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ABSTRACT

A new technique for vibration suppression in Large Space Structures is
demonstrated in laboratory experiments on a thin cantilever beam, resulting in
substantially reduced dynamic response. This technique, called Positive Position
Feedback, makes use of generalized displacement measurements to accomplish

vibration suppression.

The concept of a piezoelectric active-member is developed in relation to
controlling space-truss type structures. The active-member functions dually as
a structural member and a control actuator. Piezoelectric ceramic material is
adhered to a thin cantilever beam and simulates the use of an active-member.
This space-realizable control scheme makes use of strain measurements, a pre-
ferred measurement quantity for vibration suppression, and internal control
forces which completely decouple the rigid-body motion from the elastic mo-

tion.

A simple necessary and sufficient condition for stability with Positive Po-
sition Feedback is presented. This condition is non-dynamic and is in general
easily satisfied. As a result, Positive Position Feedback is demonstrated to have
superior robust stability properties. It is also demonstrated that with Positive
Position Feedback, all control and observation spillover is stabilizing. Five ex-
periments are described in which the first six modes of vibration of the cantilever

beam are controlled.
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Chapter 1

INTRODUCTION

With the ever increasing capabilities of constructing large complex struc-
tures in space come new engineering challenges. Because of the cost of placing
material in orbit,* spacecraft are necessarily designed to be as low-mass as pos-
sible. Traditionally, the most demanding physical environment on spacecraft
has been the launch loading associated with achieving orbit. This has generally
meant a tradeoff between making the spacecraft as low-mass as possible while
ensuring sufficient strength, which usually involves ensuring sufficient structural
stiffness. For the next generation of spacecraft that will be constructed or erected
in space, the launch environment becomes almost irrelevant. Consequently, stiff-
ness is not critical to the survival of the structure and requirements on stiffness
can be greatly relaxed. Large Space Structures (LSS), or Large Flexible Struc-
tures as they are sometimes called, are vehicles and platforms designed specif-
ically for the zero-gravity environment of space. These flexible spacecraft, and

the means to control them, are the subject of this research.

1.1 DMotivation for Active Control of Large Space Structures

Most of the applications for large space structures involve very stringent
performance requirements which cannot be met by a structure that is flimsy
and flexible. Consider, for example, the wrap-rib mesh deployable antenna.
Reflectors ranging in size from 20 to 100 meters in diameter are presently in
preliminary design at the Caltech Jet Propulsion Laboratory [1]. The pointing

accuracy for the QUASAT application of this antenna is one minute of arc of

* The cost of launch services using the Space Shuttle Space Transportation System currently
exceeds $2,000/1b.
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the intended direction, and the surface of the antenna must stay within one mil-
limeter of the intended configuration. This pointing and surface shape accuracy
must be maintained in spite of thermal distortions due to solar radiation, and
the vibrations induced from attitude maneuvers. Such a structure will have vi-
bratory modes which are low frequency and may have low damping ratios. The
55 meter reflector has a vibratory mode at 0.18 Hz. If the damping ratio of this
mode is as low as 0.1 percent, the settling time of the antenna will approach
one hour. The performance requirements and the low frequency, low inherent
damping characteristics of the wrap-rib antenna are typical of what may be ex-
pected for LSS of the future. Because passive damping techniques are ineffective

at these low frequencies, the need for active control of LSS is indicated.

1.2 The Large Space Structure Control Problem

The wrap-rib antenna is a good example of a Large Space Structure because
it illustrates the three basic objectives of LSS control. First, an antenna is useless
if it does not point at the correct target. The first objective of a control system
is therefore one of pointing, or attitude control. Second, a reflector will not
function as an antenna if its surface is not parabolic. If the structure is vibrating,
the surface geometry will be changing with time and will not generally be correct.
Thus, the second objective of a control system is vibration suppression: either
minimizing the amplitude of vibration, or damping out the vibration as quickly
as possible, or both. Finally, afterr the vibration has stopped, if the nominal
surface is not parabolic, it must be deformed back into the correct shape. The
third objective then is shape control. While mission specific reqifements will

vary, the three objectives of attitude control, vibration suppression, and shape
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control are representative of the functions any LSS control system may be called

on to perform.

The first objective, attitude control, is not new to the spacecraft control
community. Nearly all spacecraft flown in the past 25 years have had such a
control system. However, the second and third objectives, which stem from the
elastic behavior of the structure, are relatively new. While current spacecraft
such as Galileo and Hubble Space Telescope have some flexible dynamics, the
current approach is to achieve attitude control in spite of the elastic modes.
As the frequency of the elastic dynamics gets lower, it begins to overlap with
the bandwidth of the attitude controller. When it is not possible to ignore
the flexible dynamics, or when the flexible nature of the structure becomes the

subject of the control, then the problem is one of LSS control.

1.3 Some Difficulties in the Control of Flexible Structures

The Large Space Structure control problem is inherently difficult for a vari-
ety of reasons. To begin with, LSS are distributed parameter systems. The best
mathematical model for distributed parameter systems is the Partial Differential
Equation (PDE). However, most engineering systems are so complicated that it
is most difficult, if not impossible, to find a suitable PDE to accurately describe
a particular system together with its boundary conditions. Even if a PDE could
be found, there is no guarantee that it will be amenable to analysis [2,3]. The
engineer is compelled, therefore, to work with a discretized model, usually via

the Finite Element Method (FEM).

The PDE model is characterized by an infinite number of degrees of freedom

and an infinite frequency spectrum. An equivalent discretized model would also
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require an infinite number of degrees of freedom.* Since it is intraci;élble to work
with discrete models of infinite size, a finite dimensional or truncated model is
substituted. One consequence of using a truncated model is that some dynamics
of the system will always remain completely unmodelled. In practical terms, this
means that the actual structure will always have vibrational modes that are not
contained in the mathematical model. In addition, LSS are likely to manifest
very densely spaced, lightly-damped modes which cause stability complications
involving the control system rolloff. To accurately model the dynamical charac-
teristics of LSS up to frquencies of practical interest, finite dimensional models
of relatively high order are required. Current spacecraft such as Galileo require
models on the order of 10,000 degrees of freedom** [4]. It is not unreason-
able to expect that FEM models of LSS may reach hundreds of thousands of
degrees of freedom. While structural dynamics applications can accommodate
models of this size, state variable control applications generally begin to exceed
computational capability with plant models of about two hundred states [5]. A
great deal of current research addresses how to reduce a high order structural
model to a lower order plant model for control applications [6,7]. Most control
design methodologies make use of two different size models: a low order model
for control system synthesis, and a high order “truth model” for stability and

performance tests.

In practice, FEM structural models always require verification and fine-
tuning. Normally, this verification is done by means of ground tests on either the

actual flight hardware, or a structural equivalent. Since most of the concern for

* For an entertaining discourse on the infinite modes assumption, see Hughes [12].
** This number refers to the stiffness degrees of freedom. Typically, the mass matrix contains
fewer terms.
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the structure has been in the launch loads area, most ground tests are performed
in a launch or stowed configuration. For LSS the configuration of interest is the
deployed state. Since LSS are designed for the zero-g environment of space,
they cannot support their own weight, and hence, ground testing will be a very
tricky business. It is doubtful that full-scale testing will be possible at all for
the very largest structures. As a result, ground test strategies may have to
resort to component testing with subsequent analytical coupling, or perhaps to
scale model testing. While it is possible to do some amount of verification in
this manner, a model based on ground tests may have questionable accuracy.
It is inevitable that some system identification tests will have to be performed
on-orbit, in zero gravity and in hard vacuum. To further complicate matters,
the structural characteristics of LSS are likely to change with time as a result of
outgassing, cold welding of joints, depletion of consumables, mass redistribution,
growth of the structure as in the case of an evolving space station, etc. In
summary, the model of the structure used for the control system design will have
considerable uncertainty, due to both parametric uncertainty and truncation.
Any control scheme for LSS will have to maintain stability and performance
in the face of uncertainty,* and be able to accommodate the need for on-orbit

system identification testing.

One might expect that the best way to control distributed parameter sys-
tems is with “distributed control,” i.e., spatially distributed actuators and sen-
sors. It would then be possible, for example, to apply a control force propor-

tional to a mode shape. However, truly distributed sensors and actuators are

* This is the definition of robustness.
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not currently feasible; discrete sensors and actuators must be used. Further-
more, practical limitations necessitate that only a finite number of such devices
will be available to implement any control scheme. This implies that the fi-
nal control compensator must be of relatively low order in terms of input and
output states, certainly lower than the size of the truncated plant model. A
consequence of using discrete sensors on a distributed parameter system is that
the sensor measurements will always be contaminated by modes which are not
being controlled, and which may not even be modelled. This is the Observation
Spillover phenomenon [8]. Efforts have been made to eliminate this effect by
means of spatial modal filters [9] and comb filters [28], but in practice observa-
tion spillover will always be present to some extent. Similarly, as a consequence
of using discrete actuators, the control system will always excite modes that
are not being controlled: the Control Spillover phenomenon [8,10]. This effect
is more difficult to manage. As will be discussed in the next section, if both
control and observation spillover are present, a nominally stable system can go
unstable. There are other problems associated with actuators: they have finite
bandwidths. This means that actuator dynamics has to be taken into account
in the control design process, or it may destabilize modes in the region of the
actuator natural frequency [11]. Because the modes of LSS will become dense

at higher frequencies, there will always be a mode nearby these ffequencies.

Finally, once a control system is designed, it must be implemented in real-
time by means of an on-board computer. Because computing power is limited,
the control algorithm to be used must not be too computationally intensive, or
unacceptable destabilizing time delays may be introduced. For these and other

reasons, the LSS control problem is an especially challenging one.



1.4 Previous Work—Theory

Developing solutions to the LSS control problem has occupied a sizable por-
tion of the aerospace research community for the past 15 years. The subject is
broad and interdisciplinary, drawing on control and estimation theory, optimiza-
tion, structural dynamics, structures, and large-scale computing among others.
While a comprehensive survey will not be attempted here, it is of interest to
highlight some of the developments of LSS control techniques. A more complete

background can be found in several excellent survey articles [3,13-16].

1.4.1 State-Space Methods

Serious interest in the LSS control problem developed at a time when Mod-
ern Control Theory, comprising stochastic optimal control and estimation the-
ory, was replacing Classical Control as the dominant control paradigm. One
of the major accomplishments of the state-space methods, culminating in the
Linear Quadratic Gaussian (LQG) unified design procedure, was the ability to
straightforwardly synthesize a compensator for a multivariable system while op-
timizing the closed loop performance in some specific sense [17]. Since LSS
control is a multivariable problem, most techniques have been formulated in
state-space form. The structure, or plant, is modelled as a linear time-invariant
first-order differential equation. The plant model can be written in terms of
physical coordinates, in which case the problem is one of Direct Output Feed-
back (DOFB), or it can be written in terms of modal states, in which case the
problem is one of modal control. Modal control lends itself more readily to re-
duced order models, since only the important modes need be retained. Exactly

how the retained modes should be chosen is a topic of current research [6,7].
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The formulation of the DOFB method can be found in [18-22]. Balas [18]
investigates the spillover phenomenon in relation to DOFB. He uses an example
of a simply supported beam to demonstrate how spillover can cause instability.
Direct Velocity Feedback (DVFB) is examined in [19,20,23]. These references
show that DVFB used in conjunction with compatible, collocated actuators and
rate sensors produces a closed loop system which is unconditionally stable as
long as rigid body modes are ignorable. A popular technique for achieving
desired closed loop performance in DOFB is pole placement. This method at-
tempts to prescribe the closed loop pole locations subject to observability and
controllability constraints. The pole placement technique is described in [24,25].

Pole placement can also be used in modal control [26].

Many different modal control schemes have been proposed. They can be
divided into two types. The first type is called Modern Modal Control (MMC)
by Balas, or Coupled Controls by Meirovitch. It involves a reduced order plant
model in modal coordinates together with some type of modal state estimator,
which synthesizes coordinates that cannot be measured directly. The second
type is somewhat less conventional and is called Independent Modal Space Con-

trol (IMSC).

Much research has been done on MMC. The formulation of the problem
can be found in [8,21,22,27,28]. The primary variations in the technique involve
how the performance criteria are specified and how the estimator is designed.
The most common method for specifying performance is in terms of a quadratic
cost functional that penalizes various portions of the state and control vectors
by appropriate weighting matrices. The synthesis of the controller then usu-

ally involves solving either the deterministic LQ optimal control and estimation
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problem, or the stochastic LQG problem. The construction of the state vectors
and weighting matrices allows considerable design freedom for reducing effects
such as spillover. It is common practice to partition the state vector into con-
trolled and residual modes and then attempt to design the control system in such
a way that it does not destabilize the residual dynamics. It is then hoped that
the controller will maintain stability and performance when it is implemented
on the full order system. Balas again uses the simply supported beam example
to demonstrate spillover induced instability [8]. He proposes the use of a pre-
filter consisting of phase-locked loops tuned to the controlled modes to reduce
observation spillover. He also proposes having a very large number of sensors to
approximate a distributed sensor. This is essentially equivalent to Meirovitch’s
modal filter. Model Error Sensitivity Suppression (MESS) attempts to reduce
spillover by including in the performance index a weight on the control spillover
terms [29]. This leads to a control which is “orthogonal” to the residual modes.
By the well-known duality relationships, the same technique reduces observation
spillover through the observer. Skelton and Likins [30] propose an adaptive tech-
nique using an orthogonal filter to estimate the “model error vector” and hence
improve the convergence properties of the state estimator. Premont [31] pro-
poses a nonlinear technique where the magnitude of the control force is reduced

when the energy of the controlled modes decays below a certain level.

The second modal control method, IMSC, is developed in [9,16,32-34]. This
technique constructs the control force vector in modal space from the uncoupled
modal equations and then transforms back to physical space via the modal

matrix. Since the control vector is constructed in such a way that all the modes
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are uncoupled, it is orthogonal to the space spanned by the residual modes. The

drawback is that the number of actuators must equal the order of the system.

Other more specialized control theories have been developed. Aubrun [35]
uses root perturbation techniques to formulate Low-Authority Control (LAC).
Schaechter [36] defines a control law that includes feedback of only those state

variables that are physically near a particular actuator, i.e., local control.

The problem of spillover has plagued LSS control techniques from the be-
ginning. With the exception of DVFB using compatible, collocated actuators
and rate sensors, no state-space method has been developed that is completely
immune from its destabilizing effects. DVFB requires true rate sensing in order
to be implemented and suffers from the destabilizing effects of finite actuator
dynamics. The problems of actuator dynamics have been largely ignored by the
LSS control comunity. It is shown by Goh and Caughey [11] that finite actuator
dynamics can render a nominally stable system unstable. This adds yet another

destabilizing effect which must be overcome.

We propose a technique called Positive Position Feedback (PPF), which
does have immunity from spillover induced instability, and which does not re-
quire rate sensing. The method was originally proposed to overcome the instabil-
ities associated with finite actuator dynamics [2,11]. This research investigates
the feasibility of implementing PPF as a vibration suppression technique for

LSS.

1.4.2 The Return of the Frequency Domain

One of the basic difficulties in using standard state-space LQG methods on
LSS is that robustness is not guaranteed [37,42]. This is because it is impossible

to implement full-state feedback on LSS, even with an observer. Optimal control
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techniques provide an optimal control for a given model but optimality is not
necessarily a good measure of robustness. LQG can frequently result in con-
trollers which are too complex for practical implementation. In fact, there is no
guarantee that the compensator itself will be stable [38]. It has been shown that
standard LQG implementation on LSS problems can have vanishing robustness
[39,40].

In the late 1970’s new methods for dealing with plant uncertainty were
developed. Ironically, this involved a return to the frequency domain. Compo-
nents in the control system are modelled as linear time-invariant systems with
transfer function matrices. The input-output properties of these matrices are

characterized by singular values [41].

In recent years an attempt has been made to patch the LQG method by
incorporating frequency dependent constraints [45,46]. These techniques for-
mulate the truncated plant model as frequency dependent unstructured uncer-
tainty, and make use of the robustness results in terms of singular values [41].
One method introduces frequency dependence in the weighting matrices of the
cost functional [43,44]. The weighting penalizes high frequency control activity
where the plant uncertainty is greatest. While these methods look promising,

there have as yet been relatively few applications to LSS.

Finally, there is an interesting theory based on positivity of operators. The
method is described in [47-50]. In this technique, the plant and compensator
are manipulated in such a way that they each appear “passive.” Stability is

then assured.
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1.5 Previous Work — Experiment

Experiments play an important role in turning LSS control theories into
usable technologies. The ultimate laboratory for LSS control tests is the zero-
gravity environment of orbit. The National Aeronautics and Space Adminis-
tration (NASA) is organizing a test program that will incorporate both ground
and flight tests using the Space Shuttle. It will be several years, however, before
flights commence. At present, ground based laboratory experiments are the only
means of validating LSS control technologies. Since the present work is primarily
aimed at vibration suppression, experiments on shape control and slewing will
not be reviewed. References [51-60] present a good sampling of LSS control ex-
periments. As can be seen from the references, the results of these experiments

have appeared in the literature relatively recently. A summary follows:

e Bailey and Hubbard [51]: a beam experiment implementing nonlinear feed-
back tailored to the specific test structure.

e Aubrun [52]: beam and plate experiments implementing LAC.

e Dehghanyar et al. [53]: a beam experiment implementing suboptimal pulse
control.

e Meirovitch and Baruh [54]: a beam experiment implementing IMSC using
on-off control.

e Schéfer and Holzach [55] and Hanagud et al. [58]: beam experiments im-
plementing DVFB with collocated sensors and actuators.

o Schaechter and Eldred [56]: a beam experiment implementing MMC. In-
stability induced by model error is demonstrated.

e Hallauer and Skidmore [57]: a grid experiment implementing IMSC using
tuned filters to extract modal coordinates. A controller-induced instability
occurred.

e Brennan [59]: a beam experiment implementing LAC.

e Simonian et al. [60]: a truss experiment implementing Positivity methods.



- 13 -

The beam structures in [51-56,58,59], and the truss [60] are simple structures
in the sense that the frequencies of the lower modes are widely spaced. LSS
will certainly have densely spaced modes, and hence this aspect of the LSS
control problem is not yet adequately addressed. The grid in [51] is designed to
have a dozen modes between 0.6 and 10 Hz, and it is noteworthy that the only
experiment with dense modes exhibited an anomalous instability. In practice,
it is difficult to achieve dense modes in a simple structure. The price paid for
increased modal density is increased cost of the test specimen and increased

complexity in the laboratory.

1.5.1 Space-Realizable Control

Unfortunately, many of the experimental implementations mentioned in the
previous section suffer from the problem of not being “space-realizable.” This
means that, for one reason or another, the method of sensing or actuation used
in the experiment cannot be used in space. The issue of space-realizability has
been largely neglected in the LSS control community until very recently. For
example, the actuators used in Dehghanyar et al. [53] are gas jets. Gas jets
expend consumable propellant, which is not cheaply or easily replenished in
space. Certainly, actuators for vibration suppression will have to be electri-
cally powered since electricity is the only readily available source of energy in
space. Aubrun [52] makes use of proof-mass dampers, which are linear analogs
of control-moment-gyros. Neither of these types of actuators will work quasi-
statically, and hence cannot be used for shape control. Furthermore, proof-mass

dampers lose their effectiveness at low frequency. To regain effectiveness the
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reaction mass must be made very large. Bailey and Hubbard [51] use a space-
realizable actuator and sensor, but the sensor is an accelerometer. Accelerom-
eters do not work well at low-g levels. In order to obtain high signal-to-noise
ratio measurements for low-amplitude low-frequency vibration, the accelerom-
eters may have to be massive. In addition, acceleration is an inertial quantity
and hence automatically couples the rigid body modes to the measurements of

elastic motion. This may be undesirable in some circumstances.

The implementations in [54-57] suffer from a more serious problem: they
are “sky-hook” experiments. Sky-hook experiments involve actuators or sensors
that are attached to a rigid frame, which is adjacent to but separate from the
test structure. Since no sky-hooks exist in space, these implementations are

clearly not space-realizable.

This leaves experiments [58,59,60] and perhaps [51] as examples of space-
realizable approaches. Simonian et al. [60] use an electromagnetic voice-coil type
actuator in series with the diagonal members of the truss structure. This type of
actuator produces a force by means of electromagnetic field interactions between
a magnet and a wire coil. When current is fed to the device, a force is produced.
The unfortunate converse of this is that when no current is present, no force is
available. This means that if a failure were to occur in an actuator implemented
as in [60], a structural member of a truss would effectively disappear. This
could have disastrous consequences for the structure. In short, the design is
not failure-tolerant. In addition, electromagnetic actuators have finite actuator

dynamics and require substantial power supplies.

Interestingly, the remaining cases [51,58,59] and the current research have

one thing in common: they make use of piezoelectric materials. It appears that
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the potential for the use of piezoelectric materials in the control of Large Space
Structures was realized independently and simultaneously in at least three lo-
cations: MIT/Draper Lab., Georgia Institute of Technology, and Caltech/JPL.
Bailey and Hubbard [51] use piezoelectric polymer film. Hanagud et al. [58] and
the present work use piezoelectric ceramics. Crawley and de Luis [61,62] have
investigated incorporating piezoelectric ceramics into new types of composites.
This work all appears to have been motivated by the use of piezoelectric materi-
als for shape control of optics, and by the work of Forward and Swigart [63,64].
Forward used piezoelectric ceramics to implement DVFB to damp out the bend-
ing modes of a cylindrical mast. While this structure was stiff and therefore not

of the LSS type, the methodology is applicable.

1.6 Proposed Vibration Suppression Technology for LSS

We propose the concept of an active-member, or smart-member, which is a
control actuator that functions dually as a structural element. In this sense it
is not an add-on device such as a gas jet or proof-mass damper, but is actually
part of the structure itself. The active-member concept was originally alluded
to by Canavin [22], and later by Caughey et al. [65], and Chen [66]. We pro-
pose that piezoelectric ceramic active-members be used to replace elements of
truss-type structures. We further propose a sensing scheme based on strain mea-
surements. Strain is intimately related to the elastic deformation of a structure,
and is therefore a natural quantity to measure for use in a vibration suppression
control system. Collocated strain sensors and piezoelectric actuators can then
be used to implement Positive Position Feedback. The approach outlined above
is demonstrated on a thin, flexible cantilever beam. The details of the approach

are left to the sequel.
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Chapter 2

APPROACH

This research investigates a unified approach to the Vibration Suppression
control objective for LSS. The approach encompasses both a control strategy and
a space-realizable sensing and actuation method. The control strategy, Positive
Position Feedback, achieves vibration suppression using strain measurements
only. It is shown that strain is a preferred measurement quantity. The Pos-
itive Position Feedback technique will be described in detail. The vibration
suppression is effected by means of internal force producing devices that can
be electrically powered and operated quasi-statically.and are therefore space-
realizable. The hardware aspects of implementing this approach on real LSS are
discussed. These considerations will motivate the design of the experiment in

Chapter 3.

2.1 Hardware Aspects

The following sections suggest how the present approach to vibration sup-
pression might be implemented on real LSS. The importance of internal sensing
and actuation is stressed. Examples of proposed LSS are used to motivate the
concept of a piezoelectric active-member. These considerations are taken into
account in the design of the experiment in Chapter 3, which attempts to cap-
ture as many of the important aspects of LSS implementability as possible in a

simplified two-dimensional uniform beam.

2.1.1 Vibration Suppression Control Objective

The three basic objectives of LSS control are: 1) attitude control, 2) vibra-

tion suppression, and 3) shape control. The current research is concerned with
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the second objective. While a control subsystem for any given spacecraft may
have to perform all three of the above functions, it is not generally necessary
that all functions be implemented by the same compensator. It may be desir-
able that vibration suppression be accomplished by a control system which is
separate and autonomous from the attitude control system. For a broad class
of structures, the attitude control specifications relate solely to the rigid-body
modes of the structure. Rigid-body modes can be actuated only by “external”
force producing devices such as gas jets or control-moment-gyros. We have seen
that such devices are not well suited for low frequency vibration suppression
and cannot be used for shape control. This suggests that the following nat-
ural distinction can be drawn between attitude control on the one hand, and
vibration suppression and shape control on the other: Attitude control relates
to the rigid-body modes of the structure and can be effected only by external
force producing devices, while vibration suppression and shape control relate
to the flexible-body modes and can be effected by internal force producing de-
vices. This point of view simply recognizes that vibration and shape are elastic

phenomena, whereas attitude generally is not.

It follows from this distinction that measurements used to implement vi-
bration suppression should be closely related to the elastic motion. The quan-
tity most intimately related to elastic motion is strain. Strain, which is easily
measured even at low frequency, is a generalized displacement; however, most
vibration suppression techniques require rate or velocity information in some
form. Rate information can be obtained in one of four ways: 1) by direct meas-
urement by a rate sensor, 2) by differentiating displacement measurements, 3)

by integrating acceleration measurements, and 4) through synthesis by means
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of filters or an observer. The first three methods have some drawbacks. Ve-
locity is relatively difficult to measure directly, and velocity transducers tend
to be heavy. Differentiating displacements is not a good technique because dif-
ferentiation amplifies noise. Integrating acceleration is feasible as long as the
accelerations can be measured accurately, but since acceleration is an inertial
quantity, obtaining velocity by integration results in an inertial velocity, which

can be contaminated by rigid-body modes.

Filters also have some complicating factors. Displacement measurements
passed through filters produce velocity information over a fairly narrow pass-
band. This can create difficulties outside the passband, where the unwanted
phase shift of the filter can cause closed loop instability. In practice, the filters
are usually tuned to the frequencies of the structural modes in order to synthe-
size modal velocities. Examples of this method can be found in Forward [64],
and Hanagud et al. [58]. Observers form the basis of Modern Control methods

for LSS, which have already been discussed in Chapter 1.

Positive Position Feedback (PPF) makes use of tuned filters; however, the
synthesis of velocity is not an explicit part of the theory. Rather, global asymp-
totic stability is achieved based on the form of the compensator alone. PPF will
be discussed in more detail in Section (2.2). The important aspect of PPF in the
present context is that it does not require rate information and hence, strain, a

desirable measurement quantity for vibration suppression, can be used directly.

Internal force producing devices such as piezoelectric actuators have two
important advantages. First, they can be electrically powered and can oper-
ate quasi-statically and are therefore space-realizable. Second, if only internal

forces are applied to a structure, the rigid-body modes cannot be excited. This
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decoupling is advantageous because it means that the vibration suppression sys-
tem cannot upset the pointing orientation of the spacecraft. Thus, if strain
measurements and internal forces are used, the elastic motion is completely de-
coupled from the rigid-body modes. This is the approach taken in the current

work.

2.1.2 Generic Truss-Type Large Space Structures

A large class of proposed LSS are built from three-dimensional space-truss
beams, structures that are of particular interest to this work. An example
of such a structure is the Space Station depicted in Figure (2.1). The Space
Station is composed of relatively rigid life-support modules and flexible space-
truss beams which support solar power arrays, radiators, etc. There have been
two LSS related experiments conducted on Space Shuttle missions 61-B and
41-D in support of Space Station development. On mission 61-B, astronauts
constructed two truss-type structures while in orbit: the ten bay ACCESS truss
and the EASE pyramid truss. Figure (2.2) shows astronaut Lt. Col. Sherwood
Spring holding the assembled 45 foot ACCESS structure, and Figure (2.3) shows
the EASE truss being assembled. On mission 41-D the 105 foot long SAFE
flexible solar power system was deployed. The support structure for SAFE was

a deployable astro-mast truss.

These large space-truss beams are the type of structure which we propose
to control by means of active-members. The active-member concept is detailed

in the next section.
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Figure 2.3 EASE truss constructed on

Space Shuttle mission 61-B.

2.3 Piezoelectric “Active-Member” Concept

An active-member is a control actuator that functions dually as a struc-
tural element. While other types of control actuators such as gas jets or control-
moment-gyros are add-on devices, the active-member is an integral paft of the
structure. Canavin [22] originally suggested the idea of making structural ele-
ments out of collocated actuators and rate sensors that could then implement
DVFB. The idea was expressed in general terms and the implementation was not
specific. We propose the collocated strain sensor/piezoelectric actuator active-

member.

Piezoelectric materials are inherent electro-mechanical transducers. Actua-
tors made of piezoelectric materials can be powered electrically and can typically

be operated at frequecies ranging from static (DC) to several kilohertz. This
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Figure 2.4 Active Member Concept for LSS.

essentially removes the actuator dynamics from consideration because the con-
troller bandwidth will be far below the resonant frequencies of the actuator.
One drawback of piezoelectric materials is that they cannot produce the large
displacements necessary to implement shape control. However, actuators such
as screw jacks can be added to the active-member in series with the piezoelectric
component to provide this capability. The type of active-member that might be

used on a space-truss beam of a LSS is depicted in Figure (2.4). .

Active longerons in a space-truss beam (as depicted in Figure (2.4)) can
induce bending loads on the structure and can be used to damp out bending
vibration. Active diagonals can be used to damp out torsional vibration. The
experiment described in Chapter 3 is designed to simulate active longerons on a

beam. Bending strain is measured and the actuators apply bending moments.
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The active-member can also be used as an exciter for on-orbit system iden-
tification testing. Since they induce internal forces, the active-members can be

tuned to excite modal responses as in a conventional sine dwell modal test.

2.2 Positive Position Feedback

The control strategy that is implemented in this work is called Positive
Position Feedback (PPF). PPF was originally proposed for LSS vibration sup-
pression by Caughey and Goh [2,11]. The technique was conceived in relation to
the problem of finite actuator dynamics. It is shown in [2] that by appropriate
arrangement PPF causes the actuator dynamics to synchronize with tuning fil-
ters, removing the actuator dynamics from the analysis. Piezoelectric actuators
have sufficiently high natural frequencies that we can ignore their dynamics com-
pletely in the present case. The basic theory and the major results of PPF will
be reviewed in the following sections. A more detailed analysis can be found in
[2]. A new result, discussed in Section (2.2.3), is that the multi-mode synthesis
procedure proposed in [2] can result in reduced closed loop performance if the
system poles and zeros nearly cancel. An approach for recovering performance

is proposed.

2.2.1 Scalar Case

The underlying features of Positive Position Feedback are best demon-
strated by considering the scalar case. The system consists of two scalar equa-

tions, one describing the structure, and one describing the compensator:

structure: f +2¢ wé +wit=g w?n, (2.2.1a)

compensator: H+2¢ wen+ wjzr n = w?- £, (2.2.1b)
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Figure 2.5 Nyquist plot of scalar PPF.

Hatched area is enclosed by curve.

where g is the scalar gain > 0, £ is the modal coordinate,  is the filter coordi-
nate, w and wy are the structural and filter frequencies, respectively, and ¢ and
¢s are the structural and filter damping ratios, respectively. The compensator
is composed of a second-order filter with the same form as the modal equation
of (2.2.1a), but with much higher damping ratio. The positive position termi-
nology in the name PPF is derived from the fact that the position coordinate of
(2.2.1a) is positively fed to the filter, and the position coordinate of (2.2.1b) is
positively fed back to the structure. A Nyquist stability analysis of this system
of equations results in the Nyquist curve shown in Figure (2.5). The necessary

and sufficient condition for stability is:

stability if: O0<g<1. (2.2.2)

In terms of the figure, stability is ensured as long as the Nyquist curve does
not enclose the origin. This implies that point A must lie to the right of the
origin and point B to the left. Point B always lies to the left of the origin if

point A is to the right and g > 0. Thus, the stability condition relates to the
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point A, which is the point of the locus corresponding to zero frequency. We will
see that a static, i.e., non-dynamic, stability criterion is characteristic of PPF.
A more complete picture of the behavior of system (2.2.1) can be gained from
a root locus plot that traces the movement of the closed loop eigenvalues (or
poles) as a function of gain. Three cases are possible, depending on whether the
damped frequency of the filter is greater than, equal to, or less than the damped
frequency of the structure. The three types of root locus plot* are illustrated
in Figures (2.6a,b,c). The stability boundary is the same in each case, but the
movement of the closed loop poles depends on the filter parameters. Thus, the
closed loop performance is a function of filter parameters and gain, whereas
stability depends on gain only. This allows the filter parameters to be chosen to

give maximum performance without affecting the stability margins.
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Figure 2.6a Root Locus for scalar PPF.

Case 1: w;y/1~¢7>wy/1—¢%

* These plots were generated by the computer program CC, a PC based program written at
Caltech by P. M. Thompson.
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2.2.2 Multivariable Case

The equations describing a structure with more than one mode and a com-

pensator with more than one filter are:
My +Dy+Ky=S8TCu, (2.2.3a)

i+ Bu+Qru=0Q58y, (2.2.3b)

where y is the structure’s displacement vector in global coordinates, and u is
the corresponding vector for the compensator filters. The matrix S is the rec-
tangular coupling matrix, which contains ones and zeros depending on whether
a sensor/actuator pair is located at the corresponding physical location on the
structure. M, D, and K are the structural mass, damping, and stiffness ma-
trices, respectively. B and (1 are the compensator damping and frequency
matrices, respectively. C is the gain matrix. Equations (2.2.3) require that the
sensors and the actuators be both collocated and compatible. Compatible sen-
sors and actuators are those that couple into the structural equations by the
same matrix S. If the sensors and actuators are not compatible, then two dif-
ferent rectangular matrices would appear in (2.2.3). The stability condition for

the above system is:
stability it K —STCS >0, (2.2.4)

where the notation > 0 means that the matrix is positive definite. The proof of
this result is similar to the proof for the modal form of PPF, which appears in
Section (4.3). The stability condition of (2.2.4) is simple and elegant, and again,
is a non-dynamic condition. The compensator in PPF perturbs the structure’s

stiffness matrix toward singularity. Since rigid-body modes are normally present
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for LSS structural models, the matrix K may be singular to begin with, but that
is only a minor complication. If K is singular due to rigid-body modes, condition
(2.2.4) can be cast into modal form and the rigid-body modes can be removed
by appropriate partitioning. The stability condition for PPF is generally easy
to satisfy. Since the sensors and actuators are collocated, the stiffness matrix
tends to be perturbed in block fashion, and as long as the local, or “element,”

stiffness is nonzero, the global stability criterion will be satisfied.

2.2.3 Synthesis for the Multivariable Case

Caughey and Goh [2] suggest a synthesis procedure for the multimode case
based on the assumption that the filters can be tuned to individual modes that
remain uncoupled to first order. This is true for sufficiently small gain. The
results of the scalar analysis can then be used to obtain optimum performance
on a mode-by-mode basis. If it is desired to give a certain mode a prescribed
damping ratio ¢,, the formulas for the filter frequency and damping ratio that

give good robust performance are:

1/2
(1.02¢2)?
- 2.2.5
¢ [(1.02 22 +016| ° (2.2.52)
wp=— " (2.2.5b)

102,/1-¢2

Figure (2.7a) shows an example where the prescribed damping ratio is 0.05
and the modal frequency is 10 rad/sec. The optimal performance occurs for
a gain of 0.0256, and the stability margin occurs at ‘a gain of 1.0. Figures
(2.7b,c) show the effect of an additional structural mode. As the transmission

zero (indicated by a circle) occurs closer to the pole of the controlled mode,
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the closed loop performance deteriorates. The decrease in performance can be
large if the pole and zero nearly cancel. We shall see in Chapter 4 that the test
structure in the present experiment exhibits this close pole-zero geometry. In
addition, the stability boundary is reduced from 1.0 in Figure (2.7a) to 0.09 in
Figure (2.7¢). In order to keep the modes uncoupled, the filter damping ratios
cannot be very large. This implies that the achievable closed loop performance
is strictly bounded, and the PPF control becomes a low authority control. Low
authority control may provide sufficient performance in some cases but not in

all. A method of recovering the closed loop performance is needed.

%
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Figure 2.7a Uncoupled PPF synthesis with one mode present.

Boxes indicate closed loop pole locations at design gain of 0.0256.

2.2.4 Performance Recovery for Close Pole-Zero Pairs

Closed loop performance in the presence of close pole-zero pairs can be
recovered by increasing the frequency of the filter. Figure (2.8a) shows the effect

of increasing the filter frequency from 9.88 to 11 rad/sec. The pole locations are
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Figure 2.7¢ Uncoupled PPF synthesis with two modes

present where the pole and zero nearly cancel.
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brought back nearly to their original positions and at a lower gain. However, the
pole locations are sensitive to the structural mode frequency. A small increase in
the frequency of the first mode would result in the reduced performance of Figure
(2.7¢). If the filter frequency is increased further, as shown in Figure (2.8b), the
nature of the root locus changes. Instead of the filter’s pole moving to the real
axis, it now approaches the intervening transmission zero. In this case, the two
poles coalesce with the same negative real part and nearly equal frequencies.
The pole positions are less sensitive to changes in the structural frequencies
but are very sensitive to loop gain. Reduced sensitivity to both parameters is
achieved by increasing the filter frequency still further as shown in Figure (2.8c),
but the increased robustness comes at a cost of somewhat increased gain. This
approach to performance recovery will be implemented in the design of the PPF

compensator for the beam experiment described in the next chapter.
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Figure 2.8a Performance Recovery.
wy =11, ¢y =0.12, gain = 0.013.
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Figure 2.8b Performance Recovery.
wr =12, ¢y =0.11, gain = 0.022.
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Figure 2.8¢c Performance Recovery. -
wy =14, ¢r =0.09, gain = 0.036.
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2.2.5 Stable Spillover

Another important feature of Positive Position Feedback is that all the
spillover into uncontrolled or unmodelled modes is stabilizing. A proof of this
is contained in [2]. Rather than reproduce the proof here, we demonstrate the
effect in the following figure. A filter is located in the vicinity of mode number
two. It is seen that the spillover into modes one and three causes them to move

into the left half-plane, which is stabilizing.
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Figure 2.9 Stable spillover into uncontrolled modes.
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Chapter 3

DESIGN OF THE EXPERIMENT

The experimental implementation of the approach outlined in Chapter 2
is described in the following sections. The test structure, a thin cantilever
beam, exhibits many of the important characteristics of Large Space Structures
(LSS). A space-realizable actuation and sensing scheme consisting of piezoelec-
tric ceramic actuators and sensors attached to the test beam is used to simulate
active-member longerons on a space-truss beam structure. The test structure,
test fixture, and data acquisition/command generation system are described in
detail, along with an analog circuit realization for the Positive Position Feedback

(PPF) filters that constitute the control system compensator.

3.1 Test Structure

The test structure we have chosen is a uniform thin cantilever beam. The
beam was made thin (20 mils) in order to achieve some of the characteristics that
make LSS difficult to control. Specifically, the structure has low inherent out-
of-plane stiffness due to its small section moment of inertia. It has low mass per
unit length compared to lumped-mass type sensors such as accelerometers. The
first bending mode frequency was designed to be fairly low at five Hertz. Finally,
the structure was designed to have low modal damping. Low modal damping was
obtained by eliminating sources of friction and nonlinearity, which can introduce
unwanted dissipation. The cantilever boundary condition was chosen because
it is simple to implement and introduces relatively little friction. Aerodynamic
drag is the largest remaining source of additional dissipétion, but its effect is

small. Two important aspects of LSS that are not simulated by the cantilever
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Figure 3.1 Detail of test structure showing location of first

sensor /actuator pair. Drawing not to scale. All dimensions in inches.

beam are high modal density, modal coupling, and three dimensionality. These
characteristics require a more complicated structure, a frame or a planar truss,
for example. The higher modes of a cantilever beam are more closely spaced,
and therefore some approximation of dense modes can be reached at the higher
frequencies. It was decided that the first feasibility tests of PPF should be made

on a structure which is simple, yet representative of LSS.

The test structure is shown schematically in Figure (3.1). The hatched
areas are the first sensor/actuator pair near the root of the beam. Two configu-
rations of piezobeam™* were used for control experiments. The beam used in the
single-input-single-output (SISO) experiment incorporated one sensor/actuator
pair at the root, while the beam used in the multi-input-multi-output (MIMO)

experiment incorporated two pairs at two different locations. The location of

* We shall refer to the composite structure consisting of the aluminum beam and the piezo-
electric ceramic material as the piezobeam.
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the second pair is discussed in Chapter 5. The mechanics of the sensors and

actuators is discussed in detail in Section (3.2).

The test beam is made of 2024 aluminum sheet with a cantilevered length
of approximately 12.5 inches and a uniform thickness of 20 mils. The fundamen-
tal natural frequency is approximately 5 Hz. The width of the beam was made
large enough to restrict the motion to bending in one axis with no low frequency
torsional modes. The test structure is therefore a uniform two-dimensional rep-
resentation of a three-dimensional space-truss beam. The cross section of the
beam is very thin; the addition of the piezoelectric ceramic sheet material in-
creases the section bending stiffness by an order of magnitude, which means
that the section properties of the composite piezobeam are highly discontinu-
ous. A normal modes analysis was therefore performed numerically by means
of the STAP and MSC/NASTRAN finite element programs,* both of which
gave identical results. The calculated natural frequencies for both the SISO
and MIMO piezobeam structures are compared with the measured frequencies
in Table (3.1.1). The NASTRAN input file for the SISO piezobeam is given in

Appendix A, and plots of the first eight mode shapes are shown in Appendix B.

3.2 Piezoelectric Actuators and Sensors

Piezoelectric material was selected for use as both sensors and actuators
for a variety of reasons. One of the major motivations is that sensors and
actuators so constructed are not electro-mechanical devices in the usual sense
because they have no moving parts; the piezoelectric material itself is the electro-

mechanical transducer. This is significant, for in the space environment moving

* MSC/NASTRAN is a widely used finite element program marketed by the MacNeal-
Schwendler Corporation (MSC). STAP is a PC based finite element program written by R. L.
Norton.
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Table 3.1.1 NASTRAN and Measured Frequencies (Hz.)

Mode SISO Piezobeam MIMO Piezobeam
Number Predicted f Measured f Predicted f Measured f
1 5.02 5.03 5.63 5.64
2 31.0 30.6 29.2 29.0
3 85.0 83.1 75.5 74.2
4 162 156 153 148
5 256 245 250 235
6 365 350 359 345
7 496 484 513 499
8 658 653 674 644

parts are avoided whenever possible. Secondly, the piezoelectric actuator is
powered electrically and can be operated from zero frequency (static) to very
high frequencies. This avoids the problem of finite actuator dynamics which
can lead to instability. Thirdly, the piezoelectric sensor requires no power and,
when operated as a strain gauge, provides high voltage output and therefore
high signal-to-noise ratio measurements. Fourthly, the piezoelectric ceramic
material has a Young’s modulus nearly equal to aluminum. Thus, if a power
failure were to occur, the actuators and sensors would revert to passive structural
members with no degradation to the open loop spacecraft structure. Lastly, the
material is lightweight and lends itself readily to the concept of a dual structural

element/actuator.

Figure (3.2) shows a section of piezoelectric thin sheet viewed edge-on. The
upper and lower surfaces are the electrodes. Part (a) of the figure describes the
actuator piezoelectric. If an electric field Ey is applied across the piezoelectric

in line with the poling direction, as indicated by the arrow, the piezoelectric
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Figure 3.2 Electro-mechanical action of the

actuator and sensor piezoelectrics.

lengthens by an amount ;. If the field is opposite to the poling direction, the

piezoelectric shrinks. The equation relating the strain to the applied field is [67]:
Eg = d31 Ef, (3.2.1)

where ds; is called the piezoelectric strain constant, or the transverse charge
coefficient, and is a material property of the piezoelectric. High ds; values are

desirable for material that is to be used as an actuator.

Part (b) of Figure (3.2) describes the sensor piezoelectric. If a stress o is
applied to the material, an electric field is generated. The equation relating the

applied stress to the resulting electric field is [67):
Ef = —gsi0, (3.2.2)

where g3 is called the piezoelectric voltage constant, or transverse voltage co-

efficient, which is also a material property. High gs1 values are desirable for
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material which is to be used as a sensor. The subscript 31 refers to the particu-
lar geometry of the piezoelectrics used. The 3 direction is parallel to the poling
direction, while the 1 direction is transverse to the poling direction. Thus, the

electric field occurs along axis 3, and the stress or strain along axis 1.

Piezoelectric material is available as a polymer film or a ceramic. Each form
has its advantages and disadvantages. We chose to use the ceramics because the
d3; constant is an order of magnitude higher than that of the polymer. This
is important when they are used as actuators. If the polymer is used as an
actuator, the applied voltage must be much higher, typically several hundred
volts, to compensate for the reduced strain constant. We desired to keep the
voltages below 15 volts so that off-the-shelf 741 operational amplifiers could be
used in the control circuit. Additionally, the Young’s modulus of the polymer
is more than an order of magnitude less than for the ceramic, which makes the

polymer less well suited to the active-member concept outlined in Chapter 2.

The piezoelectric ceramic material chosen is type G-1195 thin sheet Lead-
Zirconate-Titanate (PZT) solid solution, manufactured by Piezo Electric Pro-
ducts Inc., of Metuchen, New Jersey. The nominal thickness of the sheet is
10 mils. The breakdown voltage of G-1195 is approximately 15 volts/mil, which
allows 150 volts to be applied to the actuator. Since we are restricting the volt-
age to less than 15 volts, the ceramics are only being used to one tenth of their

rated capacity.

Thin sheet piezoelectric ceramic material was adhered to the surface of the
beam as shown in Figure (3.3). The sensor and actuator are made of identical
material, the actuator being twice as wide as the sensor. In the figure, the two

ceramics labeled “A” serve as the actuator, while the two ceramics labeled “S”
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Figure 3.3 Layout of sensor and actuator ceramics.

Arrows indicate poling direction.

serve as the sensor. In principle, the function of the two could be reversed. A
cyanoacrylate adhesive was used to bond the ceramics to the aluminum beam.
The surface in Figure (3.3) marked “contact surface” defines the area where
adhesive contact is made. The procedure for bonding the ceramics is given in
Appendix C and is derived from standard procedures used for mounting strain
gauges. The method produced a bond which was stronger than the ceramic

madterial.

The ceramics are attached symmetrically to both sides of the beam; this
maintains the neutral axis of the composite beam at the midsection. The sensor
ceramics are adhered adjacent to the actuator ceramics but are electrically iso-
lated from them. In the experiment, the beam serves as the electrical “ground.”
In order to provide one side of each ceramic sheet with a good electrical con-
tact to ground, two grooves were milled into the beam to a depth of 3 mils.
In each groove, making contact between the beam and the back surface of the

piezoelectric material, was laid a thin strip of copper sheet. This was done
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Figure 3.4 Sensor and actuator of
the SISO piezobeam.

because the cyanoacrylate adhesive used to adhere the ceramics to the beam
is non-conductive. The two surfaces of each ceramic sheet are plated by the
manufacturer with a thin layer of nickel that serves as an electrode. Wire leads
were soldered directly to the nickel electrodes using MIL-spec. flux and solder
provided by the ceramic manufacturer. The sensor and actuator of the SISO

piezobeam are shown in Figure (3.4).

Figure (3.3) also indicates the relative poling orientations of each ceramic
sheet. Figure (3.5) shows a detail of the poling orientations and electrical bound-
ary conditions of the actuator ceramics. The outer surfaces of the actuator ce-
ramics are driven with the same applied voltage V,; the inner surfaces, which
are adhered to the beam, are maintained at ground. The poling orientations
are such that the applied voltage causes one ceramic to expand, while the other
contracts. This applies a bending moment to the beam in much the same way

that an active longeron applies a bending moment to a space-truss.
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Figure 3.5 Actuator ceramic poling geometry

and electrical boundary conditions.

The sensors are arranged in parallel fashion similar to the actuators as
shown in Figure (3.3). When the beam bends, the stress applied to the sensor
ceramics produces a voltage that is measured directly. For this beam, an output
voltage on the order of one volt is typical. The stress applied to the sensor
ceramics is related to the bending strain and hence, the sensor actually measures

bending strain.

The derivation of the equations describing how the actuators and sensors

couple into the beam equation of motion is deferred to Chapter 4.

3.3 Test Fixture

A test fixture was designed to allow the test structure to be excited by
base excitation. In order to perform system identification tests and closed loop
performance tests on several structural modes, it was necessary that the test
fixture be able to excite the structure with a wide variety of disturbances, such
as discrete sine sweeps, sine chirps, impulses, etc., over a wide frequency range

(3 — 700 Hz).
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Figure 3.6 Test fixture.

Beam is cantilevered out of page.

The test fixture is shown schematically in Figure (3.6). The fixture consists
of five basic parts: 1) a beam support fixture, 2) a linear bearing table, 3) a
stinger, 4) a shaker, and 5) a shaker support flange. The beam support fixture
consists of two parts that clamp the beam rigidly in a cantilevered configura-
tion. The wiring associated with the sensors and actuators is routed through an
access tunnel in the support fixture, which is bolted firmly to the linear bearing
table. Detail drawings of the support fixture and the bearing table are given
in Appendix D. The bearing table is supported by three Thomson Super Ball
Bushing® pillow blocks. Two pillow blocks ride on one shaft and one on the
second shaft. This three-point support minimizes binding due to misalignment.
The bearing shafts are made of case-hardened ground steel and are supported
on shaft support blocks that are mounted to a aluminum baseplate. The bearing

table is connected to the shaker by means of a stinger, which is glued to the
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bearing table and threaded into the shaker table. The stinger had to be re-
designed twice to eliminate bending modes that interfered with the lower modes
of the structure. The final design is a 1/2-inch brass tube with aluminum plugs

in each end.

The shaker chosen is a 2.25 lb; Briiel & Kjer type 4810 Mini-Shaker. It
is a high quality shaker with a frequency range of DC to 18 kHz. The shaker
specifications are given in Appendix D. Voltage signals from the data acqusi-
tion/command generation system are passed through a power amplifier, which
in turn drives the shaker. The data acqusition system is described in the next
section. The shaker is supported by the shaker support flange. The table of the
shaker, the part of the shaker connected to the stinger, is supported by highly
damped flexures which restrict the table motion to be rectilinear. The stiffness
of the flexures combines with the mass of the beam support fixture/bearing table
to create a test fixture vibratory mode at approximately 7 Hz. This was fairly
close to the 5 Hz fundamental of the test beam, so springs were added to the

bearing table to allow the fixture mode to be tuned to 10 Hz.

The baseplate rests on a steel plate, which in turn rests on a rubber cush-
ion that serves to isolate the entire apparatus from building vibrations. Fig-

ure (3.7a,b) shows the test fixture and the SISO test beam.
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Figure 3.7a Test fixture and SISO piezobeam.

A six-inch rule stands in the foreground.

Figure 3.7b Test fixture and SISO piezobeam.
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3.4 Data Acqusition/Command Generation System

A data acqusition/command generation system was used to excite the struc-
ture and to measure structural response. The analog control circuit was imple-
mented separately. The data acqusition/command generation system used is the
Synergistic Technology Incorporated (STI) VAMP system. The STI/VAMP sys-
tem is designed for sophisticated high-speed multichannel structural dynamics
testing. Specifically, the user is able to construct arbitrary time history voltage
signals with which to drive the shakers and simultaneously excite the structure
while measuring up to 64 channels of response data. The VAMP software can
then be used for extensive post-processing. The particular VAMP system used

in the current experiment consists of the following hardware:

e Digital Tape Drive,

e AA32 Amplifier /Filter System,

e 85 Mbyte Disk Drive,

e LSI11/73 CPU,

e Dual Channel Digital to Analog System,

¢ STI Clocking Systerm,

e 64 Channel 12 bit Analog to Digital System.

Generally, four channels of data were taken and one command channel was
generated to drive the Mini-Shaker. Three types of tests were conducted: The
first test is a sine chirp. In a sine chirp, the shaker is driven by a sinusoidal signal
with the frequency of the sine wave swept continuously and rapidly from a lower
frequency to a higher frequency. The response is then measured and a transfer
function is computed. The second test is the SWIFT test. In a SWIFT test the
structure is excited with a sinusoidal excitation at a fixed frequency, and the
structure is allowed to reach a steady-state response. The Fourier coefficient of

the transfer function corresponding to that frequency is then determined from an
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average of the steady-state response. The excitation frequency is incremented
and the process is repeated until 512 discrete frequencies are measured. The
third type of test is the free decay. In a free decay test the structure is excited
at a single frequency. After the structure has built up a steady response, the
excitation is stopped abruptly and the free decay is measured. In this way the

free decay of higher modes can be measured.

Chirp and SWIFT tests produce a transfer function between the output
voltage of the sensor and the input voltage to the shaker amplifier. VAMP uti-
lizes a post-processing program called FITTER, which curve-fits the measured
complex transfer function and produces estimates of modal frequency and damp-
ing ratios. These frequency and damping ratios are used for open loop system

identification and for closed loop performance measurements.

The VAMP software is based on the 1024 point Fast Fourier Transform
(FFT). This size transform can result in limited frequency resolution baseband
FFTs. In order to increase the frequency resolution without increasing the
number of points in the FFT, Zoom FFTs are used. The Zoom FFT makes
use of a larger time history record to produce a 1024 point FFT of increased
resolution over a portion of the baseband frequency spectrum. The Zoom FFT

was introduced by Brilel and Kjer, and is discussed in [68].

3.5 Positive Position Filter Realization

The Positive Position Feedback compensator is composed of filters with the
following transfer function derived from the Laplace transform of Eq. (2.2.1b):

2
Wy

, 3.5.1
32+2§fwfs+w)2, ( )

T(s) =
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Figure 3.8 Positive Position Feedback filter realization.

where s = jw is the Laplace transform variable, wy is the filter frequency, and
¢5 is the filter damping ratio. It was desired to control the first six modes of the
cantilever beam, which meant that the control system had to perform up to a
frequency of 400 Hz. An analog control circuit was chosen for both simplicity and
speed. A simple circuit realization which has as its transfer function Eq. (3.5.1)

is shown in Figure (3.8) [69].

The filter frequency and damping ratio are related to the circuit component

values by the following equations:

w ~\/—————1-—~ (3.5.22)
7=V RiR,C.Cy’ o

¢r = 3ws(R1 + R2)Co. (3.5.2b)

The design procedure used to choose the component values is as follows:

Step 1: Choose resistor values Ry = R, = 50k. This value of resistance is

chosen to keep the capacitance values small.



Step 2:

Step 3:
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Calculate the capacitance C; from Eq. (3.5.2b).

Calculate the capacitance C; from Eq. (3.5.2a).

This gives the nominal component values. Since actual capacitors are only

available in discrete sizes, and since their values typically vary by + 10%, the

next steps fine-tune the design.

Step 4:

Step 5:

Step 6:

From the measured capacitance values C; and C5, calculate the resistor
values R; and R, from the following quadratic which is derived from

Eq. (3.5.2):

2
Sf Sf 1
Ry, = + . 3.5.3
b2 wrCy \/<wfc'2> wiC1Co (3.5.3)

If the solution to Eq. (3.5.3) is complex, then one resistor is set to
the value of the first term of Eq. (3.5.3). The second resistor value is
determined from Eq. (3.5.2a), which results in the correct frequency
for the filter. Usually, the resulting damping ratio is very close to the
desired value.

Test the filter by a VAMP chirp test and compare the FITTER curve-fit

frequency and damping measurements with the desired values.

Use Eq. (3.5.2) to estimate changes in Ry and R, necessary to obtain

the desired values.

In practice, this procedure resulted in filters with frequencies and damping ratios

within one percent of the desired values.
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Chapter 4

DERIVATION OF GOVERNING EQUATIONS

In this chapter, equations will be derived that describe how the actuators
exert forces on the composite piezobeam, and how the elastic motion of the
beam is measured by the sensor. The Partial Differential Equation of motion
for the beam is derived. It is shown that the actuators couple into the modal
equations through the difference in the slopes of the mode shapes at the ends
of the actuator, and that the sensors couple through the curvature of the mode
shape along the length of the sensor. The global stability properties of Positive
Position Feedback in relation to the present experiment are presented in the
form of a theorem in Section (4.5). Finally, the quantities that will be used in
Chapter 5 as a measure of the performance of the vibration suppression system

are discussed.

4.1 Mechanics Analysis of Composite Piezobeam

This section presents the derivation of the equations describing the me-
chanical behavior of the composite piezobeam. The equation relating the volt-
age applied to the actuator and the moment induced across the section of the
piezobeam is derived, as well as the equation that relates the bending strain in
the beam to the voltage produced on the sensor. As described in Chapter 3, the
composite piezobeam is an aluminum beam with piezoelectric ceramic actuators

and sensors bonded on either side.
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4.1.1 Actuators

An electric field applied across a piezoelectric material causes a free strain*
in accordance with the poled characteristics of the ceramic. For the type of
ceramic used in this experiment, an electric field applied across the thickness of
the ceramic induces a longitudinal free strain as shown in Figure (3.2a). The

resulting free strain is given by

%
€p — dglEf = d31 t—a, (4.1.1)
a

where V, is the applied actuator voltage, and t, is the thickness of the actuator
ceramic. This relation maintains sign, i.e., if the applied electric field reverses

sign, the free strain also reverses sign.

In the present configuration, the boundary conditions are not free-free be-
cause one surface of the ceramic is adhered to the beam. The stiffness of the
beam resists the strain in the piezoelectric ceramic. The mechanics analysis ap-
proach to analyzing this configuration is analogous to that applied to a heated
shaft held between rigid end constraints. The conceptual steps in the analysis

are outlined below:

First, the electric field is applied across the ceramic, which is allowed to
strain freely, say, in a positive sense. Second, a load is applied to the ceramic
to strain it back to its original length; the ceramic is now under compression.
Third, the compressed ceramic is adhered to the beam and the applied load is
released. The ceramic will spring back to some fraction of its free strain and, in

the process, strain the beam. The ceramic will then be under compression and

* Free strain implies that this strain is realized if the boundary conditions on the ceramic
are free-free.
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Figure 4.1 Arrangement of ceramics.

the beam under tension. Beam theory assumptions and small strain assumptions
will be used throughout the analysis. The beam theory assumptions require that
the strain across the section be linear plus a constant. We assume that the axial
strain of the ceramics due to the applied voltage is constant. The resulting
strain field on the composite structure is used to derive the axial force across
the section, the location of the reference axis, and the induced bending moment

across the section.

For this investigation, the actual geometry involves two actuator ceramics
sandwiching the beam with their polarities arranged such that the same voltage
applied to their outer surfaces causes one to strain positively and one to strain
negatively — a push-pull arrangement, as shown in Figure (3.5). In addition,
there are two narrower sensor ceramics sandwiching the beam, adjacent to the

actuator ceramics. The arrangement is shown in Figures (3.3) and (4.1).
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Figure 4.2 Composite deformation.

Deformation of Composite Beam

In general, a voltage applied to an actuator ceramic causes two effects:
1) a uniform axial strain is produced through the section of the beam, and 2) a
bending moment is produced. If the bending strain is denoted by €;(y) and the
axial strain by £,, then, following the four conceptual steps discussed above, the

axial strain field through the composite beam can be written as

e1{y) = €0 — €x + €8(y) (Section 1),
e2(y) = €a + € (y) (Section 2), (4.1.2)
e3(y) = €qa + €5 + €b(y) (Section 3).

In accordance with standard beam theory, the bending strain can be written as

e(y) = -(3:;—), (4.1.3)

where R is the radius of curvature and D is the location of the reference axis,

as shown in Figure (4.2).
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Axial Force

The axial force F, is obtained by integrating the stress across the section

FO,:/ Oz dA:/ Ee,dA. (4.1.4)
A A

The integral can be broken into three parts and written in terms of the strains

of Eq. (4.1.2):

F, = /E1 lea — €5 + €b(y)] dA + /Ez[sa +ep(y)] dA

section se{:tion
one wo (4.1.5)
+ / Eslea + 5 + e5(y)] dA.
section
three

The sensor part of the cross section, being passive, will only affect the axial
strain, not the applied moment. Since the axial strain will turn out to be zero
due to symmetry, the integrals are restricted to the width W;. Evaluating each
term separately we have

Section one:

t _
/E’1 —ep +eb(y)] dA = // El[sa— _L?/_Rq)_J dzdy

section (4.1.6)

D t2
=W Ey [(Ea—EE-i--E)tl‘—l‘]

Section two:

t;+12 . D)
/E2 lea + ep(y)]dA = / / E, [Ea " } dz dy
ty

setctxon (4.1.7)

——W1E2 [(EQ+R)t2 2R R]
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Section three:

ty+ta+is p W, - D
/E3[5a+5E +ep(y)|dA = / Es [Ea+sE - (y )] dzdy
0

. 1 +t2 R
section
three
D t2  tits  tots
=W, E e T . I
1 3K€a+EE+R)3 5R B R
(4.1.8)
The axial force can be grouped into two components — a part due to axial
strain, and a part due to pure bending strain, as follows:
F, = [Wl Ei(ea —ep)t1 + W1 Ezeoty + Wy Es(ea + EE)ts}
due to axial strain
Dt; t? Dty  titz  t2
WiE, | — — — WiEy | — — — — = 4.1.9
+[11(R o) T\ TR 2R (4.1.9)
Dtg t% tits tals
WiEg | — — = — —— — ==},
Wi Es ( R 2R R R

due to bending strain

The reference axis is chosen such that the axial force due to pure bending is

zero. Thus,

E1 (31%) + Bz (313 + tatz) + E3 (243 + t1t3 + tat3)

D =
Ety + Eaty + Egts

(4.1.10)

If axial inertia is ignored, then the remaining part of F, must be zero also. This

determines the axial strain €, as

E;t; — Ests
a = . 4.1.11
¢ (Eltl + Eqty + Ests) ez ( )
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For the symmetrical geometry of the present arrangement of ceramics we have
that: t; = t3 = t4, and Ey = E3 = E,. With these substitutions Egs. (4.1.10)

and (4.1.11) reduce to

D =t,+ it, (4.1.12a)

€qa = 0. (4.1.12b)

Thus, there is no axial strain, and the neutral axis is unaltered at the midsection.

Induced Bending Moment
The induced bending moment M across the section is obtained by integrat-
ing the axial force across the section times its corresponding lever arm, which is

the distance from the neutral axis

M= /Acrx(y _D)dA= /A Ee,(y - D)dA. (4.1.13)

The bending strain €;(y) is a consequence of the induced moment and is therefore
not part of the moment integral. Furthermore, the axial strain £, is constant
and will contribute no moment. Hence, the integral of Eq. (4.1.13) reduces to

an integral over two sections given by

M = /El(——sE)(y — D)dA + /Ea(EE)(y — D) dA. (4.1.14)

section section
one three
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Evaluating each term separately, we have:

Section one:

/El(—sa D)dA = /Otl OWIE1(-€E)(y — D)dzdy

section (4.1.15)

one
tZ

= —Ep WlEl(—‘ - Dtl)

Section three:

t1+iz+ts
/Eg(EE J(y — D)dA = / /Eg(—eE)y D)dz dy
t; +1z

sectlon (4.1.16)

hree
2

= €Eg W1E3( +t1t3+t2t3—Dt3)

The induced moment across the section of the beam is then
M=ecW, [E3 (%tg + titg + Loty — Dt3) — F; (%t% - Dtl)] . (4117)

If we make the substitutions: t; = t3 = t,, E; = E3 = E,, Es = E, W; =

W,, and t; =t;, Eq. (4.1.17) becomes

M =W,E,epty(ts + ts). (4.1.18)
Substituting for £, from Eq. (4.1.1) gives

M = W,E, d3;(ta + ts)Va. (4.1.19)

Equation (4.1.19) indicates that the applied moment is proportional to the piezo-

electric transverse charge coefficient d3z; and the Young’s modulus E, of the
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piezoelectric material. Both material properties are larger for the ceramics than
for the polymers, making them superior per volt as actuators. Substituting the

actual values for the variables from Appendix E we have

in - Ibg

M =1.02x10"%V, )
volt

(4.1.20)

A STAP finite element model of the SISO piezobeam was given a uniform
applied moment over the length of the actuator, and the tip displacement was
calculated. A comparison with the actual tip displacement, measured in the
laboratory with a photonic sensor, suggests that the actual applied moment per
volt is approximately seventy percent of that predicted by Eq. (4.1.19). This
is not surprising in view of the simplifications inherent in the analysis, and is
consistent with the overestimation assumption of constant strain through the

actuator thickness.

4.1.2 Sensors

A stress applied to a piezoelectric material causes an electric field to be
produced, as shown in Figure (3.2b), where the relation between stress and

electric field is given by

Ef = = —{gs31 0, (41.21)

Ve
ls
where V; is the voltage produced on the sensor and ¢, is the thickness of the
sensor ceramic. We assume that the sensor responds to the stress at the midplane
of its thickness, and that the stress is constant along the length of the ceramic.
When the beam is vibrating in a particular mode shape, however, the stress is

not constant along the length of the sensor. This causes a complication in that
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the sensor voltage produced on the electrode, which is common to the entire
length of ceramic, is a function of the non-uniform stress field. This functional
relationship is not known, causing the actual coupling of the sensor to higher
modes to be somewhat difficult to calculate with sufficient accuracy for control

synthesis.

Using the stated assumptions, we find that the stress produced at the sensor
due to an applied pure moment, using the Young’s Modulus of the aluminum

beam, is

__M@y-D)

8 L
I midsection

(4.1.22)

where I is the moment of inertia of the composite cross section. The moment
of inertia of the cross section is determined by means of an equivalent beam of

varying width but uniform Young’s modulus to be

E E
I=1wit] + %Waf‘;—ti + -};Wsﬁtﬁ
4.1.23)
E, [ty +tz\° E, [ty +1t.\° (
+2tSW"E< ’”; ) +2tSWSTEf( b; “’) .

If the applied moment is produced by the actuator, then, using Egs. (4.1.20),
(4.1.22), and (4.1.23), and substituting the values for width, thickness, and

Young’s modulus from Appendix E we have

1bs

0s = 4.579V, ,
- volt

, (4.1.24)
m

2

where o is the midthickness stress at the sensor. Making use of Egs. (4.1.21) and

(4.1.24), and substituting for the transverse voltage coeflicient, we can determine
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the theoretical quasi-static ratio of applied actuator voltage to measured sensor

voltage to be

Vo
= = 12. 4.1.25
- (1.1.25)

The test structure was excited by a 5 volt sinusoidal signal on the actuators
at 10 Hz, which is between the first and second modes, and the ratio of volt-
ages was measured to be approximately 23. This value, along with the actuator
calibration factor of 0.70 determined from the measurement of tip deflection, im-
plies that the sensors produce only seventy-five percent of the voltage predicted.

Again, this is not surprising in view of the simplifying assumptions.

4.2 Differential Equation of Motion

Since the composite piezobeam is a relatively simple structure, it can be
modeled adequately by a simple Partial Differential Equation (PDE). The use
of a PDE affords greater understanding of the physics of the problem than a
Finite Element Method (FEM) approach. For this reason, the PDE will be used
to model the coupling of the actuators and sensors into the modal equations of
motion for the beam. The governing PDE is derived by the use of Hamilton’s
Principle and is based on the Bernoulli-Euler beam assumptions, which ignore

shear deformation and rotary inertia.

A complete description of the problem requires actual values for the eigen-
functions or mode shapes of the composite beam. Since the PDE is not easily
solved analytically to provide these functions, a FEM model is used in this part

of the analysis.
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4.2.1 Governing Partial Differential Equation

The applied moment from the actuators, which is derived in Section (4.1.1),
rides along with the beam as it deflects. We call this type of moment a dis-
tributed follower moment. Figure (4.3) shows the coordinate system for deriving
the equation of motion of the beam under a distributed follower moment. For

the Hamilton’s Principle derivation, all forms of energy must be accounted for:

1 (L 9%y 2
Elastic Potential Energy : V = -—/ E(z)I(z) (*—) dz,
0

2 0z?
L 2
2
Kinetic Energy : T = 1/ m(z) (i) dz, (4.2.1)
2 /o ot

Work done by Moment : W = / M(z dz,
6.1:2

where m(z) is the mass/unit length of the composite structure. Notice that the
work done by the follower moment involves the curvature of the beam, not a

rotation.

The Hamiltonian “Action”* is given by

ta
1= (T-viw)a. (4.2.2)
t;

Hamilton’s Principle states that for an admissible motion, the variation of the

action is zero

61 =0. (4.2.3)

* The Hamiltonian Action is an integral over time. In this analysis {1 and {5 represent two
different times.



- 62 —

applied moment M E(x), 1(x], m(x]

Figure 4.3 Beam with follower distributed moment.

Evaluating Eq. (4.2.3) we have

61:6[/:2{%/;7”(93) (%%de»—;—/OLE(z)I(x) (%)de

(4.2.4)

Bringing the variation inside the integrals, and reversing the order of integration

of the first term gives

L pta to pL 2 2
dy _[ 9y %y (9%y
=6 = | dtdz — —= 6| —= | dzd
/O/t, m(x)at 5((’%) tdz /tl/O E(‘”)I(z)aﬁ&(ax? z dt
t: pL 2
2 9%y

Reversing differentiation and variation gives

to ts
y o dy
-——ma - §2Y\ drdt
//t ) 51 57 () dtde /t/ 6:52893( a::;)dx
to By
dzdt = 0.
/t/ M(= az(a) :

(4.2.5)

(4.2.6)
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Integrating by parts

L
/ {m(z)f;—féy

to iz 3 ay
- a7 by dt

=0 by H.P.
”/tjg{”x”( i ()5 (e (z)f()gxz)a(gz)dm}dt
=0 by B.C.
[ fros(@) L[ () e e

=0 by B.C.

The terms that are indicated by the underbrace notation H.P. are zero due to
an axiom of Hamilton’s Principle, which states that the variation of the path
at the beginning and ending times is zero. The terms that are indicated by the
underbrace notation B.C. are zero due to the natural or geometric boundary
conditions, which are summarized at the end of this section. Integrating by

parts again,

/tt/ x) 5“‘”‘”“’“/: S—m (E(z)f( )g;> 5y| dt

=0 by B.C.

/tto/ ax2(E(zI(z) )6ddt [Qﬁj‘ggl,gyfjdt
' FEEEN

=0 by B.C.

t’)
dt = O' i
_/;1 / 8:1:2 5y dz (4.2.8)

Thus,

3tz 9r2 bydrdt =0. (4.2.
/u / { 8t2 dz? (E(x)f(”’) axz) t g (ydrdt=0. (4.2.9)
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Since the variation éy is arbitrary, the factor in braces must be zero. This gives

the differential equation of motion as

m(:z:)a—zg + —?—2~ (E(z)I(:c)g

4.2.10
otz 0zx2 ( )

2y *62M(:c)
z2/) 8z?

The following natural, geometric and axiomatic boundary conditions have been
used in the analysis:
att=t;: 6y=0;

att =t2: o6y=0;

2.11
atz=0: 6y=0, 5(.8_3{)—0; (4 )
oz
d%y 3%y oM (z)
tz=L: = ~ <7 — )
atz=1L 522 0, 3x3*0’ M(z) =0, " =0

4.2.2 Modal Equations

This section presents the derivation of the modal participation factors for
a beam acted upon by a follower distributed moment. As derived in Sec-
tion (4.1.1), the piezoelectric actuators exert a follower distributed moment on
the beam such that the bending moment induced across the beam section is

constant everywhere along the length of the actuator, with magnitude given by
M = f,Wo.E,da; (ta. + tb)Va, (4.2.12)

where f, is the actuator calibration factor = 0.7, discussed in Section (4.1.1).
If, for convention, the edge of the actuator nearest the cantilevered end of the
beam is Station 1, and the end nearest the free end is Station 2, then the applied

moment can be modeled spatially as

M(z) = a1V, [h(z — z1) — h(z — z2)], (4.2.13)
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where a1 = foW,E, d3i(ta+1ts), h(e) is the Heaviside step function. Substituting
Eq. (4.2.13) into Eq. (4.2.10), we find that the equation of motion of the beam

becomes

m(x)%ﬁy + ;;—2- (E(a:)I(x)—a—y—> = alVa—g;[{i(x —z1) — 6(z — z2)], (4.2.14)

where 6(e) is the Dirac delta function. We make use of the usual modal expan-

sion of y, namely:
y(z,t) = &(t) ¢i(z). (sum on 7) (4.2.15)

Substituting into Eq. (4.2.14) gives

- 92 02 : 0o
m(z) ¢: &i(t) + &it) 53 [E(z)z(x)_%gi)] = a1Vaz-[6(z — 21) — §(z — z2)].
(4.7.16)
We now multiply by ¢;(z) and integrate over the domain.
2 32 i
/ ¢;(z)m(z)di(x) dr +E&i(2) / ¢;(z 8 2[E( )I(z) ;ngx)]d.’c
bij wz i
=aV, / ¢j(z)=—[6(z — z1) — 6(z — z2)] dz
(4.2.17)
Integrating the third term by parts we have
(1) 6is + €:(1) 807 = @ Va{ [85(2)[8(z — 71) = 6(x — 2)]]
(4.2.18)

_ /OL Qi%;ifl[a(z ~ 1) - b(z — 2)] dz }
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Since the actuators do not reach to the ends of the beam, the first term on the

right-hand side is identically zero. Hence:
&(t) + &) w? = ay Va|i(z2) — ¢}(x1)]. (no sum) (4.2.19)

We see that the actuators couple into the modes through the difference in the
slopes of the mass-normalized mode shapes at the ends of the actuators. If we

define

D; = [¢5(z2) — ¢5(z1)], (4.2.20)
then the modal equations are simply
() + &) w? = a1 D; V,. (no sum) (4.2.21)

This type of coupling into the modes is problematical in that it requires accurate
knowledge of the D;, which are slopes of the mode shapes at discontinuities in

beam section properties.

4.3 Plant Transfer Function

The open loop plant transfer function that relates a voltage at the actuator
to a voltage at the sensor is derived in this section. The equation relating
bending moment to stress on the sensor was derived in Section (4.1.2) and is
given in Eq. (4.1.22). Substituting for the term (y — D) for the present geometry

gives

M
05 =—3(ts + tb)~I—. (4.3.1)
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Substituting into Eq. (4.1.21) gives the sensor voltage as

M
Vs = —'%—ggl ts(ts + tb)T (432)
Assuming small strains, we can approximate the sensor voltage as
g 9%y
Vs — §fs 931 ts(tg + tb)Eb 5‘;57 (4-3'3)

az

where f; is the sensor calibration factor = 0.75, defined in Section (4.1.2), and
the minus sign is incorporated in the sensor poling geometry. Equation (4.3.3)
assumes that the curvature is constant along the length of the sensor. In general
this is not the case, and the actual voltage will depend in an unknown way on
the distribution of curvature along the length. We call this unknown functional
C(e). Equation (4.3.3) then becomes
9%y

Vs = ay C (5—.’;2—) 5 (434)

where ay is defined in Eq. (4.3.3). Using the modal expansion of Eq. (4.2.15)

yields

Veo=uasC (a (E’gx)f’(m))) . (4.3.5)

Assuming that the functional C(e) is not a function of time, we have

Ve =a2&:(t) C (%g)“) = azfi(t)cz'. (4.3.6)
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Augmenting Eq. (4.2.21) to include modal damping we have the following pair

of equations

£;(t) + 2¢w, €5(t) + wffj(t) = aj; Dj V,(t), (no sum) (4.3.7a)

Ve(t) = a2 Y &()C.. (4.3.7b)

Taking the Laplace transform and assuming zero initial conditions gives

(s* + 2¢jwys + w?) £:(8) = a1 D; Vy(s), (4.3.8a)
Ve(s) = a2 Y &ils)Cs. (4.3.8b)

The circumflex indicates a transformed quantity. The ratio of Vi(s) to V,(s) is

the desired transfer function P(s)

Va(s) _aya2 DG araz D2C» (4.3.9)
a

(s) $2+2wis+wi 82+ 26wss + wi

Each term on the right-hand side of Eq. (4.3.9) represents a structural mode.
In theory, there are an infinite number of terms in the series, that converges
quickly or slowly depending on the type of modal coupling. In practice, the
frequency range of interest is bounded, and all the modes above that range act
as real scalar constants. Thus, the modeling approach taken is to keep the modal
transfer functions up to the highest mode of interest, and lump the higher modes
into an additive real scalar constant A. The resulting transfer function, keeping

n modes P,(s), is given by:
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D C D
Po(s) = 2121, 9% 202 (4.3.10a)
84+ 20 wis +wi 8%+ 20wes + wj
D,C
a1a2 n + A,
82 + 2¢pwps + w2
oo
ayaz D;C;
A= e 4.3.10b
P (43100

The series in Eq. (4.3.9) converges very slowly in the present case because the
modal coupling is curvature coupling, and curvature increases rapidly with mass-
normalized mode shape. This has two implications: First, many modes need to
be retained in a state-space model in order to maintain good accuracy. Second,
because curvature increases with mode shape, the transmission zeros occur very
close to the structural poles. The effect is shown in Figure (4.4). As more
modes are included in the series of Eq. (4.3.9), the zeros occur closer to the
poles. This near pole-zero cancellation motivates the Positive Position Feedback

performance recovery approach discussed in Section (2.2.4).

The curvatures of the mode shapes were calculated by first solving for the
mode shape displacements using a refined mesh on the NASTRAN finite element
model. The mode shape displacements were then curve-fit with a cubic spline,*
which gave the curvatures at the grid points directly. The functional C(s) was
assumed to be a uniform average of the grid point curvatures. Table (4.3.1) com-
pares the calculated values of ajaz C;D; with the values derived from transfer
function measurements for the first five modes of the MIMO piezobeam. The de-
tails of how the coefficients are calculated from transfer function measurements

are given in Chapter 5. As can be seen from the table, the calculated values do

*  The program used for computing the curvatures from the spline fit is listed in Appendix F.
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Amplitude

Increasing Number of Modes

Frequency

Figure 4.4 Transfer function as more modes are retained.

not match the measured values for all modes. In particular, the higher modes
do not show good agreement. There are at least two reasons for this: First,
the aluminum beam is so thin that the addition of the ceramics increases the
bending stiffness EI by an order of magnitude. Thus, the section properties
of the composite beam are strongly discontinuous at the endpoints of the ce-
ramics, exactly where accurate slopes of the mode shapes are required for the
calculation of the D;. Secondly, because EI is discontinuous, the curvature of
the piezobeam varies greatly over the length of the ceramics. The functional
dependence of the sensor voltage on a non-uniform curvature field is not well
understood. These shortcomings are due to the particular way the actuators and
sensors couple into the structure. In particular, the sensors do not experience
a uniform strain as they would in an active member of a space-truss. For this
reason, measured coupling coefficients are incorporated in the structural plant

models used for compensator synthesis.
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Table 4.3.1 Calculated and Measured Coupling
Coeflicients aja; C;D; for MIMO Piezobeam

Mode Sensor/Actuator 1 Sensor/Actuator 2

Number | Calculated | Measured | A% | Calculated | Measured | A%
1 6.24 7.83 —-20.3 3.53 4.49 ~21.4
2 206 214 - 3.7 0.197 NM —
3 1,080 1,130 | — 4.4 439 650 —32.5
4 3,620 2650 | +36.6| 3,010 2,763 | + 8.9
5 10,070 5160 | 4952 | 2,530 1,350 | +87.6

NM Not Measurable

An important result of this analysis is that the actuators couple into the
modal equations through the difference of the slopes of the mode shapes at the
ends of the actuator ceramic, while the sensors couple into the modal equations
through an unknown function of the bending strain, which is related to the
curvature of the mode shapes along the length of the sensor ceramic. Thus,
the sensors and actuators are not strictly compatible. In addition, the coupling
coefficients for the actuators and sensors are inherently difficult to calculate

accurately, especially for the higher modes.

Incompatibility of the sensors and actuators in the present case means that
the D; and C; are not proportional to each other. However, they are roughly
proportional for the lower modes. For collocated sensors and actuators which
form an active-element of a space-truss, the coupling coefficients are propor-
tional because the strain in the element is uniform and uniaxial. For the present
experiment, we use measured coupling coefficients and cast the structural equa-
tions in modal form. The next section derives the coupled system equations for

PPF control.
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4.4 Derivation of System Equations

The following example will help define the coupled system equations for
local control Positive Position Feedback, which is the form implemented in this
work. In this example, two filters are used to control two modes using two actu-
ator /sensor pairs located at different locations on the structure. Local control
assumes that the sensor signal at a given location drives PPF filters which gen-
erate a control voltage applied to the collocated actuator only. In this example,
one filter is associated with each actuator/sensor pair. Under these conditions,

we have the following four equations

E14+20wié +witi=aCiigim +aiCizg2n2, (4.4.1a)
£o+2¢wobs + Wity =a;Cr191m +a1Ci292n2, (4.4.1b)
i1+ 2¢n writh +whm = a;w} Ci1 &1 + azwh, Cor &2, (4.4.1c)
fiz + 2 ¢ra wyatiz + w?zﬂz = az wfrz Ciz &1+ a2 w?g Caz &. (4.4.1d)

The §; and #; are the mode and filter coordinates, respectively. The scalar gain
of the 7% filter is ¢g;. The above system assumes that the actuators and sensors
couple into the modal equations through coefficients that are proportional. In
this case the C;; appear on the right hand side of both the modal and filter
equations. The first subscript refers to the mode number, and the second sub-
script refers to the actuator/sensor pair that the C;; corresponds to. Defining
the modal and filter vectors

£={g}; :{Z:} (4.4.2)



and the following matrices

r2
_jwi 0},
f1= | 0 w%]’
_[2aw: 0
D= i 0 2 ¢ wo
[Ci11 Co
C= ;
[ C12 C22

we have the following system of equations:
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1y =

]; Dy =

G =

E+DE+QE=0a,CTG,

""?’1 2 ]
0 Wy
Znwn 0 (4.4.3)
0 2¢f2wy2
g1 O
0 g2’
(4.4.4)

N+Din+Qrn=0a0rCE.

The structure of Eq. (4.4.4) is the same no matter how many modes, filters,

or actuator/sensor pairs are included. This work implements Positive Position

Feedback using internal force producing actuators and strain sensors; therefore,

Eq. (4.4.4) is complete without including the rigid-body modes. The stability

of this system of equations will be examined in the next section.
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4.5 Positive Position Stability Theorem
Consider the following system of equations which models the general MIMO

Positive Position Feedback case

E+DE+0E=0a,CTGy,

(4.5.1)
i+ D+ Qn=0a0QsCE,
where the vectors and matrices are defined as follows:
¢ = modal state vector of length N,,,
n = filter state vector of length Ny,
[ 91 0
. . . g2
G = gain matrix — diag. Ny = . > 0,
0 S
L ng
C = participation matrix — Ny X Ny, =] Full ...},
-2
Wy
w3 0
1 = modal frequency matrix — diag. N,, = . >0,
0 .
i wh
2
Wty 0
W%,
15 = filter frequency matrix — diag. Ny = . >0,
] o,
L WiN,
25‘2&)%
D = modal damping matrix — diag. N, = . > 0,
0 -
1 2§wa12\]m i
- 2§f1w§_1 0 -
. . . 2§f2“’]%2
Dy = filter damping matrix — diag. Ny = .
0 -

> 0.
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Theorem 4.5.1: System (4.5.1) is Lyapunov Asymptotically Stable iff:
! —a1a2CTGC > 0, i.e., positive definite.

Proof:

The Lyapunov Direct Method will be used to prove sufficiency, and the
definition of positive definiteness of a matrix in terms of its principal minors will
be used to prove necessity.. The necessity proof can also be argued in reverse as

an alternate proof of sufficiency.

In order that the equations may be symmetrized, it is useful to make the

following substitution:

Y=,/— v1/2G1/2 or n:w/l—l—z—G_l/zﬂ}ﬂt/). (4.5.2)
ay

az
Upon substituting Eq. (4.5.2), and premultiplying the second equation by
Vai/as Q;T/zG'T/Z, we have the following pair of equations
£+ DE+ Q€ = Jaa; CTaV20) ¢, hss)
¥+ Dsd+ 05 ¥ = Jaa 0’6V CE.

If we define E'/2 = ,/a7a; GY/2C, we have the system equation in matrix form

['ﬂ%zg ngﬂJr[_n}/?El/z 'ET(/;”?/Z} [ﬂ:o. (4.5.4)

W A
L N

as

Sufficiency

Define the Lyapunov Function V as

T/2 T/2
=3 [6 ¥ ] [gﬂ +3 [‘fT ¢T] [_n}/?El/z - an } ['ﬂ (4.5.5)
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Then
vei[EErd o]+ 17 ne+ 1T 0 - BT (456)
Taking the absolute value of the last term
vei[EE+d ]+ 1eTe+ LeTn, v - €T ETART ] (15)
Making use of the Cauchy-Schwartz inequality on the last term gives

Ve [EE T+ 26T e+ o0 0 - LETETEY € LT s
? (4.5.8)

V1€ E+ i+ 1T B)E (4.5.9)

Thus, if (2 — E) is positive definite, then V' > 0 for all nontrivial §,¥, £ 9.

Taking the time derivative of the Lyapunov function V, we have

o T T é T 0 __ET/zﬂT/g .
V= {f ¥ ] ['2'] + [f 'pT] {—-ﬂ}/zEl/z 0, ! [5’] (4.5.10)

Substituting Eq. (4.5.4) we have that
. - T . . T .
V=-¢ DE—+ Dsp<0. (4.5.11)

The function V can be zero only on a set of measure zero in time; hence V is

actually negative definite

V <0. (4.5.12)
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Therefore, if 1 — E > 0, then system (4.5.1) is LAS by the well-known Lyapunov

Theorem. The sufficient condition for stability is:
0 —a10:CTGC > 0. (4.5.13)

Necessity

It is a known result that for L > 0, Eq. (4.5.4) is LASiff N > 0 [2]. A
matrix is positive definite iff all of its principal minors are positive [70]. It is
useful to rewrite matrix N in the partitioned form

0 | B
N=}|——rruonv-

= . (4.5.14)
BT | 0y

For system (4.5.1) to be stable, it is necessary that all the principal minors of
N be positive. If we start at the lower right element of N, then the first Ny
principal minors are the principal minors of (¢, which are positive since {15 is
positive definite. If we wish to evaluate an arbitrary minor of N of order > Ny,

we partition the matrix further as shown below:

ﬂu [ 0 | B1
N=|0 |Qx]|B|, (4.5.15)
BT | B] | 0y

where {152 is dimension 0 < k < N,,. The Ny + kt" principal minor Pg of N is

then

122 B-

_ —1pT
5 0| =l 022 - B2} BT | (4.5.16)

Pk::|
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Since 1y is positive definite, the necessary condition for the minor Py to be
positive is

N0 — B:N71BT| > 0. 4.5.17
f 2

Next, we show that the determinant in (4.5.17) is the k" principal minor of

0- Bﬂ;lBT. Using the same partitions defined in (4.5.15) we have:

[0 ] O B,
Q-BO;'BT = |——— | - | —| 07" [B] | Bf], (4.5.8)
0 | N2 B,

Q- BB | -Bi0;'B]
—By07'Bf | Q25— B0} 'B]

(4.5.19)

It can be seen that the k** principal minor of (4.5.19) is given in (4.5.17). Since
it is necessary that all the minors Py (0 < k < N,,) be positive, it is necessary
that ) — BQ;IBT > 0. Recasting the necessary condition in terms of the

original matrices of (4.5.10) we have that 2 — F > 0, or
0 - aa:CTGC > 0, (4.5.20)

and the proof is complete.

4.6 Structural Dynamic Response

This section identifies the quantities that will be used in Chapter 5 as
measures of closed loop performance of the vibration suppression system. Many
significant aspects of structural dynamic response of LSS pertaining to vibration

suppression can be understood from a study of the single degree-of-freedom



- 79 —

(SDOF) damped linear oscillator. The forced SDOF damped linear oscillator is

given by

mE(t) + ci(t) + kz(t) = F(2), (4.6.1)

where m is mass, ¢ is a damping coefficient, k is stiffness, and F(t) is an arbitrary

excitation force. If we make the usual substitutions

c

k
2 _ _
w,=-— and ¢= , 4.6.2
- (== (4.6.2)
we obtain the equation in canonical form given by
2 1 w?
Et) + 2wnz(t) + wiz(t) = —T;F(t) = —kﬁF(t) (4.6.3)

The damping ratio ¢ is the damping coefficient divided by the critical damping
coefficient, and wy, is the natural frequency of the oscillator. For a distributed
parameter system such as an LSS, the equation describing each modal coordinate
would take the form of Eq. (4.6.3), the only modification being that the right-
hand side coefficient would be a modal participation factor. It should be noted,
however, that the physical displacements are then also functions of the mode

shapes.

The two types of dynamic response of interest in this analysis are the steady-

state response under sinusoidal excitation and the free response.

Forced Response

The SDOF damped linear oscillator under steady sinusoidal excitation is

given by

2
E(t) + 2¢wni(t) + wiz(t) = %Pcoswt. (4.6.4)
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If ¢ < 0.707, the response reaches a maximum amplitude of

P/k
I:c(t)’max - %/_{—_:_? at w= WnV 1-— 25‘2 (465)

For ¢ small (< 0.20) the maximum amplitude can be approximated by

P P

]x(t)lmax ~ 2§k = zmgw%' (466)

If the amplitude of excitation is given and the mass is fixed, then the quantity
of interest in reducing the steady-state response amplitude is ¢k, or equivalently
¢wZ. If ¢w? is increased, the maximum response amplitude will be reduced

proportionately.

Free Response

The free response of the SDOF damped linear oscillator is given by the

solution to the homogeneous equation
i(t) + 2¢wn2(t) + wiz(t) = 0, (4.6.7)
which can be written explicitly as
z(t) = e *“*(Acoswgt + Bsinwgt), (4.6.8)

where wy = wy, \/1_:?5, and A and B depend on the initial conditions. The
free response is an oscillation at the damped natural frequency enveloped by an
exponential decay. The settling time is the time the oscillation takes to damp
out to a specified percentage of its initial steady-state value. In four e-folding

time constants the response has decayed to two percent of its initial value. The
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quantity of interest, then, is ¢w,. If ¢w, is increased, the settling time will be

decreased proportionately.

There are other measures of dynamic response: peak overshoot, rise time,
delay time, etc., but these are of lesser significance in vibration suppression and
will not be analyzed here. The interested reader is referred to Saucedo and
Schiring [71]. It is interesting to note that the peak overshoot, which is the
amount by which the response of an underdamped oscillator, under unit step
excitation, exceeds the steady-state value,* can be shown to be a function of
damping ratio ¢:

¢
peak overshoot =exp | ——————= | . (4.6.9)
( (1- §2)>

For small ¢, the quantity of interest in reducing overshoot is e ™. The damping
ratio ¢ must exceed about 0.20 before significant reductions in overshoot are
achieved. As mentioned before, the actual motions at any point of a structure are
functions of the mode shapes. This is particularly important for step response.
Additionally, the steady-state value is a function of the static stiffness of the

structure.

In summary, the quantities related to response amplitude and settling time
are ¢w? and ¢w,, respectively. These are different criteria. If we wish to
minimize both response amplitude and settling time, two different quantities

must be maximized simultaneously.

* The response is normalized such that the steady-state value = 1.
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Chapter 5

SISO EXPERIMENTS AND RESULTS

This chapter and the following describe the control experiments performed,
and their results. The single-input-single-output (SISO) experiments are de-
scribed in the present chapter. The SISO experiments make use of one actua-
tor /sensor pair located at the root of the beam as shown in Figure (3.1). This
location was chosen because most of the bending strain of the lower vibratory

modes of a cantilever beam occurs at the root.

It was found that the piezoelectric sensors develop stray voltages if they are
not electrically shunted to ground. It is shown that shunting the sensor creates
a high-pass filter which must be taken into consideration in the control system
design. Ultimately, the first three modes of the beam were controlled by means

of one actuator and one sensor, with dramatic reduction in dynamic response.

5.1 Plant Characterization

The block diagram of the control system* is shown in Figure (5.1). Each
block represents the frequency domain transfer function between the outputs and
inputs of the corresponding component of the system. The block labeled B(s)
represents the piezobeam structure. The response of the beam, indicated by the
vector of modal coordinates £, produces a voltage V; on the sensor depending on
the C; of Eq. (4.3.6), which form the matrix C. The sensor voltage is then input
to the control compensator K(s), which consists of PPF filters with transfer
functions given by Eq. (3.5.1). The output of the filters, multiplied by the gain

matrix G, forms the control voltage V,. The control voltage is applied to the

*  See Sections (3.2) and (3.3) for a more detailed description of the experiment hardware.
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Figure 5.1 Block diagram of control system.

actuators, which in turn produce modal control forces depending on the D;
of Eq. (4.2.20) that form the matrix D. The constants a; and a, are defined
in Egs. (4.2.13) and (4.3.3). Since the sensors and actuators are part of the
composite structure, we use the term plant to refer to the cascaded actuator-
beam-sensor blocks. The transfer function from the actuator voltage to the
sensor voltage is given by Eq. (4.3.9). The shaker excites the beam by base
excitation, which couples into the modal equations in a different manner than

the actuators.

5.1.1 Plant Transfer Function Measurements

The transfer function of the plant was measured by injecting a signal at the
actuator and measuring the response at the sensor while the loop was broken,
as shown in Figure (5.2). The SWIFT program was used in order to obtain
very high signal-to-noise ratio measurements, and the results are shown in Fig-
ures (5.3a~d). An error in the VAMP software was uncovered during these iden-
tification tests. The result of the software error was to send random numbers

through the Digital-to-Analog-Conversion system during portions of the sine
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Figure 5.2 Plant transfer function measurement technique.

sweep. The problem was most serious at higher frequencies and caused some
noise in the plots of the transfer function near Modes 4 and 5 in Figure (5.3d).
The results, however, showed good accuracy for the first three modes, which
were the object of the SISO control experiments. The software error was even-
tually corrected, enabling testing at the higher modes for the MIMO experiment

described in Chapter 6.

Figures (5.3a-d) present the raw transfer function data as four pairs of
plots showing the amplitude and phase vs. frequency in Hz. The amplitude is
the ratio of the sensor voltage to the actuator voltage, and the phase measures
how far the sensor voltage lags behind the actuator voltage. The phase starts
at zero, passes through 90 degrees at resonance, and proceeds to nearly 180
degrees, at which point the response of the mode drops off and is cancelled by
the quasi-static response of all the higher modes. This is the region near the
transmission zero, after which the phase quickly returns to zero. This behavior
is typical of structural plants; there is always a phase lag between 0 and 180

degrees. No phase leads are ever encountered. Notice how close the zeros are
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to the poles, especially for the lower modes. The very close poles and zeros are

unusual and are due to the curvature coupling explained in Section (4.3).

5.1.2 Modal Residual Calculation

In order to accurately predict closed loop pole locations for a plant with
close pole-zero pairs, the plant transfer function model must correctly predict
the plant zero locations. An error in the zero locations strongly affects the
root locus as shown in Figure (2.7b,c). Correct zero locations require that the
numerators of the modal transfer function terms of Eq. (4.3.10a), the so-called
residuals, must be accurate. These residuals involve the D; and C;, which are
difficult to calculate accurately due to the nature of the modal coupling. The
values of the numerators can, however, be inferred from the transfer function

measurements. The approach is outlined below.

In the vicinity of a particular mode, the transfer function is dominated by
the dynamics of that mode and the quasi-static response of all the higher modes.
Thus, the plant transfer function J;(s) in the vicinity of the :** mode can be

described by

a

b, 5.1.1
s2+2§iwis+wf+ ( )

Ji(s) =

where s is the Laplace transform variable; w; and ¢; are the frequency and
damping ratio of the it* mode, respectively; a is the residual of the 7* mode;
and b is the real scalar constant representing the quasi-static response of the
higher modes as defined in Eq. (4.3.10b). For sinusoidal signals, the frequency

function is given by

Ji(jw) = [@73—7 + b} _j [—%‘“—w-"i—} , (5.1.2)
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where j = 4/—1. The damping ratios of our plant modes are very small; hence
Eq. (5.1.2) can be simplified by assuming the ¢; are zero. In this case, the w;
are the open loop pole locations wy;. The magnitude of the transfer function is

then

. . a
pt

If the damping ratio ¢; is zero, then the transmission zero occurs at the frequency

wz;, where the magnitude of the transfer function vanishes.

a

Ji(jwz)| = ——— +b=0, 5.1.4
[ilgesi)| wl — w2, i ( )
and

a

The pole and zero frequencies are known from the system identification tests,
and the starting value of b is obtained by measuring the inter-mode value of the
transfer function between the i** mode and the i + 1** mode. This gives good
initial values for the numerators. They can then be adjusted to give correct zero
locations including the damping ratios in the modal transfer functions. The two
mode model determined in this fashion and used for the SISO control synthesis
is: |

4.5 248

0.045, 5.1.5
32+2§1wf+wf+52+2§2w§+w§+ (5.1.5)

P2 (S) =

where w; = 31.5 rad/sec, ¢; = 0.0023, we = 192.4 rad/sec , and ¢ = 0.0015.
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5.1.3 Non-Ideal Sensor Behavior

In Section (4.1.2) we analyzed the sensor, assuming that it was a non-
dynamic component; the relation between applied stress and sensor voltage,
given in Eq. (4.1.21), contains no dynamic terms. In practice, we found that if
the sensor electrode was connected to a high input-impedance buffer consisting
of a 741 operational amplifier, a spurious voltage of about 1 volt developed
spontaneously. The stray voltage was reduced to a few millivolts by means of a
shunt resistance as shown in Figure (5.4). This essentially AC-couples the sensor
to the control circuit, for the shunt resistor combines with the capacitance of

the nickel-plated ceramic sheet to produce a high-pass filter.

This low frequency behavior changes the nature of the instability encoun-
tered with PPF as the gain is increased beyond the stability boundary. Instead
of a static instability, as shown in Figure (2.7), instability occurs at a finite
frequency. The effect of the high-pass dynamics is to introduce a differentiator
into the loop, with its corresponding phase lead, which reduces the gain margin.
In order to include this parasitic effect in the plant model, the sensor transfer
function is derived. Figure (5.4) shows the circuit designed to reduce the stray
voltage on the sensor. The voltage Vpzr, produced by the ceramic material it-
self, is applied to the electrode surface which is modeled as a separate capacitor.
The voltage measured to be the sensor voltage is V. The differential equation

that describes this circuit is

d

Crzr 5 (Vrzr — Vi) = (5.1.6)

SIS
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Figure 5.4 Sensor shunt circuit.

where C'p 77 is the capacitance of the sensor, and R is the resistance of the shunt

resistor. Taking the Laplace Transform gives the transfer function as

~

Ve(s) s

(5.1.7)

vPZT('S) s+ RC;[’ZT ‘

We see that there is a zero located at the origin, and a pole located on the
negative real axis at —1/RCpzr. In Chapter 6, a compensator circuit is derived
which nearly cancels the pole and zero to remove the sensor dynamics from the

problem. The value of 1/RCpzr for the SISO experiments is 0.832 sec™!.

5.2 Single Mode Control

The first step in developing a control system to suppress the dynamic re-
sponse of the test beam is to control single modes with one actuator/sensor pair
and one PPF filter tuned to the controlled mode. Mode 1 and Mode 2 are con-
trolled individually. The stabilizing spillover effects on the uncontrolled modes

are observed and compared with the theoretical predictions.
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5.2.1 Control Synthesis for Mode 1

The approach to the design of the control circuit is based on the perform-
ance recovery technique for close pole-zero pairs described in Section (2.2.4).
Basically, this involves placing the PPF filter pole at a higher damped natu-
ral frequency than the pole of the controlled mode. For the Mode 1 control
case, a filter frequency of 45 rad/sec and damping ratio of 0.20 produced pole
coalescence at a gain of approximately 9.0. Figure (5.5) shows the root locus
plot in the region of Mode 1 for gain ranging from 0 to 30. The tic marks show
the closed loop pole locations at gain intervals of 0.1. The effect of the non-ideal
sensor dynamics on stability can be seen in the branches of the locus that cross
into the right half-plane at a non-zero frequency. The stability margin occurs

at a gain of 17.0.
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Figure (5.6) shows the root locus including the Mode 2 pole. There is very
little movement of the Mode 2 pole because the PPF filters have a two pole
rolloff, and the second mode is far enough away in frequency that the coupling
is small. Nevertheless, the upward spillover into Mode 2 causes the pole to move

farther into the left half-plane, which is stabilizing.

5.2.2 Mode 1 Control Results

Figure (5.7) shows both the open loop and closed loop frequency response
functions for the region of Modes 1 and 2. As can be seen, the response of Mode 1
is greatly attenuated, and the response of Mode 2 is essentially unchanged. The
shape of the closed loop response near Mode 1 is a single hump, which is due
to the close proximity of the highly damped filter and structural poles. The

process of identifying the frequency and damping values of the closed loop poles
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Figure 5.7 Open loop and closed loop frequency response functions for

Mode 1 control. Dashed line — open loop. Solid line - closed loop.

by means of a complex curve-fit becomes ill-conditioned when they are so close
together. Nevertheless, these closed loop values can usually be extracted by the

FITTER software.

Figure (5.8) shows open loop and closed loop free decay response for Mode 1.
The settling time for Mode 1 is greatly reduced. Figure (5.9) shows a com-
parison of the sensor and actuator voltages during the closed loop free decay.

Table (5.2.1) summarizes the closed loop performance results.



- 96 —

E PRt
................. SR
........... R bbbt
pazzomem E
: mremme
agiooimomeen ]
N - e o T
4 T
nnnnnnnnnnnn Subei it
wiIlIl .. E
......... booom e
" lolllllillﬂ.llnn\
4TITITIIITIT N
........... e T
) S T
ve3zIITIII0T ]
................ e
] Piehieit
I 20000 ]

B SRICSTEITERED &

3.990 Time (sec)

Dashed line — open loop. Solid line — closed loop.

Figure 5.8 Open loop and closed loop free decay response for Mode 1 control.

YT T TTT I YT

o

Sensor Uoltage

il i

LILA LI I 16 S I s s B s s A

Actuator Uoltage

LN S S A e ey sy

3.022 Time (sec)

1.000

T ® ® mlm w
~ o
5 8 ® 8 B|Y8 ® @
—~ - ® - -|© ) r~
i i
SOU-C oW

Figure 5.9 Sensor and actuator voltages

during free decay.



- 97—

Table 5.2.1 Effect of Mode 1 Control on Modes 1 & 2

Mode 1 Filter 1
¢1(%) C1w1 S‘lwf ¢r1(%) CFiws1 S‘flezrl
Open Loop 0.23 | 0.0721 2.27 20.0 9.00 405.
Closed Loop 16.3 4.68 135. 10.4 3.41 112.
Percent Change® | 7,000 | 6,400 | 5,800 — — ——
Predicted! 13.3 3.96 118. 14.0 4.63 154.
Mode 2 Filter 2
¢2(%) Caw2 gw% S‘fz(%) Cfawr2 §f2w_?2
Open Loop 0.15 0.289 55.5 — — —
Closed Loop 0.19 0.366 70.3 — — —
Percent Change® | 26.7 26.6 26.7 — e -
Predicted? 0.17 0.320 61.7 — — —_

* Percent Change Between Measured Values 1 Predicted Closed Loop Values

5.2.3 Control Synthesis for Mode 2

For the Mode 2 control case, a single filter was tuned to Mode 2. A filter
frequency of 250 rad/sec and damping ratio of 0.20 produced good performance
at a gain of approximately 8.0. Figure (5.10) shows the root locus plot in the
region of Mode 2 for the gain g ranging from 0 to 30. The gain is chosen to
place the poles slightly beyond the point of closest approach. We will see in the
two mode control case that the effect of the Mode 1 filter is to back the Mode 2
poles up on the locus slightly. Figure (5.11) shows the effect of the downward
control spillover on Mode 1. The Mode 1 pole at first moves back into the left
half-plane, and moves downward. Eventually, Mode 1 will go unstable. It is
characteristic of PPF that the lowest mode is the mode that will eventually go
unstable. The lowering of the frequency of Mode 1 results in a penalty on the

performance quantity ¢w?, since the frequency is squared.
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Figure 5.11 Root locus for Mode 2 control showing movement of

Mode 1 pole. Boxes indicate poles at g = 8.0.



- 99 —

T T T 7T T T T 7
1.000 3
900. om
80@. om 3
Open Loop
700.0m Mode 2 3
f | sve.om ;
P
L | s00. 6m f
E Closed Loop 3
p | 400.0m Mode 2 and Filter 2 3
E E
300, om _
200. 0m Mode 3
\ﬂ
100.6m _J’,
P ST SN Wt il o i B rr ST wrariv SR Srarsarorwrarrars sl e s WA NP WS W e wr e

28,01 49, 20 S0, 0@ [SENEE) 73, Y9 80. 09 109.9

FREGUENCY (HZ)

Figure 5.12 Open loop and closed loop frequency response functions for

Mode 2 control. Dashed line — open loop. Solid line — closed loop.

5.2.4 Mode 2 Control Results

Figure (5.12) shows the open loop and closed loop frequency response func-
tions for the region of Modes 2 and 3. The response of Mode 2 is greatly reduced,
and the response of Mode 3 is slightly reduced. Figure (5.13) shows the down-
ward spillover into Mode 1. As can be seen, the frequency of Mode 1 is lowered
and the damping ratio is increased as predicted. The closed loop performance

is summarized in Table (5.2.2).
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Table 5.2.2 Effect of Mode 2 Control on Modes 1 & 2

Mode 1 Filter 1
¢1(%) | c1wn Gqw? ¢r1i(%) | ¢cniwrn | ¢niwh
Open Loop 0.23 | 0.0721 2.27 — — —
Closed Loop 0.43 |0.131 4.00 —_ — —
Percent Change* 87 80 76 — — —_
Predicted! 0.37 | 0.112 3.40 —_ — —_
Mode 2 Filter 2
¢2(%) | gawz w3 ¢r2(B) | grawrz | ¢rawiy
Open Loop 0.15 | 0.289 55.5 20.0 50.0 | 1.25 x 10%
Closed Loop 12.7 | 22.4 3.95x10® | 6.73 | 13.3 |2.62 x 10°
Percent Change® | 8,400 | 7,700 7,000 — — -
Predicted! 13.3 | 23.5 4.18 x 10® | 12.6 26.2 | 5.47 x 10°

* Percent Change Between Measured Values

1 Predicted Closed Loop Values
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5.3 Two Mode Control

In this experiment, the first two modes are controlled simultaneously using
two PPF filters, one tuned to each mode. A technique for synthesizing a multi-
filter compensator using the root locus is derived. The two mode control results

are compared with the predicted closed loop performance.

5.3.1 Control Synthesis for Modes 1 and 2

The single mode control compensators were designed using the root locus
technique. This works well when there is only one gain to be varied. In the
two mode control case there are two filters and therefore two independent gains
which must be varied in the design process. The root contour technique provides
a means of analyzing the effect of varying one gain while the other remains fixed.

The details are discussed below.

If we call the plant transfer function P(s), and the two filter transfer func-

tions k1(s) and kz(s), then the closed loop transfer function T'(s) is given by

P(s)
1 — P(s)[g1 k1(s) + g2 k2(s)]”

T(s) = (5.3.1)

where g; and g, are the two scalar gains associated with the PPF filters. Root
locus calculation programs require the unity gain loop transfer function as an
input, and then compute the root locus as a function of a single gain multiplying
that loop transfer function. If the unity gain loop transfer function of Eq. (5.3.1)
were used, both ﬁlters’would be multiplied by the same gain, which is not
satisfactory. Suppose instead that we calculate the effect on the closed loop

poles of varying g2, assuming that g; is set to a fixed value . We first assume a
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form for the closed loop transfer function that involves an undetermined function

A(s) as follows:

(56
T('S) = 1 kg(s)P(s) ’ (532&)
— g2 A(s)
or
T(s) = P(s) (5.3.2b)

The closed loop poles are the zeros of the denominator of the transfer function
T(s). The function A(s) is determined by setting g; = + in Eq. (5.3.1) and

equating the denominators of Egs. (5.3.1) and (5.3.2b).

1 — P(s)[vk1(s) + g2 k2(s)] = A(s) — g2 k2(s) P(s), (5.3.3a)

A(s) = 1 — ~ki(s) P(s) (5.3.3b)
Thus, the new “loop transfer function” is given by

k
loop transfer function = 2(s) P(s) (5.3.4)

11— qki(s) P(s)”

The method is illustrated in Figures (5.14) and (5.15). Figure (5.14) shows
the effect on Mocie 1 of the Mode 2 control filter. The Mode 1 filter is the same
as that used for the Mode 1 control described in Section (5.2.1). The gain is set
to the value chosen for the Mode 1 control case: g; = 9.0. When the gain of
the Mode 2 filter is zero, we have the single Mode 1 control case, which is why
the starting positions of the manifolds in Figure (5.14) correspond to the design
pole locations in Figure (5.5). The Mode 2 filter is the same as that used for the

Mode 2 control case of Section (5.2.3). Figure (5.14) traces the movement of the
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Figure 5.14 Root contour showing effect of Mode 2 control on
Mode 1 and Filter 1 poles. g; = 9.0. 0 < g5 < 30. Boxes indicate g, = 8.0.

closed loop poles as the Mode 2 filter gain is increased from O to 30. When the
gain reaches a value of 8.0, the design gain of Section (5.2.3), Mode 1 has gone
unstable, as indicated by the boxed pole location in the right half-plane. We see
that the effect of the Mode 2 control is to move the Mode 1 poles farther along the
single mode control case manifolds. The effect of the higher mode control on the
lower modes is strong because the PPF filter transfer functions have magnitude
one at zero frequency. It is also seen that the multi-filter compensator cannot

be designed using the single mode control values for filter gains.

Figure (5.15) shows the effect on Mode 2 of the Mode 1 control filter, again
using the values for filter parameters and gain from the single mode control
cases. The starting points of the manifolds in Figure (5.15) correspond to the

design pole positions of Figure (5.10). There is very little movement of the
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Figure 5.15 Root contour showing effect of Mode 1 control on
Mode 2 and Filter 2 poles. g2 = 8.0. 0 < ¢g; < 30. Boxes indicate g; = 9.0.

Mode 2 poles even for a Mode 1 filter gain of 30. This is because the filter
transfer functions have a two pole rolloff, and the two modes are far apart in
frequency. The small amount of movement tends to back the Mode 2 poles up

in the direction that they came in the single mode control root locus.

The synthesis strategy is then to design the highest mode control filter
parameters and gain based on a single mode control root locus. The same
is done for the next lower mode. Then, keeping the lower mode control gain
fixed, we observe the effect on the closed loop positions of varying the high
mode control gain to the nominal value used initially. By iteration, we reduce
the lower mode gain until the nominal gain of the higher filter produces good
performance in the lower mode. The process is repeated for as many modes as

are to be controlled. This procedure is somewhat ad hoc, but in the absence of



- 105 ~

50.0
3 ©
4.0 ;
E Filter 1 d
30.0 ;
> = Mode 1
«© —
2 20.0F
E . é ‘*"++++++++
% E *++++**+¢
~10.0 E
0.0 ;: ----- + P S ———()—— S—
. § i 1 ] 1 1
10:?2.0 -10.0 -8.0 -6.0 4.0 2.0 0.0 2.0
REAL

Figure 5.16 Root contour showing effect of Mode 2 control on
Mode 1 and Filter 1 poles. g; = 5.0. 0 < g, < 30. Boxes indicate g, = 8.0.

a synthesis theory for close pole-zero pairs, it is the best available and produces

satisfactory results.

Figure (5.16) shows the root contour for the Mode 1 control gain set to 5.0,

and the Mode 2 gain set to 8.0. These values are used in the two mode control

experiment and the results are discussed below.

5.3.2 Two Mode Control Results

Figure (5.17) shows the open and closed loop frequency response functions
for the region of Modes 1 and 2; Figure (5.18) shows the frequency response
functions for the region of Modes 2 and 3. The spillover into Mode 3 is seen

to be stabilizing, as expected. Table (5.3.1) summarizes the two mode control

results.
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Table 5.3.1 Effect of Two Mode Control on Modes 1 & 2

Mode 1 Fiiter 1
(%) | qwr S‘lwf ¢r1(%) | ¢riwsr §f1w}1
Open Loop 0.23 | 0.0721 2.27 20.0 9.00 405.
Closed Loop 15.3 | 3.81 94.7 13.6 4.61 156.
Percent Change* | 6,600 | 5,200 4,100 — —_ —
Predicted! 12.7 | 3.38 89.9 14.9 5.27 185.
Mode 2 Filter 2
¢2(%) | w2 w3 ¢r2(%) | ¢rawy2 §f2w12r2
Open Loop 0.15 | 0.289 55.5 20.0 50.0 | 1.25 x 104
Closed Loop 13.8 |23.7 |4.05x10%| 7.70 | 15.0 | 2.93 x 10°
Percent Change® | 9,100 | 8,100 7,200 _— - —
Predictedt 12.7 | 22.8 |4.07x10%| 129 26.8 | 5.56 x 10

* Percent Change Between Measured Values

1 Predicted Closed Loop Values
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Figure 5.18 Open and closed loop frequency response functions for

two mode control showing upward spillover into Mode 3.

5.4 Three Mode Control

This experiment controls the first three modes of the piezobeam using three
PPF filters. The results of the single mode and two mode control experiments

are used to select the Mode 3 filter parameters.

5.4.1 Control Synthesis for Modes 1, 2 and 3

The synthesis for the single mode and two mode control experiments made
use of the root contour technique. For the three mode control case, a three mode
plant model must be used. It was found that the computer program CC, which
was used for the previous syntheses, could not accommodate the increased order

of the loop transfer function and would not compute the correct root loci. We
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then turned to the mainframe controls software package MATRIXx™* in order to
make the computations. Unfortunately, MATRIXx could not accommodate the
close pole-zero pairs of the plant transfer fun‘ction. ISI, the writers of MATRIXy,
determined that the problem could be solved with a change to the source code
(which was planned for an upcoming version of the program). Since the source
code was unavailable, we wrote our own program to compute the root locus
by solving for the roots of the characteristic equation. The program listing is

contained in Appendix G.

Having no timely analysis tool readily available, we could not perform the
three mode control synthesis. Instead, the results from the previous experiments
were used to suggest suitable values for the Mode 3 filter and the three control
filter gains. The gains were then fine-tuned in the laboratory to produce optimal

performance, and the measurements were made.

For the two single mode control experiments, the ratio of the filter fre-
quency to the mode frequency was 1.4 for Mode 1, and 1.2 for Mode 2. This
suggests a Mode 3 filter frequency equal to 1.4 times the frequency of Mode 3, or
748 rad/sec. The filters for Mode 1 and 2 had damping ratios equal to 0.20. The
Mode 3 filter was constructed and measured to have a damping ratio of 0.22.
Since none of the parameters for the three mode case are designed to specific

values, the damping ratio was not fine-tuned to 0.20.

The two mode control experiment demonstrates that a filter at a higher
mode necessitates a reduction in the optimal gain of the lower filter. Specifically,

the Mode 1 gain was reduced from 9.0 to 5.0. The effect a filter at Mode 3 must

* MATRIXy is a control design and analysis program marketed by Integrated Systems Inc.,
(181).
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be to require a reduction in the gains of the Mode 1 and Mode 2 filters. We set
these gains equal to 3.0 initially. The control circuit, shown in Figure (5.19), was
built and implemented, and proved to be stable and to perform well. The gains

were adjusted in the laboratory to give the best performance with the following

results:
gy — 35, ]
g2 = 3.6, (5.4.1)
gz = 4.7.

The resulting closed loop performance is discussed in the next section.

ACTUATOR

SENSOR

RI=S51.57M  Cl= L.66uF
R2= 62.9k €2= 0.0658uF
R3=70.2k €3=0.305uF
R4= 110k C4= 0.0102ufF

A2 DATA R5= 46.4k C5= 0.137uF
R6=45.1k C6= 0.0059uF
R7=51.3k
R8= 2,92k

R9= 10.2k fil= 741
R10= 2.76k A2= INA1O!
Ril=9.94k

R12= 2,18k

R13=10.2k

Ri4= 10.0k

Figure 5.19 Three mode control circuit.
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5.4.2 Three Mode Control Results

Figure (5.20) shows the frequency response functions for the region of
Modes 1 and 2. Both modes exhibit substantially reduced dynamic response.
Figure (5.21) shows the frequency response functions for the region of Modes 2

and 3. The dynamic response of Mode 3 is also significantly reduced.

Figures (5.22a,b) show the Mode 1 open loop and closed loop free decay.
These photographs were made directly from the oscilloscope and show the free
decay response for 50 sec and for 9 sec. They demonstrate the greatly reduced
settling time of Mode 1. Table (5.4.1) summarizes the closed loop performance.
The frequency and damping ratio for the Mode 3 filter could not be identified
by FITTER. This is probably due to the filter pole being too far into the left

half plane to be detected.

Extensive measurements were made of the loop frequency function, the
compensator frequency function, and the closed loop frequency function, which

are contained in Appendix H.

It is interesting to look at the Nyquist plot of the loop frequency function
shown in Figure (5.23). The plot is fairly complicated because it includes the
three PPF control filters and the first five structural modes. Since PPF is
arranged as a positive feedback loop (see Figure (5.2)), the critical point in the
Nyquist plane is (+1,0), not the usual (—1,0). The curve begins at the end near
the critical point corresponding to a frequency of 0.48 Hz. The curve moves off
the lower right hand side as the amplitude grows, and the phase shifts, passing
through Mode 1. Past Mode 1 the curve re-enters on the left just above the
real axis and proceeds toward the origin. The curve then loops around in a

tight circle corresponding to the highly damped Mode 1 filter. Approaching
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Table 5.4.1 Effect of Three Mode Control on Modes 1, 2 & 3

Mode 1 Filter 1
a1(%) | aw qwd ¢r1(%) | ¢riws s‘flezrl
Open Loop 0.23 | 0.0721 2.27 20.0 9.00 405.
Closed Loop 134 | 2.63 51.5 12.6 4.36 151.
Percent Change® | 5,700 | 8,500 2,200 — . —
Predicted? — — — — — e
Mode 2 Filter 2
¢2(%) | ¢ows g‘zwg ¢r2(%) | ¢rawr2 s‘fzw}z
Open Loop 0.15 0.289 55.5 20.0 50.0 1.25 x 10*
Closed Loop 8.85 | 157 |2.78x10%| 8.09 | 159 |3.10x 103
Percent Change® | 5,800 | 5,300 4,900 — — —
Predicted? e — — e e e
Mode 3 Filter 3
3(%) | ¢aws ¢sw3 ¢r3(%) | ¢rawss s‘fswjz—g
Open Loop 0.27 1.41 738. 0.22 162. 1.21 x 10°
Closed Loop 3.99 20.4 | 1.04 x 10 NM NM NM
Percent Change® | 1,400 | 1,300 1,300 — — —
Predicted! — — e — — —

* Percent Change Between Measured Values t Closed Loop Performance Not Predicted
NM Not Measurable

Mode 2, the curve again exits at the lower right. There is another tight loop
corresponding to the Mode 2 filter and another corresponding to the Mode 3
filter. Since the Mode 3 filter is the last one, the curve does not exit at the right
but continues directly around the Mode 4 loop. The size of the Mode 4 loop is
much smaller than for the first three modes because the loop transfer function is
attenuated by the two pole rolloff of the compensator. Finally, the small circular
loop of Mode 5 lies close to the origin where the loop gain is attenuated below
unity.

Several interesting insights into Positive Position Feedback can be gleaned

from this plot. First, the part of the curve nearest the critical point is the low
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Figure 5.23 Nyquist plot of three mode control loop
frequency function from 0.48 Hz. to 300 Hz.

frequency portion. This explains why instabilities in PPF occur at the lowest
mode. The dog-eared bend in the curve at low frequency is due to the non-ideal
sensor behavior which introduces a phase lead. Under ideal sensor conditions,
the curve would become straight at low frequency and would remain below the
real axis until, at zero frequency, the curve would intersect the real axis. Thus,
the non-ideal sensor behavior lowers the stability margin. Secondly, the superior
stability of PPF through the crossover region can be understood by looking at
the position of the Mode 4 and 5 loops. These loops are rotated such that they
occur in the left half-plane, away from the critical point. This is due to the
asymptotic 180 degree phase shift of the compensator at rolloff. It is also very
interesting that phase lag perturbations (clockwise rotations) move the portion

of the curve nearest the critical point away from instability. Thus, a small time
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delay in the three mode control loop would actually improve the stability margin

somewhat.

In practice, no unintentional instabilties were ever encountered in any of
the experiments performed, even though on one occasion completely wrong filter

gains were inadvertently set.
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Chapter 6

MIMO EXPERIMENT AND RESULTS

This chapter describes the multi-input-multi-output (MIMO) experiment
and results. The MIMO experiment makes use of two actuator/sensor pairs
located at two different locations on the beam. The first location is the same
as that used in the SISO experiments; the selection of the second location is
described in Section (6.1.1). A circuit to compensate for the non-ideal sen-
sor behavior is derived and implemented, removing the sensor dynamics from

consideration in the synthesis of the control filters.

The MIMO experiment uses six PPF filters to control the first six modes of
the piezobeam. Modes 4, 5 and 6 are controlled from the second actuator/sensor
location, and Modes 1, 2 and 3 are controlled from the actuator/sensor at the
root of the beam. Root contour methods described in Chapter 5 are used to
synthesize the two sets of filters, and the stability condition of Chapter 4 is used

to confirm MIMO stability.

Good performance was achieved in the first four modes. The performance
of Modes 5 and 6 was below design, indicating too much sensitivity to error in
the plant models. Spillover into Modes 7 and 8 increased their damping. In
general, the damping ratios of all modes were increased and no instability was
observed. Some softening, however, was observed due to the stiffness perturbing

effects of the higher mode PPF filters.

6.1 Plant Characterization

The location of the second actuator/sensor pair was determined using

NASTRAN generated mode shape estimates of the modal coupling factors for
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four candidate locations. Once the best location was determined and the ce-
ramics were adhered to the beam, two open loop plant models, one for each
actuator/sensor pair, were calculated from frequency function measurements
using the method described in Section (5.1.2). Additionally, a plant model for
the first three modes under the influence of the Mode 4, 5 and 6 controller was

calculated. This model was used for synthesizing the lower mode filters.

6.1.1 Selection of Second Actuator/Sensor Location

The location of the second actuator/sensor pair, which is used to control
Modes 4, 5 and 6 was selected to provide as high participation factors for these
modes as possible at a single location. Candidate locations were selected based
on mode shapes of the SISO piezobeam given in Appendix B. Four locations
were analyzed at distances of 0.75 in., 1.0 in., 1.25 in., and 1.5 in. down from
the first pair. The relative participation factors (D;C;/w?) for the four cases are
shown in the bar charts of Figures (6.1a-d). The participation coefficients for

the first pair at the root of the beam are labeled “set at nodes 2-7.”

The location at 1.25 in. down from the first pair gives the best overall par-
ticipation for Modes 4, 5 and 6 and was chosen for use in the MIMO experiment.

The schematic for the two actuator/sensor locations is shown in Figure (6.2).

6.1.2 Open Loop Plant Models

Two open loop plant models were formulated following the method of Sec-
tion (5.1.2), one for each actuator/sensor location. They retain the first six

modes. The second subscript on the transfer function name pertains to the
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Figure 6.1a Modal participation factors for two actuator locations.
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Figure 6.1b Modal participation factors for

second pair at 1.0 in. down from the first pair.
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Figure 6.1c Modal participation factors for

second pair at 1.25 in. down from the first pair.
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Figure 6.1d Modal participation factors for

second pair at 1.5 in. down from the first pair.
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P61(S) _ 7.83 + 214
82+ 2qwis+w? 8?2 4 2¢wss + w
1,129 2,650
82 + 2¢zwss + w3 82 + 2¢wes + w? (6.1.1)
5,162 5,414
; 5+ = 5 +0.0354,
8% + 2¢swss + wi §¢ + 2¢wes + w§
Pss (S) _ 4.49 0.17
82 +2¢wis+wi 8?2+ 20wes + wl
650 2,763
§2 + 2¢awss + w? + 82 + 2¢4wes + w3 (6.1.2)
1,350 8,500 + 0.0430.

24 25wss +wi 82 + 2¢wes + wi
6.1.3 <Compensation of Non-Ideal Sensor Behavior by
Pole-Zero Cancellation

It was found in Chapter 5 that the non-ideal sensor dynamics reduces the

stability margin of the closed loop system. A circuit that nearly cancels the
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Figure 6.3 Sensor shunt and compensator circuit.

sensor dynamics is shown in Figure (6.3). The sensor buffer amplifier of the
SISO experiments is replaced by a dynamic filter with one pole and one zero,
which can be adjusted to nearly cancel the pole and zero of the shunt-induced
high-pass filter. The differential equation describing the compensator portion of

the circuit is

Vi-Ve V,
Clgz(vl V) + = (6.1.3)

Taking the Laplace transform gives the transfer function as

Vi(s) _ st (mer t mey)

Vi(s) s+ Ralcl

(6.1.4)

The zero, which is located on the negative real axis at: —(1/R3C; + 1/R2C4),
can be placed at the pole location of the shunt high-pass filter; and the pole,
located on the real axis at: —1/R3C}, can be placed very near the high-pass zero
at the origin. What had been a widely spaced pole-zero pair can be converted
into a nearly cancelled pole-zero pair at the origin. The small residual dynamics

occurs at such a low frequency that it can be ignored in the present case.
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6.2 MIMO Control Synthesis

The strategy for the MIMO experiment is to design a local PPF control
system, where the first three modes are controlled from the actuator near the
root of the beam, and the next three modes are controlled from the actuator
nearer to the free end. The approach to synthesis takes advantage of the fact
that PPF filters produce very weak upward control spillover due to their two

pole rolloff.

The first step is to design the Mode 4, 5 and 6 control system by means of
the root contour techniques, using the open loop plant transfer function Psz(s).
There will be downward control spillover into Modes 1 and 3, which will change
their pole locations. There is no spillover into Mode 2 because there is virtually
no participation in that mode from actuator/sensor location 2 as shown in Fig-
ure (6.1c). With the system operating closed loop at the second actuator /sensor
pair, another identification test is performed to identify the new “open loop”
plant at the first actuator/sensor pair. The Mode 1, 2 and 3 control compensator
is then designed based on this new plant model. Since there is very little upward
spillover, the lower mode control filters will not affect the design at Modes 4, 5
and 6. Finally, the stability condition of Theorem (4.5.1) is evaluated for a six

mode model to check MIMO closed loop stability.

6.2.1 Synthesis for Modes 4, 5 and 6

The modal participation factors for Modes 4, 5 and 6 at the location of
the second actuator are significantly lower than those for Modes 1, 2 and 3
at the actuator near the root of the beam. This can be seen from the chart
of Figure (6.1c). As a consequence, if PPF filters with damping ratios in the

range of 0.2 are used, the gains required for pole coalescence are higher than
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for the SISO experiments, as is shown in Figure (6.4). Here, a filter with a
damping ratio of 0.15 is used to control Mode 6. The optimal gain for Mode 6
control is 14.2, as indicated by the boxes in the figure. This is too large a gain
for a single filter. Moreover, the filter frequency is sufficiently high that it will
begin to encroach on the frequency region of Mode 7. The modes are becoming
more densly spaced at these frequencies, resulting in increased coupling between

adjacent structural poles and highly damped control filters.

The solution to this problem is either to decrease the damping ratios of
the PPF filters, or to use fewer filters than modes. We choose to decrease the

filter damping ratios. The filter values summarized in Table (6.2.1) result in the
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Table 6.2.1 Filter Parameters for Modes 4, 5 and 6 ’

Filter No. w (rad/sec) ¢ Gain
6 2,450 0.05 7.0
5 1,800 0.05 5.0
4 1,150 0.07 2.9

root locus of Figure (6.5). This root locus plot shows the effect of simultane-
ously increasing all the filter gains at rates proportional to their design values.

Figure (6.6) shows the movement of the Mode 1, 2 and 3 poles.

6.2.2 Synthesis for Modes 1, 2 and 3

With the Mode 4, 5 and 6 control system operating closed loop, a system
identification test was performed at the actuator location near the root of the
beam and a plant model calculated for the first three modes. The resulting plant

model Pz, which is used for the design of the Mode 1, 2 and 3 filters, is given

by
6.0 315
P. =
51(5) 82 + 2¢ wys + w;" + 82 + 2¢wos + w§ (6.2.1)
1,580 -

0.0354.
§2 + 2¢aw3s + w3 +

The filter values summarized in Table (6.2.2) result in the root locus of Fig-

ures (6.7a,b).

Table 6.2.2 Filter Parameters for Modes 1, 2 and 3

Filter No. w (rad/sec) ¢ Gain
3 480 0.20 5.7
2 230 0.25 4.3
1 45 0.35 2.9
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As a check of stability with both sets of filters closed loop, we will eval-
uate the eigenvalues of the matrix 00 — a,a2,CTGC, which is a necessary and
sufficient éondition for stability from Theorem (4.5.1). The theorem applies to
systems with compatible sensors and actuators. Our sensors and actuators are
not strictly compatible but are nearly so for the lower modes. We shall apply

the theorem assuming that they are compatible for all modes.

The numerator of the i** term of the plant transfer function given in

Eq. (4.3.9) is

n; = ayaq D;C;. (6.2.2)

Assuming the the D; and C; are equal (in fact they are nearly equal for the lower
modes), we can derive estimates of the C; from the numerators of Egs. (6.1.1)
and (6.1.2) as

nij

Cij = (6.2.3)

ayaz ’

where the second subscript refers to the actuator/sensor location. The constant

ajaz = 1.47, and the matrices are listed below.

(126 0 0 0 0 0 7
0 337 0 0 0 0
_.3| 0 o0 218 0 0 0
=101 4 o 0 s60x102 0 0 (6.2.42)
0O 0 O 0 2.20 x 10° 0
0 0 o0 0 0 4.71 x 102
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[2.31 12.1 27.7 425 59.3 60.77
231 121 27.7 42,5 59.3 60.7
2.31 121 27.7 425 59.3 60.7
1.7 0.34 21.0 434 30.3 76.0
1.75 0.34 21.0 434 30.3 76.0
[1.75 0.34 21.0 434 30.3 76.0

29 O 0 0 0 0 7

C

(6.2.4D)

(6.2.4¢)

(= e e I o

COoOOoOCC
(s>l e B e B e
o .
(o]
(<21
[e=]

0 0 0 7.0l

The matrix N —aja; CTGC is symmetric and hence its eigenvalues are real. The
six eigenvalues are listed below and all are positive, indicating that the system
is LAS.

A1 = 4.53 x 10°
Ao = 2.11 x 10°
Az = 7.80 x 10°
g = 1.89 x 10°
s = 3.02 x 104
ds = 1.01 x 103

(6.2.5)

The six mode control was found in practice to be stable.

6.3 MIMO Control Results

The steady-state response is shown in Figures (6.8a,b) through (6.11a,b).
Each set of figures show the same measurements taken at each sensor location.
Figures (6.8a,b) and (6.9a,b) show three measurements in each frame. The
dashed line indicates the open loop response. The dash-dot—dash line shows

the frequency response when only the Mode 4, 5 and 6 controller is closed loop.
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The solid line is the six mode MIMO closed loop response. Because there is
insignificant upward spillover from the lower mode filters, Figures (6.10a,b) and

(6.11a,b) show only the open loop and MIMO closed loop response.

Figure (6.82) shows the response in the region of Modes 1 and 2 for the
sensor at the root of the beam. The curve for “high mode control,” i.e., the
Mode 4, 5 and 6 control closed loop, shows a reduction in amplitude for Mode 1
and no change at all for Mode 2. This is consistent with the stabilizing downward
spillover into Mode 1 and the very small participation for Mode 2 at the location
that the high mode control is implemented. The amplitude for both modes is

greatly reduced in the MIMO case.

The response for the second sensor location, shown in Figure (6.8b), indi-
cates a somewhat different situation. The high mode control curve for Mode 1
indicates that the damping has been increased, which can be seen from the in-
creased half-power bandwidth of the spike, but the peak amplitude of response
is greater than for the open loop response. This is due to the softening effect of
the Positive Position Feedback filters. Below the dynamic region of the filters
(which is below Mode 4 for the high mode control case), the stiffness of the
structure is perturbed toward singularity. This means that it is softened in this
- region. In effect, the mode shape has been changed to allow more bending at
the second actuator location. The softening occurs at the second actuator loca-
tion, since that is where the high mode control filters are effected. The MIMO
response indicates that the softening effects are counteracted by the lower mode

control filters implemented at a different location.

A similar but more pronounced softening effect is seen in the region of

Mode 3 in Figure (6.9b). In this case, even under MIMO control, the Mode 3
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response at the second sensor location is reduced by only about half. It appears
that it is best not to control higher modes only, or softening may become sub-
stantial. Figure (6.9b) also shows that the Mode 4 and Filter 4 poles are fairly
widely spaced and appear as two distinct humps on either side of the open loop

peak. This is consistant with the pole locations of Figure (6.5).

Figure (6.10b) indicates that the closed loop poles for Mode 5 are not near
the design values. The structural pole, indicated by the sharp closed loop spike,
is only moderately more damped than for open loop. The Mode 5 filter pole can
be seen as a highly damped hump at slightly higher frequency. Evidently, the
Mode 5 filter design placed the poles too close together which made them too
sensitive to modeling errors. The Mode 5 pole pair shown in Figure (6.5) is the
closest pair in the design. Since the response is the sum of the individual modal
responses, the Mode 5 spike rides on top of the highly damped filter hump and
so appears to be a higher amplitude response than for open loop. The Mode 6

response is significantly reduced.

Figures (6.11a,b) show the spillover into Modes 7 and 8. Their frequencies
and damping ratios are increased slightly, as expected. Figure (6.12) shows a
combined plot of the open and closed loop response for the region of 2 to 800 Hz,
including Modes 1 through 8. These data are for the sensor at the root of the

beam.
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frequency response functions for Sensor 1.

Figures (6.13a~f) show the open loop and MIMO closed loop free decay
responses for Modes 1 through 6. As can be seen, there is very dramatic reduc-
tion of the settling times for Modes 1 through 4; Modes 5 and 6 are somewhat
reduced. The superimposed low frequency oscillation seen in Figures (6.13b—f)

is the 10 Hz fixture mode and is an artifact of the test apparatus.

A summary of the MIMO performance results is given in Tables (6.3.1)
and (6.3.2). Table (6.3.1) contains the results for the six controlled modes, and
Table (6.3.2) shows the upward spillover into Modes 7 and 8. The results for
Modes 1 through 4 are very dramatic. The Mode 5 control performance is poor
indicating that the poles were designed too close together. Mode 6 performance

is significantly below design, which may indicate reduced performance robustness
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Table 6.3.1 Effect of MIMO Control on Modes 1 through 6

Sensor 1 Mode 1 Filter 1

¢1(%) S1W1 §1wf Qﬂ(%} Sriwrs S“flwfrl
Open Loop 0.33 | 0.116 4.11 35.0 15.8 709.
Closed Loopi 20.0 5.93 176. 15.0 4.96 164.
Percent Change® | 6,000 | 5,000 4,200 — — —
Predictedf 31.5 8.37 200. 26.9 8.42 245.
Sensor 1 Mode 2 Filter 2

¢2(%) Saw2 s‘zwg s‘fz(%) Cfawr2 §f2w12=2
Open Loop 0.19 0.352 64.1 25.0 57.5 | 1.32 x 10*
Closed Loopt 248 |340 |465x10%| 120 24.0 | 4.79 x 10®
Percent Change® | 13,000 | 9,600 7,200 — — —
Predicted! 18.6 | 28.8 444 x 10 | 15.1 29.7 | 5.84 x 10
Sensor 1 Mode 3 Filter 3

¢3(%) (3w3 §3w§ ¢r3(%) | ¢rawys §f3w}3
Open Loop 0.23 1.05 489. 20.0 96.0 | 4.61 x 10*
Closed Loopt 8.00 33.2 |1.38x10%| 15.0 68.3 | 3.11 x 104
Percent Change® | 8,400 | 3,100 2,700 — — —
Predicted? 13.4 52.5 |2.06x10%| 11.5 51.1 | 2.27 x 10*
Sensor 2 Mode 4 Filter 4

¢a(%) Cawy s‘4w§ ¢ra(%) Cfawrq gf4w}4
Open Loop 0.38 3.54 [3.30 x 10° | 7.00 80.5 |9.26 x 10%
Closed Loop 4.05 | 29.8 |2.19x10*| 2.23 23.4 | 2.46 x 10*
Percent Change® | 970 740 560 — — —
Predicted! 5.44 | 41.0 |3.08x10*| 4.10 | 42.1 |4.32x 10*
Sensor 2 Mode 5 Filter 5

¢s(%) | ¢sws Sswi ¢rs(R) | ¢rswis | srswis
Open Loop 0.39 5.73 | 8.42 x 10 | 5.00 90.0 | 1.62 x 10°
Closed Loop 0.78 | 11.4 |1.68 x10% | 4.97 82.1 | 1.36 x 10°
Percent Change™* 100 100 100 — — —
Predicted? 3.24 | 469 |6.81 x10*| 3.04 46.4 | 7.08 x 104
Sensor 2 Mode 6 Filter 6

s6(%) | ¢ews Sowd ¢re(%) | rowse | $rewte
Open Loop 0.37 7.98 |1.73x10%| 5.00 | 123. | 3.00 x 10°
Closed Loopt 0.62 14.1 [3.14x10*| NM NM NM
Percent Change* 70 80 80 — — —
Predictedt 3.03 64.7 |1.38 x10° | 2.67 60.2 | 1.36 x 10°

* Percent Change Between Measured Values

1 May Contain Significant Error from FITTER

1 Predicted Closed Loop Values

NM Not Measurable
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Table 6.3.2 MIMO Control Spillover into Modes 7 and 8

Sensor 2 : Mode 7 Filter 7

¢7(%) | ¢rwr Grwy ¢r7(%) | grrwgr | ¢rwdy
Open Loop 0.34 | 106 | 3.32 x 10* — — —
Closed Loop 0.45 | 15.9 | 5.09 x 104 — — —
Percent Change* 46 50 53 —_— — —
Predicted? — — — — — —
Sensor 2 Mode 8 Filter 8

¢8(%) | ¢aws Cawi ¢r8(%) | ¢rawrs ngW?"g
Open Loop 0.36 | 11.3 | 3.55 x 104 — — —
Closed Loop 0.50 | 16.2 | 5.20 x 104 — — —
Percent Change® 40 43 46 — — —
Predicted! e — — —_— —_— —

* Percent Change Between Measured Values t Closed Loop Values not Predicted

to modeling errors. It is difficult to determine if the resulting performance
reduction is due to the PPF control strategy itself or to the difficulty in modeling
and testing the structure at these very high frequencies. A more realistic test is

needed to resolve this question.
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Chapter 7

CONCLUSIONS

7.1 Concluding Remarks

This thesis has investigated the feasibility of using piezoelectric materials
as dual structural elements/actuators for vibration suppression in Large Space
Structures, and the use of Positive Position Feedback (PPF) as a vibration sup-
pression control strategy. A flexible cantilever beam test structure was designed
to incorporate many of the characteristics of Large Space Structures. Piezoelec-
tric ceramic material was adhered to the beam and used to simulate an active-
member on a space-truss type structure. Multi-mode vibration suppression was

achieved with dramatic reduction in dynamic response.

Piezoelectric material was also used as a strain sensor. Strain was chosen as
the only measurement quantity, since it is the quantity most intimately related
to the elastic motion that is to be suppressed, and because it can be measured ac-
curately at very low frequencies and g-levels. The actuators exert forces internal
to the structure to effect the control which, together with strain measurement,
completely decouples the rigid-body motion from the elastic vibratory motion.
The actuation and sensing implementation consitutes a space-realizable control
technique. The concept of a piezoelectric active-member appears to be a fea-
sible approach to the actuation problem for the vibration suppression control
objective.

The method of Positive Position Feedback, originally proposed by Caughey

and Goh, has been demonstrated to be a promising technique for vibration

suppression in Large Space Structures. A necessary and sufficient condition for
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stability using Positive Position Feedback has been developed, involving a simple
non-dynamic stability criterion which is in general easily satisfied. The exper-
iments have provided new insight into the superior robust stability properties
of Positive Position Feedback in relation to Large Space Structure control. In
addition to being simple to implement, Positive Position Feedback appears to
be immune from the destabilizing effects of observation and control spillover, as
well as the destabilizing effects of finite actuator dynamics. No unintentional
instability ever occurred in the course of the experiments. The phenomenon of
softening was observed, which is a result of the perturbing effects on stiffness of

PPF. Softening appears to be the price paid for increased robust stability.

The cantilever beam test structure was chosen because it is structurally
the simplest structure that can exhibit the characteristics of Large Space Struc-
tures. From a controls point of view, however, this particular structure, together
with the piezoelectric ceramic actuators and sensors, was somewhat pathologi-
cal. The modal coupling of the sensors and actuators was found to be different,
making them incompatible. The sensors and actuators are curvature coupled
to the structure, resulting in a plant with unusually close pole-zero pairs. And,
because the structural bending stiffness is discontinuous, the calculation of accu-
rate participation coefficients for the higher modes was difficult. In retrospect,
a different test specimen, perhaps structurally more complex, might have been

easier to control.

It was found that the existing synthesis theory for Positive Position Feed-
back produced sub-optimal closed loop performance, due to the very close pole-
zero pairs of the plant transfer function. A new approach was implemented for

recovering performance in the presence of close pole-zero pairs. It was found
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that good performance can be obtained if the closed loop structural pole and

PPF control filter pole are not designed too close together.

Four single-input-single-output (SISO), and one multi-input-multi-output
(MIMO) experiments were performed. The control in all the experiments was
realized as an analog circuit. The SISO experiments made use of one actua-
tor /sensor pair near the root of the beam. The first two structural modes were
controlled individually and then together using two PPF filters. Three PPF
filters were used to control the first three modes. The damping ratios of the first
three modes were increased by factors of 58, 59 and 15, respectively, over their

open loop values.

The MIMO experiment used six PPF filters and two actuator/sensor pairs
in a local control arrangement to control the first six modes. The damping
ratios of the lower modes were increased by factors ranging from 11 to 130 times
the open loop values. The performance of the other two modes was below the
design level, because the damping ratios of the filters were too large for the
smaller participation factors and increased density of these modes. In the case
of Mode 5, the closed loop poles were also designed too close together, resulting

in reduced performance robustness to plant modeling errors.

In general, the damping ratios of all modes, controlled or uncontrolled,
were increased over their open loop values, demonstrating the stabilizing effects

of spillover with Positive Position Feedback.

7.2 Directions for Further Research

These experimental investigations have brought to light several areas where
further research is necessary. In relation to Positive Position Feedback, a synthe-

sis theory for plants with close pole-zero pairs and with dense modes is necessary.
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This should give procedures for the selection of gains where strong coupling ex-
ists between adjacent structural poles and control filters. Additionally, a synthe-
sis theory for fewer filters than controlled modes is necessary for high authority
control on plants with densly spaced modes. Further investigations into the
phenomenon of softening are necessary along with techniques for reducing its
effects. A method for identifying frequency and damping parameters for closely

spaced highly damped modes is needed.

In relation to the piezoelectric active-member concept, a true active-mem-
ber needs to be developed. These experiments have simulated the use of active
members, but further tests with actual flight-like hardware are necessary. Exper-
iments on more realistic structures are needed, with emphasis on incorporating
active members and including the one important feature of Large Space Struc-
tures not simulated in these experiments — dense modes. In particular, dense
controlled modes, and dense modes in the region of rolloff are required. This
could be achieved using a three-dimensional space-truss beam or frame, with

appropriate concentrated mass distributions.

The most important requirement for the development of realistic Large
Space Structure control technologies at this point is access to zero-gravity testing
environments. The upcoming NASA Control of Flexible Structures (COFS)
program will make the Space Shuttle available for such tests. These and other

flight opportunities promise a future of interesting research ahead.
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Appendix A

NASTRAN Input File for SISO Piezobeam

The following NASTRAN data file was used for the eigen-analysis of the

SISO piezobeam referred to in Chapter 3.

ID JLF,PIEZOBEAM

SOL 3

TIME 5

READ 9

CEND -
TITLE=NORMAL MODES FOR P1EZOBEAM
METHOD=100
DISPLACEMENT=ALL
SPC=200

BEGIN BULK
$ASET1,345,2,THRU,52
CBAR,1,1,1,2,53
CBAR,2,2,2,3,53

=%l = «1 &1 =

=3

CBAR,7,1,7,8,53
=,*1,=,%1,%1,=

=43
EIGR,100,MGIV,0.01,2500.
GRID, 1

GRID,2,,0.0413
=,#1,,#0.25

=48

GRID,52,,12.40

GRID,53,,,10.0
MAT1,1,1.0+7,,0.3,2.580-4
MAT1,2,1.047,,0.3,4.927-4

PARAM, COUPMASS , +1
PBAR,1,1,1.32-2,1.0,4.584-7,4.63-4
PBAR,2,2,2.747-2,1.0,3.333-6,1.13-3
SPC1,200,123456,1,53
SPC1,200,126,2,THRU,52

ENDDATA
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Appendix B

Mode Shapes of SISO Piezobeam

The following plots are the first eight mode shapes of the SISO piezobeam,
which were generated from the NASTRAN run of Appendix A.

|_HSC/GRASP(VAX) k] £2-SEP-RE _SRIEICE |

Figure B.1a Mode 1 of SISO Piezobeam.
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- .

LHASC/GRASP (VAX) 4 B7-SEP-BE 89182186 |

Figure B.1b Mode 2 of SISO Piezobeam.

L.

L-H5C/GRASP (UAX) 8 27-5EP-B5 9198132 |

Figure B.1c Mode 3 of SISO Piezobeam.
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|_HSC/GRASP (VAX) 8 27-SEP-BS 09185119 |

Figure B.1d Mode 4 of SISO Piezobeam.

L.

L_NSC/GRASP (VAX) 2 27-SEP-80 99110101 |

Figure B.1le Mode 5 of SISO Piezobeam.
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- .

LIISC/GRASP (UAX) [ 27-SEP-BS 99111113

Figure B.1f Mode 6 of SISO Piezobeam.

LHMSC/GRASP (VAX) 9 B2-SEP-85 99111149

Figure B.1g Mode 7 of SISO Piezobeam.
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L.

|_NSC/GRASP (VAX) 1 R2-SEP-80. QR116150 |

Figure B.1h Mode 8 of SISO Piezobeam.
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Appendix C

Bonding Procedure for Piezoelectric Ceramics

The following procedure was used to bond the ceramics to the aluminum

cantilever beam.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

The aluminum of the beam and the nickel electrode of the ceramic is

thoroughly degreased with Chlorothene NU* aerosol solvent.

The degreased aluminum surface is wetted with M-Prep Conditioner
A.* While the surface is wet, it is abraded with 400-grit silicon-carbide

paper and then wiped dry with a gauze sponge.

M-Prep Neutralizer 5* is then applied with a cotton-tipped applicator
and the surface carefully dried with a single wiping motion of a gauze
sponge.

The ceramic is then positioned in the exact location where it is to
be bonded on the beam. PCT-2* cellophane tape is applied over the

ceramic and onto the beam such that the ceramic is hinged on the tape.
M-Bond 200* catalyst is then applied to the nickel electrode of the
ceramic in a thin, uniform coat. The catalyst is allowed to dry at least
one minute.

Locktite® cyanoacrylate adhesive is then applied to the beam in a thin,
uniform coat, making sure that none of the adhesive comes in contact

with the copper strip.

* Materials identified with the asterisk are manufactured by Micro-Measurements Division

of Measurements Group, Inc.



Step 7:

Step 8:
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Immediately after step 6, the ceramic is rotated into position slowly
and firm contact is made with the beam. Pressure is applied to the
ceramic with the thumb for at least one minute. The “thumb heat”

helps to speed adhesive polymerization.

After at least two minutes, the tape is removed by slowly pulling it

back over itself, peeling it off the surface. The bond is now made.
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Appendix D
Shaker Specifications and Vibration Fixture Drawings

The specifications for the Briiel & Kjer type 4810 Mini-Shaker are given

below. Detail drawings for the test beam and test fixture follow.

Rubber Dirt Shield
10-32 NF Threaded Hole

Magnetic
Structure

V/I////////////I////////////I//’//A Ll ik

/

10—32 NF Threaded Hole

272229

Figure D.1 Sectional drawing of the Mini-Shaker type 4810.

Specifications 4810

Frequency Range: Dynamic Fiexure Stiffness: Table Size:
DC 10 18kHz 2 Newton/mm (11,5 tbs/in) 14 mm (0,55 in) diameter
First Major Armature Resonance: Dynamic Waight of the Moving System. Fma:i;vg Thread:
Above 18 kHz 18 grams NF 1032
Waight:
Force Rating (Peak): Magrnetic Field: 1,1kg (2,41b)
10 Newton (2,25 ibf). 65 Hz to 4 kHz Permanent magnet
7 Newton (1,5 ibf}). 65 Hz to 18kHz Dimensions:
Max. Input Current: Diameter: 76 mm {3 in)
Max. Bare Table Acceleration (Peak): 1,8A. RMS Height: 76 mm (2,9in)
550 ms—2 ({65 Hz to 4kHz)
Accessories Available:
2 il .
ff:‘;“_sz - ‘O :;;Izg)(o 18kHz) cml;’;?;::’;co‘o"_' Cable for connection of Mini-Shaker to
: . z Power Amplifier AO 0069
Max. Displacement (Peak-to-Peak): Connection: Mounting A ies {includ
6mm (0,236 in) Microsocket NF 10 — 32 studs YP 0150 and non-isolated studs
YQ 2960} UA 0125
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Brost & Kjwe  Potentiomater Range__50__ 4B Rectifier: Lower Lim Freq: _____ Hr Wr. Spead:_____mm/sec. Paper Speed: me/sac.
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Figure D.2 Frequency response of the 4810 shaker
for impedance (Z), current (I), and voltage (V).
1000 1 1001
;'; E - 550 ms—2 (56 g) Bare Table
k: -
. V4
g 1% / 383 ms—2 (39 g)
173 er pre——
L 4 E N
.5. E §.> & &
g &L 196 ms=2 (20 g) ayload 33 gram
i ° 7 D NEEE
& 137 ms—2 (14 g}
< £ /
1007 10} ﬁ%"
1 F 9¢
4 F & 49ms~2 (5g) Payload 186 gram
1 s & <
4 - 34 ms—2(35g)
i 2/
10 4 R R B AP B
1BHz 20 50 100 200 500Hz 1kHz 2 5 10kHz 20
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Figure D.3 Sine performance curves for the 4810 shaker.
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Appendix E
Parameter Values and Dimensions for Hardware

The following are the values for material properties and dimensions for the

beam, sensor and actuator components.

t, = 0.0095 in
t, = 0.0204 in
t, = 0.0095 in

E, = 9.1 x 10° psi
Ep, =10 x 10° psi

E, =8 x 10° psi

W, =0.50in
Wy = 0.648 in
W, =0.25in
da; = 7.48 x 1072 -2
volt
volt - in

gs31 — 1.926

Ibs
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Appendix F

Spline-Fit Program Listing

The following program was used to determine the mode shape curvatures at

the finite element model grid points using NASTRAN generated displacements.

O OO0

o0

100

1e1

102

1€00

1001

O0O00O00

This program will colculate the curvatures ot the grid points of
a NASTRAN mode shape.

PARAMETER NMAX=100

CHARACTER ST#*3
DIMENSION X(NMAX),Y(NMAX),S(NMAX),A(NMAX,4)
LOGICAL EX -
Read in the mode number, the size of the mode shape,
and the end condition.
READ (7,*) M,N,1END
WRITE (6,100) M,N, IEND
FORMAT(’ Mode Number: ',I2,’ Size: ’',I2,’ End Condition: *,12)
IF (N.GT.NMAX) STOP ’'Reset NMAX to a larger value.’
Read in the grid locations.
DO I=1,N
READ (7,.s) X(1)
WRITE (6,1@1) 1,x(I)
FORMAT (’ X(’,12,')=",G610.4)
END DO
Read in the mode shape values.
DO I=1,N
READ (7,s) Y(I)
WRITE (6,102) 1,Y(1)
FORMAT (* Y(’,12,')=",G610.4)
END DO
Now do the Spline Fit
CALL SPLINE(X,Y,S,N,NMAX,IEND,A)
Now print out the curvatures into file: CURVE.DAT.
INQUIRE(FILE="'CURVE.DAT’ ,EXIST=EX)
IF (EX) THEN
ST="0LD"
ELSE
ST='NEW’
END IF
OPEN(10,FILE="CURVE.DAT’ ,ACCESS="SEQUENTIAL’ ,FORM="FORMATTED",
1STATUS=ST,CARRIAGECONTROL="LIST")
WRITE (10,1000) M
FORMAT(® Curvatures for Mode No. *',12,//)
DO I=1,N
WRITE (1@,10@1) 1,5(I)
FORMAT(® S(’,12,') = *',G10.4)
END DO
STOP
END
SUBROUTINE SPLINE(X,Y,S,N,NMAX,IEND,A)

This program for spline fits is taken from "Applied Numerical
Analysis", 2nd edition, by Curtis F. Gerald, Addison Wesley,
1978, pp 508-509. The adaptation to FORTRAN 77 was done by
Bob Norton, Dec 1, 1883.



OO0 O0O00000

OO0 O0O0O00

eReXe

OO0

OO0
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DIMENSION X(N),Y{N),S(NMAX), A(NMAX,4)

This subroutine computes the matrix for finding the coefficients
of a cubic spline through o set of data points. The system is
then solved to obtain the second derivative values.
Parameters are:
X,Y arrays of x and y values to be fitted
S array of second derivative values at the datoc points
N number of data points
IEND type of end condition to be used
IEND=1 linear ends, S(1)=S(N)=06 "nctural" spline
IEND=2 parabolic ends, S(1)=S(2), S(N)=S(N-1)
1END=3 cubic ends, S{1) & S(N) are extrapolated
A augmented matrix of coefficients and right—hand side

compute for the N-2 rows:

NM2=N-2
NM1==N—1
DX1=X(2)-X(1)
DY1=(Y(2)-Y(1))/DX16.0
DO I=1,NM2 -
DX2=X(I+2)-X(1+1)
DY2=(Y(1+2)-Y(1+1))/DX2+6.0
A(I,1)=DXx1
A(1,2)=2.0+(DX1+DX2)
A(I,3)=DXx2
A(I,4)=DY2~DY1
DX1=DX2
DY1=DY2
END DO

Adjust the first and last rows for the designated end condition
for TEND=1 no chXkSZ%s needed

IF (IEND .EQ. 2) THEN

for TIEND=2 $(1)=$(2), S(N)=S(N-1) (parabolic ends)

A(1,2)=A01,2)+X(2)-X(1)
A(NM2,2)=A(NM2, 2) +X (N)=X (NM1)
ELSE IF (IEND .EQ. 3) THEN

for IEND=3 S{1) and S(N) are extropolated (cubic ends)

DX1=X(2)-X(1)

px2=X(3)-x(2)

A(1,2)=(DX14DX2) » (DX1+2.@+DX2)/DX2

A(1,3)=(DX2+DX2-DX1+DX1)/DX2

DXN2=X (NM1 )—X (NM2)

DXN1=X(N)~X (NM1)

A(NM2, 1)=(DXN2#DXN2-DXN1+DXN1)/DXN2

A(NM2,2)=(DXN1+DXN2) » (DXN1+2 . @#DXN2) /DXN2
ENDIF

now solve the tridiagonal system, first reduce

DO I=2,NM2
A(1,2)=A(1.2)-A(I,1)/A(1-1,2)*A(1-1,3)
A(I,4)=A(1,4)-A(1,1)/A(1-1,2)+A(1-1,4)

END DO

now back substitute
A(NM2,4)=A(NM2,4)/A(NM2,2)

DO I=2,NM2
J=NM1-1
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A(J,4)=(A(J,4)~A(J,3)=A(J+1,4))/A(J,2)
END DO

now put the values into the S vector

o000

DO I=1,NM2
S(1+1)=A(1,4)

END DO

get S(1) and S(N) using the various end conditions

IF (IEND .EQ. 1) THEN

for linear ends S(1)=08, S(N)=0

OO0 OO0

s(1)=e.0
S(N)=0.0
ELSE IF (IEND .EQ. 2) THEN

oo

for parabolic ends, S{1)=S(2), S(N)=S(N-1)
S(1)=S(2)
S(N)=S(N-1)

ELSE IF (IEND .EQ. 3) THEN

-

for cubic ends, extrapolate to get S(1) and S(N)

OO0

S(1)=((DX1 +DX2) *S(2) 4DX1* S(3)) /Dx2
S(N)=( (DXN2+DXN1 ) «S(NM1)—DXN1+S(NM2) ) /DXN2
ENDIF
RETURN
END
SUBROUTINE INTERP(XX,YY,X,Y,S,N,NMAX)
DIMENSION X(N),Y(N),S(NMAX)

This subroutine uses the results of a spline fit analysis to
interpolate intermediate values.

OO0O0

IF (XX .LT. X(1) .OR. XX .GT. X(N)) THEN
WRITE (6,2000) XX
STOP

ENDIF

I=1

DO WHILE (XX .GT. X(I+1))
IF (141 .GT. N) STOP ’'x out of range’
I=1+1

END DO

compute the coefficients for the interpoiation

OO0

HI=X(I+1)-X(1)

Al=(S(I+1)-S(1))/(6.0%H1)

BI=S(I1)/2.e

Cl=(Y(I+1)=Y(1))/HI — HI*(2.8+S(1)+S(I+1))/6.8

DX=XX-X(1)

YY=AI*DX*+3 + BI«DXsDX + CI«DX +Y(I)

RETURN

2000 FORMAT (’@==«Fatal error»se, requested x value is out of range’,

>1615.5)

END
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Appendix G

Root Locus Program Listing

The following program was used to solve for the roots of the characteristic

equation as a function of loop gain and produced the root locus plots of Chap-

ters 5 and 6. The subroutine POLYRT is taken from the COSMIC SAMSAN

library.

c
c
C

o0

1eeo

1010

1002

1003

1004

1005

1eo7

PROGRAM TO BRUTE FORCE THE ROOT LOCUS OF A TRANSFER FUNCTION
VERSION 2

PARAMETER NP=10000 -
IMPLICIT REAL*8(A-H,0-Z)

REAL*8 N,D

REAL*4 AR,AI,SR,S1,G,OPENPR,OPENPI,OPENZR,OPENZI

CHARACTER ST#3

DIMENSION AD(NP),AR(NP),AI(NP),N(NP),D(NP),SR(2),SI(2),
1ZEROR(NP) , ZEROI(NP) ,G(NP) ,OPENPR(NP) ,OPENPI (NP) , OPENZR(NP),
20PENZI (NP) , TEMP(NP)

LOGICAL EX

READ IN THE SIZES OF THE NUMERATOR AND DENOMINATOR AND SCALE FACTOR
READ (7,*) N1,ND1,SCALE
WRITE (6,1000) N1,ND1
FORMAT(® The numerator is order: ',I12,' The denominator is
lorder:’,12)
WRITE (6,1010) SCALE
FORMAT(® The scale factor is: ',G10.4)

READ IN THE RANGE OF GAIN AND THE NUMBER OF POINTS
READ (7,%) GAINL,GAINU,NPTS
N2=ND1+NPTS
IF(N2.GT.NP) STOP 'Reset NP to a larger valiue’
WRITE (6,1001) GAINL,GAINU,NPTS
FORMAT(/’ The gain range is ',G10.4,' to ’,G10.4," The number
tof points is *,14)

READ IN THE NUMERATOR AND DENOMINATOR
READ (7,%) (N(I;, I=1,N1+1)
READ (7,+) (D(1), I=1,ND1+1)

WRITE (6,1002)
FORMAT(/’ Numerator Coefficients’)
DO I=1,N1+1

WRITE (6,1003) I,N(I)

FORMAT(® N(*,12,’) = *,G10.4)
END DO
WRITE (6,1004)
FORMAT(/* Denominator Coefficients’)
DO I=1,ND1+1

WRITE €6,1005) 1,D(1)

FORMAT(® D(’,12,’) = ',G10.4)
END DO

READ IN THE PLOTTING INFORMATION

READ THE MAX AND MIN VALUES FOR THE REAL AND IMAGINARY AXES
READ (7,+) SR(1),SR(2),SI(1),SI1(2)
WRITE (6,1007) SR(1),SR(2)
FORMAT(/* The Real axis range is from ',G18.4' to ',g10.4)
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WRITE (6,1008) SI(1).SI(2)

1008 FORMAT(/’ The Imaginary axis range is from ’,g10.4,
1° to *',g10.4)
WRITE (6,1009)

1809 FORMAT(//)

c
c COMPUTE THE OPEN LOOP POLES AND ZEROS
DO I=1,N1
N3=N1-I1+1
TEMP(N3)= N(I+1)/(N(1)*SCALE*+I)
END DO
c COMPUTE THE OPEN LOOP ZEROS
CALL POLYRT(TEMP,N1,ZEROR,ZEROI,IFAIL)
DO I=1,N1
OPENZR(1)= ZEROR(I)*SCALE
OPENZI(1)= ZEROI(I)+SCALE
END DO
c COMPUTE THE OPEN LOOP POLES
DO I= 1,ND1
N3=ND1-I1+1
TEMP(N3)=D(I+1)/(D(1)*SCALE#+1I)
END DO
CALL POLYRT(TEMP,ND1,ZEROR,ZEROT, IFAIL)
DO I=1,ND1
OPENPR(1)= ZEROR(I)*SCALE
OPENPI(I1)= ZEROI(I)*SCALE
END DO
c
c CONSTRUCT CURRENT POLYNOMIAL
GAIN=GAINL
NCOUNT 1=0
NCOUNT2=1
c
c CONSTRUCTION OF POLYNOMIAL COEFFICIENTS
50 N4=1
DO 7@ I= ND1,1,-1
N3= ND1-I+1
IF(1.GT.N1+1) GOTO 6@
AD(I) = (D(N3+1) +GAINsN(N4))/(D(1)*SCALE+*N3)
N4=N4+1
GOTO 78
60 AD(I) = D(N3+1)/(D(1)*SCALE++N3)
70 CONTINUE
c
c COMPUTE CLOSED LOOP EIGENVALUES
CALL POLYRT(AD,ND1,ZEROR,ZEROI, IFAIL)
c
WRITE(6,1006) NCOUNT2,IFAIL,GAIN
1006 FORMAT('+Point No. *',I4," IFAIL = *,14,” GAIN = ',G10.4)
c
c CHECK ON RESULTS OF ROOT CRUNCH

IF (IFAIL.EQ.O; GOTO 300
IF (IFAIL.EQ.1) GOTO 100
IF (IFAIL.EQ.-1) GOTO 200
STOP ’Should not have reached this line’
10e WRITE (6,2000) ND1,GAIN
2000 FORMAT(’' Fewer than *,13,’ roots were found. The gain
iwas: ',G10.4)
STOP
200 WRITE (6,2001) GAIN
2001 FORMAT(//' All the roots were found but occuracy is poor.
1The gain was: *,G10.4)
C
c STORE ROOTS FOR LATER PLOTTING
Joe DO I=1,ND1
I2= NCOUNT1 +1
AR(Izg = ZEROR(I)*SCALE
AI(12) = ZEROI(1)*SCALE
G(12)= GAIN
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END DO

c

c SET UP FOR THE NEXT ITERATION
NCOUNT2=NCOUNTZ2 +1
NCOUNT 1=NCOUNT1 +ND1

C

c ARE WE FINISHED?
IF(NCOUNT2.GT.NPTS) GOTO 40
GAIN= GAINL +NCOUNT2+(GAINU-GAINL)/NPTS
GOTO 50

C

C WRITE OUT THE EIGENVALUES TO FILE RLPOLES.DAT

400  INQUIRE(FILE='RLPOLES.DAT’,EXIST=EX)
IF (EX) THEN
ST="0LD’
ELSE
ST="NEW’
END IF
OPEN(10,FILE="RLPOLES.DAT’ ,ACCESS="'SEQUENTIAL’ , FORM="FORMATTED" ,
1 STATUS=ST,CARRIAGECONTROL="LIST")
c WRITE OUT THE OPEN LOOP ZEROS
WRITE(1@,2004)
2004 FORMAT(’ OPEN LOOP ZEROS')
WRITE(1@,2005)
2005 FORMAT(’ REAL’,1@X,’ IMAGINARY')

DO I=1,N1
WRITE(10,2006) OPENZR(I),OPENZI(I)
2006 FORMAT(® *,G10.4,5X,G10.4)
END DO
c WRITE OUT THE OPEN LOOP POLES

WRITE(10,2007)

2007 FORMAT(’ OPEN LOOP POLES®')
WRITE(10,2008)

2008 FORMAT(® REAL’,1@X, ' IMAGINARY’)

DO I=1,ND1
WRITE(10,2809) OPENPR(1),0PENPI(I)
2009 FORMAT(' ',610.4,5X,G10.4)
END DO
C WRITE OUT THE CLOSED LOOP POLES

WRITE(10,2010)

2010 FORMAT(’ CLOSED LOOP POLES’)
WRITE(10,2002)

2002 FORMAT(' REAL®,1@X,'IMAGINARY', 10X, 'GAIN’)

DO I=1,N2
WRITE(10,2003) AR(I).AI(I1),G(1)
2003 FORMAT(® *',G10.4,5X,G10.4,5X,G10.4)
END DO
c PLOTTING ROUTINE
CALL BGNPLT(" ")

CALL PLFORM%'LINLIN’.?.B,S.Z)
CALL PLABEL(® *,1,'REAL’,4, ' IMAGINARY’,9)
CALL LINCLR(1)
CALL PLSCAL(SR,2,2,S1,2,2)
CALL LINCLR(2)

c PLOT OPEN LOOP POLES
CALL PLCURV(OPENPR,OPENPI,ND1,-1,7)
CALL LINCLR(7)

c PLOT OPEN LOOP ZEROS
CALL PLCURV(OPENZR,OPENZI,N1,-1,1)
CALL LINCLR(3)

c PLOT CLOSED LOOP POLES
CALL PLCURV(AR,AI,N2,-1,3)
CALL LINCLR(1)
CALL ENDPLT
STOP
END
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Appendix H

Three Mode Control Frequency Functions

Measurements of the open loop frequency function, compensator frequency
function, and closed loop function for the three mode control case appear be-
low. Block diagrams describe where the signals were injected and where the

measurements were made for each test.

The compensator, open loop, and closed loop frequency functions were

measured as indicated in Figures (H.1); (H.2) and (H.3), respectively.

reemss=ssme- 1 | e A
] 4 t i
: ¥,
— a; D — B(s) h > e’ > a, : $ » Output
: : | :
LI A I S Y - Beam L e it b
J/ fictuator Sensor
1
Va *¥+  Input
Output « G je—K(s] Injection
Compensator

Figure H.1 Block diagram showing measurement method

for the compensator frequency function.
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Figure H.2 Block diagram showing measurement method
for the open loop frequency function.
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Figure H.3 Block diagram showing measurement method

for the closed loop frequency function.
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