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Abstract

This thesis studies two properties— monotonicity and connectedness— in the context
of machine learning. The first part of the thesis examines the role of moﬁotonicity
constraints in machine learning from both practical and theoretical perspectives. Two
techniques for enforcing monotonicity in machine learning models are proposed. The
first method adds to the objective function a penalty term measuring the degree
to which the model violates monotonicity. The penalty term can be interpreted
as a Bayesian prior favoring functions which obey monotonicity. This method has
the potential to enforce monotonicity only approximately, making it appropriate for
situations where strict monotonicity may not hold. The second approach consists of
a model which is monotonic by virtue of functional form. This model is shown to
have universal approximation capabilities with respect to the class M of monotonic
functions. A variety of theoretical results are also presented regarding M. The
generalization behavior of this class is shown to depend heavily on the probability
distribution over the input space. Although the VC dimension of M is oo, the VC
entropy (i.e., the expected number of dichotomies) is modest for many distributions,
allowing us to obtain bounds on the generalization error. Monte Carlo techniques for
estimating the capacity and VC entropy of M are presented.

The second part of the thesis considers broader issues in learning theory. General-
ization error bounds based on the VC dimension describe a function class by counting
the number of dichotomies it induces. In this thesis, a more detailed characterization
is presented which takes into account the diversity of a set of dichotomies in addi-
tion to its cardinality. Many function classes in common usage are shown to possess
a property called connectedness. Models with this property induce dichotomy sets
which are highly clustered and have little diversity. We derive an improvement to the

VC bound which applies to function classes with the connectedness property.
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Chapter 1 Introduction

This thesis investigates certain issues in machine learning, so it will be prudent to
begin with a brief sketch of what machine learning entails. We wish to design a system
which makes accurate predictions about an unknown quantity y when supplied with a
vector of information x (referred to throughout this work as an input vector or feature
vector). For instance, x could be a numerical profile (salary, age, etc.) of a credit
applicant and y could be a binary variable indicating whether or not the applicant
will default if extended credit. x and y are generated from some unknown joint
distribution P(x,y) over a product space X x Y. There exists some unknown target
function t(x) which does the best possible job of predicting y given x. The optimality
criterion can be defined many ways depending upon the application. Unless otherwise
noted, we will assume the most common definitions of optimality. For applications
where Y = {0, 1}, we take ¢(x) to be the function which minimizes the probability of

error

{(x) = min Pr{y # £(x)}

while for continuous output problems we define ¢(x) to minimize expected squared

€Irror

t(x) = min €l(y - £(x))?).

We are supplied with a training set of n examples (x™),y,) ... (x™) yx) drawn inde-
pendently from P(x,y). The y.s may be viewed as instances of ¢, possibly corrupted
by noise. In the credit screening task, the examples would correspond to historical
records of past applicants consisting of profiles and labels indicating whether or not
the loan was repaid. We would like to use the examples to help us identify a good
approximation to ¢(x).

Some readers familiar with machine learning might object to this last sentence

as an overly modest characterization of the field. They would argue that examples
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do not merely aid our search for ¢. Indeed, the goal of machine learning is often
portrayed as the inference of a suitable function ¢ solely on the basis of examples, i.e.,
without any knowledge or assumptions about the problem. Recent developments in
learning theory, however, have crystallized a certain fundamental fact: “assumption-
free” learning is an ill-posed problem and a hopeless situation. With a little thought,
this is actually not hard to see. A set of examples contains information only about
the value of ¢ at certain points in the input space X. Even in the best case, when
no noise is present, all the examples tell us is the exact value of ¢ at certain points.
If there are no constraints on ¢, then knowing the value of ¢ at certain points in the
input space implies nothing at all about the value of ¢ at other points in the space.
Wolpert has formalized this observation in what is known as the “No Free Lunch”
theorem [Wolpert, 1996]. Wolpert’s theorem applies to discrete output spaces Y
where performance is evaluated in terms of the probability of being correct. Suppose
we are working in a learning environment where the target function ¢ to be learned is
generated from a distribution over all possible targets. Suppose we evaluate a learning
method in terms of its expected out-of-sample performance, where the expectation is
taken with respect to the distribution over targets. Roughly speaking, the No Free
Lunch theorem states that if the target distribution is uniform, then the expected
performance of all methods is equal. ‘This result is quite intuitive given the observation
that knowing only training data and nothing else about ¢, any value of ¢ on an out-
of-sample input vector is just as likely as any other. The No Free Lunch theorem
essentially tells us that no learning algorithm is universally or inherently good. We can
distinguish between the merits of different methods only if we have some information
about the nature of the target functions which arise in a particular context.

A machine learning practitioner therefore has no choice but to make some as-
sumptions about the problem and hope that they are at least roughly true. The most
common way that assumptions are made is by restricting our search to a particular
class of functions F' (F' will also be referred to at times as the model). The choice of
F should be governed by beliefs we have about the desired function ¢. If we know

that ¢(x) possesses certain properties, F' should be chosen to contain functions with
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these characteristics. In many cases, we may not have much firm knowledge of ¢ but
may still have general biases about the properties that tend to arise in applications,
e.g., smoothness, mild nonlinearity, etc. In such situations, we may cross our fingers
and choose F' to have the properties we suspect of ¢.

The design of F' must balance two competing concerns. The larger and more
flexible F' is, the more likely it is that it contains a good approximation to . On
the other hand, the higher the number of degrees of freedom we give F’, the more
poorly its parameters will be estimated, assuming our budget of data is fixed in size.
This dilemma is known as the bias-variance tradeoff [Geman et al., 1992]. Let f be a
hypothesis function chosen (usually by minimizing error on the training set) from F.
We can consider f to be a random variable with respect to the process of randomly
drawing a set of N examples from P(x,y). Let f denote the expectation of f with

respect to this process. The expected out-of-sample error of f is given by
Ep(N) = £[(f(x) — y)’]

The expectation is taken with respect to a random training set of size N and a random

test point x,y. It is not hard to show that Er can be decomposed into three terms:

Ely — 1(0))"] + El(1(x) = F(x))*] + EI(f (%) — f(x))’]

El(y — t(x))?] measures the intrinsic noise in the problem and remains constant
no matter what function class is chosen. The two factors we can influence by our
choice of F' are the bias E[(t(x) — f(x))?] and the variance E[(f(x) — f(x))?]. The
bias can be thought of as a measure of how close the closest functions in F' come
to approximating ¢. The variance measures the variability of f resulting from the
finiteness of the random training set. Typically, adding more free parameters to
F will decrease bias but increase variance, while adding restrictions to F' will do
the opposite. Increasing the training set size usually leaves the bias unaffected but

decreases the variance.
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The bias-variance formula shows that proper choice of F' is not simply a matter
of making sure that F' is broad and flexible enough that it is sure to contain an exact
implementation of {. A more restricted class, capable of only approximating ¢, may
nonetheless have lower expected squared error— the increase in bias may be more than
offset by the decrease in variance. This is particularly likely in situations where the
training set is small. In order to make sure that the bias is not too large, however,
it is crucial to take advantage of all available information about ¢. Such information
allows us to choose a class F' which is restricted in flexibility yet has a good chance
of approximating ¢ decently.

The No-Free-Lunch theorem and the bias-variance formula provide two powerful
theoretical motivations to capitalize on prior information. The incorporation of prior
knowledge into the learning process is the motivation behind the first two chapters
of the thesis. Each of these chapters presents a technique for enforcing monotonicity
constraints in learning models. Such techniques allow us to design models appropriate
for situations where we suspect that target function is monotonically increasing in
some or all input variables. We formalize the notion of monotonicity as follows.

Consider a pair of input vectors (x,x’) € X such that

Vi #i,2; = z; (1)

JB: >Z; (2)

The statement that f is monotonically increasing in input variable z; means that for

all such x,x’ defined as above

&) 2 f(x) 3)

Decreasing monotonicity is defined similarly.
There are a variety of applications where there is good reason to think that the

target function is monotonic in some or all of the input variables. Monotonicity con-
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straints often suggest themselves in the context of business and finance. For instance,
when screening credit card applicants, one might expect creditworthiness to be mono-
tonically increasing in salary but monotonically decreasing in debt. Medical diagnosis
is another area in which monotonicity arises. In many situations, the probability of
the presence of a disease would be expected to rise monotonically with a particular
symptom measurement.

Chapter 2 suggests adding a penalty function measuring “monotonicity error” to
the traditional training error measure to form an objective function which strikes a
balance between fitting the training data and obeying the monotonicity constraint.
The emphasis on the penalty term can be varied in terms of how strong our bias
towards monotonicity is. This allows us to enforce monotonicity either quite strictly
or only approximately. The method is compatible with a variety of models. Chapter
3 presents a class of models which are exactly monotonic, i.e., monotonic by virtue
of functional form. This class is shown to be capable of uniformly approximating
any continuous, differentiable monotonic function to an arbitrary degree of accuracy.
Real datasets from economic and medical domains are used to test these methods
and to compare their performances with each other and with competing techniques.

Chapters 4 and 5 are more theoretical in nature, focusing on the issue of gener-
alization. The question of generalization is the following: When can we be confident
that our model has truly learned and not simply memorized the examples it has been
given? Most learning algorithms attempt to find a candidate function f € F' which
has low error on the training set. How many examples do we need in order to be con-
fident that f will continue to perform well on new input vectors not appearing in the
training set? Clearly, the answer depends in some way on the flexibility or the degrees
of freedom of F'. Suppose we wish to learn a real-valued function of one variable and
we are given N data points (z(),y1)......(z™), yy). We can fit the data perfectly
using an (N — 1)-dimensional polynomial, yet it would be foolish to expect that the
resulting polynomial would be useful in predicting the output y at other points along
the real line. This is so precisely because we are guaranteed to be able to fit the

data perfectly, no matter how it was generated. Even if z and y were generated from
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independent distributions , i.e., if z contained no information about y, we would still
obtain a perfect fit. Therefore, we know that good in-sample performance cannot be
a guarantee in and of itself of good out-of-sample performance. On the other hand,
if N is large and we find that a linear model fits the in-sample data quite accurately,
then we have good reason to believe that the model does a good job of interpolating
between the data points. It is unlikely that a linear model will be able to fit a large
number of examples unless the process underlying the generation of the examples is
actually roughly linear. Hence, the fact that a good fit is obtained is evidence that a
linear model captures the relationship between z and y.

Another way to understand the issue of generalization is to contrast learning
with simple parameter estimation. Suppose we are working on a binary classification
problem and we pick f in such a way that is not influenced at all by the training set.
Then basic probability theory tells us that the frequency v of errors on the training
set converges to the true probability of error 7s. For instance, Hoeffding’s inequality

[Hoeffding, 1956] states that
Pr{lvy —m¢| > €} < 2¢~2°N

This result cannot be applied, however, in the situation where f has been chosen
from F on the basis of having low error on the training set. Here, the training set
error is a biased estimate of the true error. These two situations can be compared
to coin flipping experiments. If we flip a single coin 10 times and achieve 10 heads,
then we can say with some confidence that the coin is unfair. Suppose, however, we
flip 1000 coins ten times each and find one coin which comes up heads every time.
Now we are considerably less confident about the biasedness of this coin than we were
about the first coin. Under the assumption that all the coins are fair, there is a good
chance (about 62%, actually) that at least one coin will come up heads 10 times just
by sheer chance. This sort of event is what we are worried in the context of machine
learning. If F' is very flexible and contains a wide variety of functions, then there may

be a decent chance that some function in F' will have a low training error merely by
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chance, while having a true error rate which is unacceptably high. How can we be
confident that this sort of event will not occur? We must have enough examples that
the error frequency for each function in F' converges to the function’s true error rate

uniformly over F. In other words, we require
Pr{sup |v; —mf| > €} < ¢
feF

where € and 4§ are small positive constants.

One might expect that the number of free parameters is the quantity relevant to
the determination of the number of examples required for uniform convergence. The
number of parameters turns out to be not quite the right measure of flexibility, how-
ever. The quantity of interest is the number of dichotomies induced by the function

class. A dichotomy is simply an N-dimensional binary vector
d = [dl d2 ...dN], d, € {0,1}

We say that a function class F' induces a dichotomy d on a sample of input vectors
{xM), x® [ xM}if
AfeF:VifxW)=4q

The number of dichotomies Ar(x®), x® ... xM™) induced by F' has proven to be a
very useful measure in the development of bounds on the number of examples required

for uniform convergence.
Let
Hp(N) = E[Ar(xD, x@ . xM)

where the expectation is taken over the product distribution resulting from drawing

N vectors independently from the input distribution P(x). Define

Gr(N) = X Ap(x®, x® | x(M)

= ma
{x(®, x(@) .., x(MN)}

We refer to Hp(N) as the VC entropy of F and Gr(N) as the growth function of



F 1
In their landmark 1971 paper, Vapnik and Chervonenkis [Vapnik and Chervonenkis, 1971

derive uniform convergence bounds in terms of these two quantities.

EN EN

Pr{sup vy — ms| > €} <4Hp(2N)e 3 < 4Gp(2N)e™ s
feF

The bounds have since been tightened by Parrondo and Van den Broeck
[Parrondo and Van den Broeck, 1993]:

Pr{sup [vy = m| > €} < 6Hp(2N)e™~ 3N < 6Gp(2N)e™F1N
feF

Motivated by these results, theorists in machine learning devote a substantial
amount of effort to the development of bounds on the number of dichotomies imple-
mented by various function classes. Most of the energy is directed towards bounding
Gr(N), the growth function. This focus can be explained by a couple of factors. A
bound on Gr(N) is useful because it can be employed in bounds which hold over all
possible input distributions. In addition to its universal applicability, another appeal-
ing property of Gg(N) is the fact that it can be summarized in a single parameter,
called the VC dimension of F. The VC dimension v is defined as the largest value of
N for which Gg(N) = 2V. It turns out that the growth function can be bounded by

eNyv This polynomial growth guarantees that for any finite v and any nonzero e,
v g ) y

"Hm Pr{sup|lvs —m¢| > €}t =0
i, Prisup vy —mfl >}

The attraction of these two characteristics of the growth function has resulted in
a nearly total emphasis on distribution-independent results. One of the contributions
of this thesis, however, is the presentation of a situation of practical importance where

it is critical to take the input distribution into account. We accomplish this by con-

1Here we use the traditional definiton of the growth function, the one employed in
[Vapnik, 1982] and other well known texts such as [Hertz et al., 1991]. In Vapnik’s more re-
cent work [Vapnik, 1995], he has defined the growth function as In(max Ap(x®, x( ... x(M)).
In(E[Ar(xD, x3@ .. xM))]) is referred to in this work as the annealed VC entropy. We find it
more convenient to work without the logarithm, and we omit the term annealed for brevity.



9

tinuing our investigation of the monotonicity constraint, this time from a theoretical
perspective. Chapter 4 presents an analysis of the class M of functions which are
monotonically increasing in all input variables. The decision boundaries of mono-
tonic classifiers are characterized and contrasted with those of linear classifiers. M is
then analyzed in the context of VC theory. We show that distribution-independent
analysis fails in this case. It is shown that the VC dimension of M is oo, despite
the fact that M is powerfully constrained. For most reasonable input distributions,
however, the VC entropy of M is modest. Monte Carlo techniques are presented for
estimating Hy (V) given a model of the input distribution.

Chapter 5 departs from the monotonicity theme and considers broader issues in
learning theory. The chapter shows that both G'#(N) and Hp(N) are inadequate
characterizations of the expressive power of a function class. The VC inequalities
simply count the number of dichotomies a function class induces. A richer description
of the flexibility of a function class is possible by considering the diversity of a set
of dichotomies in addition to its cardinality. It is shown that many of the learning
models employed in practice induce dichotomy sets which are clustered together and
have little diversity. By taking this additional characteristic into account, we derive
an improvement to the existing VC inequalities which applies to many models used

by machine learning practitioners.
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Chapter 2 Monotonicity Hints

2.1 Introduction

Researchers in pattern recognition, statistics, and machine learning often draw a
contrast between linear models and flexible nonlinear methods. Linear models make
very strong assumptions about the function to be modelled. In contrast, many ap-
proaches (e.g., k-nearest neighbors, kernel estimators, neural networks) try to make as
few assumptions as possible and are attempts to capture arbitrary nonlinear relation-
ships. Between these two extremes, there exists a frequently neglected middle ground
of nonlinear models which incorporate strong prior information and obey powerful
constraints.

A monotonic model is one example which might occupy this middle area. We
argued in the introduction that many machine learning applications arise in which
there is good reason to believe the target function is monotonic in some or all input
variables. It would be very useful, therefore, to be able to constrain a nonlinear model
to obey monotonicity.

The rare previous efforts at developing monotonic models have met with limited
success. Archer and Wang [Archer and Wang, 1993] present an algorithm for en-
forcing monotonicity in two-layer neural networks by an adjustment to the on-line
backpropagation algorithm. After each weight update, it is verified that the model
is still monotonic. If monotonicity has been violated, then the learning rate for that
pattern is decreased until the update no longer causes a violation. This technique
restricts the user to one particular model (two-layer neural networks) and one partic-
ular optimization technique (on-line backpropagation), each of which may or may not
be appropriate for a particular problem. In addition, because the constraint enforce-
ment is coupled together with the optimization, it is unclear whether their method

will necessarily find the best possible monotonic fit given the network. Mukarjee and
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Stern [Mukarjee and Stern, 1994] present a technique which transforms a standard
kernel estimator into a monotonic estimator. Unfortunately, their method is only
applicable to cases where monotonicity must be enforced in all the variables. It also
suffers from the usual drawbacks of kernel estimators, such as high costs in memory
and execution time. Indeed, their method is particularly costly to execute and scales
very poorly with the number of inputs because it requires a grid search over the input
space.

In contrast, we present the idea of adding a penalty term quantifying a model’s vi-
olation of monotonicity to the traditional objective function measuring training error.
This method provides several advantages over previously developed alternatives. Our
method is compatible with any parametrized model and any optimization technique.
Monotonicity can be enforced in some inputs while leaving the others unconstrained.
In addition to these merits, the characteristic which most distinguishes this method
is the ability to adjust the extent to which monotonicity is enforced according to the
user’s beliefs about the target function. In some applications, the target function may
be thought to be only roughly monotonic. The penalty term approach allows this be-
lief to be reflected in practice more accurately than it would be were monotonicity
enforced precisely.

The general framework for incorporating prior information into learning via penalty
terms is well established and is known as learning from hints [Abu-Mostafa, 1990]. A
hint is any piece of information about the target function beyond the available input-
output examples. Hints can improve the performance of learning models by reducing
capacity without sacrificing approximation ability [Abu-Mostafa, 1993]. Invariances
in character recognition [Simard et al., 1993] and symmetries in financial-market fore-
casting [Abu-Mostafa, 1995] are some of the hints which have proven beneficial in real-
world learning applications. This chapter describes the first practical applications of
monotonicity hints. The method is tested on three noisy real-world problems: a clas-
sification task concerned with credit card applications and two regression problems,
one in medical diagnosis and the other in bond rating prediction.

Section 2.2 derives, from Bayesian principles, an appropriate objective function for
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simultaneously enforcing monotonicity and fitting the data. Section 2.3 describes the
details and results of the experiments. Section 2.4 analyzes the results and discusses

possible future work.

2.2 Bayesian Interpretation of Objective Function

We wish to define a single scalar measure of the degree to which a particular candidate
function f obeys monotonicity in a set of input variables.

One such natural measure, the one used in the experiments in Section 2.3, is
defined in the following way: Let x be an input vector drawn from the input dis-
tribution. Let ¢ be the index of an input variable randomly chosen from a uniform
distribution over those variables for which monotonicity holds. Define a perturbation

distribution, e.g., U[0,1], and draw dz; from this distribution. Define x’ such that

Vi #i,al = (4)

z. = z; + sgn(i)dz; (5)
where sgn(i) = 1 or —1 depending on whether the target function is thought to be
monotonically increasing or decreasing in variable i. We will call E;, the monotonicity
error of f on the input pair (x,x’).

E, =

{0 f(x') = f(x) ®)

(f(x) - f(x)? f(x) < f(x)
Our measure of f’s violation of monotonicity is £[E}], where the expectation is taken
with respect to random variables x, ¢ and dz;.
We believe that the best possible approximation to the target function given the
architecture used is probably approximately monotonic. This belief may be quantified

in a prior distribution over the candidate functions implementable by the architecture:
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Pr(f) oc ¢ X7t5] (7)

This distribution represents the a priori probability density, or likelihood, assigned
to a candidate function with a given level of monotonicity error. The probability
that a function is the best possible approximation to the target function decreases
exponentially with the increase in monotonicity error. X is a positive constant which
indicates how strong our bias is towards monotonic functions.

In addition to obeying prior information, the model should fit the data well. For
classification problems, we take the network output f to represent the probability
of class ¢ = 1 conditioned on the observation of the input vector (the two possible
classes are denoted by 0 and 1). We wish to pick the most probable model given the
data. Equivalently, we may choose to maximize log(P(model|data)). Using Bayes’

Theorem,

log(P(model|data)) x log(P(data|model) + log( P(model)) (8)
N
= 3" culog(F(x) 4 (1 — ex)log(1 — (<) ~ AE[E2) )

For continuous-output regression problems, we interpret f as the conditional mean
of the observed output ¢ given the observation of x. If we assume constant-variance
gaussian noise, then by the same reasoning as in the classification case, the objective

function to be maximized is :

_ Z_:l(f(X(n)) — 1) — AE[Ey] - (10)

The Bayesian prior leads to a familiar form of objective function, with the first term
reflecting the desire to fit the data and a second term penalizing deviation from

monotonicity.
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2.3 Experimental Results

2.3.1 Background

Two of the three datasets used for experimentation are publicly available. The
credit card and medical diagnosis databases were obtained via FTP from the machine
learning database repository maintained by UC-Irvine *

The credit card task is to predict whether or not an applicant will default. For
each of 690 applicant case histories, the database contains 15 features describing the
applicant plus the class label indicating whether or not a default ultimately occurred.
The meaning of the features is confidential for proprietary reasons. Only the 6 con-
tinuous features were used in the experiments reported here. 24 of the case histories
had at least one feature missing. These examples were omitted, leaving 666 which
were used in the experiments. The two classes occur with almost equal frequency;
the split is 55%-45%.

Intuition suggests that the classification should be monotonic in the features.
Although the specific meanings of the continuous features are not known, we assume
here that they represent various quantities such as salary, assets, debt, number of
years at current job, etc. Common sense dictates that the higher the salary or the
lower the debt, the less likely a default is, all else being equal. Monotonicity in all
features was therefore asserted.

The second application the method was tested on was the prediction of corporate
bond ratings. Rating agencies such as Standard & Poors (S & P) issue bond ratings
intended to assess the level of risk of default associated with the bond. S & P ratings
can range from AAA down to B- or lower.

A model which accurately predicts the S & P rating of a bond given publicly avail-
able financial information about the issuer has considerable value. Rating agencies

do not rate all bonds, so an investor could use the model to assess the risk associated

1They may be obtained as follows: ftp ics.uci.edu. cd pub/machine-learning-databases. The
credit data is in the subdirectory /credit-screening, while the liver data is in the subdirectory /liver-
disorders.
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with a bond which S & P has not rated. The model can also be used to anticipate
rating changes before they are announced by the agency.

The dataset, which was donated by a Wall Street firm, is made up of 196 exam-
ples. Each training example consists of 10 financial ratios reflecting the fundamental
characteristics of the issuing firm, along with an associated rating. The meaning of
the financial ratios was not disclosed by the firm for proprietary reasons. The rating
labels were converted into integers ranging from 1 to 16. The task was treated as a
single-output regression problem rather than a 16-class classification problem.

Monotonicity constraints suggest themselves naturally in this context. Although
the meanings of the features are not revealed, it is reasonable to assume that they
consist of quantities such as profitability, debt, etc. It seems intuitive that, for in-
stance, the higher the profitability of the firm is , the stronger the firm is, and hence,
the higher the bond rating should be. Monotonicity was therefore enforced in all
input variables.

The motivation in the medical diagnosis problem is to determine the extent to
which various blood tests are sensitive to liver disorders related to excessive drinking.
Specifically, the task is to predict the number of drinks a particular patient consumes
per day given the results of 5 blood tests. 345 patient histories were collected, each
consisting of the 5 test results and the daily number of drinks.

The justification for monotonicity in this case is based on the idea that an ab-
normal result for each test is indicative of excessive drinking, where abnormal means
cither abnormally high or abnormally low.

Some readers may be skeptical that monotonicity is strictly satisfied by the target
function in these applications. It is important to note that a monotonic model may
be a good option even if the target function is not purely monotonic. In such cases,
the increase in bias introduced by the monotonicity constraint may be outweighed by
the decrease in variance. This is particularly true if the training set is limited in size

and noisy.
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2.3.2 Experimental Details

In all experiments, batch-mode backpropagation with a simple adaptive learning rate
scheme was used 2. Several methods were tested. The performance of a linear per-
ceptron was observed for benchmark purposes. For the experiments using nonlinear
methods, a single hidden layer neural network with direct input-output connections
was used. Two methods of training the nonlinear methods were employed. One
approach used simply minimized the training error as much as possible. A more
sophisticated method known as early stopping (described below) was also applied.
Training for all of the above models was performed by maximizing only the first term
in the objective function, i.e., by maximizing the log-likelihood of the data (minimiz-
ing training error). Finally, training the networks with the monotonicity constraints
was performed, using an approximation to (9) and (10).

A leave-k-out procedure was used in order to get statistically significant compar-
isons of the difference in performance. For each method, the data was randomly
partitioned 200 different ways (The split was 550 training, 116 test for the credit
data; 150 training, 46 test for the bond rating problem, and 270 training and 75 test
for the liver data). The results shown in the tables are averages over the different
partitions.

In the early stopping experiments, the training set was further subdivided into
a set (450 for the credit data, 110 for the bond data, 200 for the liver data) used
for direct training and a second validation set (100 for the credit data, 40 for the
bond data, 70 for the liver data). The classification error on the validation set was
monitored over the entire course of training, and the values of the network weights
at the point of lowest validation error were chosen as the final values.

The process of training the networks with the monotonicity hints was divided into
two stages. Since the meanings of the features were unaccessible, the directions of
monotonicity were not known a priori. These directions were determined by training

a linear perceptron on the training data for 300 iterations and observing the result-

2If the previous iteration resulted in a increase in likelihood, the learning rate was increased by
3%. If the likelihood decreased, the learning rate was cut in half
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ing weights. A positive weight was taken to imply increasing monotonicity, while a
negative weight meant decreasing monotonicity.
Once the directions of monotonicity were determined, the networks were trained
with the monotonicity hints. For the credit problem, an approximation to the theo-

retical objective function (10) was maximized:

Z enlog(f(ztn)) 4+ (1 — en)log(1 — f(ztn)) — —Z B (13)

For the regression problems, objective function (12) was approximated by

=Y (f(aln)) —t.)* = 7 Z Epn (14)

E4; represents the network’s monotonicity error on a particular pair of input vectors
x,x'. Each pair was generated according to the method described in Section 2.2.
The input distribution was modelled as a joint gaussian with a covariance matrix

estimated from the training data.
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Figure 2.1: The violation of monotonicity tracks the overfitting occurring during
training

For each input variable, 500 pairs of vectors representing monotonicity in that

variable were generated. A was chosen to be 5000. This level of A amounted to a
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strong bias towards monotonicity, although the model did have the option to violate
monotonicity slightly, as we shall see in the next section.

Since the monotonicity constraint is being taught to the network with examples,
the same generalization issues which arise when learning a function apply when learn-
ing the constraint. Specifically, there is a risk that the model is flexible enough to fit
the monotonicity examples while actually violating monotonicity at other points in
the input space. To gauge whether generalization has occurred with respect to the
monotonicity property, we need an unbiased, out-of-sample estimate of E[E}). There-
fore, 100 test pairs per input variable were generated but excluded from the objective
function. Ej was monitored on these pairs throughout the course of training, yielding
an unbiased measure of the model’s adherence to monotonicity.

For contrast, monotonicity test error was also monitored for the two-layer net-
works trained only on the training data (i.e., no hint). Figure 2.1 shows test error
and monotonicity error vs. training time for the credit data for a 6 hidden unit net-
work trained only on the training data (i.e, no hints), averaged over the 200 different
data splits. The monotonicity error is multiplied by a factor of 10 in the figure to
make it more easily visible. Interestingly, the figure indicates a substantial correlation
between overfitting and monotonicity error during the course of training. One plau-
sible interpretation of the figure is that the network’s deviations from monotonicity

correspond to fitting noise rather than signal.

2.3.3 Results

For all three applications , the nonlinear models which minimized training error as
much as possible performed much worse than any of the other methods. Without any
variance-reducing measures such as early stopping or monotonicity constraints, the
high variance of the nonlinear networks easily outweighs the low bias. The poor per-
formance was so pronounced that it was not deemed worthwhile to perform additional
experiments which varied the number of hidden units.

The results for the credit card and liver problems have very similar profiles. Even
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Problem [ model | training error test error
Credit | 6 h.u. | 15.2% £ 0.1% | 24.6% £ 0.3%
Liver | 3 h.u. | 0.640 £.003 | 0.920 £ .014
Bond | 4 h.u. 1.22 4+ .01 4.86 £ .16

Table 2.1: Performance of nonlinear networks without early stopping

Model | training error test error hint test error
Linear | 22.7% +0.1% | 23.7% £+ 0.2% -

4 h.u. | 20.0% £+ 0.3% | 23.9% + 0.4% .000329

6 h.u. | 19.8% +0.2% | 23.8% + 0.4% .000693

8 hau. | 19.2% £ 0.1% | 23.5% +0.4% .000740

Table 2.2: Performance of standard methods on credit problem

Model | training error test error hint test error
4 h.u. |20.9% £0.1% | 22.0% £ 0.3% .000001
6 hou. | 18.4% £0.1% | 21.7% £ 0.3% .000015
8 h.u. | 18.0% £ 0.1% | 21.6% =+ 0.3% .000044

Table 2.3: Performance of hint method on credit problem

Model | training error | test error | hint test error
Linear | 0.792 4+ .006 | 0.897 +.014 -

2hu. | 0.759 £.008 | 0.896 £ .013 .000922
3hou | 0.744 £ .009 | 0.890 £.013 .001062
4hu. | 0.760 £ .009 | 0.897 £.014 .000832
5hau. | 0.758 £.009 | 0.895 +.014 .000843

6 h.ou. | 0.734 £.008 | 0.897 £ .014 .000939

Table 2.4: Performance of standard methods on liver problem
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Model | training error | test error | hint test error
2 hou. | 0.771 £.004 | 0.868 £ .014 .000001
3 hou. | 0.751 £.004 | 0.858 £.013 .000000
4 hau. | 0.734 +£.003 | 0.863 £ .014 .000001
5hau. | 0.729 +£.004 | 0.864 + .014 .000001
6 hu. | 0.721 £.003 | 0.863 + .013 .000002

Table 2.5: Performance of hint methods on liver problem

Method | training error | test error | hint test error
2 ha. 2.46 £+ .042 | 3.83 4+ .094 007454
4 h.u. 2.194+.048 | 3.81 £.083 .007056
6 h.u. 214 £ .054 | 3.77 £.072 .006836

Table 2.6: Performance of standard methods on bond problem

with early stopping, the performances of the two-layer networks are no better than
those of the linear models. This similarity in performance is consistent with the
thesis of a monotonic target function. A monotonic classifier may be thought of
as a mildly nonlinear generalization of a linear classifier. The two-layer network
does have the advantage of lower bias, i.e., the capacity to implement some of the
nonlinearity present in the target function. However, this advantage is cancelled out
(and in other cases could be outweighed) by higher variance, i.e., overfitting resulting
from excessive and unnecessary degrees of freedom. When monotonicity hints are
introduced, much of this unnecessary freedom is eliminated, although the network is
still allowed to implement monotonic nonlinearities. Accordingly, a modest but clearly
statistically significant improvement on the credit problem (nearly 2%) results from
the introduction of monotonicity hints. Such an improvement could translate into a
substantial increase in profit for a bank. Monotonicity hints also significantly improve
test error on the liver problem; about 3% more of the target variance is explained.
These results are quite consistent over a range of hidden units. The hint test error

results support our claim that the improvement is due to the constraint. This measure

of monotonicity error is quite low for the models trained with the hint, while it is
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Method | training error | test error | hint test error
2 h.u. 2.87+.027 | 4.09 £ .150 .000040
4 h.u. 2.62+.028 |3.78 +.072 .000062
6 h.u. 2.31£.022 |3.74 £.093 .000080

Table 2.7: Performance of hint methods on bond problem

orders of magnitude higher without the hint. Thus, the models trained with the hint
come much closer to being purely monotonic.

It is also important, however, to note that in most cases training with the hint
did not result in perfectly monotonic models. This may be a reflection of the target
functions’ lack of strict adherence to monotonicity. Interestingly, even if the target is
perfectly monotonic, it may be beneficial to allow minor deviations by the model. If
the model cannot implement the target perfectly, then it is possible that the model’s
best possible approximation is slightly non-monotonic.

The results for the bond rating prediction problem are less clear cut. In this case,
early stopping is enough to enable the nonlinear models to outperform the linear
model. The best performance is obtained by a model constrained by monotonicity,
but there is not a statistically significant improvement over the models trained only
with early stopping. Perhaps monotonicity was not enforced sufficiently strictly- note
the non-negligible hint test errors. This theory is supported by the results of the
next chapter, where a model which is strictly monotonic is shown to outperform this

method on the bond rating problem.

2.4 Conclusion

This chapter has shown that monotonicity hints can significantly improve the
performance of a neural network on noisy real-world tasks. The method has virtues,
such as compatibility with any parametrized model and any optimization technique,
which distinguish it from other methods. Future work may include application of the

method to situations where it is clear that the target is only approximately monotonic.
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An intelligent choice of A would become crucial in such situations. An important line
of research, therefore, would determine how to set A to best reflect our prior beliefs
about the task to be learned. Another interesting question concerns the number
of hint examples pairs required for generalization with respect to the monotonicity
property to occur. How does this scale with measures of the flexibility of the model,

e.g., the VC dimension?
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Chapter 3 Monotonic Networks

3.1 Introduction

This chapter continues the investigation of techniques for enforcing monotonicity con-
straints in machine learning models. The previous chapter presented a way to enforce
monotonicity approximately by adding a second term measuring “monotonicity error”
to the usual error measure. This method’s approximate enforcement of monotonicity
was portrayed as a virtue. This property has a downside, however. If we are confi-
dent that the target is strictly monotonic, then we would like to be able to produce
a model which also obeys monotonicity precisely. Another problem with the penalty
term approach is the computational cost of training the model. A large number of
hint example pairs must be generated. It is unclear how the number of pairs scales
with the flexibility of the model. It may be that the cost in training time is prohibitive
for large models with many free parameters. These problems would be solved if we
had a model which obeys monotonicity exactly, i.e., by virtue of functional form.
We present here such a model, which we will refer to as a monotonic network.
A monotonic network implements a piecewise-linear surface by taking maximum and
minimum operations on groups of hyperplanes. Monotonicity constraints are enforced
by constraining the signs of the hyperplane weights. Monotonic networks can be
trained using the usual gradient-based optimization methods typically used with other
models such as feedforward neural networks. Armstrong [Armstrong et al., 1996] has
developed a model called the adaptive logic network which is capable of enforcing
monotonicity and appears to have some similarities to the approach presented here.
The adaptive logic network, however, is available only through a commercial software
package. The training algorithms are proprietary and have not been fully disclosed
in academic journals. The monotonic network therefore represents (to the best of

our knowledge) the first parametrized model to be presented in an academic setting
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which has the ability to enforce monotonicity.

Section 3.2 describes the architecture and training procedure for monotonic net-
works. Section 3.3 presents a proof that monotonic networks can uniformly approx-
imate any continuous monotonic function with bounded partial derivatives to an
arbitrary level of accuracy. Monotonic networks are applied to a real-world problem
in bond rating prediction in Section 3.4. In Section 3.5, we discuss the results and

consider future directions.

3.2 Architecture and Training Procedure

A monotonic network has a feedforward, three-layer (two hidden-layer) architecture
(Fig. 3.1). The first layer of units compute different linear combinations of the input
vector. If increasing monotonicity is desired for a particular input, then all the weights
connected to that input are constrained to be positive. Similarly, weights connected
to an input where decreasing monotonicity is required are constrained to be negative.
The first layer units are partitioned into several groups (the number of units in each
group is not necessarily the same). Corresponding to each group is a second layer
unit, which computes the maximum over all first-layer units within the group. The

final output unit computes the minimum over all groups.

Output

€— linear units

<— All weights
positive

Input Vector

Figure 3.1: This monotonic network obeys increasing monotonicity in all 3 inputs
because all weights in the first layer are constrained to be positive.

More formally, if we have K groups with outputs ¢i,¢s,...9x, and if group k
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consists of hj hyperplanes w1, w2 wlhe) then

gk(x) = m]axwtk,n x =t 1 <G <y

Let y be the final output of the network. Then

y = mingy(x)

or, for classification problems,

y = o(mingi(x))

In the discussions which follow, it will be useful to define the term active. We will
call a group [ active at x if

91(x) = min g (x)

, i.e., if the group determines the output of the network at that point. Similarly, we
will say that a hyperplane is active at x if its group is active at x and the hyperplane
is the maximum over all hyperplanes in the group.

As will be shown in the following section, the three-layer architecture allows a
monotonic network to approximate any continuous, differentiable monotonic function
arbitrarily well, given sufficiently many groups and sufficiently many hyperplanes
within each group. The maximum operation within each group allows the network
to approximate convex (positive second derivative) surfaces, while the minimum op-
eration over groups enables the network to implement the concave (negative second
derivative) areas of the target function (Fig. 3.2).

Monotonic networks can be trained using many of the standard gradient-based
optimization techniques commonly used in machine learning. The gradient for each
hyperplane is found by computing the error over all examples for which the hyperplane
is active. After the parameter update is made according to the rule of the optimization

technique, each training example is reassigned to the hyperplane that is now active at
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Figure 3.2: This surface is implemented by a monotonic network consisting of three
groups. The first and third groups consist of three hyperplanes, while the second
group has only two.

that point. The set of examples for which a hyperplane is active can therefore change
during the course of training.

The constraints on the signs of the weights are enforced using an exponential
transformation. If increasing monotonicity is desired in input variable ¢, then Vj, k
the weights corresponding to the input are represented as w; k) = 5" The op-
timization algorithm can modify zfj’k) freely during training while maintaining the

constraint. If decreasing monotonicity is required, then V7, k we take w;("F) = —e* @

3.3 Universal Approximation Capability

In this section, we demonstrate that monotonic networks have the capacity to approx-
imate uniformly to an arbitrary degree of accuracy any continuous, bounded, differ-
entiable function on the unit hypercube [0,1]P which is monotonic in all variables
and has bounded partial derivatives. We will say that x’' dominates x if V1 < d < D,
z!, > z4. A function m is monotonic in all variables if it satisfies the constraint that
Vx,x/, if X dominates x then m(x’) > m(x).

Theorem 3.3.1 Let m(x) be any continuous, bounded monotonic function with
bounded partial derivatives, mapping [0,1]° to R. Then there exists a function
Muet(X) which can be implemented by a monotonic network and is such that, for any

¢ and any x € [0,1]P ,|m(x) — mne(x)] < €.
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Proof:

Let & be the maximum value and @ be the minimum value which m takes on
[0,1]°. Let a bound the magnitude of all partial first derivatives of m on [0,1]".
Define an equispaced grid of points on [0,1]P, where § = % is the spacing between
grid points along each dimension. Le., the grid is the set S of points (i16, 26, ...¢pd)
where 1 < 7; < n,1 <143 < n,...1 <ip < n. Corresponding to each grid point
x' = (z!,),...2]), assign a group consisting of D + 1 hyperplanes. One hyperplane
in the group is the constant output plane y = m(x’). In addition, for each dimension
d, place a hyperplane y = y(zq4 — ;) + m(x’) , where v > "‘T“. This construction
ensures that the group associated with x’ cannot be active at any point x* where there
exists a d such that z} — 2!, > 4, since the group’s output at such a point must Be
greater than b and hence greater than the output of a group associated with another
grid point.

Now consider any point x € [0,1]”. Let s*) be the unique grid point in S such
that Vd, 0 < 24— 54 < 6, i.e., sM) is the closest grid point to x which x dominates.
Then we can show that m.(x) > m(s®). Consider an arbitrary grid point s’ # s(*).
By the monotonicity of m, if s’ dominates s*), then m(s’) > m(s"), and hence, the
group associated with s’ has a constant output hyperplane y = m(s’) > m(s®) and
therefore outputs a value > m(s()) at x. If s’ does not dominate s(*), then there
exists a d such that s4() > s/. Therefore, x4 — s, > §, meaning that the output of
the group associated with s’ is at least b > m(s(*)). All groups have output at least
as large as m(s(®), so we have indeed shown that m..(x) > m(s®)). Now consider
the grid point s(® that is obtained by adding & to each coordinate of s(*). The group
associated with s(®) outputs m(s(®) at x, s0 mpe(x) < m(s@). Therefore, we have
m(sM) < mpuer(x) < m(s®). Since x dominates s*) and is dominated by s, by
monotonicity we also have m(s()) < m(x) < m(s®). |m(x) — maee(x)| is therefore
bounded by |m(s®) — m(s)|. By Taylor’s theorem for multivariate functions, we

know that
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D
m(s(z)) _ m(s(l)) Y Z am(c)
d=1 8$d
for some point ¢ on the line segment between s(*) and s(). Given the assumptions
made at the outset, |m(s(®) — m(s())|, and hence, |[m(x) — M (x)| can be bounded

by déa. We take < ;= to complete the proof m.

3.4 Experimental Results

The monotonic network was tested on the same set of databases used to evaluate
the monotonicity hint technique in the previous chapter. The networks were trained
for 1000 batch-mode iterations of gradient descent with momentum and an adaptive
learning rate. The parameters of each hyperplane in the network were initialized to
be the parameters of the linear model obtained from the training set, plus a small
random perturbation. This procedure ensured that the network was able to find a
reasonably good fit to the data. Once again, since the meanings of the features were
not known, it was not known a priori whether increasing or decreasing monotonicity
should hold for each feature. The directions of monotonicity were determined by
observing the signs of the weights of the linear model obtained from the training
data. The results shown are averages over 200 training/test splits for the credit and

bond problem and 100 splits for the liver problem.

Model training error test error
2 groups, 2 planes per group | 21.3% +0.1% | 22.7% + 0.4%
3 groups, 3 planes per group | 20.5% + 0.1% | 22.8% + 0.4%
4 groups, 4 planes per group | 20.1% £ 0.1% | 23.0% %+ 0.4%
5 groups, 5 planes per group | 19.7% £0.1% | 22.9% + 0.4%

Table 3.1: Performance of monotonic networks on credit problem

The performance of the monotonic network appears to complement the monotonic-
ity hint technique nicely. On all three problems, the monotonic network outperforms

the standard methods which do not capitalize on the monotonicity information. The
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Model training error | test error
2 groups, 2 planes per group | 0.785 £.006 | 0.880 £ .020
3 groups, 3 planes per group | 0.780 £.006 | 0.877 £ .019
4 groups, 4 planes per group | 0.785 £ .005 | 0.872 % .019
5 groups, 5 planes per group | 0.786 £.005 | 0.867 + .019

Table 3.2: Performance of monotonic networks on liver problem

Model training error | test error
2 groups, 2 planes per group | 2.78 £.05 | 3.71 £.07
3 groups, 3 planes per group 2.644+.04 | 3.56 £ .06
4 groups, 4 planes per group | 2.50+.04 | 3.48 4-.06
5 groups, 5 planes per group | 2.44+£.03 | 3.43 £ .06

Table 3.3: Performance of monotonic networks on bond rating problem

monotonic network does somewhat worse on the credit and liver problems than the
monotonicity hint technique. Recall that on the bond rating problem, however, the
hint method was unable to achieve a statistically significant improvement over stan-
dard methods. In contrast, the monotonic network outperforms other methods by a
wide margin which is ﬁnquestionably statistically significant.

One can speculate about the reasons for the differences in performance of the
two methods of incorporating monotonicity, but it is difficult to say for sure what
the correct explanation is. Most likely, there is an element of happenstance behind
the differences. Clearly, the class of monotonic functions implementable by a neural
network with a small number of hidden units is not exactly the same as the class of
functions implementable by a monotonic network with a small number of groups and
planes per group. It may be that the neural net happens to be able to approximate
the target functions better in the credit and liver applications, while the monotonic
network is better suited for the bond rating problem. Perhaps this could have been
anticipated with further domain knowledge about the tasks, but it is unlikely. The
most important message, however, is that on each of the problems at least one of the

two techniques yielded clear benefits.



30
3.5 Conclusion

We presented a model, the monotonic network, in which monotonicity constraints can
be enforced exactly, without adding a second term to the usual objective function.
A straightforward method for implementing and training such models was demon-
strated, and the method was shown to outperform other methods on a real-world
problem.

Several areas of research regarding monotonic networks need to be addressed in
the future. One issue concerns the choice of the number of groups and number of
planes in each group. In general, the usual bias-variance tradeofl that holds for
other models will apply here, and the optimal number of groups and planes will be
quite difficult to determine a priori. There may be instances where additional prior
information regarding the convexity or concavity of the target function can guide
the decision, however. Another interesting observation is that a monotonic network
could also be implemented by reversing the maximum and minimum operations, i.e.,
by taking the maximum over groups where each group outputs the minimum over all
of its hyperplanes. It will be worthwhile to try to understand when one approach or

the other is most appropriate.
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Chapter 4 Theory of Monotonicity

Constraints

4.1 Introduction

Much of learning theory is concerned with measuring the flexibility and approxi-
mating power of various function classes. Concepts such as capacity [Cover, 1965],
VC dimension [Vapnik and Chervonenkis, 1971] and effective number of parameters
[Moody, 1992] have been developed with this goal in mind.

Most function classes analyzed in these frameworks are explicitly parametrized
functional forms such as sigmoidal neural networks of a given architecture. It is
also of interest, however, to consider classes of functions which satisfy properties the
target function may in some cases be believed to possess. Monotonicity is an example
of a constraint the target function is likely to satisfy in some instances. In many
application domains, common sense or expert knowledge indicates that the target
function is monotonic in some or all input variables. Chapters 2 and 3 demonstrated
that constraining models such as neural networks to obey monotonicity can lead to
an improvement in performance over both linear models and unconstrained nonlinear
models. It would therefore be significant both practically and theoretically to quantify
the expressive power of monotonic functions.

We will consider the class M of monotonically increasing (non-decreasing) func-
tions from R% — {0,1}. Let x = (z1,29,...24) and X' = (2'1,2%,...74) be
members of R%. We will say that x’ dominates x, which we denote by x' > x, if
Vi,1 < i < d,z! > ;. Domination defines a partial ordering on R?.

Definition 4.1 Define the class M as the set of all functions f such that

x' >x= f(x') > f(x)
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In many applications, domain knowledge may indicate decreasing monotonicity
(i.e., a monotonically decreasing relationship between input and output) in some
variables rather than increasing monotonicity. The analysis which follows will also
hold for each of the other 2¢ — 1 function classes where some or all variables have a
decreasing monotonicity constraint rather than an increasing one. This equivalence is
made clear by observing that decreasing monotonicity may be converted to increasing
monotonicity by relabelling an input variable as its negation. There are also many
situations where monotonicity only holds for some variables, while the relationship
of the other variables to the output is completely unknown a priori. This case is
more complex and will not be addressed here. Note that the class M is not explic-
itly parametrized by weights, unlike classes such as sigmoidal networks with a fixed
number of hidden units. When a finite, parametrized model is further constrained
to obey monotonicity in all variables, the resulting class of functions will be some
subset of M. Thus, bounds on the capacity of M will upper-bound the capacity of
any parametrized model where monotonicity is enforced.

Section 4.2 describes the decision boundaries of monotonic classifiers, comparing
and contrasting them to separating hyperplanes. Results are developed about the
capacity and VC dimension of M in section 4.3. In particular, the capacity is shown
to depend almost completely on the input distribution. Section 4.4 presents methods
for estimating the capacity and bounding the VC entropy of M given a model of the
input distribution. These techniques are implemented and shown to yield in some
cases much tighter bounds than those which result from bounding the VC dimension
of feedforward neural networks with very few hidden units. In section 4.5, analytical
results are derived concerning how the capacity of M grows with d for independent

inputs. Section 4.6 discusses the results and considers future work.

4.2 Decision boundaries

A monotonic classifier may be thought of as a mildly nonlinear generalization of a

linear classifier. This relationship is perhaps best demonstrated by considering the
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decision boundaries corresponding to the two models. It is well known that the
decision boundary implemented by a linear perceptron is simply a d — 1 dimensional
hyperplane splitting input space into two regions. In two dimensions, this boundary

consists of a straight line dividing the input plane.

~F =+

x2 + +

x1

Figure 4.1: A monotonic classifier splits the input plane with a decision boundary
consisting of a one-to-one mapping between the two input variables. Monotonic
classifiers are analogous to but slightly more flexible than linear classifiers, which
split the input plane with a straight line.

Consider a monotonic classifier (m(zy,22)), where m maps R* to R and 0(u)
is the Heaviside step function, i.e., f(u) = 1 if v > 0 and 6(u) = 0 otherwise. Let
m(z1, z2) be a continuous, differentiable, strictly increasing function of both variables,
i.e., V1, z, we have %"—"1‘ > 0 and ngz > 0. Assume that for any value of z;, there
exists an 3 for which m(z1,z;) > 0 and an z, for which m(z,,z2) < 0. Similarly,
assume that for any value of z,, there exists an z; for which m(zy,z2) > 0 and an
x; for which m(z;,z,) < 0. Define the decision boundary of a classifier 8(g(x)) to be
the set of points B = {x: g(x) = 0}. If the above conditions hold, then we have the
following theorem.

Theorem 4.2.1 The decision boundary of a monotonic classifier in R? is a one-
to-one mapping between the two input variables, i.e., an invertible function.

Proof: Fix z; = a, and let 7"(a) be the smallest value z, can take such that
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m = 1. By continuity in m, m(a,z7"(a)) = 0, and by the strictly increasing nature
of m, Vzz > 27, m(a,z2) > 0. Therefore, 27" is the only value of z; for z; = a
which lies on the decision boundary. By an analogous argument, for each value of
T, there is a unique value of z; such that the point lies on the decision boundary.
Therefore, the boundary must be an invertible function from one input variable to
the other m.

This theorem is in agreement with the intuition that a monotonic model is more
flexible than a linear one, but is still very severely constrained.

If we make analogous assumptions in the d-dimensional case, then the boundary
must be a single, somewhat flexible sheet such that specifying the values of any
subset of d — 1 input variables deﬁges a unique value of the dth variable at which the

classification changes.

4.3 Basic Capacity Results

To make the idea of capacity precise, we must define a few auxiliary concepts. Define a
dichotomy to be a set of d-dimensional input vectors, each of which have an associated
class label of either 0 or 1. Define a positive example as an input vector labelled 1 and
a negative example as an input vector labelled 0. We say that a dichotomy is separable
by a function class if there exists at least one function in the class which maps each
of the input vectors to its correct class label. A random dichotomy is a dichotomy
where the label for each example is assigned randomly with equal probability for
either class. Let P(N) be the probability that a random dichotomy of N examples
can be separated by the function class. The capacity of a function class is the integer
N* for which P(N) is closest to 0.5. Capacity (unlike VC dimension) is therefore a
quantity which depends on the input distribution. The importance of this point will
become clear below.

The following theorem provides a polynomial time test for monotonic separability:

Theorem 4.3.1 A dichotomy is separable by M if and only if there exists no

negative example which dominates some positive example
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Proof: The necessity of this condition is obvious. Sufficiency may be demon-
strated by constructing a function belonging to M which implements the dichotomy.
Consider the function f which classifies as 1 only those input vectors which dominate
some positive example in the dichotomy. By construction, f obviously separates the
dichotomy correctly. It is also clear that f belongs to M. Suppose f(x) = 1 and
x' > x. x must dominate some vector x* in the dichotomy. Any vector x’ which dom-
inates x must also dominate x*. Thus, f(x') = 1, hence, f(x') > f(x). Therefore,
feEMm

It follows immediately from the theorem that a dichotomy may be checked for
monotonic separability in time at most quadratic in the number of examples.

Capacity results for the perceptron (i.e., the class of linear threshold functions)
are well known: the capacity is 2d, where d is the dimensionality of the input space
[Cover, 1965]. This result is true for any smooth distribution of continuous input
variables, because the number of linearly separable dichotomies of a set of input
vectors is independent of how those input vectors are arranged, provided they are in
general position. This lack of dependence on input distribution is in sharp contrast
to the case of M. Here, the number of dichotomies depends heavily on how the input
vectors are arranged.

Consider figure 4.2. A little inspection will reveal that this dichotomy is not
monotonically separable, even if we are free to take decreasing monotonicity to hold
for one or both of the input variables. Figure 4.3 depicts a drastically different
situation. In this case, the input distribution is such that there exists a monotonically
decreasing relationship between the two input variables, i.e., for all x = (z;,22) and
x' = (z'1,2'3), 21 > 2’y = 22 < 2’5, When N input points are drawn from such
a distribution, any of the 2V possible dichotomies are separable by M, the class of
monotonically increasing functions. To see why, consider that for a dichotomy not
to be separable by M, there must be a negative example which is dominated by
some positive example. But if the two input variables are related in a monotonically
decreasing way, no example can dominate any other example. All dichotomies are

therefore separable given such an input distribution. Note that even if the input
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X2

x1

Figure 4.2: This dichotomy of four points cannot be implemented by any mono-
tonic function, regardless of whether the monotonicity constraint in each variable is
increasing or decreasing. +’s indicate positive examples, -’s negative examples.

dimensionality is greater than 2, a monotonically decreasing relationship between
two of the input variables is sufficient to make domination impossible, and hence, to
make all dichotomies separable by M.

The example depicted in figure 4.3 establishes a result which explains why input
distribution-dependent notions such as capacity are more useful than the cdﬁcept of
VC dimension for the analysis of monotonicity. Recall that the VC dimension is the
maximum value of N for which the growth function = 2V. The growth function is
defined as the maximum number of separable dichotomies of N points, where this
maximum is taken over all possible choices of the N points. Figure 4.3 demonstrates
that we may always choose input points in such a way that all 2V possible dichotomies
may be separated monotonically. It is granted that the figure 4.3 example is not very
realistic- it would be extremely odd to find a problem where the target is believed to
increase monotonically with two input variables which appear to be related to each
other in a monotonically decreasing way. Nonetheless, such an example is permitted
by the definition of the growth function. Thus, the VC dimension of the class of

monotonic functions = oo ! This result is misleading, however, since monotonicity is
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still a very powerful constraint in most cases.

-

X1

Figure 4.3: If two input variables z; and z; are related in a monotonically decreasing
way, then any dichotomy may be separated by M. A particular, arbitrary dichotomy
is shown here. The shaded area indicates the region of input space which, by mono-
tonicity, must be classified positively.

Figure 4.4 depicts a situation opposite to that of figure 4.3. In this case, there
exists a monotonically increasing relationship between the two input variables. The
points are totally ordered, i.e., every point either dominates or is dominated byr every
other point. The class M has very little separating power in such a situation. M
is free only to choose a dividing point from among the N input vectors and classify
positively those vectors dominating the dividing vector. Thus, only N + 1 of the
2N possible dichotomies are separable by M. The number of separable dichotomies
remains N + 1 if we have d input variables all of which are related to each other in a
monotonically increasing way, i.e., all of which rise and fall together.

The preceding examples demonstrate that the number of dichotomies separable
by M, and hence, the capacity of M can be arbitrarily large or small depending
on the particular input distribution. The second and third examples- especially the
third- cannot be dismissed as merely irrelevant, degenerate cases which will never
occur in real life. These two examples are the extreme versions of possible real world

situations where the input variables do not have strict monotonic relationships but



x1

x2

Figure 4.4: If two input variables z; and z, are related in a monotonically increasing
way, then only n + 1 of the 2" possible dichotomies are separable by M. The shaded
area indicates the region of input space which, by monotonicity, must be classified
positively.

are correlated significantly. It should be clear from figure 4.4 that if we have two input
variables which are highly but not perfectly positively correlated, then the number
of separable dichotomies of N points is still likely to be low, although somewhat
higher than N + 1. Likewise, if we have two input variables which have a substantial
negative correlation, then the number of separable dichotomies is likely to be quite
high, although somewhat less than 2V. The effect of correlation will be demonstrated

numerically in the next section.

4.4 Capacity and VC Entropy Estimation

If we have a good model for the input distribution for a given problem, the capacity
of M may be estimated computationally. N input vectors may be drawn from the
model of the input distribution and labelled randomly as positive or negative with
equal probability. Theorem 4.3.1 tells us how to check efficiently whether or not
the dichotomy generated is separable by M. This procedure may be repeated many
times to get an estimate of P(N), the probability that N randomly labelled points
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are separable by M. The estimate of the capacity of M is then that N* for which
P(N*) = 0.5.

This procedure was used to estimate the capacity of M for various d for the case
of independent A (0, 1) input variables. The number of examples N was varied over
a wide range. For each N, 1000 random dichotomies were generated and checked
for monotonic separability. The capacity estimate was taken to be the N* for which
the estimate of P(N) was closest to 0.5. The results are shown in Table 4.1. The
capacity of M is modest for low d, but grows more quickly than the capacity of the
perceptron. This behavior agrees with our intuition that M is a highly constrained

function class, but nonetheless more flexible than the class of perceptrons.

input dimension | capacity of perceptron | estimated capacity of M, independent inputs

2 4 4

3 6 6

4 8 8

) 10 12
6 12 17
7 14 23
8 16 33
9 18 45
10 20 64
11 22 85
12 24 126

Table 4.1: Capacity of M and of the perceptron given independent gaussian inputs

The effect of correlation between input variables was also explored for d = 10. We
generated 10 A(0, 1) input variables z, ..., 210 according to a covariance matrix with
1s along the diagonal and p elsewhere. As the theory of the previous section predicts,
the capacity decreases drastically with increasing p (Table 4.2).

In addition to estimating capacity, it would be useful to make explicit statements
about the generalization of a monotonic model. The VC bounds on generalization,
based on the growth function, are well known. Such a bound is of no use to us here,

since VN, the growth function of M = 2. An analogous, distribution-dependent
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covariance | capacity of M, d = 10
0. 64
0.1 26
0.2 16
0.3 11
0.4 9
0.5 7

Table 4.2: Capacity of M, d=10 for various levels of correlation between inputs

bound also holds, however. The growth function can be replaced in the bound with
the VC entropy H(N). If we denote by ., the true error rate of a classifier m within
the class M and by v, the observed error rate, then we have the following theorem

[Parrondo and Van den Broeck, 1993]:

Pr{sup|m, — vm| > ¢} <6H(2N)e (< n)n (4.1)

In theory, one could estimate P(2N) using the technique outlined above for es-
timating capacity. Such a procedure is computationally infeasible for even mod-
estly large N, however. Since H(2N) = (22 P(2N)), the bound may be written as
4(4e=< )N P(2N). Substituting in N = 5000, e = 0.25, we find that P(2N) would need
to be the order of 10727 in order for the bound to be non-trivial. In order to demon-
strate that P(2N) is this low, at least the order of 10?7 (!) dichotomies would have
to be generated and checked for monotonic separability. The number of dichotomies
that need to be generated grows exponentially with NV, so direct estimation of P(2N)
is not an efficient way to obtain a bound.

Fortunately, we can bound H(2N) using a polynomial time algorithm. We appeal
to a lemma in [Vapnik and Chervonenkis, 1971]. Let x),x® .. . xM™ be a set of
input vectors and let A%(x), x® .. .xM)) be the number of dichotomies induced
by a function class G on this sample. Define (]:7 ) = 0 for z > N. If for all subsamples

x(1) x(2) x(s) of cardinality s we have the inequality

AS(xU) xl2)  x(s)) < 9o
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then the following bound holds:

AT, ..x) < 006, = 32 (V)
k=0

If a function class induces all 2" dichotomies on a sample of size r, then it is said to
shatter the sample. Hence, we can upper-bound the number of dichotomies induced
by M on a set of input vectors by finding the cardinality of the largest subset which
M can shatter. It follows immediately from Theorem 4.3.1 that M can shatter a set
of points if and only if no point dominates any other point in the set. We therefore
need to find the cardinality r of the largest totally unordered subset of a partially
ordered set, where two elements are ordered if one dominates the other. A totally
unordered subset of a set is called an as
least as large as all other antichains of the set is called a mazimal antichain (note
that a maximal antichain is not necessarily unique). A 17-element maximal antichain
subset of 100 points in R? generated from a pair of independent A/(0, 1) distributions
is shown in Figure 5. r can be thought of as the “effective” VC dimension of M on
a particular set of N points, and indeed, it would be the VC dimension if the input

space were restricted to be only those N points.

Maximal Antichain in Set of 100 Points

3 T T T T T T T T T
“antichain" <
+ "points” +
+
2F .
+
. +
@ + +
© +
1 ° + N
oty + + +
[-3 +
+ .+ Qe o +
+ +
+ +
N o x ++ - H
+ +
+ + + *
R A ks
+
+ * I.,, MR o
+ ¥ + +oy +
1 + + ° + -
+ ® o
+ + +
+ +
- + -
2 + °
+
3 1 1 ) I 1 L 1 L L
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 4.5: This set of 100 points has a maximal antichain of size 17.
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Ford and Fulkerson show in [Ford and Fulkerson, 1962] that finding the cardinality
of a maximal antichain may be solved by posing the problem in terms of an undirected
bipartite graph. Let the graph consist of 2N vertices a1, as, ... an, by, be, ... by, where
an edge exists between a; and b; if and only if x; > X;j. Define an independent set of
edges to be a set where no pair of edges are incident to the same vertex. Ford and
Fulkerson show that if U is a maximal antichain and F is a maximal independent set

of edges, then

Ul +|E| =N

An O(N3) algorithm is given in [McHugh, 1990] for finding a maximal indepen-
dent set of edges in a bipartite graph. This algorithm, known as the alterr
path method, was implemented and used to find the the cardinality r of a maximal
antichain for samples of size 5000 and 10,000 in R? generated from a joint nor-
mal distribution with 1 on the diagonal of the covariance matrix and p elsewhere.
Since (4.1) involves H(2N), this procedure gives us bounds for training sets of size
N = 2500 and N = 5000, respectively. For each (N, p) pair, 10 samples of cardinal-
ity 2N were generated and the corresponding r was determined. For each sample,
AM(xM) x@) . x(?N)) is bounded by ®(r + 1,2N). H(2N) is therefore bounded by
(E[®(r + 1,2N)]). Table 4.3 displays the sample mean and standard deviation of r.
The standard deviation of r is quite low, meaning that 10 samples suffice to estimate

E[®(r + 1,2N)] quite accurately.

n P mean 7 €
2500 | 0.0 | 134.8 £25 | -
2500 | 0.5 | 101.7 £2.5 | 0.46
2500 | 0.9 | 66.5+2.4 | 0.39
5000 | 0.0 | 190.4 £3.2 | 0.45
5000 | 0.5 | 147.0£3.1 | 0.4
5000 | 0.9 1 93.5£1.71 | 0.34

Table 4.3: Average size of largest antichain and smallest ¢ for which the VC bound
(4.1) is less than 0.01.
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This procedure yielded non-trivial bounds for correlated inputs in R2. For the
sake of simplicity, we bound H(2N) by the sample mean of ®(r + 1,2N) plus \3—%’
where o is the sample standard deviation of ®(r + 1,2N)'. The last column in
Table 4.3 shows the largest value of ¢ for which (4.1) evaluates to less than .01 (the
exact choice of confidence level makes little difference, since the bound decreases very
sharply from above unity to very small values over a very small range of €). Note that
high levels of covariance are not unrealistic given the types of real-world problems
where the monotonicity constraint arises. Consider, for instance, the problem of
approving credit card applicants on the basis of their salaries and current savings.
One would expect salary and savings to be highly correlated.

These bounds may appear rather loose at first, but they are impressive compared
with what would be obtained by bounding the VC dimension of a feedforward neural
network. Let W be the total number of parameters (weights and thresholds) in a
neural network and let U be the total number of units (hidden plus output). Then
Baum and Haussler show in [Baum and Haussler, 1989] that 2Wlog,(eU) is an upper-
bound on the VC dimension of feedforward networks consisting of linear threshold
units?. This bound is shown in table 4.4 for networks of 2 inputs and various numbers

of hidden units.

hidden units { 2Wloga(elU)
2 5]
3 90
4 128
) 170
10 402
20 946

Table 4.4: Upper bound on VC dimension of feedforward neural networks of linear
threshold units with 2 inputs.

1To be entirely rigorous, one would form a confidence interval for £[®(r + 1,2N)] which would
then be used in conjunction with the confidence interval provided by the VC bound.

2The use of this bound in practice may be optimistic, because the result treats hidden nodes as
threshold units and therefore neglects the analog nature of the sigmoidal units most commonly used
in real applications.
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If a network of even fairly modest size is employed, many more examples would
be needed to get the same bounds from bounding the VC dimension of the network
than we get by bounding the VC entropy of M. A comparison of table 4.3 and table
4. indicates that for N = 2500, p = 0.5, we get a better bound by bounding M than
we would by bounding the VC dimension of a network of 4 or more hidden units. For
p = 0.9, the bound is better than it would be for a network of only 3 hidden units.

Consider a 10 hidden unit network. For ¢ = 0.46, 9200 examples would be needed
to get the same bound we get with 2500 examples and p = 0.5 here. 13,000 examples
would be needed to get the same bound at € = 0.4 that we get for n = 5000, p = 0.5.
The bound we obtain for N = 5000, p = 0.9 at ¢ = 0.34 would require 19,400
examples.

If a neural network is constrained to obey monotonicity, as in chapters 2 and 3,
then a bound on the entropy of M upper-bounds the entropy of the network with
the constraint. Tables 4.3 and 4.4 demonstrate that this bound can be much tighter
than the one obtained by employing the bound on growth function of the network.

The comparison of tables 4.3 and 4.4 also confirms our intuition that the flexibility
and expressive power of M are fairly modest. This suspicion is supported by noting
that the “effective” VC dimension of M for reasonable input distributions in R? is
comparable to the VC dimension of a small neural network with only a few hidden

units.

4.5 Exponential Behavior of Capacity for Indepen-
dent Inputs

The arguments in section 4.3 make it clear that analytical results regarding the ca-
pacity of M which apply independent of input distribution cannot be obtained, since
capacity is highly distribution-dependent. If we assume independence between input
variables, however, we can say something about how the capacity of M grows with

d. Table 1 shows that capacity for independent inputs is low for low d but appears
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to increase quickly as d becomes larger. An exponential relationship between d and
capacity is suggested by the results. In this section, we prove that capacity is indeed
exponential in d for independent inputs 3. |

Define a sequence ¢1(z1), ¢2(21, €2), g3(21, Z2, Z3), . . . of input densities on R',R% R, ..
such that gi(zy,...,%) = gi—1(1,...,2i-1)pi(z:),% > 1, where py(z,) = q1(z,) and
pi(z;) is the marginal density of input variable z;. We will also require that for all s,
pi(z;) satisfy the condition that if z; and z;, are two samples drawn independently
from p;, then Pr{z;, > z;,} = Pr{z,, > z;,} = 0.5. This condition is trivially
satisfied by any smooth, continuous distribution (discrete distributions are ruled out,
however). An example of a sequence satisfying these conditions is a sequence of i.i.d
N(0,1) variables. Note that we do not require the inputs to be identically distributed,
however.

If x and X’ are two input vectors in R? drawn from g(z1,...,zq) then Pr{x >
x' = 279}. Now consider the probability ¥(N,d) that in a sample (x1,X2,...,xn) of
size N drawn from g, there exists a pair (x;,Xj),% # j such that x; > x;. In other
words, ¥(N, d) is the probability that a sample of size N cannot be shattered by M.
Since there are N? — N ordered pairs of distinct input vectors, we can use a union
bound to find that ¥(N,d) is no greater than N?27¢. Let C(d) denote the capacity
of M as a function of d for a sequence of input distributions satisfying the above
requirements. Then the following theorem holds:

Theorem 4.5.1 The capacity C(d) of M is Q((+/2)%) for independent inputs.

Proof Clearly, P(N,d), the probability that a random dichotomy of N points
drawn from g; is monotonically separable, is lower-bounded by 1 — ¥(N,d), the
probability that all 2V dichotomies are monotonically separable. Now suppose the
theorem is false, i.e., suppose that V¢ > 0, there exists an D such that Vd > D,
C(d) < ¢(v/2)%. From the definition of capacity we know that P(C(d),d) = 0.5.
From the union bound, ¥(C(d),d) < C*(d)2™¢. Given any § > 0, we can choose ¢
small enough and d large enough such that ¥(C'(d),d) < é. Take § < 0.5. Then we
have P(C(d),d) > 1 — ¥(C(d),d) > 0.5. This contradictions the assumption that

3The result presented in this section is due mostly to an anonymous referee.
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P(C(d),d) = 0.5. Therefore, C(d) must be Q((+/2)?) m.

Capacity grows exponentially in d for independent inputs. This result should not
be interpreted too pessimistically, however. The sorts of applications where mono-
tonicity constraints arise (e.g. economic and medical diagnosis problems) typically
involve relatively few inputs. In addition, there is often strong correlation between

the variables, so the independence assumption does not hold in these cases.

4.6 Conclusion

We have shown that the capacity and entropy of M can be estimated computationally
given a model of the input distribution. The bounds on the entropy lead to bounds
on out-of-sample error which are tighter than those which would otherwise be ob-
tained with neural networks with a very low number of hidden units. This led to the
conclusion that monotonicity can be a very powerful constraint.

Future work may include extensions of the analytical results in section 4.5. Can
we say something about how quickly the expected size of the maximal antichain
increases with NV and d? Correlated inputs also need to be considered. What level of

correlation suffices for the capacity to grow polynomially with d?
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Chapter 5 Generalization Bounds for

Connected Function Classes

5.1 Introduction

Although the Vapnik-Chervonenkis analysis of learning systems has provided valuable
insight into the process of learning, the VC bounds are rarely useful when evaluated
numerically. The bounds typically require an unreasonably large number of examples
in order to evaluate to less than unity, particularly when the VC dimension is high,
as is typically the case when a model with many parameters is being employed in
a high dimensional input space. Yet the out-of-sample error of a learning system is
often observed to be quite low in situations where the VC bound promises nothing.
One possible explanation for this discrepancy is that the VC analysis is not a
sufficiently detailed characterization of the flexibility of a function class. The VC
bound is computed from the function class’s growth function G(N), which is defined
as the maximum number of dichotomies of N input vectors. Thus, through the eyes
of the VC bound, all function classes with the same growth function are equivalent
in terms of generalization behavior. Aspects of a function class other than its growth
function may play a role, however. It may be that the function classes used in practice
have an additional property not accounted for by the growth function which results
in good generalization with fewer examples than the VC analysis would suggest. If
this conjecture is correct, it would help explain the apparent looseness of the VC
bound. The VC bound must hold for all function classes which implement at most
G(N) dichotomies on N input vectors. Consider a hypothetical pair of function
classes, each of which induce G(N) dichotomies on N examples. If one function class
possesses an additional characteristic which leads it to require fewer examples for

good generalization than the other class needs, then clearly the VC bound will be
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unnecessarily pessimistic for the first class, since it must hold true for the second class
as well as the first. In this chapter, such a characteristic is described and utilized in

deriving an improved bound which holds for most function classes of practical interest.

5.2 The Connectedness Theorem

The general idea of examining the set of dichotomies induced by a function class on
a set of points seems like an intuitively valid way of measuring the power of the class.
The growth function, however, characterizes a set of dichotomies in a very simple
way- it merely counts the number of elements in the set. More detailed descriptions
of dichotomy sets can easily be imagined. One might also take into account the
variety or diversity of the dichotomies, for instance. A function class which induces
a set of dichotomies which is clustered together might be thought to be less flexible
than another class which implements a set of dichotomies which are dissimilar and
dispersed, even if the cardinality of the two sets is equal. Consider a hypothetical
situation, displayed in Figure 5.1, where we have function classes Fy and F3, each of
which induce 5 dichotomies of 30 input vectors. The VC analysis does not distinguish
between Fy and Fj, since they induce the same number of dichotomies. Intuitively,
however, it would seem that Fj is considerably more flexible than F;. F; has no
flexibility at all on 26 of the 30 input vectors- it must always label these inputs the
same way. Fj, on the other hand, can choose between 5 completely dissimilar sets
of classifications. The contrast between similar and dissimilar sets of dichotomies
becomes even more stark as the number of data points N becomes large. Consider
a pair of dichotomies of N = 10,000 points which agree on 9,999 points and differ
on only 1. The two dichotomies are virtually the same and it would seem that they
should only count as effectively 1 dichotomy (or perhaps 1 + ¢ dichotomies). Yet
the VC bounds count this pair as two dichotomies, just the same as if they disagreed
on 5,000 points. Of course, these comments are relevant only if it is true that the
dichotomies induced by function classes used by practitioners are somehow clustered

together. If it could be demonstrated that function classes in common usage induce
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sets of dichotomies which are not very diverse, then this property can perhaps be

used to tighten the VC bound.

Dichotomies induced by F :

d,:011010001001110100101110101011
d.:011010001001110100101110101010
d,:011010001001110100101110101000
d.,:011010001001110100101110101100
ds:011010001001110100101110100100

Dichotomies induced by F | :

d,:010010110101011110100101110101
d,:111011010011000100101010001011
d,:001010001101110110111001000110
d,:100001010111001010011101101011
ds:101000111101010111001001001111

Figure 5.1: F; induces a very clustered set of dichotomies, while the dichotomy set
induced by F; is very diverse.

We will show here that most function classes used in practice do indeed induce
dichotomy sets which are clustered. Qur theorem will apply to function classes of the

form

0(u(w,x))

where

weR?, xeR?
u(w,x) :R? x R > R

0(u) = {

1 u > 0
0 u < 0

The vector w is the set of adjustable parameters of the model, while x is the
input vector or feature vector. We require u to be a continuous function of w and
x and that all first and second derivatives of u with respect to w and x exist. One
additional property is also needed for the theorem below to hold. Let input vectors

x), %@, ... xM™) be drawn from a density P(x). Let u,(w) denote u(w,x(®). The
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gradient of u with respect to w at the point x(®) is given by

Ou(w,x™) Ju(w,x®)  Ju(w,x®) ’
Bwl 6'11)2 o Bwp

Vu,(w) =
Then we require u and P to be such that
Pr{3w, n1, ny | Vi, (W) o« Vu,,(w)} =0

This condition is likely to be satisfied by most smooth input distributions, assuming
that u depends smoothly on both the inputs and the parameters. Later in the chapter,

we provide short proofs which show that this condition is satisfied by many common

We also need some basic definitions from graph theory in order to state the the-
orem. An undirected graph is simply a set of vertices V' connected by a set of edges
E, where the edges do not have directions associated with them. A path is a sequence
{v1,v2,...vn} of vertices such that V1 < 7 < m—1, thereis an edge between v; and
v;y1. We say that a graph is connected if every pair of vertices is connected by a path.
Let D = {d®,d® ...d(A)} be a set of dichotomies. Define the dichotomy graph
of D to be an undirected graph where each vertex v,, corresponds to the dichotomy
d™ and an edge exists between v, and vy, if and only if the Hamming distance
(denoted by ||d{™1) — d™2)||) between d(™1) and d(™2) is 1. In other words, an edge
exists between two vertices if and only if the corresponding dichotomies classify ex-
actly N — 1 of the N input vectors the same way. We say that D is connected if its
dichotomy graph is connected.

We are now in a position to state the theorem which quantifies the sense in which
dichotomy sets induced by most function classes used in practice are clustered.

Theorem 5.2.1 Let §(u(w,x)) be a function class and P(x) be an input distribu-
tion such that u and P satisfy the above requirements. Let D = {d®), d®,...d(®)}
be the set of dichotomies induced by 8(u(w, x)) on a set of input vectors x(*), x(® .. x(MN

drawn independently from P. Then with probability 1, D is connected.
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d:1 1111
d:11110

&:11100

d:11101

d:01 101

ds:0 111 1 d, de

d; ds
Figure 5.2: A set of 6 dichotomies of 5 points and its corresponding dichotomy graph

Proof: To say that the dichotomy graph of D is connected is to say that given
any pair of dichotomies d(™1), d(™2) ¢ D, there exists a sequence of dichotomies

d®) dka2)  dkx) ¢ D such that
4™ — dt]| = 1
Vi<i<K—1 ||d&) —d&k+d)|| =1

[|[dkx) — d(m2)|| = 1

Let w(™1) be a parameter vector which implements dichotomy d™1) i.e.,
d;(™) =1 = y(wi™) x) > 0

d;™) = 0 = w(w™) x0) <0

Similarly, let w(™2) implement dichotomy d(™2). Consider the convex combination of

these two parameter vectors:

w(®) = (1 — a)w®) 4 qw(m2)
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Define

un(w("‘)) = u(w(®, X(n))

We know from the continuity of u that any time the classification of x(®) changes as
a is varied, we must pass through a point at which w,(w(®) = 0. If for all values of
, u,(w(®)) = 0 for at most one integer n, then the theorem follows immediately- the
sequence of dichotomies generated by varying o corresponds to a path from the vertex
Vm, to the vertex v, in the dichotomy graph of D. Thus, we need only consider the
case where there exist parameter vectors w(®") along the line between w(™1) and
w(™2) such that the classification of multiple input vectors changes simultaneously,
i.e., such that u,(w")) = 0 for more than one value of n. Given any such o*, we will

*
Al Al ,,(a ).

construct an alternate path through parameter space which avoids w Assume

that at o there are L examples whose classification changes, i.e.
Uy (WD) =0, up, (WD) =0

Given an o, we must construct an alternate path through parameter space such that
the classifications of x(®), ... x("2) change one at a time. Consider w(®"~%)  where
d, is chosen to be positive but small enough that there are no classification changes
between o* — 8, and a. Define w(®*+%) similarly. Let d® denote the dichotomy
implemented by (u(w{®"~%) x)) and let d(®) denote the dichotomy implemented by
0(u(w@™+%) x)). Hence

14 — a®)| = 1

We can conclude from the continuity of u that there exist spheres W, and W} of non-
zero volume around w(® %) and w(®™+%) respectively, such that every parameter
vector within W, implements d(® and every parameter vector within W, implements
d®). Let r, be the radius of W, and r, be the radius of W;.

The strategy of the construction will be to show that there must exist a pair
of points w, € W, and wp, € W, such that along the line from w, to wy, the

dichotomies generated change one bit at a time. To demonstrate this claim, we rely
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on the fact that for each n; the manifold in parameter space defined by u,,(w) = 0 is

approximately planar, locally around w(®"), A second-order Taylor expansion gives -
* * * 1
U, (W) + AW) = 1 (W) + Vi, (WO Aw + SAWTHAw

where H is the Hessian of u,, at some point between w(®*) and w(®*) + Aw. For
sufficiently small ||Aw]||, the decision boundary for x®) is approximately given by

the p — 1 dimensional hyperplane

Ve, (we N Aw = 0

probability that the gradient vectors for two different input vectors are collinear is
0. Therefore, with probability 1 each example x(™ is associated with a distinct
hyperplane Vu,,’ Aw = 0 and the intersection of any two such hyperplanes is a p— 2
dimensional hyperplane.

Lemma 5.2.1: There exist points w, € W, and wy, € W, such that VO < G < 1,
Bwa+ (1 — B)wy satisfies Vu,, T Aw = 0 for at most 1 value of [, where { ranges from
1 to L.

Proof: We will first show that there exist non-zero volumes Wa(l) and Wb(l) such
that any line from a point in W,") to a point in W,(Y) avoids the intersection of the

two hyperplanes
Vi, TAw =0, Vu,, Aw =0

First, we need to find points w{) and W,(Dl) such that the line between them
avoids the intersection of the two hyperplanes. Define Aw() = w{!) — w*" and
AW{)I) = ng) —w*". Then simple algebra reveals that the line Bw,™) 4 (1 — 3)wp(V)

crosses the hyperplane Vu,, TAw = 0 at

—VumTAw,(Dl)

Vi, TAWS — Vu,, TAwd

P =
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while it crosses V’U,MTAW =0 at

—VunQTAWS)

- VunzTAwgl) - VunzTAWS)

Br

If we were to pick

w,(V = wle"—%)
Wb(l) = w("+3%)

then the line between the two points would coincide with the original line between
Wm, and Wm,, meaning that 8, = £, and that the line crosses both hyperplanes at
w(®") by assumption. Therefore, this is not an acceptable choice. Suppose, however,

we add a perturbation to w,(*), i.e.

where
Vi, TVu
AV = Vu,, - ———"2Vu,,
2T Vum TV, ™
and 7 is chosen such that ||[pAv]|| = %. Av is orthogonal to Vu,,, which means

that (4 remains unchanged while 3, is altered by a non-zero amount, i.e., the two
hyperplanes are crossed at different points along the line. Because 3, and (3, depend
continuously on w,() and wp(®), there must exist non-zero volumes W, and W;®
around w, () and wy, (1), respectively, such that a line from any point in W, to any
point in W,(!) intersects the two hyperplanes at different points.

The same argument may be used again to show that there exist volumes W,? C
W, and W, € W, such that a line from any point in W, @ to any point in
W, @ avoids the intersection between Vi, TAw = 0 and Vu,,TAw = 0. In fact, the
argument may be repeatedly applied ( ’;‘ ) times for each pair of distinct hyperplanes,
yielding two volumes such that any line drawn between them avoids all intersections
of hyperplanes. The lemma has therefore been demonstrated m.

Let w® € W, and w(f) € W, be the starting and final points of a line which
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crosses the hyperplanes one at a time. We will now show that if §,, &, r, and r,
are chosen to be sufficiently small, then the classification of each input vector x(™ is

determined by the function 8(Vu,, T Aw()), where
Aw®) = wB) _ wio*)

Recall again Taylor’s theorem:

. 1
U, (W) = up, (W) + V’MZIAW('@) + §Aw(ﬁ)THnl Aw®

1 o g1 1 Tr . L. ~ 1 L1 Y {a*)
where an 15 the p by p Hessian matrix ol Unp, evaluated at some point between w'= /

and w®). Define Ag; to be the largest magnitude of any eigenvalue of H,, at any

point between w(®*) and w(). Then it is not hard to show that
IAWOT I, Aw®| < Ag,||AwW)||?
We also have the identity
VuZlAw(ﬁ) = ||Vunl||||AW(ﬁ)]|cos(¢)

where ¢ is the angle between Vu,, and Aw®),

It will be convenient to define some auxiliary variables. Let y,, = 1 if d,, (@) =1
and let y,, = —1 if d,, (@) = 0. Then, as we move along a line from a point in W, to
a point in Wy, the classification of x5 changes when y,, un, (W) < 0.

The numbering of the examples x(™), ... x(") is arbitrary, so assume for the sake
of simplicity that they are numbered in the order in which Aw(® passes through their

respective hyperplanes. From the lemma above, we know that

VO<:i<L, 36
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such that
Yn, Vi, TAWP) <0, 1<

Yy Vb, TAWP) >0 1>

Define

Cmin = min cos(¢; )

2y

where ¢;; is the angle between Aw) and Vuy,,. Let

Amaz = mafx )\ﬁi,l
i

?

and let
Vi = min [V |
Then if
Vmin min
i, [|JAw®|| < Y minCmin
then

Vi’ l’ e(vuanAw(ﬁi)) = O(U(Wﬁnx(m)))

and we have established that the line between w(® and w'f) generates a sequence of
dichotomies which changes one bit at a time. It remains only to show that we can
choose ||Aw()|| to be sufficiently small. Recall that w(*) € W, and w\¥) € W,. W,
has center w(®*—%) and radius r, and W, has center w(®" %) and radius ry. Then the

distances from w() and w(¥) to w(®") are at most
(max(3e, ) + max(re, ) [w™) — w(")|

We are free to choose &, &, 4, and ry to be as small as we like. w(® is a convex
combination of w(®) and w/) and therefore, for any £, it can be no further from
w{®") than the further of w(®) and w(). Hence we can make [|[Aw(P)|| as small as
is necessary to guarantee that the path from w(®) to w(/) generates a sequence of

dichotomies which change one bit at a time.
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There are potentially many places along the line from w(™1) to w{™2) where the
classifications of several input vectors change simultaneously. The above construction
can be repeated in each such instance, resulting in a path through parameter space
from w(™1) to w(™2) generating a sequence of dichotomies which corresponds to a
path from v,,, to vy, in the dichotomy graph of D. Hence, the proof of the theorem

is complete m.

5.3 Connected Function Classes

We now show that the conditions required for Theorem 5.2.1 to hold are satisfied by
some well-known and useful machine learning models. The assumption will be made
in each case that the probability distribution P(x) is such that with probability 1,
any finite set of input vectors are in general position, i.e., any subset of d or fewer
vectors is linearly independent. We will refer to a model which induces a connected
dichotomy set with probability 1 under these conditions as a connected function class.

Perhaps the simplest model in usage is the linear threshold model, a.k.a the per-
ceptron.

Proposition 5.3.1 The linear threshold model is a connected function class.

Proof A perceptron is a model of the form 6(u(w, x)) where u(w,x)) = wTx —b.
Vu(w) is simply x. Thus, the satisfaction of the requirements for Theorem 5.2.1
follow immediately from the general position assumption m.

Similar reasoning can be employed to show that the connectedness theorem applies
to 2-layer sigmoidal neural networks.

Proposition 5.3.2 A 2-layer sigmoidal feedforward network with at least 2 hidden
units is a connected function class .

Proof: A 2-layer network computes a function of the form

B(u(x))



where

and

h,’ = S(WiTX - bl)

s is a monotonically increasing function, e.g., the hyperbolic tangent function. 5%':7
is given by

vis' (Wil x)z;

The monotonicity of s implies that s’ is always non-zero. Assume for some 7 that

v; # 0. Suppose that the theorem is false. Define u, = u(x™)). Then for some pair

b e)
[¢D AV S

vis' (Wi TxMW)x® = aw;s’ (w; Tx®)x?
@ o x®

which contradicts the general position assumption. The only case not covered by
this argument is the situation where Vi, v; = 0. This area of parameter space is a
hyperplane of dimension at most p — 2, since we have assumed at least 2 hidden units.
By Lemma 5.2.1, it can be avoided in the construction of a path through parameter
space corresponding to a path in the dichotomy graph m.

Radial basis function networks [Bishop, 1995] are another popular machine learn-
ing model.

Proposition 5.3.3 A radial basis function network with at least two hidden units
is a connected function class.

Proof: A radial basis function network computes the function 0(u(x)) where

J llx—pl?
u(x) = wie
J=1
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where w;, p; and o; are all adjustable parameters. Define p; as the vector of all

parameters associated with unit j of the network, i.e.,

Pj = [w; pj1 - fja- .05

Define u;(x) = u(x(®) and uy(x) = u(x®). Now suppose the proposition is false.
Then with nonzero probability the gradient of u; with respect to p; is equal to the
gradient of uy with respect to pj. We have

D
a'u. a.2 J
J J
Lo (2) 2
auz w; _ N —pgi

Op; o

Clearly we need x() — y1; = a(x® — ;) for some constant o. Then

() —pus 12 11 =g}
auZ 20,2J - 2,.21 aul
= Qe 7 3 —
Oy

Ou;
Now consider the partial derivative with respect to the parameter w;.

«(2) 112 L) 12 1) 12
A, @) =i D gt ® -yl

2 2 .2
—e zo-J —e 20'] 2"']

a_’wj B 8wj

In order for the gradient of u; with respect to p; to be proportional to the gradient
of uy with respect to pj, the ratio of g—::lj- to g—fuie must be the same as the ratio of g—z;
to g—:ﬁr. Then o = 1, implying that x(*) = x(®), This contradicts the general position
assumption.

As was the case for sigmoidal neural nets, we need to address the situation where
Vj, w; = 0 separately. Once again, we know that area of parameter space can be
avoided from Lemma 5.2.1. since there are at least two hidden units and therefore

the area is a hyperplane of dimension at most p — 2 m.

It can also be shown that the class M of monotonically increasing functions is
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connected. Connectedness does not follow from Theorem 5.2.1, though. In this case,
a different line of reasoning can be used

Proposition 5.3.4 The class M of monotonically increasing functions is a con-
nected function class.

Proof: Let d and d’ be two monotonically separable dichotomies of N points
{x® .. . xMN1, Define X as the set of input vectors labelled class 1 by d and define
X' as the set labelled class 1 by d’. Recall that it was shown in Chapter 4 that any
monotonically separable dichotomy can be implemented by a function m € M defined
as follows: Classify as class 1 only those points in input space which dominate at least
one input vector labelled positively in the dichotomy. Let m be the function which
classifies as 1 only those input vectors which dominate some vector in X, and define
m’ analogously. Then m implements d and m' implements d'.

Consider the set of input vectors which belong to X but not to X’. Because
domination is a partial ordering, there must exist some input vector Xmin in this set
which does not dominate any other vector in the set. Suppose we remove this vector
from X. Now m classifies X;nin as 0 but otherwise the dichotomy it implements is
the same as d. Now we repeat this removal procedure by finding a new Xpyji, from
the remaining vectors in X. This procedure can be iterated to produce a sequence
of monotonically separable dichotomies which change one bit at a time, terminating
in a dichotomy dyniq which classifies as 1 only those vectors classified as 1 by both d
and d’. Now consider the set of vectors which belong to X’ but not to X. There must
exist some vector Xpyax in this set which is not dominated by any other vector. If we
add this vector to X, then m now classifies X;pax as 1 but otherwise the dichotomy it
implements is the same as djyyja- We can repeat this process, generating a sequence
of monotonically separable dichotomies which change one bit at a time , terminating

ind m
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5.4 VC Bound for Connected Function Classes

In this section, we derive an improvement to the VC bound which holds for all con-
nected function classes. Let F be a set of functions mapping R to {0,1}. We draw
N examples (x¥,y;)...(x™), yy) independently from some probability distribution
on R% x {0,1}. For f € F, define

mr = Prly # f(x)]

and

N
= — Z f(x(“)

7y is the true error rate of f, while v is the error rate on the n examples at hand.

We wish to bound the quantity
Pr{sup|m; — vs| > €},
feF

the probability that the worst case discrepancy between 7 and vy is greater than e.

5.4.1 Review of the Standard VC bound

This section gives a sketch of the proof of the currently existing VC bound. This
review will help make clear the reason that the connectedness theorem should enable
us to tighten the bound.

The distribution-independent Vapnik-Chervonenkis bound is given by

Pr{sup|m; —vf| > €} < 6G(2N)e—(e"%)2N
feF
The derivation of this result relies upon a lemma [Parrondo and Van den Broeck, 1993]:
, 1
Pr{sup|mf —v¢| > €} < 2Pr{sup vy —v'f| > e — =}
feF feF N

where vy and /' are the error rates on two distinct sets of N examples, each drawn
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independently. If f;, fo € F agree on all 2N points, i.e., if they induce the same
dichotomy, then |vy, — vy, | = |vy, — V'y,|. Therefore, we need only consider the set

D of dichotomies induced on the sample of 2N points, and can write
Pr{sup|v; —v'f| > e— l} = Pr{max |yqen — V'qe| > € — —1-}
J€F N dWeD N

Let X be the 2N by d matrix of input vectors such that v4a) is computed over rows

1 through N and /4 is computed over rows N + 1 through 2N. Define p;(X) as
follows:
pi(X) = lvaw — Va0
Define T' to be a permutation matrix which permutes the 2N rows of X. It is

clear that for any T

— — (TX _
Pr{c{(rll)a)ép,(X)>e 1/N} Pr{drge;%p( )>e—1/N}

since the 2N examples are drawn independently and therefore all orderings are equally

likely. Hence we can write

1 1
Pr{dr(rll)aéx pi(X)>e—1/N} = / 2N'210 nax pi (T;X) — (e— -Z—V,—))dP(X)
where the index ¢ runs over all 2N! possible permutations. Define A(x), ..., x@N)

as the number of dichotomies induced by F' on the 2N input vectors. Then the
dichotomies induced by F' may be represented in a binary matrix Q with A rows
and 2N columns. Q;; = 0 if d;; = y; and 1 otherwise, where d;; is the element
j of dichotomy d® and y; is the class label associated with the input vector x4
For each dichotomy d®,1 < i < A, vy is the frequency of 1s among the first N
entries in the row, while /4 is the frequency of 1s among the second N entries.
Permuting the rows of X corresponds to permuting the columns of §). The integrand
of the integral in the preceding expression is therefore the probability that a random

permutation of the columns of © will result in a matrix with at least one row d®
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for which p;(X) > e — 1/N. All permutations are equally likely, so for a given {2 this
calculation amounts to counting how many of the 2/N! permutations result in at least

1 row for which the inequality holds.

partition: 1 2 1 1 2 2 2 1 2 1
}((1) X(2) X(3) X(4) X(S) X(G) )((7) X(S) X(9) X(10)
do 1. 0o 0 1. 0 1 1 0 1
dl1 1. o0 01 0 1 1 O 1
dl]t o o o1 01 1 0 1
dlT o 1. 01 01 1 0 1
dl1t o 111 0 1 1 0 1
dl1 o 1. 1. 0 0 1 1 0 1
11 0 1 1. 01 0 0 1 O

Figure 5.3: The columns of the dichotomy matrix § are randomly partitioned into
two groups. For each row, the frequency of 1’s is computed for each of the two groups.
The VC bound upper bounds the number of column partitions which result in at least

one row where the difference in frequencies is greater than ¢ — 4.

The VC bound is derived first by considering a single row (e.g., row 1) in isolation
and bounding the number of column permutations which satisfy the inequality for
that row. It suffices to count the number of partitionings of the 2/N elements of the
row into two groups of N, since p;(X) is invariant to permutations which leave the

partitioning unchanged. If there are N; 1s among the 2N elements of the row, then

Pr{pi(X) > e—1/N} is given by
(8)CR=)
k )\ N-k
D
k ( N )
where the index & runs over all values satisfying the inequalities

k. Ny—k 1
>
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The following bound is derived in [Vapnik, 1982]:

T < 3=V

From the definition of the growth function G(N), we know A is bounded above by
G(2N). The total number of partitions of the columns of £ which result in at least
one row satisfying p(X) > (e — &) can be no greater than the maximum number
of partitions for which the inequality is satisfied for a single row, multiplied by the

number of rows. This union bound argument is used to obtain the final VC result.
1 C(e—1)2
2PT‘{1’§1€aB(Pd(X) > (e— N)} < 2AT < 6G(2N)e (c=w)N

5.4.2 Derivation of the Connected Function Class Bound

It should be obvious that when the dichotomies are connected, the union bound tech-
nique will result in a loose bound. Any partition of the columns for which the inequal-
ity is satisfied simultaneously in more than one row is being unnecessarily counted
more than once. A connected set of dichotomies is such that many dichotomies (rows)
are very similar to each other. At the very least, we know that for every row, there
exists at least one other row which differs in only 1 of the 2/V entries. Clearly, the
vast majority of partitions for which the inequality holds in a given row will also
result in the inequality being satisfied for the row which differs in only 1 entry. This
observation is at the heart of the improved bound being derived here.

Theorem 5.4.1 For any connected function class, the following bound holds for

> 2(5—1%)2 :
(G(2N) - 1) —(e—Ly?
Prisup|ms — v¢| > €} < 12(—2 1 1)el~(e=w)*N)
{felgl d /1 } ( vVaN )
Proof:

Suppose we define some ordering over the dichotomies d®, ..., d(®) induced by
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F on a sample of size 2N. Then we have

1

SH= S Prip(X) > e p(X) S em 5 Vi< )

i=1

P (X)) > e—
g i) >

Lemma 5.4.1: For any connected set of dichotomies, there exists an ordering (

d® d® . d@A) ) such that the following property holds:
Vix>1 3(@) <

such that

Proof: The proof is by construction- we describe an iterative procedure for find-
ing an ordering. Let S represent the current ordered set of dichotomies. Pick d(
arbitrarily from D and place it in §. Now repeat the following procedure A —1 times:
Let ¢ be the current number of dichotomiesin S. From the definition of connectedness,
there must exist a pair of dichotomies d® € §,d®) ¢ S such that ||[d® —d®)|| = 1.
Set di+1) = d(®), Then d®) =d®) m.

This lemma allows us to bound the quantity

1 1. .
Pripi(X) > e~ =, pi(X) <=e- 5 Vj<i}
For : > 1, we know 3 a dichotomy d) which differs by only 1 bit from d®. It is

clear that |pi(X) — pis)(X)| = % Let npin = [ Ne|. Then clearly

1 1 Nomin Mmin —1
pilX) > e— 55 pip(X) <= e~ = piX) = 7, (X)) = =

The following bound therefore holds:
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1 1, &
. — —1I K —_— . = ——
Pr{dl(%% pi(X) > ¢ N} < Pr{pamy(X) > ¢ N} + ;ﬂ Pr{p:(X) N

Define p(k) and q(k) as follows:
)
p(k) = ~—rn—"
(%)

_pk+1) (N —k)(N k)
W)= T Gr DN+ E+ =)

p(k) is the probability of k ones appearing in the first of two partitions of the 2N

elements of a single row. Define k,,;,, to be the smallest & such that

Nl Nmin
1
2 ~ T3

Then, using the symmetry of p(k), we know that

Pripi(X) = ”]"\}} = 2p(kmin)

Using Stirling’s approximation [Feller, 1950] :
V2rNNt3e~ V4o < NI < /2 NVVieNtaw

one can easily derive upper and lower bounds for (]&] ):
2

2N+1 -1 N 2N+1
e < |y | < —=—=e€7

V2r N V2N

1

k-

2

Note that the upper bound is also a bound on ( ]Z ) for all k. This implies that

2V N

vk #lk) < VTNI(2N — Ny)
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We have defined ¢(k) such that

plhwie) =p(1050)) 1T at9
In [Vapnik, 1982] it is shown that
Frinl —(N +1)((e = §)N)?
I () < ”p((zvl TN M, + 1))

i=]0.5n]

Returning to p(k), we have

2vVN —(N + 1)((e = §)N)? )

P(kmin) < \/7TN1(2N — Nl)e:l:p (N1 +1)(2N — N; + 1)

Differentiating twice with respect to N, leads to the conclusion that this expression
is maximized at Ny = N provided that 2(¢ — %;)2)N > 1, which is required in order

for any bound of this nature to evaluate to below unity. Therefore

P(kmin) < \/i_Ne:z:p(_(((E]\;—I_Nl))N) ) < \/:_Ne(—(e—%)zN)

Thus, we obtain

1 1 6(G(2N) —1 2
Pr{dr(ril)aé% pi(X) >e— N} = Pr{pi(X) > ¢— N} + (_(__;T%e(—(e—%) N)

which in turn is bounded by

vaN
We multiply by the required factor of 2 to complete the proof m.
The impact of the improvement in the bound will be most substantial for learning
models with very low VC dimension, becoming more negligible as the VC dimension

v grows. Recall that
G(2N) < (2Ne/v)"
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Hence we can view \/%N) factor as (roughly speaking) reducing the VC dimension by

%. This reduction is significant when the VC dimension is small but quite minor when

the VC dimension is large. In table 5.1, we show the number of examples required to
be 90% confident that the true error rate is within 25% of the observed error rate, as
a function of the VC dimension. The reduction in the number of examples is more

than 10% for a VC dimension of 3, but less than 1 % for a VC dimension of 100.

VC'dim | connected class bound | standard bound
3 337 388
10 1032 1095
100 10,090 10,180

Table 5.1: Comparison of standard bounds and connected ciass bounds.

5.5 Simulations

One might expect that the connectedness theorem should imply a larger improvement
in the bound then the one obtained by the result of the previous section. Theorem
5.4.1 only capitalizes on the fact that for each dichotomy there exists another di-
chotomy which differs by only 1 bit. Connectedness actually implies much more than
this- for any dichotomy, there will be many other dichotomies which differ on only a
small fraction of the 2N points. Hence, the overcounting done by the standard VC
bound is probably even more severe than Theorem 5.4.1 would indicate.

How much more could the bound be tightened? A lower bound is given in
[Ehrenfeuch et al., 1993]. The bound applies when we want to have confidence of
greater than 99% that uniform convergence at accuracy level ¢ < % has occurred.
Then the number of examples required is bounded below by

N>l
- 32

where v is the VC dimension of the function class. For instance, setting v = 50 and
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e = 0.1, we arrive at a lower bound of N = 16 examples. Upper bounds such as
the one given in Theorem 5.4.1 are transcendental equations, meaning that N cannot
be expressed analytically as a function of € and v. We can solve numerically for the
required N, however. The connected class bound yields N = 42,300 ! It is therefore
hardly an exaggeration to say that a considerable gap exists between upper and lower
bounds.

Interestingly, theoretical lower bounds are not the only way to assess the potential
for tightening the upper bound. This section will show how Monte Carlo simulations
can be used to gauge how much room for improvement there remains.

Recall that the critical intermediate step in the derivation of Theorem 5.4.1 is the
bounding of the quantity

, 1
p= Pr{d%l)aé% lvaw — vV'gw| > e — N}
p is bounded by bounding the number of partitions of the columns of the dichotomy

matrix ) which result in at least one row 7 for which

1
Vaw —V'aw| > €~ -}
If 2 were known explicitly, then p could be estimated by randomly partitioning the
columns of ( many times and observing how frequently the statement

1
!
m i — | > €— —
{max Jraw —v'aw| > e = 5}

held true. For certain simple models, however, we do know ). Perhaps the simplest

model which still contains an infinite number of hypotheses is the one-dimensional

threshold model
f(@) = (= — b)

It is easy to see that the threshold model induces N + 1 dichotomies- the threshold b
can be positioned to be larger than k of the data points, for any 0 < & < N. Suppose
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we form an N +1 by N matrix A with row k corresponding to the dichotomy which
classifies £ — 1 inputs as 0. The first NV rows of A correspond to a square matrix with
I’s on and above the diagonal and 0’s below, while the last row is all 0’s. Then  can
be obtained immediately by comparing each row of A to the target dichotomy and
setting €};; = 1 if there is agreement between A;; and the corresponding entry in the
target dichotomy.

This procedure was implemented to estimate p for various N and ¢ for the thresh-
old model. Table 5.2 shows number of examples required for the estimate of p to fall
below 0.5, as a function of e. The number of examples predicted by the standard VC

bound and the connected function class bound are shown as well.

€ | Monte Carlo | connected class bound | standard bound
0.1 290 780 1140
0.05 1100 3380 5120
0.02 6300 23500 36800

Table 5.2: Comparison of simulation results and theory for threshold model

The simulations demonstrate that there is still considerable room for improvement.
It should be emphasized, however, that these simulation results apply only for the
threshold model. The gap between theory and simulation could be either larger or
smaller for more complex models. We also need to note that the simulations only

bound the room for improvement via techniques which bound

1
p=Primax |vgn —Vaw| >~ 5}

as an intermediate step. It is conceivable that better bounds could be obtained

through another approach.
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5.6 Conclusion

The significance of the results presented in this chapter lies less in the improvement in
the bounds than in having introduced the notion that the diversity of the dichotomies
of a function class plays a role in its generalization behavior. Opportunities abound
for further investigations of this notion. One could develop more detailed character-
izations of dichotomy graphs. For instance, the average number of edges incident to
a node in the graph could be calculated for various function classes. A dichotomy
graph with many edges per node would correspond to a less diverse dichotomy set
than a graph with only a few edges per node. A second line of investigation could
consider alternative measures of the diversity of a set of a dichotomies. One promis-
ing concept is the number of dichotomies a function class can approzimate. We say
that two dichotomies é-approximate each other if the fraction of input vectors they
disagree on is less than 4. Then a function class §-approximates a dichotomy d if
it implements a dichotomy d’ which §-approximates d. A function class which im-
plements A clustered dichotomies will approximate fewer dichotomies than a second
class which implements A dispersed dichotomies. Perhaps bounds can be obtained

in terms of the number of dichotomies a function class can approximate.
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Chapter 6 Conclusion

A general conclusion to a thesis like this one, which consists of two loosely related
parts, can often seem forced. It does seem, though, that an overarching lesson about
learning systems can be derived from the work presented here: the importance of
capitalizing on all available information. Each chapter of the thesis can be interpreted
as an illustration of this point.

The lesson is most easily derived from the chapters on monotonicity constraints.
This research demonstrated the value of using prior knowledge about the target func-
tion. Chapters 2 and 3 showed that models which obey monotonicity constraints can
outperform other models that fail to adhere to this property when it is known to hold
for the target. Chapter 4 supported this idea theoretically with results about the
relatively low data requirements of monotonic models.

The connection between the research in Chapter 5 and the value of information
may be less obvious, but no less important. Here we saw the need to take advan-
tage of all available information about the models we use. Previous learning theory
characterized a function class only through the number of dichotomies it induces.
We showed that there was more information available about many common func-
tion classes, namely, the connectedness property. This information turned out to be
relevant as well, enabling us to obtain an improved bound. Future work on learn-
ing theory should bear this lesson in mind. Progress is most likely to be made by

incorporating more detailed descriptions of learning systems into the theory.
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