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ABSTRACT

The present thesis is an attempt to develop a thin airfoil
theory for an airfoil which spans the gap between a pair of stream
surfaces which arc slowly diverging or converging, the motivation
being to predict, theoretically, the effect of varying axial velocity
on cascade performance of axial flow compressor rows,

The procedure involves, firstly, derivation of approximate
equations satisfied by suitably defined average potentials and stream
functions in such quasi two-dimensional flows. The flow is assumed
to be inviscid, irrotational, and incompressible, but as will be argued
later, the quasi two-dimensional type equations also result from less
restrictive assumptions. Next, fundamental solutions to these
equations, corresponding to bound, line sources and vortices, are
found. A distribution of such solutions is used to formulate the
airfoil problem, using the condition that the flow be tangential to the
airfoil contour. The ‘vorticity distribution appears as the solution to
a singular integral equation, which is solved by an approximate method.
Simple yet physically realistic assumptions are made concerning the
gap w;icith as a function of the streamwise length, to obtain numerical
results for the effect of contraction of the stream surfaces. Varying
degrees of approximation, later discussed, are used in the calculation

procedures. A wide variety of the location and the extent of the
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éontraétion, with i‘espect to the airfoil, is investigated,

In all cascade calculations the contraction of the stream
surfaces was assumed to be in the same direction as the cascade axis.
The main conclusions of the thesis can be summarized as below:

1. The theory predicts a lesser circulation round an airfoil in
a contracting flo;;v as compared to the circulation round the same
airfoil in a plane flow. There is a similar reduction of circulation
for a cascade of airfoils. The percentage reduction of circulation is
greater for the cascade case as compared to the isolated case,
assuming the contractions to be geometrically similar in both cases.
The effect on the circulation of contractions, considered physically
reasonable in extent and magnitude, either fully upstream or fully
downstream of the airfoil, is quite small.

2. As a very rough rule of thumb, it may be stated that fhe
reduction of circulation as compared to the two-dimensional theory,
in the range of i)arameters applicable to compressors, has about the
same magnitude as the reduction of gap between the stream surfaces
taking place across the airfoil chords.

3. In a comparison with fixed mean angle of attack, the change
in flow turning and deviation angles of the flow aré much smaller
than changes of circulation and may be stated to be of the order of
one degree or less for contraction exfents and magnitudes considered

realistic for compressor cascades.



TABLE OF CONTENTS

Introduction

1. Equations Satisfied by Quasi-Two-Dimensional Flows

and Fundamental Solutions to These Equations

1.

2'

Class of Flows To Be Considered in This Thesis
The Averaging Technique and the Equation
Satisfied by

Justification of the Approximation

The Difference Between Average Quantities and
Quantities in the Centerplane (z = 0) and '
Further Discussion of Eq. (1.4)

Fundamental Source Type Solutions

Stream Function and Vortex Type Solutions

Page

12

13

14

17
19
21

Spanwise Variation of Vorticity and Shed Vorticity:

Implicit Nature of These Results and Weinig's

Results

A Note on Eq, (1.26)

II. Isolated Airfoil Problem and Setting Up of the Integral

Equation

23
25

26



vi

Explanation of the Method of Singularities
to Solve the Airfoil Problem

Further Consideration of the Special Case
of the Exponentially Converging Channel
Some Remarks on the Difference Between

This Approach and Some Previous Papers

III. Solution of the Integral Equation

Reduction of the Integral Equation

Solution of the Integral Equation

Remarks on the Nature of K__(x, £)
vr

An Illustration; The Flat Plate in an

Exponentially Converging Channel

Discussion of Eq. (3.21)

1V, The Cascade Problem

Formulation and Description of the Problem
Procedure of Solution

Remarks 6n the Special Case of an
Exponentially Converging Channel
Discussion of Numerical Results for the
Cascade of Airfoils in an Exponentially

Converging Channel

26
34

34
38
38
46
48
50
54
54

61

63

65 -



vii

Page
V. Case of Finite Channels : 68
1. Introduction 68
t
2. Assumption of h and Procedure of Solution 68
h
3. The Approximate Calculation 74
4, Some Checks on GS 79
5. Calculation of u for a Vortex and v for a 84
Source

6. Case of Fully Upstream Contractions 85
7. Case of Fully Downstream Contractions 86
8. Solution of the Integral Equation 87

9. Estimation of Flow Inlet and Outlet Angles
(Relative to Cascade Axis) 87
VI. Results of Numerical Work on the Finite Channels 39
References . , ' | 97
Notation : 101
Appendices : 104
Table I ' 124

Figures | - 131



QUASI-TWO-DIMENSIONAL FLOWS THROUGH CASCADES
INTRODUCTION

One of the most profitable approaches to the solution of
complex problems in fluid mechanics is to try and effect a conceptual
- separation of the whole problem into several simpler, relatively
independent éub—problemsy Such a breakdown of the complicated
problem of the flow through an axial flow turbomachine has been
indicated by several authors, e.g., in Ref. 1. The axial flow
turbomachine is a device consisting of coaxial surfaces of revolution,
as inner and outer boundaries, with consecupive rows of either
rotating or stationary airfoil-shaped blades, the blades in any row
being identical. In a compressor, the blades impart energy to the
fluid and in a turbine they extract energy from it. Turbine blades
are characteristically thick, sharply curved and closely spaced.
Compressor blades are thin, less curved and more widely spaced.
The method of thin airfoil theory used in this thesis is therefore much
more suitable for application to flow through a compressor cascade
than a turbine one., In common with other wing theory problems
there are two problems to be solved in axial flow turbomachine
aerodynamics. The f{irst is the direct problem when given full

geometrical details of the solid boundaries and the flow far upstream



of the blade rows, one is asked to predict the det:?.ils of the flow
through the blade passages. The second, the inverse problem, asks
for the design of the blades to produce a preassigned force distri-
bution. In both problems, as indicated in Ref. 1, one concentrates
separately first on the gross features of the flow, and next, on the
'details of the flow through the blades. To achieve any simplification
several assumptions are necessary., It is customary to assume the

. fluid to be perfect and often also incompressible. However, the
assumptions that are peculiar to the turbomachine problem are the
ones that enable the conceptual separation. In studying the gross
features of the flow, i.e., the so-called '"through flow', one usually
assumes axisymmetry, corresponding physically to having an infinite
number of blades. To study the details it is usual to ignore the
radial velocities and after developing the annular cascade info a
plane one, to regard the flow in that plane as a two-dimensional
potential flow. ‘The latter study is called cascade theory. These
assumptions effect the uncoupling of the problem, because in the
former calculation one need not worry regarding the blade shape
whilst in the latter the flow in each stream surface is unaffected by
the flow. in the adjacent surfaces, The inverse problem is definitely
less difficult than the direct oné because in the latter total uncoupling
is not possible. The shape of the blades determines the axi-
symmetric stream surfaces and yet these stream surfaces provide
the basic mean flows used to predict the forces on the blades by the

methods of cascade theory,



We will not outline the details of the axisymmetric three-
dimensional through flow theory (we again retfer to Ref. 1 for a
treatment of this problem) since the present thesis is not directly
concerned with it. We just note that even in its rhost simplified
form, this problem involves the study of the motion of a fluid with
continuously distributed vorticity, i.e., a rotational fluid motion.
The equations of vorticity transport are nonlinear and this constitutes
the main obstacle to the solution to the problem. By Helmhotz's
theorem for an ideal fluid the vortex lines are material lines and
hence the vorticity is transported along material surfaces. But the
stream surfaces are influenced by the velocities induced by the
vortex lines and this is the source of the non-linearity.

The direct cascade problem consists of predicting the forces
on the blades given in advance the axisymmetric flow through them.
By developing the annular cascade one arrives at a plane problem for
an infinite number of airfoils subject to a known freestream velocity
upstream. If one assumes the known axisymmetric stream surfaces
to be completely parallel to one another with the gap between them
constant, then by suitable mapping the cascade problem can be
reduced. to a fully two-d.imensional one in the plane. Assuming no
vorticity normal to this plane and an incompressible fluid leads to a
boundary value problem with the two-dimensional potential equation
as the governing equation. Some mention will be made of the methods

used in two-dimensional cascade theory.



There are two important features of the cascade problem:

(a) the periodicity of the flow and (b) the fact that the cascade
problem is essentially an interference problem of wing theory.

The first is true because with an infinite number of airfoils subject
to uniform flow far ahead, there is no difference between any two
airfoils so the flow is fully periodic with period equal to the spacing
between successive blades. The second feature implies that one

has to take account in solving the problem of the influence of all
other blades in reckoning the flow about any single airfoil of the
cascade., The first feature is strongly made use of in the methods
of conformal transformation. A mapping with the periodicity of the
flow is used to collapse the infinite number of blades into one contour
and the problem for this single contour is solved. The second
method, called the method of distribution of singularities, involves
“using a distribution of source and vortex type solutions to the two-
dimensional potential equation on the blades. These source and
vortex type solutions are the most elementary singular solutions to
the two-dimensional potential equation. The distribution of singu-
larities is unknown but from the symmetry we know the distributions
on all blades are identif:al. The influence of the adjacent blades, the
freestream and the blade itself is reckoned on the flow about the
chosen single airfoil. The condition that the flow be tangent to the
airfoil contour is then used to solve the problem. Thus the singularity
methods are more direct and solve the problem in the physical plane

itself, In other words, in such methods, the 'interference' nature
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of the problem is fully brought out,
| In the earlier use of singularity methods (cf., Refs. 2 and 3)
it was customary to lay out the singularities on the blade chord and
to separate the effects of camber and thickness. To account for the
thickness a source distribution was used and to account for the camber
a distribution of vortices was used. A recent and theoretically more
satisfying use of singularity methods is due to Martensen (Ref. 4).
In this method, the boundary is covered by vortices. We emphasize
the two major differences between this procedure and those due to
Schlichting and Mellor (Refs. 2 and 3). Firstly no sources are used
in the Martensen method and secondly the distribution of vortices is
not on the chord but on the boundar}_r. The flow tangency condition
yields an integral equation for the vorticity distribution and this
integral equation constitutes an exact formulation of the problem.
In solving the integral equation one has to resort to collocation of
points or iterative methods but quite a high degree of accuracy can
be achieved. This method is now widely used, particularly for thick
airfoils.

We recall at this point that .the pri‘ncipal reason for our
arriving at the two-dimensional potential equation in the developed
plane is the assumption that the stream surfaces are perfectly
parailel to one another, This permits us to achieve the uncoupling
of the flow in one stream surface from the flow in the neighboring
stream surface., The main objective of this thesis is to try and
reduce the degree of approximation involved in this uncoupling. The

strip theory of flow through a cascade of airfoils is modified to take
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some account of the lack of two-dimensionality in this flow. The
lack of two-dimensionality arises from the nonparallelism of the
stream surfaces. The nonparallelism arises both from deliberate
design and the growth of boundary layers on the bounding walls,

The interest in this problem, of the consequences of lack of
two-dimensionality, has been considerable. In recent years, the
subject has usually been studied under the heading of ""Cascade
Performance With Varying Axial Velocity.' Practically all attention
has been focussed on trying to explain the disturbing results of
experiments with solid wall cascades.

The experiments reported in Ref. 5 showed a marked |
difference between calculated lift coefficients, based on two-
dimensional cascade aerodynamics, and those actually measured.
The most telling evidence for lack of two-dimensionality was the
discrepancy between lift forces calculated (a) from the measured
turning angles and (b) from the measured prcssurc distributions.
The lack of two-dimensionality was due to the boundary layer
displacement effects on the walls enclosing the blades of finite
aspect ratio, Later, an experiment with boundary layer suction was
tried (the walls were made of carefully selected porous material)
and much better agreement with the two-dimensional theory was
then obtained (Ref. 6).

The earliest theoretical treétments of the question of lack of
two-dimensionality (Refs. 7 and 8) did not attempt to study any

effects on the details of the strip theory at all. Hawthorne (Ref. 7)



.concluded by a Trefitz plane type analysis that if the axial velocity
varied, the mean flow, to be used to solve for the circulation,
should have an axial component of .velocitly one-half of the sum of
the inlet and outlet axial velocity components. He next pointed out
that a change in outlet angle would be produced by acceleration of the
mean flow. Scholz's analysis (Ref. 8) indicated how the continuity
considcrations were affected by the lack of two-dimensionality. Both
Hawthorne and Scholz surmised that the centerspan circulation would
be unaffected from its two-dimensional value or equiyalently that the
contraction would not aflfect the tangential velocities. The fact that
the circulation decays to zero at the wall due to boundary layer
effects, leading to shed vorticity and secondary flows, was well
known. The topic of secondary flows had been the subject of an
earlier calculation of induced velocities due to this effect (with
some simple assumptions) discussed in Ref. 9. As mentioned
earlier none of these papers took any account of having to recast
the two-dimensional strip theory in the absence of two-dimensionality.
Two recent attempts have been made to modify the strip theory
to take account of the nonparallelism of adjacent stream surfaces,
spanned by a cascade of airfoils (Refs. 10 and 11). Both of these
use a surface distribution of sources in the centerspan plane of the
cascade to represent the effect of increasing axial velocity., For
convenience, the s.ource strength per unit area is taken as constant,
giving a linear variation of axial component of free stream velocity.

The main effect is to alter the freestream velocity normal to the



blades and retaining the Kutta-Joukowski condition, one computes
the altered distribution of bound vorticity. Both papers compute the
velocity fields of bound sources and vortices on a two-dimensional
basis. In general the increase in axial velocity, for positive
(compressor type) stagger, leads to a decrease of total circulation
and lift.

The essential difference between this thesis and the work of
~Refs. 10 and 11 will now be mentioned. We take explicit account of
the fact that the velocity fields of the bound sources and vortices
should be reckoned on the basis that these singularities are also
subject to lack of two-dimensionality, We mentioned earlier that
if one allows for the speeding of the freestream one is led to a
decrease in total circulation for positive staggers, as compared fo
a two-dimensional calculation with constant axial velocity. Allowing
for lack of two-dimensionality in computation of the flow fields of the
sources and vortices leads to further reduction of circulation. The
reduction of circulation due to this latter consideration is at least
as great as that due to variation of free stream velocity. Hence the
incorporation of such'an additional detail is not merely of academic
interest. The formulation itself is in more generél terms and in
fact it was not sought a priori to attempt a modification of two-
dimensional theory to produce corrections. Of course, the departﬁre
from two—dimensiohality or alternatively the deviation from non-
parallelism of stream surfaces, was assumed small and fairly crude

models were used to obtain numerical estimates. DBut the general



formulation enables a wider class of problems to be solved than
merely that of cascade performance with varying axial velocity,
It should be pointed out that at 1eas£ tWo previous papers (Refs. 12
and 13) have obtained the same equations as in this thesis as the basic
equations governing the flow, but in solving the boundary value
problem of the cascade the deviation of these equations from the two-
dimensional potential equation seems to have been ignored.

A brief outline of the technique of solution will be given now.
We assume the axisymmetric stream surfaces to be given. The
annular stream surfaces are developed as usual to obtain the infinite
cascade. To formulate the problem in two instead of three independent
variables, an averagling process is applied to the flow between two
adjacent stream surfaces spanned by the infinite cascade. This
gives governing equations for the ''quasi two-dimensional flow',
a terminology used in this thesis to indicate the small departure
from two-dimensionality of the class of flows considered. Since this
equation is not the two-dimehsional potential equation, the methods
of conformal transformation are not useful in solving the cascade
problem. The method of singularities was therefore used. First,
singular solutions to the governing partial differential equations
corresponding to source and vdrtex type solutions were found. From
here on, the procedure used to find the right distribution of singu -
larities to satisfy the kinematic condition of flow Langency to the
airfoil contour was quite similar to the singularity methods of two-

dimensional cascade theory (cf., Ref., 2). We add here that our use
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of singularity methods involves use of both source and vortex type
solutions on the chord. Hence it is an extension to quasi-two-
dimensional flows of the methods éf Schl@chting and Mellor (Refs, 3
and 2) and is not comparable to Martensen's work {(Ref, 4).

It was most convenient to consider stream surfaces that
were partly straight (i.e., with the gap between two surfaces
constant) and partly exponentially converging. In relation to the
~airfoil location, three types of contractions were considered: (1)
those fully upstream of airfoil, (2) those fully covering the airfoil,
and (3) those fully downstream of it. Extents of these contractions
were varied in numerical calculations.

Since an averaging procedure was used the details of the
spanwise variation afe apparently lost., This would be true if one
considered a high aspect ratio blade spanning a pair of. paiallel
surfaces and directly applied the present theory to it., However,
it is conceivable that by considering strips bounded by stream
surfaces where the strips are small in spanwise extent a better
picture of the spanwise details would be obtained. In each of these
strips appropriate quasi-two-dimensional equations would govern
the flow, Of course, sﬁch a calculation is bound to be arduous. The
direct application of the theory given herein to high aspect ratio
blades is sure to yield a good estimate of the gross effects on
circulation, flow tﬁrning, deviation, etc. Designers are often
more interested in such gross effects rather than in the spanwise

details of the flow. To really understand the latter, a fully three-
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dimensional lifting surface theory seems inescapable.
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CHAPTER1

EQUATIONS SATISFIED BY QUASI TWO-DIMENSIONAL

FLOWS AND FUNDAMENTAL SOLUTIONS TO THESE EQUATIONS

Section 1: Class of Flows To Be Considered in This Thesis,

The flow of the fluid is assumed to be inviscid, irrotational
and incompressible. Thus the flow is describable in terms of a

velocity potential ¢ which is a solution to:

@ 9% _ o (1.1)

It is assumed to be taking place inside a channel as in Fig. 1,
assumed symmetric with respect to the x-axis, whose height is only
a function of x. The assumption that the height is a function of x

is justifiable for the following reason: Ultimately our objective is

to apply the theory to the cascade problem of turbomachine aero-
dynamics. The full channel (both halves of the symmetric channel)
then represents the developed form of the annular portion between
two adjacent stream surfaces. The assumed independence of h of

y then corresponds to assuming axisymmetry of the stream surfaces,
This assumption of axisymmetry is quite commonly employed, and

corresponds, physically, to assuming an infinite number of
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blades. The assumption of symmetry with respect to the x~axis
plays no essential part in the equations to be derived below. It
only has the effect of increasing the accuracy of the approximation
involved in neglecting certain terms of the equations, The symmetry
assumption was brought in mainly because this thesis, like all
previous papers on such flows, has as an important objective the
calculation of flows in the testing of two-dimensional cascades. In
such wind tunnel tests one could legitimately expect the symmetry
with.respect to the x-axis, where now the x-y plane would represent
the mid-span plane of the cascade.

A key assumption to be made is that h(x) is a slowly varying
function of x. It is clear that if h(x) were constant the flow in the
channel would be two-dimensional. The assumption that h(x) be a
slowly varying function of x means the deviation of the flow in the
channel from two-dimensionality is small - hence the use in this
thesis of the phrase '"quasi-two-dimensional" flow to describe such

a flow,

Section 2: The Averaging Technique and the Equation Satisfied by .

As was pointed out in the Introduction, we would like to
formulate the problem in two independent variables. Since the wall
height is a slowly varying function of x, a natural thought is to try
and eliminate z as an independent variable of the problem. To this

end, we introduce average quantities as below:
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h ,
¢ = :15 [ ddz and u = % fudz, etc. (1.2)

u, vand w denote the x-, y- and z- components of velocity. They

are given by QX, ¢y and ¢z .

Now ¢ satisfies VZ'C? = 0., We integrate this equation
from z =0 to z = h(x) using the kinematic boundary condition that

i
¢, = ho_, at z=h(x). This yields:

P ¥ Oy # -%—) ¢+ (_hﬁ.) [45 - ¢(x,y,h)] +
b [a - u(x,y, h) (1+h'2)] = 0 (1.3)

(DA 1)
The notation '"DA 1" indicates the detailed derivation of the indicated
equation is in Appendix 1. We propose to replace Eq, (1.3) by the

approximate relation:

¢+ § =-('1;)<?' | (1.4)

Section 3: Justification of the Approximation.

The terms we intend to neglect are:

(i) (—1111—) [‘5 - (x, y,h)} and
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(i) (_lfh_) [a - u(x,y,h) (1+h'2)J o

To study these terms we use the following series for ¢:
o Z2.n fn
I ZEEa - 1) (1.5)
1

where the fo and fn are functions only of x, y and only even
powers of z are involved from the symmetry of the channel with
respect to the x-axis. The use of VZCP = 0 and equating all powers

of z to zero separately yields:

[oe} (_)n ZZn Anfo
0 =) Za): (1-6)
n=0 (DA 2)
2 2
where An stands for the operator [i-z— + —-?—-2-} applied
9x dy

n times,

Thus pfovided the derivatives of fo are bounded the con-
vergence of the series for ¢ is quite rapid. We restrict ourselves,
for example, to a two term series for ¢:

: P
¢ = £+ - £} . (1.7)
The boundary condition at the top is, using the infinite series of

Eq. {1.6):
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w ol oy n oo n n
ho (a) (=) . A" (=)
Z =n ) (1.8)
(2n -~ 1)1 ya nji
1 0
The two term series will give:
' 2
. h h .
S By [fox+ Z flx] ) ' (1.9)
Take as a first approximation:
(1) h h'
£ = _ﬁ-) fox = (T) Yo (1.10)

where u denotes the component of velocity in the x - y plane
(where =z = 0).

Therefore the term neglected in Eq. (1.9) {using fl(l)) is:

ERCH

We now assign (by assumption) orders of smallness, as
. |

h' 3uo

follows: The wall slope and hence (-}%—

has one order of smallness;

the wall curvature

1 all
h o
—h—) has two orders of smallness. Now 5

will ar-ise out of non-parallelism of stream surfaces or in the solution
of airfoil problems from airfoil camber, thickness or angle of attack.
Hence we assign to it also one order of smallness., So the term
neglected in Eq. (1.9) by taicing fl(l)_ as in Eq. (1.10) is of third

order of smallness.
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We take approximately then:

z2 h. '
¢ = fo t = —ﬁ_) fox (1.12)
We note that to this approximation fo also s'atisfies the same
equé.tion as ¢, i.e.:
!
af, + B i =0 | (1.13)

" We recall that fo has the significance of ¢ for z =0, i.,e., it is the
velocity potential in the centerplane. Using Eq. (1.12) the first term

mentioned at the beginning of Section 3 becomes:

2 ) nl) [
| By R3]
which is a terim of third order of smallness, Thus in case of

symmetric channels, in accordance with the above assignment of

orders of smallness, one arrives at:

A +

by neglecting terms of third order of smallness.

Section 4: The Difference Between Average Quantities and Quantities
in the Centerplane (z = 0), and Further Discussion of

Eq. (1.4).

We recall we denote the average quantities by u and v and
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the mid-plane quantities by u and Vor Using the approximation of

Eq. (1.12):

2 t ! ' i au
- h h h -
wo- oy, = T[( T) fox +('rr )(—33'{9):] (1.14)

i.e., a quantity of second order of smallness, and

2 ou
(o]

x'/-vo=.136_-(§ﬁ.)_5.y. (1.15)

3u au
Now (-3-;- just as '5';? may be also argued as having one

order of smallness and hence (v - v,) also. Thus both the

differences (u - u ) and (v - v,) are of second order of
smallness,

We would like, at this point, to clarify the validity of
Eg. (1.4). There are two situations to which the equation may be
applied. Firstly it could be applied to study the problem of a finite
span airfoil, spanning a channel of the type in Fig. 1. Then the
equation applies to averaged quantities as defined above in an
approximate sense in that certain terms have been neglected. These
terms, for the airfoil problem, in accordance with the previously |
discussed assignment of orders of smallness, can be argued to be of
third order of smallness. On the other hand, Eq. (l.4) could be
applied to an infinitesimal spanwise strip of the airfoil, Such would
be the developed form of the annular stream tube of width Ab shown

in Fig. 6. (Fig. 6 is a meridional section of the flow through an
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axial flow turbomachine.) Let us now let h(x) and hI(x) approach

zero such that hl(x)/h(x) tends to some function of x, Now there is

no difference between ¢ and ¢(x, y., h) or between u and u(x,y,h).

Then we may say that the flow in this infinitesimal strip is exactly
described by Eq. (1.4) in the limit as the height of this tube shrinks

| to zero. This is true because the terms present in Eq. (1.3) but

not in Eq. (1.4) are easily seen to tend to zero in the abovementioned

limit.

Section 5: Fundamental Source Type Sclutions.

By a fundamental source type solution we mean the most
elementary singular solution to Eq. (1.4). This solution should have
the attributes of a two-dimensional source type solution; i.e., ¢

should become logarithmically singular with r = ) xz + yz as

r approaches . zero and

2T
f T 4-)1' d 9 = unity,

for a small circle around the location of the source.

1

As an illustration consider the case of (—}-1}-1— = =-a which
implies h = hoexp (~ex). This would be true for an exponentially

converging channel of height h_at the 6rigin.

With this value of (_hﬁ.)
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A(z) = (1(5 (1.16)

The general solution to Eq. (1.16) using boundary conditions of

single valuedness and boundedness at infinity is:

sin (ng)

ar| (1.17)

e (] 5 |9

cos (ng)

\
The source type solution is found to correspond to n = 0 and one has

- 1 ax
Py = = THEXP (‘2‘} Ko

The radial and tangential velocities for this source solution are:

E.;) (1.18)

— /
Vrs = -4% {- cos (8) exp EZ}-{-) Ko 321; + exp \EZ}E) Kl -gzl—‘ }
— \
Vs = o exp %‘., sin (6) K EZE) . (1.19)
.

A check on the above value of vrs is that the flux out of an
infinitely large circle centered at the source be “ﬁo” where "20"
is the height of the channel where the source is located. This check
is carried out in Appéndix 4,

The outward flux from any of these sources is "Zo” where
“BO" is the height of the channei where the source is located. The
above normalization is convenient because if sources of density m(x)
are distributed on a. straight line segment L of the x-axis, the

velocity component perpendicular to L. undergoes a jump of m(x)
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when one considers points just below L and just above L.

Section 6: Stream Function and Vortex Type Solutions.

The continuity equation is:

du , Ov ., Ow 0 (1.20)

Integrate Eq. (1.20) from 2z = 0to =z = h(x), recalling that:
h

1..-1 = -E%-)-a- /!l udz and ;’ = %— ! vdz 3
0

h u(x, y, h). We see that:

it

and w(x,y,0) = 0 and w(x,y,h)
& - 8 . .
-a—-}z-(hu)+~a—};(hv) = 0 .

Now let

- 8y =
Bi = h Y and h¥ = ‘?‘olﬁf (1.21)

The condition of irrotationality normal to the x-y plane, i.e., in
the z-direction, is:

u _ O | | (1.22)

Integration of Eq, (1.22) yields

5%_ (ha) = ;%(h"f) - v{%,y,h) h (1.23)

Rewrite

v(x,y,h)h = h { PH.) v{x, v, h) | (1.24)
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From the approximation

2

.
z h
¢ = bt = (_E_) fox: (1.12)
' R 5 ) (%
We note vix,y,h) - V(x,y) = -3—( T) 'H-y-o- and hence replacing

in Eq. (1.24), v(x,y,h) by v(x,y) will introduce errors of third
order of smallness. Using this replacement and Eq. {1.23) we find
y satisfies:

h
R

aY = T (1.25)

Once again for the special case of an exponentially converging channel

with (%) = -a, we find ,
sin (ng)
- -ax ar
v~ exp(—z— Kn( '2‘) < :
: cos (ng)
{

Choosing n = 0 gives the solution corresponding to a vortex. We
normalize :P such that the circulation about the z-axis is £0 where
Eo is the height of the channel where the vortex is located. The

expressions for arv and u, are as below:

6v

u, =_exp(£2}—£-) . 7121? . sin(Q)Ko( T)

ar

ﬁev = %ﬂ_ . exp(%}f)[cos(e) Ko( ==
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- - ) -

. - - 3y d o 0
(Recall u and v are not 3% and - B—i- but T Iy and

) -

o 0

- T 7 )
Once again the normalization is such that if vortices of density vy (x)
are distributed on a line segment L of the x-axis the velocity parallel
to this line undergoes a jump of -Y (x) on passing from a point just

below the line to one just above.

Section 7: Spanwise Variation of Vorticity and Shed Vorticity:

Implicit Nature of These Effects and Weinig's Results.

The question we consider in this section is the following: If
indeed an airfoil spanned a channel of the type sketched in Fig. 1,
would not the vorticity vary spanwise and thus lead to shed vorticity ?

Weinig in his article on cascade methods in a recent book
(Ref. 12) has derived quasi-two-dimensional type equations very
similar to ours for the flow in blade passages. He describes first
the procedure of cutting along rotational stream surfaces (from'the
axisymmetric througﬁ flow theory) to obtain the cascade problem.

He considers the vane flow (the flow generated by the vanes) to be

and ¢

described by stream and potential functions, Yoane vane

For these he obtains the following equations (his equations

2 - (10) ):
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9¢ d s

A = - —_— —

q)vane - % * In (p ()
Ox dx

The p is a dimensionless term:

P(X*) = -Zg—hl(—ﬂ—) where &b

m | P

is the spacing between two stream surfaces (corresponding to our

hix) ). /b and p are respectively a reference width and a

m ‘m

reference density. p on the right hand side is a density., His
x* - ya:< plane is the developed cascade plane. Except for the fact
that he allows for comprcssibility effects, it is secn his equations
are identical to ours. Though he remarks at the beginning of his
derivation of these equations that the vane flow is an irrotational
flow in the absence of viscosity, the only two conditions he really
employs in these derivations are (1) the \}alidity of the continuity
equation and (2) a condition that the free vorticity normal to the
stream surfaces be zero. The latter assumption is quite valid in
the study of the motion of a perfect fluid with shed vorticity (as in
Prandtl's three-dimensional wing theory). The fluid is unable to
.support any body forces due to the crosé product of free vorticity

and flow velocity, and the vorticity is hence to be streamwise. This

is a mere restatement of Helmhotz's theorem that the vortex lines
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associated with the frece vorticity arc material lines.

The gist of all the above will now be summarized. The shed
vorticity enters only implicitly in the determination of axisymmetric
stream surfaces. That is to say, it will influence the h(x). But
quasi-two-dimensional equations (l.4) and (1.25) result merely
from the physically reasonable assumptions that continuity be
satisfied and there be no vorticity normal to the stream surfaces.

We did arrive at the equation for ¢ (Eq. 1.4) by averaging the three-
dimensional potential equation. But we could have obtained the same
equation just by assuming continuity and the z-component of vorticity
to be zero. These are the only two conditions we used to get the

equation for (|, (Eq. 1.25).

Section 8: A Note on Eq. (1.26).
These bound vortex velocity ficlds have the property that the

o)

taken round a circle centered at the location of the vortex is equal

line integral of the spanwise average of the tangential velocity (v

to unity, i.e.,

_ A . (6)
I' = R [ S0 VedZ(G) dg = unity
0 0

for all R, where R 'is the radius of circle used.
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CHAPTER II

ISOLATED AIRFOIL PROBLEM:

SETTING UP OF THE INTEGRAL EQUATION

Section 1: Explanation of the Method of Singularities to Solve the

Airfoil Problem.

The isolated airfoil problem is as follows (refer to Fig. 2):
One has in the channel an airfoil whose spanwise direction is the
z-axis. If the section of the airfoil varies along the span, the
section indicated as '""mean section of the airfoil' is an average
section in the same sense as other average quantities, The airfoil
is subjec"t to a flow whose magnitude at the center of the airfoil
chord is Uo' This flow is inclined at this centerpoint at an angle §
to the airfoil chord. It is necessary to refer to the centerpoint of
the chord for the specification of the free stream because the free-
stream itself is varying due to the convergence of the channel. We
remark at this point that whenever we speak of the convergence we |
really refer to the fact that the height of the channel is not constant.
The term ''convergence" is used because in axial flow machines the-
stream surfaces are usually contracting. In our aumerical calcu-
lations. also all the work is carried out only for contracting channels.

By axis of convergence, we mean the direction along which the height
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is varying, i.e., the x-axis of Figs. 1 and 2. The angle between
the airfoil chord and the axis of convergence is denoted by N . In
the cascade problem to be considered later, the axis of convergence
will be assumed, in all cases, to be the same as the cascade axis.
In this case, N has also then the meaning of the stagger angle of
the cascade.

The problem then is to predict the average flow round the
mean section subject to the freestream. We have formulated the
problem in two independent variables. The lack of two-dimensionality
is disguised in the fact that the stream and potential functions to be
used to represent the flow obey Egs. (1.4) and (1.25). In mathema-~
tiéal terms we seek # solution of a flow governed by Eqgs. (1.4) and
(1.25) such that when we add to this flow the freestream velocity the
average velocity of the combined flow is tangent to the mean airfoil
contour.

The me.thod of singularities involves the superposition of the
fundamental source and vortex type solutions to solve the problem.
Let the distance of a point on the chord from the centerpoint of the
chord (the origin in Fig. 2) be denoted by ¢. We use a distribution
of sources of density m(£) and a distribution of vortices Y(£) on
this chord. The chord extent will be scaled such that g runs from
-1 to +1 (at the trailing edge). By the use of the phrase ''source
density' we simply mean that the source solution located at £ is
actually spread over (£ - %‘g) to (¢ + §2§-) such that if S(£) is the

strength of this source, then the
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dgEL—E’O _Sa%.) = mi(g) .

Sinc_e each of the little sources m(g) d¢ and each of the
little vortices vy(¢)df is a solution to Eq. (1.4) the superposition
of them on the chord is a solution to Eq. {1.4). The velocities due
to this source vortex distribution are now evaluated on the airfoil.
A major approximation in the calculation of these velocities is to
calculate them not on the airfoil contour but on the airfoil chord.
Suppose we take an xI - y' coordinate system with the xr-axis along
the chord and the origin at the mid-chord point. Let g' denote the
running coordinate on the chord along which there is a source density
m(g'). Then if [x',e (x')] denotes the coordinates of a point on the
airfoil contour, the approximation mentioned above means that we take
the velocity at this point to be that due to the source distribution at
the point [x', 0:% with the plus sign for points on the upper surface
of the airfoil contour. Thus the approximation constitutes a first
order perturbation calculation since e (xl) is small for thin airfoils.,

It is true that one cannot have a singular solution in the flow
field (i.e., there should be no singular solutions on or outside the
airfoil contour). This is because of the pPhysical requirement that the
flow velocities should not be infinite anywhere. But there is nothing
wrong in using a distribution of singular solutions even if this line of

distribution has points on or outside the airfoil contour {as at the

leading and trailing edges). The only requirement is that the density
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of the distribution shall everywhere be finite. Then if S(£) denotes
the strength of a singular solution in [g - (-izgt y E+ -C—izgt] , since
Lt S{£) £t
m(t) = dg —=0 _a%_, if m(g) is finite, then A —=0 S(g) = O.

But it is true that if as a result of our calculation we come up with
infinite values for m(x) or Y (x) at certain points, our ﬁse of
singularity distributions is not valid at those points.

Unfortunately, thin airfoil theory (the singularity method) does
predict an infinite value for VY (x) near the leading edge and also for
m(x) at the leading edge for roundnosed airfoils., The reason for the
lack of validity of the singularity method near the leading edge is, of
course, now well known. The reason is that near the leading edge
the flow problem is a singular perturbation problem, thus invalidating
a regular perturbation calculation such as the linearized thin airfoil
theory. Methods of getting around this difficulty are given in Chapter
IV of Ref. 1\4.

The infinities of m(x) and Y (x) mentioned above, however,
are integrable in that if the chord extends from "a' to 'b'" on the
x-axis, then

b ' b

f v {x) dx and f mix) dx

a a

exist, It is also true that the integrated lift on the airfoil is pre-
dicted correctly to first order in camber, thickness and angle of

attack by the thin airfoil theory. In this thesis since the interest is
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mainly on the integrated lift only the thin airfoil theory will be
developed. No attempt will be made to get round the infinities at the
ieading edge by the use of singular Ipert:urbation methods.

There is another limitation of thin airfoil theory which needs
to be mentioned here. A consistent restriction to a first order calcu-
lation leads to complete separatioﬁ of thg effects of camber and
thickness so that thin airfoil theory fails to reveal the interaction ’

of thickness and angle of attack, e.g., the effect of thickness on

dCL

) i.e., the slope of the lift coefficient versus angle of attack

curve,

With the above limitations in mind, we give below the
mathematical details of the method of singularities, The coordinate
systems, etc., are indicated in Fig., 3. The airfoil chord is along
the x-axis extending from -1 to +1.

We first recall that we normalized the expressions for ¢ for
a source such that if a distribution of sources of density m(x) was
laid out on a line segment L of the x-axis the velocity; normal to
this line underwent a jump of m(x) as we crossed over from Below
the line L to above it." A similar result applies to the vorticity
distribution Yy (x); there is a jump in velocity parallel to L of -y(x).
The procedure is now to write down the velocity normal to the chord,
on the upper and lower surfaces and equale it Lo the producl of the
slopes (on the upper and lower surfaces) of the airfoil contour and

the freestream velocity parallel to the chord. In a first order
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‘calculation the velocity parallel to the chord on the right hand side
of Eq. (2.1) is taken as just that due to the freestream. The velocity
normal to the chord has contributions from the freestream, the
source and vortex distributions.

Denote by [Ks(x, g)/ZTrJ the continuous portion of the
velocity normal to the chord due to a unit source at ¢ at a point x.
The phrase '"'continuous'' portion is used because the velocity normal
to the chord is actually discontinuous with a jump of m(x) where
m(x) is the density at x. Let [Kv(x, g)/ZTr:l] denote the normal
component of velocity due to a vortex at £, at the point x. Then
the flow tangency conditions on the upper and lower surfaces may be

written (to first order):

F mg)K (x, ¢) d b OvEIK,(x g) dg
f Zw * [ Z
-1 -
mix) _ dyu
t Ve t =V — (2.1)
b om(g)K (x, £) dt f V(EVK, (. £) dt
f Z .t 3
™ m
-1 -1
1 dyy
T Vg - opmix) = Ve e (2.2)

an denotes the component of velocity normal to chord due to free-

stream and Vft the component tangential to the chord.
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Subtracting Eq. (2.2) from Eq. (2.1} and introducing camber

and thickness ordinates of Ve and V¢ where:

Yo = %- (Yu+ Yg) (2.3)
and
1
Ve = 7 (yu-yg) (2. 4)
dy
m(x) = 2V "ait’ (2.5)

Adding Eqs. (2.1) and (2.2)

1 1
f YI(E)K, (%, £) dt f m(E) K (x, £) dt
2T + 2T
-1 -1
dyC ;
+ an = Vft = (2.0)

Equation (2. 5) is typical of first order thin airfoil theory. The source
strength is fully known and since Ve 's dependence on. § 1S only as
cos(s) (i.e., it is independent of § to fifst order of § for small §),
the source strength is independent of angle of attack, This is the
reason for the failure of first order thin airfoil theory to reveal the
interaction of thickness and angle of attack.

We recall, in passing, that such an interaction does indeed
exist and in case of two-dimensional wing theory, e.g., for a

[

\ .
symmetrical Joukowski airfoil, the value of (dC. /da] 1is not 2w
y _ L

but 2w {1+ 0,77 (t/c) where (t/c) is the thickness ratio of the
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-airfoil.
Now that the source strength is known we observe that
Eq. (2.6) is an integral equation for y(£). Now Kv (x, £) has (for
any h(x) ) as its most singular term the factor 1/(x - ¢) .
Hence Eq. (2.6) is a singular integral equation for vy (£). For the

case of the exponentially converging channel, Kv(x, £) is

a

i Kv(x,g) = %—exp( %(x - £) cos )\) {cos O‘)Ko( > (x - g])

. Kl((%(x-g}))] | @.7)

where the plus sign goes with x > ¢ and the minus sign with
’ .. . 1 .
x < ¢. The limit of Kv(x, g) as a — 0 is E-_gr as it should
be. (l/(x - ¢} is the two-dimensional value. )
A notable feature of the velocity normal to the chord is that

the source distribution contributes a continuous component to it.

This contribution is for an exponentially converging channel:

K x, £) = Zexp |5 (x-£)cos m)[ sin(x)Ko(%(x- g) ” (2.8)

It is seen that this contribution vanishes if \ = 0 or in the limit as
¢ —>0. The origin of tl..iis term lies in the fact that unlike a com-
pletely two-dimensional flow the velocity at a point due to a source
at the origin is truly radial only in the special case that the radius |
vector is parallel t§ the axis of convergence. The dcviation from
truly radial flow is greatest when the radius vector is normal to the

axis of convergence (\ = w/2).
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Section 2: Further Consideration of the Special Case of the

Exponentially Converging Channel.

In this section, mainly to fix ideas, we assume the axis of
convergence to lie along the freestream direction at the origin, i.e.,
x= - & + Also we restrict ourselves to the flat plate for which both -
Ve and y, are zero. No source distribution is necessary and the

integral equation (in case of the exponentially converging channel) is

= fex;:{{%(x— g))cos (a)}[ K, [% (x- g)] cos (5)

-1

* Kl{% (x-é}ﬂv(é) dg + V. =0 (2.9)

1

The plus sign in front of K1 % [x - g}] goes with x > £ and the

negative sign with x < ¢,

Section 3: Some Remarks On the Difference Between This Approach

and Some Previous Papers.

Two recent papers (Refs. 10 and 11) have used a surface
distribution of sources in the mean plane (z = 0) to achieve the ciffect
of varying axial component of fréestream velocity. This undoubtedly
alters the an from the two-dimensional value in Eq. (2.9). The
velocity field of the ;rorticity distribution is calculated on a two-

dimensional basis, i.e., it is taken simply as m;{-l—_-—gy— . Thus the
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singular integral equation to be solved is simply

x) = 0 (2.10)

where the dependebnce of an on x is clearly indicated. The present
approach takes note of the fact that the flow fields of the singularities
themselves are subject to the same limitation as the freestream
velocity, i.e., they take place in a channel of varying height. That
this difference can lead to substantial differences in the analysis can
be seen from the following consideration of the fundamental flow
fields in an exponentially converging channel,

Consider the special case of N = 0, i.e., the x-axis is

taken in the same sense as the axis of convergence. The Vev due

to a unit vortex is

£ exp (%}[ K, (E‘Zi) - cos (6) + K, (F-Z-r-)} (2.11)
The sinusoidal term [-4% * exp (52}5) cos (9) Ko (Ei)] for (ar)

sufficiently small does not affect the total circulation since

o
f cos (g)dg = O

0

but it alters the distribution of v@v in that it is no longer cylindrically

symmetric (as for the two-dimensional vortices). At the points where

6=0and 6= m the '\‘fev is
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-‘I—C‘zrr exp( % )[Kl (%}-&- Ko (22{}1\ and

ar

2 oo (i, (5)- =, ()]

The effect on the vortices of the lack of two-dimensionality is to
increase, as compared to the two-dimensional value, the ”\Tev

" downstream and to increase it upstream. If the chord were along
the x-axis the —V'SV would be v for 9 = 0 and -V, for g = m.
This fact by itself tends to decrease the circulation for the following
reason: Most of the vorticity is near the leading edge (recall the
infinity of ¥ (x) near x = -1). For the vorticity near the leading -
edge, most of the rest of the airfoil is downstream. The Vn of
most of the vorticity is therefore mostly enhanced. Since the
objective of the vorticity is to cancel the Vn due the .freestream,
there is a reduction of vorticity needed to do this due to the enhance-
ment. It can be easily seen that the above argument applies even
for A non-zero so long as })\I < w/2. For )\ positive, on the
other hand, the effect of convergence is to decrease the V£n<x) (foxf
positive angle of attack); This tends to decrease the circulation.
Thus there is an interplay of two factors: The enhancement of the
vorticity fields downstream tends to decrease the circulation
provided l)‘l < /2. The speeding of the freestream tends to
decrease the circulation for A > 0 and increase it for N < 0;

all for positive angle of attack. The second of these factors alone is
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picked up by the approach of Refs. 10 and 11. Thus for A= - § ,
the case of the flat plate in an expogentially converging channel, the
second of the above factors predicts an increase in circulation. In
this case this factor is proportional to a,' The factor tending to
decrease the circulation due to the altered behavior of the funda-
mental flow fields, in this special case, turns out to be proportional
to efna. For small e, therefore, it is the tendency to decrease
the circulation that prevails., All this will be made quantitative in
the next chapter which discusses the solution of the integ.ral

equation (2.6).
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CHAPTER III

SOLUTION OF THE INTEGRAL EQUATION

Sectlion 1; Reduclion of Lhe Inlegral Eqguation.

In all instances arising in this thesis, the integral equation

to be solved will be of type

I

1 Vi) d YEIK,_(x, €)

z j) R
1 1

= f(x) for xce [-1, 1] (3.1)

where Yy (£) is the unknown function and er(x, g£) and I(x) are
both known.

The restriction on Yy (¢) is that it be zero at £ = +1 (the
trailing edge) due to the Kutta Joukowski condition.

A purely formal way of solving Eq. (3.1) is as follows:'

1. Multiply Eq. (3.1) by 2, to get the equation as

1

1
= j Y (g) [&—19- + K, g)] dg = 26k (3.2)

-1

2. Now let £ = cos (), x = cos g, so that as g€, x run from

lto -1, ¢ and 8§ run from 0 to m, KEq. (3.2} can now be written as
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1
1

f Y (¢) sin ¢ [cos79) ~Ccos (@) + er(9.¢)] d¢
-1 |

A

= 2£(p) (3.3)

where for convenience instead of writing v (cos ¢), er [cos g, cos <’;>]
and f(cos g), we write vy ($), er(e ¢) and £(8).
3. Assume for Yy {¢) the usual airfoil type series, where all the

terms of the series vanish at = 0 (at x = 1: the trailing edge).

(e 0]
= 8 :
V(o) = agtan ($) + ) a sin (n0) (3.4)
1
The above distribution of vorticity as a function of x has the typic¢al
square root singularity at the leading edge, i.e., at x = -1 or at
6= w. Thatis y(x) —o as x — -1, as (1 +x) 1/2

4, Assume a double Fourier Series expansion of er(x, £) in

form:

b 1, €08 (£ 8) cos (M) . (3.5)

’ (o e]
K, . (x¢) = Z
. 0

o[™1s

where

1
boo = =
™

o\xzz

brn (for m £ 0) =

0 f K, (6,9) cos (mp)dgdé  (3.6)

=|NlN

Of K, ) do d¢
0
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T
bOﬂ (for £ £ 0) = Trr—22- / /I er(e,CI)) cos (£ ¢) dg d¢
0 0 .

b (formand n#0) = -fz- / 6/ +{6, @) cos (mg)

cos (£9) dg d¢

5. Calculation of the integrals in Eq. (3, 3) yields on the left

hand side:
oe) 0o b,
a, t Z a cos (ng) + a, Z !Ze) o----2-—]
n=1 £=0
oo}
b
cos (£ @) [b - -—’az—]
fo 2
£=0
CO QO
an
Z = cos (£8) [by .1 - by nel] - (3.7)
n=2 £=0
6. Let 2f(x) = d_ + z d_cos (ng) | (3. 8)

Then equating coefficients of cos (£ g) on both sides with £ = 0, 1,

2. .. o one has for the unknown a's the set of infinite simul-

taneous equations:



(3. 8b)

')
* Z 2 (6nr + %}Z [br, n-1 = br, n+l}) = d
n=2 .
with r=0, 1, 2. . . oo, where bnn stands for the Kronecker delta
and is equal to zero if m ;E n and equal to unity if m = n .

In this calculation we make use of two well known results

(cf., pp. 92-93 of Ref. 17).

™
(a) cos (ng) do _ msin (n$)
a cos (g) - cos (@) sin ()
and
) [ HolOsin0)d0 o cos (a)

0
The second result is derivable from (a) by writing sin (ng) sin (g) as:

%— [cos [(n—l) 9] - cos [(n+1) 9]1 .
An alternative procedure of arriving at the same set of simultaneous

equations is to follow the treatment given in pp. 324-355 of Ref, 15,

There is a lot of use of imaginary numbers in the treatment referred

to but in essence what is involved is as follows:

The solution to the singular integral equation for ¢(x) :
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' 1
f(x) = -;1; I d)(x.)-dg (3.9)
-1 :

for x,§ ¢ [—1,1] with ¢{X) bounded at x =1 is:

o) = - a0/l f\/ o f}‘fidéi) (3.10)

We remark at this juncture that in all of the above whenever there

are improper integrals involving (x - §) in the denominator the sense

of the integral is to be understood as that of a Cauchy principal value.
The above inversion (3.10) is the now well-known inversion

ofy the airfoil equation which is the phrase used to describe Eq. (3.9).

The inversion is also called the finite Hilbert transform (cf., pp. 173 -

180 of Ref. 16). Rewrite Eq. (3.2) as

1

f(__f\)_‘i? = 2£(x) -% f Y(E) K (x, &) dg (3.11)

-1

Treating the right hand side as known we apply the finite Hilbert
transform to Eq. (3.11) thus obtaining (using the requirement that

Y (x) be bounded at x = 1):

1

GRS _,/_'W 2£(£) d
I+§ f § (xg- E,‘;;
-1

Yi{x) = -

)~
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-

: 1 1 ‘
+ 5V s f V‘i—f—% E‘Lﬂ[ f V‘ﬂ’er‘é-n)dnJ 4 -
T -1 - -1

(3.12)

Interchanging the order of integration on the right hand side (the

justification for all these steps may be found in Ref. 15) and setting

]
- x K (g:ﬂ)
N(x, n) = _17?‘\/%._; j \/i*ig = T (3.13)
-1

ocne has

£(£) d |
ﬁ (3.14)

Now it is shown in Appendix 5 that if
o :
| er(g, Tl), = Z Cn(ﬂ) cos (n(})) (3.15)
0 ’ '
where clearly

o
Cn(ﬂ) = z bnﬂ cos (nq,)
£=0

with n = cos (y): then
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QO
N(x,n) = C,(n) tan (§) + Y C.(n) sin () .
1

Now if we again assume for the vorticity distribution

a0
y(x):aotan(-g)-i- Zansin(no) 0 £ L .
1
Thus we obtain the same set of equations as (3. 8b) with the
following remark: As a result of Eq. (3.13) what we really obtain

is a series equation:

feo) foo)
fo tan (-g) + Z 'fn sin (ng) = g, tan (-g—) + z g, sin (ng) .
1 1

(3.16)
Now equating the coefficients in the above in the sense of fo = g,
and f =g (withn=1, 2, 3. .. .) will be justified if there are

only a finite number of non zero fn and 8, ‘This is true because

consider
_ N
6 : = .
(fo - go) tan (-Z) + Z (fn - gn) sin (ng) = 0 (3.17)
1
Let n, > N and multiply both sides of Eq. (3.15) by sin (nl 6)

1

and integrate from 0 to w. Now
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l - cos g

0
o -

ox\ﬂ:‘

T

f —(—Tsirie {Sin(nle) - vlz(sin‘: (n1+1)0} + Gin[(nl - 1)(%] do
5 _

= 1 if ny is oddand = - 7w if n, is even.

" {Recall

0 if m is cven

sin (mg)

sin Zei

]

mifm is odd . )

All other integrals vanish by orthogonality of sin(ng) and sin (n1 6)

nil-l

{sincen N < nl). Therefore (-) Tl'(fo - go) =0 or fo = g

and fn = g, for n=1, 2. . . . by orthogonality of the sin (ng) for
oe [O, 1'::‘

In other words assuming a finite series for the vorticity, the
equation of like powers in Eq. (’3. 14) is justified because for
He [O,ﬂ tan (ZQ } and the set of functions sing, sin{29), L.
sin (Ng) {(for finite N) are linearly independént. Such a restriction
does not appear explicitly (the restriction of the need to assume a
finite vorticity series) in the earlier derivation of Eq. (3.8) where

all that was used was to equate like powers in the series equation

[0 0] (o]
Z fncos (ng) = g, * Z g, cos (ng) .
1 1
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In the above fo = g, and fn =g, even for an infinite number of
terms owing to the orthogonality of cos (ng) for ge [0, TT‘] .
However in solving the infinite system (3. 8) one has to restrict
oneself to a finite number of terms in

o.9]

v(x) = a tan (g) + Z a, sin (ng) .
1

Section 2: Solution of the Integral Equation.

Enough has already been said to indicate how we solve the
integral equation. We now fully detail the calculations involved in
solving Eq. (3.1).

1. Assume for vy (x) a finite series

N
vix) = a tan (-29-) + Z ansin(ne) . ‘ (3.17a)
1

2. Perform a single Fourier analysis of

o)
D 2f(x) = z d cos ( ne)
: 1

(only the first (N + 1) coefficients need be found in the harmonic
analysis),

3. Perform a double Fourier analysis of
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er(x' £) =

o [™18

o0
Z bllm cos (£ 9) cos (m ),
0

where (N + 1) (N + 2) coefficients have to be calculated, i.e.,

b b

P00 Po1 ¢t PN,N+ 1

4, For the (N + 1) unknown a's, i.e., a_, a . . a8 we

1
have the (N + 1) equations (3. 8b) taking r {from 0 to N. This set

ol

of simultaneous equations may be solved, e.g., by matrix
inversion.

No ready prescription can be given as to how many a's will
be needed to define the vorticity distribution accurately. The only
rational procedure is to select arbitrarily some N, carry out the
solution of the set of simultaneous equations, and then check whether
the decay of the an's is rapid enough for the chosen N. We remark
however that even for complicated cascade geométries the use of
N =4, i.e., using a 5-term description of the vorticity, seems
satisfactory (i.e., quite rapid decay of the last few an's is
observable). Two more points may be noted: (a) The integra'ted'
total vorticity equals -n.(ao + le— ) and hence depends ohly on the
first two terms of the vorticity series, and (b) for a chosen N,
one has to compute (N + 1) coefficients in the d-series and
(N + 1) (N + 2) coefficients in the b ~-series and so the labor of

Im

computation increases rather steeply with increase of N,
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Section 3; Remarks on the Nature of er(x, £)o

So far we have made no comment on what restrictions are
required to be placed on er(x, £) insofar as the reduction to a
Fredholm equation is concerned. The theory in pp. 324-355 of
Ref.' 15 assumes that er(x, ¢) satisfy the Holder condition with
respect to x, £ for x, £ e’ [-—1, 1] s, Wwhich requircs, among othcr
things, that er(x, £) be continuous in the square in the x - £ plane
such that x, £ ¢ [-1, 1] . Unfortunately for most of the cases to
be considered in this thesis, er(x, ¢) docs not satisfy the rcquire-
ment of continuity. In many cases it has a weak logarithmic
éingularity along the line (in the x - £ plane) x = £. In other words
the singular part of K__(x, ) ~ {n U x - gﬂ . However, the crucial

detail (in the treatment of Ref. 15) seems to be the existence of
1 K__(x, &) dx
I = ~/1+x vr'?
- T - x {x - €)
-1

as a Cauchy principal value. This, in turn, for the logarithmic

singularity, boils down to whether

In = - €&l
I = 1[ T[?Efjdg

exists as a Cauchy principal value,

Let
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X+e€
X =€
"o In{x - &)
ho= f g %
-1
1
11 = - %-an(g-x) = = %-an(l -x) + -lzlnz(e)
X+e
X =€
"o 1 2, . _122_1 ; lEZ.e‘
Il—-z—ﬂn(x-g)\ —-Z-n(+x)-?n()
-1
Therefore
L (1, +1,) = é-[znz(urx) IR -x)] )

does indeed exist, hence proving the existence of I, as a Cauchy

1
principal value. To summarize, in this thesis the theory of Ref., 15
has been used despite the lack of continuity of er(x, £) since.the

lack of continuity was not strong enough to disallow the existence of
the relevant integrals as Cauchy principal values. |

One more remark is pertinent here. We have observed

earlier that we need the double Fourier series expansion of Kv (%, £).

r
So far as the logarithmic singularity is concerned, the double

Fourier series expansion was got by using Cauchy principal values

again. Undoubtedly the double Fourier series expansion is not
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-.convergent along the line of singularity in the x - ¢ plane,i.e., for
x = £. But since this expansion is only used for the evaluation of
Cauchy principal values, the values in an € -neighborhood of x = ¢
should not matter. The series expansion is derived in Appendix 6,
and turns out to be

o0}

zn[ [ x - g/] = - 4n(2) - 2 Z cos (ne)ncos (n9) (3.18)
]

for x#gor 9#‘1’-

Section 4: An Illustration: The Flat Plate in an Exponentially

Converging Channel.

We revert now to the special case of the flat plate in an
exponentially converging channel [ hi{x) = ho exp (—ax)] with N = -3
subject to a mean flow of unit magnitude at the mid-chord point and
inclined (at the mid-chord point) to the chord at § . Clearly this

(x, £) given by:

amounts to using in Eq., (3.1) a ‘er

K a8) = Fexp| 5 cosis) bx - )] {cos (5)KO[% [ - gﬂ
£k [§(x- ,gm S T (3.19)

where the plus sign goes with x > £ and the negative sign with

x < §. Notice the most singular portion (-E—_-_l—g—)—) arising from
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the small value expansion of = Kl[ %— (x - )] ;, has been
subtracted out to get er{x, £). The {(x) is, in this instance

- sin (§) exp (ex cos § ) (3.20)

It is quite hard to deal with the whole kernel of Eq. (3.17) and it was

decided to expand all terms in there for small a restricting oneself -

to an O(azlog a) calculation. The expansion of Eq., (3.17) yields

- powers ~ a log a, az logz a, azlog a, etc. To the same order,

do = = sin (§), cl1 = - —Z—sin (26); and all other d's of O(az).
b = & [En £ 4 1159] cos (5) = C (3.21)
00 2 a ) o ‘
b - 2208 B) . ¢ with all other b (for £ m)
mm m m Im

= 0 (Lo this order of @), These details will not be considered here
and simply involve use of small value expansions of the KO and Kl
functions available in any table of special functions, as for instance
Ref. 19.

Assuming a two term series for the vorticity one obtains as
a result of solving a {2 x 2) set of simultaneous equations {a two term
series was used because to the prder of a considered, dn =0

for n > 1).

o
2 tan
(o)

where CO is defined in Eq. (3.19). The total circulation is
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r, = -2sin(s)m [-1—;%;- + 3 cos (s)] (3.23)

The two-dimensional value is

I T.D = - 2sin{g)

Section 5: Discussion of Eq. (3.21).

Eq. (3.21) indicates the two influences on the circulation

1 .
T—FT-) factor is the

[0}

discussed in Section 3 of Chapter II. The

one diminishing the circulation due to the enhancement of Vn of the

vortices downstream and the {-?%z-cos (6)| factor is the one tending

to increase the total circulation due to effect of freestream speeding.
1
TFC

o

An expansion of as [1 - CO + CO2 .« ] etc., is

enough to show that the tendency to decrease the circulation is as
(¢ In a) whereas the one tending to increase it is as a. For
a = 0.075, giving an increase in freestream from leading to trailing
edge by a factor of Eq. (1.16), there is a dimunition of total
circulation by a factor of 0.892.

It should be pointed out that the same results for v (x) (for
the flat plate in an exponentially converging channel with \ = -3 )

are obtained by assuming for Yy (x) a series of type

\{O(x) + aﬁn(a)\(l(x) oo e e .



5.3
This series is substituted into the left hand side of Eq. (3.1) and
like powers of.a!Zna s etc., equated on both sides of Eq. {3.1). Thus
\/l(x), etc., are evaluated. A table of improper airfoil integrals
given in Ref. 20 is found quite useful in this procedure. It will be
noted this alternative procedure is more intuitive since one has to
know in advance the nature of powers of @ involved in the solution
as function of a. It is also not very amenable to adaptation to
numerical methods intended to be used on the computer. This
latter consideration of the possibility of writing a computer program
to solve Eq. (3.1) is rather important in solving the cascade problem

where the kernels are too complicated to permit hand calculation.
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CHAPTER IV
THE CASCADE PROBLEM

Section 1: Formulation and Description of the Problem.

The cascade problem involves an infinite set of identical
airfoils spaced equally apart (see Fig. 4). Figure 5 shows the
difference between a turbine and a compressor cascade. These
airfoils are subject to a flow known in magnitude and direction far
upstream. The reason for studying this problem is as follows:
Figure 6 indicates a sketch of an axial flow turbomachine. The
direction of the flow is indicated by the arrows on the streamline
in Fig. 6 (which shows a meridional section). The coﬁceptual
separation of the flow problem along with the idealizations employed

to simplify the problem, have been well described in Ref. 10
(pp. 13-14):

As a final result, the aerodynamics.of turbomachines
should integrate all the factors that contribute to the flow
and the energy transfer inside them. This means that for
given inlet conditions, which are not necessarily uniform
and stationary across the inlet, it is desirable to compute
this truly three-dimensional and nonstationary flow taking
into consideration compressibility, viscosity, and clearance
effects, as well as the mutual interference between the
stationary and rotating blade rows. This task is so complex
that certain short cuts are essential.

First of all, no consideration is normally given to non-
uniform inlet conditions due to varied angles of attack of
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the airplane or to unsymmetric inlet scoops, Also, the
influence of the inlet struts and other features of a
secondary nature are normally neglected. The remaining
problem can then be broken down into three problems:

1. In the first the average flow viewed in a meridional
plane is considered, which brings about the so-called
~axially symmetric flow pattern used later as the 'basic

flow' of the cascades.

2, The next problem considers the flow as if it occurred
between adjacent rotational stream surfaces, as found by
the axially symmetric treatment, but which now contains

a finite number of blades. By cutting along these rotational
-surfaces the two-dimensional problem of cascade flow is
established.

3. The third problem considers the flow as if it could be
observed in cross sections normal to the rotational stream
surfaces, that is, in axial turbomachines, practically
normal to the axis of rotation. This brings about the
problems of the so-called ''secondary flow, ' which com-
pensates for the simplifications inherent in the concepts

of axially symmetric and two-dimensional flow. In the
first instance, such a correction must extend the axially
symmetric treatment to allow for some exchange of matter
and therewith of energy across the axially symmetric
surfaces. Furthermore, the assumption of two-dimensional
cascade flow must be corrected in a manner similar to that
which adjusts the result of the lifting line theory to small
aspect ratios in the theory of the airfoil of finite span.

As mentioned in Ref, 10, the cascade problem arises out
of the second mentioned flow problem. The ''cutting along the
rotational surfaces' by a suitable mapping, unwraps the annular
cascade and gives the problem of the infinite cascade of identical
airfoils. The details of the transformation are given in Ref. 10.

We have said earlier that the flow far upstream is given, in
magnitude and direction. The effect of all the bound vortices

associated with each of the airfoils is to turn the flow to a different
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direction and magnitude downstream. Unfortunately the flow up-
stream is not a convenient reference velocity to use in solving the
problem. In treatments of plane, ihcompressible, inviscid flow
through the cascade (cf., Ref. 2) it is shown that a good reference
velocity to use is the vector mean velocity of the inlet and outlet
velocity. By ''good' reference velocity, is meant that it can be
shown that the lift per unit span on any one airfoil of the cascade is
given in magnitude by pUmI‘t where Um is the mean velocity, |
the total circulation about one airfoil, p the density of the fluid.

It can also be shown, still within the framework of an inviscid,
incompressible fluid theory, that this lift will be perpendicular to
the vector mean velocity.l The analogy with the Kutta Joukowski law
for a single airfoil subject to a known freestream velocity is the
basis for regarding the vector mean velocity as an appropriate
reference velocity. Most of the proofs given in standard references
(again cf., Ref. 2) of the considerations leading to the choice of
véctor mean velocity as the appropriate reference velocity, assume
a constant axial velocity. A constant axial velocity would indeed
result for a plane flow from continuity considerations. As was
mentioned earlier in thé Introduction, Hawthorne, by a Trefftz
plane type analysis (Ref. 7), showed that in case of variation of axial
velocity due to lack of two-dimensionality, the appropriate reference
velocity to be used was still the vector mcan velocity.

The conventional two-dimensional plane problem is then

formulated, in the singularity methods, as follows: One asks for
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the source vortex distribution on the chords of all the airfoils such
that the induced velocity due to this singularity dis tributi’on, added
vectorially to the mean velocity, produces a flow tangent to the
airfoil contour,

A great aid in the solution is the symmetry of the problem
due both to the identical nature of all the blades and because there is
an infinite number of blades. There is no difference between any two
airfoils and the source vortex distribution on all blades is identical.
The flow is completely periodic with period equal to the spacing
between the blades, So if the problem is correctly solved for one
blade it is also solved for all the blades. This enables one to con-
centrate on one blade only usually referred to as the zeroth blade.
An unknown source vortex distribution is placed on all the chords
and the induced velocity for the zeroth blade is calculated. The flow
tangeﬁcy condition once again yields the expression for the source
strength and an integral equation for the vorticity distribution.

The calculation of the induced velocities due to the singularity
distributions is again done on the chord (and not on the airfoil con-
tour). The sketch in Fig. 5 shows turbine blades to be much thicker
and more highly cambered than compressor blades. Hence the
method of thin airfoil theory used in this thesis is inherently far
more suitable for a compressor cascade than a turbine cascade.

As before, due to the formulation of the quasi~-two-dimensional
problem in two independent variables, there are only two modific;-

tions involved in the setting up of the problem for the quasi-two-
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dimensional flow as compared to the plane flow. Firstly, the flow
fields of all the singularities (sources and vortices) are taken from
the éingular solutions to the quasi-two-dimensional equations.
Secondly, the variation of the mean velocity due to lack of two-
dimensionality, has to be included. In other words all the flows are .
to be derived subject to Egs. (l.4) and (1.25).

Regarding the airfoil section té be used in the tangency
condition, for airfoils of finite span, the section may be regarded
as a spanwise average in the same sense as other average quantifies.
Alternatively if the theory is applied to the developed form of the
infinitesimal annual stream tube of radial extent (&b ), as shown in
Fig. 6, since the variation of airfoil section in such a small tube is
likely to be quite negligi'ble, there should be no trouble in deciding
the section to be used in the flow tangency condition, We repeat at
this point that Welnig on p. 20 of Ref. 12 obtains the quasi-lwo-
dimensional Egs. (1.4) and (1.25) for the flow in the infinitesimal
stream tube of extent Ab in Fig. 6.

The mathematics in the solution to. the cascade problem
introduces essentiallsr no new ideas. Let V _ denote the velocity
normal to the chord and Vt the velocity parallel to it. Then if ¢
denotes the running coordinate of a point on the chord where one has

a source density m(£) and a vortex density Y (g) then

1

1
Vn = ‘2.11? I m(g)Kan(x,g)dg + fIT_r [ Y(g)Kvnc(X’ £)dg
-l -1
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+ -an(x) * = m(x) (4. 1)

wher‘e the plus sign is for the upper surface and the negative sign for
the lower surface. an(x) denotes, as before, the component of
veldcity normal to the chord arising from the vector mean velocity. -
The Ksnc(x, £) needs a little explanation. Referring to Fig. 7,

snc

K. (&)
—_—

is the velocity normal to the chord of the zeroth blade at

the point P (whose coordinate is x) due to an infinite array of

sources of strength unity placed at ¢ on the zeroth blade and at the

corresponding points on all other blades: i.e., at S @ S-Z’

S-l' SO’ Sl’ SZ .« . . SOO in Fig. 7. Kvnc(x’ g)/2w has a similar

interpretation being the velocity normal to the chord at P, due to

an infinite array of vortices of strength unity at S-oo’- . e s S_Z’ S_1 ,

SO’ Sl’ S2 ‘e Soo' The most singular part of Kvnc(x’ £) will
againbe (1/(x - ¢&)). Similarly:
1 1
1 ' 1
V, = o f m(g) K, (% £)dE + —= f V(E)K , (x, £)dg
-1 -1
bV, £ 2y (x) (4.2)

K,  (x,¢) and K have a significance similar to K and K
stc v snc v

tc nc

except we now refer to velocity components tangential to the chord.
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Vft(x) is the contribution from the vector mean velocity. For the
upper and lower surfaces, with Yu and y, as the upper and lower

coordinates, we write the flow tangency conditions:

dy
u
Vnu . Vt:u dx (4.33,.)
dy
J :
an = th -a;(— (4.3b)

Subtracting Eq. (4.3b) from Eq. (4.3a) and ignoring the products

. 4 (
ft - dx Yy,

(again a first order calculation) one has, as before

other than V ) on the right hand side of Eq. (4.3)

dy
m(x) = 2V, (x) -a;i- (4. 4)

1
where V. = % (yu =¥y

Adding Eqs. (4.3a) and (4.3b) and ignoring the product of

+ ) with WV, 4 d letts = 1 h
2—\((x wi = and letting y_ = -Z(yu+ yﬁ), one has
1
an(x) + 21? f m(§) Ksnc(x’g)dé
|
1 _ 1
+ o f v(g) K, (x, £)dg = [vﬁ(x) T f m(g)K_, dt

-1
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1 -
L ) T 9y
tor YEIK, (o E)dE 0 2 (4. 5)
-1 s

It is indeed not very consistent if thickness and camber effects are’
assigned equal orders of smailness to take the source strength as
known (a first order calculation) and yet put in the contributions from
source and vorticity distributions on the R.H.S. of Eq. (4.5). But
the principal reason for doing so was that this mixed order of small-
ness calculation is what is carried out for plane flows in Ref. 2 and
it was decided to develep in this thesis a calculation procedure for
quasi-two-dimensional flows that would be completely analogous to
that in Ref. 2 for plane flows. Such a mixed order calculation has
the advantage that it would be a little more accurate than a fully
first order calculation (which invoives leaving out all the source and
vorticity terms on the R.H.S. of Eq. (4.5) ) for a highly cambered
but thin airfoii.

One other simplification used was that in reckoning the
thickness effects of the blades the thickness distribution was assumed
to be that of a symmetrical Joukowski airfoil. This assumption is
simply a matter of convenience in performing the numerical

calculations.

Section 2: Procedure of Solution.

It is easily observed there is nothing essentially different so

far as the solution of Eq. (4.5) goes as compared to Eq. (3.1). Since
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‘the source strength is fully known from Eq. (4.4), the equivalence
between Eqs. (4.5) and (3.1) is clearly as indicated bhelow:

(a) er(x, g£) of Eq. (3.1) corresponds to:

1 dyc
[Kvnc(x’g) T x-g) 0 dx RS ’g)]

of Eq. (4.5). Note again the subtraction off from Kvnc(x’ ¢) of the

most singular term 1/(x - ¢), and

(b) f(x) of Eq. (3.1) corresponds to:

1
dYC 1 dyc
Vft T - an + v 1= m(E)KStC(X: g)dg
-1 .

1

- j m(g)Ksnc(x, £)dg
-1

of Eq. (4.5).

The first combination of terms above, corresponding to
er(x, g) of Eq. (3.1) will be referred to as erc(x, £). The
second group of terms will be referred to as fc(x).

Since the Fouricr analysis involves integrals of the type in
Eq. (3.6), a computing program can easily be set up to calculate the
b!Z and the d's. K (x, £) is too complicated a function of x, £

m vrc
for integrals of type (3.6) Lo be calculable by reference to tables of

integrals. An integration subroutine based on Simpson's rule was

used to calculate the bﬂm's. An important comment with respect to
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the calculation of the b-matrix is as follows. As in the case of the
isolated airfoil erc(x, ¢) hae a weak logarithmic singularity ~
In ( ‘x - g‘ J . The computer cannot handle any singularities and

hence this weakly singular portion of KV C(x, £) is subtracted off

T
from erc(x, ¢) before feeding into the computer. From Egq. (3.18)
we know the b-matrix associated with In [ | x - g[] and hence there
is no problem in adding on the result of Eq. (3.18) to the double
Fourier analysis of the rest of erc(x, £) supplied by the computer,.
All that remains is then to use a suitable N to define the
vorticity series as in Eq. (3.17a) and then solve the set of simul-
taneous equations (3,.8) withr=0, 1, 2. . . N. As remarked in
Chapter III, N = 4 (i.e., with the vorticity defined by a 5-term
series) seems quite satisfactory in that the last a's are then found
to be quite small. The solution of the set of simultaneous equations

by matrix inversion can again be conveniently programmed to be done

by a computer.

Section 3: Remarks on the Special Case of an Exponentially

Converging Channel.

In this case, for the velocity fields of the sources and
vortices, we have to use expressions involving the Ko and Kl

functions. As an example, Kvnc(x, ¢) will be written down:

2 2 2 2
Let r_ =[rns - 2ms (x - £) + (x-g)]and rm> 0,

where m is an integer ranging from - to + o, s is the spacing
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between the blades (2/s = solidity of the cascade, since the chord
is taken 2 units long). Then with A as the stagger angle (recall

for all cascade calculations, the axis of convergence is taken to be

along the axis of the cascade), for a cascade of flat plates with

dyc
o= =9
a a & arm
K pc®€) = = exp[ = {x - §) cos (X)] Z K -2——) cos (A)
‘ ms=-00
o |- £) - ms sin () g “Tm 1 4. 6)
T 1 2 C x-E) :

The singular parts come from m = 0 and when x = £ and by
expanding Kl [ % 'x - g| for small «, one can see the singular
portion has been subtracted off. With m = 0, the expansion of

ar
m

K, (T"‘

for small e reveals the weak logarithmic singularity

referred to earlier. Since the m = 0 portions of the above series
expressions fox; erc(x, ¢) had to be taken account of by hand calcu-
lation, for these terrﬁs an order (azlogza) calculation was done. It
was not possible to sum the infinite series in Eq. (4.6) exactly and

a couple of approximations thaf help in the summation of this series

are mentioned in Appendices 7 and 8.
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Section 4: Discussion of Numerical Results for the Cascade of

Airfoils in an Exponentially Converging Channel.

All the remarks mentioned in Section 3 of Chapter II
regarding the two factors involved in the effect on the circulation,
i.e., (a) the effect of freestream variation and (b) the altered
behavior of the velocity fields of the sources and vortices (from
the two-dimensional fields), apply to the cascade problem. The

~angle between the axis of convergence and the blade chord = \

and is positive for compressor cascades and so the freestream
effect is also to decrease the circulation (unlike the case of the
flat plate discussed in Section 4 of Chapter III where \ = -§).
The reduction of circulation due to the altered behavior of the
vortices is even stronger than that for a flat plate because we have
an infinite set of vorticity distributions. By the use of the word
"reduction'!' we have in mind the reduction from unity of the ratio
of total circulation for a quasi-two-dimensional calculation as
compared to a two-dimensional calculation for the same airfoil
section. It is this quantity that is plotted as ordinate in the gra..phs
in Figs. 8, 9and 10 thich present the results of the numerical
work pertaining to this section.

There are quite large reductions of the order of 50 percent
at unit solidity for axial velocity ratios of 1.15 or so. The reduction
is less for_lower solidities. It is also less for a cascade of thick,

cambered airfoils as compared to a cascade of flat plates. The
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dependence on stagger is not very clear but it seems the strongest
reduction of circulation is around k: 30°,

Only a few representative calculations have been performed
for the cascade in an exponentially converging channel. The reason
for this is contained in Fig. 10. TFor unit solidity and A: 450, and
a cascade of flat plates, it was decided to study the dependence of
the reduction ratio on the axial velocity ratio (or on the contraction
. parameter a). Since we expect (from the study of the isolated flat
plate) the reduction ratio to depend on a most strongly as (¢ £n ¢) and
also because for small «, it would be difficult to exhibit clearly the
reduction ratio "r' as a function of (a £n a) owing to crowding near the
origin on the x-axis, it was decided to plot ''r" against (1/a n a). As
¢ —0, (1/a dn @) —= 00 and hence on such a graph r should tend to
unity as (1/e £n a) —= o0 since ¢ = 0 corresponds to the two-
dimensional case. Unfortunately such a plot, shown :'Ln Fig. 10,
showed a very slow approach of r to unity as (l/a {n a) — 00. The
reason for this is presumed to be the fact that the exponentially con-
verging channel is physically unrealistic for large x since it flares
to an infinite width on the far upstream side and contracts to zero
width on the far downstream side. (Recall h = hO exp (-ax).)

Thus it was decided to étudy channels whose departure from
constancy of channel height was over a finite extent only. Such
channels will be referred to as finite channels. The fundamental

singular solutions in such channels are studied in the next chapter
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‘and a detailed set of numerical experiments was also reserved for

such finite channels,
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CHAPTER V

CASE OF FINITE CHANNELS

Section 1: Introduction.

The calculations for fully exponential channels reveal a sharp
reduction in total circulation for the cascade problem. Of greater
concern was the fact that the rate of approach of the ratio

to unity was very slowas e -— 0. Witha

'n.r.p. + Tr.D.
view to clarifying the effects of contraction for more realistic

channels, efforts were made to find the solutions for fundamental
|

sources and vortices for channels where

h

over a finite extent of x, These solutions were later applied for the

differs from zero only

solution of the boundary value problems of isolated airfoils and

airfoils in cascade.

Iy

Section 2: Assumption of and Procedure of Solution.

h

The calculation procedures for general —111-1—) were largely

based on Ref, 22, The procedure involves the use of Fourier
exponential transforms. The use of Fourier exponential transforms
to reduce a partial differential equation to an ordinary differential

equation necessitates the assumption that the dependent variable go



69

to zero as the independent variable which is being eliminated goes to
# 0. Since the potentials and the stream functions do not possess
this property it is more convenienf to formulate the problem for the
velocities themselves. Also generalized functions are introduced to
represent the singularities. Before carrying out the calculations,
however, the meaning of the generalized functions in terms of jump
conditions is written out so that the final formulation is within the
realm of ordinary analysis.

Consider as the first example the v component of velocity
for a vortex of unit strength per unit length located at the origin.
Since the field is completely frce of sources the continuity equation

is:
o - ) - '

The =z componeht of vorticity equation from Eq. (1.23) can be

Differentiating Eq. (5.2) with respect to x and letting

o2 a2
A= =t %
dx dy
h' - ho !
AT + (T s gy s ey (5.3)
Let 1 1
v = h;Z h 2 (x) v, (5.4)
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. Then
.2 L 1.1
1 h 1 h 2 !
& - | g ('E') t gz ("h‘) Vo = Bo B TeBsly)  (5.5)
Let
[0 o)
1 k
s L f Y v 6 y) ay
-0
:1e)
m .
vy, = f e-'Jky u(x, k) dk
o)

and if u(x,k) = u(x, -k), then

QO

vo =2 [ umiocos iy ax
0

and if u(x, +k) = - u(x, «k) then

a

v = -2j [ u(x, k) sin (ky) dk .
0
Of course 1 1
v = h zh(x) z-v.
o o

Now consider a special channel that is sectionally continuous with

%: - @ [Ho(x-i-b) - Ho(x-a)]

where Ho(x + b) is a unit step function, i.e., equal to unity if the
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‘argument 2> 0 and equal to zero otherwise. The shape of the

channel is indicated in Fig. 11.

-

= - a [5(x+b) - 6(x—a)J {(5.7)

h

where § is the Dirac delta function.

©
Applying the integral operator '2'17? f XY (voos)dy

-0
where {....) denotes the quantity (a function of x and y) on which

the operator operates and assuming vo(x, + o) = 0 and also

v
-W&(x, + ) = 0

(which is quite reasonable since v is related to the velocity v) the
partial differential equation (5.5) reduces to an ordinary differential

equation:

1) 2
u - u _kz + I [Ho(x+b) - .Ho(x-a):l

- £ [5(x+b‘) - 5(x-a)] = [5'(}{) +%1§(%-))5(x)]

where we make use of the fact that

£y) s (y) = £(0) s (y) - £ (0)s(y) - (5. 9)

and primes in Eq. (5.8) denote differentiation with respect to =x.

% In this thesis, j will be used to denote\ /-1 .
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Therefore we have to solve for

3} 2
w e k% & [Ho(x+ b) - Ho(x-a)J (5.10)

'% [5(x+b}-5(x-a)ﬂ u=0 forx+ 0
J

subject to the two jump conditions:

0+ 1 o |0 a a |1
u 0 = -2? and u 0 = - -zﬁ? = = -2- -ZT-) (5.11)
- - 3
For x £ 0 write Eq. (5.10) as:
" 2 .'a2 a
wo= K¢ o+ Lo [Ho(x-i-b)-Ho(x-a)] - % La(x-i-b)-a(x-a] w
{5.12)
This shows u is continuous at ‘x= -b and x= a but u] jumps at
x = -b and x = a in the following manner:
, lx = -b+ a
u = - -2—u(-b) and
X = -b" .
(5.13)
, |x = at ' a '
X = a-

The jump conditions (5.13) and (5.11) along with a statement that we
seek a solution, subject to Egs. (5.13) and (5.11), to the differential

equation:

u - ku= 0 for x < -b and x > a
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and

3] 2
2 a
u - (k +—Z-)u=0for-b<x<a

constitute a formulation of the problem for u in terms free of

generalized functions,

2

Letting kl = k™ + % and-using the following solutions

for regions x < -b, -b < x < a, and x > a

(a) for x ¢ =~b: ufk,x) = D(k)ekX

(b} for -bL x < O:

K, (x ~ a) -k, (x + b)
ulk,x) = B (k)e X+ Ag(k)e | + Bple | -
(c) for 0 < x £ a:
-klx kl(x - a) -k1 (x + b)
u(k,x) = A lk)e + AR(k)e + BR(X)e

(d) for x > a: x= Clk)e ¥

. 1 a
with A_(k) = T {1 +'._71€;)

_ _ 1 a =
and Bo(k)._ - T’E(l - Zkl } (5.14)

a system of four simultaneous equations for AR' BR’ D and C as

functions of k can be set up to satisfy the two continuity conditions
f

at x= -b and x=4a on u, and the two jump conditions on u at

x = =b and x = a. It should be noted the Ao(k) and the Bo(k) have

been chosen to satisfy the jump conditions at the origin. A solution
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for u(x, k) can indeed be found by solving the set of simultaneous
equations, However, the problem of inverting the extremely
complicated function of k that u turns out to be, proved impossible
to solve and an alternative approach was used. The alternative
approach is to solve the problem for u approximately, i.e., in

powers of a. Also the way the alternative approach proceeds, the

jump conditions at x = -b and x = a are satisfied automatically.

Section 3: The Approximate Calculation.

Let

2
glx) = EZ}_ . [Ho(x+ b) - HO(x - a} -

o R

[5(x+ b) - 6(x - aﬁ

The solution to the problem for u is taken to be A(k)u1 (x, k) for

x 2 0 and B(k)u,(x,k) for x < 0. u,(x,k) is taken to be the

2 1

solution asymptotic to exp(~-kx) as x — 00 and uz(x,k) is taken
as the solution asymptotic to exp{kx) as x —-0. Then uy

satisfies the integral equation:

e o) -2k(q - x)
ook - ] x)ekd
Yy (x,k) = e 1+ l_ AT Jg(Q)ul(Cbk)e dq

b4

(5.15)
Incidentally the k used above is really lkl . The solutions for u
turn out to be even functions of k and so we need to use the cosine

transforms to obtain the velocities.
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The above integral equation is got by the method of variation
1
of parameters; i.e., we write {u - kzu = gx)u and regard
"g(x)u'' as an inhomogenous term. Similarly for uz(x,k) we take

the solution asymptotic to exp (kx) as x — -oo and write it as the

solution of the integral equation:

2k(q - x)
w, = RS ( 1+ f (1 - = i )g(q)e'kquz(k, q)dq} (5.16)

Now consider a calculation to 0{ae):

u) (%, k) = e kX [1 b (1 - o"2kla - x))]
(5.17)
u, (%, k) = R {1 - - e'Zk(xJ’b)ﬂ
The jump conditions at the origin are:
A()uy (0,k) - B(k)uy(0,k) = -
Alk)u; (0.K) - B(klu, (0.K) = - % (2-11?) (5.18)

where the primes denote. differentiation wrkt x. Incidentally the
values given by Eq. (5.17) are only for -b  x ¢ a and the values

of u(x, k) outside this range of x are:

u, (x, k) o kX

for x > a and
(5.19)

ekxfor X \< -b .

u, (x, k)
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We solve for the A(k) and B(k) and find them to 0(a):

1

A k) -‘m-{uz'(o,k) + g-uz(o,k)J

]

(5.20)

B(k) = z?laz' [ul'(O,k) + %ul(o,k)} .

In general if we denote by W the Wronskian:
t !
[ul((), k)u2 {0, k) - uy (O,k)uZ(O,k)]

the solution for A(k) and B(k) can be written as

Al) = =i [uz'(o,k) ¥ -czl—uz(O,k)}
Blk) = - [ulr(O,k) + % (0, k)} .

Calculation of the Wronskian to O(az) gives
@ 1 _2k(a + b)
2k |1 + g [@+DB)- 5 [1-e ]

This shows for all k the error involved in approximating the W by
2k 1is only of O(az). Inclusion of terms of O(az) in the transform
give rise to the same problem as in an exact solution (using the set .
of simultaneous equationé), i.e., it becomes extremely hard to
invert the transforms. The calculation was therefore restricted to
terms of O(a). Further the problem in the transform plane (x, k)

was solved exactly and for selected values of a, b, x and k the exact
solution and the solution to 0(a) (for a = 0.1) were compared |

numerically as functions of k. For a=b=x=1, very good
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agreement was obtained (the differences were less than 0.4 percent).
As a function of k, the O0(a) calculation was systematically greater
than the exact calculation for |k| < 1. The error is greatest for
k = 0 (about 0.4 percent) and from then on decreases with increase
of ]ki . For |k| > 1, there is practicall;r no difference between
the two calculations.

Using the values of A(k) u, (x, k) and B(k)uz(x, k) and a table
of Fourier cosine transforms one writes down the value of v for a

vortex (to O{a) ) as:

2
T = 1 x + ax
v 2T X2 + y2 z(xz + YZ)

e [ [(x + Zb)2 + yz] [(Za - x)2 + yz]’] (5.21)

2 2

(x~ + Yz)

Again the above is for the region -b { x < a.

Consider now the u component of velocity for a unit source

located at the origin. We now start with the pair:

o (b)) 3‘?)7 (h9) = h_s(x) s(y)

o
(5.22)
0 - 9 - 1o
Elimination of v leads to:
1 ] !
ad o+ 20+ (B S = s ) sy (5.23)
T “x h yr o : *
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As before let

11 o
i o= h(;Z h Z(x) f wix, k) e Y ax (5.24)
-0
where
11
h ZnZx) SO
wix, k) = 5= f FY 3, v) dy
-0
we have
! z 1 ! t
ol r ] e ]
(5.25)
Again we need to solve for x F O:
i 2 02 ]
w o= w [k + [Ho(x+b)-Ho(x-a)]
+ % [6(x+b)-a(x-a]}:o ' (5.26)
subject to
+
0 _a _ |a 1
¥l T T T z) =
and
o+ o
w 0- 27

Exactly the same approximate procedure of calculation as for ;v was
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adopted and to 0O(a) :

2

- 1 x ax
us=-z—w]'—-2—————2—+-——-T—-—2——
Lx+Y 2(x"+vy)

- %Zn [ >
(x2+yz)

[(Za - x)z + yz] [(x + Zb)2 + yz]]:)‘

As a check on the above, at this point, some alternative procedures

of viewing ﬁs were considered and are described below.

Section 4: Some Checks on ﬁs.

Before describing these checks, consider first the case where
the contraction occurs fully upstream of the location of the singularity

(see Fig. 12). The only changes from the calculation of ﬁs before

are that:
llﬁ" = - g [Ho(x + b) - Ho(x + a.):, and
LT [5(x Fb) - slx+ a)} : | (5.27)

The derivative of the transform with respect to x is continuous at
the origin and the transform itself jumps by 21? . The u component

of velocity for a source turns out to be (to O(a) ) :

2 2

-1 x ¢ (x + 2b)° + y ]
U, = o= —— - in (5.28)

S T X +y 8 [(x+.?.a.)2+y2
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For convenience, consider velocities for points on the x-axis, i.e.,

with y = 0:

- 1 1 a [x + 2Db)

B T aw o lx T Z“‘me] (5.29)
Consider further the special case as a,b recede from the origin,
i.e., let (b -a) € (x+ a+ b). Expanding the logarithm as a power

series the effect of the faraway contraction is seen to be an additional

term of value approximately equal to

As the contraction recedes further and further away from the location
of the source one may reasonably expect that the exact details of the
contraction should be less and less important for the calculation of
the effect of it on the velocity near the source. Consider, e.g., a
stepwise two-dimensional channel, as shown in Fig. 13, Assume a
two-dimensional line source spans the channel at the origin 0. We
need to calculate the effect of the step at x= - % (a + b) where the
height increases to exp [(b - a)a] of its value ahead. The comp.u-
tation may be done by the method of images as follows:. The flow in
a+b

the region x - (—-2—-) is regarded as due to a transmitted

source of strength m_ located at the origin and the flow for

x 2 - (E—IZI'-—E) as due to the source of strength unity at the origin

t

and an image source of strength m, located at the image point of the

origin in the plane x = =« (i}ﬁ) , €., at x = - {(a + b)., The
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strengths my and m, arc obtained by coneiderations of continuity

and that the y-component of velocity be continuous across

X = - (:a___-g_l)_ . The absence of any solid boundaries normal to

the y~axis precludes the transmission of any impulse parallel to the
y-axis which alone can effect discontinuities in the velocity parallel

to the y-axis. The above two conditions yield:

m, = exp [(a - b)a] (1 -m,)

and m, = l+m.1.

exp [(b - a)a] -1
These lead to m, = , Wwhich is
1l + exp [(b - a)a]

approximately equal to:

- Q?.i..ﬂi‘ to 0(a)
. . . . . . a-+ b
The velocity field associated with m, , in the region. x < - [—-Z——) ,

for y =10, 1is:

a(b - a)
2(x+ a + b)ew

It is clear that a term equivalent to the one for the sectionally
continuous channel is obtained for the stepwise discontinuity insofar
as the alteration of the velocity field goes. The '""method of images"
used here is analogous to one discussed in Ref. 23,

It is appropriate to mention here an alternative derivation of
Eq. (1.4). We consider a channel with discrete two-dimensional

sections (i.e., sections of constant height) of incremental width ¢ .
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'In each section we use solutions to the two-dimensional potential
equation to represent ¢ . The ¢'s in two adjacent sections are
related by a continuity condition on (hu) and the requirement that
v be continuous. Finally we let ¢ -0 and it can be shown that
& satisfies Eq. (1.4). The details are given in Appendix 9. Again _
this approach is largely modelled on a similar derivation for the
equation governing the perturbation velocities in a parallel, density
stratified shear flow given in Ref. 24.

As a second check we note that if we were to solve for the

velocity field by a perturbation technique we would assume for

: 2
Q=¢o+a¢1+a¢2+....

Taking ¢O = -2—11-? In(r) where r 2+y2 , for

I
"

¢1 one has a Poisson equation:

H
2 h
N vl

2TY

[}
(Recall ¢ satisfies AP = -~ '}'lﬁ'q)x J)

Using the usual integral representation for ¢1 it was found that the
first addition to the veldcity field is indeed that as obtained by the
technique of Fourier transform.s. In retrospect it may be remarked
that the main advantage in using transforms appears to be that in the
transform plane (x,.k) the problem can be formulated and solved
exactly so that it becomes possible to make numerical evaluations

of how accurate the 0O{a) solution is. It is obvious that for fixed a,
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as a,b become very large the order a calculation will be
increasingly inaccurate. Estimation of the inaccuracy in quantitative
terms becomes possible if one uses the Fourier transform method.
Neither the iterative procedure of solving the ordinaryvdifferential
cquation (5.10) based on the integral equations (5.15) and (5.16) noxr _
the obtaining of successive approximations by evaluating a series of
Poisson integrals can be expected to yield the fully exponential
channel velocity fields (involving K [221;] and K [ar] ) in the
o 1 (2
limit as a,b —» oco. Indeed, in case of either approach, the relevant
integrals will diverge as a,b — co. This is easily understandable
since we cannot hope to solve by a perturbation technique the flow
in a channel such as a fully exponential channel which is not just a
perturbation from a basically two-dimensional channel. The exact
formulation and solution of the problem for the transform is subject
to no such limitation and in the limit as a,b -— o0, one is left with -

the solutions for x » 0 and x < 0, in the notation of Eq. (5.14):

(a) for x > 0: u(x, k) = Ao(k) exp (-k, x)

(b) for x < 0: u{x, k) Bo(k) exp (k,x) .

The inversion of the above and the 1:esu1ting vellocitly fields
got after incorporating the multiplicative factors ho-z- hnz(x) of
Eq. (5.4), do indeed yield the velocity .fields got in Chapter I by
solution of the original partial differential equation by separation of

variables,
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Section 5: Calculation of u for a Vortex and v for a Source.

The only difference in what follows is that the transforms
are now odd in k thus necessitating the use of sine transforms in
inverting to get the velocity fields. Starting again with the pair
Egs. (5.1) and (5.2) and eliminating the v component, one arrives -

at (for u) the following equation:

! h
- h - h - !
Au + T ux+ 'E") u = —Hﬁya(x)a(y) . (5.31)
Let
1 1 .
u = uh-z-h(x) z : then
oo
. ! , 2 1 1
1 [h 1 {h 2.7 '
Auo + '2- (—h—) - -:1- (—K) uO = - h h 5(X) é (Y)
Let
f0's)
v = -211_? f eJ yuo(x,y) dy
-00
so that
e
u = f vix, k) e 3KV gi
-0

-0
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The problem for v is:

once again letting:

2o .q [Ho(x+b) - Ho(x-a)J ]

one carries out computations similar to that described before to

finally arrive at:

. 1 y e f_ -1 [x+ 2b) -1 [2a - x
uv = - -2—1_? 7—7 + —4- Ltan v } -~ tan v )}
X +Y
+ axy to O(a) . (5.32)
2(x" +vy)

The v component of velocity for a source by a similar analysis

works out to be

- 1 y axy
v o= +
s Zn y +:v<2 2(x2+y' )
+ % {t:a.n"I 2a - x ta -1 [x+2b .’ (5.33)
L y Yy J

Section 6: Case of Fully Upstream Contractions.

Eh_ = - a [Ho(x+b) - Ho(x+a)]



analogous to Eq. (5.34).

I

(4]
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The four components GS, v, ﬁv and w-/s are listed below:
2 2
_-\-,v=2_l?r_ x +_a8_£n[(x+2b)z+y2:l
x +y (x+ 2a)" +y

3 = 1 X - %40 {(x—i— 2b)2+y2J

S 2w X +vy 8 (x+2a)2+y2

(5. 34)

u = 1 _Z_L_z_ + & tan"l b - tan 1 b \

v 2w Xty q X + 2a X + 2b
; = 1 7—2——-2-— - e tan-l Y - tan-l ¥

s 2T Xty 4 x + 2a X + 2b
Section 7: Case of Fully Downstream Contraction.

Again the details are omitted and we reproduce below results

The notation is as in Fig. 14:

1 X - %4 [(2b-~>~:)2-1-y'2:|T
2w X +y 8 (2a - x) +y2 §
1 x m{(Zb-x)"‘wZJ
2 x +y (Za-x)2+Y2 ]
| (5. 35)
- b + & [tan”! —JL— - tan 1 Y
2T 2 2 q [ a-x 2b - x
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) , ; 1y -1 7
vy Thu :z-l—-—z— -z [tan ("23‘-‘:?) - fen (-Zb—%m

ty

Section 8: Solution of the Integral Equation.

The solution procedure is entirely analogous to that discussed
in Chapter IV. The kernels kvrc(x,g) etc, are derived from the

solutions discussed above.

Section 9: Estimation of Flow Inlet and Outlet Angles (Relative to

Cascade Axis).

By considering the line integral of the velocity around ABCD
in Fig. 15a which represents one spatial period of the flow, since the

line integrals along AB and CD cancel out by periodicity, clearly,

AV, = (V- V) =

it ot

where "i" stands for inlet, "o'" for outlet, "t" for tangential to
cascade, ”Pt” for the total circulation, and 's' for spacing of the
cascade. The mean flow indicated by OVm is assumed to be of unit
magnitude and inclined ai: 6 to the blade chord and hence at (A + §)
to the cascade axis, The inlet and outlet angles relative to the
cascade axis have been shown by 1. A. and O.A.. Clearly then to

0(a):

AV,
sin (N+ &) + —-—
{I ~acos\) cos{n+g)

tan (I.A.) =
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and
) Avt
sin (\ + 5) - >
tan (O.A.) = (1 +acos \jcos (X F+g5)

since the chord is taken 2 units long and the axis of convergence

same as cascade axis. The I"t depends on airfoil shape and § .
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CHAPTER VI
RESULTS OF NUMERICAL WORK ON THE FINITE CHANNELS

The results for isolated airfoils were qualitatively similar to
those for a cascade and hence the work on contractions fully upstream
‘and fully downstream was restricted to isolated airfoil calculations
only. In case of contractions fully covering the airfoil both cascade
and isolated cases were treated.

The factor varied in cases where the contraction fully covered
the airfoils was the extent of the contraction. There was no point in
varying e since the results are linear in a. The contraction in these
cases was assumed located symmetrically with respect to the chérd.
In cases of upstream and downstream contraction the spacing between
the centerline of the contraction and that of the chord was also varied.
The dependent quantity plotted and studied on the y-axis was the ratio
"r'' of total circulation for a quasi-two-dimensional calcu_lation for
the same airfoil section and angle of attack. The results of the work
are presented in Figs, 16-23,

The effect of fully upstream and downstream contractions is
in general not very much, insofar as reduction of circulation goes.
This is true even when the contractions are just ahead or just behind

the airfoil.



90

In case of cascade calculations the known parameters are
taken as the stagger angle, the spacing, the airfoil section, the
angle the mean vector velocity makes with the chord at mid-chord
point, and the extent of the contraction.

Figure 19 shows the reduction of circulation is less for
cambered airfoils than for flat plates. Thickness increases the
reduction. The order of magnitude of the reduction ratio is pretty
close to the ratio of inlet channel height (at thé leading edge) to the
channel height at exit. The reduction is also less with decreasing
solidity (solidity = —g- ). Figure 20 shows the effects of varying the
extent. Two deductions may be made from Fig., 20, The cascade
reductions are somewhat greater than those for an isolated airfoil
and secondly the dependence of the reduction ratio on the extent of
contraction is much weaker for isolated airfoils than it is for a
cascade. Figure 21 simply confirms the qualitative similarity of
the results for isolated airfoils and airfoils in cascade.

Figure 22 is undoubtedly the most interesting plot, There is
a lively dependence on the stagger angle of the reduction ratio. This
is due to the interplay of the freestream effect (which diminishes
circulation for X > 0 and increases it for XA < 0) and the effect
due to altered behavior of vortices (which always diminishes the
circulation provideﬂ 17\1 < wl2). There is a pronounced minimum
of circulation at \ = 30° and it takes a negative stagger of about

A = - 30° for the abovementioned two effects to cancel out exactly.



91

Figure 23 is an attempt to give some idea of the effect of
quasi-two-dimensionality on the actual distribution of vorticity and
as may be seen the distribution near the leading edge is the most
affected.

The effect on the inlet and outlet angles as cofnpared to a
two-dimensional calculation is slight. This is because the contraction
by increasing the axial velocity tends to increase the turning of the
flow. However the quasi-two-dimensional calculations show the
contraction diminishes the circulation and this in itself tends to
decrease the turning of the flow. There is a balance between these
two factors because, as mentioned earlier, the reduction of circu-
lation is pretty close to the ratio of inlet to exit height. Thus the
inlet and exit angles are affected from the two-dimensional values
only by a degree or so for the cases treated. The inlet and exit
angles for the cascade have been presented in tabular form in Table I.

We make one remark here regarding a problem that may come
up in case of cascade design. Usually it is the incidence angle (I. A.)
that is known and not the angle that the meé.n flow makes with the
chord. For a given éasgade geometry, airfoi;l scction and contraction
parameters one would proceed as follows:

1. Obtain Pt first for § = 0 and theﬁ for some non-zero but

small §. Now express I‘t as :

I‘t = Ao + Ala (a linear relation). (6.1)
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2. Expand th'e right hand side of the equation for tan (I.A.)
in powers of § restricting oneself to first order in 5, using
Eqg. (6.1). Now for given I.A. solve for § and thus. compute
the outlet angle.

We wish to reiterate, at this point, that all comparisons in

Table I and indeed throughout this work have been done on the
assumption that the angle of attack for the two-dimensional and the
quasi-two-dimensional cases is the same. (In what follows it will
be convenient to use the abbreviations T.D. f{for "two-dimensional
and Q. T.D. for "quasi-two-dimensional.') It is undoubtedly true
that a comparison for fixed angle of incidence would be more
meaningful for design purposes. It is an unfortunate limitation of
all singularity methods (Refs. 2, 4 and 25) that one is forced to use
the angle of attack of the mean velocity as a reference quantity. As
pointed out earlier, by doing two calculations, one w.ith zero angle
of attack and the other with a non-zero angle of attack, the problem
of given incidence can indeed be solved in a s.pecific instance. The
graphs in Figs, 16-23 representing the effects of quasi-two-dimen-
sionality are all complicated functions of «, the stagger angle, the
solidity and the extent of contraction E. We would like to be able to
give a simple deviation rule as, e.g., Constant's rule for circular
arc airfoils (mentioned in Ref., 26) incorporating the effects of
contractions. Owing to the abovementioned limitation that the Q, T.D.
.effect depends on too many factors, it was decided to merely indicate

how one would solve a specific design problem for given incidence.
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¢ and E will have to be estimated perhaps experimentally. It
appears a vast amount of numerical experimentation will need to be
done to be able to state a reasonably well-verified empirical rule.
Since a rather specific channel shape (secti.‘c‘)nally exponentially con-
verging type) has been assumed, such a great deal of numerical work.
is of dubious value.

There are however some important conclusions to be drawn
from Table I regarding the flow turning angle or deflection for fixed
incidence. The deductions for fixed incidence from the data of
Table I (which is for fixed mean angle of attack) were done on the
following basis: We roughly correct the resﬁlts of Table I to compare
the deflection angles for given incidence on the basis of Fig. 3 of
Ref. 26. This figure is a plot of deflection angle against incidence
angle for a 'typical cascade test'. It indicates that over the com-
pressor working range an increase or decrease of incidence by a
degree produces a corresponding increase or decrease of about a
degree in the deflection. All the deflection angles for the Q. T.D.
flow were adjusted to what they might havé been if the incidence
angle for the Q. T.D, ‘flovw has been the same as for the T.D. flow. .
To be sure, Fig. 3 of Ref., 26 refers to a specific cascade geometry.
Dut because the results of Fig, 3 are for a ''typical cascade test!!
and also because as Table I shows the differences in the incidence
angles for the Q. T.D. and the T.D. flow are only about a degree in
most instances, no great error can result from this adjustment.

Papers on cascade design (e.g., Ref. 26) usually give plots of
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deflection angles against incidence angle . We give below the chief
conclusions principally for three kinds of variation: first, variation
with extent of contraction E with all other factors held fixed; second,
variation with solidity, again with other factors fixed; and thirdly,
variation with stagger.

1. For given contraction ratio across the chord {equal to
exp (-2a cos)\) since the chord is two units long), giveﬁ stagger
“and solidity the relevant data is in Table I(a). A = 45° and s/c = 1.00
are about the most typical values for a compressor cascade. For
this set of X and (s/c) at (E + 2 cos \) = 1,061, the flow turning
for the T.D. and Q.T.D. cases is just about equal. For lesser
(E + 2 cos \)than 1.061] the flow turning for the Q. T.D. flow is
greater than the T.D. value, and for (E + 2 cos \) greater than
1.061 the T.D. flow deflection is greater. This is clearly because
the effect of axial acceleration, which increases the deflection, is
independent of E so long as the contraction fully covers the airfoils,
i.e., so longas (E + 2 cos \)is greater than l.Od. The reduction
of circulation, which decreases the deflection, increases with E.
There is a balance of the two effects at (E + 2 cos \)equal to 1,061
while the former prevails for (E + 2 cos \) less than 1.061 and the
latter for (E + 2 cos (\) ) greater than 1.061. The lower limit of
(E + 2 cos \) is unity since we have assumed in all cascade calcu-
lations that the contraction fully covers the airfoils. All the tables
can be explained by a study of this balance and we wiil, .in what

follows, merely state the conclusions. We note that the differences
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in flow turning for the T.D. and Q.T.D. cases are quite small,
i.ke.,_ of the order of a degree or so,

2. The deflection of the Q.T.D. flow gradually exceeds that
of the T.D. flow with decreasing solidity. The two deflections are
equél at about c¢/s = 1.00 for flat plate airfoils, at c/s = 0.666 for
circular arc airfoils. The results in this regard for circular arc
airfoils with zero thickness and circular arc airfoils that are 10
percent thick are practically the same, Other pararﬁeters are
assumed equal in this study of the variation with solidity, For higher
than the abovementioned solidities, the two-dimensional flow has the
greater deflection. Again we emphasize that though there are
differences between the two cases, they are quite small for con-
tractions that may be regarded as physically reasonable (about 10-20
percent contraction).

3. For all staggers from about -30° to 60° the two-dimensional
flow has the greater deflection. The difference is greatest (about 2
degrees) at a stagger of -30°. In the compressor range of staggers
from 0° - 60° it is always less than a degree. The variation with
stagger is studied with other factors held fixed. |

Roughly speaking then, we have repeatedly emphasized the
prediction that for fixed incidence the deflection angles for the two-
dimensional and quasi-two-dimensional flow should not differ much. -
perhaps by a degree or so in the compressor range of parameters.,

Of course we restrict ourselves to physically reasonable contractions
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of around 10-20 percent, The velocity diagram in Fig. 15a shows
however that the effect of the contraction on the magnitude of the
inlet and outlet velocities is by no means inconsiderable. The effect
of quasi-two-dimensionality is to increase the magnitude of the outlet
velocity relative to the inlet velocity (as compared to its two-
dimensional value), due to two causes. Firstly the axial component
of the outlet velocity exceeds that of the inlet velocity due to the
contraction. Secondly since the quasi-two-dimensionality reduces
the circulation the reduction of tangential component of the outlet
velocity from that of the inlet velocity (compared to its two-
dimensional value) is also reduced. From Bernoulli's theorem, we
expect the pressure rise for a quasi-two-dimensional flow through
a compressor cascade to be noticeably lesser thaq for a two-
dimensional flow even though the deflection angles would Be in close
agreement,

An explicit statement pertinent to the conclusions of this
thesis appears on p. 4 of Ref. 26. This statement,. which we repro-
duce below, is based on a survey of experimental data and supports
the predictions of this thesis:

The few tests avé.ilable indicate that small amounts of
contraction have little effect on the measurement of deflection
and loss even though the effect on the pressure rise across
the cascade may be relatively large so that some wind tunnel
tests with contraction have been used in the test analysis of
this report. -

Since the present thesis is restricted to an inviscid flow with-

out separation no losses can be accounted for by our calculations.



.97
REFERENCES
""Aerodynamics of Turbines and Compressors, ' Vol. X of the

High Speed Aerodynamics and Jet Propulsion Series published

by the Princeton University Press, Section C, 1964.

Mellor, G. L., "An Analysis of Axial Compressor Aerodynamics, "

Trans. ASME, September 1959.

Schlichting, H., '""Berechnung der reibungslosen inkompressiblem
Stromung fiir ein Vorgegebenen ebenes Schaufelgitter, ' VDI

Forschungsheft 447, 1955,

Martensen, E., '"Calculation of the Pressure Distribution on a
Cascade of Thick Airfoils Using Fredholm Integral Equations of
the Second Kind, "' Communications from the Max Planck Institute
for Fluid Mechanics and the Aerodynamic Experim ental Station,

No. 23, 1959,

Katzoif, S., Bogdonoff, H. E., and Boyet, H., '"Comparisons of
Theoretical and Experimental Lift and Pressure Distributions on

Airfoils in Cascade, " NACA TN 1376, July 1947.



98

6. Erwin, J.R. and Emery, J.C., "Effect of Tunnel Configuration

10,

11.

12,

and Testing Technique on Cascade Performance, " NACA TN

2028, February 1950.

. Hawthorne, W.R., "Induced Deflection Angle in Cascades, "' J. of

the Aeronautical Sciences, Vol. 16, No. 4, 1949, p. 252,

Scholz, N., "Two-Dimensional Correction of the Outlet Angle in
Cascade Flow, " J. of the Aeronautical Sciences, Vol. 20, No. 11,

1953, p. 786.

Hausmann, F., '"The Theoretical Induced Deflection Angle in
Cascades Having Wall Boundary Layers, " J. of the Aeronautical

Sciences, Vol. 15, No. 11, 1948, p. 686.

Kubota, S., '"Cascade Performance with Accelerated or Decelerated
Axial Velocity, "' Bulletin of the Japan Society of Mechanical

Engineers, Vol. 5, No. 19, 1962, p. 450.

Pollard, D., and Horlock, J.H., "A Theoretical Investigation of
the Effect of Change in Axial Velocity on the Potential Flow Through

a Cascade of Airfoils," ARC CP No. 619, 1963.

"Aerodynamics of Turbines and Compressors, " Vol. X of the

High Speed Aerodynamics and Jet Propulsion Series publishcd by



99

the Princeton University Press, Section B, 1964.

13. International Association of Hydraulic Research, Tenth

Congress, London, Vol. 4, 1963, pp. 223-226,

14, Van Dyke, M., 'Perturbation Methods in Fluid Mechanics, "

Academic Press, 19%64.

15. | Muskhelishvili, N.I., 'Singular Integral Equations, '' P, Noordhoff

N.V., Groningen, Holland, 1953,

16, Tricomi, F.G., "Integral Equations, ' Interscience Publishers,

1957,

17. Glauert, H., "Elements of Airfoil and Airscrew Theory, "

Cambridge University Press, 1947,
18. Ryshik, I.M. and Gradstein, I.S., "Tables of Series, Products
and Integrals,' VEB Deutscher Verlag der Wissenschaften,

Berlin, 1963.

19. Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, edited by M. Abramowitz and I. A, Stegun,

National Bureau of Standards, 1964,



100
20, Van Dyke, M. D., "Second Order Subsonic Airfoil Theory

Including Edge Effects," NACA Rep. No. 1274, 1956.

21, Tables of Integral Tranforms, Bateman Manuscript Project,

"Vol. 1, McGraw-Hill, 1954,

22. Lighthill, M. J., "The Fundamental Solution for Small Steady
Three~Dimensional Disturbances of a Two-Dimensional Parallel

Shear Flow, '" J. of Fluid Mechanics, Vol. 3, 1957, p. 113,

i

23, Glauert, M. B., '"The Method of Images in Shear Flow, " J. of

Fluid Mechanics, Vol. 9, 1960, p. 561.

24. Scorer, R. S., "On the Stability of Stably Stratified Shearing
Layers, " Quarterly J. of the Royal Meteorological Society,

Vol. 77, 1951, p. 76.

25. DIPollard, D. and Wordsworth, J., "A Comparison of Two Methods
for Predicting the Potential Flow Around Arbitrary Airfoils in

Cascade, ' ARC CP No. 618, 1963,

26, Howell, A.R., '""The Present Basis of Axial Flow Compressor
Design: Partl, Cascade Theory and Performance,'" ARC R&M

2095, 1942.



Y ix)

[«2]

NOTATION

contraction parameter: channels are specified as
hoexp (-ax)

density at x of the vorticity distribution

total (integrated) circulation

angle freestream velocity makes with blade chord at mid-
point of blade chord: also used to denote the Kronecker
delta and the Dirac delta function

velocity potential: also used to denote angle used to
parameterize chordwise length

running coordinate along chord

stagger angle of cascade: also angle between axis of
convergence and blade chord

running coordinate along chord

stream function: also angle used to parameterize chordwise
length

plane polar angle coordinate: also angle used to para-
meterize chordwise length

chord length

series of functions of x and y used to study the potential ¢

channel height
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i‘é’, %)) °T in general denotes a kernel appearing in the integral
equations: usually subscripted

m (x} density at x of source distribution

r plane polar radial coordinate

s spacing between adjacent chords in a cascade

t thickness of airfoil

u x-component of velocity

v y-component of velocity

w z-~component of velocity

X,V,2 Cartesian coordinates

CL lift coefficient

E extent of contraction

Kn Modified Bessel Function of second kind of order n

LIf((xi, gg)) °T in general, denotes a kernel appearing in the integral
equations: usually subscripted

S{x) strength of elementary source located between x and (x+ dx)

u,Vv used interchangeably to denote the freestream velocity

Subscripts

c camber; alsd ""cascade'!

£ freestream

J used as integer: also ''lower!

m used as integer
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used as integer: also "mormal to chord"

used to indicate quantities in the centerspan x-y plane

portion of kernel left after most singular portion has been
subtracted off

source term

thickness: also 'tangential to blade chord'' and in sense of
"total"!

upper

vortex term
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APPENDIX I

Cx T <Pyy +9,, =0
Now
h(x) 5
¢xdz = 5x (hd) - h ¢(x,y,h)
0
Therefore
hix) 5
o !
[ ¢Xxdz = -8——2- (hé) - 211 (X, Y, h) h
x
0
H l2
- ¢(X, Y: h) h = W(X, Y: h) h
and
h(x)
dz = h
f ¢YY qv)YY
0
and
h
[ ¢szz = w(x, v, h)
) .

since by symmetry: wix,y,0) = 0.
Recalling the boundary condition at z = h that
w(x,y,h) = h'u(x,y,h),

the result of integrating every term of (Al.1) is:

(Al.1)

(Al.la)
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[héxx £ 0§ h‘@x} N [@ - ¢<x,y,h>]

+ b [6){ - ulx,y,h) (1+h'2)} =0 (Al.2)
Equation (Al.1a) can be rewritten as:
hi = h§_ + {é - ¢(X.Y,h)] n
8= 5+ [«15 . ¢(x,y,hﬂ (-hg) (A1.3)

Equation (Al.3) is of interest in its own right because it is physically
clear that the difference between & and ¢(x,y,h) is of order of the
slope h'(x) of the wall height and hence by equating u and @x we

commit an error of order (slope)2 . Clearly,

v o= cﬁy . (Al. 4)

Using Eq. (Al.3) in Eq. (Al.2) and dividing out by h,

1
1

St Syt ] 3 5] [¢-¢<x,y,h)} )
F|H [ 8 e (1+h'2)} - 0
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APPENDIX 2

00 2n
Z fn
D e S
n=1
E: ZnIZn - 15 +

[00)
Af_+f+ Z
1

therefore

therefore

ZZ(n-l)f
n

Af

2n —
2 [fn+1 + zn(zn-lr*] =

0

(A2.1)

(A2.2)

(AZ2. 3)

(A2, 4)
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APPENDIX 3

St Oy = ad_ (A3.1)<
Let

$ = exp () Flx,y) | (A3.2)
Then

2

AF = 2 * F (A3.3)
or

B or) , 1 2%r _ . o

T or | Or ;'2' ggz* -y

If F=R(x) & (6) then

2
2
d dR d 2
% = ra_) - (izr.) =“"’Z‘“® = n (A3.5)
de

(n has to be an integer for single valuedness.)

2
"
rZR +rR‘- [n2+(%)}R=O.
The solution to above that's bounded at infinity is: R = K (%;)

so that
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'exp (

%f:){

108
sin (ng)

cos (ng)

ar

K (=)

(A3.7)
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APPENDIX 4

ar ar .
re like
> are

—2- and K

o

For very large 1, both Kl

\

exp (- 225- -&TI; . The height of the channel at (r, 9) is
10 exp (-ar cos g). This means the total outward flux out of a circle

of radius R is

af R
I = 4101_ J exp (—- —-a—R—-szf—-e—) [Kl (2213-) - CcOs (e)K0 (%I-{ﬂ dg

MOR d aR | aR
= exp |- — €08 9) [K1 (TJ - cos (0) K, (TH d6
aR. 1
= al R e-T ™ aRx 1 -x 4
- I iR exp |-~ Vrizx &
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The notation "= "'in the above indicates the other terms left out can
be shown to go to zero as R - oo,
A numerical integration of I with ¢ = 0,1, R = 2, also gave

(359.27 <+ 360,00) 20 . The expression for G‘r is therefore well

checked.
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APPENDIX 5

Consider:
1
I--l— 1 -y 1+x f(x)dz
o I1+y 1l -x (x - y)
-1
where y¢ [—1, 1}
1
0
N s - AN L
Let 1(x) = bo + L bncos (ng) where x = cos @,
1

o € [0, 1{! and let y = cos (¢) with de {0,7{]

Therefore

xR
T sin{(9) [Co+ Z CnCOS (ne)}
Lan |3 J cot (9]

1 = d6
[cos (6) - cos (9)
[00)
T [1 + cos (9)] !:Co + Z Cncos (ne)}
= l-tan g f : de
T z
5 {cos (9) - cos (d>)]
€y <
The integrand = Co t o + Cocos () + —— €08 (20)
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2 C
+ _Clcos () + Z Cncos (ng) + 72 [cos [(n+ 1)9]
2

+ cos [(n - 1)9] ]] + {cos (6) - cos (¢):!

[0 0]
I = tan (fg-] [(co+ C,) + Cycos (@) + Z G_sin (n¢) cot (%}]
| 2

Q0
= C, tan {%) + Z C_ sin(n9)
1
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APPENDIX 6

Let x=cos (g) and £ = cos (¢): then

: 3
Ln { lx- gIJ = In { [cos () - cos[¢l|j

H]

fn (cos () - cos (9)) when ¢ < g and

i

Ln [cos (9) - cos (4))) when ¢ > g .

[»]
b’\

e

)

o

It
Al

%:'

Iin [ [cos (8) - cos (¢)[ } cos (nd) d¢

1
S

6
[ [ in [cos () - cos (9)] cos (n9) do
¢ ~ |

T .
J {n (cos @ - cos ) cos (nd) dqb:J

= 77%‘1- sin (n®) fn [COS (d) - cos (9)}

+

(A6.1)

(A6.2)

(Ab. 3)
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T T
+ '1% sin (n) In (cos § -~ cos ) + -T% sin (n9) sin (¢) do
1o [cos () - cos (9)]
v
= L f sin (n9) sin () d¢ | | 2 o (g (A6. 4)
™ cos {¢) - cos @ n -
0
Since
- = sin (n0) In [cos (g) - cos (¢))‘
¢ — g
and
2 .
— sin (nP)€n | cos (¢) - cos (6))
¢ —s G

cancel out provided ¢ — 9+ at the same rate in the first expression
above, as it tends to @  in the second,

- Case of ao(e):

3]
1

T
o .Tl_r / In {’cos (6) - cos (‘P), ] a¢
0 ;

6 T
= -_};cb log cos (9) - cos (9)) + —_%‘_-tb log jcos (8) - cos (¢))
0 ¢]
T
L1 ¢ sin (§) do
™ cos (9) - cos (@)
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once again % log cos () -~ cos (-9)) and
6 —o"
- %Mg (cos (9) - cos (CID))
¢ —>g"

cancel out if ¢ —»g  and ¢ —» 9+ at the same rate. The integral

v
1 P sin (¢) do _
T cos (¢) - cos (§) ~ fn| 2(1 + cos §)
0
according to p. 166 of Ref, 18, Therefore e, = - In(2) .
Hence

o _
in [[cos(e)_ - cos (q>), ] = -4n(2)-2 Z cos (nf@) cos (nP)

n
1
(A6.5)
A check:
Let ¢ = (-E) . ¢ = ;—)
in []cos (6) ~ cos (q>)| } = - %ln(Z)
The series (A6.5) gives
X cos %P) cos -I—lzT-r)
- In(2) - 2 Z —

1
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APPENDIX 7

This appendix is concerned with the summation of the

following type of series: Let

r = Vn?sz - 2ns(x -¢) sin (\) + nzs2

where rn > 0,

To sum (typically),

(o0
arn
S = Z Ko =2 .
n= - Q0

where the (*) on the summation sign indicates the summation
excludes n = 0. We take the sum from n = -4 ton = 4 exactly,

i.e., let

roa
F = z . KO -T—) a-nd
-4
-5 (o)
arn Z arn
G = Z Kol * Ko_{T) ’
- Q0 5
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For ln[ } 5 we use the following Taylor series representation for

Ko[i‘z’s-ﬁ‘-} d:%-(x-y)sin()\) .

e
o
Ni a
H
—2
1ne

as 2 azsinz)\ as
Kl["z-inl] -y | [Ko [“Z‘ln@

2
2 as a ¢os  (n) 1
'+ as Ta; 1 {2 ln'ﬂ ) 4s .

i

K [gzi |nﬂ

where the plus sign goes withn > 0 and the negative sign with

n < 0. The above is only a two term series and essentially assumes
that for large [n|, r is substantially |n{ s . For higher solidities

it may be necessary to sum a greater number of terms exactly (i.e.,
increase the limits for F) before using a Taylor series representation.

The Taylor series uses:

K (x) = - K, (x) and K, (x) = K_ + ;1{-}_{

o | S

The advantage of the above is that if we denote as follows:

[e'e] o0
ans . _ 1 ans
Sl"ZZKo{z}'SZ“ZZ_HKl[‘T‘}
5 5

then
2 .2
a sin {

i

a cosz()\) S

2 ) 2
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"Such a procedure does indeed effect a considerable saving in

computing time,
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APPENDIX 8

Q0
Consider Z Ko [2%13}
5

Once again depending on s and @, we sum exactly in the above till

aNs

some (N - i) where (N - 1) > 5 and where Ko (T has an

argument large enough to be well approximated by

aNs

aNs) _1.2533  °¥P 7T
- /28 VN
73

K
o]

which is the first term in the asymptotic expansion of Ko(x) for

large x. Let

N-1 fo's) :
_ ans _ ans
J = Z Kol-sz——) and L—-Z KO 2) .
' 5 N
- _ ans
2

Now
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ans [0 0] |
exp - T) - _l_ f exp (-nx) dx
NG P T yE

=

from a table of Laplace transforms (cf., Ref. 21).

ans

0o
j’ exp (-nx) dx
as V X

-

00
. L f exp (-Nx) dx
-X
T as \/ x [l - e ]
Z
interchanging the order of integration and summation, using
o)
Z e ™ = exp (-Nx) / [1 - e-x]
N

The last integral is evaluated by the methods of asymptotic
expansions for large N to yield (approximately for large N):

- aNs) ex
exp ( > P

. -5
VE [ioew [5]

=2 2N [1 - exp {- i_,_i]]
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APPENDIX 9

Consider the stepwise discontinuous channel shown in Fig. 16.

Let the potential for X ] < X <Xn be ¢'n and that for

x S x S. X1 be ¢n+1 . Further let

-k k
¢ = [Ane * 4 Bnex} cos (ky)

n
and
_ ~kx ~kx
¢n+l = [An+le + Bn-}-le ] cos (ky) .
The boundary conditions at x = x are hnq)n,x = ¢n+l,x . hn+l
and ¢n, y = ¢n+l, - It is easily observed the second condition
implics the continuity of 4>n itself (i.e., <‘;>n = €l>n+1)o These two
conditions yield for A and B in terms of A and B_:
_ n+l n+1l n n
h h
1 n 1 2kt n
A = 5 |1 + A+ 5 B e n 1 -
n+1 2 hn—i—l n 2 "n hn+1
and .
h_ ! B h
1 n -2kx o n
B = - 1 - A e D 4 e (1 +
n+l 2 hn—i—lJ n 2 hn+1

Now use the continuity of ¢ at the jumps to write:
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-

~kx h
n n .
<P(xn+1’ y) = cos (ky) Ane [cosh (ke } = B;;—; sinh (ke )}
kxn r hn
+ B e cosh (ke ) + sinh (ke )} -h———.l
n L n+1
-kxn kxn
‘P(Xn' y) = [Ane + B e ] cos (ky)
=kx kx
. n ke n ~ke
q)(xn-l,y) = {Ane e + Bne e J cos (ky)
We calculate ¢ ’ x(xn, y) = [43 [xn+l, Y] - ¢ [xn-l, Yﬂ + 2¢
taking the limit as ¢ — 0. Similarly ¢xx(xn 'Y) is found as the limit
as € — 0 of
o, )+ dlx_ | ) - 20x )| o+ el
ntl, y n-1,y n,y

The results are:

¢

y XX

e 2,

2
Since -k“¢ is equivalent to ¢ 7y considering the form of the solution
3

assumed:
]

Ad¢ + (Ph—) ¢x= 0.
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TABLE I
INCIDENCE, DEVIATION AND FLOW TURNING ANGLES

Explanation of the notation used in Table I:

e is the contraction parameter., In the contracting portion, the
channel height is given by h(x) = hoexp (~ax), where x is the
distance from mid-chord point along the axis of convergence.

6 1is the angle the freestream flow velocity vector makesy with
the blade chord at mid-chord point.

A is the stagger angle of the cascade,

s and ¢ are respectively the spacing between adjacent blades
and the length of the blade chord. Thus c/s is the solidity of the
cascade., |

E is the extent of the contraction indicated, e.g., in Fig. 19,

E + 2 cos ()\) indicates the fraction of the airfoils covered by
the chord because (a) the chord is taken 2 units long and (b) the axis
of convergence and cascade axis are taken coincident. |

Incidence, deviation and flow turning angles are used in the sense
of usual cascade terminology. Incidence angle is the angle between
the inlet velocity vector and the tangent to the blade camber line at
the leading edge. Deviation angle is the angle between the outlet flow

velocity vector and tangent to the blade camber line at Lthe trailing
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edge. Flow turning angle is the angle between inlet and outlet flow

velocity vectors.
For the circular arc airfoilé:
1. Cb is the theoretical lift coefficient at zero angle of attack
for an isolated airfoil,
2. @ is the camber of the airfoil, i.e., the angle between the
tangents to the camber line at the leading and trailing edges. Cb

and g are not independent and if @ is expressed in radians, for

small 9, Cb is approximately,

T 2
Cb = (1l -0.05¢")
- 3. t/c 1is the thickness ratio of the airfoil.

All cases: a = 0.100; § = 15.00 Degrees.
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(a) Cascade of Flat Plates: \ = 45°, Variation with E +2 cos \

5 - 1.00.
C

All angles are in degrees.

E + 2 cos (\) Incidence Deviation Flow Turning
1.061 23.127 2,027 21.100
1.414 23,027 2.315 20,712
1.771 : 22.930 2.587 20,343
2,122 22. 840 2.839 20.001
2.475 22,751 3.08 - 19,671
Two Dim. 22,301 2,028 20.273

Case
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