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ABSTRACT 

More than 2300 gravity observations were made In the 

northern end of the Salton trough, Including an underwater 

gravity survey of the Salton Sea. 400 gravity observations 

by Kovach are used to extend the gravity map southward and 

700 gravity observations from oil companies and Woollard 

are used for part of the regional control. A complete 

Bouguer anomaly map of the California portion of the Salton 

trough area shows that the general trend of the isogal 

contours is parallel to the over-all northwest trend of 

the tectonic pattern. The contours northeast of the 

Coachella Valley trend east parallel to the Transverse 

Range structure. The Coachella Valley and Borrego sink 

are associated with gravity lows, the Salton volcanic domes 

with a gravity maximum, and the Peninsu1ar Ranges with a 

gravity minimum. The anomalous mass of the Salton volcanic 

domes is 6 to 7 km deep with a radius of 3.5 to 4.5 km 

based on the "half -w i d th 11 i n t er pre tat i on of a sphere . Due 

to uncertainties arising from contemporaneous metamorphism 

of the sediments and the amblquity in the regional gravity 

field a detailed interpretation was not attempted. 

All of the major fault zones are associated with small 

gravity lows. A series uf Lhest1 ::::>111dll luw!::) :soulhea::;t 

along the projected trace of the Banning-Mission Creek 

fault may, indicate continuation of faulting toward Yuma, 

Arizona. The steep gravity gradient across this fault in 
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the Coachella Valley can be explained by a steep contact 

between crystalline rock and sediments which exceed 4 km 

thickness in the Indio-Mecca area. 

Seismic refraction profiles were established at 

Thousand Palms, Truckhaven, Frink, and Westmorland. These 

give depths to basement of 4350, 5540, 7340, and 18,300 ft 

respectively. The Westmorland profile establishes the 

depth to basement near the center of the trough. 

Regional gravity studies indicate that much of the 

gravity low aver the Peninsular ~anges can be explained by 

a thickening of the crust from 29 to 33 km. The Imperial 

Valley, with over 5.5 km of sediments, is anomalously 

associated with a broad gravity high. This is interpreted 

in terms of a thinning crust under the valley possibly to 

a depth of 21 km, relative to 29 km at San Diego. The 

crustal structure of the Imperial Valley ls probably the 

northward continuation of the structure of the Gulf of 

California and may represent the initial stages of an 

alteration from continental to oceanic type section by 

rifting and northwest movement of the Baja California penin­

sula and western Cal ifarnia relative to the stable area 

northeast of the San Andreas fault system. 



v 

INTRODUCTION 

REGIONAL GEOLOGIC SETTING 

Physiography 

Regional Tectonics 

Hlstorir.al Geology 

4 

7 

9 

GEOPHYSICAL STUDY 

Previous Geophysical Work 

Seismic Field Methods 

1 1 

12 

Seismic Interpretation 14 
Westmorland profile 19 
Frink profile 20 
Truckhaven profile 22 
Thousand Palms profile 23 

Gravity Field Methods 24 
Gravimeter calibration 25 
Base stations 27 
Station location 28 
Elevation control 30 

Gravity Reduction 31 
Latitude correction 31 
Drift correction 32 
Free air correction 32 
Terrain correction 33 
Bouguer correction 38 
Reduction accuracy 42 

Gravity Interpretation 42 
Relation of free air 

anomalies to surface 
elevation 42 

Relation of Bouguer anoma-
1 ies to surface eleva-
tion 44 

Density-depth relation and 
wel 1 data 47 

The complete Bouguer ano-
maly map 51 

Regional Bouguer anomalies-
crustal structure 55 

Salton volcanic domes 68 
Coachella Valley 75 



vi 

Borrego sink and Lower 
Borrego Valley 79 

CONCLUSIONS 82 

REFERENCES 87 

FIGURE CAPTIONS 92 

APPENDIX A 

B 

c 
D 

E 

128 

1 3 1 

133 

134 

135 



- 1-

1 NTRODUCT I ON 

One of the most striking topographic and tectonic 

features of southern California is the Salton trough. 

This structural depression is the northward continuation 

of the l,ulf of California and extends from the Mexican 

tidelands at the head of the Gulf to San Gorgonio Pass, 

80 miles east of Los Angeles (Figure 1 ). The Salton 

trough is an area of diverse geological complexities such 

as major faulting, thick sedimentary deposits, recent 

volcanism and potential petroleum reservoirs, al I ot which 

have correspondingly interesting geophysical expressions 

of local and regional importance. 

The study of the earth's gravity field and its 

associated anomalies has proven extremely useful in 

delineating the geological structure of this area. To 

investigate, on a local scale, the subsurface geological 

structures within the valley and its basement it is 

necessary to resort to detailed geophysical methods. But 

In order to interpret the gravity anomalies associated with 

the trough and the complex crustal structure beneath such 

a tectonically active area a much larger region must be 

studied to establish the regional gravity field. For these 

reasons a detailed gravity study based on a one mi le grid 

and four seismic: refraction profiles .were established 

within the northern portion of the trough and the gravity 

observations were continued on a regional basis eastward 
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to the Colorado River and westward to the Pacific Ocean. 

Although the regional gravity coverage to the west and 

the detailed gravity data in the south are somewhat 

incomplete, they nevertheless indicate some interesting 

results. 

Several gravity maps are presented in this report 

(figure 2). The major portion of the gravity study is 

based on a complete Bouguer anomaly map of the Salton 

trough of California and parts of the Peninsular Ranges and 

Mojave Desert province (figure 20). Because of the lack 

of good topographic maps and elevation control for the 

Mexican observations by Kovach (1962) it is not practical 

to make a complete Bouguer map of this area. A simple 

Bouguer map of the entire Salton trough area which includes 

all of the observations of Kovach between 33° north 

latiturle einrl the hearl of the Gulf and most of the obser­

vations by Biehler between 33° and 34° 15 1 is in press 

(Biehler et~., 1964) and is reproduced as figure 24. 

For a study of the crustal structure a generalized 

regional Bouguer map for all of southern California and 

the continental shelf south of 34° 15' was prepared from 

the data of Harrison (1960a, 1960b), Mabey (1960), 

Mcculloh (1957, 1960), Press (1960), and Woollard (1963, 

1964) (riyure 22). Tile yrctvity interµretation of the 

Coachella Valley is based on a complete Bouguer anomaly 

map using a varying Bouguer density, a basement regional 
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Bouguer map, and a residual Bouguer map (figure 23). A 

generalized geologic map of the area covered by the 

complete Bouguer anomaly map was prepared from fault maps 

of Allen, the Geologic Map of California (1955, 1962, 

1964), Dibblee(1954L and Crowell (1962). All of the 

seismic profiles and well data are also shown on this map 

(figure 20). 
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REG 10NAL GEOLOGIC SETTING 

Physiography 

The Gu1f of Ca1ifornia is a relatively narrow 

structural depression less than 100 miles wide and over 

700 miles long. Although the Gulf terminates 60 miles 

south of the international border the characteristic 

s t r u c t u r a 1 d e pr es s J on co n t i nu es for 24 0 m i 1 es no r t h we s t 

from the headwaters of the Gulf to San Gorgonio Pass. This 

northern segment of the Gulf of California structural 

province, called the Salton trough, is marked by a broad 

flat alluviated valley with an area of 10,000 square miles, 

of which 2,000 square miles 1 ie below sea level. The 

Colorado River delta south of the internati~nal border 

rises to a height of 40 to 50 feet above sea level, forming 

a natural dam which prevents this sink from being inundated 

by the sea water of the Gulf of California. 

Geophysically and physlographically the Salton trough 

can be divided into five units: the Coachella Valley, 

Salton Sea, Borrego Sink, Imperial Valley, and the Colorado 

River delta proper. The Coachella Valley extends southeast 

from San Gorgonio Pass to the north end of the Salton Sea. 

It is the narrowest segment of the Salton trouQh with an 

average width of less than 15 miles. The borders of the 

Coachella Valley are well defined on the southwest by the 

San Jacinto and Santa Rosa mountains of the Pen~osular 

Range province and on the northeast by the Little 
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Sa n Bernardino and Orocopia mountains of the Transverse 

Range province. The mountains which border the Coachella 

Valley have an average elevation which is approximately 

1500 feet higher than their counterparts to the southeast 

which form the borders of the Imperial Val1ey. As the 

Coachella Valley narrows in the northwest the average 

elevation of the bordering ranges increases until at San 

Gorgonio Pass where the two highest peaks of southern 

California, San Gorgonio mountain and San Jacinto Peak~ 

form the borders of the pass, there is 10,000 feet of 

re 1 i ef in a few mi 1 es. 

The Salton Sea is located in the trans)tion zone 

between the narrow Coachella Valley in the north and the 

broad Imperial Valley in the south. This topographic 

center of the Salton trough is covered by a large man-made 

inland lake approximolc1y 35 mi lcs long ond 10 lo 15 miles 

wide, which forms a s~nk .for all of the drainage in the 

area. The surface of the sea is presently 234 feet below 

sea level with a maximum measured depth of 44 feet. Prior 

to the flooding of the sink this area was a broad flat 

sandy playa which at one time formed the bottom of an 

an c i en t f r es h -w at er l a k e . Thus , i f i t had n a t been for t he 

disastrous inundation of the area in 1905-1907 by the 

accidental diversion of the Colorado River, the exposed 

land area of the Salton trough would have been only 4 feet 

higher than Death Valley. The Salton trough is still the 
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s econ d 1 owes t 1 and are a i n the Un i t e d St ates . I t i s 

ir1lere:sli11y Lu riule Ll10.L Lilt;; maximum and minimum elevations 

and width of the two valleys are almost equal. At Death 

Valley (:vlabey, 1963) with an average width of 10 miles the 

maximum elevation is 11,049 feet and the minimum ls -282 

feet. The regional Bouguer gravity values are similar as 

is the Bouguer anomaly across the valleys. Although these 

valleys are in two different tectonic settings,this may 

be an indication of a much deeper common crustal environ­

ment. 

South of the Salton Sea lies the broad Imperial Valley, 

bounded by. the Chocolate and Cargo Muchacho mountains on 

L11e northeast and by the Peninsular Ranges on the southwest. 

The borders of the Imperial Valley, however, are not as 

clearly defined as those of the Coachella Valley. Along 

the southwest margin are several fault-controlled hills of 

crystalline rock within the valley. In the southeast the 

bordering mountains gradual 1 y decrease in rel 1 ef until at 

Yuma, Arizona, the eastward extent of the valley is poorly 

defined. 

Within the Imperial Valley and southwest of the 

Chocolate and Cargo Muchacho mountains ls a narrow north­

west-trending band of low ridges called the Sand Hills or 

Algodones dunes. They are an almost unbroken mass of sand 

45 miles long and 4 to 8 miles wide, which has been studied 

geologically by Norris and Norris (1961). 
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Four volcanic domes protrude over 100 feet above the 

valley floor at the south end of the Salton Sea. The 

northeast dome, Mullet 1;sland, is now partially submerged 

in the Salton Sea. Associated with these domes are 

extensive hot springs activity and potential geothermal 

reservoirs. 

The Colorado River delta proper designates that area 

in Mexico between the Imperial Valley on the north and 

the head of the Gulf in the south. This area is daily 

receiving large quantities of sediments from the Colorado 

River. The Colorado River has digressed many times across 

this cone, at times emptying into the Salton sink and then 

returning to the Gulf of California. 

The Borrego and Clark valleys west of the Salton Sea 

are similar to the narrow Coachella Valley in the north, 

although the average elevation of the valley floor is 

considerably higher. These valleys are also fault­

control led and contain thick sedimentary deposits. 

The geological, geophysical, and structural impli­

cations of these physiographic units will be discussed 

elsewhere. 

Regional Tectonics 

The general trend of the major faults in the 

Peninsular Ranges and Sdllu11 lr~uugh indicate that the 

surface expression of the Salton trough is not of a simple 

rift valley marked by parallel breaks along the borders of 
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a dropped block. The general fault trend cuts obliquely 

across the axis of the Gulf and this northern extension. 

On the basis of topography it appears that thio fault 

pattern is continued on the floor of the Gulf. 

The predominate displacement along these major faults 

is right-handed strike slip and may be as great as 150 

to 300 miles (Crowell, 1962). The narrowing and termination 

of the Salton trough at its northern end are caused by 

truncation and conflict between northwest-trending faults 

of the San Andreas system and east-trending faults of the 

Transverse Range province. 

At about the mid point of the Gulf of California south 

of Tiburon Island, seismic evidence indicates a transition 

f r om co n t i n e n t a 1 to o c ea n i c s t r u c t u r e s ( Ph i l l i p s , l 96 3 ) . 

It is in this area also that the gravity anomalies become 

positive (Harrison and Spiess, 1959, 1963). lt may be 

that the Gulf floor is underQoinQ a Qradual transition 

from continental to oceanic type crust by the gradual 

rifting and northwest movement ot Baja relative to the 

Mexican mainland with the emplacement of more basic material 

into the upper portion of the crust along zones of weakness. 

A similar mechanism has been suggested by Girdler (1964) 

for the formation of the Red Sea rift. This may 

also account for the absence of a negative anomaly 

across the Imperial Valley and the existence of such 

volcanic surface expression as Cerro Prieto, Plnacate 
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vo 1 can i c field, and the Salton Volcanic Domes. 

Historical Geology 

The geology of the Salton trough has been studied 

by Dibblee (1954), Tarbet (1944, 1951), Woodard (1961), 

Durham and Allison (1961) and Downs and Woodard (1961 ). 

The Peninsular Range province west of the Salton trough 

has been studied by Jahns (1954), Larsen (1948), 

Merriam (1958}, Bcci.1 (19ll8). The geology of the mountains 

to the north and east of the trough is covered by Bailey 

and J<B:hns (1954-), Rogers (1961) and Crowell (1962). Only 

a brief summary of the rock tvpes is given here. 

A stratigraphic section for the Cenozoic sedimentary 

rocks of the Coachella Valley as given by Dibblee (1954) 

is shown in figure 3. Similar sections for the \mperia1 

Va 11 e y have a 1 so been pub l i shed (Di bbl e e, 1 954) . The 

detailed stratigraphy of the Salton trough is incompletely 

known. The geologic samples from the few deep wells withln 

the trough are not easily interpreted stratigraphically. 

Mo.:;t of thP. coltJmnar sP.ctions are based on exposures in 

the western side of the :mperial Valley and the eastern 

side of the Coachella Valley. One of the most economically 

important stratigraphic units is the Imperial formation 

which in places is over 3000 feet thick. This formation 

was deposited under marine conditions during early 

Pliocene time and probably represents a major marine 
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i ncursion of the Gu1f. It is thought to contain 

potentlal petroleum reserves. Following this marfne 

incursion there has been intermittent and interfingering 

deposition from the Colorado River, alluvial fans, and 

occasional marine inundations by the Gulf waters. The 

possibility of large continuous horizontal displacements 

along the major strike-slip faults certainly adds much 

complexity to stratigraphic correlation within the 

Cenozoic section. 

The crystalline rock types of the Peninsular Ranges 

are primarily granitic intrusives of the Southern 

California batholith probably of Mid-Cretaceous age. 

I ri place::; large 1-ernnants of older ::;edimentarY rock::l now 

metamorphosed are observed. The crystalline rocks of 

the ranges east of the trough comprise more diverse 

igneous, meb1morphjc :=ind volc:rrnir. typ2s. 
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GEOPHYSICAL STUDY 

Previous Geophysical Work 

The ear 1 i est geophys i ca 1 studies in the Sal ton trough 

were undertaken by Saske (1935), who made 13 vertical and 

horizontal magnetic traverses across the Bannlno-Mlssion 

Creek fault. A vertical magnetic intensity survey of the 

Salton Volcanic Domes was reported by Kelley and Soske 

( 1936). 

Four gravity pendulum stations were established in 

this area in JY3Y by the u. s. Coast and Geodetic Survey 

(Duerksen, 1949). These stations are located at Mecca, 

Niland, El Centro, and Palomar Mountain, California. An 

additional pendulum station had been established in 1910 

at Yuma, Arizona. The principal facts for these obser­

vations along with the values obtained from reoccupations 

at several of these stations are given in Appendix c. 

A transcontinental gravity profile along U. s. Highway 

80, which crosses the Imperial Valley and terminates at 

San Diego, shows that the gravity high anomalously 

associated with the Imperial Valley can be traced into 

southern Arizona (Wool lard, 1962). A regional Bouguer 

anomaly map of southern California and Arizona indicates 

the gross aspects of the gravity field (Woollard, 1964). 

Nettleton et~., (1960) made a test flight of an airborne 

gravity meter across the Salton Sea area and compared the 

free air anomalies to Wool lard's gravity stations. A 
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gravity profile from Cuyamaca Lake, California to Beatty, 

Nevada crosses the northern end of the Coachella Valley 

and exhibits the steep gravity gradient across the front 

o f t h e S a n J a c i n t o Mou n t a I n s ( Pr cs s , 1 96 0 ) • 

The most important geophysical investigation of the 

Colorado Delta region was made by Kovach (Kovach et al, 

1962), in which all of the seismic data and most of the 

gravity observations south of latitude 33° were discussed. 

Since the present investigation is closely related to this 

work,all of the seismic data is summarized here. The 

gravity observations by Kovach were used to extend the 

complete Bouguer map southward to the Mexican border. 

Many extensive deta1 led geophysical studies in the 

Salton trough have been made by the oil companies. Because 

of the active interest in this area for possible petroleum 

reservoirs it is understandable that none of this data has 

been published. 

A simple Bouguer anomaly map of the ontire northern 

portion of the Gulf of California structural province based 

on a contour interval of 5 milligals and Including the 

geophysical work in the south and the area covered in this 

report i s i n p res s ( B i eh 1 er et a 1 l 964 ) . 

Seismic Field Methods 

In order to establish control on the sedimentary 

thickness in the northern Imperial and Coachella Valleys 

four partially reversed seismic refraction profiles were 
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shot. Their locations were chosen on the basis of 

geologic desirability, shot hole locations, and accessibili­

ty. The agricultural development in both the Coachella and 

Imperial Valleys makes it extremely difficult to conduct 

any extensive seismic program within these areas. The 

danger of artesian water in the northeast Imperial Valley 

prohibits the use of deep shot holes or large explosive 

charges. These are some of the reasons for not obtaining 

complete reversal Information on the profiles. Permission 

to undertake seismic studies in the Salton Sea was 

requested but not granted. This still remains one of the 

most interesting areas in which to obtain seismic data. 

The seismic field work was carried out during March 1963 

by the Seismological Laboratory of the California 

Institute of Technology. 

An attempt was made to use two separate recording 

systems for each shot. However, because of several 

mechanical failures this was not always possible. Both 

systems used a 1400 foot spread with 8 geophones 200 feet 

apart. One recording setup (designated Unit R} consisted 

ot United Geophysical low frequency refraction ampl if 1ers 

and Houston Technical Laboratories two-cycle geophones; 

the other (designated Unit P) was an S.l .E. portable seismic 

system packaye. 

Shot holes were drilled either by hand-auger or a shot 

hole rig contracted from Partain Exploration Company. For 
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shot point to detector distances up to 12,000 feet, with 

the exception of the Thousand Palms profile, excellent 

records could be obtained with 5 to 20 lbs of Vibrogel 3 

in 10 to 15 foot holes. For greater distances 30 to 70 lhs 

of explosives at 30 to 60 feet were used. For the most 

distant shot on the Westmorland-north profile (shot point 

to detector 100,000 ft) 3 holes 120 feet deep with 120 lbs 

in each supplied ample energy. 

Because of the difficulty in locating shot holes it 

was necessary in most cases to keep the shot point fixed 

and ~move the spread. This necessitates shooting at both 

ends of a profile to obtain reversal information. For 

several shots on the Westmorland and Truckhaven profile the 

shot point was moved, giving some dip information. 

The average depth of penetration was greater than 

0.3 of the shot point to detector distance. 

Seismic tnterpretation. 

The arrival times of most first arrivals could easily 

be read to 0.01 seconds. Where ambiguity exists in the 

first arrival, it is noted in the discussion of the 

individual profiles. All major secondary arrivals were 

also read. Because of the shallow depths of the shots and 

relatively flat terrain along the spreads, it was not 

necessary to correct the raw travel times. 

Conventional time-distance plots for each profile 

were made and time-intercept methods used in the inter-
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pretat ion. Jn most cases the reversal information is 

incomplete. Interpretation was then made assuming 

horizontal layers. 

The shot number and recording unrt code are shown 

at the farthest ends of each spread. The shot points 

were located at the ends of the profiles except where 

otherwise designated. In these cases the shot point to 

detector distance was plotted as if the shot point was at 

one end of the profile. 

The location of the refraction profiles alono with the 

6 profiles previously established by Kovach (1962) are 

shown in Figure 4. The travel time plots and calculated 

s e ct i on s are s how n l n f i g u r e 7 to l 0 • A s u mm a r y of t he 

seismic velocities and depths for all 10 profiles is given 

in Table land Table 2. 

The high velocity layer (>17,000 ft/sec) is inter­

preted as basement complex composed of intrusive and 

metamorphic rucks. Tt1e intermecJlale velucily layer::> 

(7,000-15,000 ft/sec) are probably Tertiary sediments with 

increasing velocity with increasing depth of burial. The 

lower velocity layer3 arc Recent and Plci3toccna sediments. 

That the 15,000 ft/sec layer is not basement rocks is 

demonstrated by the two deep wells which penetrated this 

layer and reportedly were still in sediments. Two seismic 

cross e ct i on s ( B i eh l er et a l , 1 964 ) corr e l ate the v e 1 o c i t y 

layers across the Imperial Valley and along the axis of 
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the trough (figure 5 and 6} 

In view of the diversity of basement rock types which 

crop out along the borders of the Salton trough the 

variation in basement velocities from 17,000 (5.2 km) 

to 21,000 ft/sec (6.4 km) is not surprising. There is 

however, a remarkable correlation between profiles of the 

lower velocity layering. On the basis of limited sub­

surface wel 1 data this seismic layering does not appear to 

have any known stratigraphic significance. The Grube­

Engebretson well penetrated four of these seismic layers 

and reported the entire section 12,300 ft section as 

rlio-~leistocene Borrego formation. 

This apparent seismic layering may well be due to 

compaction of the sedimentary section which would be quite 

simi 1ar throughout the trough. This is substantiated by 

the absence of any high velocity sedimentary layers 

(15,000 ft/sec) where the total thickness is less than 

10,000 feet. Alternatively this may be due to a combi­

nation of compaction and pinch out of a sedimentary unit. 

The discontinuity in depth between the stone well and that 

of the Thousand Palms profile is not as significant a::> il 

appears in figure 6 because the Stone well is closer to 

the axis of the trough and over a thicker sedimentary 

section as indicated by the gravity dntn (figure 23). 



Tabile l Seismic Layer Vel-0cities 

Profile Vo v l v2 'I 3 V4 V5 v6 

Thousand Palms 2100 5900 7900 11, 000 17,900 

Truck haven 1300 5470 7500 12,100 17,650 

Frink 900 6100 6800 10,000 13,800 l'(, 'TOO 

Westmorland-North 340 5590 6420 8900 12, 350 15,400 21,000 

Plaster City-North 1500 6940 19,230 
I 
~ 

Superstition Hills 5650 7020 7920 l O, 700 14' 200 -..:i 
I 

E. Highline Canal 1200 5750 c(620 8580 l 2,500 18' 180 

Coachella Canal 2270 6270 7300 8770 1 l '050 20,000 

G lam is -Og i l t y 3720 6970 18,520 

Mexican Border 1500 6070 7580 8520 l l '930 15,475 

Average Velocity 1700 5850 7080 8525 11 ) 930 15' 025 18,775 



Table 2 Seis~ic Layer Tiickness 

Pr of i le ho h l h2 h h4 he:: h Total 
3 '.) 

Thousard Palms 100 1000 850 2400 4350 

Truckhaven 40 400 2800 2300 5540 

Frink 50 490 1500 1400 3900 7340 

Westmorland-North 10 600 1800 3200 3900 8800 18,310 

Plaster City-North 134 2620 2754 
I _.. 

Superstition Hi 1 ls* 45 700 1150 3945 3295 9135 ()'.) 
I 

E. Higrline Canal 40 1426 3184 855 464-5 10, 150 

Coachella Canal 77 1315 1450 24-60 4070 9372 

G l am i s -0 g i 1 by 407 1790 2197 

Mexican Border* 50 1595 1670 3890 4500 11, 705 

Average Thickness 95 94-0 1895 2425 3625 8800 

*Average Thickness Used for Dipping Layers. 
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Westmorland Profile 

This is the longest profile shot in the Salton trough 

and for the first time establishes the depth to basement 

near the center of the va1ley (Figure 7). The recordings 

were made along the east-west road which is one mi le north 

of and parallel to U.S. Highway 99 near Westmorland. Al 1 

distances are referred to the primary shot point on the 

west side of U. S. 99 (33° 03.64 1 N. Lat, 115° 43.50 1 

W. Long) . 

The 8~0 ft/3cc arrivals are observed as secondary 

events and give a calculated depth of only 10 feet. This 

layer was assumed constant and horizontal. Shot points 

2 and 3 where 1000 ft and 2500 ft respectively west of shot 

point l. No 'rshingling" of the 5680 ft/sec arrivals 

indicates little or no dip to this layer in this area. 

Strong secondary arrivals are observed from this layer 

along the entire profile. The corresponding 5,500 ft/sec 

velocity on the reversal is based entirely on secondary 

arrivals and may indicate a very small dip in that direction. 

The 8750 ft/sec arrivals also appear as strong multiple 

refractions with double and triple the intercept time. The 

12,250 ft/sec arrivals were fair and the 15, 150 ft/sec 

arrivals were weak. Some minor structure in this layer 

Is indicated by the offset in arrivdls at 45,000 feet. 

It was not possible due to logistic problems to obtain 

recordings between 55,000 and 90,000 feet. Another layer 
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may exist but on the basis of other velocity sections in 

the valley it is not likely. The slightly higher 

apparent velocity of basement may be due to a westerly dlp 

which i~ conlrdrY Lo wl1al would be expected from the 

synclinal structure of the trough, and the shallow easterly 

dips of the upper layers. Using the available reversal 

information the depth to ba3ement i3 18,300 feet. If the 

basement is projected easterly with the same shallow dip 

characteristic of the upper layers, the depth to basement 

is about 19,400 feet beneath the center of the valley. 

The close correlation of these seismic layers with 

those elsewhere in the valley and the clean basement 

arrivals suggests that the contemporaneous metamorphism 

of the sediment around the Salton Volcanic Domes (White 

et al, 1963) is a localized phenomena. 

Frink Profile 

The recordings for this profile were made along State 

Highway 111 on the east side of the Salton Sea. All 

distances are measured from a point east of Frink (33° 21.7 
0 N. Lat., 115 38.4 1 w. Long.). The profile extends south-

east from Frink, through Wister, to Mundo Siding. Becctuse 

of problems involved in shooting at the southern end of the 

profile a complete reversal could not be made. All of the 

reverse points had to be obtained from hand-augered shot 

holes. Two interpretations of the profile are shown in 

Figure 8. The first interpretation assumes horizontal 
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layers and uses only the well-established portion of the 

profile. This gives a basement depth of 7300 feet. The 

reversal interpretation was calculated by two methods. 

The first method is based on the best fit to the 8 points 

from shot 12P, which gives apparent basement velocity of 

17,400 ft/sec. and a depth to basement at the center of the 

profile of 7,200 ft. The second method is based on the 

apparent velocity using the reverse point and shot l2P. 

This gives a higher apparent velocity of 19,800 ft/sec, 

and increases the dip of the basement contact but has 

negligible effect on the total depth to basement at the 

center of the profile (7,400 ft.). Thus all three 

interpretations give a basement depth of 7000-7500 foot 

near Wister, with possibly a slightly decreasing basement 

depth in the northwest. For both reversal interpretations 

a 900 ft/sec, and 6, 100 ft/sec velocity layers were 

assumed. 

If the linear surface trace or the Banning-Mission 

creek fault is projected southeast it would lie to the 

southwest of this profile. This may account for the rather 

shallow depth to basement as compared to 18,000 ft at 

Westmorland. The similarity of this seismic section with 

the other profiles and the existence of clear consistent 

basement arrivals tor 15,UUO feet limits the northward 

extent of the proposed metamorphic effects of the Salton 

Volcanic Domes. 
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Truckhaven Profile 

This unreversed profile parallels U.S. Highway 99 

on the west side of the Salton Sea. The zero point is 

located at 33° 14.7 1 N. Lat., 115° 56.3 1 W. Long. (Figure 

9/. Al 1 of the shot points except 1,2, and 8 were located 

at this point. Shot points l and 2 were 2000 feet north­

west of this point and shot point 8 was 10,000 feet south­

east. The arrivals from these shots were plotted from the 

zero point using the shot point to detector distance. 

There is some indication of faulting near the middle 

of the profile where the first arrivals lie along the 

12,100 ft/sec layer. It is difficult to say if those points 

associated with shots 9P and lOP are basement arrivals or 

possf bly a 15,000 ft/sec layer. However, nowhere in the 

Salton trough is a 15,000 ft/sec layer observed at such 

shallow depths as are indicated here. On this basis these 

arrivals are placed on the basement line. The data is 

insufficient to place accurate limits on the depth or extent 

nf this minor s;trur.turP.. 

/ 

A slight dip is indicated by the en echelon pattern of 

the arrivals from shots BP and 8R but this could be the 

result of complex structure between the zero point and SP 

8. Making a straightforward interpretation of horizontal 

layers glves a basement depth of 5,500 feet. The Pure 01 l 

Company, Truckhaven Viel 1 was drilled to basement approxi-

mately 2 miles southeast of this profile probably within 
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t he zone of faulting to a depth of 6,100 feet which is. 

in good agreement with the seismic evidence. 

Thousand Palms Profile 

This profile was recorded along the frontage road 

which rarallels the Indio freeway (U.S. 99) on the north­

east. The town of Thousand Palms ls located about in the 

middle of the spread. It was extremely difficult to obtain 

satisfactory records on this profile because of traffic 

noise along the heavily traveled freeway. Also, the shot 

point on the northwest end of the profile was located In 

the sandy bottom of the Whitewater River wash which had 

exceedingly poor couplrng for seismic energy. Several 

attempts were made to obtain basement arrivals along the 

reverse line by shooting 150 pounds at 90 feet. None of 

these produced usable records. This may be due to complex 

basement structure near the northwest shot point; howeveG 

the recording units were split such that one should receive 

basement refractions and the other an intermediate layer 

(13R, l3Pl and both had extremely weak signals. That 

there is a fairly level basement section between 15,000 and 

30,000 feet from the zero shot point in the southeast is 

indicated by the collinearity of arrivals from shots (7,8) 

and 4 which were 2500 feet apart. Also the upper layers 

determined by the reversal interpretation have approximately 

equal apparent velocity. 

The depth to basement obtained by assuming horizontal 
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1 ayers is 4350 feet. The Stone well about 4 miles to the 

northeast was drilled to 7468 feet from a point 1500 feet 

above sea level and did not penetrate basement. The 

gravity data indicates a thickening sedimentary section in 

the direction of the Stone well. However, because of the 

proximity to the Banning fault the basement structure 

in this area is undoubtedly very complex. The magnetic 

data of Soske (1935) indicates that the seismic profile 

is along a magnetic high which may represent an uplifted 

block of basement. 

Gravity Field Methods 

During the period of August, 1961 to February, 1964 

aµµruximalt;ly 2500 gr-avity :stcttions were established in 

the Coachella and Imperial Valleys and the surrounding area. 

An additional 180 underwater gravity readings were made In 

the Salton Sea. Readings were taken along all roads and 

trails accessible with a four-wheel-drive vehicle. Several 

stations were established on foot traverses into inac­

cessible areas to provide additional coverage, including a 

traverse to San Jacinto Peak. The stations were established 

on a one-mi le grid within the valleys and a one-mi le spacing 

on all profiles along the surroundint1 mountain roads. In 

addition gravity lines were extended as far east as Blythe, 

California, and gravity data was obtained westward to the 

Pacific Ocean to establish regional control. Wherever 

possible the gravlty stations were selectively placed in 
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order to avoid 1arge inner zone terrain effects which 

could not be calculated from the scale and contour interval 

of the maps being used. 

Gravimeter Calibration 

A Master Model 11 I Worden gravimeter No. 533 was used 

to es tab 1 i s h mos t of the 1 and s tat I on s • A ca 1 i bra ti on 

constant of 0.52295 mllligals per dial division was 

determined by reading the gravlmeter over a previously 

established calibration loop from the pendulum stat[ on and 

Woollard base station at the Cal lfornia Institute of 

Technology to the pendulum station at Mount Wilson 

Observatory. There ls an observed gravity difference of 

over 3?4 millig;::ils hetween these two stations .. which is 

almost equivalent to a full scale reading on the gravimeter. 

This permitted the calibration constant to be determined to 

±0.00003 milllgals per dial division (see Appendix A for 

detailed description of stations and observed gravity). 

The ca1ibration of the meter was checked along this base 

loop several times during the course of the survey to 

determine if there were any changes in the calibration 

constant. No differences in the calibration within the 

observable error were detected. During the latter part of 

the survey the meter was fitted with a direct-digit reading 

dlnl in order to Increase its sensitivity and range. The 

new calibration constant obtained over the calibration 1oop 

was in agreement with ~hat obtained by ti it-table methods 
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of Texas Instruments. 

For the foot traverse to San Jacinto Peak a Worden 

Prospector Model gravimeter No. 416 was used because of its 

ease of packing. The calibration constant of 0.54852 

(mllligals/dial division) for this meter was also obtained 

from the cal !bration loop. 

A La Coste - Romberg underwater gravimeter Model No. 

HD-3 was used to establish all of the underwater stations 

in the Salton Sea. A calibration constant of 0. 1058 

m i l 1 i g a l s per s ca 1 e d i v i s i on was es tab 1 i s he d by L a Cos t e 

and Romberg Inc. 

The Worden gravimeter readings are reproducible to 

within 0.1 dial division or a reading error of ±0.05 

milligals. The La Coste underwater gravimeter under normal 

conditions was reproducible to 0. 1 dial divisions or a 

reading accuracy of 0.01 millig;::ils. The La Cash:~ mi:der, 

however, is not a null reading instrument because such a 

meter would be very unstable in soft bottom muds and under­

water conditions. A gravity reading is produced by a 

combination of a direct reading dial and the measurement 

of a slope of a record trace which corresponds to the drift 

from center of the balance. Under normal conditions this 

slope can be determined precisely. If the bottom becomes 

very soft or if there is considerable surface disturbance 

the trace is no longer a straight 1 ine, and the true slope 

is somewhat incoherent. Even under the worse conditions 
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encountered the reading accuracy was st i 11 better than 

±0.05 milligals. 

Base Stations 

The e11Lire \Jfavily survey was tied into a Woollard 

base station at California lnstitue of Technology in 

Pasadena (Behrendt and Woollard, 1961). This was done by 

making several direct loops between Pasadena, Pomona, 

Banning and Indio, California. From these points direct 

ties were made to secondary base stations scattered through­

out the area. These secondary bases were inturn all tied 

into each other so that an entire network was established 

with a maximum error of closure of 0.05 milligals. All 

of the secondary base stations in this area which were 

established by California dll companies had to be adjusted 

to coincide with the Woo11ard reference base at C.\.T. and 

because of a known error in the calibration constant of 

the meter used by some to establish these stations. It ls 

believed that the maximum error in observed gravity through­

out the entire network of primary and secondary base 

stations is less than 0.1 milligals relative to Pasadena. 

The underwater stations were tied into the land net­

work at Salton City, California by reading the La Coste 

gravimeter on the dock and then tieing this point Into a 

secondary base station at Truckhaven, California. For a 

description of the primary and secondary base stations 

along with their observed gravity values see Appendix 8. 
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Station Location 

Al 1 of the gravity stations were located on U.S.G.S 

topographic maps; the major portion are on 7~ minute 

quadrangles, the remainder on 15 ml nute quadrangles. The 

advanced sheets for the northeast section of the area were 

used for stations in that vicinity. Most of the maps are 

recent and very accurate and it is believed that most of 

the stations are located to within 50 feet when placed near 

intersections or some easily recognizable point on the 

maps. Some of the canyon and mountain stations are along 

jeep trails or in dry washes and may be in error by two 

hundred feet, as they were located primarily by a cali­

brated survey speedometer and topographic correlation. All 

of the latitude and longitudes of the stations were picked 

to 0.0001 degrees. The majority of the land stations have 

a location error less than ±0.02 milligals and all are 

less than ±0.05 milligals. 

The first water stations were located using three 

tellurometers. These electronic surveying instruments 

( Po 1 i n g, l 96 l ) ha v e an ea s i l y ob t a i nab 1 e accuracy of bet t er 

than 50 feet ln ten miles. Two instruments were placed on 

the shore at points such that the intersection of the 

distance arcs were close t~ 90 degrees to produce maximum 

accuracy. The third Tellurometer was placed on the boat 

and used as the master station. Wf th this method the water 

stations were accurately located to within fifty feet. 
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Due to the extremely high temperatures during the day it 

was impassible ta use the Tellurameters continuously with­

out burning out certain components. As a result the next 

group of stations were located by the intersection of two 

transit sights on the boat from the shore. Some of these 

stations may be in error by 200 feet. During the latter 

part of the water survey the stations were located by an 

east-west transit line and two Tel lurameters, one at the 

transit station and the other on the boat. Thus a straight 

course could be navigated and the distance from a fixed 

land station continuously monitored. This method was 

found to be most satisfactory of all. As a check on the 

accuracy of location during this latter part an additional 

transf t station was established on the shore to give an 

extra sight on the boat at approximately right angles. Jn 

all cases the locations established by using the two transit 

sights or one transit and the Tellurometers were In good 

d\,:JrtitilJl\:rnl wilhin Lhe p1ull[ny dt.;CUJ-acy ur Lhe 111ap:s. 

Due to visibility limitations of the transit some of 

the last stations on the long east-west l Ines had to be 

established by dead reckoning, and sailing a course in line 

with the previous wake whlch remained visible for several 

minutes on calm days. The boat was anchored in order to 

make all measurements. The location error of most of the 
water stations is probably about 0.08 mgal with some 
stations in error by as much as O. 15 mgal. 
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Elevation Control 

About 70 percent of the stations were estab1ished an 

bench marks or points of known elevations given on the 

topographic maps. Elevations of the remaining stations 

were interpolated from the contour maps when the contour 

interval was less than ten feet or by the use of two 

Wallace and Tiernan altimeters, tied to points of known 

elevations. As a rule in order to remove the fluctuations 

in barometric pressure there is usually an altimeter 

reading at n benchmark or usefu1 elevation every twenty 

minutes except in some extremely difficult canyons and 

along the foot traverse to San Jacinto Peak. These 

stations elevations were established by removing the effect 

of barometric pressure variations and then multiplying by 

the current dial division constant. tverywhere these 

elevations agreed with those of the topographic maps to 

within its reading accuracy. In fact several lines were 

established over areas of known elevations and this method 

applied to determine the elevations from the altimeters 

alone. These agreed everywhere to within three feet of 

the true elevations. The altimeters were read at every 

station regardless of whether it had a known elevation 

or not, thus one could determine a dial factor for each 

traverse. Most of the stations are beli~ed to have 

elevations correct to 5 feet with most of the stations 

having errors of less than a foot. A maximum error due 
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to the elevation would be 0.3 mgal and most less than 

.0.06 mgal. 

Whenever barometric leveling was necessar~ care was 

taken to reoccupy a known elevation immediately as soon 

as any noticeable changes in atmospheric pressure took 

place, such as thunderstorms or high winds. The 

elevations for the water stations were determined by lead 

line measurements from the boat using a tape measure and 

a 3 pound weight and reading the elevations to the nearest 

half foot. The surface of the Salton Sea at the time of 

the survey was -233.5 feet below sea level (Littlefield, 

1963) according to the records of the gauging station at 

the Salton Sea test base maintained by the u.s.c.G.S. Due 

to drift of the tape from a straight line, bottom mud, and 

surface irregularities it is believed that all of the water 

stations have depths correct to 2 feet giving a maximum 

error of 0.15 milligals. 

Gr a vi Reductiun 

Latitude Correction 

Theoretical sea level gravity was calculated by the 

computer in the terrain correction and gravity reduction 

program using the international gravity formula for the 

reference spheroid: 

Theo.G. = 978.049(1+0.0052884sin2e - 0.00000059sln22e) (1) 

where 9 is the station latitude and Theo.G. is In gals. 
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Drift Correction 

The effects of earth tides and instrumental drift were 

removed by calcu1aling a drift curve based on reoccupations 

throughout a given field period. In most cases no more 

than two hours elapsed between reoccupations. The total 

drift was very low and almost constant at 0.05 mi lligals/ 

hour. The meter was read each nlght and morning at the 

same base station so a continuous drift curve could be 

plotted. 

Free Air correction 

The least uncertain of the reduction factors is the 

free air correction. This correction Is based on the 

formula for the normal vertical gradient of gravity. 

FA= 2 g h ( 1 -l.b_+ .. ··) (2) 
Ro 2 Ro 

where g is the average gravity value, Ro the average 

radius of curvature, and h the height above the geoid. 

In practice the factor 2gh/Ro is taken as constant with 

FA= 0.09406h mi lligals h in feet (3) 

and the second term is neglected. 

Except in areas of high elevation the second term 

i s s ma l I • For h = 3 0 0 0 ft, on l y 0 • 07 mi l l i g a l s, 

h = 6500 ft, 0.3 mi lliga1s, for San Jacinto Peak (10,804 ft) 

0.8 mi lligals. A much more serious error can arise from 

the deflexion of the vertical by a mountain mass which 

causes the actual curvature l/R, which should be used, to 

differ considerably from the mean radius of curvature 
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1/Ro. This can increase both the free air and Bouguer 

anomaly by several mi lligals. A more complete discussion 

of this effect is given by Heiskanen (1958). Because 

of the difficulties in obtaining the actual curvature and 

to avoid confusion the free air reduction was based on 

equation (5), howeve~ this effect is noted as a possible 

source of error for the mountain stations, and probably 

does not exceed 5mi11 I gals. This, however, has very 

little effect on the interpretations in this report 

because the detailed interpretations use only the stations 

with low elevations; and the regional interpretation is 

based on averages over wide areas. 

Terrain Correction~ 

The calculation of terrain corrections is probably 

the most tedious and time consuming part of gravity 

reductions. A Fortran program was written for an IBM 

7090 digital computer which eliminates much of the task. 

The program essentially follows the methods outlined by 

Kane (1962) although his program was written for a Dataron 

220. The use of the 7090 with its larger memory capacity 

and increased speed is much more suitable for the problem. 

For areas about one degree square it is not necessary to 

produce a magnetic tape for the input data. The program 

also has the added option of doing the complete gravity 

reduction with up to three density functions for the 

elevation and mass correction. The program was checked 
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against several hand computed corrections and the 

difference was always within ±0.05 milligals. As an 

additional check an inclined plane was digitized by 

approximating with one kilometer blocks and agreed within 

5 °/o of the value which can be calculated exact1y. 

The input to the program consists of a digitixed 

topographic map in one kilometer squares, the latitude 

and longitude of the point for which a terrain correction 

is to be computed and the meter reading and inner zone 

correctiur1 if Lotal gravity reuuclior1:::; i:::; ue:::;ireu. 

One of the major advantages of this system besides a 

considerable savings in time is the internal consistency 

of the corrections. 

The system used here corrects for the terrain effect 

within a 40 km square with the station at the center, 

omitting the innermost 2 km square. 

This is approximately equivalent to the C to K zones 

o t t h e H a y t o r d -1:3 ow l e ch a r t s ( S w i c k , I 94 2 ) o r t h e m i d d I e 

of zone G to middle of zone M of the Hammer (1939) charts. 

The inner zone terrain correction for the 2 km square 

about the station has been calculated by several methods, 

depending on the nature of the near-station topography. 

Where the terrain is irregular the most commonly used 

technique was the application of a rnodif ied Hammer chart. 
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Zones A to F of the Hammer charts 1 ie entirely within the 

area omitted by the computer calculation of the outer zone 

terrain correction and therefore can be used directly in 

the inner zone calculation. The G zone, however, 1 ies 

part within and part without the 2 km boundary. This 

zone cannot be eliminated or included in its entirety 

for this would underestimate or overestimate respectively 

the terrain effect. Therefore a new zone was created 

which is called the G1 zone. The inner radius and number 

of compartments of this zone are the same as the Hammer 

G zone. Because the contribution to the total terrain 

correction of any one compartment of the Hammer charts is 

FI f1Jnr.t ion of thP. ;:ire;::i enclosed by the compartment~ its 

dlstance from the station, and the relief the outer radius 

was established by calculating the radius of a circle 

which would enclose an equivalent area to that of the 

omitted 2 km square. This gives R2 = 1.2533 km. 

Tables were then calculated for the terrain effect of 

one compartment at 10 foot increments of averaged relief. 

using the formula for a segment of a hollow vertical cylin­

der at a point on the axls in the plane of one end of the 

cylinder. 

g = 2TIGp(R2 - Rl + (Ry + h2 )~ - (R~ + h2 )~ )/n (4) 

w h e re : R l i n n er r ad i u s ( 0 • 8 94 9 km ) p =d e n s i t y ( 2 • 6 7 g /cm 3 ) 

R2=outer radius (l.2533 km) h=height (kilometers) 

G =gravitational constant (6.673) 
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n = number of compartments (12) 

In the application of these terrain correction charts 

care must be exercised that a boundary between the 

compartments coincide with a contour line of the station 

elevation. Thl3 will minimize errors in the averaging of 

terrain. For it is total relief which effects the terrain 

correction, not average relief. 

It was also found more convenient to have the terrain 

effect of the C to F zones tabulated in increments of 5 or 

10 feet of relief rather than by hundredths of a mi lligal 

as originally done by Hammer. The table of corrections 

for these zones and the G' zone is given in Appendix O. 

If Lite Loµo\:Jraptiy :;,urruu11di11g the: ::>tatlon was ct smooth, 

regular slope the inclined plane formula of Sandberg (1958) 

was used to calculate the inner zone terrain correction. 

This method was very useful along the sides of the trough. 

Because the corrections calculated by Sandberg used the 

normal Hammer zone radii, it was necessary to calculate 

the correction for the G1 zone radius from the inclined 

plane formula. 

TR= 2 Gp R (TI - 2 cos 9 K (sin 9)) (5) 

From T?ble 3 it can be seen that the application of 

the terrain correction has little effect on the data for 

the Imperial Valley. In the Coachellct Vallt:;y, however, 

the terrain corrections increase both the gradient along 

the borders of the valley and the total anomaly across 



Table 3 Sample Terrain Corrections in the Salton Trough Area 

Type Area 

Central Imperial Valley 

Western Imperial Valley 

Eastern Imperial Valley 

Central Coachella Valley 

Western Coachella Valley 

Eastern Coachella Valley 

San Gorgonio Pass 

Peninsular Range 

Transverse Range 

Location 

El Centro 

Coyote We 11 s 

Glamis 

Indio 

La Quinta 

106-Fargo 

Cabazon 

Warner Springs 

Joshua Tree 

Inner Zone Outer Zone Total 
Terr. Corr. Terr. Corr. Terr. Corr. 

0.00 

o. 03 

o.oo 
o.oo 
0.57 

0.34 

0.08 

0. 18 

o.49 

o.oo 
0.75 

0.09 

0.74 

3. 1 l 

2.89 

4 . .l7 

1. 73 

l. 07 

o.oo 
O.'lB 

o. 09 

0.74 

3.68 

3.23 

4.55 

l. 91 

1.56 

San Jacinto Peak 10.23 60.1+3 71. 26 

Terrain correcti::rns in mi 1 ligals. 

I 
VJ 
-..;] 

I 
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the valley. Failure to make terrain corrections in this 

area would amount to 3 mi lligals in the observed anomaly 

or about 350 meters of sediments wlth a density contrast 

0.2 g/cm3. The effect of terrain corrections can also be 

accn by comparing the simple Bouguer anomaly map 

(Figure24) with the complete Bouguer anomaly map 

(Figure 20). 

The estimated accuracy of the total t~rrain correction 

i S 1 0 ro Or ab 0 LI t 0 . 1 mi J 1 i g a 1 S f Or Va] 1 e Y S tat i On S and 0 . 3 

for most others. 

Bouguer Correction 

Jn areas of great relief and varying surficlal rock 

uerisity it is difficult if not impossible to make an 

accurate Bouguer correction. Within the Salton trough and 

surrounding areas there is over 11,000 feet of relief and 

a wide range of surface rock densities ranging from less 

than 1.9 g/cm3 to more than 2.90 g/cm3. It is customary 

In regional gravity surveys to use the average density 

value for surficial crustal rocks - 2.67 g/cm3 - in the 

Bouguer reductlon. That this method can introduce 

systematic errors into the gravity map has been demon­

strated by Vajk (1956). He suggests the use of varying 

densities in the Bouguer reduction if the surface rock 

densities are known. A recent paper by Grant and 

Elsaha~ty (1962) uses a method which minimizes the 

correlation between Bouguer anomaly and topography. 
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Neither of these methods seem practlcal to use ln thls 

study because of insufficient surface dencity information, 

large relief, and varying station spacing Jn the mountains. 

The question of what is the most appropriate density 

to be used in the Bouguer reduction can best be answered 

by f lrst determining what Is the effect to be studied. 

For studies on a local scale involvlng lntrabasin anomalies 

the most appropriate density would be that of the surface 

sediments. However for regional crustal studies the most 

appropriate denslty Js the average surficial crustal rock 

density 2.67 g/cm3. For this reason two Bouguer 

corrections have been calculated and are 1 isted 

as BA(l) and BA(2). The mnso correction for BA(l) is 

obtained from 

h ( 0. 012770 l ) + ( h-s) ( 0. 0 l 2770w) ( 6) 

for stations with h ~He and by 

HC(0.0127702 ) + (h-HC) (0.0127702) ( 7) 

for stations with h> HC, where h ls the elevation of the 

station, o1 and o2 are average surface densities, Ow is 

the density of sea water, s is the elevation of the Salton 

Sea, and HC is some arbitrary height above sea level. For 

BA(l), D.-p=2.0 g/cm3, D2=2.67 g/cm3, s=-233·5 ft, Ow=l.03 

g/cm3 for all water stations and 0.00 for all land stations, 

and HC = 1000 ft. 

The mass correction for BA(2) is obtained from 

equation (6) for all stations regardless of elevation, 
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wl th o1 = 2.67 g/cm3, s = -233.5 ft, Dw = 1.03 or 0.00g/cm3 

for water or land stations respectively. 

Let us look at the meaning of these two mass 

corrections. For land stations in the case of BA(l) 

these equations become: 

for h < 1000 1 

h(0.01277 ; 2.00} 

for h> 1000' 

{ 8) 

1000(0.01277 . 2.00) + (h - 1000) (0.01277 . 2.67) (9) 

Equation (8) is just the correction for an infinite slab 

of material of density 2.00 g/cm3 from gs =2ITGph, 

2TIG = 0.01277 for p in g/cm3 J and h in feet. 

Equation (9) corrects for 1000 ft of material with 

density 2.0 and the remainder with a density of 2.67. This 

is based on the fact that the average elevation of the 

contact between crystalline 1-ucks and sedi111c:11Ldry ruck::; i::; 

approximately 1000 feet In the Salton trough. For stations 

with h positive the correction is subtracted from the 

observed gravity. For stations with h negative the 

correction is added. This in effect fills up the area 

below sea level with 2.00 density material. For all water 

stat i on s ( h <. -2 3 3 • 5 f t ) the correct i on i s : 

h(0.01277·2.00} + (h +233.5)(0.01277 . 1 .03) (10) 

where the second term accounts for the attraction of the 

slab of water above the station. 

For BA~2) the corrections are similar except 2.67 is 
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used for all land stations regardless of h. 

Both of these corrections have been used in parts of 

this study. The regional map and the complete Bouguer 

map are based on BA (2). For investigation of the residual 

anomalies and intrubasin anomalies of the Coachella Valley 

a combination of BA (1) and BA (2) was used. The e.ffect 

of these corrections on the anomalies is discussed else~ 

where. 

Errors arising from the Bouguer correction through 

the use of erroneous density can be minimized by the 

judicious selection of the datum elevation. The datum 

elevation should be somewhere between that of the lowest 

and hlghest station, and not necessarily at sea level. 

Since It is customary in regional studies to compare sea 

level Bouguer anomalle~ a constant factor can be added 

to ~ccount for the difference between datum and sea level. 

Figure 11 glves the distribution of all of the gravity 

observations in the Salton trough region for 100 foot 

increments. Although the station elevations range from 

-278 feet to 10,804 feet, 57 °/0 of the observations are 

witl1i11.::t.300 reel of ::>ed level. With a median of 154 feet. 

Thus the datum selected here was sea level. Had the median 

been significantly different from sea level slightly greater 

accuracy could be obtained by using the median elevation for 

a datum as done by Corbato (1963). 
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Before proceeding with the interpretation of the 

Rouguer anomalies it should he emphasized that contrary to 

statements in many geophysical texts the application of the 

elevation, mass, and topographic corrections does not mean 

that the gravity anomaly at the datum level is obtained 

for this would equate Bouguer correction to downward 

continuation. The difference in areas ot high elevation, 

with local anomalies of the vertical gradient, and density 

changes above the datum can amount to several tens of 

mi lligals. For a discussion and example of this effect 

see Appendix E where the reduced Bouguer gravity anomaly 

over an ideal mountain range is calculated and compared 

to that of the 11 true 11 anomaly. 

Reduction Accuracy 

Aside from errors introduced by using an incorrect 

density in the Bouguer reduction it is estimated that most 

of the valley stations are accurate to + 0.5 mi 11 i gals and 

most mountain stations are accurate to± 0.8 mil ligals. 

Considering the error in the terrai~ correction would raise 

these values to 0.6 and l. l mi lligals respectively. 

The observed gravity values are accurate to± 0. l, ± 0.2 

milligals respectively. 

Gravity Interpretation 

Relation of Free Air Anomalies to Surface Elevation 

The relation of surface elevation to free air 

anomalies has been studied by Woollard (1962), Heiskanen 
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and Vening Meinesz (1958). Woollard has shown that the 

r e y i o n a l r r e e a i r ct no rn d 1 i es t end t o ct v er- ct g e z er o w i t h 

marked1y positive values in the mountains and negative 

values in the valleys. It is easy to show that this 

re1ation would hold even if there were complete local 

isostatic compensation. For example, the gravity effect 

at the center of a sediment filled basin 25 kilometers wide 

and 4 kilometers deep with a density contrast of 0.3 Q/cm3 

is approximately 4 times that from a compensating anti-root 

at a depth of 30 km. A similar effect holds for a 

mountain mass see Appendix E. However, large departures 

from this relation are significant. 

The averaye ::;laliun rree ctir a1rnmaly dJH.J averaye 

station elevation for the Salton trough area are shown in 

Figure 12. These values were obtained by averaging the 

free air anomaly and elevation for all gravity observations 

within 20 km squares (Table 4}. The average station free 

air anomaly for this area is -35 milligals, which is not 

unexpected conslderinQ that 60 to 70°/o of the observations 

were made in the valley. Aside from the near-linear 

correlation of free air anomalies and elevation (which 

parallels closely that given by Heiskanen~ lt ls 

interesting to investigate the points of maximum departure 

from this trend. An lnspectlon of Table 4 shows lhctt ctll 

of the points with free air anomalies of around -80 

mi11igals and low elevations are associated with the 
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the Coachella Valley. Such a large negative free air 

anomaly must indicate a considerable mass deficiency. 

The effect of the low density sediments could not account 

for more than half of this anomaly. Thus the remaining 

anomaly of about -40mi1 llgals must be accounted for in 

the crust or upper mantle. Complete local compensation of 

a narrow structural feature such as the Coachella Valley 

would not be expected. Thus the valley should have little 

or no anti-root contributing any positive effect. Instead 

the free air anomaly Indicates that there is regional 

compensation of the area as a whole. The point at +86 

mi lligals and close to 4000 feet of average elevation is 

located over the highest portion of the southern 

Peninsular Ranges and probably indicates lack of complete 

isostatic compensation in this area. 

Relation of Bouguer Anomalies to Surface Elevation 

In doing a study on the relation of Bouguer anomalies 

to surface elevation it is very easy to bias the relation 

by the means which data is obtained. Normally in any 

gravity survey the average elevation of gravity stations 

in a given area is not representative of the true 

elevation of the area. In areas of high relief the average 

station elevation can differ by 2000 feet or more from the 

true regional elevation, the former is invariably less than 

the latter. This is simply because most gravity 

observations are made along roads which usually fol low the 
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lower elevations. Few observations are made on mountain 

peaks and slopes. The use of the airborne gravimeter for 

geodetic and regional studies wi11 remove this error. This 

error is also a source of scatter in the points of the free 

air anomaly relation prAviausly discussed. 

One method of reducing this effect is by using an 

average based on a final contour map. This is a time 

consuming and laborious task. A method was devised for 

a digital computer which essentially produces a digitized 

grid of gravity values from a weighted sampling of all 

observations within a given area. 

An averaging of these values 

within a given area and the use of digitized topugrapliic 

maps essentially removes the station bias. 

Figure 13 is a plot of these regional Bouguer 

anomalies and reaional elevation. The regional elevations 

(see Table 5) were obtained by averaging the digitized 

topographic map values, for 20 kilometer squares, used 

In the terrain correction program. Thus each average 

value represents 400 one kilometer topographic squares. 

The regional Bouguer anomalies were obtained for the same 

20 kilometer squares by averaging the computed Bouguer 

values developed on a 4 x 2 kilometer spacing (Figure 27). 

These values are given in Table 6. This plot (Figure 13) 

gives almost double the elevation for a given Bouguer 

anomaly that is predicted by Woollar~s curve. 
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The best linear fit has a slope of 15 milligals per 1000 

feet. comparing this plot with Figure 14 which ls based 

directly on station values a somewhat less coherent 

relation and smaller slope (12 milligals/1000 ft) is 

ob:::ierved a::i ar1tic;ipdlt:u. 

The scatter can be reduced further through the 

appl icatlon of geologic corrections for the near surface 

anomalous masses or restricting the plot only to those 

points on crystalline rock outcrops. 

The plots presented here are only construed to hold 

for southern California and to demonstrate the methods 

used in obtaining more meaningful and coherent relations 

of gravity anomalies and surface elevations. The 

application of these methods to data on a continental scale 

would produce more general relations. 

When dealing with relief of several thousand fe=l l l 

is easy to show that the correlation of Bouguer anomalies 

to surface elevations cannot be removed by using any 

geologically reasonable Bouguer reduction density. The 

average crustal rock density of 2.67 g/cm3 used in thls 

study is a minimum for average crystalline rocks. The 

average density of crystalline and basement rocks for the 

United States is greater than 2.74 (Woollard, 1962), but 

increasing the Bouguer density only tends to increase the 

topographic correlation. 



Density-Depth Relation and Well Data 

In order to make reasonable Interpretations of the 

intra-basin anomalies,knowledge of the relation of density 

to depth for the sediments must be assembled. Despite 

the number of wells dri 11ed in the Salton trough only a 

limited number of density measurements are available. A 

plot of density measurements on dri 11 cores from 5 wells 

in the Salton trough arA given in Figure 15. The density 

samples from the Salton Volcanic Domes area are not 

included because of the possibility of alteration. The 

large scatter in the points is not unexpected considering 

the diversity of rock types sampled; however, a general 

increase of density with depth is obvious. wool lard's 

curves for Miocene and Eocene sediments and Corbato 1 s 

curve for Tertiary sediments of the San Fernando Valley 

are included for comparison. The Miocene curve is con­

siderably lower than the well data indicates. The average 

density of the well samples is 2.40 g/cm3 The average 

density from the Miocene curve over the same interval is 

2.31 g/cm3. Both Corbato's Tertiary and Woollard~ Eocene 

curves fit the data fairly well in general shape and 

average density, 2.41 and 2.44 g/cm3 respectively. The 

limited density depth data does not permit a greater 

refinement of the relation. 

Over 70 wells have been drilled in the Salton trough 

area in search of oil, gas, or steam. To date there are 



-48-

no producing oil wells in the trough, but there is good 

indication of a potential geothermal source. The 

deepest well in the trough was drilled southeast of 

Brawley by the Standard Oi 1 Company of California to a 

depth of 1 3, 44 2 feet • No w c 1 1 G ha v c been d r i 1 1 e d to 

basement in the center of the trough but there are several 

basement wells along the flanks of the trough. The deepest 

basement well is the Texas Company_. Browne Well with Fl 

depth of 7806 feet. Most of these wells have been used 

as anchor points in approximating the gravity effect of 

the Imperial Valley sediments as discussed later. 

Before proceeding with the interpretation of the 

gravity anornalie5 it is inslrut.:Live lo i11vesligale this 

effect of increasing density with depth on the calculated 

gravity anomaly. It will be shown that it is difficult to 

make accurate depth dterminations in sedimentary basins 

where the thickness of sediments is greater than 3 k.m. 

because of uncertainties in the residual anomaly and in 

the density-depth relations. 

Consider a rectangular basin 15 km wide and 5.5 km 

deep which is approximated by two dimensional slabs 0.5 km 

thick and of decreasing density contrast from top to 

bottom as given in Table 7 with three sets of density 
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contrasts D1, o2, o3 . The gravity anomaly for each of 

Lhese 11 slabs for the three density contrasts is given 

in Figures 16, 17, 18. The sum of these 11 slabs for 

each density is given by the three curves of Figure 19. 

Fifty percent of the total gravity anomaly is accounted 

for by the top two layers or a tota1 thickness of l km, 

80 percent by the top 5 layers, and 90 percent by the top 

6 layers. In most field situations It is impossible to 

determine the residual anomaly to better than 10 percent. 

Thus for most deep Tertiary basins doubling the thickness 

of sediments from 3 to 6 km only increases the observed 

anomaly by approximately the error In obtaining a residual 

anomaly. Similo.r results are obtained for a wedge 

shaped basin 25 km wide at the top and narrowing to 3 km 

at a depth of 5,5 km with even a greater percentage of 

the anomaly arising from the upper layers. Although this 

effect makes the accurate interpretation of the basin 

hazardous it is extremely helpful in making regional crustal 

or basement calculations. Most of the basement wells have 

been drilled along the borders of the trough providing 

some depth control in the critical upper 7000 to 8000 feet. 

The seismic data supplements this Information and adds 

control for the deeper portions. This permits the 

appiuxlmctte computation of the effect of the sediments 

which can be removed from the observed gravity to produce 

a regional map. This is discussed 1ater in this report 
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Table?· 

Assumed Density Variation With Depth for Sample Basin 

Depth D l 02 03 

0 
0.38 0.43 0.48 

.5 
0.29 0.34 0.39 

1. 0 
0.24 0.29 0.34 

l.5 
0. 17 0.22 0.27 

2.0 
0. 13 0. 18 0.23 

2.5 
0.08 0. 13 0. 18 

3.0 
0.05 0. 10 0. 15 

3.5 
0.02 0.07 0. 12 

4.0 
0.00 0.05 0. 1 0 

4.5 
o.oo 0. 04 0.09 

5.0 
o.oo 0.02 0.07 

5.5 

Density Contrast (g/cm3) 

Depth in Kilometers 



-51-

with regard to the interpretation of the regional 

anomalies. 

Another approach to the problem of density-depth 

relations Is to use the seismic data and velocity density 

curves. From Tables l and 2 the average velocity and 

thickness for the correlated 1ayers can be obtained. Then 

using the velocity density curves of Woollard (1962), 

density can be assigned and the density contrast calculated 

{Table 8}. These results are in reasonab 1 e agreement 

with those obtained from the density-depth relations. 

The Complete Bouguer Anomaly Map 

A complete Bouguer anomaly map of the California half 

of the Salton trough and 9Urrounding area, based on a 

Bouguer density of 2.67 g/cm3 and a contour interval of 

2 mill igals is presented in figure 20 as an overlay for 

the generalized geologic map (Figure 21). The general 

northwest trend of the Bouguer gravity contours in the 

Salton trough and Peninsular Ranges ls a reflection of the 

major tectonic pattern of this area. Northeast of the 

Coachella Valley the east-west trend of the contours 

reflects the tectonic pattern of the Transverse Ranges. 

In the region northeast and southeast of Desert Center the 

gravity control is widely scattered and it is hazardous 

to place much emphasis on the anomalies. The contouring 

was continued in this area only for regional purposes, 

but even on a regional basis in an area of such varying 
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Table 8 Average Velocity-Density-Depth Relations 

Layer Thickness Depth Velocity Dens~ty b.p 
(Feet} (Feet) Ft/sec g/cm g/cm3 

0 95 48 1700 l.6 ]. 15 

940 565 5850 2.0 0.75 

2 1895 1973 7100 2. 15 0.60 

3 24 2'.J 4142 8500 2.35 0 .40 

4 3625 7167 11 '900 2.55 0.20 

5 8800 13,380 15,000 2.65 0. 10 

6 - Basement - 18,800 2.75 0.00 
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s u rf ace geology prominent distortions are created in the 

gravity field. Nevertheless this apparent random pattern 

of gravity highs and lows appears to be characteristic 

of the Mojave Desert ~rovince (Mabey, 1960}. In this 

province the gravity minimum and maximum are closely 

associated with the basinsand ranges. Where the east-

west trend of the Transverse Ranges is transformed into 

the Mojave Desert pattern Is not clear because of the lack 

of data in the Dale Lake-Coxcomb Mountains area. It is in 

this area, however, that the surface trend of the Transverse 

Ranges Is terminated, which is in general agreement with 

the gravity data. 

One ot the most striking features at the complete 

Bouguer map is the steep gravity gradient along the north­

east side of the Coachella Valley which is associated with 

the surface trace of the Banning-Mission Creek fault. This 

steep gradient dies out to the southeast along with the 

last surficial evidence of the fault near the northeast 

embayment of the Salton Sea. In this area the fault zone 

is marked by a narrow elongated gravity low on the north­

east side of the fault, which is one of a series of small 

gravity lows extending along a line, parallel to the 

extended surface trace, toward Yuma, Arizona. More 

detailed gravity coverage along this southern portion 

will probably indicate an even closer relation. This 
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correlat ion which was not observed previously (Kovach 

et al, 1962; Biehler et al, 1964) is the result of added 

detailed gravity coverage in parts of this area and a 

smaller contour interval than used on the simple Bouguer 

gravity map (Figure 24). 

This correlation of gravity lows and faulting is 

also observed along the Blue Cut, San Jacinto, and 

Elsinore fault zones. Starting with the gravity low 

associated with the sediment-filled valley at Hemet in 

the northwest gravity minimum are observed along the entire 

trace of the San Jacinto fault southeast into the Imperial 

Valley. The gravity lows extending from Warner Springs 

to the Mexican Border are associated with the Elsinore 

fault zone. The narrow elongated east-west trending low 

in the Transverse Range north of Indio is associated with 

the Blue Cut-Pinto Basin fault. In most cases the major 

gravity minimums of more than 8 milligals are associated 

with fault-controlled sediment-filled basins. However 

even within the crystalline rocks smaller minimums are 

observed. This may result from a lower average density 

of the rocks within fault zones. 

The complete Bouguer anomalies range from a low of 

882 mi 1 l l gals (act ua 11 y -118 mi 11 i ga 1 s; 1000 mi 11 i gals 

have been added to all readings) 3 miles west of Desert 

Hot Springs to a high of 984 (-16) mi lligals west of Yuma, 
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Arizona at the southeast corner of the map. This gravity 

difference of over 100 milligals in 220 kilometers is an 

Indication of the magnitude of regional gradients in the 

area. In order to make an accurate interpretation of 

such "local" features as the Coachella Valley minimum and 

the Sa1ton Vo1canic Domes maximum it is necessary to 

remove the regional ettects. ~etore proceeding with the 

interpretation of these local anomalies let us investigate 

the regional trends and their origins. It wl1l be shown 

that the apparent lack of a large negative anomaly across 

the Imperial Valley is partly the result of regional 

crustal complications. 

Regional Bnuouer Anomalies - Crustal Structure 

Valuable knowledge of the crustal structure of an 

area can be obtained from a study of the regional gravity 

anomalies. It must be made clear in the beginning that the 

terms regional anomalies and local anomal !es are purely 

relative, depending on the extent of the survey. The 

regional anomaly of one investigation may be the local 

anomaly of another. In the interpretation of most "local 

anomalies'' there is usually present at least two separate 
11 regional11 effects, which are treated as one and removed 

by subtracting a straight line or smooth curve from the 

observed anomaly. Little or no attention is given to the 

origins of these regional gradients which may be near­

surface features such as a change in basement rock types 
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or deep-seated features such as changes in crustal denslty 

or thickness. If a sufficiently large area has been 

investigated these two regional effects may be separated. 

However, regional anomalies resulting from systematic 

cl1anyes in m~ar sur race Jens i ty over large cu-ea::> cannot 

be distinguished from deeper sources. 

In the present study gravity data has been obtained 

over 55 7 000 square kilometers. It is obvious that broad 

scale variations in the earth's crustal structure whether 

from changes in density or thickness will be detected by 

the gravity field. Minor regional changes from near 

surface density variations wi 11 appear as perturbations 

on the crustal regional. lo clearly illustrate this 

consider a simple case of a sediment-fl lled basin with 

granitic rocks on one side and metamorphic rocks on the 

other, with the geologic contact somewhere be1ow the 

sediments and the whole area above a crustal section 

which is thickening In the direction of the granite. 

Here the regional gradient is primarily caused bv the 

change in densities across the valley and secondarily from 

the sloping Moho. The effect of the deeper source however 

wi 11 be observed over a broader area and ideally can be 

separated from the near surface regional gradient. 

Near-:;u1 race regiunal ctnumctlie::> anJ lrue lucal 

anomalies tend to obscure the effect of the crust on the 

gravity field. Thus one must use some form of filter 
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sys t em to remove these anomalies, in order to study 

crustal structure. Two methods were used in attacking 

this problem which yielded similar results. The first 

method was a stralghtforward averaging of all the gravity 

observations within 20 kilometer squares of Universal 

Transverse Mercator coordinates. A 20 kilometer square 

was selected because It is about the maximum extent in 

width of any local anomaly present in the area. The 

north-south orientation of the squares was selected because 

this cuts across the predominant northwest trend of the 

contours. A three dimensional plot of this data ls given 

in Figure 25 where the average Bouguer gravity value is 

plotted vertically at the center of the square from which 

it was obtained. These points have been connected to 

form a regional gravity surface. Note particularly the 

orientation of the diagram; the nearest corner is at 

San Gorgonio Pass - the farthest at Yuma, Arizona. It 

is evident from this figure that there is a steep gradient 

associated with the northwest portion of the area, the 

Imperial Valley ls a broad positive, and the Peninsular 

Ranges persist as a minimum after passing through a 

saddie point Into the southwest. 

Because the gravity observations are not uniformly 

distributed over the area (for example, the station 

density in the Coachella Valley Is considerably higher than 
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In the Transverse Ranges) a bi as wi 11 be introduced into 

any simple averaging. Also this method only produces 

discreet regional values 20 kilometers apart rather than 

a smooth function. These problems were eliminated by 

writing a computer µrogram which µruJuce::; a LliyiliLed 

complete Bouguer anomaly gravity map on a 4 x 2 km grid 

(Figures 30,27) based on the gravity observations which 

are weighted according to their distance from the point 

at which the field is to be calculated. This greatly 

reduces any station density effect and permits the cal­

culation of regional anomaly maps. 

The regional 

anomaly value at a point is calculated by averaging the 

digitized Bouguer anomaly va1ues around the edge of a 

40 kilometer square. Thus any local gravity effects in 

the vicinity of the station are removed. This method 

produces a regional gravity map which covers an area 20 

kilometers less on each side than the input Bouguer map. 

These values can then be contoured either by hand (Figure 

22) or by machine (Figure 26). The portion of the regional 

gravity map outlined is that covered by the machine map 

and probably represents a reasonable approximation of the 

regional gravity field. The local divergences seen on 

the computer map near the edges are due to insufficient 

regional data to establish regional continuity. These 
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areas have been smoothed in the hand contouring. 

On the basis of the grctdients Involved, the size of 

the area used in the averaging process, and the extent 

of the regional gravity trends, the major features of this 

regional gravity map indicate crustal structure. This 

does not imply that the sma 11 closures of l and 2 

milligals and the minor curves in the contours seen in 

FiQure 26 have siQnificance but that the continuous 

decrease In gravity values to the northwest and west does. 

The northwest-southeast trend which is so pronounced Jn 

the complete Bouguer anomaly map is preserved over the 

southern Peninsular Ranges. However, In the northwest 

where 1.he highest peaks of the Transverse Ranges are 

adjacent to the highest peaks of the Peninsular Ranges 

the regional contours cut across the northwest-southeast 

trend of the Peninsular Ranges and the east-west trend of 

the Transverse Ranges. This is an indication of regional 

isostatic compensation of the area as a whole instead of 

complete local compensation of each unit, either by 

increasing crustal thickness (Airy}, decreasing crustal 

density (Pratt) or both (Airy, Heiskanert,}. As had been 

observed by pre v i o us ! n v es t i gators (Woo 1 1 a rd , l 95 9} and 

discussed previously there is a close correlation between 

regional Boughaer anomalies and topography. The lowest 

regional values are associated with the highest topography, 
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the highest regional values are associated with the low 

lying Imperial Valley. 

The regional Bouguer anomaly in the San Gorgonio Pass 

area is about -100 milligals. From the relationship 

between Bouguer anomaly and crustal thickness this would 

indicate a depth to the mantle of 40 kilometers (Woo 11 ard 

l 95 9 ) • T h e av er a g e e 1 e vat i o n i n t h i s a r ea ( I ab l e 5 ) i s 

2 km above sea level. Assuming a surface density of 

2.7 g/cm3 and a crust - mantle density contrast of 0.45 

g/cm3, a 12 kilometer root would be needed for isostatic 

equilibrium if the isopiestic level is taken as the base 

of the crust. Alternatively, an average crustal density 

0. 15 g/cm3 less is required for equilibrium assuming a 

35 kilometer crust. Because part of the isostatic 

compensation undoubtedly arises from a portion of the 

upper mantl~ these values are only intended as guides. 

The regional gravity values decrease by 65 mi lligals 

between the Imperial Valley and San Gorgonio Pass. Ff 

this is to be explained in terms of crustal thickening 

assuming a density contrast of 0.45 g/cm3 a change of 3 or 

4 kilometers is all that is needed. The actual change, 

however, is probably considerably greater than this because 

the crust in this area cannot be assumed to be infinite 

horizontal plates, o.45 g/cm3 is close to the upper limit 

of density contrast between crust and mantle rocks, and 

no account has been made in this regional interpretation 
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for the thick sedimentary section of the imperial Val Jey. 

Taking these effects l nto account could easily increase 

this figure four fold. Let us now look into the effect 

of the sediments in the tmperla1 Va11ey on the regional 

gravity. 

One of the most interesting problems in the inter­

pretation of the gravity data in the Salton trough is the 

apparent lack of anv large negative anomaly across the 

Imperial Valley (Figure 20, Figure 5, Figure 6). In spite 

of the fact that there is a thickness of over 18,000 

feet of sediments ln the valley, a gravity profile and 

the regional anomalies demonstrate that there is a broad 

positive anomaly associated with the center of the trough 

in this area. From seismic refraction and well data a 

general configuration of the basement can be assembled. 

(Figure?). There is little correlation between the 

increasing depth to basement and the observed Bouguer 

anomalies. It is clear from the density-depth relations 

that this cannot be due tu compaction phenomena alone 

because if the basin is on1y 3.5 km deep a -40 mi lligal 

anomaly should still be observed. Thus one must look 

AlsAwhRre for an explanation. A possible solution to 

thls enigma is associated with crustal thinning or 

increased crustal density. The evidence for this wi 11 now 

be discussed. 
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The width of the Salton trough is fairly constant 

at 80 to 100 km from the head of the Gulf of California 

northwest to the middle of the Salton Sea. in this area 

the trough narrows abruptly to less than 25 km and a 

large negative Uouguer anomaly of -40mi11 igals appears 

across the Coachella Valley. This anomaly continues 

throughout the entire length of the southern portion of 

the Coachella Valley and to a lesser degree northward 

to San Gorgonio Pass. As discussed later this anomaly 

can be explained by approximately 12,000 feet of sediments. 

It should also be noted that in the area where the trough 

narrows abruptly there ls also a rapid increase in 

the regional gradient. 

It could be argued that this negative Bouguer 

anomaly in the Coachella Valley is the result of a thicker 

sedimentary section here as compared to the Imperial 

Valley or that there is a large decrease in the basement 

rock densities in the northwest. lt can be shown that 

neither of these explanations are probable. 

The first argument can be dismissed on this basis: 

It has been shown previously that because of the increase 

of density with depth most of the gravity anomaly in thick 

sedimentary basins arises from the upper 10,000 feet of 

sediments, which have an average density of less than 

2.40 g/cm3. The average density from 10,000 to 20,000 

feet is about 2.62 g/cm3. Thus doubling the thickness of 
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t he sediments would only increase the magnitude of the 

negative Bouguer anomaly by 5 to 10 milligals. Since 

there is no negative anomaly across the Imperial Valley 

region north of the border and a known sedimentary thlck­

nes::; uf 10,000 feet there would have to be an impossib1y 

great depth of sediments in the northwest, to explain this 

relative decrease of the anomaly. 

There is nn systematir. decrease in the density of 

exposed crystalline rocks on either side of the trough 

between the southeast and the northwest. The rock types 

which have been encountered in wells in the valley are 

similar to those exposed on the edges of the valley. Thus 

i l can ~e argued lhdt the bdsement rock types of the valley 

floor are similar to those exposed on the sides and there­

fore there should be no systematic decrease in basement 

densities if it is not observed alono the borrlers of the 

trough. A1so the seismic velocity of the basement rocks 

in the Coachella Valley is close to that of the Imperial 

Valley at similar depths of burial. 

A plausible explanation to this prob1em can be ob­

tained by looking at the regional anomalies along a 

curved profile from the continental shelf through San 

Diego to Blythe (Figur~ 28). The profile has been curved 

so that it is approximately perpendicular to the regional 

contours (Figure 22). If the gravity anomaly of a 
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sedimentary basin 80 km wide and 5.5 km deep as 

determined approximately by seismic refraction (Figure 5) 

is added to this curve,a broad positive anomaly ls 

observed across the Imperial Valley. The dashed contours 

on the regional gravity map approximate the gravity 

anomaly of the Imperial Valley sedlments. Interpreting 

this profile on a regional basis for variations in Moho 

depths using a density contrast of 0.45 g/cm3 yields a 

crust which thickens from 29 km (relative) at the coast 

to 34 km under the Peninsular Ranges and then shoa1s to 

21 km under the l~perial Valley. From here northeast 

the crust thickens until a depth of 31 km is reached 

northeast toward Blythe. The depths given are all 

relative to a value chosen at the coast, but the relative 

thicknesses are not altered much by this choice. These 

depths are also effected by the selected density contrast 

(0.45 g/cm3). This is based on the density associated 

with the crustal and mantle velocities as given by 

Shor (1958). The depths of Moho westward from San Diego 

agree with the seismic refraction depths ca1cu1ated by 

Shor. The interpretation of a gravity profile from 

Sa n D i e g o t o Yum a , Ar i z o n a b y K o v a c h e t .§..!_. ( l 96 2 ) i s 

somewhat distorted because lt crosses the lmperlal Valley 

at an oblique angle to the 
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r eg i ona l trend. For example the anchor point at Pilot 

Knob an the east, where the gravity values are 980 

mil11gals, has its regional counterpart in the south west 

over the Sierra de 1.os Cucapas. A gravity profile 

across this portion of the Colorado delta Indicates a 

negative anomaly of 30 mi Jligals which is 15 to 20 

mi 11 igals less than would be expected. As shown previously 

30 milligals can be explained by less than 11,000 feet 

of sediments. The seismic profile by Kovach parallel 

to the Mexican border indicates a minimum depth to 

basement of at least 15,400 feet. Thus the crustal 

complexities beneath the Imperial Valley extend south-

ward under the Colorado Delta region and into the Gulf 

of California. 

The Imperial Valley is not the only sediment fi 11ed 

basin which has a relative po3itivc anomaly associated 

wlth a great sedimentary thickness. \n fact it appears 

to be the rule rather than the exception, provided that 

the basin is at least 80 kilometers wide. The wider the 

basin the more pronounced the gravity high. A posltive 

gravity anomaly is observed in the San Joaquin Valley 

in nprthern Ca1ifornia (Ivanhoe, 1957). Seismic 

refraction measurements by the U.S.G.S. indicate a 

shoaling Moho, possib1y as shallow as 20 km (Pakiser, 

1964). This is also substantiated by the seismic P wave 
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anoma l y (Press and Biehler, 1964) and the magnetic 

anomaly (Soske, 1935). Gravity studies in Argentina 

have shown that Qravity maxima of +20 mi lliQals are 

associated with the Rio Salado (300 km wide) and the 

San Jorge basin (200 km wide) despite known sedimentary 

thicknesses in access of 14,000 feet (Martin, 1954). 

Geophysical studies across the Red Sea trough by Girdler 

(1964) also indicate a positive gravity anomaly across 

the rift zone. 

A gravity profile across the Gulf of California 

based on the gravity observations of Fett (1955) 

in the vicinity of Tiburon Island shows a marked positive 

anomaly as well as positive Bouguer anomaly values 

across the Gulf. The gravity observations of Harrison 

and Spiess (1963) clearly indicate that this gravity 

µosl Live cu11li11ues ::;oul11 a.luny L11e er1tire lt.rnyll1 or the 

Gulf with a positive anom~lY greater than 100 milligals 

at La Paz. The crustal complexities under the Imperial 

Valley are undoubtedly the northern contlnuation of this 

feature but to a lesser extent. 

T he s e i s m i c r e f r a c t i o n w o r k of Ph i 1 1 i p s ( 1 96 3 l i n 

the northern end of the Gulf of California places a 

minimum depth to Moho of 18 kilometers near the head of 

lhe GUH. Consiuer iny Lile small chanye in rt:yional 

Bouguer gravity values between Tiburon Island in the south 
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and the Imperial Valley in the north there is probably 

little change in crustal thickness in this area. On 

the basis of the regionai gravity values there appears 

to be a considerable increase in the crustal thickness 

northward toward San Gorgonio Pass. 

Unfortunately the gravity data available in Mexico 

is all located on the west side of the trough, and it may 

be that a positive anomaly is associated with the trough 

for the entire length. Even regional gravity values In 

southern Arizona are sparse but there is some indication 

of small negative and slightly positive Bougher gravity 

values along U. S. 80 through Aztec and Mohawk. Future 

gravity work is planned in this area to investigate the 

eastern extent of the anomaly. 

It Is possible that instead of a gradual bowing of 

the crust under the Imperial Valley there is a dis­

continuity in the Moho, along the sides of the valley. 

Such a discontinuity could arise along the major breaks of 

the fault systems, which may, considering their length, 

reasonab1y be assumed to have depths of crusta1 thickness. 

This could account for the fact that a structural 

feature the size of the Imperial Valley has an effect on 

the crust-mantle boundary. 

A thinning crust under the Imperial Valley which is 

postulated here can also be accounted for by an increase 
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d ens it y of the upper portion of the crust by basic 

intrusions from below. The absence of any large magnetic 

anomaly across the valley, however, indicates that if such 

is the case the masses must be relatively deep or their 

magnetic anomaly greatly reduced by the thick sedimentary 

deposits. 

Regardless of how this gravity anomaly is explained­

ei ther by crustal thinning or Increase density the 

anomalous mass must be extensive and at intracrustal 

depths. The regional gradients and the presence of 

a positive,regiona1 anomaly in the Imperial Valley make 

accurate depth determinations in this area on the basis 

of gravity data alone extremely difficult. 

Salton Volcanic Domes 

The large gravity high at the southern terminus of 

the Salton Sea coincides with the Salton Volcanic Domes 

(See also Figure 29). This area is one of the most 

promising geothermal prospects in California and is 

currently beinq actively explored as a potential economic 

source of geothermal power. Numerous shallow wells 

were drilled in this area between 1932 and 1954 to develop 

a carbon dioxide gas field which is now abandoned. A 

summary of the history of exploration in this area is 

given by McN!tt (1963), which is already somewhat out of 

date. Eight exploratory steam wells have now been drilled 
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with depths of 5000 to 8100 feet. The location and 

depths of these wells are shown in Figure 21. All of 

these wells have high heat flows with temperatures 

around 270° Cat 3000 feet, which Is more than 5 times 

higher than encountered in other wells in Tertiary basins 

of California and 4 times larger than elsewhere in the 

Sa l t o n t r o u g h ~: 

Prior to this gravity study the only published 

geophysical data was a vertical intensity magnetic survey 

(Kelley and Soske, 1936). Most of the geological 

information from the recent exploratory wells is not yet 

available far publication. Some of the most important 

geologic and geochemical information has been published 

by White (1963). This study indicates that the sediments 

in the vicinity of the domes are being metamorphosed at 

relatively shallow depths. The density of 5 well samples 

from this area was determined by White and have since 

been remeasured and added to by Mcculloh (1963). The 

values obtained are given in Table 9. 

Although this density information is very limited, it 

does indicate complexities in the interpretation of the 

geophysical anomalies. The saturated bulk densities 

above 4900 feet are not significantly different from other 

well samples in the Salton trough, but outside the thermal 

area. The samples below 4900 feet are 0.2 to 0.6 g/cm3 
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Table 9 

Dr i 11 Core Densities From 0 1 Nei l Geothermal Wells 

Depth Dry Bulk Saturated Bulk 
Densi_3Y Density g/cm3 

g/cm 

4477-94 2.35 

4477 2.35 2.47 

4484 2.40 2.53 

4662 2.52 

4917-23 2.87 

4917 3.00 3. 18 

4923 2.50 2.62 
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h i gher and if extensive, would produce a considerable 

gravity anomaly. However, the Western Geothermal well on 

the south flank of .the gravity high does not show any 

indication of alteration or metamorphism as reported for 

the O'Neil well.son the east side of the gravity high. 

This clearly demonstrates the hazards in interpreting the 

gravity data in terms of a simple igneous - sedrment 

contrast. 

Although a rigorous quantitative interpretation of 

the gravity anomaly is not warranted at this time because 

of the lack of reasonable density-depth control and 

sufficient constraints on the body, certain limitations 

can be placed on the subsurface shape and lateral extent 

of the anomalous mass. The term "anomalous mass" does 

not necessarily infer the shape of the crystalline 

intrusive rucks bul ur11y Lhe vu1ume or de11sily {.;lJlllia:::sl, 

which may well be gradational because of decreasing 

metamorphism of the sediments and Increasing depth to the 

heat source toward the periphery of the geothermal area. 

Although the surface expression of volcanic activity 

appears to be along a line trending northeast, the 

gravity anomaly indicates an approximately circular mass 

distribution at depth, which Is centered about Red Island 

and may continue northwest under the Salton Sea. This 

distribution is substantiated by the limited thermal and 
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magnetic data. All of the wells drilled within the 

closure of the gravity anomaly report very high 

temperatures with a decrease outward from the center. 

The Sardi well Immediately south of the closure did not 

encounter partlcularly high temperatures. 

The magnetic anomaly map (Kelley and Soske, 1936} 

shows a broad positive anomaly of several hundred gammas 

which has a common center and shape with the gravity 

anomaly. The magnetics also indicate very sharp local 

circular positive anomalies of 900 ~ 1000 gammas over the 

surface outcrops of each of the domes. This indicates 

that these exposed domes are approximately narrow 

horizontal cylinders which extend downward to a larger 

crystalline mass at depths at least as great as 5000 feet. 

No similar local gravity anomaly is associated with 

the surface outcrop of the indivldual domes either because 

of the station spacing or lack of density contrasts. 

The contrasts in magentic properties between the 

volcanic rocks of the domes and the sediments is many 

times larger than the corresponding density contrast and 

resulting gravity effect. Surface samples of the volcanic 

rocks have densities of 2.3 g/crn3. Thus the density 

contrast between the volcanics and sediments is easily 

removed at shallow depths by sediment compaction and 

metamorphic effects. 
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Th e relatively low gravity and magnetic gradients 

and broadness of these anomalies probably indicate the 

anomalous mass is fairly deep and extensive. It is 

possible to explain the gravity anomaly alone by a system­

atic decrease in the density of the sediments outward 

from the center of the anomaly. This would produce both 

a broad anomaly and low gradients. However, it is 

doubtful that such a configuration would explain the 

broad positive magnetic anomaly because hydrothermal 

alteration of the magnetite to pyrite in the sediments 

would result Jn a lowering of their susceptibility and 

a decrease in the vertical magnetic intensity. Re­

orientation and remnant magnetization effects need not be 

considered here because of the recent age of volcanism. 

That the magma of the intrusive mass must be crystallized 

at least in the upper part is indicated by the presence 

of the magnetic anomaly. A molten mass above the Curle 

point would lose its magnetic effect. 

Applying the half width method (Nettleton, 1940) 

to this anomaly one obtains Xi~ 5 km and the depth to 

the center of ct burieJ sphere is; 

~ = 1.305 Xi 

~ = 6.5 km 
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If the maximum value of the anomaly is taken as 

g = 13 mi 11 i gals 

Then from the attraction of sphere above its center 

g = 4rr G pR3 /~2 
j 

where p is the dcn3ity controst in g/cm3, R is the radius, 

and 2 
g~ /27. 9 = 20. 4 

Solutions of which are: 

p g/cm3 R km 

0. 1 5.9 

0.2 4.7 

0.3 1+ • l 

0 .-4 3.7 

0.5 3.4 

0.6 3.2 

l. 0 2.7 

The more likely densities of 0.2 to 0.5 yields 

spherical body 3.5 to 4.5 kilometers ln radius with a 

center 6.5 km deep. 

The Westmorland seismic prof I le indf cates a 

sedimentary thickness of over 18,000 feet (5.5 km} 

nine miles south of the Volcanic Domes. The Frink profile 

on the northeast side of the projected trace of the 

Banning-Mission Creek fault gives a basement depth of 

7200 feet (2.5 km). But the Bouguer gravity at both 

profiles is equal. 
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Thus the problem of removing regional effects is 

again quite complex and could produce fair size variations 

for any calculated shape. It should be indicated that 

neither the Westmorland nor the Frink or Holtville 

profiles showed any striking anomaloua velocities for 

the sediments or basement rocks. The apparent continuation 

of the gravity high southeast into the Imperial Valley 

mav be indicative of higher density rocks intruded into 

the upper layers of the crust or a crustal thinning as 

discussed elsewhere. On the basis of lack of any seismic 

anomalies, the localization of the gravity maximum, the 

absence of any similar magnetic anomalies south of the 

buttes and the lower well temperatures 

encountered it is b.elieved that the potential economic geo­

t h er ma 1 r es er v es a r e l l m i t e d t o t h e a r ea ab o u t t h e s o u t h 

end of the Salton Sea. 

Coachella Valle 

The most pronounced gravity anomaly of the Bouguer 

anomaly map is the large gravity minima associated with 

the Coache1 la Valley. The northeast border of the va1ley 

is marked by a steep linear gravity gradient which 

coincides with the surface trace of the Banning-Mission 

Creek fault. The gravity gradient on the southwest 

side of the Coachella Valley is not as steep nor as 

linear and is not associated with any known fault trace. 

At the southern end of the Coachella Valley the Bouguer 
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a noma l y becomes less negative and the steep gravity 

g r ct d i t: n l ct:::>.::; o t,; i ct l e d w i l I 1 L ht: f a. u 1 L l 1 Jfd u 11 L I 1 ti 11 u r ll 1 ti a::; L u i es 

out, the contours swing sharply across the Salton Sea as 

the effect of the positive gravity anomaly associated with 

the Salton Volca~lc Domes increases. As previously 

discussed there is r\o similar gravity low associated 

with sediments In the Imperial Valley. 

The detail of the ~ravlty coverage In the Coachella 

Valley warrants a complete gravity interpretation. The 

elevation of the valley floor in the vicinity of Indio is 

at sea level. From here to the Salton Sea there is a 

gradual decrease in elevation of 230 feet. From Indio 

northwest to Sctr1 Gar guniu Pass Lhere is a more rapid 

increase to almost 1000 feet. Thus for doing a detailed 

interpretation of the Coachella Valley the complete Bouguer 

map (Figure 20) based on a Bouguer density of 2.67 is not 

appropriate. A false regional gradient will be produced 

from the north end of the valley to south. The gravity 

values at the north end reduced with 2.67 are about 6-8 

milligals too low. For this reason a complete Bouguer 

anomaly map based on varying density from 2.0 to 2.67 for 

the valley and mountain stations respectively was prepared 

and is shown in Figure2J. A comparison of this Bouguer 

map with that of Figure 20 shows that although thB over-all 
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pf cture is much the same, the gravity values at the north 

have been increased and several small anomalies along the 

Banning fault are de1ineated. 

From the gravity values on bedrock outcrops along 

both sides of the valley a basement regional Bouguer map 

was constructed. This regional gravity was then removed 

from the complete Bouguer map and a residual map produced. 

The residual map shows an elongated closure in 

the Indio-Mecca area. At Indio there appears to be a 

steepening of the gravity gradients on both sides of the 

valley (See Figure 20) and the residual map shows a 

rapid decrease in the Bouguer anomaly at this point. The 

closure to south may or may not be a rea1 phenomena, 

because of the difficulty in determining regional values 

south of here and in the area of Travertine Rock. On 

the basis at the ~ouguer map alone the difference between 

the center of the valley gravity values and those on 

crystalline rock is 10 milligals more at Mecca than at 

the southern end of the valley, which tends to substantiate 

this closure. The northern closure of the basin at 

Desert Hot Springs ln fairly well controlled although 

there is a notable lack of gravity information in the 

northwest extension of the valley toward San Gorgonio 

Pass. Further work is planned in this area. 

A small ridge of high gravity west of the Stone 
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well may indicate an anticlinal structure beneath 

Edom Hill. 

From this residual map 7 gravity profi 1es were 

constructed along lines A to G, digitized at one 

ki1ometer Intervals~ and interpreted us!nq an automatic 

two dimensional computer program patterned after Bott(1960L 

The basement profiles were computed using a single 

density contrast of 0.35 g/cm3. These are shown without 

verlic:dl exctggero.tlon on the generalized gravity map. The 

very rapid increase in the thickness of sediments along the 

fau1t is obvious and probably indicates a near vertical 

step in the basement of 12,000 feet or more. A maximum 

sedimentary thickness of 4.7 km (15,500 feet) ls obtained 

on the Mecca prof I le 88 1 The gravity profile which 

crosses the Thousand Palms refraction profile agrees within 

200 feet of the basement depth determine seismically. 

The profile north of here glves a depth of 6200 feet below 

the Stone well which was drilled to a depth of 5970 feet 

below sea level. This agreement justifies the use of a 

single density contrast for the interpretation, however 

basing a gravity interpretation on a single density 

contrast for thick sedimentary basins is very hazardous as 

shown previously. But because of the complete lack of 

any density-depth control in the Coachella Valley a more 
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r l gorous interpretation is not justified. Where the 

residual Bouguer anomalies exceed 20 to 25 mi lligals 

the basement depths given probably indicate a minimum. 

Where the residual anomaly is less than 20 milligals 

toward the northern.end of the valley, the basement 

depths represent maximums. In this case, however, the 

effect of the finiteness of the anomalous body Is to 

underesti~ate the true depth of basement which is a 

compensating factor to that previously mentioned from 

the single density contrast. The gravity profiles 

indicate that the basin is somewhat assymetrical with 

the deepest portion along the southwest side of the 

Banning o.nd Bctnnlnl:J-Mi::;::;iu11 Creek rault::;. 

Borrego Sink and Lower Borrego Valley 

The 12 milligal gravity low at Borrego Springs is 

associated with the Cenozoic sediments of Borrego Sink. 

Superficially the gravity data indicate that this sink is 

a closed structural basin which extends probably as a 

syncline eastward toward Truckhaven. This eastward 

extension is interesting because it cuts across the north­

west trends of the San Jacinto fuult zone. The gravity 

high immediately south of this structure is associated on 

the west end with exposed crystalline rocks within the 

fault zone near Ocotl llo. This high a loo trends east­

west. Several exploratory wells have been drilled along 
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t he eastern nose of this uplift. Standard Oil Company 

South Lands Well was· drilled 4531 ft to basement. A 

well southwest of the max~mum and just north of the 

highway bottomed in basement at 3912 feet. No exploratory 

wel Is have been drl I led in Borrego Sink. 

There is a steep east-west regional gradient across 

the Borrego area as can be seen from the regional map 

and the gravity va1ues on basement outcrops. Just west 

of Borrego Springs the crystalline rocks are associated 

wlth gravity values of 930. Coyote Mountain, and 

exposed crystalline mass northwest of Borrego Springs has 

values of 942mi11 i gals. Farther east they increase to 

950 at Ocotillo,torrorethan 966 along the unexposed basement 

hlg~ and probably, after accounting for 6000 feet of 

sediment at Truckhaven,-bvalw,.,s greater than 980. Removal 

or thi::; regional g1-adient will extend the gravity.1ow 

associated with the syncline eastward toward Truckhaven, 

giving it the appearance of a narrow trough like structure 

instAad nf a syn~line plunging toward Borrego Sink. Thus 

the residua1 gravity would indicate a 12-20 milligal low 

extending from Borrego Sink toward the Salton Sea, 

indicating a gradual increase in basement from about 4000 

feet at Borrego to 6000 to 7000 feet at Truckhaven. This 

clearly demonstrates the erroneous resu1ts which can be 

obtained by trying to interpret the complete Bouguer map 
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Twenty-f ive miles southeast of Borrego Springs is a 

broad gravity minim~ at lower Borrego Valley. The very 

steep gradient southwest of this low is the result of 

faulting along the front of the Fish Creek Mountains. 

The low is bounded on the north by the gravity maximum 

associated with the basement uplift previously discussed. 

The saddle point to the northwest probably represents a 

true basement ridge which separates Borrego Sink from 

lower Borrego Valley. Here, as with the Borrego Sink 

syncline, removal of the regional trends would open 

the apparent gravity closure on east side of the valley 

into the main portion of the Salton trough. The 20 

milliga.l residual anomaly across this valley can be 

explained by approximately 5000 to 6000 feet of sediments 

with a gradually deepening basement to the east and south­

east and a shallowing toward the northwest. At the north­

west the basement probably shallows to less than 1000 

feet before deepenirg toward Borrego Springs. 
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C ONCL US IO NS 

A study at the earth's gravity tield has proven 

very useful in delineating the major structural trends 

of the Salton trough. Regional gravity studies indicate 

a gravity low a33ociatcd with tho PcninGular Ranges and 

a broad positive anomaly with the Imperial Valley. 

Applying a geologic correction to the Bouguer gravity 

for the thick sediments of the Imperial Valley increases 

this positive anomaly. An explanation for this effect is 

a shoaling of the mantle to 21 kilometers or alternatively 

an increase in the density of the crust by intrusion of 

more basic rocks from below. The geophysical evidence 

indicates that the crustal complexities present under 

the Imperial Valley and Colorado Delta region are a 

northward extension of the crustal structure associated 

with the Gulf of Crilifornia. ThP. seismic. evidence and 

Bouguer gravity anomalies across the southern portion of 

the Gulf indicate an oceanic type section which is 

probably a continuation of the east Pacific rise. The 

crustal structure becomes more continental as one goes 

northward from the Tiburon Island area. At the head of 

the Gulf a minimum depth to Moho of 18 kilometers was 

d e t er m i n e d by Ph i l l i p s ( l 96 3 ) • I t i s b e 1 I e v e d t h a t t h i s 

s ha l l ow Mo ho r. on t l nu As u n rJ Ar mos t of t h e I m re r i a l ·Va 1 l e y . 

Little or no shoaling is present under the narrow 
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Coa ch ell a Valley. The relations observed here are very 

similar to those studied by Girdler (1964) for the Red 

Sea and Gulf of Aqaba region. It may well be that within 

the Gulf of California structural province the continental 

crust of the northern half is being altered into oceanic 

type structure by rifting and northwest movement of the 

western land mass from the continental portion. 

The gravity minimum over the Peninsular Ranges 

cannot be explained wholly by a decrease in the density 

of the upper crustal section without some crustal thicken­

ing. An increase in Moho from 29 kilometers at San Diego 

to 33 kilometers at the center of the minimum explains 

all but 15 to 20 mllllgals of this low. This residual 

anomaly is probably the result of lower density of the 

intrusive racks as compared to a normal continental 

crustal section. The occurrence of gravity minima with 

granitic intrusive bodies appears to be a world-wide 

relation. However, It is impossible to explain all 

90 mill igals by this effect alone. The average elevation 

for the southern Peninsular Ranges is about one kilometer. 

For complete isostatic compensation at the Moho this would 

require a 6 kilometer root assuming that there is no mass 

deficiency below sea level until the crust mantle 

boundary i3 reached. This may indicate that these ranges 

are undercompensated. However, the presence of 6 kilometers 
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of lower density intrusive rock with a density contrast 

of 0.15 g/cm3 ln the upper portion of the crust would 

restore isostatic balance with on1y a 4 kilometer root 

as previously calculated. 

The major fault zone3 in the Solton trough are 

associated with small gravity lows. The Banning-Mission 

Creek fault is delineated by a continuous steep gravity 

gradient along the exposed trace in the Coachella Valley. 

Faulting probably continues along its trace southeast 

to Yuma as indicated by a series of small elongated 

gravity lows which were not previously delineated 

(Biehler et al, 1964). Considering the magnitude of these 

lows they can easily be missed without detal led coverage. 

For example the small gravity low north of Westmorland is 

along the extended trace of the Imperial fault. More 

detailed gravity coverage in the southern Imperial Valley 

would probably indicate similar anomalies along the buried 

fault traces. 

Detailed gravity studies of the Coachella Valley 

indicate a gradual thickening of the sediments from 

San Gorgonio Pass to north of Indio where depths of 6000 

feet are calculated. Southward the depth of the basement 

increases more rapidly to depths of 12,000 to 15,000 feet 

near Mecca. This thickness of sediments continues under 

the entire length of the Salton Sea, gradually thlckening 

southward. At Westmorland seismlc evidence indicates 



-85-

18, 000 feet of sediments, which is the deepest determination 

of basement in the Sa1ton trough. The sediments probably 

increase in thickness toward the Mexican border where 

depths of 22,000 feet or greater are predicted. 

Sediment thicknesses of 6,000 to 4,000 feet extend from 

Truckhaven westward to Borrego Springs along a narrow 

trough. The Coachella Valley south of Indio is assymetric 

with the greatest thickness of sediments along the Banning 

fault, which on the basis of the steep gravity gradients 

indicates a steep contact. 

The anomalous gravity field of the Salton Volcanic 

Domes is associated with a magnetic high and the area of 

high geothermal temperatures. A broad anomalous mass 

with a center 6 to 7 kilometers deep and a radlus of 3.5 

to 4.5 kilometers fits the gravity data. The seismic, 

gravity, and magnetic evidence Indicates thls ls probably 

a localized phenomena and does not extend throughout the 

va11ey at least within the upper 5 to 6 kllometers. 

Limited subsurface data makes a complete rigorous inter­

pretation at this time unwarranted. 

Because of the complexities arising from crustal 

structure beneath the Imperial Valley it is difficult 

to use the gravity data alone to accurately estimate 

basement depths. Also it was shown that in deep sedi­

mentary basins with more than 5 ki1ometers of deposits it 
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i s difficult to resolve the basement depth because of 

compaction effects in the sediments even If the resfdual 

anomaly can be determined precisely. However, it is 

impossible to account for the lack of a large negative 

anomaly with the Imperial Valley by compaction of the 

sediments, because a gravity low in excess of -40 

milligals should still be observed. The intracrustal 

complexities present under the southern half of Salton 

trough would also effect any regional magnetic anomalies 

making the use of such a method to predict basement depths 

hazardous. The determination of basement depths in the 

Imperial Valley by seismic refraction appears to be the 

most reliable. 

A Moho determination by seismic refraction within 

the southern portion of the Salton trough would add 

a much needed constraint to the geophysical interpretation 

and greatly reduce the ambiquity in the gravity study. 

It is evident, however, that the structural complications 

of thls portion of the Salton trough Involve the entire 

crust. 
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F IGURE CAPTIONS 

I n d ~ x rn a J.l of t tie Sal ton trough show J n g names 
of principal faults. Stippling indicates pre­
Tertiary crystalline rocks. 

Index to gravity maps. 

Columnar section for northeastern Coachella 
Valley, Reproduced from Dibblee (1954). 

Index map of Salton trough showing locations 
of seismic profiles and cross-section lines 
A-8 (Figure 6) and C-D (Figure 5). 

Seismic cross-section and simple Bouguer 
gravity profile along line C-D of Figure 4. 
Numbers indicate velocities in km/sec. 

Seismic cross-section and simple Bouguer gra­
vity profile along 1 ine A-8 of Figure 4. 
Number5 Indicate velocities in kmlsec. 

Westmorland-North seismic refraction profile. 

Frink seismic refraction profile. 

TruckhavAn sP.ismir.. rAfrRctlon profllA. 

FIGURE 10 Thousand Palms seismic refraction profile. 

FIGURE ll Dlstribution of gravity station elevations 
for 100 foot increments. Note change in 
scale at right end of figure. 

FIGURE 12 Relation of average station free air anomalies 
to average station elevation. 

FIGURE 13 Relation of regional Bouguer anomalies and 
regional elevations. Based on machine computed 
complete Bouguer anomaly map. 

FIGURE 14 Relation of average station Bouguer anomalies 
and average station elevatlon. 

FIGURE 15 Density-depth relations of Tertiary sediments, 
after Woollard (1962) and Corbato (1963). 

F!GURE 16 Gravity anomalies from 11 slabs of basin l. 

FIGURE 17 Gravity anomalles from 11 slabs of basln 2. 
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FIGURE 18 Gravity anomalies from ll slabs of basin 3. 

FIGURE 19 Total gravity anomalies for basins l, 2, 
and 3. Sum of ll slabs. 

FIGURE 20 Complete Bouguer anomaly map of the Salton 
trough. 

FIGURE 21 Generalized geologic map of the Salton 
trough. Stippling indicates pre-Tertiary 
crysta-lline rocks. Seismic profiles given 
with depth to basement (solid) or lowest 
layer (open). Wells shown with depth to 
bottom. Basement wells sol id. 

FIGURE 22 Regional Bouguer anomaly map of southern 
California. Contour interval 10 milllgals. 
Fnc1osed area is covered by computer map 
(Figure 26). Regional gravity profile shown 
by line E-F (Figure 28). Dashed contours 
represent approximate gravity anomaly of 
Imperial Valley sediments. 

FIGURE 23 Gravity interpretation of the Coachella Valley. 
8ouguer map based on varying Bouguer density) 
Basement prof i Jes calculated using 0.35 g/cm 
density contrast. 

FIGURE 24 Simple Bouguer anomaly map of the Salton 
tr o u g h ( B i eh l er e t a 1 • l 964 } • 

FIGURE 25 Average station Bouguer anomalies for 20 kilo­
meter squares. 

FIGURE 26 Computer contouring of the regional Bouguer 
anomalies. Contour interva1 l mil1iga1, 
even numbered contours left blank. Contour 
value at northwest corner 887 mill igals 
(-113 milligals). Area covered by computer 
map is outlined in Figure 22. 

FIGURE 27 Computer digitized complete Bouguer anomalies 
on a 4 x 2 km grid. Top number Is Bouguer 
anomaly, bottom numbers are stations and 
radius of interpolation. 

FIGURE 28 Regional gravity profile along 1 ine c-r (rlg­
ure 22) and crusta J in terpretatjon ass um Ing 
a density contrast of 0.35 g/cmj. 
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FIGURE 30 
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Complete Bouguer anomalies of the Salton 
volcanic domes~ Computer contouring at 2 
mi1llgals. Gravity contour aver domes is 
980 mil1 !gals. See enclosed area Figure 30. 

Computer contouring of complete Bouguer 
anomalies. Contour interval 2 mllligals, 
10 mllligal contours left blank. Enclosed 
area is enlarged in Figure 29. 
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COLUMNAR SECTION NORTHEASTERN COACHELLA VALLEY 

Indio Hills and Mecca Hills 

ALLU'IIUM, TERRACES & LAKE COAHUILA BEDS 0-300 feet ~- ::_~"'i-..:.:. :··::·-_:_:_·:~: 
unconformity ~~~~~~~~~~~~--.'-'"---~---'-._.:~'----'-~ 

) :: : 0·~: : .. G .·: : .. :: 
•·••••••oo·•••··•• 

OCOTILLO CONGLOMERATE ( Qo) 0-2, 400 feet • · ...... - • • o o "' • 

gray conglomerate of granitic .and orocopia :·.-:.~-~.00-.":~ Q<:o:: ;.· 
schist debris; grades eastward into fanglomerate; :.·~;0·::a0· · .. ~·; .. ;:;"'.. 
2, 4oO feet thick west of San Andreas fault, and .• .,. . ., . • • ••• o o., 

0-900 feet thick east of San Andreas fault · ·· 0 • • • o "'• o. o •· 

unconformity east of San Andreas fault 

PALM SPRING FORMATION (Tp) 0-4,800 feet 
li~ht ~ay, fine to coarse arkosic sandstones 
and reddish clays; terrestrial; grades 
northeastward into Canebrake conglomerate; 
unconformably ove~lies the Mecca formation 
in southern Mecca Hills 

CANEBRAKE CONGLOMERATE (Tc) 0-3,000 feet 
gray conglomerate of granitic and metamorphic 
debris; basal portion in eastern Meeca Hills 
composed of Orocopia schist debris; 
marginal facies of Palm Spring formation 

IMPERIAL FORMATION (Ti) 0-300 feet 
fossiliferous light gray clays; base not exposed 

MECCA FORMATION (Tm) 0-1,000 feet 
reddish clays, sandstone; gray conglomerate 
or gran1t1c and metamorpn1c debrls 

DOS PALMA.$ RHYOLITE (Td) 0-400 feet 

....• •a• •oo••••·• 
-•••.&••.,. ... •--•di• 
..... - ........... - •• o ....................... 
••• • . • •• 0 •• 6• •• 

f• .... ..... 0 0 .... c 

C'· GRANITIC AND DIORITIC INT.RUOIVE3 (Jg) 
, ~ OROCOPIA SCHIST (pea) 
~ <t CHUCKWALLA GNEISS•DIORITE COMPLEX (pee) 
a..(.) 

FIGURE 3. Columnar section for northeastern Coachella Valley. 
Reproduced from Dibblee (1954) 
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FIGURE 20. 
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GRAVITY INTERPRETATION OF THE COACHELLA VALLEY 
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FIGURE 26. Computer contouring of the regional Bouguer anomalies. Contour interval 
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TABLE 5. 
1VEIUGE ELEVATION OF 20 KILOMETER. SQUARES OF THE SALTON TROUGH AREA, SDUTHER'1 CALfFO~NIA- -
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TABLE 6. 

AVEl'IAGE BOUGUER ANOMAUES OF 20 KILOMETER SQUARES OF THE $Al.TON TROUGH, SOUTHER~ CALIFO.{NJA 
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APPEND IX A 

U.C.L.A. - Mt. Wilson Calibration Range* 

* 

Instrument: LaCoste and Romberg gravity meter DL-1 

Dates: January 28, 1958; May 14, 1958; May 18, 1958; 

April 20, 1962 

Gravity values: (corrected for earth tides and meter 

drift; mean of four runs± standard error of the 

mean) 

UCLA o.oo 
Cal Tech -18.79 ~ 0.02 mill igas 

Vis la 

Angeles 

Clear Creek 

Red Box 

-75.32 0.02 

-117.47 0.02 

-199.27 0.03 

-263.21 

-342.72 

0.03 

0.03 Michelson 

Cloudburst 

Dawson 

-418.99 

-480. 79 

(1 run only) 

(1 run only) 

Station Descriptions: Approx. elevation 

UCLA--On floor of room 1275, Geology Building 

Cal Tech--Top of outside steps, SW corner of 

Mudd Hall (near intersection of Wilson 

and California) . . . . . . . . . . . . 755 1 

After c. E. Corbato, 1963. 
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Al l of the following stations (except 

Michelson) are along the Angeles Crest 

Highway. 

Station Descriptions: Approx. elevation 

Miles from 

Yista--On water meter cover (le­

vel with curb} 85 1 3 of cen­

ter line Vista del Valle and 

Angeles Crest Highway •. . . . 
Angeles--On asphalt 2 1 E of base 

of sign 11 Angeles Crest Ran­

ger Station-Angeles National 

Forest 11 
••• 

Clear Creek--On cement curb 4 1 

S of drinking fountain at 

SE corner of garage building, 

Cleer Creek Ranger Station 

Red Bux--ln fru11l ur duor Oil 

porch of Red Box Ranger 

Station. • • . • . •. 

Michelson--On Michelson Pier 

Mt. Wilson Observatory •• 

Foothi 11 Blvd. 

1.0 1665 1 

3.6 2290' 

10.2 3640 I 

15.3 464-0 1 

20.5 5630 1 
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Station Descriptions: 

Cloudburst--On pavement of 

parklng recess (S side 

of road} 4 1 N of high­

way marker, Cloudburst 

Summit •••• 

Dawson--On top of rock culvert 

wall at corner near highway 

marker D-254+77, on E side 

of road about 300 1 SW of 

Dawson Summit •.• 

Approx. elevation 

Miles from 

Foothill Blvd. 

34. l 

46.4 7885' 



Base Stations 
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APPEND !X B 

Banning - Located on U.S.B.M. J 71 on the east side 

Indio -

of the road to ldyllwild near the intersec­
tion of the ldyllwild road and the southern 
front8oe road of the lndlo freeway. B.M. 
is 32 feet east of the center line of the 
ldyllwild road at the east edge of the side­
walk, and 98 feet north of the north rail 
of the main track. The concrete post pro­
jects 0.3 feet above the gound and is tilted 
at an angle of 200. 

elevation = 2326 1 

observed gravity = 979405.67 mgal. 

Over U.S.B.M. H 588 at the Roosevelt School, 
at the intersection of State Highway 111 and 
Towne Avenue, 11 .6 feet northwest of the north 
corner of the school, 39.5 feet south of the 
center- lirie or the highway, 12.0 feet east 
of the northwest corner of a fence surrounding 
the school, 1.6 feet north of the side of the 
fence, obout level with the highway, and set 
in the top of a concrete post about 0.3 feet 
underground, but accessible through a hole 
in the asphalt sidewalk. 

elevation= -15 1 

observP.d grnv i ty 979537. 14 mga 1. 

Desert On the cement porch of the Desert Center 
Center - store abo~t 3 feet below u.s B.M. G 132. 

The B.M. is set vertically in the north face 
of the store 2 feet west of the main entrance. 

elevation = 902' 
observed gravity= 979515.65 mgal. 

Brawley - Located at the south city limit of Brawley 
about 100 feet west of U.S. 99 on Canal Street. 
The setup was made on the south side of the 
street 12 feet north of the second power line 
pole off the highway. A metal tag stamped 
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894 is nailed on the pole. 

e]e0ation = -105 1 

observed gravity = 979546.45 mgal. 



Pendulum Stations 

Pend. 
Sta. No. 

Cal if. 
314 
315 

1019 
1020 
1021 
1022 
1023 

Ariz. 
65 
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APPEND 1 X C 

Location Observed Gravity 

Pasadena 
Mt. Wilson 
Mecca 
Ni l ano 
El Centro 
Palomar Mtn. 
Pumona, 1939 

Yuma 

Pend. Value Gravimeter 

979. 577 
979. 253 
979.552 
9~(9. 573 
979.513 
979. 237 
979. 548 

979.532 

979.5796 
979. 2542 
979,5516 

979.5498 
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APPENDIX D 

Terrain Correction Table for Inclined Plane - G'zone 

h =maximum elevation difference in feet. 

T1= terrain correction x ..£ 10 m/gal for terrain density 

2.0 g/cm3. 

T?~ terrain correction x -2 / 10 rn gal for terrain density 

2.67 g/crn3. 

h Tl T2 h Tl T2 

0 .o .o 200 7.4 9.9 
l 0 .o • 0 210 8. 1 10.9 
20 .o • 0 220 8.9 11. 9 
30 . 1 .2 230 9.8 13. 0 
40 .2 .3 240 10.6 14.2 
50 .4 .6 250 l l.5 15.4 
60 .6 .8 260 12.5 16.7 
70 .9 l.2 270 13.5 18.0 
80 l. 1 1.5 280 14.5 ]9,3 
90 1.5 2.0 290 15-5 20.7 

100 1.8 2. 4 300 16.6 22.2 
11 0 2.2 2.9 310 17-7 23.7 
120 2.6 3,5 320 18.9 25.2 
130 3. l 4. 1 340 20. 1 26.8 
140 3.6 4.8 3 0 21.3 28.5 
ljO 4. l :;,.~ 350 22.6 30.2 
160 4.7 6.3 360 23.9 31. 9 
170 5.3 7. 1 370 25.2 33.7 
180 6.0 8.0 380 26.6 35.6 
190 6.6 8.9 390 28.0 37.4 
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APPENDIX E 

Bouguer Reduction Problem 

Consider a two dimensional north-south mountain range 

at the equator of a homogeneous earth which rises 1 km 

above sea level. The density contrast between the mountain 

and the surrounding crust is -0.30 g/cm3 and the block is 

in perfecl i5u5lctlic e<.Juilibriurn. 
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An east-west gravity survey is made along the equator 

across the mountain range. What is the observed gravity, 

the free air anomaly and complete Bouguer anomaly? How 

does the complete Bouguer anomaly compare with the anomaly 

rru111 L11e reduced ma::;::; of the mountain below sea level? 

For the purpose of this study gravity observations are 

started 80 km west of the west edge of the body and are 

made at 10 km intervals up to 10 km we3t of the body and 

then at 2 km intervals across the range to its center. 

The observed gravity far from the range is assumed to be 

Aq11r:il to the theoretical sea level gravity at the equator. 

The vertical gradient of gravity is assumed constant at 

308.6 mgal/km. 
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The observed gravity can be calculated for the points 

up to the west edge of the body by considering the attrac-

tion of the following two mass distributions: 
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The sum of the gravity effect of body A and body B gives 

the total effect of the mountain range at points along sea 

level and outside of the range. The relative observed 

values for body A, and body 8, and their sum are given 

below. 

Distance Body A Body B Total 

JOU u.usi u.66 u.75 
90 0.09 o.84 0.93 
80 0. 12 1.08 1.20 
TO 0. 15 1.44 l.59 
60 Q.24 2.01 2.25 
50 0.34 3.02 3.36 
40 o.Go 5. 1 G 5.7G 
30 1.44 - 11.30 - 12.74 
28 l.87 - 13.96 - 15.83 
26 - . 2.60 - 17.75 - 20.35 
24 4.05 - 23.44 - 27.49 
22 8.24 - 32.65 - 40.89 
20 - 56. 15 - 52.58 -108.73 
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The gravity effect for points on top of the mountain 

can be calculated by summing the attraction of the follow-

ing two mass distributions. 

Body C 

Bod D 

9km 

l 
The sum of the gravity anoma l i es of body C and body D 

gives the total anomaly for points on top of the mountain. 

The relative gravity values for body C , body D, and their 

sum are given below. 

Distance 

20 
18 
16 
14 
12 
1 0 
8 
6 
4 
2 
0 

Body C 

+ 56. 15 
+104.06 
+108.25 
+109.69 
+110.40 
+110.81 
+ 1 11 • 06 
+lll.23 
+lll.33 
+111.39 
+111.40 

Body D 

- 51 . 70 
- 67.07 

76.47 
- 82.50 
- 86.55 
- 89.39 
- 91. 29 
- 92.62 
- 93.49 
- 93.99 
- 94.15 

Total 

4.45 
37.00 
3 l. 78 
27. 19 
23.84-
21 .46 
19-77 
18.60 
17.83 
17.40 
17.26 

The total gravity values given in the previous two 

Lables are essentially the free air anomalies. This 

anomaly is positive over the mountain range and negative 

elsewhere. This is because no account has been made for 
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the extra mass above sea level and below the mountain 

stations and the mountain root for the sea lHv~l ~Lcttions. 

The Bouguer correction is 0 for the sea level stations 

and equal to the attraction of an infinite l km slab of 

density 2.70 g/cm3 (-llJ.21 milligals) for the mountain 

stations. The simple Bouguer values which are given in the 

following table are al 1 negative with a minimum over the 

edge of the mountain. Now the terrain correction is appliAd 

and the complete Bouguer anomalies calculated. This moves 

the minimum from the edge to the center of the mountain 

range. The complete Bouguer anomalies are now compared to 

the gravity anomaly of body B (the mountain with the mass 

above sea level removed). The difference.is obviously 0.0 

mi lligals up to the mountain edge, but within the mountain 

range the Bouguer anomaly underestimates body B by 

3 to 5 milligals. If an interpretation of the Bouguer 

anomalies is attempted the thickness of the root will be 

less than actuallypresent by approximate~ 0.36 km and 

of different shape. 
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Distance F.A.A. S.B.A. c.s.A. Body B Diff. 

100 - 0.75 - 0.75 - o.66 - o.66 o.oo 
90 - 0.93 - 0.93 - 0. 84 - o.84 o.oo 
80 - 1 .20 - 1.20 - l.08 - 1.08 o.oo 
70 - T.59 - 1.59 - l.44 - 1 .44 o.oo 
60 - 2.25 - 2.25 - 2.01 - 2. 0 l o.oo 
50 - 3.36 - 3.36 - 3.02 - 3.02 o.oo 
40 - 5.76 - 5.76 - 5. J 6 - 5. 16 o.oo 
30 - 12.74 - 12.74 - 11 . 3 0 - 11 .30 o.oo 
28 - 15 .83 - 15.83 - 13.96 - 13.96 o.oo 
26 - 20.35 - 20.35 - 17.75 - 17. 75 o.oo 
24 - 27.49 - 27.49 - 23.44 - 23.44 o.oo 
22 - 40.89 - 40.89 - 32.65 - 32.65 o.oo 
20L -108.73 -108.73 - 52.58 - 52.58 o.oo 
20U 4.45 -108.73 - 51 . 69 - 52.58 0.89 
18 37.00 - 76. 12 - 66.98 - 72.4-9 5.50 
16 31. 78 - 81 .44 - 76.47 - 81. 64 5. 16 
14 27. 19 - 86.03 - 82.50 - 87.23 4.74 
12 23.84 - 89. 36 - 86.55 - 90.86 4.32 
10 21 .46 - 91. 76 - 89. 37 - 93.35 3.99 
8 19.77 - 93.44 - 91 . 29 - 95. 04 J.75 
6 18.60 - 94.58 - 92.61 - 96. 19 3.57 
4 17.83 - 95.39 - 93.51 - 96. 94 3.51 
2 17.40 95.78 - 93.96 - 97.36 3.39 
0 17.26 - 95.96 - 94. 14 - 97.50 3.36 


