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ABSTRACT 

The notion of a reduced real quadratic number goes back to Gauss, 

who defined such a number to be reduced if it is greater than one, and 

its conjugate between negative one and zero. An equivalent characteri-

zation is that the continued fraction of a reduced quadratic number is 

purely periodic. Zassenhaus generalized this by defining a real 

algebraic number a to be reduced if a > 1 and -1 < Re a' < 0 for 

the conjugates a' of a distinct from a. In this thesis, several 

properties of these reduced numbers are developed. In particular it 

is shown that there exist reduced numbers a with the property that a 

has no reduced immediate predecessor, that is, 1 u + - is not reduced a 

for any choice of the rational integer u. We call such a number a 

an ancestor. These ancestors have the property that every real alge-

braic number of degree at least three is equivalent to exactly one of 

them. Here, equivalence is in the sense of continued fractions; a ..w S 

means that there exist integers a, b, c, and d such that ad - be= ±1 

and -~ 
Cl - q3+d. This is equivalent to Cl and S having identical 

continued fractions after a certain point. This property of ancestors 

gives rise to an application to the problem of determining whether or 

not two given integral binary homogeneous forms are equivalent, 

assuming that each form has a real root. If the forms are equivalent, 

so are the roots of the forms; this can be checked by comparing the 

ancestors. This method is computationally effective. 

In another direction, there is a connection between the reduced 

numbers defined above and the Pisot-Vijayaraghavan (PV) numbers (a PV 

number is a real algebraic integer greater than one all of whose other 

conjugates have absolute value less than one). It turns out that any 
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reduced algebraic integer which is not an ancestor is a PV number; 

integral ancestors may or may not be. Part of the thesis is devoted to 

a more detailed comparison of PV numbers and integral ancestors. On 

one side, there is the theorem of Salem that the PV numbers are closed. 

On the other, it is proved here that if K is a field of degree at 

least three over the rationals, real but not totally real, then no 

integral ancestor in K is. isolated (that is, there are other integral 

ancestors arbitrarily close). Much more is true; one can show in many 

cases that the integral ancestors in such a field lie in a set of 

non-trivial intervals in which they are dense. This decomposition is 

studied in more detail. For example, in Q(a), where 3 a = a + 1, 

the integral ancestors are actually dense in [l,a:>). In contrast, in 

Q(
3,j2), the integral ancestors are dense in [1,2] U [3,5] U [6,8] U 

[9,11] u and none of them occur in the gaps. It is proved that 

all cubic fields which are not totally real are like one of these two 

fields in the way the integral ancestors are distributed. Similar 

results hold for fields of higher degree, although the situation is 

somewhat more complicated. 
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NOTATION 

Throughout this thesis, we will use the following notation: 

Z is the ring of rational integers. 

Q is the field of rational numbers. 

R is the field of real numbers. 

Rn is n-dimensional real space. 

For a complex number a, Re a is the real part of Cl and Im a 

is the imaginary part. 

For two sets S and T, the difference S-T is the set of things in 

S but not in T. 

We use the notation (a,b) both for the greatest connnon divisor of a 

and b, and for the open interval. It will be clear from context 

which is meant. 

If a is an algebraic number of degree n over Q, we denote its 

conjugates by 
(1) (2) (n) 

Cl ·= Cl ' Cl ' ••• ' Cl • 

Tr a is the trace of a; that is, the sum of its conjugates. 

NK/Q(a) is the norm of a; that is, the product of the images of a 

under the automorphisms of K over Q. When the field K is 

clear, we write simply N(a). 

[x] is the greatest integer < x. 

!!xii is the distance from x to the nearest integer. 

Finally, the continued fraction notation [u
0

,u
1

,u2 , .•. J means 

1 

1 

u + ••• 
2 



Acknowledgements 

Abstract 

Notation • 

Introduction 

vi 

CONTENTS 

Chapter 1. 

Chapter 2. 

General Properties of Reduced Numbers 

Characterizations of Ancestors . • . 

Chapter 3. The Distribution of Ancestors Within an 

Ideal of a Real Number Field 

Chapter 4. Equivalence of Binary Forms 

Conclusion • 

References 

ii 

iii 

v 

1 

5 

16 

28 

62 

69 

71 



1 

INTRODUCTION 

Let a be a real algebraic number of degree at least three over 

Q, and let a= [u0 ,u1 , ••. J be its regular continued fraction 

expansion. Let be the complete quotients; that is, 

a= [u0 ,u
0

, ... ,um-l'am]· Zassenhaus [l] defined the "reduced state" 

of the continued fraction of a as a point at which ak > 1 and 

for each conjugate a' 
k 

of distinct from ak. 

The reduced state is important for computational purposes; when this 

state is achieved, it is easy to discriminate between ak and its real 

conjugates (this may not be true of a). This is important in calculat-

ing the continued fraction of a. Zassenhaus and Cantor [l] each 

showed that the reduced state is achieved after finitely many steps, 

and that if the condition of being reduced holds for ak, it holds for 

a. if j > k. We will modify Zassenhaus' definition slightly and say 
J 

that a real algebraic number a is reduced if a> 1 and -l<Re a'< 0 

for each conjugate a' of a distinct from a. This is a generaliza-

tion of the existing notion of reduced real quadratic numbers (which 

goes back to Gauss). 

In the continued fraction notation above, we call ak a successor 

of a. if k> j ; we say it is an immediate successor if k = j + 1. 
J 

Similarly, ~ is a predecessor of a. 
J 

if k< j ' and an inunediate 

predecessor if k = j - 1. It is easy to show that a successor of a 

reduced number is reduced. It is natural, then, to ask the same 

question about an immediate predecessor of a reduced number. It is 

proved here that any reduced number a has at most one reduced 

immediate predecessor; that is, there is at most one integer u such 
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that u + l is reduced. Further, by going backwards in this manner 
a 

one arrives after finitely many steps at a reduced number with no 

reduced immediate predecessor. We call such a number an ancestor. 

This thesis is devoted to studying these ancestors. One important 

property which follows from the facts above is that every real alge-

braic number of degree at least three is equivalent to exactly one 

ancestor. 

One interesting feature of ancestors derives from the following 

observation: If a is a reduced algebraic integer and not an 

ancestor, then a is a PV number; that is, la'I < 1 for the 

conjugates a' of a distinct from a. Integral ancestors are in 

general not PV numbers. Because of the rather remarkable properties 

of PV numbers, in particular the fact that the PV numbers are a 

closed set (see [2] or [9]), it is natural to investigate the distri-

bution of integral ancestors. One can show by using Minkowski's 

theorem on homogeneous linear forms that no integral ancestor in a 

real but not totally real number field K is isolated; that is, there 

are other integral ancestors in K arbitrarily close. More generally, 

the same is true for the ancestors within a particular ideal of K. 

However, this is far from the whole story. Given an ideal A of K, 

let L(A) = [e > 1 I e is a limit of ancestors in AJ. If K is a 

non-totally real cubic field, L(A) consists of non-trivial intervals; 

further, the intervals are completely determined by the least positive 

trace of a number in A. As a special case, is all of [ l ,e:>), 

where 6 is the different of K. Another special case of interest is 

the case A (1) = the ideal of all algebraic integers in K. In this 

case, L(A) = [l,°") if and only if the discriminant of K· 
' if 
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co 

271~' then L(A) = [1,2] U U [3k,3k+ 2]. 
k=l 

For higher degree fields we were not able to prove that L(A) is a 

union of non-trivial intervals in general, although this is true under 

fairly general conditions. However, the decomposition of L(A) is 

somewhat more chaotic. For example, in Q(4J2), the integral ancestors 

are dense in intervals of the form [2a+ 2mJ2, 2a+ 2mJZ +l], where 

a = [mJZJ, and no integral ancestor occurs outside these intervals. A 

similar result holds for Q(4JN) where N = 2p, p prime in Z. By 

taking N large enough, we can force every integral ancestor in Q(4JN) 

to be larger than a given bound. This contrasts sharply with the cubic 

case above, where the integral ancestors are always dense in [1,2]. 

This thesis is divided into four chapters. In the first we prove 

basic facts about reduced numbers, and in particular, the existence of 

ancestors. The second chapter contains various results which serve to 

characterize ancestors, in a sense. These results culminate in the 

theorem that the set of all ancestors in a fixed real number field of 

degree at least three is dense in [l,co). It is in the third chapter 

that the sets L(A) defined above are studied. Most of the results 

require the restriction that the field not be totally real. For totally 

real fields, the corresponding theory is completely different in a 

fixed ideal there are infinitely many ancestors, all of which are 

isolated. In chapter four we give an application of ancestors to the 

problem of determining whether or not two given binary homogeneous 

forms are equivalent. Our method applies to forms which are irreducible 

and have at least one real root. The method we describe here is 

effective, and appears in general to be superior to existing methods. 
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For cubic and quartic forms, there are fairly simple algorithms which 

are based essentially on undetermined coefficients, such as is given 

in Delone and Faddeev [3]. However, this is not a promising method if 

the degree is any larger. The principal general method, due to Hermite 

and Julia, while theoretically useful, is impractical computationally 

(see ch. 18 of [6]). We comment on these methods in more detail in 

chapter four. 

We conclude this thesis with a brief description of some unsolved 

problems which arise from this work. 
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Chapter 1. General Properties of Reduced Numbers 

Throughout this chapter we will use the following notation: 

a is a real algebraic number of degree n > 3. 

The conjugates of a are (1) (2) (n) a=a ,a , •.• ,a • 

Let a= [u0 ,u1 , ... ,~, ... ] be the continued fraction representa

tion of a. 

Define am for m > 1 by a= [u0 ,u1 , ... ,um-l'am]. These are the 

complete quotients in the continued fraction of a. Note that the 

conjugates 
(k) 

a 
m 

of a are defined by 
m 

Of fundamental importance is the concept of equivalence of two numbers~ 

Definition. Let x and y be two real numbers. We say x is 

equivalent to y, denoted x,.., y, if x - ay+b where 
- cy+d a, b, c, and 

d e Z and ad - b c = ±1. 

This is an equivalence relation. A basic theorem from the theory of 

continued fractions states that x ,.., y if and only if x and y have 

identical continued fractions after a certain point (see, for example, 

[7], p. 65). 

We also will use the following terminology: 

Definition. In the continued fraction notation above, we say a . 
J 

is a 

successor of if j > k; we say it is an innnediate successor if 

j =k+l. Similarly, a . 
J 

is a predecessor of ak if j < k, and an 

immediate predecessor if j = k - 1. 

It is important to note that all successors and predecessors of a given 

number are equivalent to each other. 

The following definition, essentially due to Zassenhaus, is the 
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starting point for this thesis. 

Definition. Let a be a real algebraic number, as above. We say a 

is reduced if a > 1 and -1 < Re a (k) < 0 for k = 2, ••• , n. 

Note that this agrees with the reduction of quadratic numbers, due to 

Gauss. 

Let a' be a real conjugate of a, and 13 ± iy a pair of complex 

conjugates. From the defining equations a' = + 1 
k ~ a'k+l 

and 

13 + iyk = u + 1 we may solve for 
k k l3k+l + iyk+l ctk+l' l3k+l' and 

to obtain 

(1) 

Lemma 1.1. Assume ak > 1. Then if -1 < ak < O, the same is true for 

ak+l" Also, if -1<13k < 0, the same is true for l3k+l• Consequently, 

the immediate successor of a reduced number is reduced, and so all 

successors are reduced by induction. 

Proof. We have ~ > 1. Thus ak - ~ < -1, and 

The lemma follows innnediately. 

We are prepared now to prove the principal result of this chapter: 

Theorem 1.2. In the notation fixed above, 

1. a has a reduced successor. 
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2. If a has a reduced immediate predecessor, it is unique. 

3. a has only finitely many reduced predecessors. 

Proof. In view of the lemma, we need only show that each conjugate #a 

eventually drops into the appropriate range. For real conjugates, this 

is trivial -- if aCk) is real, its continued fraction must differ 

from the one for a, since a # a(k). So at some point we will have 

where Ck) 
am+l < 1. 

From this it follows that 
(k) 

am+2 = 
1 

< 0' and then 

Ck) 
-1 < am+3 < 0. 

Consider now a pair of complex conjugates S ± iy. 

If then 

so -1 < sm+l < o. 

If Q - u > 1 1-'m m - then 

s -u m m 
2 cs -u ) m m 

13 -u m m 

1 ---> -1 s -u - ' m m 

s -u m m 
2 cs -u ) m m 

1 s -u ::;_ 1, 
m m 

and so 13m+l < 1, Sm+2 < 0, and -1 < 13m+3 < O. 

If Sm - um::;_ 0 then 13m+l < 0 and -1 < l3m+2 < 0. 

If lyml > 1 and 0 < Qm - um < 1 then Q < Q - u < 1 
I-' 1-'m+l 1-'m m ' 

and so -1 < sm+3 < 0. 

Thus we will have -1 < 13 < 0 for some s unless it happens that 
s 

O<S -u <l m m 
and 
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Suppose this happens. Then, since Sm+l > um+l > 1, we have 

2 2 S - u > (S -u ) + Ym· m m m m 

This implies that 

Now so 

Thus jym+1 j > um+1 1Yml. Eventually, we will have IYsl > 1 for some 

s, unless all but finitely many of the partial quotients ~ = 1. But 

1+15 this would imply a,.., [1,1,1, ... J = ~2~, which contradicts the 

assumption that a is not a quadratic number. This proves the first 

assertion. 

Let a
1 

be a reduced number. Any immediate predecessor a to a
1 

has the form for some integer u. We assert that there is 

at most one choice for u such that a is reduced. In fact, any 

conjugate of will determine u. Consider a real conjugate, say, 

The corresponding conjugate of is If a 

is reduced, then -1 < a (Z) < O which implies that 

-1 u + 1 and so -1 -1 the first U< (2)< (2) = [u,(2)]' i.e., u is 
al al a 

partial quotient in the continued fraction of -1 and -1 is (2)• (2) 
al a 

the complete quotient. As u is determined uniquely. 

Consider now a complex conjugate of a1 , say, s1 + iy
1 . We have 

s + iy so s 
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If a is reduced, then -1 < S < O, which implies that 

U< u + 1. Again, there is at most one choice for u. This 

establishes the second assertion. For future reference, let us label 

the formulas for u: 

-1 
u + 1 ( (2) real) u< -m< al 

(2) 
al 

-s1 
+l u< 2 2 < u 

S1+y1 

Finally, let a
0 

be reduced, and consider a chain of reduced 

predecessors a_k = [u_k,u-k+l' ..• ,u_1 ,a0]. We assert that k cannot 

be arbitrarily large. 

If (2) has two real conjugates, say, a
0 

and then we have 

the continued fraction expansions (by (2) above) 

(j = 2,3) 

Since their continued fractions can agree only to a 

finite number of places, so this bounds k. 

If does not have two real conjugates, then it must have a pair of 

complex conjugates So± iy
0

. Assuming a0 has a reduced predecessor, 

we have from (2) 

Thus 2 2 
Yo<-so-So· 

. 1 1 maximum va ue 4' so 

For the function 2 
-x- x has 

1 
ly I < - This is a necessary condition for a_1 0 2· 
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to be reduced. Further, 

Hence jy_1 j > 2Jy0 j if u_1 > 2, and we may conclude that 

unless both and 

get a similar inequality as follows: 

-s_l 
u -13 -2 -2 

= 1. In this case we can 

since 2 1 
y -2 < 4 < u -2 - s -2. 

, , v 4 Thus -s > 
J.. J.. and I .:.::11 Since > 3' so > u - s _1 > 3· -1 u_2-S-2+1 Yo -1 

IY_21 > IY_1l' 
4 

IY_ml 
1 we have IY-21 >31Yol· Eventually, >- for 2 

some m, and at that point there are no more reduced predecessors. 

This completes the proof of the theorem. 

Part three of Theorem 1.2 shows that there exist numbers which are 

reduced, but have no reduced predecessor. These numbers are of central 

importance in everything that follows. 

-Definition. Let a be a real algebraic number of degree at least 

-three. We say a is an ancestor if a is reduced but has no reduced 

predecessor. 

Corollary 1.3. Let a be a real algebraic number of degree at least 

three. Then a is equivalent to exactly one ancestor. 

Proof. From Theorem 1.2, we know a rw ~ with ak reduced. Let T'lk-l 

be the reduced innnediate predecessor of ak (if there is one), and~ 
'lk-2 

the reduced immediate predecessor of T'Jk-l' and so on. We know by 

part three of Theorem 1. 2 that this process will stop after finitely 
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many steps and so we will arrive at an ancestor a which is equivalent 

to a. Suppose that a,..., a also, where a is a different ancestor. 

Then a,..., a, so their continued fractions have the form 

and a= [v0 ,v1 , ... ,v,CJ where u 1' v and is 

reduced. This implies that 1 1 
u + C and v + C both are reduced 

innnediate predecessors of ,, in contradiction to part two of 

Theorem 1.2. 

Example. 3 -
Let a = Jr where r € Q and 1 < r < 8. The conjugates 

of a are 1 S ± iy, where S = -z-a. is reduced exactly when 

-1 < S < 0, i.e, l < a< 2, which is satisfied. Further, 

lvl so is in fact an ancestor. 

The lemma which follows allows for a relatively easy determination 

of the partial quotients of reduced immediate predecessors. It is 

superior to (2) in that a precise knowledge of the conjugates is not 

required. 

Lennna 1.4. Let a1 be a reduced number, and let 

f(x) = a
0 

+ax+ •••+a x0 be its minimal polynomial over z. 1 n 

If a = u + ...!__ is reduced, then 
al 

Proof. From the formulas which relate the coefficients of f to its 

roots we have 

1 1 
-+-(2) + 
al a 

1 

+-1-. 
(n) 

al 

If a is reduced, then from (2) -1 
u < --W < u + 1 for each real 

al 
conjugate of a 1 , and for a pair of complex conjugates S ± iy we 



have 2u < ; 2s 2 < 2 ( u+l). 
s +y 

Since 

-1 
(n-1) u < (2) + 

al 

The result follows. 

. . . 

12 

we have 

-1 
+ --W- < (n-l)(u+l) . 

al 

Example 1. Let Tlo be the real root of 3 f
0

(x) = x + 3x + 2; the 

other two roots are complex. We will find the ancestor equivalent to 

As -1 < Tlo < O, u = -1 
0 and Tlo is not reduced. Setting 

1 
,.,0 = -1 + -
'I Tl1 , we have that n 1 is the real root of 

3 2 f 1(x)=2x-6x+3x-1. Now 2<n
1

<3 and n
1

+2s
1

=3, so 

of 

is not reduced. 1 Tl =2+-
1 Tl2 

where n2 is a root 

3 3 f 2 ( x) = 3x - 3x - 6x - 2. Now 2 < Tl 2 < 3 and Tl 2 + 2S 2 = 1, so 

1 
-1 < s 2 < -z-, and thus n2 is reduced. We need to see if n2 has a 

reduced immediate predecessor. According to Lemma 1.4, if 1 
u + - is 

Tl2 

reduced, then u = [ 12 (3 + _1_)] = 1. 
Tl2 

Let 1 a = 1 + -· 
1 Tl2' 

it is a root of 

3 2x - 3x - 2. and 1 < a
1 

< 2, so is reduced 

(actually, the condition in Lenuna 1.4 is both necessary and sufficient, 

if u ~ 1, in the case of cubic non-totally real numbers). Applying 

the lemma again, if 1 
is reduced then [ l(-~+ _1_) ] = 1. Let u+- u = 

al 2 2 a
1 

1 
it is a root of 2x3 2 As 3 and ao = 1 +-· - 3x - 1. ao + 2So = 2 a , 

1 
3 

[1,1,n2J we have 2 and thus is reduced. Finally, ao = -< ao < ao 2 

if u + _1_ is reduced then 
ao 

must be greater than one. 

u = 

So 

1 1 (-(0+-)] = O, 2 a
0 

but a reduced number 

is an ancestor, and is the ancestor 
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equivalent to Tlo. We have Tlo = [-1,2,ri2J and Cl = 0 [1,1,ri2J, so 

the relationship between and its is -1 
Tlo ancestor ao Tlo = 

ao 

Exam:ele 2. Let ' = 3,j6 and let ao be the real root of 

2x3 
+ 12x2 

+ 24x + 13; we want to determine whether or not a0 ,..., G· 

The discriminants of the polynomials satisfied by a0 and ' both are 

-972, so this by itself is inconclusive. We will resolve the question 

by finding the ancestors equivalent to ao and '. Now ' already is 

an ancestor, as verified in an earlier example. For ao' we follow 

the same procedure as in example 1 above. First, -1 < Cl" < O, so ao v 

is not reduced. Setting Cl = -1 +l we find that al is a root of 0 Cl ' 
3 2 1 

x - 6x - 6x - 2, and 6 < a 1 < 7. Since al + 2s1 = 6, we have 

1 
and is reduced. By Lemma 1.4, if +l is -2 < S1 < o, al u 

al 

reduced, then [..!.(3+l)] = 1. Let 1 find that u = Cl 1 +-· we Cl 2 a 1 a ' 1 

satisfies 2x3 - 3, i.e., a= 3/z, which not only is reduced, but is 

an ancestor, according to an earlier example. As a~,, we see that 

We conclude this chapter with some brief comments as to the 

effectiveness of this method of determining whether or not two real 

algebraic numbers are equivalent (that is, by comparing their ancestors.) 

Theorem 1.2 shows that we arrive at the ancestor of a given number a 

after finitely many steps -- forward to the first reduced successor ak, 

and backwards to the ancestor a. However, the theorem does not give 

an explicit bound on the number of steps involved, although this is to 

some extent implicit in the proof. It is clear that in general 

arbitrarily many steps may be required; for example let a be an 
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ancestor, and let a= [u_m,u-m+1 , ••• ,u_1 ,a] where each u. 
J 

is a 

positive integer. In general the number of steps required depends on 

how close the conjugates of a are to each other and to a. Before 

we give precise bounds on the number of steps, it is helpful first to 

prove the following lemma: 

Lemma 1.5. Let x and y be two distinct real irrational numbers. 

Then the number of places their continued fractions can agree is 

bounded by -2 loglx-yl + 
9 1. 

log -
4 

the continued fractions agree to several places. Then 

In particular, jx1-y1 j > !x-yJ. Similarly, 

1 2 l 2 
jx2-y2 j > (u1 + u

2
+1) (u2 + u

3
+1) lx-yj. Thus jx2-y2 j > 4lx-yl unless 

9 u
1 

= u2 = 1. But then we have jx2-y2 j > 4lx-yj, so this inequality 

holds in any event. By induction, jx2n-y2nj > (~)njx-yj, as long as 

the continued fractions of x and y agree to this point. We know 

that if l~-ykj > 1 for some k, then ~ # vk. This will be 

guaranteed if 

as asserted. 

k is large enough -- specifically, if k > -2 logjx-yj 
9 

log 4 

This is certainly not the most precise result possible, but it is 

enough for our purposes. Let us consider now the number of steps 

needed to go from ak, the first reduced successor of a, to a, its 

ancestor. If ak has a complex conjugate Sk + iyk' 

4 
jyk_2 j > 3jykj' from the proof of Theorem 1.2. When 

then we have 
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chain stops, so this gives an explicit bound on the number of steps 

in terms of jykj. Specifically, the number of steps is bounded by 

-2 log 2lykj 
~~~~4~-+.l. 

log -
If ctk has two real conjugates a.~2 ) and a~3) then 

3 
-1 -1 reduced immediate predecessors continue only as long as ---czT and ~ 

ak ~ 

have the same continued fractions. Thus, by virtue of Lemma 1.5, one may 

bound the number of steps in terms of 

The problem of how many steps are required to reduce a to 

is more difficult. For a real conjugate, say, 
(2) 

a ' this depends on 

Ja-a( 2)j, and again Lemma 1.5 will provide an explicit bound. For a 

complex conjugate it was necessary in proving Theorem 1.2 to appeal to 

the fact that a has infinitely many partial quotients > 2 in its 

continued fraction. More precisely, we needed the product of the 

first m partial quotients to be larger than a bound which depends on 

the imaginary part of the conjugate of a. It is at this point that 

the argument is not effective, since it is not clear how many partial 

quotients are needed to make this product big enough. 
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Chapter 2. Characterizations of Ancestors 

In this chapter we prove several results which help to identify 

when a reduced number is an ancestor. They serve as preparation for 

Theorem 2.9, which asserts that the set of all ancestors in a given 

real number field of degree at least three is dense in [1,~). We 

begin with a series of results which answer the following question: If 

a is not reduced, when is the first reduced successor of a an 

ancestor? 

Proposition 2.1. Let a be a real algebraic number of degree at least 

three, and not reduced. Let ak be its first reduced successor, and let 

Then is not an ancestor if and only if there exists 

N < v - 2 in Z such that N < Re ak-l < N + 1 for each conjugate 

a.' of k-1 

Proof. We have 

1 c=u+-. ak 
ak 

distinct from ak-l' 

and is not reduced. Let 

is not an ancestor if and only if C is reduced for 

some choice of u, i.e., u > 1 and -1 <Re C' < 0 for each conjugate 

C' =J:. C. Let N= v- u- 1. The last conditions are equivalent to N < v- 2 and 

N < Re ak-l < N + 1. Conversely, if such N exists, let u = v - N - 1 
1 and then C = u + ~ will be reduced. 

Corollary 2.2. Let a be as above, and assume a> 1. Suppose that 

a has one conjugate a( 2) with Re a( 2) > 0 and another, a( 3
), with 

(3) Re a < O. Then the first reduced successor of a is an ancestor. 

Proof. If 

Otherwise, 

is reduced, it is an ancestor by Proposition 2.1. 

-1 < Re a( 3) < 0 and some other conjugate has real part 1 

outside this range. Further non-reduced successors will have the same 
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property. Then Proposition 2.1 implies the desired result. 

For example, let n-a = 'jq where q e Q, q > 1, n > 4, and a 

has degree n over Q. Then a satisfies the conditions of 

Corollary 2.2, so the first reduced successor of a is an ancestor 

(note that a itself is not reduced). One may consider the question of 

how many steps are necessary to reduce such an a. Let t be the 
n 

maximum number of steps required to reduce an nth root a > 1. The 

following table gives the first few values of 

5 6 7 8 
1 l 2 2 

t : 
n 

We prove the result for n = 4, 5, 6. As n increases, the 

computations get more and more tedious, and are not particularly 

enlightening. So let na = • 1q "' ' 
as above, where n < 6. Any conjugate 

of a with real part < 0 trivially reduces in one step; thus we need 
21Ti 

only consider what happens to the conjugate S + iy = ap = ae---U-- = 
21T . 21T 

a cos n + ia sin n where n = 5 or 6. From (1) of chapter one we 

have 

s-u (u= [a]) 

21T 1 
s=-acosn<za, so s<u and S1<0. Weshow S1>-l by 

showing that the denominator is greater than the absolute value of the 

numerator. (S-u) 
2 

+ y
2 

- ls-ul = (S-u) 
2 

+ y
2 

+ S - u 

( 21T ) ( . 21T ) 2 . 2 21T a eos :--u a cos - -u+l + a sin - = n n n 

2 21T 2 21T a + a cos -(l-2u) + u - u = a(a+ cos -(l-2u)) + u(u-1). 
n n 

Now 21T l-2u 1 
u(u-1) > 0 and a + cos. ~ (l-2u) > a + - 2- = a - u + 2 > O. 
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Thus s1 > -1, and so is reduced, as claimed. 

n r:;;-: It is easy to see that -..;2---1 takes at least two steps for 

n > 7, since s1 > 0 in the notation above; this .shows that t > 2 n-
if n > 7. In fact, it is not difficult to show that t -+ 00 as 

n 

n -+ oo. We argue as follows: Let N-a = Jq where q e Q and a 

sufficiently close to 1+15 8 = - 2-= [1,1,1, ••• J. Let S + iy = ap = 

2'IT + . . 2'IT b k. N a cos N i.a sin N; y ta ing · large we make y small and S 

is 

arbitrarily close to a (and 8, for appropriate choice of q). We can 

show by induction that j3 is still close to 8 if N is large n 

enough, and a is close enough to 9. From (1) of chapter one we 

have 

Now if a is close enough to 8, the first M partial quotients of 

a are ones, for M arbitrarily large (this depends on q). If 
3 

Sn > 2• then Jyn+ll < 4jynj; hence by induction if 

S0 , 13 1 , •.• , Sn> ;, then lYn+ll < 4n+l!Yol • Again from (1) of 

chapter one we have 

Let r:i = 8 + o , .,n n 

!3n+l - 8 = 

Sn+l = 

and assume 

s - u n n 

2 CS -1) (1-8(!3 -1))-8y n n n 
2 2 cs -1) +y n n 

1. Then 

2 
-8 Cy +o (9-1+0 ) ) n n n 

8 <y
2
+o C9-1+0 ) ) 

3 and so 1°n+1l < 
n n n If lonl < 8 then 
(9-1+0 )

2 - 2' 
n 

1 and thus Jon+1l < 8(4y~+2lonP 4 c2y~+I onl). 8 - 1 +on> 2' < Now 
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if Jo
0

J < y~ (choice of q), and Jy0 1 is small enough (choice of N), 

then ly1 J < 4Jy0 1, and lo 11 < 4(3y~) < 16y6 = 42y6. Thus 

4 2 
4 Yo· In general, 

jy
0

J is small enough. Thus given k and E > 0, by taking N large 

enough and q appropriately, we can insure lokl < E, SO Sk > 1 and 

ak is not reduced yet. Hence at least k steps are required to 

reduce a. 

We return now to the previous discussion. The next result is in 

some sense a strengthening of Corollary 2.2. 

Corollary 2.3. Let a be as in Proposition 2.1. Suppose that a has 

one conjugate 
(2) 

a with real part > u and another, 
(3) 

a ' with real 

part < u, where u = [a]. Then the first reduced successor of a is 

an ancestor. 

Proof. The corresponding conjugates and satisfy 

Re rvl( 2 ) > 0 and Re rvl(3) < 0 . A rv > 1 . t d d u u s u
1 

is no re uce , we may 

apply Corollary 2.2. 

Definition. We say that a has "dispersed conjugates" if there is no 

integer N such that N < Re a' < N + 1 for the conjugates a' 

distinct from a. 

Proposition 2.4. If a is an ancestor with at least one real conjugate, 

then any immediate predecessor to a has dispersed conjugates. 

Proof. Let 1 C = u + a be one such innnediate predecessor. We know C 

is not reduced. Suppose that N <Re C' < N + 1 for each conjugate 

C'· Then N < u - 1, or else a would not be reduced. Further, if 

N = u - 1, then the real conjugate of a would be less than -1. So 
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N < u - 2. But then Proposition 2.1 implies that a. is not an 

ancestor. So no such N exists. 

Theorem 2.5. Let a. be a real algebraic number of degree at least three 

over Q, and not reduced. Suppose a. has dispersed conjugates and that 

Re a.' < a. for the conjugates a.' distinct from a.. Then the first 

reduced successor of a. is an ancestor. 

Proof. Let u =[a.]. If Re a.' > u for each conjugate, then equality 

must hold for one of them, since the conjugates are dispersed. Thus, say, 

Re a.( 2) = u and Re a.( 3) > u. Then Corollary 2.3 implies the result. 

Again, if there are two conjugates, one with real part < u and one with 

real part > u, the same corollary applies. Thus we may assume Re a.'< u 

for each conjugate. Since the conjugates are dispersed, we have 

Re a. 1 < u-1 for at least one conjugate, say, 
(2) 

a. . This implies that 
(2) 

-1 < Re a.
1 

< 0. Now if is reduced, it is an ancestor, by Proposi-

tion 2.1. If a.
1 

is not reduced, then the real part of some conjugate 

lies outside the interval (-1,0). Further non-reduced successors will 

have the same property; Proposition 2.1 then implies the desired result. 

Exam:ele. Let f(x) 4 - 14x 2 + 9; f is irreducible over Q, and its = x 

roots are ±a. and ±S' where a. =JS +J2 and s =JS -J2. As 

a. ,.., -a., they have the same ancestor; the same is true, of course, for s 
and -S. We will find the ancestors for a. and S. a. satisfies the 

conditions of Corollary 2.2, and S those of Corollary 2.3. Alternatively, 

we may apply Theorem 2.5 to a.. At any rate, in each case the first 

reduced successor is an ancestor. Following their continued fractions, 

we have a.= [3,a.
1] and S = [O,l,4,S 3] where a.1 and s3 are ancestors. 

4 3 . 2 d They satisfy the polynomials 36x - 24x - 40x - 12x - 1 an 
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4 3 2 28lx - 284x - 248x· - 56x- 4, respectively. An immediate consequence is 

that a,/., S, althOugh this. ce,tild-have been determipedby othermeans as well. 

Let K be a real but not totally real field of degree three over 

Q, and let a be an irrational in K. Denote the conjugates of a by 

13 ± iy. Since a + 213 e Q, we know S cannot be an integer, and so 

a never will have dispersed conjugates -- we have N < 13 < N + 1, 

where N = [SJ. Suppose that is not reduced but is. Then we 

must have N <[a] - 1, or else s1 > 0 (from (1) of chapter one). Now 

Proposition 2 .1 says that a 1 is an ancestor if and only if N = [a] - 1, 

i.e., N < 13 < N + l < a < N + 2 for some N. If we replace a by 

a - N this does not change a 1 , and has the effect of normalizing 

N o. This suggests looking at the following sets: 

s [aeK-Qll<Cl.<2 and 0<13<1, where 13 

T = [a € SJ a1 is reduced} . 

Re a'} 

The argument above shows that if a
1 e K is an ancestor, then 

a = 1 + l € T. Thus, the immediate successors of elements of T are 
Cl.l 

exactly the ancestors in K. The set T forms a useful canonical set 

of immediate predecessors for ancestors in this type of field. The 

set S - T has a simple characterization: 

Proposition 2. 6. a e S - T if and only if where 

is an ancestor, k > 1, and M < w = [rik_1]. In other words, a 

reduces in two steps, and its first reduced successor is not an 

ancestor. 

Proof. Let a be in S - T. Then a = 1 + l where 
Cl.l 

is not 

Tlo 

reduced. Since 0 < S < 1, we have 13 1 < 0 and so 13 1 < -1 since 
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is not reduced. Now is reduced regardless of the next partial 

quotient; further, a 2 is not an ancestor, by Proposition 2.1. So 

Cl2 = nk where nk is as in the statement of the proposition. Thus 

a has the form [l,M,nkJ where we know as yet only that M ~ w. Now 

let and determine conditions on M so that 

Let and let S = Re Cl' • We have 

so 

Cl I = 1 µ + i"I) 
+ (Mµ+ 1) +iMv and 

-µ 
2 2 < w + 1, 

µ +v 
Since Tlk is not an ancestor, we have w< where 

w = [nk-1] and nk-1 is the reduced immediate predecessor of nk 

(from (2) of chapter one). We may rewrite this inequality as 

From (1) we see that M(µ 2+v 2) + µ < 0 if and only if M ~ w; thus 

s < 1 if and only if M < w. Now if M = w then is reduced; so 

we have proved that a € S - T implies a = [l,M,nk] with M < w. 

Finally, if a has this form and M< w, then a 1 is not reduced 

and s < 1. It remains only to show that s > 0 to conclude that 

Cl € s - T. From (2) of chapter one we have w< 
-µ -µ 
2 2 < 2• so 

µ +v µ 
-1 this combined with the fact that M< w shows that µ>-· w' 

Mµ+ 1>1 -: > 0. Thus JMµ+ 11- jJJl = Mµ+ 1+ µ= l+ (M+l)µ > 1- M:l > O, 

and so I ul < Mµ+l. Then 
2 2 2 2 2 22 jMµ +u+Mv I< jMµ +ul +Mv < (Mµ+l) +M v 

so we have 

This implies 0 < S < 1, as desired. 



23 

One conclusion we may draw from this is that there are infinitely 

many numbers in S - T. Any ancestor ~O has infinitely many partial 

quotients >l; thus S - T contains numbers of the form [1,1,~k] 

where [~k-l] > 2. One may define analogous sets to S and T for 

any real number field of degree > 3, although in this case not all 

ancestors arise as innnediate successors of numbers from T. (Proposi-

tion 2.4 sheds some light on this question). However, the characteri-

zation of S - T remains the same. 

The rest of this chapter is devoted to proving Theorem 2.9, which 

states that the set of all ancestors in a real number field of degree 

at least three is dense in [l,m). The only really difficult case 

occurs for non-totally real cubic fields; in such a case we will make 

use of the set T defined above. 

Lemma 2.7. Let K = Q(C) where C is real and jK: Qj > 3. Further, 

assume that K is totally real if jK: Qj = 3. Then some reduced 

successor of C has two conjugates with distinct real parts. 

Proof. By Theorem 1.2 we know C has a reduced successor, say, Ck· 

If Ck does not have the property desired, we will show that Ck+l 

does. h . /"k(2) must ave two conJugates, say ~ and !" (3) 
~k ' which 

are not complex conjugates of each other (this follows by assumption of 

the nature of K). If Re c~2 ) #Re C~3) we are done. Otherwise, 

since jimC~2 ) I # jrmc~3 ) j, we will have Re C~~i # Re C~~i, by (1) 

of chapter one. 

Lemma 2.8. Let K be a real but not totally real field of degree 3 

over Q. Then K = Q(C) where C satisfies an equation of the form 

'
3 

+ ac - b = 0' where a and b e z' b > 0' and if a < 0 then 
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b 1 
iarc > 3· 

Proof. Let a be a generator for 

be its minimal polynomial over z. 

satisfies a polynomial of the form x3 + ax - b where a,b e Z. We 

may replace C by -C if necessary to assume b > 0. If a> 0 this 

polynomial will have only one real root, as needed. If a< 0, the 

polynomial will have only one real root if and only if it takes on a 

negative value at the local maximum x = -R (since the value at 0 is 

negative). At -R, the polynomial is ;R- aR- b = -
2
t-H-b. 

2 -4a3 
This is negative if and only if b > ~ . This is equivalent to the 

· h 1 f r - 3b i' f and 1 · f h 1 · 1 · statement in t e emma; or b < a on y i t e po ynomia is 

-3b 2 -4a3 
positive at ~' which happens if and only if b > ~ 

Theorem 2.9. Let K = Q(C) be a real number field of degree at least 

three over Q. Then the ancestors in K are dense in [l,m). 

Proof. There are four cases to consider. 

Case 1: K is not a non-totally real cubic field. Then take 

' as in 

Lemma 2.7; that is, ' is reduced and at least two conjugates of ' have different real parts, say, '(2) and '(3). Let e be an 

arbitrary real number in (1,2), and set a = re + t where r and 

are rational numbers to be determined so that a is close to e 
1 
~- = a is an ancestor. This will prove density of ancestors in a-1 1 

[1,m). Select re Q so that 

2 r>-
C 

and 

and 

t 
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Define K by re= (l+K)S; since re> 2, K> O. Let t =-KS+ c: 

where c: is small and chosen so that t € Q. Then t < O. 

a = re + t = e + c:, and the choice of r insures that a has 

dispersed conjugates; ja(2)-a( 3)j > 1. 

for k f:. 1; since [a] = 1 we have 

Re a (k) = rRe e (k) + t < 0 

and so 

reduced. Then a 1 is an ancestor, by Proposition 2 .1. As c: is 

arbitrarily small, the result follows. 

is 

Case 2: K is a non-totally real cubic field with a> 0 in Lennna 2.8. 

Let e be a generator for K as in Lennna 2.8. It will suffice to 

prove that T is dense in (1,2). Denote the conjugates of C by 

µ±iv. We have µ = -~ 
2 

and '(µ2-tv2) = b which implies 

2 b-k3 
4b-c

3 
3b+aC v = = 

e 4C Li<.: 

Let a=rc+t where r and t are to be chosen in Q, and denote 

the conjugates of a by s ± iy. Th en S = -1- + t and y = 1\J • 

Now if a € S and 1 !YI > 2 then a € T (that is, al is reduced) . 

This follows from (1) of chapter one. S
. 2 ince v 3b+8' 

= ------4C 
we have 

So if r is chosen so that then and lvl > ~ is 

assured. 

Let 8 be an arbitrary real number in (1,2), 3 and set re= 5e +c: 

2 and t = 58 +c where c: and 6 are small and chosen to make r and t 

rational. Then 3 1 
re > - > - ' a = e + € + 6 

5 /3" 
is close to e, and 

1 € s = 10 e + 6 - 2 is between 0 and 1 if and are small enough. 

So a e T and can be made arbitrarily close to 9, 
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Case 3: K is as in Case 2 except that a< 0, and restrict 

b > I a I e . Renotate so that a > 0 and e 
3 

- ac - b = 0. Let 

µ ± iv be the conjugates of e as before. We have µ = -~ 
2' 

e /Eii_ 
2v = ,j3b::a[ . Also, 

2 2 b-%c3 e2 b-k3 
b-a£: 2 o. v - µ = - -= =--> 

e 4 c zc 

Take 8 e (1,2) as before and let 2 
where again a= re + tC 

are rationals to be determined. Notating as before, we have 

2 2 -r tr 
13 = r(µ -v ) + tµ = ze (b-ac) - T and y = -vCre-t). Take 

and 

r and t 

2 
re = (H"K)8 + 0 and te = -tee + E where K: > 0 is to be determined. 

Then r > 0 and t < 0 (for o, E 

e ;b+aC 

small enough), so IYI > vrc > ; if 

2 c re > 2v. Now Zv = 3b-ac < 1 since b > ac . Thus IYI > ~ if 

re
2 > l; this will be assured if K: > 0. So we need only determine K: 

so that 

8. Let 

K: > 0 and 

b-aC 
cr = b+ac; 

0 < 13 < l; we have assured that 

then 0 < cr < 1. We have 

a is close to 

!\: 
2 

cr tC cre Cl +K) + !ff2. + 13 = --2- - T = - 2 2 error terms • 

To get 13 > 0, we need K: > cr(l+K:), i.e., K: > l~ (for o,E small 

enough). 
2 -+cr 

K: < .e...._: 
1-cr 

Now cr is 

Similarly, 13 < 1 if K:8 - crS(l+K) < 2, i.e., 

Thus 0 < 13 < 1 if we take K: so that 
2 
-8 +cr 

_Q_<ll'< 
1-cr "' 1-cr · 

fixed, and this interval is non-empty, so such 

Thus a € T, and so T is dense in (1,2). 

Case 4: K is in Case 3, except that 1 b 
1. Let as -< -< 3 ac 

and b+aC We have 
1 and l< Take T = 

3b-ac · O<cr<2 T < (X), 

K: exists. 

--~ cr b+ac 

e e (1,2), 



27 

and let a = 
2 

re + te + u, where r, t, and u e Q are to be 
2 

1 determined. Then 13 = rC er _ te + 
2 2 u and y = -v<re-t), so IYI >-2 

for sure if 
2 -

re - te > J-r. Take 
2 

re = (l+K+A.)e + 61' te = -ice + 62• 

and u = -A.e + o3 where IC and A. are to be detennined, and each oj 
is small. Then 

To get a € T, 

i3 (l+K;A.)ecr + ¥- - A.e + error terms. 

we need the three inequalities IYI 
1 

> 2• 

S < 1. For small enough oj' these translate to 

(1+2ic+A.)e > J-r 

A.(2-cr) <Ci+ K:(l+cr) 

2 - ecr > eCic(cr+l)+A.(cr-2)). 

i3 > 0' and 

Now take A. so that A.(2-cr) =er+ K:(l+cr) - 1. Then A.> 0 if IC is 

large enough. The second inequality is satisfied automatically; the 

third becomes 2 - ea> e - ea. i.e., e < 2, which is satisfied. 

Finally, IC may be taken as large as necessary to satisfy the first 

inequality. This completes the proof. 
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Chapter 3. The Distribution of Ancestors Within an Ideal of a Real 

Number Field. 

Theorem 2.9 shows that the ancestors within a real number field 

of degree at least three are dense in [1,~). The purpose of this 

chapter is to investigate the distribution of ancestors when they are 

restricted to lie in a particular (fractional) ideal of a real number 

field. Primary interest is focused on the special case of the ideal of 

all algebraic integers in the field. One interesting point that arises 

is that there is a profound difference between the totally real fields 

and those which are real but not totally real. The really important 

distinction is that in a non-totally real field ancestors exist whose 

conjugates have arbitrarily large imaginary parts. Why this is important 

is revealed in Proposition 3.2. 

Throughout this chapter K denotes a real number field of degree 

at least three over Q. 

Proposition 3.1. Let a be reduced, but not an ancestor. Then 

ja' I < 1 for the other conjugates of a. 

Proof. If a' is real, the statement is obvious. So assume 

a' 

a· 
' 

to 

y = 

= s + iy, y -:f 0. Let a_l be the reduced immediate predecessor of 

a_l = u_l +l say. Let a' 

s + iy' so S_1 + iy_l = 

S_1 + iy_l 

1 
u_l + s+iy' 

be the conjugate corresponding 
13_1 -u-1 

Thus S = 
2 2 

and 
<S _1-u -1) +y _1 

-y-1 
Hence 2 2 . 

CS _1-u -1) +y -1 

1 1 < -----2 < 1 since s_1 < 0 and u_1 > 1. 

CS_1-u -1) 
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In particular, if a is an algebraic integer, it is a PV numb.er 

(a PV number is an algebraic integer > 1 all of whose other conjugates 

have absolute value< 1). See [2] for more about the properties of PV 

numbers. 

Proposition 3.2. Let A be an ideal of K. Then there can be only 

finitely many reduced non-ancestors from A in a bounded interval. If 

K is totally real, the same is true for reduced numbers in general. 

Proof. Let q be a positive integer such that (q)A is an integral 

ideal. Suppose that there are infinitely many of the numbers in some 

bounded interval. For each such numb.er a, qa is an algebraic integer, 

and all of the conjugates of qa are bounded independently of a. Let 

p be a large prime in Z. Since there are only finitely many residue 

classes in K mod p, there must be two of the numbers in the sequence, 

say, a and s' such that qa = <IS mod p. Then 
ga-qS :f 0 is an p 

algebraic integer. But for p large enough, all of the conjugates of 

this number are less than one in absolute value. This is a contradiction. 

From this result, we see that if K is totally real, every reduced 

number in the ideal A is isolated (bounded away from all other such 

numbers). Exactly the opposite is true if K is not totally real. To 

prove this, we need to use a theorem of Minkowski [2] on homogeneous 

linear forms. The version we will use is the following: 

n 
Theorem (Minkowski). Let .6 a .. x. (1 < i < m) be m linear forms in 

. 1 1] J J= 
n variables, where m< n. Let cl' ... ' c be m positive real numbers, 

m 

no matter how small. Then there is a non-trivial integral solution 

x 
n 

to the system 

n 

J .6 a .. x.j < c. 
. 1 1] J 1 J= 

for 1 < i ~ m • 
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Theorem 3.3. Let A be an ideal in K, and assume K is not totally 

real. Then no reduced number in A is isolated. 

Proof. Let a Z-basis for A be C1• ... ' Cn where n = jK: Qj. Let 

the conjugates of ck be denoted by ck = 
c (1) 

k ' 
c (2) 

k ' ... ' C (n) 
k ' 

and 

(m) c~m) 
n 

let µk = Re Let a = :0 a.c. be a given reduced number in A 
j=l J J 

I £ c. µ~k) I (a. € Z). If we can find cl, ... ' c € z such that < E 
J n j=l J J 

for k = 1, 2, ... , n and E > 0 arbitrarily small, then 

n 
:0 (a.+c.)C. will be reduced and as close to a as desired, if 
j=l J J J 

E is small enough (each conjugate of f3 is within E of the corresponding 

conjugate of a, in real part). Let n = r + 2s where r is the number 

of real conjugates of a generator of K, and 2s the number of complex 

conjugates. To find the c., we need to satisfy simultaneously 
J 

n 
I :0 c ·C ~k) l < E 
j=l J J 

n (k) 
l:0c.µ. l<E 
j=l J J 

for 

for 

k = 1, 2, ... , r 

k r+l, ... ,r+s. 

K is not totally real, so there are fewer conditions than variables; 

thus Minkowski's theorem guarantees that non-trivial solutions exist for 

any E > 0. 

Actually, we proved slightly more -- namely, that reduced numbers 

exist arbitrarily close on both sides of a. To see this, simply 

observe that if (c
1

, ... ,cn) is a solution to the inequalities above, so 

is (-c
1

, ... ,-cn). 

To insure that this theorem and related results are not vacuous, 

we prove the existence of reduced numbers in an ideal A in K. Again 
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we make use of Minkowski's theorem, which has been used in a similar 

context by Salem [9], where it is proved that PV numbers exist in any 

real number field. 

Proposition 3.4. Let A be an ideal in K. Then there exists a 

reduced number in A. 

Proof. Clearly it suffices to assume A is an integral ideal, as the 

introduction of denominators merely adds more numbers to the ideal. Use 

the same notation for a Z·-basis as in the previous theorem. In addition, 

denote for the complex conjugates (k > r). First 
n , .. , 

we find e z so that I 6 a.c ~l<) 1 < 1 
j=l J J 

for k=2, .•• ,n. 

Certainly this will be true if 

n 
I 6 a.c ~k) I < 1 
j=l J J 

for k 2, ..• , r 

n (k) 1 
ll~1ajµj I < 2 

for k = r + 1, •.• , r + s 

n (k) 1 
J 6 a.v. I < 2 j=l J J 

for k r + 1, ... , r + s. 

The number of conditions is n - 1 < n, so such al, ... ' a exist n n 
I c/k) I < (not all zero). Let a = 6 a.c .• We have a -:I 0 and 1 

j=l J J 

for k = 2, Jal> 1. Replace by 2 
1. .... ' n, so a a to assume ct> 

There-exists an integer q > 0 such that Aj (q); take p prime in z 

large enough that p > 2q and (a,p) (1). Then m 
1 mod p for = Cl -

tm 1 0 in Z; thus s Cl - is a reduced algebraic integer some m> = 
p 

for each t > 0 in z. Further, qS € A and -1 < q Re S (j) < 0 for 

j = 2, ..• , n, i.e., qS is a reduced number in A. 

Note that by taking t arbitrarily large, we have proved that A 
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contains arbitrarily large reduced numb.ers. 

Corollary 3.5. Let A be an ideal in K, and assume K is not 

totally real. Then there are ancestors in A, and the ancestors in A 

are not isolated. 

Proof. This is immediate from Proposition 3.2, Theorem 3.3, and 

Proposition 3.4. 

One question that has not yet been settled is whether or not there 

exists an ancestor in a given ideal of a totally real field. The 

existence, in fact, of infinitely many such ancestors is demonstrated 

in the following proposition. 

Proposition 3.6. Let A be an ideal in K, where K is totally 

real. Then there are infinitely many ancestors in A. 

Proof. Let a be a reduced algebraic integer in A· 
' such an exists 

by Proposition 3.4. If a has a conjugate between -1 and 1 -2 and 

another between 
-1 
2 

and o, then must be an ancestor (by (2) of 

chapter one). If not, then all conjugates other than a itself lie 

between -1 and 

let a = 2a + l,· 
1 

1 -2 or all lie between 
1 -2 and 0. In the first case, 

in the second, let In either case a
1 

is a reduced algebraic integer, and the distance between the conjugates 

of is twice that for a. So eventually we will arrive at an 

ancestor by continuing this process. Thus K contains an integral 

ancestor. 

Now let a be an integral ancestor in K, constructed as above 

so that 1 
2 

is between two of the conjugates, say, a' and a". Let 

q be a positive integer such that Aj (q), and let k be a large odd 
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integer. We assert that for k large enough, k qa is an ancestor 

in A. Certainly k qa e A, and is reduced for k large enough. We 

have 1 -1< a'< - 2 <a"< O. Let i5 = I a' - a" I . Now 

k k k-1 k-2 . k-1 k 1 ~ I <a') - <a") 1 = o<<a') +<a') a"+···+ <a") ) > 15(a') - > ku_
1 • 

k Now if q(a') and q (a") k both are between -1 
M 

2k 
M > - - 1 since 

q ' 
is between and 

implies that 

1; - M!1l < I~ - ~I = 
-- -:1 -

This will produce a contradiction if 

2 
i.e., k 

-9.6._ 9. 2 - q > 
k-1 > 2k(2k-q) 2 

and 

_g_ 
26 

, 

-1 
M+l' then 

This 

2 

which is satisfied for all large k, as q and i5 are fixed. Thus, 

if k is large enough the conjugates q (a' )k and q(a")k cannot lie 
. -1 -1 in the same interval (~'M+l). This proves that k qa is an ancestor. 

Since there are infinitely many k, and the numbers k qa are 

distinct, there are infinitely many ancestors. 

Thus in a totally real field there are infinitely many ancestors 

within a given ideal; however, they are all isolated, by Proposition 

3.2. We turn now to a more detailed investigation of the case in which 

K is not totally real. From previous results we know that within any 

ideal A in K no ancestor is isolated. In fact, much more is true. 

In "most" cases (this will be made more precise later) the ancestors 

in A are dense in a collection of non-trivial intervals. The goal of 

this chapter is to prove this result, giving as precise sufficient 

conditions as possible, and also to determine these intervals where 
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possible. In many cases, the ancestors in A will be dense in the 

whole of [ l ,m); when they are not, one can ask how large the ideal 

must be in order to fill up the entire interval [l,m). In this way 

one can give a refinement of Theorem 2.9. We start with some 

preparatory results about traces and differents. 

For the rest of this chapter we assume that K is not totally 

real. 

Lemma 3.7. Let where and are positive 

integers and a1 > a2 • Then there exists a unimodular 2 x 2 matrix M 

such that 

M [:~] = [:] 

Proof. This follows directly from the Euclidean Algorithm. Write 

where g = an+l = 

Since pn and qn 

and qng a2. We 

a r g + 0 
n n 

(al ,a2). 
pk 

then 
pn al 

Let q = [ r l 'r 2' ••• 'rk] ; -= 
k qn a2 

are relatively prime, it must be that png = al 

know by properties of the continued fraction that 
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Thus we have 

Proposition 3.8. Let A be an ideal in K and let c
1 , .•• , Cn be 

a Z-basis for A. Then there is another Z-basis D
1 , ..• , Dn such 

that Tr D1 
= ••• = Tr D l = 0, n- and Tr D = .E. 

n q 

relatively prime positive integers. 

where p and q are 

Proof. We may assume Tr sk > 0 for each k by replacing Ck with 

~k if necessary. At least one of the Ck has non-zero trace; we may 

assume it is C . Let 
n basis other than C 

n 
for which Tr Ck f. 0. 

ck be an element of the 
al 

Then we have Tr <:k = b 
a2 

and Tr Cn = b where 

and ck with D 
n 

and 

where Tr D 
n 

By Lemma 3.7, we may replace 
(al,a2) 

b and Tr Dk = 0 • = Continuing in this way, we 

arrive at a basis of the form asserted in the statement of the 

proposition. 

Theorem 3.9. Let A be an ideal in K, and let C1' .•• ,en be a 

Z-basis for A of the type constructed in the previous proposition; 
n 

that is, only Cn has non-zero trace. 

a reduced number in A. Then 

Let a = .6 a ·C. , 
j=l J J 

a. e Z, be 
J 

where 

Proof. 

Since 

.E. = Trr . q . ~n 

Let (k) ]Jj 

a .E.< Cl< a .E.+ n - 1, n q n q 

= Re C ~k) 
J 

where (k) . h kth . f cj is t e -conJugate o Cj· 

a is reduced, we have -1 < Re a (k) < 0 for k = 2, .•• , n; 

in terms of the e's and ]J's, this is 
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n 
(*) -1 < 6 a.c ~k) < 0 for k = 2, ... ' r, and 

j=l J J 

(**) -1 < 
n (k) 

< 0 for k "6 a.j.1. = r + 1, ... ' r + s. 
j=l J J 

Add twice the (**) inequalities to the (*) inequalities to see that 

n n 
-(n-1) < "6 aJ. I; C~k) < O. 

j=l k=2 J 

n 
Since I; C ~k) = Tr C. - CJ·, 

k=2 J J 
we have -(n- 1) < a .E.. - a< 0, 

n q 

a .E..< Cl< a .E..+ n - 1. n q n q 

Example. Let K = Q(pjp) where p is an odd prime, and let 

i.e., 

A = (1) = the ideal of all algebraic integers in K. Let C = PJP 

(i.e., the real positive root). We claim that the smallest trace from 

A is Tr 1 = p. To see this, it suffices to observe that no number of the 

form 

where pf a
0

, is an algebraic integer. Thus an integral basis for 

K/Q is 1, w1 , ••• , wp-l' where the w's do not involve 1, and so 

p-1 have trace zero (actually, it is easy to show that 1, ,, ••• , C is 

an integral basis, but we don't need that fact here). Therefore, all 

reduced numbers in A must lie in intervals of the form (kp,kp+p-1). 

so in particular it is impossible for the integral ancestors in K to 

be dense in all of [1,~). Theorem 3.9 by itself does not say, of 

course, whether or not the intervals above are filled in; this is a 

deeper question. 
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By Proposition 3.8, all traces from an ideal A have the form 

a..E.. for a € Z 
q 

and ..E.. a fixed rational number. q In other words, all 

traces are divisible by !· This condition may be rephrased in terms 

of the different of K· 
' this is particularly _convenient when A is 

an integral ideal. ·The different of K, which we will denote by o, 
is the smallest integral ideal with the property that ~IB for any 

ideal B such that a € B implies Tr a € Z. We will need the follow-

ing facts about the different: 

~JB if and only if Tr a e z va e B. 

1 
6 

has an element with trace 1. 

The norm of 6 is /J., the discriminant of K. 

Also, we will use Dedekind's Theorem (stated below). For proofs we 

refer the reader to Hasse [4], Chapter 25. 

Theorem (Dedekind). Let p be a prime number in Z, and let 
e

1 
e 

(p) = p ••• p g 
1 g 

be the factorization of (p) in K. Then the 

contribution of p to 6 is 

g e-.-1 
op = II p.J 

j=l J 

where e. = e. if p ( e. , and e. > e. if p I e; • 
J J J J J J 

For A an ideal in K, let us introduce the following notation: 

r (A) is the least positive trace of a number from A ·- · 

L(A) = f9 > 119.is a limit of ancestors in AJ. 

Theorem 3.9 gives a necessary condition that 9 € L(A). If JK: Qj = 3, 

this condition is sufficient, as the following theorem shows: 
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Theorem 3.10. Let A be an ideal in K, where JK: Qj = 3. Then 

9 e L (A) if and only if 9 > 1 and 9 lies in an interval of the form 

[a-r(A) ,a-r(A) + 2] for some a e Z. Thus L(A) = [!,cc) exactly when 

-r(A) < 2; when -r(A) > 2, L(A) consists of intervals of length 2 with 

gaps of length -r(A) - 2. 

Proof. In view of the preceding remarks, we need only show that if 8 

is an interval of the form above, then an ancestor a e A can be found 

as close as desired to 9, Since L(A) is a closed set, we need 

consider only a a> 1 such that strict inequality holds; that is, 

a7(A) < 8 < aT(A) + 2. Also, by virtue of Proposition 3.2, we need 

only show that reduced numbers in A may be found close to 9. Let 

c
1 , c

2 , and c 3 be a Z-basis for A as constructed in Proposition 3.8: 

Trc1 = TrC2 = O, and Trc3 = -r(A). Let a= a1c 1 + a2c 2 + a3c 3 where 

the a. are to be determined so that I a- e 1 is sma11 and a is J 

reduced. We will take Now since K is a cubic non-totally 

real field, to check that a is reduced requires examining only one 

conjugate, a(2). From the proof of Theorem 3.9, in this case 

-1 < Re a( 2) < 0 actually is equivalent to a-r(A) < a< a-r(A) + 2. So 

if J a - 8 J is small enough, we will have a > 1 and 

a-r(A) <a< a-r(A) + 2 (since these are true for 9), which will imply 

that a is reduced. Therefore, we need only select and so 

that 

Ja1C1 + a2c2 -(a-ac)I < E. 

This always can be done; since 
C2 

C1 
is irrational, we may find such 

that 

(see, for example, [2], p. 48) 
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Then let a
1 

be the integer such that 

These choices for and solve the inequality needed. As E > 0 

may be arbitrarily small, we may force a as close to e as desired. 

Proposition 3.11. Let A be an ideal in K, and t € Z. Then 

tjr(A) if and only if (t)jAo. 

Proof. Write B 
A = (d) where B is integral and d € z. Then tjr(A) 

if and only if dtjr(B) (since r (A) = r ~B » . Since B is integral 

r (B) is integral; thus dtjT(B) if and only if c B is an ideal =-
(dt) 

all of whose elements have integral trace. By the definition of 6, 

this is equivalent to i.e., (t) jAO. 

Theorem 3.10 and Proposition 3.11 have several consequences: 

Corollary 3.12. If jK: Qj = 3, then L(~) [l,co). 

Proof. Since L(l_) 
6 

has an element of trace 1, we have 

The result follows immediately from Theorem 3.10. 

1 
T(-) 

6 
1. 

Corollary 3.13. If JK: Qj = 3, then the integral ancestors of K are 

dense in [ l ,co) if and only if 27 f !:, • 

Proof. Since Trl = 3, we have T(l) = 3 or T(l) < 2. Thus, by 

Theorem 3.10, L(l) # [l,w) exactly when 3jT(l), i.e., (3)j&, by 

Proposition 3.11. Thus it remains to prove that (3)j& if and only if 

27 I t:,. Since N(&) = !:,, one direction is immediate. To prove the 

converse, we use Dedekind's Theorem. Assuming 271 t:,, then 3 ramifies; 

so it has the factorization 

(3) or 
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The first is incons.istent with 27 J /:),. For if (3) 2 
then by = plp2' 

Dedekind's Theorem 03 = Pl, and so A = N(o) = 3m, where 3 f m. 

In the second case, 03 = Pe wh.ere e > 3, and so (3) Jo, as claimed. 

Corollary 3.14. Let A b.e an integral ideal of K, and assume 

JK: Qj = 3. Then L(A) ~ [l,m) if and only if there exists p ~ 2 prime 

in Z such that (p<;i) jA or (.4(~) IA. 

Proof. We know L(A) ~ [l,w) if and only if T(A) > 3. The assertion 

then follows immediately from Proposition 3.11. 

Example 1. Let K = Q ((:) where {: = 
3
J10. The discriminant ~ = -300, 

so the only ramified primes· are 2, 3, and S. The ideals (2), (3), and 

(S) factor as follows: 

(2) 

(S) 

(3) 

3 = (2 ,(:) 

(S,{:)3 

2 (3,a) (3,a-1) where 

Therefore, by Dedekind's Theorem the different 2 2 o = (2,(:) (S,(:) (3,a). 

We see that jN(o)J = 300, as required. Now let A be an integral 

ideal of K. Let us denote by A3 , A4 , and AS the ideals 
(3) 

( 3 .o) ' 
(4) s 

(4 ,o) , and (S,o) , respectively. We may write explicitly 

A3 = (3,a)(3,a-l) 

A
4 

= (2) (2,(:) 

Then, by Corollary 3.14, L(A) = [l,m) unless A is a multiple of 

A3 , A4 , AS, or (p), where p is a prime > 7 in Z. In particular, 

L(l) = [l,m), so the integral ancestors of K are dense in [l,m). 
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3 
' - ' - 1 = o. Here we have 

A = -23, so 23 is the only ramified prime. In K (23) factors as 

Thus the different is 6 = (23,C-10). Let (23) 
A23 = (23,c)) = 

(23,C-10) (23,C-3). Let A be any ideal in K, and write 

where d and t e Z, B is an integral ideal, and (k) f B for 

k > 1 in Z (such factors are to be incorporated into (t)). Now 

clearly T(A) = ~T(B); further, from the way B was defined, T(B) = 1 

unless A23 !B, in which case T(B) = 23. Thus we can say precisely 

when L(A) = [l,m): 

1. 
t 2 If a< 23 then L(A) = [l,m). 

2. 2 t t If D < d < 2 and A23 1 B, then L (A) = [ l ,m) • 

3. t t 2 If a> 2, or a> 23 and A23 jB, then L(A) 1 [l,m). 

As in the previous example, we have L(l) = [1,m). In addition, if a 

is an integer such that a i 3 or 10 mod 23, then we can say that 

L(C - a) = [l,m). Setting A = (C - a), we have ~ = 1 (no integer 

divides c-a). Let f(x) = x3 - x - l; then N(C-a) = -f(a), and so 

23 f N(C - a) by our choice of a. As a consequence, A23 f A, and thus 

L(A) = [l,m), as asserted. 

In general one can perform this sort of analysis for any non-totally 

real cubic field. The breakdown into cases will usually be more 

complicated, due to the presence of more ramified primes to consider. 

When one restricts attention to integral ideals, the situation is 

somewhat simpler, as illustrated in the first example. 

We return now to the general question of determining the nature of 
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the set L(A) for A an ideal in a real but not totally real number 

field K. 

Definition. Let 8 > 1 be a real numlier. We say that 8 is 

"trace-allowed" (referring to a particular ideal A) if 8 satisfies the 

condition in Theorem 3 .9; that is, aT (A) < 8 < aT (A) + n - 1, for some 

a e z. 

For example, Theorem 3.10 says that in a cubic field, L(A) consists 

exactly of the trace-allowed numbers. By previous results,we know that it 

is necessary that 8 be trace-allowed in order for 8 to belong to L(A); 

in general, though, this is not sufficient. 

Let us maintain the previous notation for a Z-basis of A as 

Cl' ..• , en, where Tr en = T (A) and Tr Cl = • • • = Tr Cn-l = 0, and 

let µ ~k) = Re C ~k). For technical reas·ons, it is desirable to insure J J 

yet another condition on the basis. Namely, we observe that we can make 

Ir J as large as we please without affecting any of the traces. To do '<>n 

this, simply replace en by en + me 1 where m is a large integer. 

Now let 8 € L(A), so aT(A) < 9 < aT(A) + n - 1 for some a€ Z. 

There is a sequence of ancestors in A converging to 8; for each such 
n 

ancestor a = .6 a.c. 
j=l J J 

3.9. Since the a's 

we have a T(A) < a< a T(A) + n - 1 by Theorem n n 

converge to e ' only finitely many distinct a 
n 

can occur; thus there is a subsequence of a's all of which have the 

same value of a . 
n 

Then clearly a T (A) < S < a T (A) + n - 1. n - - n We will 

restrict the sequence to this subsequence and renotate so that for each 

a in the sequence, aT (A) < a < aT (A) + n - 1. For each a, we have 

-1 < Re a (k) < 0 

k = 2, ••. , r + s 

by definition of a being reduced. 

by Re a (k) = aµ~k) - cpk, i. e · , cpk 

Define cpk for 
n-1 (k) 

- .6 a.].l. 
j=l J J 
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The condition -1 < Re c:/k) < 0 translates to aµ~k) < cpk < aµ~k) + 1. 

Define the parameters A2 , ... , Ar+s-l by cpk = Akcpr+s' We will show 

presently that this can be made well-defined (i.e., cp + # 0). 
r s 

Lemma 3.15. We may restrict to a subsequence and reorder the conjugates, 

if necessary, so that jAkj < 1 for each k and each a in the sequence. 

Proof. As noted above, we may assume Jeni > T (A) + n - 1. But then 

T (A) = Tr C 
n 

r + µ(2) + 11 (3) 
'<>n n f-'n 

(n) 
+ • • • + µn ' 

which implies that I µ~k) I > 1 for at least one k. Now consider an a 

in the sequence converging to 9, It is impossible that cpk = 0, for 

the interval (aµ(k) ,aµ(k)+l) cannot contain zero. Thus, for each a, 
n n 

the j for which jcp j j is maximal satisfies CjJ. # 0. But there are 
J 

only finitely many choices for j, so we may restrict to a subsequence 

so that for some j, f cp. J 
J 

is maximal for ~ach a in the sequence. 

Reorder the conjugates so that the jth is the (r+ s)th; then we have 

cpk 
!Aki = lcp-I ~ 1 

r+s 
rl'I :f 0 and 
't' r+s for each a. 

As a consequence of this lemma, the set of points CA 2 ,. ··•Ar+s-l) 

in Rr+s-2 associated with each ancestor in the sequence must have an 

accumulation point, which we will denote by (~2 , ... ,i'r+s-l). Thus 

S € L(A) implies that the system 

- eJ < € 

(1) 

for k 2, ... , r + s - 1 

is solvable in the integral variables a1 , ... , an-l for € > 0 

arbitrarily small. We can push this further -- for each a in the 

sequence, the Ak will have to satisfy certain inequalities in order 
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that a be reduced. Specifically, by adding the equations 

Re a(k) (k) rn a]J - 't' 
n k 

for k = 2, ... , r + s (doubling the complex ones), 

we obtain Tr a - a = a(Tr Cn - Cu) - A.cpr+s, where 

+ tr+s-l '-r+s-l + tr+s and each tj = 1 or 2 depending 

on whether the jth conjugate is real or complex. Since Tr a = aTr C , 
n 

this simplifies to a = a C + A.Cf! ·+ . n r s Let 

Lemma 3.16. In the notation above, A. ~ 0. 

Proof. As before, we may assume Ir I > T(A) + n - 1. '<>n Since cp r+s is 

bounded, it is impossible to have jA.j small, since this would contradict 

due to the size of r '<>n, unless 

if a = 0 and IA.J is small this contradicts a> 1. 

a = 0. 

Let us restrict the sequence of a's again to a subsequence so 

that A.k + A.k for each k. Then we have 

cpr+s 
S-8' n --+& 

where o is small and tends to zero as £ does. Since 

a]J(k) < cp < a]J(k) + 1, we see on passing to the limit that 
n k n 

(r+s) e-~ 
< a]J (r+s) n + 1 aµ ~ n A. - n 

(2) 

But 

aµ(k) 
Ak (S-8'n) (k) + 1 for k = 2, r+s-1. < < a]J ... ' n I" n 

It will be convenient to divide L(A) into the following subsets: 

L
0 

(A) = [ 8 e L(A) I each inequality of (2) is strict, for some sequence 

a~ e, i.e., some values of A.2, ••• ,A,r+s-l 

satisfying (l)} 



45 

E(A) = L(A) - LO (A) 

E
0

(A) [ e e E(A) I e is isolated in E(A)} 

E
1

(A) = E(A) - E0 (A). 

'lb.us we have L(A) = L0 (A) U E0 (A) U E1 (A). It is not difficult to get 

some control over L0 (A) and E0 (A), but the author has not been able 

to do this for E
1 

(A). The structure of L(A) can be resolved under 

fairly general conditions, however; we will say more about this later. 

Suppose that e > 1 is a real number for which A2 , ... , Ar+s-l 

exist satisfying (1) and (2) for £ arbitrarily small. We cannot 

conclude in general that Be L(A), because of the possibility of 

equality in (2). However, if each condition of (2) is strict, then we 

can make this conclusion: 

Proposition 3.17. Let 8 > 1 be a real number. If Se L(A), then 

there exist A2, ... , Ar+s-l such that (1) and (2) holds, and A# 0. 

Conversely, if such parameters exist and (2) holds with strict 

inequalities, then Be L0 (A). 

Proof. We already have shown one direction, so we need only argue that 

if A2 , ••• , Ar+s-l exist satisfying (1) and (2) strictly, then 
n 

Let a . = 6 a.c. be a solution to (1) with small £. 
j=l J J 

Then, as in the derivation of (2), we have 

e-ac n 

where 0 is small Co+ 0 as £ + O). We know that 

(r+s) e-acn 
aµ < 

n A 
(r+s) + 1 < aµ ' n 

so if is small enough, cp r+s 

satisfies this inequality as well. Similarly, 
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where Again, since < ai/k) + 1, 
n 

the 

same is true for ~k if E is small enough. We have observed before 

that these conditions are equivalent to -1 <Re a(k) < 0, i.e., a is 

reduced. Thus e is a limit of reduced numbers in A; by virtue of 

Proposition 3.2, El e L(A), and in fact in L
0 (A) by its definition. 

At this point we need to examine the system (1) more closely, in 

order to determine when it is solvable. Let us first rewrite the system 

in terms of the integral variables 
n 

a = 6 a ·C. (a = a, determined by 
j=l J J n 

becomes 

(3) 

a1 , ... , an-l· We have 
n-~ (k) S) and ~k = - 6 a. l.l. • 
j=l J J 

So (1) 

j a (k) + • • • + a v (k) j < E for k = lvl n-1 n-1 2, ••• ,r+s-1 

where 

system as 

(4) 

(k) 
l.l. • 

J 
Let t = r + s - 1, 

< E fork= 2, •.. , t 

and denote this 

where Lj is the appropriate linear form in a1 , •.. , an-l" A theorem 

of Rogers [8] states when a system of this type may be solved for E 

arbitrarily small. We state here Theorem A of [8]: 

Theorem A (Rogers). Let L
1 , •.• , Ln be n linear forms in n 

variables such that the coefficient matrix has non-zero determinant ~. 
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Assume that lllf < M ' n 
where M 

n 
is a positive absolute constant 

depending only on n (Rogers states explicitly what M is, but that will n 

not be needed here). Let 9 l' .•. , 9n be n real numbers, and let r 

be less than n. 
n 

Then the solvability of I L . - 9 . I < E (j = 1, .•• , r) 
J J 

and II JL.-e.J < 1 
j=l J J 

for arbitrarily small is equivalent to the 

following condition: 

r 
Condition A. If are real numbers such that 6 x.L. 

j=l J J 
is 

a form with integral coefficients, then 
r 

6 x.e. € z. 
j=l J J 

Rogers was interested in deeper questions than the solvability of 

a system such as (4); some of the theorem above is superfluous for our 

present concerns, and so we need to rephrase his theorem in a more 
n 

convenient way. First, we may discard the conclusion II JL.-e.J < 1, 
j=l J J 

since the solvability for E arbitrarily small of 

JL. - 9. J < E (j = 1, ... ,r) by itself implies Condition A. For if J J 
r 

L = 6x.L. has integral coefficients, then 
j=l J J 

and so 

r r r 
jL- 6x.e.j < 6x.jL.-e.J < t:6x. 

j=l J J j=l J J J j=l J 

r 
IL- 6 x.e.j 

j=l J J 
may be made arbitrarily small. 

r 
is an integer, it follows that 6 x.e. e z. 

j=l J J 

Since L always 

Next, if we are given linearly independent vectors in 

n - r additional vectors can he found such that the resulting determinant 

is non-zero; further, we may multiply the last vector (one of the addi-

tions) by a small scalar to make the determinant as small as necessary. 

Thus, the determinant condition in Theorem A is not important, as long 

as the r given forms have linearly independent coefficient vectors. 
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This enables us to rephrase Theorem A as follows: 

Theorem B. Let L1 , .•. , Lt be t < n linear forms in n variables, 

with linearly independent coefficient vectors. 

real numbers. Then we may solve simultaneously 

Let 9 l' ••• , 9 t be t 

IL.-9.j < E (j=l, •.• ,t) 
J J 

for E arbitrarily small if and only if Condition A holds. 

In our system (3) we have t = r + s - 1 = n - 1 - s forms in 

n - 1 variables. As K is not totally real, s > 0. The next lemma 

will show that the condition of linear independence is satisfied, and 

so Theorem B will apply to our system. 

Lemma 3.18. The forms in (3) may be assumed to be linearly independent; 

that is, any dependences which exist do not affect the solvability of 

(3). 

Proof. Suppose there is a dependence which does not involve the first 

form. Since the other forms all have zero as the inhomogeneous terms, 

such a dependence merely shows that one of the forms trivially would 

satisfy a bound if the rest did. Thus we may discard the superfluous 

forms, and the solvability of (3) is not affected. 

It is not possible that there is a dependence which involves L
1

. 
t 

For if L; x.L. = 0 and x
1 

=f. 0, then for any S e L(A) we have j=l J J 
x1 (9-a{; ) = 0. This implies that 9 = a{; , and thus 9 is isolated n n 

in L(A), contradicting Theorem 3.3. Hence no such dependence relation 

is possible. 

It is expedient at this point to change the notation slightly. 

Specifically, let 9 be a trace-allowed number; we will regard 

Az' ... ,At as variable parameters which we try to adjust so that (2) 
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and Condition A are satisfied. First, we show that (2) can be 

satisfied: 

Lennna 3.19. Let 8 be a strictly trace-allowed number; that is, 

aT(A) < e < aT(A) + n - 1 for a e z. Then there exist A2' ••. ,At 

satisfying (2) strictly, such that A ~ O. 

Proof. We exhibit such a solution explicitly: Let 8 = aT (A) + IC, 

where 0 < IC < n - 1. We set 

Then 

aµ(k) + _IC_ 
n n-1 
(r+s) + IC aµ --n · n-1 

for k=2, .•. , t 

aQ::; tkµ (k) + t µ (r+s)) + _K:_(n-1) 
t k=2 n r+s n n-1 

A = ,6 tkAk + tr+s = -------(,_r+_),__--,r----- = 
k =2 s + -"-· a]Jn n-1 

a(TrC 'i: ) +IC n n = --,------
(r+s) + _!L 

aµn n-1 

= 
aT (A) + IC - ac 8 - ac n n =------(r+s) + _!L a11 (r+s) +-IC- . 
a]Jn n-1 ~n n-1 

e-ac n (r+s) IC = aµ (k) + _!L So = aµ + --1, n n- and 
n n-1 Thus 

A2 , ••• ,At satisfy (2) strictly. Finally, we may assume A# 0 by 

taking C big enough that n so e 1: ac . n 

Now let 9, A2 , .•. ,At be fixed, and suppose that there exist 
t 

real numbers x1 , ... , xt such that .6 x. L. has integral coefficients. 
j=l J J 

This implies that for some integers ml' •.. ' 

system of equations is solvable: 

m l' n-
the following 



(5) 

( 2) 
vn-1 
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( t) 
vn-1 

There are two possibilities. First, it might happen that this solution 

to (5) is a special case of an "indeterminate solution"; that is 

exist as functions of such that (5) holds 

identically. Or, it may be that this particular solution to (5) is an 

isolated numerical accident, so to speak. We will refer to this as a 

"coincidental solution". We show in the next theorem that only 

indeterminate solutions need be considered. 

Theorem 3.20. If (5) is solvable for Az' ..• ,At' and A f 0, then 

this is a special case of an indeterminate solution. 

Proof. The system (5) is a system of n - 1 equations in 

t = n - 1 - s < n - 1 unknowns. Therefore (5) is solvable only when 

the rows of the matrix satisfy certain dependence relations. Our 

solution to (5) is part of an indeterminate solution exactly when these 

dependence relations hold as identities in Az' ... ,At• We will show 

that this is the case, provided that A f O. Let us denote the rows of 

the matrix as B1 , ... , Bn-l' 

This implies the conditions 

and assume 

. clrl + • • • + c C 
~ n-1 n-1 = 0 

0 

c B + ••• + c B = O. 1 1 n-1 n-1 · 

and 

for k 2, ••• , t. 
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relation as 

n-1 (r+s) 
Ak 6 C.l.l. = 

j=l J J 
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so we may rewrite the second type of 

n-1 (k) 
6 C.l.l. 
j=l J J 

for k=2, ••. ,t. 

n-1 (r+s) 
6c.l.l. =0, 
j=l J J 

If then this dependence holds identically in 

A. 2 , •.• , "-t· Otherwise, we may solve for A.k and compute A. as 

follows: 

t n-1 (k) n-1 (r+s) 
t 

A. = , 6~ tkA.k + tr+s 

6 tk 6 c.l.l. +tr+ 6 c.µ. 
= k=2 j=l J J s j=l J J 

K=L 

The numerator of A. is thus 

n-1 , . , 
6 c.l.l~r-t-sJ 
j=l J J 

n-1 n-1 
= 6 c. (TrC . _, . ) = - 6 c ·C . = O. 

j=l J J J j=l J J 

Hence A. = 0, as promised. 

Lemma 3.19 and Theorem 3.20 together provide a complete determina-

tion of L(A) in the case that no indeterminate solutions to (5) exist: 

t 
Theorem 3. 21. If no functions exist such that 

has integral coefficients identically in A. 2 , ••• , A.t, then 

consists of all trace-allowed numbers. 

6 x.L. 
j=l J J 

L(A) 

Proof. Since L(A) is closed, it suffices to consider only strictly 

trace-allowed numbers -- that is, numbers of the form 9 > 1 such that 

aT(A) < 9 < aT(A) + n - 1 for a€ Z. By Lemma 3.19, there exist 

A. 2 , .•. , A.t for 9 satisfying (2) strictly, and A.# 0. In view of 

Theorem 3.20, there are no x1 , ••• , xt satisfying (5), so Condition A 

holds and (1) is solvable. Thus 9 € L0 (A), by Proposition 3.17. 
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This proves the theorem. 

We consider now the possibility that such functions x
1 , .•• , xt 

exist. It is convenient first to derive a more explicit representation 

for the 21c. From (5) we see that the set of solutions 

forms a Z-module. We may choose a basis for this module so that each 

basis vector has the form (O,x2, ... ,xt) except the first (see [2], 

p. 147). Thus, any solution to (5) has the form 

···here c e Z ~nd fy y ) ... ;~ r._h~ f;-... ~~ ... ~ua~-.... ·a ne~~ ... o-.L. No~, ""-- -- . . -·· ' 1' ... ' t - - - - - - v - w 

Condition A is satisfied trivially if x1 = 0, so we may assume 

x1 ~ O. Thus we need only consider one solution of (5) in verifying 

Condition A, namely, (y1 , ... ,yt). Therefore, by Proposition 3.17 and 

Theorem B, we know that Se L
0

(A) if and only if A
2

, ..• ,At exist 

satisfying (2) strictly, and y
1

(A
2

, ... ,i°t)(S-~n) e Z, where a is 

an integer such that aT(A) < S ~ aT(A) + n - 1. Our first goal is to 

show that if Se L
0

(A), then 9 lies in an open interval contained 

in L
0

(A). 

If the forms in (3) are linearly dependent, then we know from 

Lennna 3.18 that the first form is not involved. Thus we may order the 

conjugates so that the last j forms are superfluous 

effect of deleting the last j columns of the matrix in 

replacing t by t - j • Thus (5) is equivalent to 

C1 
(2) 

Vl ... (t-j) 
Vl xl ml 

(6) = 

. . . "<t-j) 
Vt . -J 

x . 
t-J mt . -J 

this has the 

(5) and 
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upon a suitable reordering of ••• , r 1 :,n- if necessary. The 

coefficient matrix now has rank t - j, and so is non-singular. Thus 

there is a unique solution (for given m.. , ••• ,m .), which we may 
l. t-J 

express using Cramer's Rule. In view of the previous remarks, we are 

interested in only. Write 

m . 
t-J 

(7) yC/1.2,~ ... ,A.t) = 

C1 

Then 

(2) 
Vt . -J 

(2) 
vl 

(2) 
Vt . -J 

(t-j) 
Vl 

(t-j) 
Vt . -J 

(t-j) 
\/1 

(t-j) 
Vt . -J 

where m
1

, ... ,m. 
t-J 

f · d · d (k) _ , ( r+s) (k) are ixe integers, an vi - Akµi - µi • 

From this we see that y is fractional linear in each A.k separately; 

that is, y has the form 

(8) 

where A, B, C, and D do not depend on A.k' 

Now let Se L
0

(A), so there exist ' ' such that (2) is A2' • • • ' At 

satisfied strictly, A.# O, and y(A.2 , .. ,i°t)(e-acn) m € Z. The 

denominator of y is non-zero at this point, so all of the partial 

derivatives are continuous in an open ball around it. The next 

proposition follows from the implicit function theorem: 

Proposition 3.22. In the notation above, if for 
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some k, then 8 lies in an open interval which is contained in 

L0 (A). 

Proof. As before, we may assume S # a\:n by taking ICnl large. Let 

h(S,A.2,···,A.t) = <e-acn)y(A.2,···,A.t) - m. We have h(S,A.2,···,A.2) = 0 

oh - - - _ - ..QL - -and oA.k <e ,A.2' ••• ,A.t) - (8 - a\:n)oA.k (A.2' .•. ,A.t) # o. The relevant 

continuity conditions on h clearly hold. It follows by the implicit 

function theorem that one may satisfy Condition A for all 8 in an 

open interval around 8, and the corresponding points (A. 2 , •.• ,A,t) lie 

in a small open ball around (A. 2 , ••• ,A,t). Since i # 0, we will have 

A. f 0 for each point in this ball if it is small enough. Thus, by 

Theorem 3.20, no coincidental solutions to (5) are introduced. Finally, 

9, A. 2 , ••• , A.t will satisfy (2) strictly if the ball is small enough. 

Thus Proposition 3.17 applies to 9. 

We need a more elaborate argument in case for 

each k. 

Lemma 3.23. ..QL_- - -If OA (A.2 , •.• ,A,t) - 0, then it is zero identically on 
k 

the line through (A.2 , ••. ,A,t) and parallel to the A.k-axis. 

Proof. In (7) denote the numerator of y by f and the denominator 

by g. 

Then we have 

From (8) we see that so the numerator of does 

not involve A,k. The conclusion follows. 
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Lemma 3.24. It is impossible that y is constant in an open ball 

Proof. By our construction of A2 , ... ,At' if a is an ancestor in 

a particular subsequence converging to 9, then the A2 , ... , At 

for a are close to A2 , ... ,At• Since a e L(A), Condition A is 

satisfied: y(A2 , ..• ,At)(a- 8'n) = m' e Z. This is a contradiction if 

y is constant and a is close enough to 9. (Note that y is not 

identically zero, by assumption). 

Corollary 3. 25. If for each k, then the point 

y(A 2 , •.. ,it) must be a saddle point rather than a local extremum. 

Proof. By Lemma 3.23, if y had a local extremum at (A
2 , ... ,At) it 

would have to be constant in an open neighborhood of Ci2 , ..• ,it), in 

contradiction to Lemma 3.24. 

Proposition 3.26. Suppose that for each k. Then 

given€> O, there exist Az' ••• ,A~ such that 

Proof. We know that if CA2,···,A~) ':/: CA
2 , ••• ,At) and is close enough, 

then some partial derivative is non-zero, or else y would be constant 

in an open neighborhood of CA2 , .•• ,At), contradicting Lennna 3.24. So 

the last condition is not a restriction. The existence of (Az,····A~) 

is now guaranteed by the definition of a saddle point; y must increase 

in some direction and decrease in another, so on some path it remains 

constant. 
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Theorem 3.27. Let Se L0 (A). Then 9 is in an open interval which 

is contained in L0 (A). 

t 
Proof. If no exist such that 6 x.L. has integral 

j=l J J 
coefficients identically in A2, ••• ,At' Theorem 3.21 applies. If 

such functions exist, we need to consider only one solution (y
1

, ••. ,yt) 

which is a basis element of the solutions (x1 , •.• ,xt) and for which 

Yl -:f 0. Let A2' .•. ,At be the parameters satisfying (1) and (2) 

If 
oY

1 
_ _ 

-:f 0 for some k, Proposition 3.22 strictly. oA CA2' .•. 'At) then 
k 

applies. Finally, if all the partial derivatives are zero, we may 

replace CA 2 , ••• ,At) by CAz•···,A~) as in Proposition 3.26. Since 

(A2 , .•. ,At) satisfies (2) strictly, so will (Az,····A~) if it is 

close enough; similarly, A' -:f O. Thus Proposition 3.22 applies. 

Corollary 3.28. Let a be an ancestor in A. Then there is an open 

interval around a which is contained in L0 (A). 

Proof. This result follows directly from Theorem 3.27 upon observing 

that a e L
0 

(A) . 

The last result shows that the ancestors in A are dense wherever 

they occur. We have shown that L0 (A) is well-behaved, so to speak -

the next result establishes some control over E
0 (A). 

Proposition 3.29. Let S € E0 (A). Then all points in an interval of 

the form Ce,e+o) or .Ce-o ,S) are in Lo (A). 

Proof. We know 9 is not isolated in L(A). Further, by definition, 

it is isolated in E(A), so in some interval (9-e:,9+e:) all numbers in 

L(A) are in L
0 (A), except for e itself. There is a sequence of 

ancestors in A converging to e on at least one side, say, from the 
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left. Let a be a fixed ancestor in (9-E: ,B). 

Let w = inf[ x > aj x ~ L (A)}. Certainly w € L(A). We claim that 

w > 8; this will prove the proposition. If w < 9, then w € L
0

(A). 

But then w lies in an open interval which is contained in L
0 

(A) , by 

Theorem 3.27. This contradicts the definition of w as the greatest 

lower bound. 

Unfortunately, the author was not able to prove a similar result 

for E1 (A), although he conjectures that it is true. Except for 

E
1 (A), we have shown that L(A) consists of nontrivial intervals (that 

is, there are no singletons). In any event, we have shown in Corollary 

3.28 that around each ancestor in A there is an open interval contained 

in L(A). However, this still leaves open the possibility that there is 

a singleton in L(A) which is approached by a sequence of (small) 

intervals from one side. It is suspected that this sort of thing 

cannot happen. Indeed, the examples which follow suggest a large 

amount of "nice" structure in L(A). 

We regard the situation in Theorem 3.21 as typical; that is, given 

an ideal A, it is to be expected that no functions x
1

, ... , xt exist 
t 

satisfying the necessary properties. For if L = L) x.L. has integral 
j=l J J 

coefficients identically in A2 , ••• ,At• this means that we can 

solve n - 1 equations in t = n - 1 - s unknowns, for appropriate 

choice of the integers m1 , ••. , mn-l on the right hand side. One 

would not expect to be able to do this very often, but rather only when 

the numbers are "organized" in some fashion. Thus, we expect 

that the usual situation is that L(A) is all trace-allowed numbers. 

We conclude this chapter with two examples which illustrate to 
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some extent the range of possibilities involved. 

ExamEle 1. Let K = Q<e), where e 4,;2' and let A= (1) • An 

integral basis for A is simply e' e2, e3, and 1, so 

-r(A) = 4 = Tr 1. The following table shows the values of (k) µ. 
J 

for 

the relevant values of j and k. Here, e (2) is the conjugate 

-C, and e (3) is the conjugate ~. 

(j,k) (1,2) (2,2) (3 ,2) (1,3) (2,3) (3,3) 

0 

Thus the system (3) is 

2 3 1 ale+ a2e + a3e - (S-a) I < E 

2 3 I ale - a2c (l+A.2) + a3c I < E 

and the system (2) is 

a< e -a < a+ 1 
A. 

A. 2 Ce-a) 
<a+ 1 a S. 

A. 

where A. = A.2 + 2. In (3) there is a solution x1 , x2 to 

x1L1 + x2L2 = L, a form with integral coefficients, namely, 

1 
and 

-1 
It is easy to see that this is the 

minimal solution. Thus (3) is solvable if and only if Condition A is 

satisfied, i.e. , 

9-a 
!2\ e z. 
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substituting this into (2) shows that 

a < k J2 < a + 1, and 

Since a> O, we must have a= [kJ2J. This by itself puts a 

restriction on a -- for example, a = 3 is impossible, and no integral 

ancestor occurs in [ 12 ,15]. Also, kA. 2 JI = k JICA.-2) = 8 - a - 2k JI, 
so the second inequality becomes 

2a + 2k J2 < e < 2a + 2k J2 + 1. 

Since a = [kJ2], 2a + 2k J2 > 4a and 2a + 2k JI+ 1 ~ 4a + 3. Thus 

8 € [ 4a, 4a + 3], as we knew from Theorem 3. 9. This completes the 

determination of L(A). In each interval [4a,4a+ 3] where 

a= [kJI], there is a subinterval of length one, namely, 

[2a+ 2kJZ,2a +2kJ2+ l] which lies in L(A), provided we assume also 

that a> 0, since 8 € L(A) implies 8 > 1. In particular, the 

smallest number in L(A) is 2 + 2 J2. 

If 1 2 b N 2 i . Z d 1 t ,.. -- 4 IN, we rep ace y = p, p pr me in an e ~ II/ the 

same computations carry over. That is, an integral basis is 2 3 ,,, ,, ' 

and 1, and L(A) takes the same shape. Thus the smallest number in 

L(A) is 2(JN+[JNJ), and so all integral reduced numbers are larger 

than this number. As a consequence, there are fields for which all 

integral reduced numbers are larger than a given bound. 

ExamEle 2. Let us generalize the situation in Example 1. Let 

K = Q(C)' 
n-

where a positive rational number. Assume ' = :Jq, q is 

IK: Qj = n, and n is odd, >5. Consider ancestors of the form 



2Tii 
Il Let p = e 

follows: 

Thus 

k = Re p • 

k 
= CP 

µ~k) = 
J 

(k) = ', ,.n-jw . n-j 
vn-j AK~ n-J - C w(n-j)k" 

Hence the system (5) is 

60 

We order the conjugates of C 

for k = 2, 3, ... , r + s - 1 

But w . = T.J n-J .. j • 

Similarly, 

m n-1 

as 

Let B be the matrix above. Denote the rows of B by B1 , ... , Bn-l" 

We have 
_--2_ 

B. - . B . , J n-J n-J 

' 
and B . • [x1 ,~ .•. ,xt] n-J 

both are integers, this implies both are zero, since L . t Q. n-J 
Thus 

' the only solution to (5) occurs when each m. = 0. 
J 
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Now let 'n be an integer in K such that 

small as possible. Then ' has the form n 

Thus 

n-1 
b +b ,+ •• •+b ' 

' = 0 1 n-1 n d 
where 

n-1 '' ... ' ' ' 'n is a field basis for K/Q, 

Tr' > 0 n 
and is as 

and so the Z-module 

generated by n-1 ,, •.. ,' , ' contains an ideal. Now we may use the n 

result of Lemma 3.18 that there is no dependence of the columns of B 

which involves the first column. But our system (5) is exactly such a 

dependence -- therefore, x
1 = 0 and there are no non-trivial solutions 

to consider for Condition A. Now let A be an ideal which 

contains the Z-module generated by n-1 ,, ... ,' ' and ' • n 
Then L(A) 

consists of all trace-allowed numbers, by Theorem 3.21. In particular, 

this holds for A= (1). Thus the integral ancestors in K are dense 

in either [l,co) or [1,n-1] U U [kn,kn+n-1]. 
k=l 
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Chapter 4. Equivalence of Binary Forms 

We conclude with an application of ancestors to the problem of 

determining whether or not two given binary forms are equivalent. That 

is, given two binary forms F(x,y) and G(x,y), is there a transforma-

tion x1 = ax+ by, y1 = ex+ dy with ad - be = ±1, a, b, c, and 

d e Z, and F(x1 ,y
1) = G(x,y)? We will restrict ourselves to 

irreducible binary homogeneous forms of degree at least three, with 

integer coefficients and at least one real root (by a root of the form 

F(x,y) we mean a root of the polynomial F(x,l)). For the sake of 

brevity, we will refer to these simply as forms from now on. 

Let F be a form with r real roots 
(1) (r) a , ... ,a . To each 

(k) 
Cl there corresponds one ancestor ak (it is possible for two 

conjugates to have the same ancestor, but in general the ancestors are 

distinct -- in fact, the number of distinct ancestors divides r; this 

will be proved later). Define the set ~ to be [ a
1 , •.• ,aJ. If F 

and G are equivalent forms; then their roots are equivalent under the 

same transformation. As equivalent numbers have the same ancestor, we 

see that ~ = AG. Conversely, suppose that F and G are two forms 

of the same degree, and ~ n AG ~ 0. Then there is an ancestor which 

is equivalent to a root of F and to a root of G, so these two roots 

are equivalent. Thus we have a,.., s, where S is a root of G and 

Cl = 
(1) (n) 

the roots of F. From the relation Cl ' ... ' Cl are 

s = 
aa+b 

that the numbers 
aa(k)+b 

all are conjugates of s ' ca+d we see 
cu (k) +d 

and are distinct as k ranges from 1 to n. So all roots of G 

have this form, and the transformation x
1 = ax+ by, y

1 
= ex+ dy 

takes G to tF for some integer t. Since F and G are 
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irreducible, it follows that t = ±1. We conclude that F,.., ±G, and 

~ = AG. This proves the following theorem: 

Theorem 4.1. Let F and G be two forms of the same degree. Then 

2. ~ =AG if and only if F,.., ±G. 

It remains now to resolve the sign ambiguity in Theorem 4.1. If 

F has odd degree, then the transformation x1 = -x, y
1 = -y always 

is an equivalence between F and -F, so this ambiguity presents 

itself only in the cases of even degree. The following theorem 

characterizes when this can happen: 

Theorem 4.2. Let F be a form of even degree n 2".:_ 4, and assume 

F,..,, -F by the transformation x
1 = ax + by, y

1 = ex + dy. Then 

a = -d, ad - be = 1, and -1 for any root a of F. 

These conditions imply the further restriction n = 2 mod 4. 

Proof. Let [}. = ad - be = ±1. 

another root, say, 
(2) 

a . If 

If a is a root of F, then aa+b 
ca+d 

(2) a = a , then ca2 + (d-a)a - b = O. 

is 

Since a does not satisfy a non-trivial quadratic equation, this forces 

b = c = 0 and a = d = ±1; however, this transformation takes F to 

+F, not -F. So a 1 a( 2). Write this in matrix notation: 

Inductively, 

A[~] = [~(2)] 

Ak[ ~] = [ a(~+l)J 

where A=[~~]. 

where (1) (2) a=a ,a , 

of the conjugates of a. Eventually we get back to a, 

are some 

k so A =±I 

for some k > 1. This implies that the minimum polynomial of A 

divides k 
x ± 1, so in particular, all the eigenvalues are roots of 
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unity. Further, the characteristic polynomial of A is quadratic, so 

if there were repeated roots then the minimum polynomial would be 

x ± 1, implying A = ±I which we already know is impossible. Thus 

the characteristic polynomial of A is 2 2 x ± 1 or x ± x + 1. Also, 

we can write out the characteristic polynomial explicitly in terms of 

the entries of A: it is 2 x - x(a+d) + tJ,,. 

Case 1: The characteristic polynomial is 2 x ±x+l. Then tJ,, = 1 

and a+ d = ± 1. We may assume a+ d = 1 by replacing (a,b,c,d) 

with (-a,-b,-c,-d) if necessary. Let K = Q(a). We see that 

NK/Q (ca-a) = -1 on comparing the coefficients of 
n 

x in 

F(x,y). Let S =ca - a= ca+ d - 1. Then we have 

s (2) = ca 
(2) 

- a = aca+bc 
ca+d - a 

b c-ad _ ..::::1L _ _:l_ 
ca-a+l - s+l - s+l • 

and 

Thus the -1 takes a conjugate of s another conjugate map x I-+ -- to x+l 

of s . 

This map has order 3: 

-1 
s (2)+1 

Thus the conjugates of S 

-(S+l) s (t)' = 
s 

are grouped in 

say; 

n 
3 

-1 
s. = 

s<t)+1 

triples of the form 
-1 -<s+1) 

s, s+1' s Since the product of these three is +l, we see that 

NK/Q(S) = +l, in contradiction to the above. So this case is impossible. 

Case 2: The characteristic polynomial is 2 
x ± 1. Thus a + d = 0 and 

tJ,, = ±1. We have NK/Q(ca-a) = -1, as in Case 1. Let S =ca- a= ca+ d. 

Then 

Q(2) = ca(2) _a= aca+bc _a= ~tJ.. 
1.1 ca+d 1.1 

Thus the conjugates of are grouped in n -tJ. 
2 pairs of the form S, s· 
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n 
Then NK/Q(S) = (-~)Z = -1 if and only if ~ = 1 and n = 2 mod 4. 

Actually, the conditions in the statement of Theorem 4.2 are both 

necessary and sufficient. That is, if S is an algebraic number such 

that jQ(S): Qj = n> 4, n: 2 mod 4, and ; 1 
is a conjugate of s, 

then forms F which are equivalent to their negatives can be 

constructed as follows: Let c and d be integers such that c > 0 
2 2 -d -1 and cj d + 1. Let a = -d and b = Then the form F which c 

has a::i a root will be equivalent to its negative, and by a = as c 

the theorem, all such forms arise in this way. 

Such forms do exist; for example, let 

F(x,y) = x 
4n+2 2n+l 2n+l - x y 4n+2 

- y The transformation x = -y, 
1 

of 

takes F 

1±15 
-2-; since 

to -F. 

1+15 
-2-

The roots of F are the (2n+l)th roots 

is the fundamental unit Q(js)' it is not 

a power of any number in Q(/5). The irreducibility of F follows 

(see, for example, [SJ, p. 221). 

The next proposition helps to pin down the size of AF -- namely, 

we prove that l~J divides r. 

Proposition 4.3. Let F be a form with r real roots and Zs 

complex roots. Then tJ~I = r for some integer t. Further, 

tj(r,2s). 

Proof. Let (1) (2) (n) a=a ,a , ... ,a be the roots of F, where 
(1) 

a ' 0 •• ' 

(r) a are real. The equivalence relation t"W divides the 

roots into equivalence classes. Denote the equivalence class 

containing a (j) by c .. 
J 

Note that each c. 
J 

contains only real 

roots or only non-real roots. Let K be the normal closure of Q(a), 
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and let a(j) be a conjugate not in c
1 

(if there is one). Then there 

is an automorphism cr of K/Q which takes to a (j) • We claim 

that in fact cr takes cl onto c. in a one-to-one fashion. Let 
J 

aa(j)+b (k) e c
1 , a{k) aa+b Then (k) ,.., a(j) a so = ca+d· a cr 

ca (j) 
so 

a(k)cr € c .. Thus c1crcC .. It is clear that cr is one-to-one since 
J - J 

it is an automorphism. Since c .cr 
-1 c c

1 , have that takes cl we cr J 

onto c .. Thus I c.1 = lc1l for each j • Let t = I c1I; in view of 
J J 

the remarks above, t I ( r, Zs). Further, the number of distinct real 

equivalence classes is exactly IAFj • This completes the proof. 

In particular, if r is odd and s is a power of two, then 

ILi = r. We can say in any event that IA-I > r In general, -~ ---p - ( r, Zs) • 

no further restriction can be given. 

We illustrate Theorem 4.1 with two examples: 

ExamEle 1. Let F(x,y) 3 z x + 3xy + Zy3 

and G(x,y) 3 z 116x + Zl9x y + 138xyz + Z9y3 

Let Tlo be the real root of F, and Co the real root of G (each 

form has only one real root). The ancestor for Tlo was found in an 

example in chapter one; it is the real root of zx3 - 3xz - 1. The 

ancestor for Co may be found by the same method; it is in fact the 

same. Co and Tlo are related as indicated in the diagram. In this 

notation, means 

Ancestor 

1 a=u+-S . 
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Since rio and have the same ancestor, F rv G (there is no 

ambiguity of sign since the degree is odd). Further, from the partial 

quotients in the diagram we can determine explicitly what the 

transformation is which takes to ,
0 

(and F to G). We get 

Hence G(2x-y, -3x+ 2y) F(x,y). 

Example 2. Let F(x,y) 4 2 2 4 = x - 14x y + 9y 

and 

The form F has been considered in an example in chapter 2; 

~ = [a,sJ, where a is the reduced root of 
4 3 2 36x - 24x - 40x - 12x- 1 

and S of 4 3 2 28lx - 284x - 248x - 56x - 4. There are only two ancestors 

because the roots of F come in equivalent pairs. That is, if a is 

a root of F, so is -a, and these two numbers have the same 

ancestor. G has four real roots (as does F), of which one is positive, 

say, y. y is not reduced, but its conjugates are dispersed (there is 

one between -2 and -1 and another between -3 and -2). So by Theorem 

2.5, the first reduced successor of y is an ancestor. In fact, the 

immediate successor 1 
Y1 = y-1 is reduced, and hence is the ancestor 

equivalent to y. The polynomial which y
1 

satisfies is 

4 3 2 
59x - 12x - 38x - 12x- 1, and so y1 ~ ~· Thus AF -:f AG, and 

F ,/., G. 

Finally, it should be noted that the reduced numbers defined in 

this thesis may be used to construct a theory of reduction of forms. 

Namely, we define a form to be reduced if it has a reduced root 

(obviously, a form can have at most one reduced root). Similarly, we 
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define a reduced form to be an ancestor if its reduced root is an 

ancestor. This theory of reduction differs from the existing 

theor±es, the most general of which is due to Hermite and Julia. In 

their method, a quadratic covariant is constructed from a given form 

by a somewhat complicated process; then the form is defined to be 

reduced if this quadratic covariant is. Theoretically, this method 

is powerful enough to prove that there are only finitely many classes 

of forms with a given set of invariants. However, the computations 

are sufficiently involved that in any particular case (for example, 

to see if two given forms are equivalent) this method is impractical. 

For a more detailed account of this, see Chapter 18 of [6]. 
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Conclusion 

In several places in this thesis, there are results which are 

either incomplete or suggest generalizations. We will mention some of 

these here. Probably the most obvious such incomplete result is the 

lack of a good description of L(A) when A is an ideal in a 

non-totally real field of degree at least four. In addition to showing 

that L(A) consists of genuine intervals (or, if not, characterizing 

it in some other way), one would like to know more about how these 

intervals behave. For example, the examples considered so far suggest 

that the length is constant. Is this true? Also, it is plausible 

(from.the system (2) of chapter three) that the endpoints of the 

intervals lie in the normal closure of K. Perhaps a more fundamental 

problem is to characterize when L(A) is the set of all trace-allowed 

numbers. Theorem 3.21 gives a sufficient condition for this to happen; 

it is reasonable to conjecture that it is necessary. Even so, it would 

be nice to give a condition that is easier to check. 

Ancestors have possible applications to other important problems. 

One such possibility is in determining the number of equivalence classes 

of binary forms of a given discriminant (or, more generally, a given set 

of invariants). One might be able to bound the coefficients of the 

polynomials which the ancestors satisfy in terms of these invariants. 

If this could be done, it would be a vast improvement over what can be 

done with Hermite's method. Another possible application of ancestors 

is in studying the continued fraction of a real algebraic number of 

degree at least three. In fact, this was the original motivation in 

studying reduced numbers -- it was hoped that information about the 

continued fractions of cubic numbers could be obtained in this way. 
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This is possible to some extent; for example, the author was able to 

show that if a= [u
0

,u
1

,u
2

, ••. ] is a totally real reduced cubic 

number, then the partial quotient 1 s growth is bounded by 

u < n 
A
/3 

n 

where A is an effective (and easily computed) constant depending on 

a. This was done by sandwiching -a between a rational and a quadratic 

number which agreed to two continued fraction places (these numbers 

were constructed from the coefficients of the covariants of the poly-

nomial satisfied by a). Unfortunately, this is very far from what is 

presumed to be the truth, and this method does not appear to be capable 

of significant refinement. 

Finally, several generalizations of reduced numbers are conceivable. 

For example, one could try to develop a theory of reduction for complex 

numbers, using Hurwitz's complex continued fractions. Similarly, one 

could develop a p-adic analogue. The main problem to overcome in these 

developments is to find the "correct" region in which the conjugates of 

an algebraic number are supposed to stay. For the reduced numbers 

defined here, the region is the infinite strip [ z I - 1 < Re z < O} in 

the complex plane. It is not immediately obvious how this region is to 

be generalized in the situations described above. 
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