengths of the N, ring panels 
i=N, 

distributed on the headform's surface, QhaaOnn = x y i .  From potential flow theory we 
i=l 

can show that the overall volumetric flow rate necessary to generate an infinite body of 
dV n 

diameter D is - = -u,D~. Thus the dimensionless headform source strength is 
dt 4 

We will see later that the source strength required to model the traveling cavitation bubble 

is always substantially less than this value of d4. In order to take into account the effect 

of the traveling bubble source and its image source on the zero normal velocity boundary 

condition, we need to add one term in the linear system previously defined by equation D 

.16. We compute the normal velocity condition only in the plane containing the source 

and image source (i.e., where 0,=0). The consequences of this will be analyzed later in the 

code validation section. The linear system is now written as 
i=N 

j xp - tan aj . A',) pi = (1 + vlQ (o + vjQ (TI) tan aj - v$ (TI - vxg (TI (D.21) 
i=l 



where the subscript Q denotes bubble source terms and 0 denotes image source terms. 

Therefore only the right-hand side vector term needs to be changed in our Np system of 

equations. The matrix equation becomes 

A+. = t' . 
4 1  3 (D.22) 

where, as before 

A, = A!, -A!, . tan a,.  J 

but the vector on the right hand side is now 

t t j  = (~+v' ,( , )+vj-(~))t~ IQ aj -v!,(~) - v : ~ ~ T ) .  

We will see later that the Influence of these additional terms is small and they can 

therefore be neglected in the solution of the flow field. Indeed, the combined effect of the 

source, Q, and the image source, 0 ,  on the normal velocity is small over the entire 

headform. Neglecting these terms, we may therefore simply use equation D.16 and thus 

avoid having to solve this N, system of equations for every time step, that is for every 

different source position and strength Q. The computational time can therefore be greatly 

reduced since the linear system needs to be solved just once at the beginning of the 

program. 

D.2.3 Bubble growth and collapse algorithm 

Initially the algorithm assumes a stable spherical nucleus of radius R, in equilibrium 

in the oncoming uniform flow. The initial position of the nucleus, x, and rqo, may be 

chosen as desired. In order to reduce computational time in the early nucleus growth 

phase, the algorithm is effectively started only when the nucleus becomes explosively 

unstable. Until then the nucleus is assumed to follow a streamline and remain in a stable 

spherical equlbrium state, with a radius equal to the equilibrium radius re given by 

equation B.4. The unsteady bubble growth algorithm starts when the nucleus becomes 

neutrally stable and reaches the critical pressure condition according to equations B.5 

and B.6. 



After the nucleus becomes unstable, the source position x,(z), r,(z) and strength 

Q(z) need to be computed for each time step, z. The source displacement is also modified 

from the simple displacement along a streamline in a manner described below. These 

quantities, xq(z), rq(z) and Q(z), then determine the pressure and velocity field for the time 

z. During each time step, the velocity vectors on the surface of the bubble derived from 

the potential flow are used to compute the new bubble shape and source location. This 

cycle is repeated in time. The algorithm continues to compute the bubble shape until the 

bubble has completely collapsed. 

D.2.3.a Source strength, Q(z), and position computation 

Consider the bubble shape at a particular time step z. As in the derivation of the 

Rayleigh-Plesset equation, the balance of forces acting on the surface of a growing bubble 

consists of the liquid pressure on the surface of the bubble (manifest by the Cp*,,,-i term), 

the vapor pressure (manifest by the o term) and partial pressure of the gas inside the 

bubble (manifest by the (VOIV)~ term), the surface tension (manifest by the We term) and 

the viscous normal stress (manifest by the Re term) due to the expansion of the bubble 

surface. In a dimensionless form, this balance yields 

where the index "i" indicates a local quantity at some point on the surface of the bubble. 

V, is the initial equilibrium nucleus volume and V the current bubble volume. CP*,,-~ is 

thus the local boundary pressure coefficient one expects to find on the surface of the 

bubble. 

Note that in the case of a spherical bubble we can derive from the equation of 

continuity the velocity gradient normal to the bubble surface 

avi - 2 ar - _ 
a~ r a~ 

and thus 



Furthermore, for the spherical case the momentum equation yields 

where Cp*, is the pressure coefficient in a quiescent media at an infiite distance. One 

therefore obtains the dimensionless Rayleigh-Plesset equation B.2. 

The unsteady Bernoulli equation for the pressure in a potential flow, when written 

in dimensionless form yields 

In the present circumstances, the potential flow calculations described in section D.2.2 

(including the influence of the traveling sources) provide the potential and velocity field at 

all points in the flow. The velocities v; and v: and the potential cpc induced at a point C in 

the flow are given by 

Therefore the pressure coefficient given by the unsteady Bernoulli equation is strongly 

dependent on the traveling source strength, position and rate of change in time. 

The evaluation of the source strength, Q, proceeds as follows. For each time step, 

the algorithm finds the value of the source Qi, such that the pressure coefficient, Cpi, 

calculated using equation D.29, matches the required boundary condition, Cp*,, given by 

equation D.25, so that 

cp i  = cpY. (0.31) 



Note that this computation is done locally at each point on the surface of the bubble (as 

indicated by the indices "i"). For that purpose, the surface of the bubble is discretized by 

defining N, nodes which are equidistant from one another and cover the circumference of 

the bubble in the axial plane of symmetry (8,=0). This plane of symmetry contains the 

highest pressure gradients in the flow above the headform and thus captures most of the 

dynamics of deformation of the bubble. The method could be extended to include 

additional nodes not on this plane of symmetry in order to have an even better estimate of 

the required source strength Q. For the present calculation N,,=45, as can be seen in 

figure D.4. Also note the fact that the radius of curvature of the bubble at each node is 

estimated by measuring the radius of curvature in the symmetry plane only. This 

approximation can be made since the surface tension effects are influential only when the 

radius of curvature is very small, which is the case when the bubble has an almost spherical 

shape. 

The computation of the condition D.31 at each node of the bubble surface yields 

N,, values of the source strengths Qi. In order to compute the bubble growth over the next 

time step we need to determine an average source strength Q for this particular time. For 

this purpose we use a weighted average of the N, values of Qi. The weighting term is 

chosen to give more weight to the points f~~rthest from the headform and is given by the 

normal distance, F,, of the bubble surface node "i" to the headform's surface, as shown in 

figure D.4. Therefore the averaging expression for the source is given by 

i=l 

This choice is justified by the fact that it leads to bubble pressures which are constant from 

one time step to the next. We wiU see later that the values of Qi also vary little over the 

surface of the bubble. 
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Figure D.4 Bubble discretization scheme 
The bubble is discretized using Nb=45 equidistant nodes. All the nodes are 
located on the plane of symmetry of the bubble. Also presented in this figure 
are the variables used to compute the bubble evolution. 



The next step is to displace the source in order to minimize the variation in source 

strengths, Qi, over the surface of the bubble. Indeed, experience showed that there is an 

optimum location for the source in the bubble such that the differences between the 

average source strength Q and the local ideal value Qi, are minimized over the N, bubble 

points. Naturally the image source in the headform is also displaced along with the bubble 

source. The displacement vector of the source, E , is determined in the following manner. 

From equation D.31, we find the source strength, Q ,  necessary to satisfy the pressure 

boundary condition at each point i. The algorithm then calculates the displacement, E ~ ,  of 

the source in the direction of the bubble surface node "i" (indicated in figure D.4 by the 

unit vector iiqi), such that the pressure boundary condition in equation D.31 is satisfied for 

the average source strength value Q. In other words we find the displacement of the 

source that would yield Qi=Q. In order to compute the displacement ci, two pressure 

coefficient gradients are computed. The first gradient, VQi = - , represents the change 
aQ 

in pressure coefficient on the surface of the bubble as the source strength varies. The 

second gradient, VEi = - , represents the change in pressure coefficient on the surface a& 
of the bubble as the source moves in the direction Gqi. A first-order approximation of the 

source displacement E~ can then be obtained as 

The final overall displacement vector E applied to the source is then given by averaging all 

the displacements, E ~ ,  in all the directions Fig,. It is again effective to weight the 

displacements E~ by the distance 6; of the bubble node from the headform surface. Thus, 

the final source displacement vector used is 



The process of averaging the source strength and repositioning the source is repeated until 

the values converge. Usually three iterations are necessary for convergence. 

D.2.3.b Bubble displacement and time step incrementation 

Having located the optimal source location and strength for a particular time, z, 

the computation then proceeds to the next time step. During the time increment the 

bubble is deformed and travels downstream in the following manner. From equation D.30 

the velocity at each node on the surface of the bubble is calculated. The position and 

shape of the bubble at the next time step is then given by displacing each node through a 

distance equal to the velocity vector times the time increment, AT. During this time 

increment the bubble source is also displaced along its pathline and finally the image 

source is moved accordingly. We note that the Bernoulli equation D.29 requires the 

values of the source strength and position from the previous time step in order to compute 

the unsteady inertial term, a<p/dz. 

The averaged value of the source strength, Q, is thus used to compute the 

unsteady pressure field and the deformation of the bubble surface during each time step. 

We note, though, that this averaging can create some instabilities on the bubble surface, 

particularly during the collapse phase. The use of an average source strength does not 

correct for local errors in the surface location. Some error instabilities are caused by the 

fact that the velocity vector induced by the source increases inversely with the square of 

the distance from the source,?,, ~ 1 2 : ~ .  To some extent, the bubble displacement 

algorithm tends to correct errors in the node location and to stabilize itself during the 

growth phase (Q>O). Nodes located too close to the source will automatically generate 

larger outward velocities and are thus displaced further from the source. However, during 

the collapse phase (Q<O), a node on the bubble surface located too close to the source will 

tend to generate a larger inward velocity. Thus this surface distortion will increase during 

each time step. These instabilities are thus prone to generate reentrant jets. 



Reentrant jet instabilities on the bubble surface during collapse have been widely 

studied, particularly in the case of non-symmetrical flow configurations. Benjamin and 

Ellis (1966) f i s t  observed such jets experimentally in the case of bubbles in the presence 

of a nearby solid wall boundary. Later Plesset and Chapman (1971) studied the formation 

of these reentrant jets theoretically. Additional studies by Duncan and Zhang (199 1) have 

shown the effect of compliant walls of different stiffness. They have shown that the 

direction and intensity of the jet are dependent on the stiffness of the bounda~y. The 

collapse of a bubble near a free surface has been shown to develop reentrant jets directed 

away from the free surface (Cbahine 1977). It is important to note, though, that the 

present algorithm generates instabilities on some nodes of the surface that are not caused 

by real hydrodynamic instabilities. These reentrant jets are due to a suction of the source 

on these nodes located too close to the source. The pressure coefficient field does not 

exhibit the reentrant jet-like depression that one would expect if these jets had a physical 

meaning. The dynamic pressure boundary condition on the surface of these nodes 

(equation D.31) is therefore not satisfied and we can thus conclude that this jet formation 

is erroneous. In order to counter such error instabilities the calculation of the 

displacement of the bubble surface needs to include some corrective terms in addition to 

the simple velocity displacement described previously. The purpose for these corrections 

is to reposition the unstable bubble surface points closer to the required boundary 

condition of equation D.3 1. 

The unstable bubble surface nodes requiring such corrective terms may be 

identified as those exhibiting "adverse conditions". For the growth case (Q>O) an adverse 

condition may be defined by a node requiring a slower growth rate than the average 

source strength Qi < Q. For the collapse case (Q<O) adverse conditions may be defined as 

requiring a slower collapse rate than the average source strength Qi > Q. We may 

generalize these two cases by stating that adverse conditions occur when the relative 

difference between the average source, Q, and the local source intensity, Qi, is larger than 



some chosen fractional value k: (Q -Qi) > k .  For the present calculations k has been set 
Q 

to k=lO4. The stabilizing method applied at these node points takes the form of source 

strength corrections. For the velocity displacement calculation at these points, a corrected 

source strength, Q,,ect,d-i, is used in place of the average source strength Q. A first-order 

approximation using the same pressure coefficient gradients as in equation D.33 is used to 

compute this corrected source and is expressed in the following equation 

We note that, without the influence of the image source, this correction would displace the 

surface node "i" by an additional value ei in the direction of the unit vector fiQ. 

The time increment, AT, used has to be adapted during the growth or collapse 

phase of the bubble. Two important factors need to be taken into account in determining 

its value: 

I)  The source displacement per time step should not exceed a fraction k of the bubble size. 

This is particularly important when we consider that the computation of the unsteady 
acp pressure term in the Bernoulli equation D.31, -, requires the computation of a fiilite a~ 

difference using values of the source location at two successive time steps. This condition 

may be expressed as 

where r,, is the average radius of the bubble and vqx and v, are the velocities used for the 

displacement of the sonrce. 

2) The volume change of the bubble per time step should not exceed a fraction, k, of the 

bubble volume. This condition becomes crucial when the bubble volume is small, 

particularly during the final phase of the collapse. We may express this condition as 



Experience indicated that preferred values of both of the k factors were about 0.05. The 

time step used in the algorithm corresponds to the more restrictive of the two conditions. 

Even though the presence of the image source inside the headform should 

minimize the normal velocity on the surface of the headform, it is good practice to check 

and see whether any of the nodes on the bubble surface have entered the headform during 

the time incrementation procedure. Indeed the underside of the bubble is located 

extremely close to the headform surface and numerical errors may cause some points to 

actually penetrate the headform. For the same reason it is wise to check that the source 

location does not come too close to the surface of the bubble (especially during the phase 

of the bubble growth when the source is strongly attracted to the headform). Finally, 

because of the deformation of the bubble, it is necessary to redefine the N,, nodes on the 

surface of the bubble at each time step to ensure that they are equidistant from one 

another. All of these steps may be summarized in the flow chart of figure D.5. 



Initial spherical nuclei r, 
located upstream of headform 

Compute the non cavltatlng 
potentla1 flow field around 

the headform: 
find p, for all N, panels 

Has the critical pressure NO ( been reached? 3 I 

on point i adverse? 
No>--es 

1 / 

Yes . . . . . . . . . . . . . . . . . . . . . . . . .  - - - - - - - - - - - - - - - - - -  
I  
I  : 

Use average source Q Use corrected source 
to compute surface corrected I match I 0 

velocity displacement the pressure condition I 

l - 2  

I I 
I I * 
I  I 
I 
I 
I  .------------- -- 

and headform surface 

Compute required pressure coefficient Cp*; 

+ 
discretize bubble surface into Nb 

equidistant points 
I 

Figure D.5 Program flow chart 

: ,  1 boundary condition for bubble point i: 

Illustrates the algorithm used to calculate the bubble motion and deformation 
from an initial spherical nucleus to the end of the collapse. The major outer 
loop involves the increment with time and the inner one the iterations required 

I 
I 
I 

in order tojind the correct source strength and location at each time. 

requires local radius of curvature r, ,-, and 
normal velocity gradient 6vi/8r 

:; 
18 
1 u 

. 1 %  
1 3  

l  

= 
rn , 
1 

z 
5 5  > a  

I s ;g J. Y 

r- 5 

13 
I n, Source strength Q=0. : 8 Z P  Compute source local source strength Qi 1 3  

Iterate using Newton-Raphson until C P * ~  = Cpi 
I a 
I w 

4 : 8. 
I c I =. 
I 8 0 1 Compute average source strength Q I I a 

- over all Nb points 
t. a 
$ 
II Place source Q at its optimum position 
k' such that the error C P * ~  - Cpi is minimum 

1  B over the entire bubble surface : 8 
V1 I I 

e, 

g O " J  



D.3 PRESSURE PERTURBATION ANALYSIS 

In order to analyze the dynamics of a traveling bubble the following quantities need 

to be defined. The pressure coefficient perturbation, ACp, is defined as the difference 

between the unsteady pressure caused by the traveling bubble over the headfosm surface 

and the original pressure under non-cavitating conditions. 

= 'plwith bubble - cplwithout bubble ' 

Using the unsteady Bernoulli equation D.29, the pressure perturbation can also be written 

as the combined effect of a perturbation in the velocity field, ACp,, and a perturbation in 

the time derivative of the potential field, ACp,, such that 

ACp = ACp, + ACp, 

where 

ACP v = (v: + v? wi*out bubble -(': + v' )I bubble 

ACp, = - 2 2 1  
az with bubble 

Both of these effects are quite complex and generate three dimensional perturbations in 

the pressure field. We may write the cavitating velocity field as the super-position of the 

velocity field induced by the headform without cavitation and the velocity field induced 

only by the sources 

Replacing those velocities in equation 0.39 we find that 

We see that the change in the velocity related pressure coefficient perturbation, ACp,, 

consists of the product of the velocity induced by the sources and the velocity induced by 

the non-cavitating headfosm. As a first approximation we may consider the velocity field 

induced by the sources to be isotropic and to decay in a spherical manner far from the 

sources. The velocity field induced by the flow over the headform has a much more 

complex, three-dimensional structure. Therefore the product of those two velocity fields 



generates a pressure coefficient perturbation field, ACp,, which is not spherical. 

Furthermore, the pressure perturbation field due to the time derivative of the potential 

field, ACp,, is also non-isotropic. Indeed the sources change position as their strength 

varies, thus generating a preferred direction in the pressure perturbation. The addition of 

these two non-spherical pressure field perturbations in equation D.39 leads to a complex 

pressure field perturbation, ACp. The shape of this perturbation is crucial in the present 

algorithm since it eventually determines the shape of the bubble. This three-dimensionality 

is an essential feature of the dynamic boundary condition on the surface of the bubble, and 

will ultimately lead to the differences we will observe between this method and the 

spherical Rayleigh-Plesset calculations. A more detailed analysis of the shape of the 

pressure perturbation field will be described later in section D.5 where we discuss some 

results of bubble computations. 

D.4 ERROR ESTIMATION AND CODE VALIDATION 

All the figures illustrating estimates of the errors in the numerical method use the 

following typical cavitation condition: RO=lOOpm, D=50.8cm, U,=11.5m/s, 0=0.45 with 

an initial nucleus position: x,,=-1.0, r,=0.01. This condition is roughly in the middle of 

the range of the conditions calculated and thus the errors are quite representative. 

D.4.1 Normal velocity leakage into the headform 

In this paragraph we will look at the normal velocity leakage into the headfonn 

due to the presence of the traveling sources. As stated in equation D.20 the overall 

dimensionless source strength required to model the Schiebe headform is equal to n/4. 

We can see from figure D.17 that for the range of cavitation numbers tested the bubble 

source strength, Q, does not exceed a value of about 0.002. The traveling source strength 

is therefore less than 0.2% of headform strength. This small percentage, combined with 

the fact that the source is coupled to an image source of equal intensity inside the 

headform, shows how little influence the bubble has on the overall flow over the 



headform. We must note that this conclusion applies to the influence of the source on the 

velocity field but not to the influence of the source on the pressure field in the vicinity of 

the bubble, since the pressure calculation also takes into account the time derivative of the 

source strength, as manifest in equation D.29. 

D.4.1.a Small normal velocity perturbation assumption 

As mentioned previously and in paragraph D.2.2, the presence of the traveling 

source together with its image source has very little effect on the zero normal velocity 

condition on the surface of the headforrn. Therefore, the cornputation of the linear system 

D.22 does not appear to be necessary at every time step. In this paragraph we will 

attempt to quantify the error caused by not solving the zero normal velocity condition on 

the headform surface for each new source position and strength. For this purpose, the 

normal velocity on the surface of the headform has been computed in the plane of 

symmetry containing the bubble source and the axis of revolution. Figure D.6 shows the 

normal velocity divided by the tangential velocity at different times during the growth and 

collapse phases. We observe that the maximum normal velocity error is about 0.4%, thus 

validating our approximation. This small error is due to the following effects. In the 

region of the headform surface close to the bubble, where the influence due to the 

traveling source might be substantial, the normal velocity is countered by the presence of 

the image source inside the headform. The exact location of this image source with 

respect to the original source is crucial and requires careful consideration of the position, 

slope and radius of curvature of the panel distribution on the surface of the headform. For 

the headform control points further from the bubble, the source has little influence on the 

normal velocity condition since the velocity induced by the source decays as the inverse 

square of the distance from the source. 



over 0.007 

0.005 to 0.007 -0.003 to -0.001 

0.003 to 0.005 -0.005 to -0.003 

0.001 to 0.003 -0.007 to -0.005 

-0.001 to 0.001 under -0.007 

CURVILINEAR ABSCISSA, s [ - ] 

Figure D.6 Normal velocity [%I in the axial direction on the surface of the 
headform 
Calculated normal velocities divided by the tangential velocity for diferent 
locations on the surface of the headform, as indicated by the dimensionless 
curvilinear abscissa, s. 



D.4.1.b Superposition of an axisymmetric and a three-dimensional flow 

We should also quantify the error due to the superposition of a series of 

axisymmetric ring panels and a three-dimensional source. A full three-dimensional flow 

computation would require the discretization of the ring panels in the circumferential 

direction. The error introduced by not performing this discretization may be estimated by 

looking at the normal velocity distribution over the circumference of the headform. Figure 

D.7 shows the distribution of the normal velocity divided by the tangential velocity over 

the circumference of the headform. The plot shows these values for various times, ranging 

from growth to collapse conditions. The axial locations, x, at which the velocities have 

been computed around the circumference are identical to the axial positions of the 

traveling source for each time step, The angle, 0, shown is taken relative to symmetry 

plane containing the source (as shown in figure D.2). 

We can see that the maximum error is less than I%, thus validating our 

approximation. Once again, due to the decay of the velocity with the distance from the 

source, the Influence of the source appears to be only significant for angles, 0, under 30 

degrees. We conclude that this model, combining axisymmetric ring elements with an 

unsteady travelirmg three-dimensional source, is capable of modeling the three-dimensional 

geometry of the bubble. Discretization of the ring panels around their circumference is 

therefore not necessary. 

D.4.2 Pressure distribution on the surface of the bubble 

In this section we estimate the error in the computation of the shape of the bubble 

by examining the pressure distribution on the surface of the bubble as a function of time. 

This error may be quantified by contrasting the pressure coefficient on the surface of the 

bubble, Cp, given by solving the potential flow, with the pressure coefficient, Cp*, given 

by the pressure boundary condition in equation 0.25. Figure D.8 shows the difference 
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Figure D.7 Normal velocity [%I in the circumferential direction on the 
surface of the headform 
Calculated normal velocities divided by the tangent velocity for diferent 
angular positions on the surface of the headform, as indicated by the angle 0. 
The axial locations for the velocity computation are the same as the axial 
location of the source. 



between these two pressures on the exterior surface of the bubble for various times. The 

angle, 0, is defined relative to the direction normal to the headform as represented in 

figure D.4. Figure D.8 shows the pressure difference for angles, 0, between -900 to +900 

corresponding to the exterior surface of the bubble. 

We observe that, for all time steps, the difference between pressure coefficients, 

Cp-Cp*, over the exterior surface of the bubble is between 0.05 and -0.1. The condition 

on the surface pressure is thus fairly well satisfied at all times. The single source model is 

therefore able to appropriately m o d e  the original pressure field induced by the headforrn 

in the vicinity of the bubble. From the computation of equation D.25 we also know that, 

once the bubble is larger than a few times its original nucleus size, the viscous, surface 

tension and non-condensable gas content terms become small compared to the cavitation 

number term. Thus, for almost all times Cp* is roughly equal to -o and figure D.8 simply 

represents the sum Cp+o. The absolute pressure coefficient variations on surface of the 

bubble are thus less than k0.l. 

It is also possible to quantify the error in the shape of the surface of the bubble by 

examining the local source strength distribution, Qi. Figure B.9 shows the difference 

between the ideal source strength, Qi, required in order to fulfd1 the Cp=Cp* condition and 

the averaged source strength, Q, used by the model at each time increment. The 

difference presented in this figure is divided by IQI and is shown for the exterior surface 

versus time in a manner similar to figure D.8. 

We observe that the departure from the average source value Q is small, the values 

of (Qi-Q)/IQI being less than 0.01 at a l l  times. Thus a simple source comes very close to 

modeling the three dimensionality of the bubble. Naturally, the relative error becomes 

large when the source strength Q approaches zero around the time 2-3.09. Some 

important trends may be noted by comparing figures D.8 and D.9. 
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Figure D.8 Error in the pressure coefficient distribution on the surface of 
the bubble 
The plot shows the diference in pressure coejjicients Cp-Cp* for diflerent 
locations on the surface of the bubble represented by the angle 0. The range of 
angles shown covers the exterior surface of the bubble. These values are plotted 
for digerent dimensionless times during the growth and collapse phases. 
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Figure D.9 Fractional differences between the source strengths Qi and Q 
The plot shows the fractional difference, (Qi-Q)/lQl, between the ideal, Q ,  and 
average, Q, source strengths for different points on the surface of the bubble 
represented by the angle 8. These values are plotted for different dimensionless 
times during the growth and collapse phases. 



During the early bubble growth phase (2.82<~<2.95), we observe an over-pressure 

of up to Cp=0.05 on the exterior surface of the bubble. Ths  over-pressure first appears 

when the growing nucleus encounters the surface of the headform and begins to be 

compressed against it. One consequence of this can be seen in figure D.9 where the 

exterior of the bubble requires smaller source values during the growth phase (Qi is 

smaller by 0.3%). This indicates the tendency for the exterior of the bubble surface to 

come closer to the source, i.e., for the bubble to be flattened. Also the values of Qi are 

larger than the average source value Q at the leading and trailing surfaces of the bubble 

(angles around rt90°). This again indicates the tendency of the bubble to expand in a 

direction parallel to the headform surface (where the pressures are lower), thus producing 

a flattened and elongated bubble shape. 

As the bubble reaches its maximum size at 2-3.09, we see from figure D.8 that the 

leading edge of the bubble (0=90°) is subjected to a strong under-pressure (Cp<-O.Ol), 

whereas the trailing edge (0--900) is subjected to an over-pressure (Cp>0.005). The local 

source strength Qi reflects the same asymmetry (larger values at the leading edge and 

smaller values at the trailing edge), indicating that the bubble tends to continue to grow at 

the leading edge and shrrnk at the trailing edge. This phenomena is responsible for the 

wedge-like shape of the bubble that is observed during collapse. The fact that the single 

source model is not able to completely follow such complex three-dimensional bubble 

deformations and produces the errors shown in those two figures partly explains the need 

to add the corrective terms defined in equation D.35 and discussed in the following 

paragraph. 

D.4.3 Corrective displacement of the bubble surface nodes 

The importance of the corrective terms applied to the bubble surface nodes 

exhibiting adverse conditions described by equation D.35 can be estimated by comparing 

the actual volumetric rate of growth of the bubble with the average source strength Q. 



Indeed, if the corrective source strength terms, Qcomc,d-i, were non-existent, the volume 

of the bubble would simply increase by the average source strength value Q. The 

following equation would then hold 

where V is the volume of the bubble. Departures from this equation represent corrections 

to the local source strength, Q ,,,,, ,,;, that have been necessary for bubble surface to 

match the pressure boundary condition. We note that this error estimation gives us only 

an integral representation of the local corrective source strengths over the entire 

circumference of the bubble. In reality these corrective effects are applied only to a few 

nodes on the surface of the bubble. Furthermore the values of Qc,ecte,-i depend on the 

adverse condition of these nodes (as defined in paragraph D.2.3). These nodes may be 

identified by examining the regions where the conditions are adverse in figure D.9. 

Because of the three dimensionality of the bubble shape, the actual volume of the 

bubble is hard to estimate. It is possible though, to compute the bubble surface area, S, in 

the plane of symmetry. If we assume that the bubble has roughly a hemispherical cap 

shape of base radius rc,, the bubble volume would be V = 2/3nr&,. Furthermore the 

surface area of the cap in the plane of symmetry would be given by S = 112 nr&. Thus the 

volume of the bubble may be estimated as 

Figure D. 10 plots the variation of the volume of the bubble based on this estimate. 

Comparing figure D.10 to figure D.17 we can see that the rate of change of the 

bubble volume is less than we would anticipate by examining the average source strength, 

Q. For all the cavitation numbers shown the maximum volume deficiency is about 30%. 
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Figure D.10 Estimated volumetric rate of change of the bubble 
The estimated dimensionless rate of change of the bubble volume based on the 
surface area S in the plane of symmetry is represented as a function of time for 
a range of cavitation numbers. The discrepancy between these curves and those 
of figure 0.17 gives an indication of the correction required to match the 
pressure boundary condition on the bubble surface. 



The local corrective source terms, Qcorrected-i, therefore tend to slow the growth and 

collapse of the bubble. This is not surprising since they are only applied when the local 

conditions are adverse and therefore always decrease the magnitude of the average source 

strength, Q, yielding an overall reduction in the bubble growth or collapse rate. The 

average source strength Q thus overestimates the real bubble volume rate of change. 

When analyzing these curves, though, we need to be alert to the fact that this calculated 

volume is quite crude and probably underestimates the real bubble volume, since the 

bubbles tend to be wider in the circumferential direction than in the plane of symmetry. 

The volume deficiency value of 30% therefore overestimates the magnitude of the 

correction applied. 

D.5 RESULTS 

D.5.1 Comparison of computed bubble shapes with experiments 

A number of photographs of the profiles of traveling cavitation bubbles on a 

5.08cm diameter Schiebe headform were taken by Ceccio (1990) in the Caltech Low 

Turbulence Water Tunnel (LTWT). A large number of photographs were also taken 

during the LCC experiments but these were taken from an oblique angle as seen in figures 

C. 17.a through C. 17.m. This angle makes comparisons between the computed bubble 

shapes and those photographs more difficult. Figure D. 11 includes a comparison between 

the photographs of bubbles in the LTWT and the computed bubble shape at five different 

times. The comparison is made for the same cavitation number and roughly identical axial 

bubble location om the headfom surface. For the purpose of this comparison, the effective 

cavitation number in the experiments has been calculated taking into account the blockage 

effects due to the s m d  cross section area of the LTWT test section (At=929cm2). The 

corrected cavitation number, oh, which includes the tunnel blockage effect is given by 



where o, is the cavitation number without blockage effects, Ah is the headform frontal 

area (Al,=rD2/4) and A, is the tunnel cross-sectional area. The experimental cavitation 

number o_=0.45 presented here therefore yields a corrected cavitation number oh=0,39 

with blockage effects. Presented in figure D. 11 are the photographs of the bubble. Next 

to each photograph are superimposed at the same scale the computed bubble shape (solid 

line) and the outline of the bubble from the photograph (dashed line). The five 

photographs were taken at different times dusing the bubble lifetime. The first two dusing 

the growth phase, the third one when it has reached its maximurn size and is just starting 

to collapse and the last two during collapse. The computed values for each of these times 

are as follows 

First we observe that the program simulates a spherical cap bubble shape similar to 

that observed in the experiments. The underside of the bubble is relatively flat and 

conforms to the headform surface. Then, during the growth phase the program shows a 

compression of the cap in the direction normal to the headform. This flattening of the 

bubble appears more pronounced in the experiments than in the computation. As the 

bubble starts to collapse it produces a wedge shape similar to the experiments, with the 

leading edge of the bubble thinner than the trailing edge. Furthermore the overall bubble 
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Figure D.11 Comparison between computed bubbles and photographs 
Typical bubble shape over the Schiebe headform for 0=0.39. Next to each 
photograph is superimposed, at the same scale, the computed bubble shape 
(solid line) and the outline of the bubble from the photograph (dashed linej. 
The crosses indicate the location of the sources. 



dimensions and growth and collapse locations match the photographs remarkably well. 

Consequently the program captures many of the dynamics of the flow that determine the 

bubble shape. As previously mentioned, the largest discrepancy observed is that the 

computed bubbles do not appear as elongated as in the experiments, particularly for higher 

cavitation numbers. This limitation seems to be inherent in the single source model. Also 

the program does not produce the dimple that has been observed on the exterior surface of 

the bubble, but does point out the possible cause of its formation as will be discussed later. 

A more extensive analysis of the bubble shape computation in time is presented in figures 

D. 12 for a cavitation number 0=0.45. 

D.5.2 Typical bubble growth and collapse 

Figures D.12.1 through D.12.20 present the time history of a typical bubble 

growth and collapse for the following conditions: R,=lOOpm, D=50.8cm, U,= 1 1.5rn/s, 

0=0.45 with an initial nucleus position: x,,=- 1 .O, r,=0.01. The time increment between 

each figure is Az=0.02. The first figure is for ~=2.809 and corresponds to the time the 

nucleus reaches its critical size and becomes unstable. The presentation of the bubble 

dynamics in figure D.12 includes for each time: a) (top left) the bubble shape; b) (top 

right) the pressure coefficient, Cp, on the surface of the headform; c) (bottom left) the 

pressure coefficient perturbation, ACp, due to the presence of bubble; d) (bottom right) 

the pressure perturbation teim induced by the time derivative of the potential field, ACp,. 

Furthermore, by comparing the pressure distributions in figures (c) and figures (d) and 

using equation D.39 it is possible to estimate the influence of the velocity induced pressure 

perturbation, ACp,. The figure captions give information on the time z, the average 

source strength Q, the source location x, and rq, the pressure coefficient Cpq that would be 

experienced at the source location if no bubble were present (i.e. Q=O), the average radius 

of the bubble, rci,, based on the circumference of the bubble (r,,,= circumference/2n), and 

the average bubble surface growth or collapse velocity, vd, defined as v,,Q/r2,;,. 
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Figure D.12.1 Time, .r=2.808. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=1.20x10-10, .r q =0.042, 1-,=0335, Cp,=-0.46. r;,,=8.05~10-4, 17,,,,=0.0002. 
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figure D.12.2, Time, ~=2.828. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=4.24xl0-5 xq=0.059, r,=0.355, Cpq=-0.78, r,i,=3.93x10-3, v ,y,, ~ 0 . 2 7 4  



over 0.0 

e 
a 
a 
M 
G 

over 0.14 

- 
S % - 
Y1 

i. 

M 
C1: 

Figure D.12.3, Time, ~=2.848. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=1.81~10-5 x,=0.080, r,=0.371, Cp,=-073, r,,,=8.28~10-~, ~ ~ ~ 0 . 2 6 3  
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Figure D.12.4, Time, r=2.S68. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=3.65~10-5, rq=O.l 01, 7-,=0.384, Cp,=-0.67, r;.,,=1.22~10'. v,,,,j=0.243 
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Figure D.12.5, Time, ~=2.888. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=5.54xlU-L xq=0.123, r,=0.395, Cpq=-0.62, r,,,=1.59~10-~, v ,,,1 ~ 0 . 2 1 9  



over 0.0 over 0.14 

Figure D.12.6, Time, ~=2.908. (a) bubble shape, (b) Cp? (c) ACp, (d) ACp, 
Q=7.21~10-' ,  xq=0.145, 1.,=0.404, Cp,=-058, r,,,,=l.YlxlO-2, v,,,,,=0.197 
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Figure D.12.7, Time, ~=2.928. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q = 8 . 4 8 ~ 1 0 - ~ ,  x,=O.ltiCi, rr-,=0.412, Cpq=-0.54. i.,,,=2.19~10-~, ~ , , ~ = 0 1 7 5  
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Figure D.12.8, Time, r=2.948. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=9.29xl0-j, s,=0.187, ,-,=(/.419, Cp,=-0.50, r,,,=2.46x10-2, ~1,,~=0.153 
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F iyre  D.12.9, Time, ~=2.968. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=9.52~10-~~,=0.208,  r,=0.426, Cp,=-0.47, rc,,=2.6HxIO-2, ~ , , , ~ 0 . 1 3 2  



over 0.0 over 0.14 

Figure D.12.10, Time, ~=2.988. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=9.23~10-', x,=0.227, rq=0.431, Cp,=-0.45, ,;i,=2.86x10-2, v,,,~0.112 



over 0.0 over 0.14 

Figure D.12.11, Time, ~=3.008. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=8.35~10-j, xq=0.245. ~,=0.435. Cp,=-0.43, r ,,,, =1.02~10-', i, ~ 0 . 0 9 1 5  



over 0.0 over 0.14 

Figure D.12.12, Time, ~=3.028. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=698x105. 1,=0.264. ~,=0.439, Cp,=-0.41. ~,,,=3.13~10-', v ,,,, =0.0710 
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Figure D.12.13, Time, .r=3.048. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=5.02~10-*, xq=0.284. r.,=0.444, Cp,=-039, r.,,,=3.22~10-2, ~ , , ~ ~ 0 . 0 4 8 2  
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Figure D.12.14, Time, ~=3.068. (a) bubble shape? (b) Cp, (c) ACp, (d) ACp, 
Q=2.68~10-' ,  .r,=1)305, r-,=0.448, Cp,=-0.37, i~,,,,.=.i.28~10-~, 11,,,,=1).0248 
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Figure D.12.15, Time, t=3.089. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=-2.52~10-5 xq=0.328, r.,=0.453, Cp,=-0.35. 1,,_=3.29~10-~, v ,,,, =-0.0023 
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Figure D.12.16, Time, ~=3.109. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=-3.15~10-~,  xq=0352, i.,=0.455. Cpq=-0.33. r;,,=3.21~11)', ~,,,~=-11.0306 



over 0.0 over 0.14 

Figure D.12.17, Time, r=3.128. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp,, 
Q=-5.80~10-', ,=0.376, r,=0.459, Cp,=-0.32, r,,,=2.97~10-~, ~ , , , ~ - 0 . 0 6 5 5  
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Figure D.12.18, Time, ~=3.148. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q = - 8 . 2 7 ~  lo-', .$=0401, I-,=0.462, Cp,=-030, r,,,,=2.50~ 11 ,,,,, =-0.132 
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Figure D.12.19, Time? ~=3.168. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp, 
Q=-9 .95~10-~ ,  .r,=0.424, r,=0.466, Cp,=-0.28, r,, ,=2.04~10-~, v,,,,j=-0.237 
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Figure D.13 Pressure distribution, Cp, close to the bubble 
The conditions shown here are identical to those of figure D.12.2.b: 0=0.45, 
.r=2.828, Q=4.24~10-~ ,  xq=0.059, rq=0.355, Cpq=-0.78, rci,=3.93x10-3, 
~ ~ ~ 0 . 2 7 4 .  Thisfigure illustrates the way the isobars curve around the surface 
of the bubble indicating the Cp= -0 condition on the surface. Also shown is the 
local over-pressure on the exterior of the bubble induced during this early 
growth phase. 



The source and image source locations are also shown in Figure 0.12, as represented by 

the crosses in figures (a). A number of different phases in the life of the bubble may be 

identified from these figures. 

Figure D.12.1: 

After the nucleus encounters a low enough pressure to cause it to become unstable 

it first grows very rapidly towards the headform surface, where the pressure is lowest. If 

the nucleus is a few radii from the surface of the headform when it becomes unstable, the 

bubble is strongly deformed and becomes elongated as it grows in the direction of the 

headform. The source location relative to the center of the bubble is also displaced 

towards the headform. 

Figure D.12.2: 

As the growing bubble interacts with the headform its interior surface next to the 

headform begins to flatten. The positive pressure perturbations generated in both the (c) 

and (d) figures appear quite spherical and equal in intensity at this time, indicating that the 

velocity induced pressure perturbation, ACp,, is small. The rate of increase of the source 

strength Q is greater than the effect of the source displacement per time step, explaining 

the quasi-isotropic nature of the ACp, pressure perturbation. This pressure perturbation 

translates into a local over-pressure, Cp, above the exterior surface of the bubble as can be 

seen in figure (b). Figure D.13 includes a close-up view of the Cp pressure distribution 

around the bubble. 

figures D.12.2-7: 

The local over-pressure on the exterior surface of the bubble observed in figure 

D.12.2.b remains until figure D.12.7.b at time ~ 2 . 9 3  and causes the bubble to be locally 

depressed. This local "crushing" of the bubble exterior surface is quite violent and might 

be the source of the dimple depression observed in the LCC experiments. This 

phenomenon can also be observed in the error estimation figures D. 8 and D.9, where the 

exterior nodes on the surface of the bubble present adverse conditions between the times 



2.82 and 2.95 and require corrective displacements that brings them closer to the source, 

It appears as if, after having been forced toward the headform during the early phase, the 

growing bubble "rebounds." The position of the source is shifted towards the headform 

surface during this time. This source location also contributes to produce a flatter and 

more elongated bubble shape in the directions parallel to the headfoim surface. 

We can see from the (c) figures, that the bubble generates an over-pressure 

perturbation ACp in its surroundings during this time. We may refer to this time as the 

driving growth phase. Examining the unperturbed pressure field over the headforrn (figure 

D.12.1.b) and noting the values of Cp, in the figure captions, we can see that this phase 

corresponds to a time when the bubble is traveling through the region where it encounters 

pressures lower than the cavitation number. Looking at the absolute pressure field, Cp, in 

the (b) figures, the intensity of the high pressure perturbation, ACp, counteracts the 

prevailing low pressure field so that the boundary condition on the bubble surface (Cp=-o) 

is met. We note that the large pressure perturbation in both the (c) and (d) figures 

increases in intensity and reaches its maximum in figure D. 12.4 at 2~2.87.  This maximum 

pressure perturbation occurs at a time when the source is already downstream of the 

rninirnum pressure coefficient point. After this time the over-pressure intensity decays. 

We can observe though, that this decay occurs in a non-isotropic manner. This non- 

sphericity can be explained by analyzing each of the ACp, and ACp, pressure 

perturbations separately. Looking at the high pressure, ACp,,,, in the (d) figures, we 

observe a low pressure wave perturbation propagating clockwise during this entire growth 

phase. The positive ACp, values are located downstream of the source which corresponds 

to the direction of the source displacement and thus to the direction of maximum 

momentum increase. As the downstream displacement velocity of the source increases, 

the momentum change upstream of the source decreases to the point that it eventually 

produces negative inertial pressure perturbations, ACp,. On the other hand, the velocity- 

related pressure perturbation, ACp,, exhibits the opposite behavior. Upstream of the 



source the velocity induced by the sources is opposite to the flow over the headform and 

thus produces higher ACp, pressure values. Downstream of the source both of these 

velocities add up producing lower ACp, pressure values. The sum of both pressure 

perturbations ACp, and ACp, in the (b) figures shows that the high velocity-induced 

pressure, ACp,, is the dominant term upstream of the source, whereas the high 

momentum-induced pressure, ACp,, is the dominant term downstream. Thus ACp shows 

a fairly uniform high pressure distribution in all directions from the source. From the (c) 

figures we see that this hgh  pressure perturbation becomes elongated in the upstream 

direction as the bubble travels downstream. It appears as though the high pressure field 

upstream of the bubble does not move as fast as the source, causing this elongated 

pressure shape. 

The overall intensity of this high pressure perturbation does decay with time after 

figure D.12.5 and is almost null by figure 0.12.9. The inertial-pressure, ACp,, decays 

faster than the velocity-pressure, ACp,. The result on the pressure perturbation ACp is 

seen in the form of an expanding counter-clockwise low pressure wave. It is quite 

remarkable to observe that, while a low ACp, pressure wave is propagating in the 

clockwise direction, a low ACp pressure wave propagating in the opposite (counter- 

clockwise) direction. 

Figures D.12.8-10: 

The bubble has just passed through the low pressure region where the pressure 

coefficient is lower than the cavitation number and has reached the point where Cpg-s. 

The ACp pressure perturbation field in the (c) figures is close to zero at this point. We 

note that the pressure perturbation ACp, is symmetrical about the source location, 

generating an over-pressure downstream of the source and an under-pressure upstream. 

The perturbation ACp, is thus almost exactly balanced by the perturbation ACp, which has 

the opposite shape distribution. 



Figures D.12.10-15: 

The bubble continues to grow during this phase which may be referred to as the 

inertial growth phase. The bubble is now traveling through the region where it encounters 

unperturbed pressures higher than the cavitation number, as is shown by the values of Cp,. 

It still continues to grow due to the fluid inertial terms. The bubble growth is decelerating 

as is shown by the decay in the source strength, Q, and of the surface growth velocity, 

vd The source location remains very close to the headform surface but also shifts in the 

upstream direction relative to the center of the bubble. Since the source strength is still 

positive this produces the wedge bubble shape that can be seen in the (a) figures (with the 

thicker side upstream). As discussed in the previous section, this shape is similar to that 

observed in the experiments. 

During this phase the bubble generates negative pressure perturbations ACp in its 

vicinity (in the (c) figures), which can be explained as follows. In the (d) figures, we 

continue to observe the same ACp, clockwise low-pressure wave propagation as we did 

during the dl-ivillg growth phase. The deceleration of the bubble growth eventually yields 

large negative values of ACp, even downstream of the source. As the source strength Q 

decreases, the influence of the velocity-related pressure perturbation ACp, is reduced. 

The low pressure perturbation field, ACp, becomes almost identical to the momentum- 

related pressure field ACp,. As in the previous phase, this negative ACp pressure 

distribution is generated by a clockwise low pressure wave expansion. 

Figures D.12.15-16: 

These figures correspond to the time when the source strength Q is approaching 

zero at 2-3.09. The bubble has reached its maximum size and is now about to start 

collapsing. Notice that by this time the bubble is quite far downstream (by more than a 

tenth of the headforrn diameter) of the unperturbed ending of the low pressure region 

(Cp<-o) and is modifying the pressure field in the high pressure recovery region. As we 

stated before, the pressure perturbations ACp and ACp, are roughly equal in intensity at 



this time, indicating that the velocity pressure perturbation, ACp,, is almost zero. We 

notice that this is also the moment when the pressure perturbations ACp and ACp, have 

reached their minimum negative values. This minimum in ACp, indicates that this is also 

the time when the source strength Q is decreasing most rapidly. The almost spherical 

pressure perturbation distribution observed is due to the fact that the source displacement 

effect is small compared to the source intensity decay. 

Figures 0.12.16-19: 

The bubble is now collapsing (Q<O). We observe the displacement of the source 

in the downstream direction relative to the bubble center, which causes the tip of the 

wedge shaped bubble to disappear gradually. The low pressure perturbation generated by 

the sources continues to modify the pressure coefficient, Cp, such that boundary condition 

on the surface of the bubble remains satisfied. Even though the rate of decrease of the 

source intensity Q is not as high as in figure D.12.15, the bubble collapse velocity 

increases rapidly, as indicated by the values of v,,,, since the bubble radius, r,,, is smaller. 

The low pressure field perturbation in the (c) figures has an almost spherical shape 

and is slightly elongated in the upstream direction, with a shape similar to that of figures D 

.12.2-8. The overall low pressure perturbation ACp decays in intensity with time. This is 

understandable since the bubble becomes smaller and does not need to generate such a 

extensive low pressure perturbation to meet the boundary condition on its surface. A high 

pressure wave perturbation in the (d) figures is now propagating in a clockwise direction 

indicating an increase in the time derivative of the source strength, aQ/az, and the 

acceleration of the source in the downstream direction. On the other hand, the negative 

value of the source Q results in a low pressure perturbation ACp, upstream of the source 

and a high pressure perturbation downstream. The decrease of the positive ACp, pressure 

field by a low clockwise pressure propagation in the (d) figures, balances well the 

appearance of a negative ACp, pressure field by a low counter-clockwise pressure 



propagation, so that the overall negative ACp pressure field in the (c) figures decreases in 

an almost isotropic manner. 

Figure D.12.20: 

This figure corresponds to the final stage of the collapse. The drastic increase in 

rate of change of the source strength Q, produces the large over-pressures in the 

momentum-related pressure perturbation, ACp,, as seen in the (d) figure. The source 

strength Q is still negative and the bubble surface velocity v,, continues to increase as the 

radius of the bubble decreases. The pressure perturbations ACp and ACp, have quite 

similar values far from the bubble. The term ACp, is negligible far from the bubble, which 

confirms the derivation of equation B.16 indicating that the pressure perturbation in the far 

field of a collapsing source is simply proportional to the second derivative of the bubble 

volume (i.e., the rate of change of the source strength). The pressure perturbation at this 

time extends far from the bubble. However, close to the bubble surface the velocity- 

related pressure perturbation ACp, still influences the ACp perturbation. In the immediate 

neighborhood of the bubble the perturbations ACp, and ACp, have opposite distributions. 

In this region the high pressure perturbation ACp, downstream of the source dominates 

the low pressure ACp,. We have therefore a positive ACp perturbation downstream of the 

source which eventually causes the wedge shape of the bubble to disappear. We note 

from the (b) figure that, at this stage, the dynamic boundary condition is still roughly Cp-- 

o. The dissolved gas content and surface tension terms are stdl small effects at this time. 

Indeed the bubble collapse velocity is still increasing and is not yet slowed by the non- 

condensable gas. The over-pressure perturbations ACp, and ACp continue to increase 

very rapidly and are eventually responsible for the collapse noise impulse. This time fraine 

sequence ends at figure D.12.20 since the bubble has already rebounded by the next time 

step, ~=3.208. 



D.5.3 Pressure distribution over headform 

The pressure in the vicinity of the bubble has been computed for times ranging 

from initial growth to collapse. The purpose of this paragraph is to identify the influence 

of the bubble on the surrounding flow field. By quantifying the distance below which the 

influence of the traveling bubble is substantial, we can predict to what extent multiple 

bubbles may interact with one another. The pressure perturbation of individual bubbles 

has been computed just above the headform surface, at a distance equal to 1/100* of the 

headform diameter, D. Presented in figures 0 .14 and D.15, as a function of time and for 

three different cavitation numbers, is the absolute pressure coefficient, Cp, and 

perturbation pressure distribution, ACp, parallel to the headform surface. The 

dimensionless curvilinear abscissa, s, starts at the nose of the headform (x = r = 0). 

Presented in figure D.16 is the perturbation pressure, ACp, in the direction normal to the 

surface of the headform, as we travel with the source (at the same axial location as the 

source). For all figures three different cavitation numbers ~=0 .35 ,  s=0.45 and o=0.55 are 

shown. Note that the time scale on the figure is different for each cavitation number. 

The white areas in the figures D.14 and D.15 represent the leading and trailing 

edge extremes of the bubble. Note that the time scale is different for the three different 

cavitation numbers. For all three cavitation numbers in figures D.14 we observe that the 

initial pressure distributions, Cp, at time ~ = 2 . 8  are identical. The minimum pressure 

coefficient Cp~,=-0.78 is located at about s=0.42. We observe that the influence of the 

source counters the initial pressure variations of the flow over the headform (from an 

under-pressure Cp=-0.78 to the downstream over-pressure Cp=O), such that it results in a 

rather steady pressure value Cp=-o on the surface of the bubble. We clearly see by 

observing figures D. 14 and D. 15 that the source first induces higher pressures in order to 

counter the original low pressure, then induces low pressure perturbations in higher 

original pressure fields. The very top part of each graphs shows the final high pressure 
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Figure D.14.1 Pressure coefficient, Cp, in the direction parallel to the 
headform, cr=0.55 
The pressure coefficient distribution, Cp, in the direction parallel to the 
headform surface is presented as a finction of time. The white area represents 
the bubble width. 
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Figure D.14.2 Pressure coefficient, Cp, in the direction parallel to the 
headform, ~=0 .45  
The pressure coeficient distribution, Cp, in the direction parallel to the 
headform surface is presented as afunction of time. The white area represents 
the bubble width. 
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Figure D.14.3 Pressure coefficient, Cp, in the direction parallel to the 
headform, 0=0.35 
The pressure coeficient distribution, Cp, in the direction parallel to the 
headform surface is presented as a function of time. The white area represents 
the bubble width. 
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Figure D.15.1 Pressure perturbation, ACp, in the direction parallel to the 
headform, 0=0.55 
The perturbation pressure coeficient distribution, ACp, in the direction parallel 
to the headform surface is presented as a finction of time. The white area 
represents the bubble width. 
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Figure D.15.2 Pressure perturbation, ACp, in the direction parallel to the 
headform, 0=0.45 
The perturbation pressure coefficient distribution, ACp, in the direction parallel 
to the headform surface is presented as a function of time. The white area 
represents the bubble width. 
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Figure D.15.3 Pressure perturbation, ACp, in the direction parallel to the 
headform, 0=0.35 
The perturbation pressure coefficient distribution, ACp, in the direction parallel 
to th.e headform surface is presented as a function of tim.e. The white area 
represents the bubble width. 
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Figure D.16.1 Pressure perturbation, ACp, in the direction normal to the 
headform, 0=0.55 
The perturbation pressure coeficient distribution, ACp, in the direction normal 
to the headform surface is presented as a function of time. The white urea 
represents the bubble height. 
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Figure D.16.2 Pressure perturbation, ACp, in the direction normal to the 
headform, 0=0.45 
The perturbation pressure coejjkient distribution, ACp, in the direction normal 
to the headform surface is presented as a jiinction of time. The white area 
represents the bubble height. 
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Figure D.16.3 Pressure perturbation, ACp, in the direction normal to the 
headform, 0=0.35 
The perturbation pressure coeficient distribution, ACp, in the direction normal 
to the headform surface is presented as a function of time. The white area 
represents the bubble height. 



collapse perturbation in the form of a high pressure wave expansion. From these figures 

we can also observe some features of the asymmetry of the pressure perturbation upstream 

and downstream of the source. Figures D.15 clearly shows the increasing influence of the 

bubble as the cavitation number is reduced. The ratio of the distance of influence to the 

bubble size is observed to increase as the bubble gets larger. The high pressure 

perturbation generated during the early growth of the bubble increases the low pressures. 

One can therefore speculate that this might have an effect on the cavitation event rates, 

since the nuclei close to a growing bubble will not experience the low pressures which 

would cause them to become unstable. By observing figures D.16 we see that the 

pressure perturbation extends as far in the direction normal to the headform as it does in 

the parallel direction. Again we can measure the increase in the "zone of influence" of a 

bubble as the cavitation number is decreased. 

D.5.4 Program main parameters as a function of time 

In this section we present some of the main parameters as a function of time for a 

series of cavitation numbers. Among the variables presented here are the average source 

strength, Q, in figure D.17; the bubble cap base radius, r, in figure D.18; the bubble 

sphericity, E,  as a function of time in figure D. 19; and three different bubble dimensions in 

figure D.20. As in the previous section, all these bubbles were computed with the 

following conditions: Ro=lOOpm, D=50.8cm7 Um=11.5m/s and an initial nucleus position 

xqo=- 1.0, r,=0.01. 

At first look, the average source strength curves as a function of time in figure 

D.17 appear similar in shape for all cavitation numbers. However a scaling analysis of all 

these curves does show some differences, indicating that the computed bubble dynamics 

does not simply scale with cavitation number. It is possible though to estimate crudely the 

decay law of source strength versus the cavitation number as Q ~ c - ~ . ~ .  AS discussed in the 
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Figure D.17 Average source strength, Q, as a function of time 
The computed average source strength, Q, is shown as a function of time for 
different cavitation numbers ranging fiom 0= 0.40 to 0=0.60. 
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Figure D.18 Computed bubble base radius as a function of time 
The computed bubble base radius is shown as a function of time for diflerent 
cavitation numbers ranging from 0=0.40 to 0=0.60. Notice the diference with 
the radii from the solution of the Rayleigh-Plesset equation shown in Jigure B. 1. 
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Figure D.19 Bubble sphericity as a function of time 
The computed bubble sphericity, E, is shown as a finction of time for difirent 
cavitation numbers ranging fiom 0=0.40 to 0=0.60. Notice the Rayleigh- 
Plesset solution at &= 1. 
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Figure D.20 Bubble dimensions as a function of time 
Different bubble dimensions are shown for a cavitation number ~=0.50,  
indicating the three dimensional shape of the bubble. 



previous section, the value of the source strength is an important parameter for computing 

the value of the velocity-related pressure perturbation ACp,. On the other hand, the 

variation of the source strength in time, JQIaz, will dictate the value of the momentum- 

related pressure perturbation, ACp,. Considering the direction downstream of the source, 

we can therefore see from figure 0.17 why the ACp, perturbation is first positive, then 

negative as Q becomes negative. Similarly, we see why ACp, first exhibits positive values 

up to the point where the source strength, Q, reaches its maximum value, then negative 

values up to the point where Q is minimum, then positive again during the final collapse 

phase. We also observe that the minimum value of dQ/az occurs when Q just crosses the 

zero value, generating the lowest ACp, perturbation pressures at that time. The maximum 

value of aQlaz generating the largest ACp, pressures occurs during the final collapse of 

the bubble. 

The computed bubble base radius, r, is presented as a function of time in figure 

D.18. It is interesting to compare this set of curves with the spherical Rayleigh-Plesset 

radius solution shown in figure B.1. We see that the traveling source model solution 

yields smaller bubble sizes than the Rayleigh-Plesset model. Furthermore the bubbles 

collapse much sooner in figure D. 18 than in figure B. 1. The main difference in the shape 

of these curves occurs at the time when the bubble has reached its maximum size and 

starts to collapse. The collapse phase happens much faster in the traveling source model 

than in the spherical model where the bubble takes a long time to increase its momentum 

inwards. 

The bubble sphericity, E, as a function of time in figure D.19 shows that bubbles 

tend to become more elongated with increasing cavitation numbers. For a l l  cavitation 

numbers, the minimum sphericity value of the bubble is found during the growth phase. 

After this time the increase in sphericity is not due to the fact that the bubble height, 6, 

increases during the collapse phase, but to the fact that the thin leading edge of the wedge- 

like bubble disappears, thus leading to a smaller bubble base radius. The single source 



model is not able to model the thinning of this wedge shape in the manner observed in the 

experiments. Figure D.20 gives another representation of the three-dimensional shape of 

the bubble as a function of time, for the cavitation number 0=0.50. In this figure are 

shown the bubble height, 6, normal to the headform surface, the bubble base radius, r, 

(radius of the bubble at the base of the cap) and an estimated bubble cap radius, r,,, based 

on the area of the bubble in the plane of symmetsy, S ,  and defined by rcq = Jm. We 

see from this figure that the base radius is larger than the two other dimensions indicating 

the non-sphericity of the bubble. However, towards the end of the collapse the 

evanescence of the leading edge of the bubble reduces this dimension. The bubble height 

6 is the smallest of these three dimensions, indicating the flattened-elongated shape of the 

bubble. As the bubble collapses, though, we see that r,, is almost equal to 6, indicating 

that the bubble has almost a hemispherical cap shape (E-1). 

D.5.5 Comparison with the LCC experiments 

Using the figures D.17 through D.20 we are able to compare the computed bubble 

size, collapse location and sphesicity with the experimental data. The computed maximum 

bubble base radius is shown in figure C. 18 along with the experimental data points and the 

solution of the Rayleigh-Plesset model. We see that the base radius computed using the 

traveling source model has values well within the envelope of the experimental data. The 

spherical Rayleigh-Plesset model overshoots the experimental data particularly at the 

lower cavitation numbers. 

The same trend can be seen for the collapse location, x,, in figme C.20. Again we 

see that the traveling source model is able to predict the location of collapse very well. 

The Rayleigh-Plesset model solution yields larger values of x, which were not observed in 

the experiments. 

Finally the bubble sphesicity, E, is presented in figure C.19. As noted earlier, the 

computed sphericity using the traveling source model is larger than the experimental 



values. This model causes the bubble exterior surface to be flattened during the growth 

phase, but is not able to elongate the bubble enough in the direction parallel to the 

headform surface. Note that the computed and experimental sphericity values presented 

here are measured at the time when the bubble reaches its maximum size and that the 

numerical program does allow lower sphericity values (down to ~=0.73) at earlier times as 

can be seen in figure D.19. We do observe a decrease in sphericity with increasing 

cavitation numbers as seen in the experimental data. Note that the Rayleigh-Plesset 

spherical model yields sphericity values &=I for all conditions. 

Analysis of cavitation scaling effects was performed using this numerical method 

but is not presented here in great detail since varying of the Weber number, We, Reynolds 

number, Re, or ratio of initial radius to headform diameter, r,=RJD, did not significantly 

affect the results of the computation. All the computational results presented here 

therefore used identical stream velocities, U_=1 1.5mls7 headform diameter, D=50.8cm7 

and initial nucleus radius, Ro=lOOym. In some cases though, for certain values of r, and 

r,, important variations were observed during the initial nucleus growth. As stated in 

section B.2 some nuclei start to interact with the headform surface before they even reach 

pressures sufficiently low to cause them to become unstable. We noticed that these 

headfom interactions occur mostly in the case of large nucleus to headform size ratios, r,, 

and are almost always present in the case of the 5.08cm headfom. These nuclei are 

sheared and compressed on the headform surface before they become unstable and the 

time at which they actually start to grow is thus modified. A critical parameter in this case 

appears to be the initial off-axis location, r,, of the source. Further studies are needed in 

order to understand the significance of each of these parameters influencing both the initial 

nucleus stability criteria and the bubble dynamics. 



E. CONCLUSIONS 

In this thesis we have presented some of the results from a series of experiments 

carried out in the Large Cavitation Channel (LCC) to investigate the scaling of the 

dynamics and acoustics of individual cavitation bubbles in flows around headfoms. Many 

of the phenomena observed by Ceccio and Brennen (1989, 1991) in experiments on 

5.08cm headforms were seen again in the present experiments. Such micro-fluid 

mechanical phenomena included the hemispherical shape of individual cavitation bubbles, 

the thin film separating them from the surface, the destabilization of that film, the 

occasional production of attached streaks in the wake of the bubbles and the complex 

processes during the bubble collapse including bubble fission and roll-up into vortices. 

Among some of the phenomena that were observed for the first time using such 

large headforms were the following. The present experiments yielded substantially lower 

cavitation inception numbers for the larger headforms. One result of this was that for the 

same air content, velocity and cavitation number, we observed bubble inception on the 

smallest headforrn and fully developed attached cavitation on the largest. Some of the 

differences in the appearance of individual bubbles on the three headforms could be 

attributed to this large difference in inception numbers since it implied quite different 

locations for the critical Cp=-o isobars. The most noticeable effect of scale on the 

appearance of cavitation was the increase in bubble-generated attached streaks and 

patches for the larger headfoms. On the 5.08cm headform a traveling bubble would 

occasionally generate two attached streaks or tails at the lateral extremes of the bubble. 

These would disappear almost immediately after the bubble collapsed. On the larger 

headforms at higher speeds (larger Reynolds numbers) and low cavitation numbers the 

streaks began to occur more frequently and extend behind the entire width of the bubble. 

The streaks would tend to produce a transient patch of attached cavitation which would 

disappear shortly after the bubble collapsed. For low enough cavitation numbers however, 



the patches would persist almost indef-mitely and create larger attached cavitation 

structures. It is possible that this is the mechanism of formation for most patch and 

attached cavitation. Also the si~nultaneous coexistence and interaction of dl the forms of 

cavitation structures over the large headforms is remarkable. 

Another new observation during the present experiments was the appearance of a 

remarkably repeatable "dimple" on the exterior surface of the traveling bubbles on the two 

larger headforms. These seem to be more pronounced when the bubble (or headform) is 

sufficiently large which suggests that the dimples are influenced by surface tension effects. 

Cavitation event rates were also evaluated from the photographs and videotapes 

and this data clearly complements the observations of cavitation inception since inception 

was based on a chosen event rate. The event rates increase with increasing headform size 

and with decreasing cavitation number in the expected fashion if one assumes a fixed 

nuclei concentration. It is also demonstrated that the event rates appear to correspond to 

a nuclei population of the order of 0.1 nuclei/cm3 which is at least an order of magnitude 

lower than the expected nuclei population. We are continuing to investigate possible 

explanations for this discrepancy including the bubble screening effect first suggested by 

Johnson and Hsieh (1966). 

The noise generated by individual events and the variations in the noise with the 

type of event were also investigated. We first demonstrate that the acoustic impulse 

generated by individual traveling bubbles scales quite well with headform size and tunnel 

velocity and that this scaling is in accord with that expected from the Rayleigh-Plesset or 

Fitzpatrick-Strasberg analysis. As expected, lower cavitation numbers lead to larger 

bubbles and larger impulses as long as the bubbles do not interfere with one another or 

with larger patch cavities. 

As in the previous study by Ceccio and Brennen (1989, 1991) the impulses 

generated are substantially less than the magnitude predicted by the Rayleigh-Plesset 

analysis. It seems likely that the shearing and fission the bubble experiences prior to 



collapse lead to a less highly focused and less "efficient" noise-producing event. The 

present study has added to this information. We have shown that the events which 

generate attached "streaks" or "tails" and which represent a greater fraction of the events 

at higher Reynolds numbers also produce significantly smaller acoustic impulses. This 

correlation was observed by a special cross-correlation of the surface electrode signals and 

the hydrophone output. The above observation has clear implications for the scaling of 

cavitation noise. 

Some additional observations were made for those conditions at which the 

cavitation number was small enough for persistent attached patches to fonn and at which 

the void fraction of bubbles in the cavitation region became significant, First it was clear 

that when a traveling bubble encountered (or rode over) a patch its dynamics were altered 

and its acoustic output substantially diminished. Secondly like Arakeri and 

Shanmuganathan (1985) we also observed a significant decrease in the noise when the 

void fraction was sufficiently large so that the bubbles covered about 20% of the area in 

the cavitation region. 

This significant decrease led us to develop a new numerical method which would 

allow us to study the interactions between the traveling bubble and the surrounding flow 

field. The single source method has proven to be quite adequate to capture many of the 

dynamics involved. Because the bubble is only deformed by the combined effect of the 

two sources and the headform ring panels, the kinematic conditions on the bubble surface 

and on the entire headform surface are quite accurately satisfied. The method developed 

here is valid in the sense that it does not induce significant errors on the zero normal 

velocity condition on the entire headform. The dynamic condition on the bubble surface 

though can only be satisfied on the average around the circumference of the bubble. The 

single source algorithm therefore does require some corrective effects in order for the 

evolution of the bubble shape to remain stable in time. We have seen that these 

corrections add up to less than 30% of the bubble volume. 



Comparisons with the LCC experiments showed that the bubble shape, size and 

collapse location were remarkably accurate. Furthermore it reproduces a number of the 

features in the dynamics of the bubble such as the compression of the exterior surface 

during the growth phase and the evolution from a cap shape to a wedge shape. We have 

observed the dynamics with which the growing nuclei first interacts with the surface of the 

headform and generates an over-pressure above its exterior surface. This phenomena is 

assumed to be responsible for the appearance of the dimples observed on the photographs 

taken in the LCC. Perhaps the most significant value of this method is that it allows to 

compute the unsteady pressure field surrounding the bubble as it travels above the 

headform surface, and thus allows evaluation of bubble interactions. We have thus been 

able to quantify, for different cavitation numbers, the distance below which the bubble 

significantly alters the pressure field. The analysis of the pressure perturbation induced by 

the source showed us that it is caused by the combined effect of both a velocity-induced 

pressure perturbation and a momentum-change-induced pressure perturbation, both of 

which are three dimensional. By modeling these perturbations for different cavitation 

numbers we were able to predict the distance below which the source has a significant 

influence and thus to predict some bubble interactions. Computations also showed that 

the bubble first generates a high pressure perturbation, followed by low pressure and 

finally by a very strong over pressure during the final collapse phase. It also showed that 

the low pressure generated after the first over-pressure extended farther from the bubble 

than the latter and lasted for a longer period of time. As a result, the bubble lifetime is 

able to extend much farther downstream than the original low pressure region (Cp<-o), as 

has been observed by Favre et al. (1987). 

Further interesting development of this method would include the study of nucleus 

stability as it travels along different streamlines and starts to interact with the headform 

surface. The way these dynamics influence the event rate prediction still needs to be 

addressed. This numerical model can also be extended to include interaction between 



several bubbles. Because of the simplicity inherent in this single source model (as 

compared to the boundary element method), the addition of several sources should be very 

straightforward. Finally the simple source model could also be improved by adding higher 

order terms to the simple source, such as a dipole. 

The experiments performed in the LCC proved very useful and allowed for the first 

time experiments on large headforms. A number of scaling effect trends have been 

observed that are presented here. It would be extremely interesting to perform additional 

measurements to accurately study some the trends, particularly the decreasing noise 

impulse as the cavitation number is reduced below a certain value. In order to fully 

analyze the dynamics of the deformation of the bubble surface, some very high-speed film 

(at a rate of at least IOkHz) would be extremely useful. This would also allow comparison 

in time of the experimental bubble shape with the numerical solution of the single source 

method. It might be possible to refine the sensitivity of the electrode sensing device close 

to the location of the bubble collapse in order to trigger such camera. 
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APPENDIX 

PROGRAM STRUCTURE 

The program "3D-SOURCE" presented in chapter D is written in C language. It 

includes 2100 lines of code and can be run in different modes: either calculating bubble 

deformations in time, given an initial nuclei position, or using already existing bubble 

calculations to compute pressure field over the headform at a given time (as presented in 

figure 0.12 for example). The run time to compute a complete bubble from an initial 

nuclei to the final collapse is about 5 hours on a Sun SparcStation 10. In order to run, the 

program requires two files. The first file, "SCHIEBE.DAT," includes all information 

regarding the headform geometry. The second file, "BUBBLE.YKC," includes 

information about the flow and initial conditions. In addition the programs asks the user 

for output file names which will include the bubble shape, source position and strength, 

and pressure distribution on the surface of the bubble. The gray-level pressure distribution 

contour plots (as the ones presented in figures D.12 for example) have been post- 

processed from data files generated by the program 3D-SOURCE. These plots have been 

created using various commercial software such as Mathernatica, PvWave or XImage. In 

the following section we present examples of the two files required to run the program 

3D-SOURCE. The program V1SU.C runs on IBM-PC compatible machines with vga 

screen capability and produces a graphical animation of the bubble shape from files created 

by the 3D-SOURCE program. 

FILE "SCHIEBE.DAT" 

This file consists of the headform name, number of headforms, number of panels 

on headform, N,, and the list of dimensionless coordinates, xi , ri , for each panel: 

Schiebe Headform 





FILE "BUBBEE.YKC" 

This file is structured in the following way: 

Mode PrintCpFile 
Stop-t ime 
a-S-incrjrint Time-incrjrint 



where the Mode variable is defined as follows: 

Mode= 0 calculate normal bubble growth. 

Mode= 1 calculate bubble at time S top-time. 

Mode= 2 calculate bubble at all time increments Time-incr-print. 

Mode= 3 calculate bubble at all bubble radius increments a-S-incr-print. 

The PrintCpFile variable is defined as follows: 

PsintCpFile=O do not create Cp files for the pressure field above the headform. 

PrintCpFile= 1 create Cp file with size scaled the bubble radius. 

PrintCpFile=2 create Cp file with a standard fixed scale. 

PrintCpFile=3 create files for both cases 1 and 2. 

PrintCpFile=4 create file which includes Cp, normal and tangential velocities on 

the headform surface. 

An example of the file is shown as follows: 

PROGRAM "3D-SOURCE" 

Because of the length of the source code file "3D-SOURCE.C", we do not include 

a listing in this thesis but rather just present a list of the main array variables used in the 

program, which should help the user to understand the structure of the program. The 

program itself is written in a number of subroutines which should be fairly easy to 

comprehend. It also includes a number of comments. 

Co~rd[O][i]=r$~ panel points (on body geometry). 

Coord[l][i]=rpi 

Coord[2][i]=x, control points(norma1 velocity = 0). 

Coord[3] [i]=r, 



Coord[4][i]=sinci sine of angle of panel with U, (i.e. normal to control point). 

Coord[5] [i]=cosci 

Coord[G] [i] =Asi length of panel. 

Coord[7][i]=x, center of rotation of the panels (used to locate the image source). 

Coord[8] [i]=rai 

Coord[9][i]=xji panel for larger headform (at D=1/100 from the headform surface). 

Coord[lO] [i]=rli 

Result[O] [i] =pi panel source strength. 

Result[l][i]=Cpci pressure coefficient on control point i. 

Result[2] [i]=v, normal velocity on control point i. 

Result[3] [i]=phici potential on control point i. 

Result[4] [i] =vTi tangent velocity on control point i. 

Result[S] [i] =OCi boundary layer thickness at control point i. 

Result[6][i]=k + 0.09 shape pararneter(if k less than -0.09 we have detachment of the 

Boundary Layer). 

Result[7] [i] 7 transition to turbulence parameter 

Result[8] [i]=pi panel source strength from previous time step "p" 

Bubble[O] [i]=xi bubble node coordinate. 

Bubble[l][i]=r, bubble point node coordinate. 


