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ABSTRACT

The Markoff brothers have obtained bounds in the maximmm
norm for polynomials in terms of bounds for their derivatives.
E. Schmidt has obtained asymptotic bounds for the analogous problem
for weighted Ib norms and the first derivative.

This thesis extends Schmidt's work in one case to the second
derivative. A new technique is applied which recovers the principal
term of Schmidt's asymptotic result and furnishes information about

the extremal polynomials. Exact bounds are derived in one case.



INTRODUCTION

In 1890 A. Markoff [6] established & bound on the derivative of

a polynomial in terms of a bound on the polynomial itself.. He showed

max I-F’(x)l 2 2 max |0l

where each maximum is over the range -1 < x < 1, where f(x) is any
polynomial of degree at most n and where the prime denotes differ-
entiation with respeet to x.v Equality is obtained for multiples of
Tn , the Chebyshev polynomial of degree n.

Repeated spplication of A. Markoff's inequality gives similar
inequalities for higher derivatives which, however, are not sharp.
The best possible result is the following, which is due to W.

Markoff [7].

(K) n(n_:),..[n_(l(—l)]
max ||
max | § ool ¢ PR
Again the extremal polynomials are multiples of Tn.
The Markoff's inequalities have suggested a number of related

problems. Among such problems are the maxima
b, k) P
P {1 {f o) wondx ©.n
- max . - ~ .
" L
fb{fm} Pwadx
/1 ,

over all non-zero polynomials f£(x) of degree at most n for various

M

intervals [a,b], weight functions w(x), powers p and orders of
derivative k. In this thesis p = 2 will be studied in several
situations. Three cases will be distinguished and named after the

associated orthogonal polynomials. The Legendre case will be that
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of interval [-1,1] and w(x) = 1. The Laguerre case will be that of

interval (0,00) and weight function e *. The Hermite case will be

2
that of interval (-o0,e0) and weight function e™* .

In 1932 Erhard Schmidt [11] announced sn asymptotic estimate

of the maximum in the Legendre case for the first derivative:

Iim !ﬂbz = L .
Ny p* T
Later Hille et al [4] studied the Legendre case for the Pirst deriv-
ative for general powers p. They sharpen their results for p = 2 by
an argument essentially identical to that used by Schmidt. Bellman [1]

M
obtains a bound for ~= for this case by elementary means. In 194k

n2

Schmidt [12] obtained several terms in the asymptotic development of
Mﬁ,for'the‘first derivative in the Legendre and Laguerre cases and
the exact result in the Hermite case.

The first section of this thesis deals with the second deriv-
ative in the ILegendre case. An asymptotic estimate of Mﬁ is derived
by an extension of Schmidt's techniques with simplifications intro-
duced by the use of the theory of non-negative matrices. As in
'~ W. Markoff's result, repetition of the estimate for the first
derivative does not give the best possible result.

The second section applies certain techniques for the numerical
estimation of elgenvalues of integral equations to these problems.
The fifstAderivative in the laguerre case is treated as an exanmple

and corresponding results are stated for the Legendre case. The

Iaguerre case has the virtue as an example of permitting an exact
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solution. The exact results for this case are derived and compared
with Schmidt's approximate expansion.
A third section briefly treats the Hermite case for general k.
it would seem possible to extend the method of section 1 to
deal with specific cases of higher derivatives yet the method of
gection 2 seems more attrﬁctive. The method of section 2 appears
less laborious and, in addition to the maximum being estimated, the
extremal polynomial is estimated. Neither method promises to make

the general case tractable.



-k -

SECTION 1

i
Let P,(x) = =— L0 (x*-1)Y, 1 =1,2,... and P (x) =
i 1.4 3,1 ’ ? o
210 d}{ :

denote the Legendre polynomials and let {cpi(x)}' be the corresponding

+ 1

orthonormal system where q:i(x) 2

Pi(x) for 1 = 0,1,2,....

Let £(x) = % aicpi(x) be an arbitrary polynomial of degree at most n.

Ir b = fl ‘Pi,"cpj"dx’ then, using orthogonality,

Za&b.,_,

o 4
Hz' max j{{ (X)} L - max — .
foago f {f (x)} dx i"'z:',*'° Z at

Repeated application of integration by parts and the fact that

(k)(l) = (n+K) (ex-1)!! [9, p. 252] shows for i > J

i+
bi,;""lzw 4 (J"M')(J*z) (3%.(L+|)»J(j+n+£3{:+c—l) ]

Note that bi j > 0 with equality only when O <i, §<1 oriand ]
=2

are of opposite parity. The matrix B = (‘ni J) is symmetric so
2

= | . cees B
Q i.,jaiajbi-; J is a real quadratic form in &, > & . The

extremal problem (1.,1) for the form Q is known to have the solution

2

Mn which is the largest eigenvalue of the matrix B [3, TP 317-319].

The Legendre polynomials of even (odd) degree congist of even
(odd) powers of x. Remumber the I’i go that the ones of even degree
come first in ascending order and then those of odd degree in ascending

order. For n _>_ 4 the form of b 1,3 shows that this operation
) ?
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trangforms B into the similar block-diagonal matrix

o

2

b,. b

2, 01,y

by,2 buyy

U 11 b 3
3,3 "35°°°

b5,3 st.

i

all unlabeled elements are zero. The block matrices E and U are
positive matrices. The eigenvalues of B are those of E, those of
U and zero as an eigenvalue of multiplicity (at least) two.

The elegant theory of non-negative matrices will be employed
now. Some of the main results will be summarized; proofs are
found in Varge [13, chap. 2].

Iet A = (ai,j) and B = (bi,j) be two mxn matrices. Then
A > 3B (>B) if 8 4 2bi’3 (>bi,j) foralli=1,...,m, j =1,...,n.
If 0 is the null matrix and A > 0 (>0), A is said to be a non-negative
(positive) matrix. If B = (bi,J) is a complex matrix, then |B|
denotes the matrix with entries lbi,jl' Let B have eigenvalues
Ay i=1,...,m. Then p(B) = max “’il is the spectral radius
of the matrix B.

Let A > O be an nxn matrix. Then,

1. A has a positive real eigenvalue equal to 1ts spectral radius.
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2. To p(A) there corresponds a positive eigenvector.
3. p(A) increases when any entry of A increases.
h. p(A) is a simple eigenvalue of A.

Tet A > 0 be an nxn matrix and let B be an nxn complex matrix
with A >|BJ. If p is any eigenvalue of B, then il <p(a).

E and U are positive matrices to which this theory may be
applied. If n is odd, then E and U are of the same size and U > E.

2

Thus p(U) > p{E) and p(U) = M “. If n is even, let U be the

n
block-diagonal matrix consisting of a 1x}] zero block and U. The
dimensions of E and U are the same and E > U, so p(E) > o(¥) = p(U)
and p(B) = Mng. In terms of polynomials the theory implies M <M .
and if n is even (odd), then the extremal polynomial consists of even
(odd) powers of x, excluding %, xl, with positive coefficients.

The case of even h = 2m will be treated. Let
m

f(x) = Y_ &, 9,.(%) be any polynomial consisting only of even,
HEY

non-zero, powers of x. The real symmetric matrix E is associated

mn
with the real quadratic form Q= L 3 e ba,:., %

b=l

. ‘pet_at
In terms of polynomials Q(al,...,a.m) = l'{-f- ,(x)} dx 2 0.

BEquality implies £"(x) = O hence 8y =...=a =0, Ths Q1lsa
positive definite quadratic form.

7 The real symmetric matrix E is orthogonally similar to a real
diagonal matrix D [ 3, p. 308], i.e., there exists a real orthogonal

matrix T such that

D=T ET (D= (X5, ) ,TT-r:I) (1.2)
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where § is the Kronecker delta and the ).,;l are the elgenvalues

1,4

of E. The change of basis carries {?J_L(x)} into {g;(x)}. The
new basis is orthonormal and is composed of polynomials in even,
non-zero, powers of x. In terms of polynomials, (1.2) 1is

' Y uow -1
I{g;‘gs dx =8‘.'13 3 Lglgj dx = Xi— 81:5 y Lzl he

1.1 A Differential Equation for {g Lcm}.

For i = 1,...,n define hi(x) by hi"(x) = gi(x), hi'(o) =0
and hi(l) = 0. Since hi‘(x) is odd, hi‘(l) = -hi'(-l) and since
1
= - L - e ! - . =
gi(x) is even, ltgidx =0="h (1) hy (). Thus hy (1) by (-1)

0. Because hi(x) is even, hi(l) = hi(—l) = 0.

Let g{x) be an arbitrary polynomial of degree at most n = 2m
consisting only of even, non-zerc powers of x. The basis {gi}

; m 1
gives the representation gq(x) = X eigi(x) where c, = }giq_dx. The
w= -1

] -
orthogonality of the { gi"3 shows Igi"q"dx = ¢c;h il and
bt |

! v -1
M . : H - ' LA m “ ' ,
I,{gﬂi*)‘agu‘l}d" 6 w=lorro i
Integrating by parts twice and remembering that hi‘ and h both

vanish at + 1 shows
i H
Jgiqdx = § h q"dx
-1 -3

and, using g," =h (&) the relation (1.11) can be written in the
3 i i 2

form

! .
f {h‘:J- k;‘h;_}q"dxzo. (1.12)

The expression {hi(l") - )s,;lhi} is an even polynomial of degree at most

nt+2 and by (1.12) is orthogonal to any even polynomial g" of degree at
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most n-2. The expression is naturally orthogonal to all odd poly-

nomials of degree at most n+l. The orthogonality conditions require
LY) -t

Suppose k; = 0 in {1.13). The condition hi(l) = 0 then
implies hi(h)(l) = d,. The polynomial h, is a solution of
) (- M)

The homogeneous equation has no polynomial solutions since powers

cannot cancel. The inhomogeneous equation has the solution

) % R (40)
' g)
Remembering the result quoted on p. 4 that Pna-z.“): O for ni2 <“4f 3

(49) 1

P“+1§;)>o for n+2 > 4§ and A" > 0, it is seen that

~‘ ot -'! (“’7
X, LA B, (0>0.
f=0
Thus hi(l) = 0 requires hi(h)(l) = 0 but the polynomial h, cannot be
a solution of the homogencous equation. This contradiction shows
ki % 0.
Iet kiui(x) = hi(x). The differential equation (1.13) can

be written as follows, when the facts that hi(l) = 0 and Pn+2(l) =

Pn(l) = 1 are used:

) - (C))
o 0 (yP) oo 4 _(44)
Ax) = . a . - .
Tet §.(x) ﬂi.—.;o)“ LA and T (X) ‘Zz_:\\, P s (X0

Substitution shows that
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(& B!
Wy m=Ay S = A T en-1] Tooo . 1)

Since 5 cx) X, [5 (x) - P (x)] and 'T'~ (x)_A LT -F (ﬂ]

differentiating this relation gives
D) 4]
W, (= = [Sen-1]-Lwy [T =T, s

The relation (1.15) can be solved for ui(“)(n and substituted

into (1.14) to find
W tx) = = AL S ex) + A ’-5-_]-_-‘-(—)- T ).

-

The requirement ui(1) = 0 is manifestly satisfied. The requirement
ui‘_(1) = 0 gives the condition siv(w) Ti(1) = 81(1) Ti'(1) which
is a polynomial equation for 7\i. In terms of A the equation is

c‘l.:m (4;) M3 ey
Z ,\ z[ pa (NP -R,”‘c«) Pn cenl]=o. (1.16)

f=0 (4=
1.2 Determination of Mn2

Let c(i,j) denote the expression in square brackets in (1.16).
Divide (1.16) by n and let n = 7\n8. The resulting equation can be
written as f (rl) = 0, where

£a(N) = Z'? z 9—(—:%%%, . Cl.an)
=0 ¢.+J:.0 h

The Hurwitz theorem [10, pp. 156-158] states that if a sequence

of funcitions {-F“(?)}:‘ regular in a domain D converges to a non-

constant limit function f('? ) in D, then for every J in D such

that £( f ) = 0 and for every disk lq-f[<£’ there is a zero of
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each fn( yl) for n> N(8) in the disk.
A limit function £( iz) will be found whose smallest real zero
8

is the limit of the smallest real zero, — , of f () for
'lo . M 2 n
n
n =5,6,... which will Purnish the desired asymptotic estimate of Mng.

Using the representation of Pm(n)(l), c(i,3) is written

explicitly as

R+ F+Yi+!
C"‘d’:(uz-wf—')( =+'>”( )(aJ S

n+L+d, n+di+l
('\*1 “3)(83")"( _4;-|)(3i+')!.‘ .

This can be written as

.. . o1t ottt
c.c..,;)(twllf!(’r)--_rf- (H-”J‘)TT (H--——)-

”’Q-l-ﬂ. e o Je o -Hje
v
-'ﬁ’(n-’“’")TT 1+ 8
K:'q 41 Ks-"‘u
_l+—’[2(1+K)+ik J -
“- -‘l' K"'qj"“
— i (L+K) + f nj.;. .... de,
K= -45+1 Ke-Y9L

:.'L‘-(,‘,_—-l( +q)+ L de,;) (2a)

In the expansion there are 2(8£m+ 2) terms in . Each term in

#
o
n

ST (2+x "% & where )k < WY nence is

1
—-2-_"_— is of the form +
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dominated in absolute value by ﬁ (2+4 0 ). Thus
n

8942 ™
A+ 4o
ldc«'.,j)l <2 X f__...'-) (g‘::z). For i+] = 4 the term c(1,3j) = O
m:z=o
vhen L4f +1 > n+l so 2+:;‘9 <2 in the non-zero terms. Using the
8+ 82+3
resutts (B02) < B2y wa L 27 <2, it 1s
m=0
seen that
34+Y sqv2
1, Nl < 2 (8“4,.) (1.23)

When (1.22) is multiplied by n and substituted in (1.21), fn(q ) is
given as c}
(&, 3)
£ C‘z)— ‘;C"l) "‘“"" Z_ ‘z 'z-i (511.2.)”(‘))”

vhere  fop) = ’i 2 = Cigc- 16:+4) By the bound (1.23)

Q=0 " (4j=e (Bi+2) ! 85!
ana (L +2)U (83 5 Y] for 143 = 4,
o 19.94-'4 o0
! +
Ve = Fopl < T‘;D’l E‘TTJ!! ql-}-t)! (1.24)

The series appearing in (1.24) is an entire function hence is
bounded on compact subsets of the complex plane. Because of the
factor % , fn( )l) converges uniformly to £ pz) on compact
subsets of the plane.

A more convenient expression for f(w ) will be derived now.
1

(16 L =163 +49) (H4i41) = 4

g >1 ) -

or f 2 ) _Z (eI (g T u.ut Z FZEDE 4;)!
L'\'\'):—Q t."’)-

—7_,_,';5;[2 ( ‘“"' .]

L=l



The identities, where 1° = -1,

44 Yy’ Xy 2 44-2 ¢ 24-9

7;— [+ + Ll-:.)q"-& UM)q s- J= 5 ( ) 2 +¢1)2

, J<=o

T ? ue, X ul-2

-~ [LH&;;)“— (\-u)q +L(l+i)q-.’.(l-£) J= Z. qk- )"
Y R=)
show that 'F(’p =2+ { ‘IR—(%B:‘Q' Since

, = 47!

4 2.4
os » cosh ® = W Y
o08 B 08 };—,*’W ’

the new variable y defined
by !Gyh =N for real ] > 0 can be introduced to write f as

f(y) =1 +cos ycoshy fory>O0. (1.25)

The smallest real zero of ( vl) has been designated Mo -

Let y_ be the smallest real zero of £(y). For each n, M;a = min A,
: 1

g0 naMn—e is the smallest real root of fn(sl ). The Hurwitz theorem

agserts that
§ -2 4
lim n Nb = Vo = 16y,
n-p oo

Thege results are summarized in

Theorem 1. Let £(x) be any polynomial of degree at most n.

Iet M7 be defined by
: ' " 2
M: " max f 1+ (x)}zdx .
$00%0 f' {_ﬁ (x)} dx
-1
Then, liwm ” - '_LTI where Y, is the smallest positive
zero of

1+ eos ycoshy= 0.

Plummer [8] has determined vy, to be 1.8751041 correct to 1077,
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Rejéetition of Schmidt's result for the first derivative gives the

bound o whereas the best possible value is approximately
(3.7502082)'“.
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Section 2

In this section the first derivaﬁive Laguerre case will be
handled in two ways. The exact results will be derived by elementary
methods. Approximate results will be derived as an illustration of
a general technique which relates the matrix problems arising in
varicus cases to integral equations.

2.1' Exact Treatment of First Derivative Iaguerre Case.

As in section 1

. {Tlfi0Y e dx
M = max 2= 7 C2.11)
" | {fo)e dx

where the maximum is over all non-zero polynomials £(x), is the

o0 » /7 X
dominant eigenvalue of the matrix B = (b, ,) where b. .= ! L;L.e dx
i,,j “y) (-3 3 )
0<1i,J <n, and Li is the ith Laguerre polynomial. Integration

by parts shows bL,:,: -L{_{o) L;( o) for 1 < J. The relations
< n | v X ’ 7

L) = L6 - () x and Ly,, = L. -L; [9, pp. 296-297]
K=o : :

show. b =1for 0<i<j<m.

i,J
The cases n = 0,1,2 are trivially solved directly. The

eigenvalues of B for n > 3 will be obtained as the reciprocals of

the eigenvalues of 3L, Define A as the symmetrie, tridiagonal

matrix for which

Y
[,
\".
+
t
{
L
1]
&
1 3
3
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Let the second difference operator Aje operating on r = {1ﬁ,...,bq§
2
be defined by AN.r=b. - 2b.+ b, . Let r, be the ith row of
3 J=1 J 3 i —_

B and Cj the jth column of A. Then E=8BA = (e;d) is defined by

e‘._".)___ (rL 'Cs) . Since
e:.,.= (r“cs);-t)?'n\'zsé,- ;% Ln
> J 5
€, = 1| , €@ =0 e
€an=! 2 C(n=° L h

it is seen that E = T and A = B~ .

Tet % = (xj), 1 < j <n, be an eigenvector of B!, The
requirement that x be an eigenvector is equivalent to the satisfaction

of the difference eguation

~%,_, + 1“,,' - "3+,—>"‘j 5

with boundary conditions
2%, =X, =AX

- anq. x“r.)\)(“ ’

This system is conveniently written as

t2-2) x5 = Xio, X5, 5= 2y, n=l £2.12)
(2-A) X, = %, (2.13)
(2-A) %X, = Xy +%X, (2.14)

This system has the solution x = sin @) where 2-A = 2 cos & and
2K —1

@ = Zpp1 " K= Yee-ym,  since (2.12) becomes the identity

2 cos @ sina j=sina (j-1) + sin a (j+1),
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(2.13) becomes
2cosdsinag =sin 2 a
~and (2.14) is
2cosasinan =sina (n-1) + sinan

which is equivalent to

K =1
2sin g;_-cos ’-‘%_ﬂot T 25N J¢an+) T Ccos ".;—.'O.K-!):c.

-1 -2 v
The smallest eigenvalue of B is Mp = 2~ 2¢o0§ Tyt T

= Ysm* T, These results are summarized in
2{2n¥l)

Theorem 2. Let f(x) be any polynomial of degree at most n.

Then, for n > 3

o0 oo
/ A X —]_ -3 Tr 2 =X
L{F(x) e dx £ y Sin TCaneD L{-F (0} e dx

: n L]
where equality is obtained for multiples of Z, L. J'(X) SN 24 -
J=
Schmidt [12, p. 167] obtained the asymptotic result that for

2
2n+1 | o 150

S + "'—B_—""I -3 <R ’
™ M, 24¢2n+0* @n+) 3 3

which is seen to be the first terms of the series expansion of the

exact result: -

2 _ 2K
2n+! = | "“'1'_":-:-...,- (- T )+
== a2ay(2n+i) ‘ (2r4+1) V2 tan+t)
o~ M,

2.2 The Use of Integral Equations ,
Wielandt [14] has studied the approximation of the eigenvalues

|
of the integral equation { K(x,y) ¢(J)J)' = A ¢cx) by the
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elgenvalues of the n-dimensional matrix formed by replacing the
integral by an n-point quadrature and the integral equation by a
system of n linear equations. The relevant results follow. The
integral equation is considered for symmetric kernels K continuous

[}
on [0,1] x [0,1]. The quadrature rule R approximates j° fiy>dy

n . R o .
by z-:,- £0%) . The matrix K = (& K(%,4%))

has eigenvalues )o . The XR and A are real and will be ordered so

that xi (}.P) is the pth positive eigenvalue of KR(K), counting
maltiplicities. If a pth positive eigenvalue does not exist,
define,).}; = 0. Similarly define x’fp(x_p).

A kernel G is said to allow the rule Rn if G and the matrix
GR derived by using Rn have the same eigenvalues. A set of functions
gl(x) sares gm(x) is said to admit the guadrature formula R if each

gi(x) is square-integrable over [0,1] and

! L)
[giwgindy= L % GuRIEi(R) , teijem.
K=

I gl(x),...,gm(x) admit R end if e;, = c,, are real constants, then
G= 3 T & gioogi
ez J

is a symmetric kernel allowing Rn' et “K“ = max !'A.\ where A
yuns over all the eigenvalues of the kernel or square matrix X.
If K(x,y) is a symmetric kernel and G(x,y) is a symmetric kernel

allowing R such that

v\)r\) K( %\'), I £ ¢, £ n,
‘then

IAp=Apl & IK=GHl, psti, 2,
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A bound for WX 1is given by
2, (' 2
iki* & [ f ke tdxdy.

Ir |x(x,y)] <c(x,y), then QKN & UG .
The n plecewise constant functions

£ Lt
"—-——

. .
1 4}(5'.""' «=!, ...,n

gioa= J! <=1, x%x=0
O  otherwise
obviously admit R . Let K(x,y) = min (x,y). The kernel

G,y = Z'__ Z_ K (s 7, ,,)g._(aog_’cp

q...-—-l J..-
R 1 Mn
allows the rule R and G = --2- B so G0 = — The equation
n

for the elgenfunctions is

XPx) = f y Py dy + x f Pey)dy -
By induction o(x) is infinitely dlfferentiable and o"(x) = A" cp(x)

with (0) = ¢'(1) = 0. The solutions are

X = (K+'}z)-11r'1, @, = Sin(K+F)TXR |, kK= O, 1, .. ..

AR Me = 42 pK-ell
Thusf:\‘-)\,lzl_’_‘!a—-_’;-z]_ll .
A bound for [JK - GJf is obtained by

b el 1
“K-Gﬂ" £ IOLIG-(x)y)_ch,j)l de, <
Jn‘ 2 !
e L (+=-x)dxdy = Tyv -

Since G(x,y) > K(x,y), llcl] > UKl and

2 Un* R R<_"
M“: -—1—1_-5_4- where O < Y6 -
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From the theory of positive matrices and its extension to
positive kernels by Jentzsch [5], it is known that k1 is simple as
is K1R for each n. The kernel X is the uniform limit of the kernels
G, so the eigenfunction belonging to k1 is the uniform limit of those
belonging to %13 {2, p. 151].
The above results are summerized in
Theorem 3. Let f(x) be any polynomial of degree at most n.

Let Mn2 be defined by

oo i -x
X fo {£'w0Y e Tdx
MEo= max o2 .
n feako fa {f0} e "dx
2 _4n? -
Then M~ = e +# R where 04 R¢ =X The maximum is
n T [
n-t
attained for multiples of L, (x)+¥ @, L;n. Given ¢ > 0,
{=1

there exists N{e) such that for n > N(e)

lay ~ Sin %—;—]cé Ll =1,

Application of this technique to the first derivative Legendre
case leads to the kernel K(x,y) = -21- x5/2 y1/2, x <y and
Theorem 4. Let f(x) be any polynomial of degree at most n.

Let M 2 be defined by
n [ ] ’ 2
W = max 5_‘{ fen)dx
n = rt 2
foago | {$0} dx
Then Mn2 = 5—2- + R wvhere O <R < 4n + 7. The maximum is attained
x
a[azi]
for multiples of ﬂ‘(x) + a.“__“_ ‘?n-:lr(") . Given € > O,
re\

=
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there exists N(€) such that for n > N(e)

) a ~2=2 sin T"—-——-—-——-‘“‘")zk ¢ n-
_ n-2v n 2na r= ',---,1[-—-]

Here the {‘P‘,B are the orthonormalized Legendre polynomials.
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Jection 3

In this section the Hermite case of (0.1) will be treated
for general k.
An arbitrary polynomial £(x) of degree at most n can be

expressed in terms of the Hermite polynomials defined by
2

m_ % J" -
HALX}:.I, M, (x) = (-1 e E-;r-"’(e ) m=1,2,0 0

: ]

These polynomials have the properties that

1]
(% 2 m.
- = Tl (%)
6o 2 2 m
(x) € dx = !
5..«:“”‘ 2 mo v [2, pp. 91-93].
),
If £(x) = }_ &, H,00 , then
m=0O
o - a n (" 7Y
(Clecole M dx= § ak a2 m!vE,
- B
m=o
oo (k) 2 _x* 2 m 2% !
({4 oYe ™ dx= 3,2 m T [Fta
- 00 mT K

From this formulation it is easily seen that
Theorem 5. Let f(x) be any polynomial of degree at most n.

Then,
n

f(-F“c)x)S e 4x ¢ % f [fo}le Ax.

(n-—

Equality is obtained for multiples of Hh(x).
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