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ABSTRACT

The problem of the valence band structure of Ge and Si in the

presence of an external magnetic field is considered from a quantum

mechanical point of view. The analysis is carried out using first and 

second order perturbation theory. The approach is, in principle, 

similar to that of W. Shockley and E. O. Kane, but is modified in some

important essentials to include the effects of the magnetic field. The 

analytical results obtained are somewhat more general than those of J.

M. Luttinger but reduce to the latter if certain approximations are

introduced. Numerical calculations of the Landau energy levels are

carried out for certain special cases, of which the most important are

the following:

1. Magnetic field ϰ in the [001] direction, kH = 0; nonspherical 
symmetry character of energy bands and the coupling of V1 and 
V2 bands to the V3 band included.

2. Magnetic field ϰ in the [001] direction, kH ≠ 0; nonspherical 
symmetry character of energy bands included, decoupling of V1 
and V2 bands from the V3 band assumed.

In addition, a set of algebraic equations is derived whose solution 

should yield the valence band Landau levels for the cases of the magnetic 

field in the [101] and the [111] directions. However, no numerical cal­

culations are performed for these cases.

The results of the calculations indicate the presence of some in-

teresting transitions between the Landau levels of Ge and Si, as well as 

the possible presence of other interesting effects which may be observ-

able. Certain of these seem to offer potential millimeter-wave applica-

tions possibilities, some of which are discussed.
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The purpose of the work described here is to extend the available

calculations of the effect of an external magnetic field on the energy 

band structures of the diamond type semiconductors Ge and Si (1, 2, 3).

The problem is particularly interesting in connection with the phenomena 

of interband magnetoabsorption (4, 5) and cyclotron resonance of both 

positive and negative effective mass carriers (6, 7, 8, 9) as well as in 

connection with the possibilities of utilization of these phenomena in

devices operating in the millimeter and submillimeter wave frequency 

range (8, 9, 10, 11).

The following is a brief summary of some of the most important

features of the energy band structures of Ge and Si as well as of InSb 

which, although not the subject of the present work, may turn out to be

of considerable interest from the point of view of applications.

1.1 Some Important Features of the Energy Band Structures of Ge, Si,
and InSb

Since germanium lattice is of a face-centered cubic type, its

reciprocal lattice is of the body-centered cubic type with the first

Brillouin zone as shown in Figure 1.1. It is easy to see that in the

majority of cases where Bloch function solution to the Schrodinger equa-

tion is used, one needs to consider only the first Brillouin zone.

Consider a certain wave vector k' and a vector k lying in the first

Brillouin zone. One may then write k' = k + K where K is an

appropriately chosen translation vector in the reciprocal lattice space, 

(i.e., K = n1b1 + n2b2 + n2b2, where bi's are reciprocal lattice basis 

vectors and n's are integers.) One thus has for the Bloch wave functions:

I. INTRODUCTION
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(1.1.1)

since eiK·r has the periodicity of the lattice. Thus it is seen 

that any problem can be solved by considering only the first Brillouin 

zone as long as the wave functions and energy surfaces are taken to be 

multivalued functions of k (12, 13).

The problem of determining the energy band structure for a materia 

is essentially the problem of determining the dependence of allowed 

energy levels on the wave vector k in the first Brillouin zone. In 

general, this dependence will obey certain symmetries associated with 

the lattice, but will not be isotropic. It is not generally possible to 

solve the complete energy band problem analytically but in conjunction

with data from magnetoresistance, cyclotron resonance, and other experi- 

ments, an approximate solution can be obtained. A plot of E versus k

for two directions in the Brillouin zone of Ge is given in Figure 1.2 

(14). The important features to be observed are the following: 1) The 

lowest point in the conduction band (band edge) occurs at a point

, where a is the lattice constant, and seven other equi­

valent points, and belongs to the L1 band; 2) At k = 0 there is a 

distinct minimum in the conduction band; 3) The Γ2 band is approxi­

mately parabolic (and isotropic) for small k ; 4) The valence band edge

is four-fold degenerate (including "spin" degeneracy); 5) The valence 

band has a maximum at k = 0; 6) V1 and V2 bands are approximately 

parabolic near k = 0 (but are not isotropic); 7) There is another
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valence band, the V3 band, which is depressed relative to the V1

and V2 bands by spin-orbit coupling by an amount Δ = 0.29 ev. (15).

This band is also approximately parabolic near k = 0; 8) The separa-

tion between the band edges εG = .66 ev. (14); 9) The separation

between the valence band and the conduction band at k = 0 is

ε(000) = 0.88 ev. according to reference 15, and 0.84 ev. according 

to reference 14.

As was mentioned previously, E(k) is not generally isotropic.

The anisotropy of V1 and V2 near k = 0 has been quantitatively 

determined by combining the results of degenerate perturbation theory 

with cyclotron resonance data by Dresselhaus, Kip and Kittel (6), and 

Zeiger, Dexter, and Lax (7). The resulting expression for E(k) correct 

to second order in k is given by

(1.1.2)

where (see reference 6)

The plus sign corresponds to the light holes (V2) and the minus sign to

heavy holes (V1). The general shape of the constant energy contours for

both heavy and light holes is shown in Figure 1.3, where kz = 0.

The conduction band minimum at is also anisotropic.

Here the three-dimensional constant energy contours appear to be ellip-

soids with their major axes along the <111> directions. The effective 

masses mℓ and mt corresponding to the major and minor axes of the
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Fig. 1.1 First Brillouin Zone 
for Crystals Having 
Face-Centered Cubic 
Lattice. (After F. 
Herman, Ref. 39)

Fig. 1.2 Energy as a Function of Reduced 
Wave Vector for [100] and [111] 
Directions in Ge (After H. Brooks 
Ref. 14)

Fig. 1.3 Valence Band Constant Energy Contours in the 
[110] plane in Ge (After Dexter, Zeiger and 
Lax, Ref. 7)
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ellipsoids have been measured by cyclotron resonance techniques as

mℓ = 1.58 m (6) mt = 0.082 m (6)

The effective mass in the Γ2 conduction band at k = 0 has been es-

timated to be mΓ2 = 0.034 m (6)

0.04 m (16)

0.036 m (17)

and is isotropic for small k .

The nonparabolic effects in Ge near the center of the Brillouin 

zone have been investigated by E. O. Kane (15) with the help of degen- 

erate perturbation theory. The results are shown in Figures 1.4, 1.5, 

1.6 for [100], [111], and [110] directions respectively. It will be 

noted that the nonparabolic effects in the V2 band set in at approxi- 

mately 0.1 ev. relative to the band edge.

Si has the same lattice as Ge and its band structure is qualita- 

tively very similar to that of Ge. The E(k) curves for [111] and [100] 

directions are given in Figure 1.7 (14). One should note the following:

1) the conduction band edge occurs at and five other equi-

valent points, and belongs to Δ1 band. 2) The valence band edge occurs

at k = 0 and is fourfold degenerate. 3) V1 and V2 bands are parabolic

for only very small k and are not isotropic. 4) The V3 band is depres-

sed relative to the V1 and V2 bands by only .04 ev. (6). 5) The

separation between the band edges is εG = 1.08 ev. (14). 6) The separa-

tion between the valence band and the conduction band at k = 0 is 

ε(000) = 2.58 ev. (14).

As in the case of Ge, the V1 and V2 bands are anisotropic with the
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Fig. 1.4 Energy vs. k2 for [100] 
Direction in the Valence 
Band of Ge (After E. O. 
Kane, Ref. 15)

Fig. 1.5 Energy vs. k2 for [111] 
Direction in the Valence 
Band of Ge (After E. O. 
Kane, Ref. 15)

Fig. 1.6 Energy vs. k2 for [110] Directlon 
in the Valence Band of Ge (After 
E. O. Kane, Ref. 15)
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energy contours still given by equation 1.1.2 but with A, B, C, given 

by

Thus the anisotropy in Si is greater than that in Ge. Expression 1.1.2

is not as good an approximation for Si as it is for Ge due to small spin-

orbit splitting in the case of Si.

The constant energy contours near the conduction band edge in Si

are again ellipsoids but with their major axes along the <lOO> direc-

tion. The longitudinal and transverse effective masses are

mℓ = 0.97 m (6) m = 0.19 m (6) .

According to H. Kromer (18) the Si conduction band near k = 0 has 

probably the curvature corresponding to negative effective mass which

could have significant consequences as far as applications are concerned. 

This, however, has apparently not been conclusively established.

The results of Kane's (15) calculations on the nonparabolic effects 

in Si near k = 0 are shown in Figures 1.8 and 1.9. In this case 

the nonparabolic effects appear at energies as low as .015 ev. This is 

due to the proximity of the V3 band to the V1 and V2 bands.

The band structure of InSb, which has the zinc blende structure 

and therefore the Brillouin zone of Figure 1.1, is shown in Figure 1.10 

for [100] and [111] directions. Most of the qualitative differences

between the band structures of InSb and Ge and Si arise from the fact that
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Fig. 1.7 Energy as a Function of Reduced Wave 
Vector for [100] and [111] Directions 
in Si (After H. Brooks, Ref. l4)

Fig. 1.8 Energy vs. k2 for [100] 
Direction in the Valence 
Band of Si (After E. O. 
Kane, Ref. 15)

Fig. 1.9 Energy vs. k2 for [111] 
Direction in the Valence 
Band of Si (After E. O. 
Kane, Ref. 15)
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InSb does not possess a center of inversion symmetry.

One observes the following:

1) The conduction band edge occurs at k = 0 and belongs to 
the Γ1 band.

2) The valence band edge no longer occurs at k = 0, but near 
k = 0.

3) The valence band is still fourfold degenerate at k = 0, but 
the degeneracy splits for even very small k . Thus the 
valence band edge is not degenerate.

4) The spin orbit coupling is very large and as a consequence 
the V3 band is depressed relative to the V1 bands by 0.9 ev. 
(4).

5) The separation between the band edges is quite small ,
εG = .175 ev (19). (This complicates the analysis of the band 
structure -- to be discussed later.)

The V1 and V2 bands are highly anisotropic but the expression

1.1.2 no longer holds. As a matter of fact, for certain directions the

expressions for E contain terms linear in k . The nonparabolic ef- 

fects for small k have again been considered by Kane (19) are are shown 

in Figure 1.11. In his calculations he assumed that the valence band

maximum occurs at k = 0, which makes his results for the valence band

somewhat unreliable, quantitatively.

1.2 Semiconductor Crystal in a Magnetic Fleld - Previous Investigations

It is a well known fact that if a free electron is placed in a mag-

netic field its energy becomes quantized in the direction perpendicular 

to the magnetic field with the energy levels ħωc apart (where ωc =

, the cyclotron frequency) (20). A similar effect takes place

when a semiconductor is placed in a magnetic field. However, the 

problem of determining the energy levels of electrons
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Fig. 1.10 Energy as a Function of Reduced Wave Vector for 
[100] and [111] Direction in InSb (After 
Burstein et al, ref. 4)

Fig. 1.11 Energy vs. k2 for an Average Direction 
in InSb (After E. O. Kane, Ref. 19)
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is considerably complicated by the degeneracies, anisotropies and the 

generally nonparabolic character of the energy bands.

A semi-classical approach to the problem of an electron in a 

lattice subjected to an external magnetic field has been adopted by 

Shockley (21), Dresselhaus, Kip and Kittel (6), Zeiger, Lax and Dexter 

(22), and others. This approach consists essentially of calculating 

quantum mechanically the energy band structure of a semiconductor 

without including the effects of the external magnetic field, and then 

considering the classical cyclotron motion of an electron (or a hole) 

in the force field of the lattice. One can confine his attention to

the motion of a single carrier, in which case the problem is to solve

the equations of motion:

(1.2.1)

(1.2.2)

where p is the generalized momentum
τ is the collision time
E is the externally applied electric field 

is the externally applied magnetic field
ε(p) is the effective Hamiltonian

Alternatively, and more accurately, one can use the Boltzmann transport 

theory to solve the problem, as has been done by Zeiger, Lax and Dexter 

(22), in which case the following equation is to be solved:

(1.2.3)

where again v = ∇p ε(p) and f = f(p, r, t, H, E) is the distribution 

function.
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The quantum mechanical effective mass formalism for treating problems 

of this sort has been developed by Luttinger and Kohn (1). The method 

has been used by Luttinger (2) to treat the problem of the valence band 

of a Ge crystal in a magnetic field. Since in the valence band of Ge 

the spin orbit splitting is rather large, Luttinger has been able to con- 

sider the V1 and V2 bands separately from the V3 band which essentially 

amounts to the assumption that the V1 and V2 bands consist of purely

states, which was also the assumption involved in deriving equa­

tion 1.1.2. Luttinger has written down a 4x4 matrix, a diagonalization 

of which should yield the energy levels for electrons in a Ge crystal 

which is subjected to a magnetic field in the [111] direction. He has

also assumed that the momentum of the electrons in the direction of the

magnetic field is zero. He has then simplified the problem further by

assuming the energy bands to be isotropic. This reduced the problem to

the solution of two 2x2 determinants which Luttinger has carried out. He

also formulated a perturbation approach to the anisotropic problem. The 

numerical results have been given by Goodman (3) and are summarized in 

Figure 1.12.

It will be observed that the V1 and V2 bands split into four "lad- 

ders", two of which correspond to Ught holes and two to heavy holes.

The spacing of the levels is no longer constant for all quantum numbers

as it has been in the case of a free electron, but it becomes constant

for higher quantum numbers where the classical limit is approached. How- 

ever, we might expect that at even higher quantum numbers unevenness in 

the level spacings must again set in due to the nonparabolic effects. 

This, however, must be expected to occur at comparatively high energies 

relative to the band edge (see Figures 1.4, 1.5, 1.6). Calculations on
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Fig. 1.12 Landau Levels in Ge at kH = 0 for H in the [100] 
Direction (After R. R. Goodman, ref. 3)
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the behavior of the Landau levels at values of kH ≠ 0 are not available 

at present. However, interesting effects are to be expected due to aniso- 

tropy of the energy bands. Thus in the direction where the constant 

energy contours are reentrant (see Figure 1.3), reordering of the Landau 

levels may take place; the levels corresponding to higher n numbers 

(angular momentum numbers of an electron orbiting on a magnetic field) 

appearing above those with lower quantum numbers. The effect may prove

to be important from the applications point of view.

No calculations of the sort described above have been made for

either Si or InSb. In the case of Si the analysis will be complicated

by the small spin-orbit splitting. It appears that it may be necessary

to consider all three valence bands together which will lead to the for-

mulation of the general problem in terms of 6x6 matrices. It may be

expected that in this case the energy levels will be much more unevenly

spaced than in the case of Ge and the unevenness at high quantum numbers

will set in at much lower energies. The above are assumed to be the 

effects of increased mixing of the V1 and V2 bands with the V3 band and 

the strong nonparabolic effects. The anisotropy effects are of course 

expected to be even more pronounced for Si than for Ge.

The proximity of the Γ1 conduction band to the valence band in 

InSb may necessitate rigorous inclusion of it in the solution of the 

valence band problem as has been done by Kane (15) for the no-magnetic- 

field case. This will lead to 8x8 matrices in the problem unless the 

V3 band can be separated first. The absence of the center of symmetry 

will also complicate the analysis. The nonclassical effects (unevenness 

in the energy level spacings) will probably be strongly apparent in InSb.
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The problem of energy band structure of Ge and Si in the presence

of a magnetic field and thus the problems of cyclotron resonance and 

interband magneto absorption, is here considered from a quantum mechani­

cal point of view. For the sake of clarity and completeness, some of 

the results of Luttinger and Kohn (1) and Luttinger (2) are rederived 

in Section 2 using a slightly different approach to the problem. Also, 

the analysis given makes use of a fewer number of approximations than 

has been previously made. Thus the assumption of decoupling of the

states corresponding to and states in the tight binding

limit is not made. This results in a 6x6 matrix operator in which the

antisymmetric constant K is included. Spherically symmetric energy 

bands are not assumed, although approximations must of course be used 

in dealing with the resulting infinite matrices.

In Section 3 the Landau energy levels in Ge and Si subjected to 

a magnetic field in the [001] direction are found at kH = 0. No 

approximations other than those involved in the use of the second order 

perturbation theory are made in that section.

In Section 4, however, an approximation of the decoupling of the 

V1 and V2 bands from the V3 band mentioned above is introduced. The 

Landau levels at kH = 0 are then calculated and compared with the re- 

sults in Section 3. Then the behavior of the energy levels for kH ≠ 0 

is considered. Section 5 is devoted to the derivation of the matrices,

the diagonalization of which should give the Landau level structures of 

Ge and Si for the cases of the magnetic field in the [101] and the 

[111] directions. No numerical results, however, are given. Section 6' 

is concerned with some possible practical· applications of the Landau levels 

in semiconductors which have or have not been proposed before.
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II. VALENCE BAND STRUCTURE OF DIAMOND TYPE SEMICONDUCTORS NEAR k = 0 
ANALYTICAL FORMULATION OF THE PROBLEM

2.1 Perturbation Theory Approach to the Problem of Band Structure in 
the Absence of an External Magnetic Fleld

To analyze the energy level structure of a Ge or Si crystal in a 

magnetic field one must solve the following Schrodinger equation:

(2.1.1)

This equation represents a one-electron approximation in which the poten- 

tial V(r) is chosen to account in the best possible fashion for the 

effect on a single electron of the nuclei of the crystal, the average

electrostatic potentials due to the electrons in the crystal, and the

exchange interactions. The choice of this potential is quite difficult

and involves numerous assumptions. A discussion of the problem may be 

found in review papers by Callaway (23) and Reitz (13). However, it is 

often possible by using symmetry considerations and experimental data to 

avoid the explicit determination of the potential V(r). This, as will 

be seen later, is the case for the problem considered here.

In the absence of the magnetic field, equation 2.1.1 simplifies to 

the following equation

(2.1.2)

which has been solved quite accurately for Ge and Si in the region of the

Brillouin zone near k = 0 with the help of the perturbation theory. The
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method which has been suggested by Shockley (21) and has been carried 

out in detail by Dresselhaus, Kip and Kittel (6) and Kane (15), is based 

on the following considerations: The wave functions must be of the Bloch

type, i.e., of the form

(2.1.3)

where uk(r) has the periodicity of the lattice. Ψk may then be substi-

tuted into equation 2.1.2 with the following result:

(2.1.4)

This can be solved by considering first the equation

(2.1.5)

where εi are the zero order u's (k = 0), and treating all other terms 

as perturbations,

(2.1.6)

(2.1.7)

The effect of the term has been estimated by Kane

(15) to be less than 1% of the effect of the term, and thus may be

neglected.

Equation 2.1.5 has been considered by Dresselhaus (24), and Dressel- 

haus, Kip and Kittel (6) for the case of the valence band of Ge and Si



-18-

which is the case of interest here. From Herman's (25) calculations,

Dresselhaus, Kip and Kittel found that the energy levels in Ge at 

k = 0 and neglecting Vso are as shown in Figure 2.1, and are of a 
similar nature in Si. Using the fact that the valence band edge is 

six-fold degenerate and belongs to the Γ25+ representation, Dressel- 

haus, Kip and Kittel (6) on the basis of Von der Lage and Bethe's work 

(26), chose for the zero order valence band wave functions the following:

(2.1.8)

where s1/2 indicates the spin up wave function, S-1/2 indicates the 

spin down wave function, and ε+1, ε+2, ε+3 transform as

Knowing the form of the zero order solutions, one can now introduce

the perturbation Hamiltonians and . Consider first, al-

though the order is immaterial (see Appendix 1). According to standard 

degenerate perturbation theory (27) the following determinantal equation 

must be solved to get the first order corrections to the energy.

(2.1.9)

where

(2.1.10)

Keeping in mind the orthogonality condition for spin wave functions (where 

Leighton’s (28) notation is employed):
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Figure 2.1 Energy Levels at k = 0. Standard Notation is Employed (See, for 
Example Ref. 40). After E. O. Kane (24).



-20-

(2.1.11)

It is obvious that all Vij for which i = 1,2,3 and j = 4,5,6, and 

for which i = 4, 5, 6 and j = 1, 2, 3 are zero. For other Vij one 

has

(2.1.12)

Using the transformation properties of ε+i, it is easily shown that the 

above integral vanishes. Thus it is found that the first order correc-

tion to the energy due to vanishes. One must therefore consider

the second order corrections. These are found by solving the following:

(2.1.13)

where m refers to all states except those in the Γ+25 band. Consider

(2.1.14)

(2.1.15)

(2.1.16)

If all Εm(0) were equal (to Εk(0)) one could write 
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(2.1.17)

Now using the transformation properties of e+i and the orthogonality con- 

dition for spin wave function, 2.1.11, the following is obtained:

(2.1.18)

Since the form of Dij does not depend on Εm(0), one has

(2.1.19)

Now ||Dij|| can be written as 

(2.1.20)

where

(2.1.21)

Consider next the spin orbit interaction . Again the first



-22-

order correction is determined by solving

(2.1.22)

where

(2.1.23)

Using the transformation properties of ε+i, the Pauli spin matrices for 

σ, and remembering that V is a symmetric function of the coordinates, 

the following results are obtained:

(2.1.24)

Thus the matrix ||Vsoij|| which determines the first order correction 

to the energy arising from spin-orbit coupling may be written

(2.1.25)

According to Kane (15) E(0)kp and E(1)so are of the same order of magni- 

tude. Hence one can add ||Dij|| and ||Vsoij|| (see Appendix 1), and
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diagonalize the complete matrix thus obtaining the first nonvanishing 

correction due to both the k·p term and the spin-orbit term.

||Vsoij|| can be diagonalized by transforming to the J, jm representa-

tion. This is to be expected because all elements of ||Vsoij|| are 

expressible in terms of Δ which is the only quantity which depends on

the lattice constant and because in the tight binding limit the spin-

orbit interaction is diagonalized by transforming to the J, mj represen­

tation. The transformation matrix is (see Kane)

(2.1.26)

U is unitary, i.e., U = (U+)-1, and therefore

(2.1.27)

If ||Dij|| and ||Vsoij|| are now transformed using U to the J, mj

representation and added, and the energy is measured from the top of the 

valence band, the following is obtained for the final perturbation matrix

(2.1.28)

where
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(2.1.29)

(2.1.30)

and
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It is important to note that G* and Γ* represent matrices ob- 

tained by conjugating complex quantities explicitly appearing in G and 

Γ as written above, and not conjugating the Ɗij's.

It now remains to diagonalize ||Vij|| using appropriate values of 

LMN to determine the energy band structure of Ge and Si near the center

of the Brillouin zone.

The usefulness of the above approach of simultaneous diagonalization 

of two perturbation Hamiltonians has been discussed by Kane (15). He 

points out that in degenerate perturbation theory the convergence of the 

perturbation expansions is always hastened if perturbations which are of 

the same magnitude are considered together and act simultaneously to 

remove the degeneracy. This applies to the first order spin-orbit and 

second order k·p perturbations since these two are of the same order

of magnitude.
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2.2 Energy Band Structure in the Presence of an External Magnetic Field 

Consider equation 2.1.1, i.e., the problem of a crystal in a

magnetic field. The solutions are obviously no longer of the Bloch type, 

(equation 2.1.3). However, with the appropriate choice of gauge some argu­

ments can still be made about the general form of the wavefunction Ψ.

Since the spin-orbit interaction and the spin-magnetic field interaction

terms are not essential to these arguments, one may temporarily omit them and

consider the equation

(2.2.1)

Choose a coordinate system x1, x2, x3 such that the magnetic field 

lies along x3 and select the gauge (Landau gauge):

(2.2.2)

In this coordinate system equation 2.2.1 becomes

(2.2.3)

which can be written

if one defines

(2.2.5)

Equation 2.2.4 is now of the same form as Bloch's (25) equation 1 except
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that now V'(r) is periodic in x1 with the period a and in x3 with 

the period c but is not periodic in x2. The periods a and c are 

those of the lattice in the x1 and x3 directions respectively.

The arguments of Bloch can now be repeated omitting those in-

volving x2 (or y in Bloch's notation), i.e., deleting the second equa-

tion in his equations 4 and 4', and bκλ's in equations 5, 5' and 5". 

The following result is thus obtained

(2.2.6)

where has the periodicity of the lattice in the x1 and x3

directions. The factor could also be obtained by noting

that and commute with the Hamiltonian of equation 2.2.1 if

the gauge is chosen according to equation 2.2.2 .

Having determined the general form of the solution ψ one may go back

to equation 2.2.1 and to the coordinate system in which x, y, z axes are 

along the [100], [010], [001] directions of the crystal respectively. This 

is the coordinate system in which the functions given by equation 2.1.8 

are the solutions of equation 2.1.5.

The two coordinate systems are related by

(2.2.7)

where
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(2.2.8)

In view of the form of the solution to the Schrodinger equation for

an electron in a magnetic field and otherwise free, i.e., equation 

2.1.1 with V = 0, which is given in Appendix II, it is convenient to

write in the following way:

(2.2.9)

where Ø1 are given by equation 2.1.8 and fn are the harmonic 

oscillator wave functions. This is seen to have the periodicity in 

the x1 and x3 directions required by equation 2.2.6, and is ex­

pressed in terms of a complete set of functions of . One thus

gets

(2.2.10)
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The choice of gauge is still given by equation 2.2.2 and therefore

(2.2.11)

Equations 2.2.10 and 2.2.11 may now be substituted into equation 2.1.1:

(2.2.12)

Now if one calls

that is,

(2.2.13)

, etc.

one obtains
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(2.2.14)
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The matrices to which aαi and biα belong are orthogonal and 

A = B-1. From orthogonality

b1x = ax1, b2x = ax2, b3x = ax3, etc.; also

(2.2.15)

Using these relations and defining the operators

(2.2.16)

which operate only on the harmonic oscillator wavefunctions fn, and

(2.2.17)

the following is finally obtained
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(2.2.18)

One may again neglect the term involving , treat the

first term as the zero order equation and all other terms as perturba- 

tions, thus restricting the calculation to the region close to the 

center of the Brillouin zone and to low Landau Level quantum numbers.

The zero order equation is thus given by (ignoring and
terms at this time)

(2.2.19)

Since all fn are linearly independent one must write

(2.2.20)

for each n. This is essentially equation 2.1.5 and therefore the solu- 

tions are given by equation 2.1.8 and the zero order energy levels are

as indicated in Fig. 2.1.

In calculating the effects of the perturbation terms we first

restrict our attention to the case with the external magnetic field 

applied in the [001] direction, i.e., along the z-axis. We thus have
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(2.2.21)

all other a's in 2.2.8 being zero and

(2.2.22)

(2.2.23)

(2.2.24)

Since k operates only on fn one can carry out the k·p and the

spin-orbit perturbation analysis exactly as before in the no-magnetic

field case, substituting kα for kα in the final result and operating

with the resulting matrix on some linear combination of functions fn.

There will be only one modification which arises from the noncommutivity

of kα whereas kα do commute. Consider Ɗ12 given by 2.1.19 and enter-

ing into 2.1.20. When kx and ky commute Ɗ12 = Nkxky. Actually, by

2.1.15

(2.2.25)

Defining

(2.2.26)

one can write
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(2.2.27)

where {kxky} is the symmetrized product of kx and ky and (kx, ky)

is the commutator of kx and ky. Similar relations hold for all

with i ≠ j. K is the antisymmetric constant introduced by Luttinger 

(2). The commutators of kα are given by

(2.2.28)

One now has the new definitions of Ɗij:

(2.2.29)
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(2.2.29)

It is obvious that the spin-orbit perturbation matrix ||Vsoij|| is

unaffected by the change from kα to kα. The transformation 

given by equation 2.1.26 can therefore be used on both the new Dij 

and Vsoij to transform them to the J mj representation. The energy

is again measured from the top of the valence band. The transformed

matrix is once more given by equation 2.1.28 with G and Γ defined

by equations 2.1.29 and 2.1.30. The important differences in the new

results will arise from the fact that in the presence of the magnetic

field one no longer has Ɗij = Ɗji. One now gets for the ele-

ments of G and Γ :

(2.2.30)
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(2.2.30)
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The following definitions have been used (following in form 

Luttinger and Kohn (1) , although L,M,N, constants used here are 

different numerically from their A, B, C):

(2.2.31)

The matrix ||Vij|| may now be explicitly written. The ordering of terms in

||Vij|| as given by equation 2.1.28 is the following:

(2.2.32)

Reordering the matrix elements so as to conform with Luttinger and Kohn 

(1) one gets
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(2.2.33)
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where (2.2.34)

Now if ||Vij|| is transformed using the transformation ||U||: 

(2.2.35)

and K is set equal to zero, a matrix is obtained which is identical in 

form with the final result of Luttinger and Kohn (1).

The matrix ||Vij|| must now be allowed to operate on linear com-

binations of the harmonic oscillator wavefunctions fn. This is most 

conveniently done by writing the operators kx and ky in terms of the 

raising and lowering operators.

The problem of a particle in a magnetic field is treated from the

operator point of view in Appendix II. It is shown there that the raising

and lowering operators are given by

Raising Operator: (2.2.36)

Lowering Operator: (2.2.37)



-40-

One may define:

(2.2.38)

(2.2.39)

Then

(2.2.40)

(2.2.41)

a+ and a being our raising and lowering operators respectively. 

Using the following relations:

(2.2.42)

one obtains
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(2.2.43)

Using the definitions

(2.2.44)

and relationships 2.2.43, one may write

(2.2.45)

Now reordering the terms in Vij again in a manner which will be found 

convenient and which is used by Luttinger (2) and by Burstein et al 

(4) in their equation 27, one gets the result:
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(2.2.46)
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Now the terms and which appear in equation

2.2.18 and which have been ignored so far, must be introduced. In con-

nection with the term, matrix elements of the following form

must be evaluated:

(2.2.47)

Since the operator k is simply a multiplier as far as the wavefunc- 

tions Øi are concerned, the result is

(2.2.48)

The 6x6 matrix ||Vk2ij|| must now be transformed by U, equation

2.1.26 after which it may be added to ||Vij||. Again using equa-

tions 2.1.29 and 2.1.30 one obtains

(2.2.49)

all other elements of G and Γ being zero. The transformed matrix

is therefore

(2.2.50)
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(2.2.51)

Therefore,

(2.2.52)

These additional terms can be easily accounted for in the matrix of 

equation 2.2.46 by substituting in place of ℓ and μ, ℓ' and μ'

defined as follows:

(2.2.53)

One must now evaluate the contribution of the term. In the

Øi representation this is simply:

(2.2.54)

This must be transformed using U . Unfortunately equations 2.1.28, 

2.1.29 and 2.1.30 can no longer be used. Instead one has to find

how a matrix of the form

(2.2.55)

transforms under the transformation U . The result is:
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(2.2.56)
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In the present case

(2.2.57)

Reordering the terms one gets:

(2.2.58)

One may now write the complete perturbation. Hamiltonian ||Vij|| by 

adding equations 2.2.46 and 2.2.58 and replacing ℓ by ℓ' and μ 

by μ':
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(2.2.59)
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Here the definition χ = -(3κ+1) was used.

To compare this result with Luttinger's (2) the following 

approximations are introduced.

1) 4x4 matrix in the upper left-hand corner may be
decoupled from the 2x2 matrix in the lower right
hand corner. This approximation seems to be valid
in case small kz (or d) and a small number of energy 
levels close to the band edge are of interest and in 
case Δ, the spin-orbit splitting, is appreciable.

2) d = 0 (i.e., kz = kγ = 0)

3) ℓ-μ-ν = 0 which implies spherically symmetric 
energy bands. Luttinger makes this approximation in 
all cases except that of the magnetic field in the 
[111] direction, and then treats ℓ- μ-ν ≠ 0 case 
by perturbation theory. This procedure seems to be 
applicable to Ge where ℓ - μ - ν is small but is 
questionable in case of Si.

One also defines

(2.2.60)

γ1, γ2, γ3 being the constants used by Luttinger. Assumption 3) 

listed above implies

(2.2.61)

The resulting 4x4 matrix is as follows:
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(2.2.62)

If the energy is measured in units of as Luttinger does, and

the sign of the above matrix is changed, i.e., one deals with holes 

instead of the electrons, one obtains a matrix which is identical with

Luttinger's equation 71 with the exception of some signs. It is 

easily shown, however, that these signs do not affect the solutions.
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III. LANDAU LEVEL STRUCTURE OF Ge AND Si AT kH = 0 FOR H 

IN THE [001] DIRECTION

In this section the energy levels in the valence bands of Ge and

Si will be calculated for a special case of the external magnetic field

H in the [001] direction and kH = 0. This special case is

analogous to the case of kz = 0 but kx and ky finite in the no­

magnetic-field problem. The resulting energy levels are the ones 

involved in the interband magneto-optical transitions and probably in 

most of the cyclotron resonance transitions. They are thus of primary 

importance in the interpretation of the experimental data.

Since no approximations, aside from the basic ones which have 

already been discussed, are being made in this calculation, it will

serve as a basis of comparison for other calculations. The results should 

also indicate the behavior of the Landau levels as a function of the mag- 

netic field and thus give the variation of the effective mass with the

applied magnetic field.

3.1 Reduction of the Problem to an Algebraic One

Upon setting d = 0 (i.e., kH = kz = 0) in the matrix of equation 

2.2.59 and changing its sign so as to deal with holes instead of elec- 

trons, the following two matrices are immediately obtained



(3.1.1)
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(3.1.2)

where for convenience the following definitions have been used:

(3.1.3)
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Equations 3.1.1 and 3.1.2 must now be allowed to operate on some

linear combination of the harmonic oscillator wave functions and then

the result must be substituted into an equation of the form 2.1.9.

This is equivalent to solving the following eigenvalue problem:

(3.1.4)

where ||I|| is the unit matrix and F can be taken to be of the 

form

(3.1.5)

Letting measuring energy in units of , and

remembering that

(3.1.6)

one obtains by substituting equations 3.1.1 and 3.1.5 into 3.1.4, the 

following sets of equations:
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(3.1.7)
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TABLE 3.1
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Now if the energy bands are assumed to be spherically symmetric, 

i.e., ℓ'-μ'-ν = 0 (or γ2 = γ3 = γ in Luttinger's (2) notation), 

one may write, j=i+2, k=i+2. Then for each i a set of

three simultaneous equations is obtained, the solution of which will 

involve simply a diagonalization of a 3x3 matrix.

If the assumption of spherical symmetry is not made (ℓ'-μ - ν ≠ 0)

one must use the orthogonality properties of fn's to obtain algebraic

equations for the coefficients ai, kj, and ck. This yields an infi- 

nite number of coupled algebraic equations which may be arranged in such 

a way that the system determinant has the following form (the symbolism 

employed should be obvious):

(3.1.8)
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The elements in any three rows of this matrix labeled I, II, III 

may be determined from Table 3.1. For example, the elements of the 

three rows labeled I f2, II f4, III f4 are given by

(3.1.9)

It will be observed that the infinite set of equations can be decoupled 

into four independent sets (labeled A, B, C, D), which reduces the problem 

to the solution of four independent infinite determinants, two of each

of the following types:

(3.1.10)

and
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(3.1.11)

Each of these four determinants can be quite accurately solved by truncat­

ing it sufficiently far from the 3x3 block which gives rise to the eigen-

value of interest. This is possible because the terms involving δ are

smaller than those in the main blocks. As will be discussed in greater 

detail later, in this process one must avoid the "decoupling" of levels 

close to each other in energy.

Now in a similar fashion, equations 3.1.2 and 3.1.5 can be substi- 

tuted into 3.1.4, yielding the equations:

(3.1.12)
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(3.1.12)

Again, if δ = 0 one may get j = i+2, k = i, obtaining for each i 

a set of three simultaneous equations. If, on the other hand, δ ≠ 0 

as is actually the case, one proceeds as indicated in the previous case 

obtaining an infinite matrix of the form

(3.1.13)

in which the elements are computed with the help of Table 3.2. This matrix

also decouples into four infinite matrices which are solved by the same 

method as equations 3.1.10 and 3.1.11.
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TABLE 3.2
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3.2 The Numerical Constants Characterizing the Valence Bands of 
Ge and Si

The constants ℓ', μ', ν and κ which appear in the above analysis 

have not as yet been evaluated analytically. One must therefore rely on 

the experimentally determined values. The determinations based on ex- 

perimental data have been made by Dresselhaus, Kip and Kittel (6),

Dexter, Zeiger and Lax (7), Dexter and Lax (30), and Goodman (3). The 

first three estimates have been based on the "semi-classical" model of

cyclotron resonance described briefly on page 11 , while the last one 

by Goodman is based on fitting the quantum mechanical energy level cal- 

culation (for Ge at kH = 0) to the data obtained by Fletcher, Yager and 

Merritt (31). The various estimates are summarized in Tables 3.3 and 

3.4 for Ge and Si respectively. The following relations hold between 

the various constants quoted in the tables:

(3.2.1)

(3.2.2)

(3.2.3)
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TABLE 3.3 NUMERICAL CONSTANTS, Ge



TABLE 3.4a NUMERICAL CONSTANTS. Si
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TABLE 3.4b NUMERICAL CONSTANTS, Si
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It should be noted that due to the difficulty of determining the

A, B, C, constants for Si with sufficient degree of precision, there 

arises an ambiguity in the sign of the constant B. Dresselhaus, Kip 

and Kittel (6) chose the positive sign which gives rise to constants 

in Table 3.4b, while Kane (15) prefers the negative sign (Table 3.4a) 

since it makes the bands in Si similar qualitatively to those of Ge. Of 

course, more accurate cyclotron resonance data for Si should resolve 

this ambiguity. In the calculations which follow, the negative sign is 

chosen. All of the above constants, as well as the antisymmetric con- 

stant κ can be related to the constants (sums of matrix elements) F,

G, H1, and H2 defined by Dresselhaus, Kip and Kittel (6). If H2 is 

taken to be zero, which is the value quoted by Dresselhaus, Kip and Kittel, 

the constant κ can be easily evaluated.

In summary, the following are the constants used in the subsequent

calculations:

For Ge

(3.2.4)

For Si

(3.2.5)
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3.3 Numerical Results for Ge

The energy eigenvalues for the valence band of Ge at kH = 0, 

as well as the coefficients in the corresponding wave function expan- 

sions, are determined by solving the various determinants specified by 

equations 3.1.8 and 3.1.13. Thus a total of eight eigenvalue problems 

must be solved. The four problems arising from equation 3.1.8 result 

in eigenvalues which correspond to the two ε1 ladders of Luttinger (2). 

This is so because the eigenvalues involved have eigenfunctions composed

of linear combinations of the harmonic oscillator functions multiplied by

the , and angular momentum functions only. Thus

if one assumes δ = 0 and Δ' very large so that in each 3x3 block the

third row and the third column can be ignored, the remaining eigenfunc­

tions are found to be of the form

(3.3.1)

which is exactly of the same form as the eigenfunctions characterizing 

the eigenvalues in the ε1 ladders of Luttinger. Similarly, the eigen- 

values arising from equation 3.1.13 correspond to the ε2 ladders of

Luttinger.

Although in the case treated here the eigenfunctions are consider-

ably more complicated than 3.3.1, the eigenvalues can still be assigned 

to various ladders (mainly for the sake of convenience in applying the 

selection rules and in comparing with previously obtained results) accord- 

ing to the leading terms in the corresponding eigenfunction expansions.

As pointed out in Section 3.1, it is possible to solve fairly ac­

curately the infinite determinants involved in this problem by truncating
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them judiciously. In Appendix 3 are shown the numbers resulting from

the solution of various size determinants corresponding to the eight

eigenvalue problems described above. To illustrate the method by 

which accuracy of solutions has been estimated, consider the solutions 

to the "B" determinant of equation 3.1.8 given on page 175. It will be 

observed that the change from an 8x8 determinant to the 11x11 determi- 

nant has not affected the values of ε1 and ε1. It is thus shown

that the solution of the 8x8 determinant gives ε1 and ε2 essentially

exactly. It may therefore be assumed that the solution of the 11x11 

determinant gives ε1 through ε5 exactly. Assuming this, one finds

that the 8x8 determinant gives values for ε3, ε4, and ε5 which are

inaccurate by considerably less than 1% . Following a similar proce- 

dure in other cases, it is found that in general for Ge in order to find

the first n eigenvalues, a determinant of the order of n + 3 must be

solved.

Another important consideration which in certain cases may render

the above arguments invalid, is that of close-lying energy levels. Thus

if a certain heavy hole level is close in energy to a light hole level

arising from another basic 3x3 block, their decoupling during the trun- 

cating process may introduce larger than ordinary errors into the cor- 

responding eigenvalues. This, of course, is completely analogous to the 

results of the higher order perturbation theory where the zero-order 

energy differences enter in the denominator of the correction. Thus on 

page 176 the effect on ε2 (ε1+(0, 2)) of going from 6x6 determinant to

a 9x9 determinant is slightly greater than ordinary since ε7
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(ε1 - (8, 10)) lies fairly close in value to . However, this effect 

becomes smaller as the basic blocks which give rise to the close

lying levels become farther separated. Thus for Ge there seem to be 

few if any cases where the above must be seriously considered.

The eigenvalues for Ge are plotted in Figures 3.1 through 3.4 as 

functions of the external magnetic field. The ordinate is normalized 

so that the actual energy of a given level above the band edge is

given by

(3.3.2)

It will be observed that the energy levels for the heavy holes (ε1- 

and ε2- ladder) depend very little on the magnetic field. This is to

be expected since the energy levels shown lie quite close to the band 

edge (thus the ε1- (5, 7) level is ~ 0.014 ev above the band edge at 

H = 50 kg) and therefore the interaction of these levels with the V3 

valence band is quite small. This interaction is, of course, the one 

responsible for the dependence of the energy eigenvalues on the mag-

netic field.

The light hole energy levels, on the other hand, show a more marked

dependence on the magnetic field. This again is not surprising in view 

of the above arguments. On the average, the "effective mass" for the 

ε1+ holes increases by about a factor of 1.12 as the field changes from 

1 kgauss to 50 kgauss. The corresponding increase in the mass of the 

ε2+ holes is by a factor of 1.07. The higher lying levels are, of 

course, affected more strongly than the low lying ones. Table 3.5 

shows the values of the coefficients in the eigenfunction expansions for



TABLE 3.5

WAVE FUNCTION EXPANSION COEFFICIENTS

for Ge at d = 0 and H = 5 kg
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TABLE 3.5 Continued
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Fig. 3.1 Landau Levels belonging to the ε1- Ladder in Ge as Functions
of the Magnetic Field
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Fig. 3.2 Landau Levels belonging to the ε1+ Ladder in Ge as Functions
of the Magnetic Ficld
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Fig. 3.3 Landau Levels belonging to the ε2- Ladder in Ge as Functions of
the Magnetic Field.
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Fig. 3.4 Landau Levels belonging to the ε2+ Ladder in Ge as Functions
of the Magnetic Field
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the various levels. From the table it can be seen that although the 

leading coefficients for a given level are in most cases appreciably 

larger than the others, significant mixing does occur in some instances.

In these cases transitions of relatively high probability may occur 

between an ε(n, n+2) level and the ε(n+3, n+5) or ε(n+5, n+7) levels.

The ε(n, n+2) to ε(n+3, n+5) transition will be a negative mass transi- 

tion, i.e., it will be caused by a circularly polarized photon with the 

sense of polarization opposite to that causing the normal cyclotron 

resonance transitions (8, 4).

3.4 Numerical Results for Si

The calculations for this case are very similar to the ones described

in Section 3.3. However, because the δ terms for Si are relatively

larger than for Ge, larger determinants must be solved to obtain the same

number of eigenvalues accurately. Thus to obtain the first n eigen-

values, it was found by a procedure similar to that described previously,

that a determinant of the order of n+6 must be solved. Also the dif-

ficulties due to the proximity in energy of the heavy and light hole

levels arise somewhat more frequently here than in the case of Ge. For 

example, on page 184 , Appendix 4, the change in the value of 

(ε1+(4, 6)) caused by increasing the order of the determinant from 9 to 

12 is 2.25%, whereas the corresponding change in the value of 

(ε1- (4, 6))is only 0.23%. This is caused by the fact that ε5 is very

close in energy to ε10(ε1-(12, 14)). Another example of very strong coupl- 

ing is provided by the ε1+(5, 7) and the ε1-(13, 15) levels. The coupling 

between these increases to such an extent with the magnetic field, that
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TABLE 3.6

WAVE FUNCTION EXPANSION COEFFlClENTS

for Si at d = 0 and H = 5 kg



TABLE 3.6 (Continued)
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one level actually changes gradually into the other as increases 

(see Figures 3.5 and 3.6). The above phenomenon manifests itself also 

in the behavior of the coefficients in the eigenfunction expansions 

quoted in Table 3.6. It will be observed that for the ε1+(4, 6) and 

the ε1+(5, 7 levels a12 and a13 are larger respectively than a8 

and a9, and b14 and b15 are larger than b10 and b11.

The energy levels can be identified and classified in the same way 

as for Ge but in the present instance the task is somewhat more diffi- . 

cult since in many cases, as has just been pointed out, mixing is quite 

strong (see Table 3.6).

As may be seen from Figures 3.5 through 3.8 the effect of the mag- 

netic field on the energy levels is in this case appreciably more 

pronounced than in the case of Ge. Thus for the ε1-, ε1+, ε2-, and 

ε2+ ladders, the approximate changes in the effective masses are by 

factors of 1.03 to 1.4, 1.08 to 1.5, 1.01 to 1.05, and 1.08 to 1.5 res- 

pectively. This is due to the small spin-orbit splitting in Si and the 

consequent strong mixing between the V1 and V2 band levels, and the V3 

band levels. In Figures 3.5 through 3.8 the dotted lines indicate levels 

whose energies are not as accurately known as some of the others.

Since in Si mixing between the Landau levels is quite strong, as

Table 3.6 demonstrates, many interesting transitions should be possible.

Some of these are shown in Figures 3.9 and 3.10. In Figure 3.9 levels 

belonging to the ε1 ladders are shown, together with those wave function 

expansion coefficients which are equal to or greater than 0.50. These

coefficients specify the harmonic oscillator functions as well as the
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Fig. 3.5 Landau Levels belonging to the ε1- Ladder in Si
as Functions of the Magnetic Field
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Fig. 3.6 Landau Levels belonging to the ε1+ Ladder in Si as 
Functions of the Magnetic Field
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Fig. 3.7 Landau Levels belonging to the ε2- Ladder in Si
as Functions of the Magnetic Field
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Fig. 3.8 Landau Levels belonging to the ε2+ Ladder in Si as 
Functions of the Magnetic Field
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functions ø(J)m making up the wave function corresponding to a given

level. Because only large coefficients have been considered, all of the 

transitions indicated should occur with a relatively high probability.

It will be observed that some of the transitions are "negative mass" (NM) 

transitions, i.e., are caused by polarization of the incident radiation 

opposite to that causing ordinary transitions. They thus may be of a very 

high practical value. Figure 3.10 shows analogous transitions in the ε2 

ladders. No transitions between the ε1 and ε2 ladders are, of course, 

possible at kH = 0.

Table 3.7 shows the expansion coefficients for the external mag- 

netic field of 50 kgauss. Although in most cases there seem to be few 

qualitative changes as compared to coefficients in Table 3.6 (except for 

stronger coupling to the V3 band), some levels do change the mixing pattern 

sufficiently so that their identity is essentially changed. Thus the 

absorption spectrum must be expected to be somewhat different at different 

values of the magnetic field. The high field transitions should therefore

be examined in their own right for possible practically useful ones.

As was pointed out in the introduction, the "nonparabolic" effects 

in the V2 band of Si appear at about .015 ev below the valence band edge 

according to the calculations of Kane (15). The deepest light hole energy 

level computed here is the ε2+ (12, 14) level which lies about .017 ev 

away from the band edge at ϰ = 20 kgauss. Thus the "nonparabolic" 

effects should start manifesting themselves. However, in order to see

them clearly a few additional deep lying levels would have to be calcu-

lated. This can be done by either solving larger determinants than the 

largest one solved here, or by truncating the infinite determinants at
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Fig. 3.9 Transitions between the Landau Levels belonging to the ε1 
Ladders in Si at ϰ = 5 kgauss. Expansion coefficients 
considered are approximately equal to or greater than 
0.50. Transitions marked NM are of the "Negative Mass" 
type.
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Fig. 3.10 Transitions between the Landau Levels belonging to the 
ε2 ladders in Si at ϰ = 5 kgauss. Expansion Coeffi- 
cients Considered are Approximately Equal to or Greater 
than 0.50. Transitions marked NM are of the "Negative 
Mass" type.
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both ends. The latter method would allow one to go to arbitrarily 

large energies within the limits of validity of the perturbation theory.



TABLE 3.7

WAVE FUNCTION EXPANSION COEFFICIENTS

for Si at d = 0 and H = 50 kg
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TABLE 3.7 (Continued)
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IV. VALENCE BAND LANDAU LEVELS AS FUNCTIONS OF kH FOR 

H IN THE [001] DIRECTION

4.1 Check on the Validity of an Approximation Involving the Decoupling 
of the V1 and V2 Bands from the V3 Band

Because of the complicated nature of equation 2.2.59, it is desirable 

to introduce some approximations before proceeding with further numerical

computations. The approximation that has been extensively used so far in-

volves an assumption that the states corresponding to and

states in the tight binding limits couple only weakly and, therefore, may

be assumed to be decoupled. According to Dresselhaus, Kip and Kittel (6),

who used the assumption in computing the band structure of Ge and Si with- 

out the magnetic field, the error involved is of the order of k4∕Δ where

Δ is the spin orbit splitting. Thus the assumption is good near the cen-

ter of the Brillouin zone and should be much better for Ge than for Si. As

far as the problem of a crystal in a magnetic field is concerned, this 

assumption is expected to be reasonably good for small kH and for energy 

levels lying close to the band edge.

To check the extent of the validity of the approximation just discus- 

sed, one may simply compare the solutions to the exact and the approximate 

problems for some reasonably chosen special case. A convenient special 

case is that considered in Section III, i.e., the case of kH = 0 and 

in the [001] direction. A calculation for this case provides sufficient 

information to enable one to deduce the extent to which the approximation 

is valid for kH ≠ 0.

The assumption that the and the states decouple,

i.e., that the coupling matrix elements in the 2x4 and 4x2 strips in 

equation 2.2.59 may be neglected, reduces equation 2.2.59 to the follow- 

ing two matrices (see definitions on p. 51, equation 3.1.3).
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(4.1.1)

(4.1.2)
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The 4x4 matrix of equation 4.1.1 is of primary interest. In 

anticipation of the future needs d = 0 is not assumed at this point.

As in Section 3.1 the problem to be solved is the following:

(4.1.3)

where F is assumed to be

(4.1.4)

Making proper substitutions and carrying out the operations on fn one

obtains in units of

(4.1.5)
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(4.1.5)

In this case the assumption of δ = 0 leads to the substitutions j = i + 2 

k = i + 1, ℓ = i+3 , which result in sets of four equations for each i .

In the case of δ ≠ 0 one has

(4.1.6)



TABLE 4.1
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where the elements in any four rows labeled I, II, III, IV are determined 

from Table 4.1. The matrix as in Section III decouples into four inde- 

pendent ones of the following form:

(4.1.7)

(4.1.8)
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(4.1.9)

(4.1.10)

The solutions are obtained by solving determinants of the order of n+4 

if the first n energy eigenvalues are required (see Appendix 5). The 

eigenvalues for Ge are shown in Figure 4.1, while the eigenfunction
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expansion coefficients are summarized in Table 4.2. The percentages 

quoted in Figure 4.1 represent the deviation of the eigenvalues given 

there from the "correct" ones given in Section III at ϰ = 20 kgauss.

The deviations seem to range from .05% to 3.8% increasing with the 

energy of the eigenvalue. This last result is, of course, to be ex-

pected since the higher lying energy levels are influenced more strongly 

by the V3 band. However, for the levels considered, the errors intro­

duced by decoupling the 4x4 and the 2x2 matrices seem to be sufficiently 

small to make the approximation an excellent one.

In Figure 4.2 are shown the eigenvalues for Ge calculated using 

Goodman' s (3) parameters. The results are seen to agree very well 

(within 1%) with Goodman's results even though he used the first order 

perturbation theory to introduce the δ-terms. The only levels to show 

marked disagreement with Goodman's values are the ε1+(0) and the 

ε2+(0) levels. This may be due to the fact that the low-lying levels 

couple more strongly to the other levels (to be discussed below) and 

therefore the perturbation theory treatment of the δ terms introduces

larger errors into the low-lying levels than into the other ones.

Similar calculations have been performed for Si with the results 

shown in Figure 4.3. Here the deviations from the eigenvalues given in 

Section III range from ~.15% to ~3.0% at 10 kgauss and from ~1.2% to 

~15% at 50 kgauss. The eigenfunctions given in Table 4.3 are quite ap- 

preciably in error compared to the correct ones at 50 kgauss. but are not 

as bad when compared to the 5 kgauss. eigenfunctions. The decoupling ap- 

proximation may therefore be assumed to be satisfactory for low magnetic 

fields (below ~10 kgauss) especially since the ℓ', μ', ν and κ



TABLE 4.2

WAVE FUNCTION EXPANSION COEFFICIENTS

for Ge at d = 0.0
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Fig. 4.1 Landau Levels in Ge at d = kH = 0 for ϰ in the [001] Direc- 
ticn. Percentage Figures Indicate Deviation from Results of 
Section III.
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Fig. 4.2 Landau Levels in Ge at d = kH = 0 for H in the [001] Direc­
tion Calculated Using R.R. Goodman's (3) Parameters
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parameters for Si are not very accurately known at the present time. 

Therefore, a more accurate calculation for Si involving the 6x6 matrix 

operator given by equation 2.2.59 is probably not warranted until more

accurate experimental data is available.

Thus in the calculations which follow, the results for Ge may be

assumed to be quite accurate for a wide range of magnetic fields, while

those for Si are probably applicable only for the magnetic fields below 

~ 10 kgauss and even then, may involve errors as large as ~5%.



TABLE 4.3

WAVE FUNCTION EXPANSION COEFFICIENTS

for Si at d = 0.0
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Fig. 4.3 Landau Levels in Si at d = kH = 0 for H in the [001] 
Direction. Percentage Figures Indicate Deviation from 
Results of Section 3.
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4.2 Landau Levels as Functions of kH in the Valence Band of Ge

Before proceeding with the complete calculations for Ge, it is

instructive to compute some of the energy levels using the assumption 

δ = 0. This corresponds to Luttinger's (2) Do of equation 81, where 

warping of the energy surfaces is included to zero order. The resulting 

levels contain some of the important features of the actual levels except, 

of course, for the coupling between them. The numerical results are 

tabulated in Appendlx 6 and the energy levels resulting from the determi- 

nants of the types given by equations 4.1.7 through 4.1.10 are plotted in 

Figures 4.4 through 4.10. The following important features should be ob- 

served. The heavy hole levels seem to occur in pairs consisting of an 

ε1-(n, n+2) level and an ε2-(n+1, n+3) level. The separation between 

these levels at d = 0 decreases as n increases. One of the levels, 

the ε1- level, has a curvature corresponding to negative mass in the kH 

direction near d = 0, reaches a minimum at some finite value of d , and 

soon acquires the same curvature as the ε2- member of the pair. The 

higher pairs seem to have smaller average curvatures than the lower ones

and thus crossing of the levels occurs. Beyond the crossover, the cyclo-

tron resonance effective mass is negative in the sense that the transitions

are caused by radiation circularly polarized in the opposite sense to that 

causing the transitions before the crossover. The crossing over, however, 

is very gradual and occurs at relatively high values of d .

The character of the energy levels changes as d increases. The

main change is in the leading coefficients in the eigenfunction expansions

according to the following rule:
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Fig. 4.4 Energy Sub-Bands Resulting from the Solution of Equation 4.1.7
(9x9 Determinant) for Ge Assuming δ = 0
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Fig. 4.5 Energy Sub-Bands Resulting from the Solution of Equation
4.1.7 (9x9 Determinant) for Ge, Assuming δ = 0
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Fig. 4.6 Energy Sub-Bands Resulting from the Solution of Equation
4.1.8 (6x6 Determinant) for Ge, Assuming δ = 0
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Fig. 4.7 Encrgy Sub-Bands Resulting from the Solution of Equation 4.1.9
(7x7 Determinant) for Ge, Assuming δ = 0.



-107-

Eig. 4.8 Energy Sub-Bands Resulting from the Solution of Equation
4.1.9 (7x7 Determinant) for Ge, Assuming δ = 0
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Fig. 4.9 Energy Sub-Bands Resulting from the Solution of Equation
4.1.10 (8x8 Determinant) for Ge, Assuming δ = 0
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Fig. 4.10 Energy Sub-Bands Resulting from the Solution of Equation
4.1.10 (8x8 Determinant) for Ge, Assuming δ = 0
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leading coeff. 
d = 0

leading coeff. 
d large

ε1 levels ai   bi+2 ai   ci+1

ε2 levels ai   gi+2 bi+1  gi+2

It should be noted that mixing occurs rather rapidly as a function of 

d. Thus at d = 0 the wave functions belonging to the ε1 levels have 

ci = gi ≡ 0. However, at even small d (~0.3), certain ci and gi 

become appreciable even though the leading coefficients are still ai 

and bi+2. The expansion coefficients, in this as well as in all sub- 

sequent cases, have been actually computed for various values of d

listed in Appendix 6, although they are not tabulated here. The above

behavior of the eigenfunctions, however, is very easy to understand by 

inspecting the matrix elements in equations 4.1.7 through 4.1.10.

Let us now turn our attention to the complete Ge problem including 

the coupling terms δ . As was mentioned earlier, a determinant of n+4 

order must be solved to obtain the first n eigenvalues. This can be

seen by inspecting the numbers in Appendix 7. The solutions of various 

determinants are plotted in Figures 4.11 through 4.14. It will be ob- 

served that the general behavior of the levels is of the same nature as in 

the case of δ = 0. The heavy hole levels still occur in pairs which approach

each other and cross as d increases. However, the interaction between 

the levels does cause some important modifications. Thus in Figure 4.11 

the ε2+(0) and the ε1-(1, 3) levels no longer seem to cross at d ≈ 1.2 

but each simply changes gradually into the other as is illustrated in 

Figure 4.15. This figure also illustrates clearly the strong mixing which
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Fig. 4.11 Energy Sub-Bands Resulting from the Solution of Equation 4.1.7
(13x13 determinant) for Ge
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Fig. 4.12 Energy Sub-Bands Resulting from the Solution of Equation 4.1.8
(10x10 Determinant) for Ge
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Fig. 4.13 Energy Sub-Bands Resulting from the Solution of Equation
4.1.9 (11x11 Determinant) for Ge
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Fig. 4.14 Energy Sub-Bands Resulting from the Solution of Equation
4.1.10 (12x12 Determinant) for Ge
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Fig. 4.15 Wave Function Expansion Coefficients for the ε1 (ε2+(0) at d = 0) 
and ε3(ε1- (1, 3) at d = 0) Energy Levels Resulting from the 
Solution of Equation 4.1.7 (13x13 Determinant) for Ge
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occurs whenever one level "crosses" another. (Observe peaks in values of 

certain coefficients at d ≈ 3.45 and d ≈ 3.65). In most cases whenever 

any two levels approach each other very closely and seem to cross over, 

their identity past such a region can be established only by looking at 

the leading coefficients in the eigenfunction expansions for the corres- 

ponding levels. This has been done in several cases in Figures 4.11 

through 4.14.

In general, coupling between the heavy and the light hole levels

seems to decrease as d increases and as the quantum numbers associated

with them increase. Mathematically the former is due simply to the

relative decrease in importance of the δ terms as d increases, while

the latter is due to the fact that the heavy and light hole eigenvalues 

which coincide in energy come from the basic 4x4 blocks which are farther 

removed from each other as quantum numbers increase. A simple physical

reason for this can also be given: classically, when the energy of an

orbiting light hole (m1) coincides with that of an orbiting heavy hole

(m2) we have, employing standard symbols:

from which . Thus as energy increases

the difference in the radii of the light hole and the heavy hole orbits

increases, decreasing the interaction between them.

Because at large d δ = 0 is such an excellent approximation, no



TABLE 4.4

WAVE FUNCTION EXPANSION COEFFICIENTS

for Ge at d = 4.1
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Table 4.4 Cont'd.
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Fig. 4.16 Landau Levels in Ge at d = 4.1 for H in the [001] Direction
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Fig. 4.17 Landau Levels in Ge at d = 6.3 for H in the [001] Direction
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Fig. 4.18 Landau Levels in Ge at d = 12.0 for H in the [001] Direction
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Fig. 4.19 Energy Sub-Bands Belonging to the ε1- Ladder in Ge for H
in the [001] Direction
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Fig. 4.20 Energy Sub-Bands Belonging to the ε2- Ladder in Ge for H
in the [001] Direction



-124-

plots have been made for d > 5 for the complete Ge problem.

The rule given on page 110 governing the change in the composi- 

tion of the eigenfunctions as d increases still holds in the present 

case as it did in the case of δ = 0, which is demonstrated in Table

4.4 .
Although when d ≠ 0 transitions can occur between all four 

ladders with relatively high degree of probability in some cases, it

is still convenient to classify the various levels and plot them

according to the ladders. This has been done for the heavy holes in 

Figures 4.19 and 4.20. In general, it can be said that the first order 

transitions take place between the adjoining levels.

It should be noted that, judging by the curvatures of the ε1+(0) 

and the ε2+(0) levels, their effective mass is much larger than that 

of the light holes, although they are assigned to the light hole ladders 

by Luttinger (2).

4.3 Landau Levels as Functions of kH in the Valence Band of Si

Qualitatively the behavior of the Landau levels in the valence

band of Si is similar to that in Ge. However, as can be seen from the 

plots in Figures 4.21 through 4.24 the couplings between levels are much 

stronger and therefore the levels are so strongly mixed -- especially at 

low values of d and low quantum numbers, that the general pattern dis- 

cussed in Section 4.2 is not always easily recognizable. This accounts 

for the rather confused appearance of the heavy hole ladder plots in 

Figs. 4.25 and 4.26. Here the levels at finite values of d were identi 

fied as belonging to a certain ladder defined by the levels at d = 0 by 

inspecting the coefficients in the eigenfunction expansions. One such set 

of coefficients for d=4.1 is shown in Table 4.5. As is evident from the
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Fig. 4.21 Energy Sub-Bands Resulting from the Solution of Equation 4.1.7
(13x13 Determinant) for Si
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Fig. 4.22 Energy Sub-Bands Resulting from the Solution of Equation
4.1.8 (14x14 Determinant) for Si
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Fig. 4.23 Energy Sub-Bands Resulting from the Solution of Equation
4.1.9 (15x15 Determinant) for Si
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Fig. 4.24 Energy Sub-Bands Resulting from the Solution of Equation
4.1.10 (12x12 Determinant) for Si



TABLE 4.5

WAVE FUNCTION EXPANSION COEFFICIENTS

for Si at d = 4.1
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Table 4.5 Cont'd.
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Fig. 4.25 Energy Sub-Lands Belonging to the ε1- Ladder in Si for H in 
the [001] Direction
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Fig. 4.26 Energy sub-Bonds Belonging to the ε2- Ladder in Si for H 
in the [001] Direction
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plots and the table, the levels assume a more or less "normal" character

as d increases.



-134-

V. VALENCE BAND LANDAU LEVEL STRUCTURE OF Ge AND Si FOR 
IN THE [101] AND THE [111] DIRECTIONS

In this section the assumption of the decoupling of the V1 and V2

bands from the band will be retained. As has been shown, this assump-

tion is a very good one in the case of Ge and is acceptable in the case

of Si at low magnetic fields. This assumption will permit the use of

certain canonical transformations suggested by Luttinger (2), which sim-

plify the operator matrices obtained in the course of the solution of

equation 2.2.18 by perturbation theory with k given by 2.2.17. Thus 

following Luttinger, the matrix ||V4x4ij|| of equation 4.1.1 may be written 

as

(5.0.1)

where J's are the angular momentum matrices.

Now, according to Luttinger whenever the transformation 2.2.17 is

used one should also set

(5.0.2)

where
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(5.0.3)

(5.0.4)

(5.0.5)

5.1 Magnetic Field in the [101] Direction

Considering first the case of the magnetic field in the [010] 

plane, one writes

(5.1.1)

and

(5.1.2)
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where s = sin θ and c = cos θ .

Substitution of equations 5.1.1 and 5.1.2 into 5.0.1 gives

(5.1.3)
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If the energy bands are now assumed to be spherically symmetric, one

obtains

(5.1.4)

which should have been expected since for symmetrical bands the direction 

of the magnetic field is immaterial.

Consider now the special case of θ = 45º, i.e., ϰ in the [101] 

direction. Then s = c = 1/√2 and

(5.1.5)

||V4x4|| may now be rewritten in terms of the raising and lowering operators 

using the following equalities:

(5.1.6)
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(5.1.6)

The result is:

(5.1.7)

If ℓ' - μ' = ν (spherical symmetry) and d = O (i.e., kH = 0) are 

assumed Luttinger's equation 70 is obtained.

Substitution of equations 5.0.3, 5.0.4, and 5.0.5 into 5.1.7 gives
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(5.1.8)
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where the definitions (ℓ'-μ'-ν) = δ1 and (ℓ'-μ'-ν) = β1 have been 

used.

Now if d → 0 Goodman's (3) equation 5.13 is obtained except 

for some differences in signs. The differences are superficial and 

arise from the fact that Goodman's 5.13 has been derived for in 

the [110] instead of the [101] direction.

For purposes of computation let

(5.1.9)

Then,
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-

(5.1.10)
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Assuming the solution:

(5.1.11)

to the equation ||V4x4ij||  F = E ||I|| F one gets:
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(5.1.12)
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(5.1.12)



TABLE 5.1
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These yield the determinant of the form

(5.1.13)

where the elements are determined from Table 5.1. This determinant de­

couples into two determinants of the following form:
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(5.1.14)
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(5.1.15)

The coupling between the various basic 4x4 blocks is seen to be quite 

strong and becomes stronger as d increases. This will undoubtedly make 

the convergence of the eigenvalues much slower than before and will prob­

ably completely invalidate the use of the first order perturbation theory 

for this case. No attempt has been made to solve the matrix numerically. 

Such solution will probably be of interest only after more experimental

data is available.

5.2 Magnetic Fleld in the [111] Direction

For this case the transformations to be used in equation 5.0.1 are

as follows:
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(5.2.1)

and

(5.2.2)

The complete operator matrix has, however, already been derived by 

Goodman (3) and will therefore not be recomputed here. The result is 

shown in 5.2.4, where

(5.2.3)
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(5.2.4)

Proceeding as before with the solution of the form given by equation 5.1.11, one gets
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(5.2.5)

These equations yield the determinant (see Table 5.2 for elements).



TABLE 5.2
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(5.2.6)

This determinant decouples into three independent ones as indicated, which 

will probably converge quite rapidly for small d. For large d, diffi­

culties might arise since the δ" coupling term is directly proportional

to d .

The coupling patterns for the levels in this case will be different

from both previous cases. Thus in general, transitions will be possible

between all four "ladders" even at d = 0.

It should be noted that this problem is exactly solvable when 

d = 0. This can be seen more easily if the equations are arranged to

give a determinant of the following form:
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(5.2.7)

Thus, since β* and δ" both contain d as a factor, the basic blocks 

decouple at d = 0 and can be solved exactly. As d increases, however, 

the coupling increases quite rapidly. For even small values of d transi- 

tions should be possible not only between adjacent levels but also between 

the ε(n+2, n+4) and the ε(n+4, n+6) levels, the former transition being of 

the "negative mass" type.
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VI. SOME POSSIBLE PRACTICAL APPLICATIONS OF LANDAU LEVELS

IN Ge AND Si

In recent years there has been a number of proposals dealing

with the practical applications of energy bands and Landau levels in

semiconductors.

In 1958 Kromer (33, 34) proposed to use the reentrant nature of 

the constant energy contours in the valence bands of Ge and Si (see 

Figure 1.3) to obtain a negative resistance element. This was to be 

achieved by populatig with holes a region in k-space where the energy 

contours are reentrant, i.e., along <100> directions in Ge. Since in 

such a region the transverse (with respect to the direction in which 

the contours are reentrant) effective mass of the carriers is negative, 

their contribution to the resistance of the sample would be negative.

Thus if sufficient number of carriers could be concentrated in a negative 

mass region, a negative resistance circuit element would in principle be

obtained. Kromer estimated that such a device could be useful up to 

frequencies of about 1000 kmc/sec. His experiments, however, failed to 

show the effect. The failure was attributed to acoustical phonon scatter­

ing of the carriers out of the negative mass cone.

A few months later, G. C. Dousmanis (8) proposed to detect the 

negative mass carriers just mentioned by cyclotron resonance. Their

effect on the spectrum would be a decrease in absorption rather than an 

increase. By the end of 1958 Dousmanis et al (9) reported an experiment 

which seemed to indicate the presence of negative mass carriers. It was

soon pointed out by Kittel (35), Mattis and Stevenson (36), and Kaus (37)
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that to obtain net emission by cyclotron resonance, one needs to 

populate preferentially certain regions in k-space. In terms of the

Landau levels discussed in Section IV, negative mass cyclotron

resonance corresponds to transitions between levels whose quantum

number ordering is opposite to the normal ordering. Thus a negative 

mass CR absorption corresponds to an fn → fn-1 transition. In 

Section IV such transitions were seen to occur in regions past the cross 

over of the heavy hole levels.

In March 1960 Duncan (11) pointed out that if certain of these 

levels could be preferentially populated, a maser action between the 

negative mass levels could be achieved. This scheme would have the 

advantage over some other maser schemes (to be discussed below) of 

avoiding absorption by transitions between the heavily populated low

lying positive effective mass levels. This could be done by using

circularly polarized radiation of the sense that can induce negative

mass transitions only.

In view of the results of Section IV, several objections can be

raised in connection with the above scheme. As has already been

pointed out, the crossing of the levels occurs rather slowly. That 

means that unless one works at fairly high kH, the transition fre­

quencies will be quite low even at high magnetic fields. Moreover, 

even at liquid helium temperatures the thermal distribution in kH 

about some chosen kHo may be sufficient to broaden the lines to the 

extent that they will not be easily identifiable. At the present time 

it appears that the relaxation times between Landau levels are rather
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short (of the order of 10-12 sec). It is therefore difficult to obtain 

appreciable population inversion between these levels. The use of rela- 

tively high kHo necessary for the above scheme will make the task of 

maintaining proper level populations even harder. Another important

consideration is that of the density of states. According to Burstein et 

al (4) for simple bands this is given by

(6.0.1)

where s = eϰ∕ħc and εn is the energy of the band at kH = 0. Thus, 

as kH increases, the density of states decreases rapidly.

A more straightforward way of utilizing the Landau levels in semicon-

ductors, namely that of using them for a maser-type device, has been

proposed by Lax (10). He pointed out that in the case of a free electron

or an electron in a simple energy band, maser action between Landau levels

is impossible since the levels are equally spaced. Thus after one of the

levels is populated by the pump, the signal frequency would induce both

emissive and absorptive transitions. In fact, since the matrix elements

are proportional to (n+1)1/2 the absorption transitions would in general

predominate. However, Lax noted that according to calculations of Luttin-

ger (2) and Goodman (3) the low lying Landau levels in degenerate bands

(valence bands of Ge and Si) are unequally spaced due to quantum effects.

Such levels could therefore be utilized in a maser type device. Oscilla-

tory magnetoabsorption experiments (4,5) indicated that infrared pumping

from the conduction band could probably be utilized to achieve level popu-

lations required for maser action. Assuming pump power of 10-100 mw and 

a relaxation time τ = 10-12 sec, Lax estimated the number of carriers that
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can be excited at ~106 cm-3. Then using the formula of Shawlow and 

Townes (38)

(6.0.2)

where A is the cavity wall area, ct the reflection coefficient of the

cavity walls, and μ is the electric dipole moment; and using 

A = 1 cm2 and μ = 10-14 e.s.u., Lax concluded that the number of excited

carriers necessary for emission is ~108 cm-3. Thus there is a factor of 

102 difference between the required and the available number of carriers. 

The difficulty seems to arise mainly as a consequence of the very short 

relaxation times involved in cyclotron resonance transitions. Lax, however, 

suggested that the presently available estimates of the relaxation times 

may be somewhat too pessimistic and that better materials may result in

longer relaxation times.

It has been suggested by Zeiger (10) that one does not necessarily 

need to populate a single discrete level thus if one has a set of levels 

which are equally spaced up to a certain energy, it should be possible to 

produce inverted populations in all of these. A scheme of this nature may 

be applicable to the Ught hole levels in Si where only a limited number 

of levels is nearly equally spaced, the higher lying ones being affected 

by the interaction with the V3 band (see Section III).

Inspection of the results quoted in Section III and IV suggests 

several new schemes of utilizing the Landau levels in semiconductors. One 

of these is based on the fact that the ε1- levels generally have a curva- 

ture corresponding to negative effective mass at kH = 0. Thus if one were 

able to populate one of these preferentially, a negative resistance in the
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Fig. 6.1 Valence Band Landau Levels in Ge and Si near kH = 0, 
some of which may have device applications—see text.
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H direction could in principle be obtained. This scheme is similar in

some respects to the proposal of Kromer. However, it seems to have some

advantages over the latter scheme. Thus the negative effective masses 

occur at kH = 0. The energy levels are continuous in only one direction 

and therefore the phonon scattering is possible only in that direction.

The probability of successfully maintaining the desired population distri- 

bution seems to be greater in this case than in the case of no magnetic

field.

Difficulties may arise in connection with this scheme due to the 

fact that the heavy hole levels seem to come in pairs (ε1- and ε2-), 

only one member of which (ε1-) exhibits the negative mass characteris- 

tics. Thus in populating the ε1- level it may, in general, be impossible 

to avoid populating the ε2- level, in which case the positive resistance

contribution of the ε2- level may cancel the negative resistance contri- 

bution of the ε1- level. It may therefore be necessary to use only the 

low lying ε1- levels where the splitting between the ε1- and ε2- levels

is appreciable. Thus the ε1-(0, 2) and the ε1-(1, 3) levels may be suit- 

able.
It may be advantageous to use relatively high magnetic fields in 

connection with this scheme since high fields imply a wide range of kH 

over which the effective masses in the ε1- levels are negative. In addi- 

tion, such fields will enable one to select the required level more easily

There are several ways of populating the desired Landau levels. One 

of the most obvious ones is to use infrared excitation across the energy 

gap. This would create both holes and electrons. The holes will have a 

negative effective mass provided an excitation frequency can be selected



-161-

so that no hole levels except the desired ε1- level are excited. The 

conductivity is then given by

(6.0.3)

Thus to have negative over-all conductivity, the condition μp > μn must 

be satisfied. But μ ~ τ∕m*, therefore (assuming for the moment the col- 

lision time τ to be the same for holes and electrons) one must have the 

absolute value of m* for holes to be smaller than that for electrons.

In addition, positive conductivity will be contributed by the holes which 

will be scattered into the positive effective mass regions.

For Ge it is easy to calculate that the effective mass of the holes

is

and

The effective mass of electrons in the Γ2 conduction band is

and the effective masses in the L1 band are

Thus if most of the electrons created in the conduction band drop 

to the conduction band edge (L1) by means of phonon transitions, a nega- 

tive resistance device should, in principle, be possible.

For Si the corresponding figures are
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The m* at the band edge is given because the electrons, even if 

excited at kH = 0, are most likely to drop to the band edge through 

phonon transitions. The above numbers indicate that one should be able 

to obtain negative resistance in Si for certain orientations of magnetic 

field quite easily, especially if the ε1-(1, 3) level is excited. A 

difficulty might arise due to the proximity of the ε1+(0) and the 

ε1+(1) levels to the ε1-(0, 2) and ε1-(1, 3) levels respectively. 

However, the difficulty may turn out to be not too great because of the 

high effective masses in the ε1+(0) and ε1+(1) levels and the conse- 

quently small contribution to the conductivity.

As an alternative excitation scheme one may use transitions to some 

impurity or exciton state in the energy gap. In this case the electron 

mobility should not enter the picture at all. This, of course, is a 

decided advantage. Another possible method of exciting the required 

ε1- Landau level is to use cyclotron resonance transitions together with 

a shallow impurity which would create carriers in the valence band. How- 

ever, before a specific set of levels can be selected for use with this 

scheme, the relative relaxation times between the various levels must be

known.

Another interesting application possibility arises from the fact 

that there are many "negative mass" transitions even at kH = 0. This is
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Fig. 6.2 "Negative Mass" Transitions between the Landau Levels belonging 
to the ε1 Ladders in Si at ϰ = 5 kgauss. Expansion coeffi-
cients considered are approximately equal to or greater than 0.5
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Fig. 6.3 "Negative Mass" Transitions between the Landau Levels belonging 
to the ε2 Ladders in Si at ϰ = 5 kgauss. Expansion coeffi­
cients considered are approximately equal to or greater than 0.5
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especially true in the case of Si for which all of the "negative mass" 

transitions between the low lying levels have been summarized in Figs.

6.2 and 6.3. These transitions will be observed to vary quite widely in 

frequency, thus minimizing the problem of equal level spacings discussed 

in connection with Lax's maser proposals. The most interesting transi- 

tions seem to be those between the ε1- and ε1+ levels and the ε2- and 

ε2+ levels. In the case of Si, many of these fall into a very convenient 

frequency range. Thus at H = 5 kg the ε1+(1, 3) → ε1-(2, 4) transition 

occurs at 71 kmc. The considerable advantage of such transitions is that 

one may accidentally populate some of the levels which lie close to the 

desired one without causing any absorptive transitions. This, of course, 

will be true only if circularly polarized radiation is used for the signal

Because of the numerous second order transitions which are in general

possible between the Landau levels—especially those of Si, possibilities 

seem to exist for low frequency pumping. Thus in most cases the 

ε(n, n+2) → (n+3, n+5), as well as the ε(n, n+2) → ε(n+5, n+7) transition is

possible, (see page 75). One could therefore use one of these' as the 

signal transition while pumping at the cyclotron frequency. The require­

ment here (aside from the usual ones) is that there are to be no levels 

above the one to be populated separated from it by the cyclotron pump 

frequency. An example of such a level configuration in Si is shown in 

Fig. 6.4.

Many other level configurations suitable for application in a maser- 

type device could be found in both Ge and Si, especially if one also con-

siders the levels arising from the application of the external magnetic 

field in other than the [001] direction. From Section V it can be seen 

that the [101] direction may be especially interesting, since the coupling
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Fig. 6.4 An Example of a Set of Energy Levels in Si 
(ε1- Ladder at ϰ = 5 kgauss) Suitable, in 
Principle, for a Low-Frequency-Pump Maser
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between the Landau levels for that case is quite strong. However, all

of these possibilities, as well as. the specific ones discussed above, 

will to a very large extent depend for their success on one's ability 

to find sufficiently powerful pump sources, and on the outcome of the

relaxation time studies. Such studies will no doubt be necessary before

any of the ideas presented above can be realized.
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APPENDIX 1

SIMULTANEOUS DIAGONALIZATION OF TWO PERTURBATION HAMILTONIANS

The basic perturbation theory expansions are as follows (27):

(A1.1)

(A1.2)

(A1.3)

(A1.4)

where ψℓ(0) and Ek(0) are the zero order wave functions and energies

respectively, Vkℓ are the matrix elements between the zero order wave 

functions, and Ek(1), Ek(2) . . . , are the first, second, etc. order 

eigenvalue corrections.

Suppose the unperturbed (zero order) wave functions are

(A1.5)

where all ψn(0), ψn'(0) . . . are degenerate. The problem is to find the

corrections to En(0) to second order. The correct perturbed eigenfunction 

is given by

(A1.6)

In A1.2, letting k = n, n' . . . , one gets correct to second order the 

following set of equations:
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since cm(0) = 0. 

Considering k = m ≠ n, n' . . . , one obtains to first order,

(A1.8)

from which

(A1.9)

Substituting A1.9 into A1.7

(A1.10)

Now a third order term, , may be added to the right

hand side of A1.10, with the result

(A1.11)

For these equations to be compatible the following condition must be satis­

fied:

(A1.12)
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This gives the required corrections to second order.

Now consider a perturbation Hamiltonian V consisting of two

parts:

(A1.13)

where λ is first order compared to unity.

Then

(A1.14)

(A1.15)

(A1.16)

(A1.17)

to second order. A1.12 then becomes

(A1.18)

In Section 2.1, V1= Vk·p and λV2 = Vso. In this case, V1nn' = 0.
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APPENDIX 2

ELECTRON IN A HOMOGENEOUS MAGNETIC FIELD

The problem of an electron in a constant homogeneous magnetic field 

has been solved by L. Landau (20)

The Hamiltonian is

(A2.1)

Landau chooses the gauge:

(A2.2)

Using this and observing that in A2.1 spin and coordinate parts of the 

Hamiltonian are separable, one gets

(A2.3)

where ψ is a function of coordinates only.

Now since px and pz commute with H one may write:

(A2.4)

where χ(y) satisfies the equation

(A2.5)

in which
(A2.6)

Recalling the equation for the harmonic oscillator:
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(A2.7)

The solution to the problem is obtained

(A2.8)

(A2.9)

The harmonic oscillator problem is conveniently treated using raising and

lowering operators which have the following properties:

Raising operator (Α2.10)

(A2.11)

Lowering operator (A2.12)

(A2.13)

where

Similar operators may be defined for the problem of an electron in a mag­

netic field. Comparing A2.7 with A2.5 one has

(A2.14)

(A2.15)
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Therefore,

(A2.16)

(A2.17)

Using the definitions 2.2.24, the final results are obtained

(A2.18)

(A2.19)

These operators have the properties

(A2.20)

(A2.21)



APPENDIX 3

Ge: Numerical Solution of Equation 3.1.8, Part A
5x5 Determinant

-174-

8x8 Determinant



Ge: Numerical Solution of Equation 3.1.8, Part B
5x5 Determinant

-175-8x8 Determinant

11x11 Determinant



Ge: Numerical Solution of Equation 3.1.8, Part C
3x3 Determinant

-176-

6x6 Determinant

9x9 Determinant



Ge: Numerical Solution of Equation 3.1.8, Part D

3x3 Determinant

-177-

6x6 Determinant

9x9 Determinant



Ge: Numerical Solution of Equation 3.1.13, Part A

4x4 Determinant

-178-

7x7 Determinant

10x10 Determinant



Ge: Numerical Solution of Equation 3.1.13, Part B

4x4 Determinant

-179-

7x7 Determinant

10x10 Determinant



Ge: Numerical Solution of Equation 3.1.13, Part C

3x3 Determinant

-180-6x6 Determinant

9x9 Determinant



Ge: Numerical Solution of Equation 3.1.13, Part D

3x3 Determinant

-181-

6x6 Determinant

9x9 Determinant



APPENDIX 4
Si: Numerical Solution of Equation 3.1.8, Part A 

5x5 Determinant
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8x8 Determinant

11x11 Determinant

14x14 Determinant



Si: Numerical Solution of Equation 3.1.8, Part B
5x5 Determinant
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8x8 Determinant

11x11 Determinant

14x14 Determinant



Si: Numerical Solution of Equation 3.1.8, Part C 

3x3 Determinant
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6x6 Determinant

9x9 Determinant

12x12 Determinant



Si: Numerical Solution of Equation 3.1.8, Part D
3x3 Determinant
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6x6 Determinant

9x9 Determinant

12x12 Determinant



Si: Numerical Solution of Equation 3.1.13, Part A

4x4 Determinant
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7x7 Determinant

10x10 Determinant

13x13 Determinant



Si: Numerical Solution of Equation 3.1.13, Part B
4x4 Determinant
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7x7 Determinant

10x10 Determinant

13x13 Determinant



Si: Numerical Solution of Equation 3.1.13, Part C

3x3 Determinant
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6x6 Determinant

9x9 Determinant

12x12 Determinant



Si: Numerical Solution of Equation 3.1.13, Part D

3x3 Determinant

-189-

6x6 Determinant

9x9 Determinant

12x12 Determinant



APPENDIX 5

Ge: Numerical Solutions for d = 0

-190-



Ge: Numerical Solutions for d = 0
R. R. Goodman's (3) Parameters

-191-



Si: Numerical Solutions for d = 0

-192-
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APPENDIX 6
Ge: Numerical Solution of Equation 4.1.7, Assuming δ = 0

9x9 Determinant
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Ge: Numerical Solution of Equation 4.1.8 Assuming δ = 0

6x6 Determinant
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Ge: Numerical Solution of Equation 4.1.9, Assuming δ = 0 

7x7 Determinant
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Ge: Numerical Solution of Equation 4.1.10, Assuming δ = 0 

8x8 Determinant



APPENDIX 7

Ge: Numerical Solution of Equation 4.1.7 
5x5 Determinant

-197-9x9 Determinant

13x13 Determinant
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Ge: Numerical Solution of Equation 4.1.8

6x6 Determinant



Ge: Numerical Solution of Equation 4.1.8
10x10 Determinant

-199-

l4xl4 Determinant



Ge: Numerical Solution of Equation 4.1.9 
7x7 Determinant

-200-

11x11 Determinant



Ge: Numerical Solution of Equation 4.1.10 
8x8 Determinant

-201-

12x12 Determinant
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Si: Numerical Solution of Equation 4.1.7 
5x5 Determinant

-202-9x9 Determinant



Si: Numerical Solution of Equation 4.1.7 
13x13 Determinant
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Si: Numerical Solution of Equation 4.1.8 
6x6 Determinant

-204-

10x10 Determinant

14x14 Determinant



Si: Numerical Solution of Equation 4.1.9
7x7 Determinant

-205-

11x11 Determinant

15x15 Determinant



Si: Numerical Solution of Equation 4.1.10
8x8 Determinant

-206-

12x12 Determinant
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