THEORY OF THE VALENCE BAND ENERGY LEVEL STRUCTURES OF GERMANIUM AND SILICON IN AN EXTERNAL MAGNETIC FIELD Thesis by Viktor Evtuhov In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California #### ACKNOWLEDGEMENTS The author would like to thank Professor R. W. Gould for his encouragement and help in the course of this work. He is indebted to Dr. George Birnbaum for several interesting discussions and helpful suggestions. Stimulating discussions were also enjoyed with Dr. E. O. Kane, Dr. B. Lax, Dr. H. Krömer, and Dr. H. J. Zeiger. Thanks are extended to Hughes Aircraft Company for performing the machine computations, to Mrs. Ruth Stratton for typing the manuscript, and to Mrs. Alrae Tingley for preparing the figures. The generous financial assistance afforded the author under the Radio Corporation of America Fellowship (1957-1958) and the Howard Hughes Fellowship in Science and Engineering (1958-1960) is greatly appreciated. #### ABSTRACT The problem of the valence band structure of Ge and Si in the presence of an external magnetic field is considered from a quantum mechanical point of view. The analysis is carried out using first and second order perturbation theory. The approach is, in principle, similar to that of W. Shockley and E. O. Kane, but is modified in some important essentials to include the effects of the magnetic field. The analytical results obtained are somewhat more general than those of J. M. Luttinger but reduce to the latter if certain approximations are introduced. Numerical calculations of the Landau energy levels are carried out for certain special cases, of which the most important are the following: - 1. Magnetic field ${\cal H}$ in the [OOl] direction, k_H =0; nonspherical symmetry character of energy bands and the coupling of V_1 and V_2 bands to the V_3 band included. - 2. Magnetic field $\mathcal H$ in the [001] direction, $k_H \neq 0$; nonspherical symmetry character of energy bands included, decoupling of V_1 and V_2 bands from the V_3 band assumed. In addition, a set of algebraic equations is derived whose solution should yield the valence band Landau levels for the cases of the magnetic field in the [101] and the [111] directions. However, no numerical calculations are performed for these cases. The results of the calculations indicate the presence of some interesting transitions between the Landau levels of Ge and Si, as well as the possible presence of other interesting effects which may be observable. Certain of these seem to offer potential millimeter-wave applications possibilities, some of which are discussed. ### TABLE OF CONTENTS | I. | Introduction | | | |------|---|--|-----| | | 1.1 | Some Important Features of the Energy Band Structures of Ge, Si, and InSb | 1 | | | 1.2 | Semiconductor Crystal in a Magnetic FieldPrevious Investigations | 9 | | II. | Valence Band Structure of Diamond-Type Semiconductors Near ${\bf k}=0$. Analytical Formulation of the Problem | | 16 | | | 2.1 | Perturbation Theory Approach to the Problem of Band
Structure in the Absence of an External Magnetic Field | 16 | | | 2.2 | Valence Band Structure in the Presence of an External
Magnetic Field | 26 | | III. | Landau Level Structure of Ge and Si at k_{H} = 0 . \mathcal{H} in [001] Direction | | 50 | | | 3.1 | Reduction of the Problem to an Algebraic One | 50 | | | 3.2 | Numerical Constants Characterizing the Valence Bands of Ge and Si | 60 | | | 3.3 | Numerical Results for Ge | 65 | | | 3.4 | Numerical Results for Si | 74 | | IV. | Valence Band Landau Levels as Functions of $k_{_{\hbox{\scriptsize H}}}^{}$ for ${\cal H}$ in the [001] Direction | | 88 | | | 4.1 | Check on the Validity of an Approximation Involving the decoupling of the V ₁ and V ₂ Bands from the V ₃ Band | 88 | | | 4.2 | Landau Levels as Functions of k in the Valence Band of Ge | 102 | | | 4.3 | Landau Levels aa Functions of $\boldsymbol{k}_{\boldsymbol{H}}$ in the Valence Band of Si | 124 | | V. | Valence Band Landau Level Structure of Ge and Si for ${\cal H}$ in the [101] and the [111] Directions | | | | | 5.1 | Magnetic Field in the [101] Direction | 135 | | | 5.2 | Magnetic Field in the [111] Direction | 148 | | VI. | | Possible Practical Applications of Landau Levels in nd Si | 155 | | Appendix 1. | Simultaneous Diagonalization of Two Perturbation Hamiltonians | 168 | |-------------|--|-----| | Appendix 2. | Electron in a Homogeneous Magnetic Field | 171 | | Appendix 3. | Numerical Results: Energy Levels in Ge at $k_H = 0$ as Functions of \mathcal{H} ; \mathcal{H} in [001] Direction | 174 | | Appendix 4. | Numerical Results: Energy Levels in Si at $k_H = 0$ as Functions of \mathcal{H} ; \mathcal{H} in [001] Direction | 182 | | Appendix 5. | Numerical Results: Energy Levels in Ge and Si at $k_{\underline{H}} = 0$; \mathcal{H} in [001] Direction | 190 | | Appendix 6. | Numerical Results: Energy Levels in Ge as Functions of \boldsymbol{k}_H , δ = 0 | 193 | | Appendix 7. | Numerical Results: Energy Levels in Ge as Functions of $k_{\mbox{\scriptsize H}}$, $\delta \neq 0$ | 197 | | Appendix 8. | Numerical Results: Energy Levels in Si as Functions of $k_{\mbox{\scriptsize H}}$, $\delta \neq 0^{\circ}$ | 202 | | REFERENCES | | 207 | #### I. INTRODUCTION The purpose of the work described here is to extend the available calculations of the effect of an external magnetic field on the energy band structures of the diamond type semiconductors Ge and Si (1,2,3). The problem is particularly interesting in connection with the phenomena of interband magnetoabsorption (4,5) and cyclotron resonance of both positive and negative effective mass carriers (6,7,8,9) as well as in connection with the possibilities of utilization of these phenomena in devices operating in the millimeter and submillimeter wave frequency range (8,9,10,11). The following is a brief summary of some of the most important features of the energy band structures of Ge and Si as well as of InSb which, although not the subject of the present work, may turn out to be of considerable interest from the point of view of applications. # 1.1 Some Important Features of the Energy Band Structures of Ge, Si, and InSb Since germanium lattice is of a face-centered cubic type, its reciprocal lattice is of the body-centered cubic type with the first Brillouin zone as shown in Figure 1.1. It is easy to see that in the majority of cases where Bloch function solution to the Schrodinger equation is used, one needs to consider only the first Brillouin zone. Consider a certain wave vector \overline{k} and a vector \overline{k} lying in the first Brillouin zone. One may then write $\overline{k}' = \overline{k} + \overline{k}$ where \overline{k} is an appropriately chosen translation vector in the reciprocal lattice space, (i.e., $\overline{k} = n_1\overline{b}_1 + n_2\overline{b}_2 + n_3\overline{b}_3$, where \overline{b}_i 's are reciprocal lattice basis vectors and n's are integers.) One thus has for the Bloch wave functions: $$\psi_{\overline{k'}} = e^{i\overline{k'} \cdot r} \quad u_{\overline{k'}}(\overline{r}) = e^{i\overline{k} \cdot \overline{r}} \quad u_{\overline{k}}(\overline{r}) e^{i\overline{K} \cdot \overline{r}}$$ $$= e^{i\overline{k} \cdot \overline{r}} \quad u_{\overline{k'}}(r) = \psi_{\overline{k'}} \qquad (1.1.1)$$ since $e^{i\overline{K}\cdot\overline{r}}$ has the periodicity of the lattice. Thus it is seen that any problem can be solved by considering only the first Brillouin zone as long as the wave functions and energy surfaces are taken to be multivalued functions of \overline{k} (12,13). The problem of determining the energy band structure for a material is essentially the problem of determining the dependence of allowed energy levels on the wave vector \overline{k} in the first Brillouin zone. In general, this dependence will obey certain symmetries associated with the lattice, but will not be isotropic. It is not generally possible to solve the complete energy band problem analytically but in conjunction with data from magnetoresistance, cyclotron resonance, and other experiments, an approximate solution can be obtained. A plot of E versus k for two directions in the Brillouin zone of Ge is given in Figure 1.2 (14). The important features to be observed are the following: 1) The lowest point in the conduction band (band edge) occurs at a point $\frac{ka}{2\pi} = (\frac{1}{2} \frac{1}{2} \frac{1}{2})$, where a is the lattice constant, and seven other equivalent points, and belongs to the L_1 band; 2) At k = 0 there is a distinct minimum in the conduction band; 3) The Γ_2 band is approximately parabolic (and isotropic) for small k; 4) The valence band edge is four-fold degenerate (including "spin" degeneracy); 5) The valence band has a maximum at k = 0; 6) v_1 and v_2 bands are approximately parabolic near k = 0 (but are not isotropic); 7) There is another valence band, the V_3 band, which is depressed relative to the V_1 and V_2 bands by spin-orbit coupling by an amount $\Delta=0.29$ ev. (15). This band is also approximately parabolic near k=0; 8) The separation between the band edges $\epsilon_{\bar{G}}=.66$ ev. (14); 9) The separation between the valence band and the conduction band at k=0 is $\epsilon_{(000)}=0.88$ ev. according to reference 15, and 0.84 ev. according to reference 14. As was mentioned previously, $E(\overline{k})$ is not generally isotropic. The anisotropy of V_1 and V_2 near k=0 has been quantitatively determined by
combining the results of degenerate perturbation theory with cyclotron resonance data by Dresselhaus, Kip and Kittel (6), and Zeiger, Dexter, and Lax (7). The resulting expression for E(k) correct to second order in k is given by $$E(\overline{k}) = Ak^{2} + \left[B^{2}k^{4} + C^{2}(k_{xy}^{2} + k_{yz}^{2} + k_{zx}^{2} + k_{zx}^{2})^{1/2} \right]$$ (1.1.2) where $$A \approx -13.0 \frac{10^2}{2m}$$ (see reference 6) $|B| \approx 8.9 \frac{10^2}{2m}$ $|C| \approx 10.3 \frac{10^2}{2m}$ The plus sign corresponds to the light holes (V_2) and the minus sign to heavy holes (V_1) . The general shape of the constant energy contours for both heavy and light holes is shown in Figure 1.3, where $k_{_{\rm Z}}$ = 0 . The conduction band minimum at $\frac{ka}{2\pi} = (\frac{1}{2} \frac{1}{2} \frac{1}{2})$ is also anisotropic. Here the three-dimensional constant energy contours appear to be ellipsoids with their major axes along the <111> directions. The effective masses m_ℓ and m_t corresponding to the major and minor axes of the Fig. 1.1 First Brillouin Zone for Crystals Having Face-Centered Cubic Lattice. (After F. Herman, Ref. 39) Fig. 1.2 Energy as a Function of Reduced Wave Vector for [100] and [111] Directions in Ge (After H. Brooks Ref. 14) Fig. 1.3 Valence Band Constant Energy Contours in the [110] plane in Ge (After Dexter, Zeiger and Lax, Ref. 7) ellipsoids have been measured by cyclotron resonance techniques as $$m_{g} = 1.58 \text{ m}$$ (6) $m_{t} = 0.082 \text{ m}$ (6) The effective mass in the Γ_2 conduction band at k=0 has been estimated to be $m_{\Gamma_2} = 0.034$ m (6) 0.04 m (16) 0.036 m (17) and is isotropic for small k . The nonparabolic effects in Ge near the center of the Brillouin zone have been investigated by E. O. Kane (15) with the help of degenerate perturbation theory. The results are shown in Figures 1.4, 1.5, 1.6 for [100], [111], and [110] directions respectively. It will be noted that the nonparabolic effects in the V_2 band set in at approximately 0.1 ev. relative to the band edge. Si has the same lattice as Ge and its band structure is qualitatively very similar to that of Ge. The E(k) curves for [111] and [100] directions are given in Figure 1.7 (14). One should note the following: 1) the conduction band edge occurs at $\frac{ka}{2\pi} = (\frac{1}{2},0,0)$ and five other equivalent points, and belongs to \triangle_1 band. 2) The valence band edge occurs at k=0 and is fourfold degenerate. 3) V_1 and V_2 bands are parabolic for only very small k and are not isotropic. 4) The V_3 band is depressed relative to the V_1 and V_2 bands by only .04 ev. (6). 5) The separation between the band edges is $\epsilon_G = 1.08$ ev.(14). 6) The separation between the valence band and the conduction band at k=0 is $\epsilon_{(000)} = 2.58$ ev. (14). As in the case of Ge, the V_1 and V_2 bands are anisotropic with the $\frac{6}{6}$ $\frac{6}$ Fig. 1.4 Energy vs. k² for [100] Direction in the Valence Band of Ge (After E. O. Kane, Ref. 15) Fig. 1.5 Energy vs. k² for [111] Direction in the Valence Band of Ge (After E. O. Kane, Ref. 15) Fig. 1.6 Energy vs. k² for [110] Direction in the Valence Band of Ge (After E. O. Kane, Ref. 15) energy contours still given by equation 1.1.2 but with A,B,C, given by $$A \approx -4.1 \quad \text{M}^2/2\text{m} \qquad (6)$$ $$|B| \approx 1.6 \quad \text{M}^2/2\text{m} \qquad (6)$$ $$|C| \approx 3.3 \text{ //}^2/2\text{m}$$ (6) Thus the anisotropy in Si is greater than that in Ge. Expression 1.1.2 is not as good an approximation for Si as it is for Ge due to small spin-orbit splitting in the case of Si. The constant energy contours near the conduction band edge in Si are again ellipsoids but with their major axes along the <100> direction. The longitudinal and transverse effective masses are $$m_{\ell} = 0.97 \text{ m}$$ (6) $m_{\dot{t}} = 0.19 \text{ m}$ (6). According to H. Krömer (18) the Si conduction band near k=0 has probably the curvature corresponding to negative effective mass which could have significant consequences as far as applications are concerned. This, however, has apparently not been conclusively established. The results of Kane's (15) calculations on the nonparabolic effects in Si near k=0 are shown in Figures 1.8 and 1.9. In this case the nonparabolic effects appear at energies as low as .015 ev. This is due to the proximity of the V_3 band to the V_1 and V_2 bands. The band structure of InSb, which has the zinc blende structure and therefore the Brillouin zone of Figure 1.1, is shown in Figure 1.10 for [100] and [111] directions. Most of the qualitative differences between the band structures of InSb and Ge and Si arise from the fact that Fig. 1.7 Energy as a Function of Reduced Wave Vector for [100] and [111] Directions in Si (After H. Brooks, Ref. 14) Fig. 1.8 Energy vs. k² for [100] Direction in the Valence Band of Si (After E. 0. Kane, Ref. 15) Fig. 1.9 Energy vs. k² for [111] Direction in the Valence Band of Si (After E. O. Kane, Ref. 15) InSb does not possess a center of inversion symmetry. One observes the following: - 1) The conduction band edge occurs at k=0 and belongs to the Γ_1 band. - 2) The valence band edge no longer occurs at k=0, but near k=0. - 3) The valence band is still fourfold degenerate at k=0, but the degeneracy splits for even very small k. Thus the valence band edge is not degenerate. - The spin orbit coupling is very large and as a consequence the V_3 band is depressed relative to the V_1 bands by 0.9 ev. (4). - 5) The separation between the band edges is quite small , $\epsilon_{\text{G}} = .175 \text{ ev (19)}$. (This complicates the analysis of the band structure—to be discussed later.) The V_1 and V_2 bands are highly anisotropic but the expression 1.1.2 no longer holds. As a matter of fact, for certain directions the expressions for E contain terms linear in k. The nonparabolic effects for small k have again been considered by Kane (19) are are shown in Figure 1.11. In his calculations he assumed that the valence band maximum occurs at k=0, which makes his results for the valence band somewhat unreliable, quantitatively. ### 1.2 Semiconductor Crystal in a Magnetic Field - Previous Investigations It is a well known fact that if a free electron is placed in a magnetic field its energy becomes quantized in the direction perpendicular to the magnetic field with the energy levels $\hbar\omega_c$ apart (where $\omega_c=\frac{e\,\mathcal{H}}{mc}$, the cyclotron frequency) (20). A similar effect takes place when a semiconductor is placed in a magnetic field. However, the problem of determining the energy levels of electrons Fig. 1.10 Energy as a Function of Reduced Wave Vector for [100] and [111] Direction in InSb (After Burstein et al, ref. 4) Fig. 1.11 Energy vs. k² for an Average Direction in InSb (After E. O. Kane, Ref. 19) is considerably complicated by the degeneracies, anisotropies and the generally nonparabolic character of the energy bands. A semi-classical approach to the problem of an electron in a lattice subjected to an external magnetic field has been adopted by Shockley (21), Dresselhaus, Kip and Kittel (6), Zeiger, Lax and Dexter (22), and others. This approach consists essentially of calculating quantum mechanically the energy band structure of a semiconductor without including the effects of the external magnetic field, and then considering the classical cyclotron motion of an electron (or a hole) in the force field of the lattice. One can confine his attention to the motion of a single carrier, in which case the problem is to solve the equations of motion: $$\frac{d\overline{p}}{dt} + \frac{\overline{p}}{\tau} = e(\overline{E} + \frac{\overline{v} \times \overline{\mathcal{H}}}{c})$$ (1.2.1) $$\underline{\mathbf{v}} = \nabla_{\mathbf{p}} \, \epsilon(\overline{\mathbf{p}}) \tag{1.2.2}$$ where p is the generalized momentum τ is the collision time E is the externally applied electric field ${\mathcal H}$ is the externally applied magnetic field $\epsilon(\overline{p})$ is the effective Hamiltonian Alternatively, and more accurately, one can use the Boltzmann transport theory to solve the problem, as has been done by Zeiger, Lax and Dexter (22), in which case the following equation is to be solved: $$\frac{\partial f}{\partial t} + \frac{f - f_0}{\tau} + \overline{v} \cdot \nabla_r f + e(\overline{E} + \frac{\overline{v} \times \overline{\mathcal{H}}}{c}) \nabla_p f = 0$$ (1.2.3) where again $\overline{v} = \nabla_{p} \varepsilon(\overline{p})$ and $f = f(\overline{p}, \overline{r}, t, \overline{H}, \overline{E})$ is the distribution function. The quantum mechanical effective mass formalism for treating problems of this sort has been developed by Luttinger and Kohn (1). The method has been used by Luttinger (2) to treat the problem of the valence band of a Ge crystal in a magnetic field. Since in the valence band of Ge the spin orbit splitting is rather large, Luttinger has been able to consider the V_1 and V_2 bands separately from the V_3 band which essentially amounts to the assumption that the V_1 and V_2 bands consist of purely $\mathfrak{j}=\frac{3}{2}$ states, which was also the assumption involved in deriving equation 1.1.2. Luttinger has written down a 4x4 matrix, a diagonalization of which should yield the energy levels for electrons in a Ge crystal which is subjected to a magnetic field in the [111] direction. He has also assumed that the momentum of the electrons in the direction of the magnetic field is zero. He has then simplified the problem further by assuming the energy bands to be isotropic. This reduced the problem to the solution of two 2x2 determinants which Luttinger has carried out. He also formulated a perturbation approach to the anisotropic problem. The numerical results have been given by Goodman (3) and are summarized in Figure 1.12. It will be observed that the V₁ and V₂ bands split into four
"ladders", two of which correspond to light holes and two to heavy holes. The spacing of the levels is no longer constant for all quantum numbers as it has been in the case of a free electron, but it becomes constant for higher quantum numbers where the classical limit is approached. However, we might expect that at even higher quantum numbers unevenness in the level spacings must again set in due to the nonparabolic effects. This, however, must be expected to occur at comparatively high energies relative to the band edge (see Figures 1.4, 1.5, 1.6). Calculations on Fig. 1.12 Landau Levels in Ge at $k_{H} = 0$ for H in the [100] Direction (After R. R. Goodman, ref. 3) the behavior of the Landau levels at values of $k_{\rm H} \neq 0$ are not available at present. However, interesting effects are to be expected due to anisotropy of the energy bands. Thus in the direction where the constant energy contours are reentrant (see Figure 1.3), reordering of the Landau levels may take place; the levels corresponding to higher n numbers (angular momentum numbers of an electron orbiting on a magnetic field) appearing above those with lower quantum numbers. The effect may prove to be important from the applications point of view. No calculations of the sort described above have been made for either Si or InSb. In the case of Si the analysis will be complicated by the small spin-orbit splitting. It appears that it may be necessary to consider all three valence bands together which will lead to the formulation of the general problem in terms of 6x6 matrices. It may be expected that in this case the energy levels will be much more unevenly spaced than in the case of Ge and the unevenness at high quantum numbers will set in at much lower energies. The above are assumed to be the effects of increased mixing of the $\rm V_1$ and $\rm V_2$ bands with the $\rm V_3$ band and the strong nonparabolic effects. The anisotropy effects are of course expected to be even more pronounced for Si than for Ge. The proximity of the Γ_1 conduction band to the valence band in InSb may necessitate rigorous inclusion of it in the solution of the valence band problem as has been done by Kane (15) for the no-magnetic-field case. This will lead to 8x8 matrices in the problem unless the V_3 band can be separated first. The absence of the center of symmetry will also complicate the analysis. The nonclassical effects (unevenness in the energy level spacings) will probably be strongly apparent in InSb. The problem of energy band structure of Ge and Si in the presence of a magnetic field and thus the problems of cyclotron resonance and interband magnetoabsorption, is here considered from a quantum mechanical point of view. For the sake of clarity and completeness, some of the results of Luttinger and Kohn (1) and Luttinger (2) are rederived in Section 2 using a slightly different approach to the problem. Also, the analysis given makes use of a fewer number of approximations than has been previously made. Thus the assumption of decoupling of the states corresponding to $\mathbf{j} = \frac{3}{2}$ and $\mathbf{j} = \frac{1}{2}$ states in the tight binding limit is not made. This results in a 6x6 matrix operator in which the antisymmetric constant K is included. Spherically symmetric energy bands are not assumed, although approximations must of course be used in dealing with the resulting infinite matrices. In Section 3 the Landau energy levels in Ge and Si subjected to a magnetic field in the [001] direction are found at k = 0. No approximations other than those involved in the use of the second order perturbation theory are made in that section. In Section 4, however, an approximation of the decoupling of the V_1 and V_2 bands from the V_3 band mentioned above is introduced. The Landau levels at $k_H^{}=0$ are then calculated and compared with the results in Section 3. Then the behavior of the energy levels for $k_H^{}\neq 0$ is considered. Section 5 is devoted to the derivation of the matrices, the diagonalization of which should give the Landau level structures of Ge and Si for the cases of the magnetic field in the [101] and the [111] directions. No numerical results, however, are given. Section 6 is concerned with some possible practical applications of the Landau levels in semiconductors which have or have not been proposed before. ## II. VALENCE BAND STRUCTURE OF DIAMOND TYPE SEMICONDUCTORS NEAR k=0ANALYTICAL FORMULATION OF THE PROBLEM ### 2.1 Perturbation Theory Approach to the Problem of Band Structure in the Absence of an External Magnetic Field To analyze the energy level structure of a Ge or Si crystal in a magnetic field one must solve the following Schrödinger equation: $$\frac{1}{2m} \left(\stackrel{\wedge}{p} + \frac{|e| \overline{A}}{c} \right)^{2} \psi + \frac{\cancel{h}}{4m} \frac{2}{c^{2}} \left[\nabla V \times \left(\stackrel{\wedge}{p} + \frac{|e| \overline{A}}{c} \right) \right] \cdot \overline{\sigma} \psi + \frac{|e|}{2mc} \overline{\sigma} \cdot \overline{\mathcal{H}} \psi + V(r) \psi = E \psi$$ (2.1.1) This equation represents a one-electron approximation in which the potential V(r) is chosen to account in the best possible fashion for the effect on a single electron of the nuclei of the crystal, the average electrostatic potentials due to the electrons in the crystal, and the exchange interactions. The choice of this potential is quite difficult and involves numerous assumptions. A discussion of the problem may be found in review papers by Callaway (23) and Reitz (13). However, it is often possible by using symmetry considerations and experimental data to avoid the explicit determination of the potential V(r). This, as will be seen later, is the case for the problem considered here. In the absence of the magnetic field, equation 2.1.1 simplifies to the following equation $$\frac{1}{2m} \hat{p}^2 \psi_k + \frac{1}{4m^2 c^2} \left[\nabla V \times \hat{p} \right] \cdot \overline{\sigma} \psi_k + V(r) \psi_k = E_k \psi_k \qquad (2.1.2)$$ which has been solved quite accurately for Ge and Si in the region of the Brillouin zone near k=0 with the help of the perturbation theory. The method which has been suggested by Shockley (21) and has been carried out in detail by Dresselhaus, Kip and Kittel (6) and Kane (15), is based on the following considerations: The wave functions must be of the Bloch type, i.e., of the form $$\psi_{\mathbf{k}} = e^{i\overline{\mathbf{k}} \cdot \overline{\mathbf{r}}} u_{\mathbf{k}}(\mathbf{r}) \tag{2.1.3}$$ where $u_k(r)$ has the periodicity of the lattice. ψ_k may then be substituted into equation 2.1.2 with the following result: $$-\frac{\cancel{N}^{2}}{2m} \nabla^{2} \mathbf{u}_{k} - \frac{i\cancel{N}^{2}}{m} \overline{\mathbf{k}} \cdot \nabla \mathbf{u}_{k} - \frac{i\cancel{N}^{2}}{4m^{2}c^{2}} \left[\nabla \mathbf{v} \times \nabla \right] \cdot \overline{\sigma} \mathbf{u}_{k} + \frac{\cancel{N}^{2}}{4m^{2}c^{2}} \left[\nabla \mathbf{v} \times \overline{\mathbf{k}} \right] \cdot \overline{\sigma} \mathbf{u}_{k} + \mathbf{v}(\mathbf{r}) \mathbf{u}_{k} = (\mathbf{E}_{k} - \frac{\cancel{N}^{2}k^{2}}{2m}) \mathbf{u}_{k}$$ (2.1.4) This can be solved by considering first the equation $$-\frac{h^2}{2m} \nabla^2 \epsilon_i + V(r) \epsilon_i = E_k \epsilon_i$$ (2.1.5) where ϵ are the zero order u's (k = 0), and treating all other terms as perturbations, $$\hat{V}^{kp} = \frac{i N^2}{m} \, \bar{k} \cdot \nabla \tag{2.1.6}$$ $$\widehat{\mathbf{V}}^{SO} = \frac{1}{4m} \sum_{\mathbf{c}}^{2} \left[\nabla \mathbf{V} \times \widehat{\mathbf{p}} \right] \cdot \overline{\sigma}$$ (2.1.7) The effect of the $\frac{\hbar^2}{4m^2c^2} \left[\nabla V \times \overline{k} \right] \cdot \overline{\sigma}$ term has been estimated by Kane (15) to be less than 1% of the effect of the $\sqrt[4]{kp}$ term, and thus may be neglected. Equation 2.1.5 has been considered by Dresselhaus (24), and Dresselhaus, Kip and Kittel (6) for the case of the valence band of Ge and Si which is the case of interest here. From Herman's (25) calculations, Dresselhaus, Kip and Kittel found that the energy levels in Ge at k=0 and neglecting V^{SO} are as shown in Figure 2.1, and are of a similar nature in Si. Using the fact that the valence band edge is six-fold degenerate and belongs to the Γ_{25}^+ representation, Dresselhaus, Kip and Kittel (6) on the basis of Von der Lage and Bethe's work (26), chose for the zero order valence band wave functions the following: where $S_{1/2}$ indicates the spin up wave function, $S_{-1/2}$ indicates the spin down wave function, and ϵ_1^+ , ϵ_2^+ , ϵ_3^+ transform as $\epsilon_1^+ \sim \frac{yz}{x^2 + y^2 + z^2}$, $\epsilon_2^+ \sim \frac{zx}{x^2 + y^2 + z^2}$, $\epsilon_3^+ \sim \frac{xy}{x^2 + y^2 + z^2}$. Knowing the form of the zero order solutions, one can now introduce the perturbation Hamiltonians \hat{v}^{kp} and \hat{v}^{so} . Consider \hat{v}^{kp} first, although the order is immaterial (see Appendix 1). According to standard degenerate perturbation theory (27) the following determinantal equation must be solved to get the first order corrections to the energy. $$\left| \mathbf{v}_{i,j}^{\text{kp}} - \mathbf{E}_{\text{kp}}^{(1)} \delta_{i,j} \right| = 0$$, i,j = 1,2, ... 6 (2.1.9) where $$V_{i,j}^{kp} = \sum_{\sigma_{z}} \int \phi_{i}^{*} \left(-\frac{i \cancel{M}^{2}}{m} \overline{k} \cdot \nabla \right) \phi_{j} d\overline{r}$$ (2.1.10) Keeping in mind the orthogonality condition for spin wave functions (where Leighton's (28) notation is employed): Figure 2.1 Energy Levels at k = 0. Standard Notation is Employed (See, for Example Ref. 40). After E. O. Kane (24). $$\sum_{\sigma_{z}} S_{m_{s}}^{*}(\sigma_{z}) S_{m_{s}'}(\sigma_{2}) = \delta_{m_{s}m_{s}'}$$ (2.1.11) It is obvious that all $V_{i,j}$ for which i=1,2,3 and j=4,5,6, and for which i=4,5,6 and j=1,2,3 are zero. For other $V_{i,j}$ one has $$V_{ij}^{kp} =
-\frac{i\hbar^2}{m} \int \epsilon_i^{+*} \overline{k} \cdot \nabla \epsilon_j^{+} d\overline{r}$$ (2.1.12) Using the transformation properties of $\epsilon_{\bf i}^+$, it is easily shown that the above integral vanishes. Thus it is found that the first order correction to the energy due to \hat{V}^{kp} vanishes. One must therefore consider the second order corrections. These are found by solving the following: $$\left| \sum_{m} \frac{V_{im}^{kp} V_{mj}^{kp}}{E_{1}^{(0)} - E_{m}^{(0)}} - E_{kp}^{(2)} \delta_{ij} \right| = 0 \quad i,j = 1,2,\cdots 6$$ (2.1.13) where m refers to all states except those in the Γ_{25}^{+} band. Consider $$\sum_{m} \frac{V_{im}^{kp} V_{mj}^{kp}}{E_{i}^{(0)} - E_{m}^{(0)}} \equiv D_{ij}$$ (2.1.14) $$D_{i,j} = \frac{\cancel{h}^{2}}{m^{2}} \sum_{m} \frac{(\overline{k} \cdot p_{i,m})(\overline{k} \cdot p_{m,j})}{E_{i}^{(O)} - E_{m}^{(O)}}$$ where $\overline{p}_{i,m} = \sum_{\sigma_{2}} \int \phi_{i} \overline{p} \phi_{m} d\overline{r}$ (2.1.15) $$D_{ij} = \frac{\chi^2}{m^2} \sum_{\substack{\alpha, \beta = \\ x, y, z}} k_{\alpha} k_{\beta} \sum_{m} \frac{p_{im}^{\alpha} p_{mj}^{\beta}}{E_{i}^{(0)} - E_{m}^{(0)}}$$ (2.1.16) If all $E_m^{(O)}$ were equal (to $E_k^{(O)}$) one could write $$D_{ij}' = \frac{n^2}{m^2} \sum_{\substack{\alpha, \beta = \\ x, y, z}} k_{\alpha} k_{\beta} \frac{(p^{\alpha} p^{\beta})_{ij}}{E_{i}^{(0)} - E_{k}^{(0)}}$$ (2.1.17) Now using the transformation properties of ϵ_{i}^{+} and the orthogonality condition for spin wave function, 2.1.11, the following is obtained: $$D_{11}' = \mathcal{D}_{11}'^{xx} k_x^2 + \mathcal{D}_{11}'^{yy} k_y^2 + \mathcal{D}_{11}'^{zz} k_z^2 \quad \text{where } \mathcal{D}_{11}'^{yy} = \mathcal{D}_{11}'^{zz}$$ $$D_{12}' = \mathcal{D}_{12}'^{xy} k_x^k + \mathcal{D}_{12}'^{yx} k_x^k \quad , \text{ etc.}$$ $$(2.1.18)$$ Since the form of $D_{i,j}$ does not depend on $E_m^{(O)}$, one has $$D_{11} = \mathcal{S}_{11}^{xx} k_{x}^{2} + \mathcal{O}_{11}^{yy} k_{y}^{2} + \mathcal{O}_{11}^{zz} k_{z}^{2} = Lk_{x}^{2} + M(k_{y}^{2} + k_{z}^{2})$$ $$D_{12} = \mathcal{D}_{12}^{xy} k_{x}^{k} + \mathcal{O}_{12}^{yx} k_{y}^{k} = N k_{x}^{k}, \text{ etc.}$$ $$(2.1.19)$$ Now $\|D_{i,j}\|$ can be written as where $$\|\mathcal{E}_{\ell n}\| = \| \begin{bmatrix} Lk_{x}^{2} + M(k_{y}^{2} + k_{z}^{2}) & Vk_{x} k_{y} & Nk_{x} k_{z} \\ Nk_{x} k_{y} & Lk_{y}^{2} + M(k_{x}^{2} + k_{z}^{2}) & Nk_{y} k_{z} \\ Nk_{x} k_{z} & Nk_{y} k_{z} & Lk_{z}^{2} + M(k_{x}^{2} + k_{y}^{2}) \\ \end{pmatrix} \|_{(2.1.21)}$$ Consider next the spin orbit interaction \hat{V}_{so} . Again the first order correction is determined by solving $$|v_{ij}^{so} - E_{so}^{(1)} \delta_{ij}| = 0$$ (2.1.22) where $$V_{\mathbf{i}\mathbf{j}}^{so} = \sum_{\sigma_{\sigma}} \int \phi_{\mathbf{i}}^{*} \left(\frac{h}{\mu_{\mathbf{m}}^{2} c^{2}} \nabla \mathbf{v} \times \hat{\mathbf{p}} \cdot \sigma \right) \phi_{\mathbf{j}} d\overline{\mathbf{r}}$$ (2.1.23) Using the transformation properties of ϵ_1^+ , the Pauli spin matrices for $\bar{\sigma}$, and remembering that V is a symmetric function of the coordinates, the following results are obtained: $$V_{11}^{so} = 0$$ $$V_{12}^{so} \sim \frac{i n^2}{4m^2 c^2} \int \frac{\partial v}{\partial x} \frac{2xy^2 z^2}{(x^2 + y^2 + z^2)^3} d\overline{r}$$ $$= -i \frac{\Delta}{3} , \text{ etc.}$$ (2.1.24) Thus the matrix $\|V_{ij}^{SO}\|$ which determines the first order correction to the energy arising from spin-orbit coupling may be written $$||v_{i,j}^{so}|| = -\frac{\Delta}{3}$$ $$||0 \quad i \quad 0 \quad 0 \quad 0 \quad -1 \quad ||$$ $$|0 \quad 0 \quad 0 \quad 0 \quad 1 \quad -i \quad 0 \quad ||$$ $$|0 \quad 0 \quad 1 \quad 0 \quad -i \quad 0 \quad ||$$ $$|0 \quad 0 \quad i \quad i \quad 0 \quad 0 \quad ||$$ $$|-1 \quad -i \quad 0 \quad 0 \quad 0 \quad 0 \quad ||$$ $$(2.1.25)$$ According to Kane (15) $E_{\mathrm{kp}}^{(0)}$ and $E_{\mathrm{so}}^{(1)}$ are of the same order of magnitude. Hence one can add $||D_{\mathbf{i}\mathbf{j}}||$ and $||V_{\mathbf{i}\mathbf{j}}^{\mathrm{so}}||$ (see Appendix 1), and diagonalize the complete matrix thus obtaining the first nonvanishing correction due to both the $\frac{1}{k} \cdot \frac{1}{p}$ term and the spin-orbit term. $||V_{i,j}^{SO}||$ can be diagonalized by transforming to the J,j_m representation. This is to be expected because all elements of $||V_{i,j}^{SO}||$ are expressible in terms of Δ which is the only quantity which depends on the lattice constant and because in the tight binding limit the spin-orbit interaction is diagonalized by transforming to the J,m, representation. The transformation matrix is (see Kane) $$U = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{i}{\sqrt{2}} & 0 & 0 & 0 & -\frac{i}{\sqrt{6}} & -\frac{i}{\sqrt{3}} \\ 0 & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & -\frac{i}{\sqrt{6}} & -\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$ $$(2.1.26)$$ U is unitary, i.e., $U = (U^+)^{-1}$, and therefore $$U^{-1} = U^{+} = (\widetilde{U})^{*}$$ (2.1.27) If $\|D_{ij}\|$ and $\|V_{ij}^{so}\|$ are now transformed using U to the J,m_j representation and added, and the energy is measured from the top of the valence band, the following is obtained for the final perturbation matrix $$G = \begin{bmatrix} \frac{\mathcal{D}_{11}^{+} + \mathcal{D}_{22}^{+} + i(\mathcal{D}_{12}^{-} - \mathcal{D}_{21}^{-})}{2} & \frac{-\mathcal{D}_{13}^{+} + i\mathcal{D}_{23}^{-}}{\sqrt{3}} & \frac{\mathcal{D}_{13}^{-} - i\mathcal{D}_{23}^{-}}{\sqrt{6}} \\ & \frac{-\mathcal{D}_{31}^{-} - i\mathcal{D}_{32}^{-}}{\sqrt{3}} & \frac{\mathcal{D}_{11}^{+} + \mathcal{D}_{22}^{+} + i\mathcal{D}_{33}^{+} + i(\mathcal{D}_{12}^{-} - \mathcal{D}_{21}^{-})}{6} & \frac{\mathcal{D}_{11}^{+} + \mathcal{D}_{12}^{-} - 2\mathcal{D}_{33}^{+} + i(\mathcal{D}_{12}^{-} - \mathcal{D}_{21}^{-})}{3\sqrt{2}} \\ & \frac{\mathcal{D}_{31}^{+} + i\mathcal{D}_{32}^{-}}{\sqrt{6}} & \frac{\mathcal{D}_{11}^{+} + \mathcal{D}_{22}^{-} - 2\mathcal{D}_{33}^{+} + i(\mathcal{D}_{12}^{-} - \mathcal{D}_{21}^{-})}{3\sqrt{2}} & \frac{\mathcal{D}_{11}^{+} + \mathcal{D}_{12}^{-} - 2\mathcal{D}_{33}^{+} + i(\mathcal{D}_{12}^{-} - \mathcal{D}_{21}^{-})}{3} - \Delta \end{bmatrix}$$ $$(2.1.29)$$ and $$\Gamma = \begin{bmatrix} \frac{-\mathcal{D}_{11} + \mathcal{D}_{22} + i(\mathcal{D}_{12} + \mathcal{D}_{21})}{2\sqrt{3}} & \frac{-\mathcal{D}_{11} + \mathcal{D}_{22} + i(\mathcal{D}_{12} + \mathcal{D}_{21})}{\sqrt{6}} \\ \frac{\mathcal{D}_{11} - \mathcal{D}_{12} - i(\mathcal{D}_{12} + \mathcal{D}_{21})}{2\sqrt{3}} & \frac{\mathcal{D}_{31} - \mathcal{D}_{13} + i(\mathcal{D}_{23} - \mathcal{D}_{32})}{3} & \frac{\mathcal{D}_{13} + 2\mathcal{D}_{31} - i(\mathcal{D}_{23} + 2\mathcal{D}_{32})}{3\sqrt{2}} \\ \frac{\mathcal{D}_{11} - \mathcal{D}_{22} - i(\mathcal{D}_{12} + \mathcal{D}_{21})}{\sqrt{6}} & \frac{-2\mathcal{D}_{13} - \mathcal{D}_{31} + i(2\mathcal{D}_{23} + \mathcal{D}_{32})}{3\sqrt{2}} & \frac{\mathcal{D}_{13} - \mathcal{D}_{31} + i(\mathcal{D}_{32} - \mathcal{D}_{23})}{3} \\ \frac{\mathcal{D}_{13} - \mathcal{D}_{31} + i(\mathcal{D}_{32} - \mathcal{D}_{23})}{3} & \frac{\mathcal{D}_{13} - \mathcal{D}_{31} + i(\mathcal{D}_{32} - \mathcal{D}_{23})}{3} \\ (2.1.30) \end{bmatrix}$$ It is important to note that G* and Γ^* represent matrices obtained by conjugating complex quantities explicitly appearing in G and Γ as written above, and not conjugating the $\mathcal{S}_{\text{i.i.}}$'s. It now remains to diagonalize $||V_{ij}||$ using appropriate values of LMN to determine the energy band structure of Ge and Si near the center of the Brillouin zone. The usefulness of the above approach of simultaneous diagonalization of two perturbation Hamiltonians has been discussed by Kane (15). He points out that in degenerate perturbation theory the convergence of the perturbation expansions is always hastened if perturbations which are of the same magnitude are considered together and act simultaneously to remove the degeneracy. This applies to the first order spin-orbit and second order $\overline{k} \cdot \overline{p}$ perturbations since these two are of the same order of magnitude. ### 2.2 Energy Band Structure in the Presence of an External Magnetic Field Consider equation 2.1.1, i.e., the problem of a crystal in a magnetic field. The solutions are obviously no longer of the Bloch type, (equation 2.1.3). However, with the appropriate choice of gauge some arguments can still be made about the general form of the wavefunction ψ . Since the spin-orbit interaction and the spin-magnetic field interaction terms are not essential to these arguments, one may temporarily omit them and consider the equation $$\frac{1}{2m} \left(\hat{p} + \frac{(e)\bar{A}}{C} \right)^2 \psi + V(r) \psi = E \psi$$ (2.2.1) Choose a coordinate system x_1, x_2, x_3 such that the magnetic field lies along x_3 and select the gauge (Landau gauge): $$A_1 = -\frac{1}{2}x_2$$ $A_2 = A_3 = 0$ (2.2.2) In this coordinate system equation 2.2.1 becomes $$-\frac{h^{2}}{2m}\nabla^{2}\psi + V(r)\psi - \frac{ei}{mc}\frac{h}{i}x_{2}\frac{\partial}{\partial x_{1}}\psi + \frac{ei^{2}h^{2}x_{2}^{2}}{2mc^{2}}\psi = E\psi \qquad (2.2.3)$$ which can be written $$-\frac{\chi^2}{2m}\nabla^2\psi+\hat{V}'(r)\psi=E\psi$$ if one defines $$\hat{V}'(r) = V(r) - \frac{|e|\mathcal{H}}{mc} \frac{1}{i} x_2 \frac{\partial}{\partial x_1} + \frac{|e|^2 \sqrt{2} x_2^2}{2mc^2}$$ (2.2.5) Equation 2.2.4 is now of the same form as Bloch's (25) equation 1 except that now $\hat{V}'(r)$ is periodic in x_1 with the period a and in x_3 with the period c but is not periodic in x_2 . The periods a and c are those of the lattice in the x_1 and x_3 directions respectively. The arguments of Bloch can now be repeated omitting those involving \mathbf{x}_2 (or y in
Bloch's notation), i.e., deleting the second equation in his equations 4 and 4', and b 's in equations 5, 5' and 5". The following result is thus obtained $$\Psi = e^{i(k_1x_1 + k_3x_3)} V_{k_1k_3}(r)$$ (2.2.6) where $\mathcal{U}_{k_1k_3}^{}(r)$ has the periodicity of the lattice in the x_1 and x_3 directions. The factor $e^{i(k_1x_1+k_3x_3)}$ could also be obtained by noting that $p_{x_1}^{}$ and $p_{x_3}^{}$ commute with the Hamiltonian of equation 2.2.1 if the gauge is chosen according to equation 2.2.2. Having determined the general form of the solution ψ one may go back to equation 2.2.1 and to the coordinate system in which x,y,z axes are along the [100], [010], [001] directions of the crystal respectively. This is the coordinate system in which the functions given by equation 2.1.8 are the solutions of equation 2.1.5 . The two coordinate systems are related by where $$||A|| = \begin{vmatrix} a_{x1} & a_{x2} & a_{x3} \\ a_{y1} & a_{y2} & a_{y3} \\ a_{z1} & a_{z2} & a_{z3} \end{vmatrix}$$ (2.2.8) In view of the form of the solution to the Schrodinger equation for an electron in a magnetic field and otherwise free, i.e., equation 2.1.1 with V=0, which is given in Appendix II, it is convenient to write $\mathcal{U}_{k_1k_3}(\mathbf{r})$ in the following way: $$\mathcal{U}_{k_1k_3}(r) = \sum_{i} \sum_{n} \alpha_{in} f_n(x_2) \phi_i \qquad (2.2.9)$$ where ϕ_i are given by equation 2.1.8 and f_n are the harmonic oscillator wave functions. This is seen to have the periodicity in the \mathbf{x}_1 and \mathbf{x}_3 directions required by equation 2.2.6, and is expressed in terms of a complete set of functions of \mathbf{x}_2 . One thus gets $$\psi = e^{i(k_1 x_1 + k_2 x_2)} \sum_{i} \sum_{n} \alpha_{in} f_n(x_2) \phi_i \qquad (2.2.10)$$ The choice of gauge is still given by equation 2.2.2 and therefore $$A_{x} = a_{x1} A_{1} = -a_{x1} \mathcal{H} x_{2}$$ $$A_{y} = a_{y1} A_{1} = -a_{y1} \mathcal{H} x_{2}$$ $$A_{z} = a_{z1} A_{1} = -a_{z1} \mathcal{H} x_{2}$$ $$(2.2.11)$$ Equations 2.2.10 and 2.2.11 may now be substituted into equation 2.1.1: $$\left\{ \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial x} - \frac{|e| a_{x1} \mathcal{H}_{x_{2}}}{c} \right)^{2} + \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial y} - \frac{|e| a_{y1} \mathcal{H}_{x_{2}}}{c} \right)^{2} + \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial z} - \frac{|e| a_{z1} \mathcal{H}_{x_{2}}}{c} \right) + \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial z} - \frac{|e| a_{x1} \mathcal{H}_{x_{2}}}{c} \right) + \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial y} - \frac{|e| a_{y1} \mathcal{H}_{x_{2}}}{c} \right) + \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial y} - \frac{|e| a_{y1} \mathcal{H}_{x_{2}}}{c} \right) + \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial y} - \frac{|e| a_{y1} \mathcal{H}_{x_{2}}}{c} \right) + \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial y} - \frac{|e| a_{y1} \mathcal{H}_{x_{2}}}{c} \right) + \frac{1}{2m} \left(\frac{\cancel{h}}{i} \frac{\partial}{\partial z} - \frac{|e| a_{x1} \mathcal{H}_{x_{2}}}{c} \right) \right\} \cdot \overline{\sigma} + \frac{|e|}{2mc} \overline{\sigma} \cdot \overline{\mathcal{H}} + v(r) \right\}$$ $$\cdot e^{i(k_{1}x_{1} + k_{3}x_{3})} \sum_{i} \sum_{n} \alpha_{in} f_{n} \phi_{i} = E e^{i(k_{1}x_{1} + k_{3}x_{3})} \sum_{i} \sum_{n} \alpha_{in} f_{n} \phi_{i}$$ $$(2.2.12)$$ Now if one calls $$\frac{\partial x_1}{\partial x} = b_{1x}$$, $\frac{\partial x_2}{\partial x} = b_{2x}$, $\frac{\partial x_3}{\partial x} = b_{3x}$, etc. one obtains $$\begin{split} \sum_{i} \sum_{n} \alpha_{in} \left[-\frac{k^{2}}{2a} (r_{n} \frac{\partial^{2} \beta_{i}}{\partial x^{2}} + r_{n} \frac{\partial^{2} \beta_{i}}{\partial y^{2}} + r_{n} \frac{\partial^{2} \beta_{i}}{\partial z^{2}} \beta_{i}}{$$ The matrices to which $a_{\alpha i}$ and $b_{i\alpha}$ belong are orthogonal and $A = B^{-1}$. From orthogonality $B^{-1} = B$, $A^{-1} = A$, or A = B. $b_{1x} = a_{x1}$, $b_{2x} = a_{x2}$, $b_{3x} = a_{x3}$, etc.; also $$b_{1x}b_{1x} + b_{1y}b_{1y} + b_{1z}b_{1z} = 1$$ $$b_{2x}b_{2x} + b_{2y}b_{2y} + b_{2z}b_{2z} = 1$$ $$b_{3x}b_{3x} + b_{3y}b_{3y} + b_{3z}b_{3z} = 1$$ $$b_{1x}b_{2x} + b_{1y}b_{2y} + b_{1z}b_{2z} = 0 , etc.$$ (2.2.15) Using these relations and defining the operators $$\hat{k}_1 = k_1 - \frac{|e| \mathcal{J}(x_2)}{ch}$$ $$\hat{k}_2 = \frac{1}{i} \frac{\partial}{\partial x_2}$$ $$\hat{k}_3 = k_3$$ (2.2.16) which operate only on the harmonic oscillator wavefunctions f_{n} , and $$\begin{vmatrix} \hat{k}_{x} \\ \hat{k}_{y} \\ \hat{k}_{z} \end{vmatrix} = ||A|| \begin{vmatrix} \hat{k}_{1} \\ \hat{k}_{2} \\ \hat{k}_{3} \end{vmatrix}$$ (2.2.17) the following is finally obtained $$\sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}} \mathbf{f}_{\mathbf{n}} \left[-\frac{1}{2m} \nabla^{2} \phi_{\mathbf{i}} + V(\mathbf{r}) \phi_{\mathbf{i}} \right] + \sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}} \phi_{\mathbf{i}} \frac{1}{2m} \hat{\mathbf{k}}^{2} \mathbf{f}_{\mathbf{n}}$$ $$- \sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}} \frac{1}{2m} \hat{\mathbf{k}}^{2} (\hat{\mathbf{k}} \mathbf{f}_{\mathbf{n}}) \cdot \nabla \phi_{\mathbf{i}} + \sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}} \mathbf{f}_{\mathbf{n}} \left[\nabla V \times \hat{\mathbf{p}} \right] \cdot \overline{\sigma} \phi_{\mathbf{i}} +$$ $$+ \sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}} \frac{1}{4m^{2}c^{2}} \left[\nabla V \times \hat{\mathbf{k}} \mathbf{f}_{\mathbf{n}} \right] \cdot \overline{\sigma} \phi_{\mathbf{i}} + \sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}} \frac{1e|}{2mc} \overline{\sigma} \cdot \overline{\mathcal{H}} \phi_{\mathbf{i}} \mathbf{f}_{\mathbf{n}} =$$ $$= E \sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}} \mathbf{f}_{\mathbf{n}} \phi_{\mathbf{i}}$$ $$(2.2.18)$$ One may again neglect the term involving $\left[\nabla V \times \hat{k}\right] \cdot \overline{\sigma}$, treat the first term as the zero order equation and all other terms as perturbations, thus restricting the calculation to the region close to the center of the Brillouin zone and to low Landau level quantum numbers. The zero order equation is thus given by (ignoring $\frac{k^2}{2m} \hat{k}^2$ and $\frac{|e|}{2mc} \overline{\sigma} \cdot \overline{\mathcal{H}}$ terms at this time) $$\sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}}^{\circ} \mathbf{f}_{\mathbf{n}} \left[-\frac{\cancel{n}^{2}}{2m} \nabla^{2} \phi_{\mathbf{i}} + V(\mathbf{r}) \phi_{\mathbf{i}} \right] = E^{\circ} \sum_{\mathbf{i}} \sum_{\mathbf{n}} \alpha_{\mathbf{i}\mathbf{n}}^{\circ} \mathbf{f}_{\mathbf{n}} \phi_{\mathbf{i}}$$ (2.2.19) Since all f_n are linearly independent one must write $$\sum_{i} \alpha_{in}^{o} \left[-\frac{\cancel{k}^{2}}{2m} \overrightarrow{\nabla} \phi_{i} + V(r) \phi_{i} \right] = E^{o} \sum_{i} \alpha_{in}^{o} \phi_{i}$$ (2.2.20) for each n. This is essentially equation 2.1.5 and therefore the solutions are given by equation 2.1.8 and the zero order energy levels are as indicated in Fig. 2.1. In calculating the effects of the perturbation terms we first restrict our attention to the case with the external magnetic field applied in the [001] direction, i.e., along the z-axis. We thus have $$a = a = a = 1$$ (2.2.21) all other a's in 2.2.8 being zero and $$A_{x} = -\mathcal{H}_{y}$$ $A_{y} = A_{z} = 0$ (2.2.22) $$\psi = e^{i(k_X x + k_Z z)} \sum_{i} \sum_{n} \alpha_{in} f_n(y) \phi_i \qquad (2.2.23)$$ $$\hat{k}_{x} = k_{x} - \frac{|e| \mathcal{H}}{c h}$$ $$\hat{k}_{y} = \frac{1}{i} \frac{\partial}{\partial y}$$ $$\hat{k}_{z} = k_{z}$$ (2.2.24) Since \hat{k} operates only on f_n one can carry out the $k \cdot p$ and the spin-orbit perturbation analysis exactly as before in the no-magnetic field case, substituting \hat{k}_{α} for k_{α} in the final result and operating with the resulting matrix on some linear combination of functions f_n . There will be only one modification which arises from the noncommutivity of \hat{k}_{α} whereas k_{α} do commute. Consider \mathcal{L}_{12} given by 2.1.15 and entering into 2.1.20. When k_{α} and k_{β} commute $\mathcal{L}_{12} = Nk_{\alpha}k_{\beta}$. Actually, by 2.1.15 $$\mathcal{D}_{12} = \mathcal{D}_{12}^{xy} \hat{k}_{x} \hat{k}_{y} + \mathcal{D}_{12}^{yx} \hat{k}_{y}^{\hat{k}}$$ (2.2.25) Defining $$K = \mathcal{D}_{12}^{xy} - \mathcal{D}_{12}^{yx} \tag{2.2.26}$$ one can write $$\mathcal{D}_{12} = N \left\{ \hat{k} \hat{k} \\ x y \right\} + \frac{1}{2} K \left(\hat{k} , k \right)$$ (2.2.27) where $\{k_x^i k_y^j\}$ is the symmetrized product of k_x^i and k_y^i and (k_x^i, k_y^i) is the commutator of k_x^i and k_y^i . Similar relations hold for all k_y^i with $i \neq j$. K is the antisymmetric constant introduced by Luttinger (2). The commutators of k_α^i are given by $$(\hat{\mathbf{k}}_{\mathbf{x}}, \hat{\mathbf{k}}_{\mathbf{y}}) = \frac{1}{\mathbf{i}} \frac{|\mathbf{e}| \mathcal{H}}{\mathbf{c} \mathbf{h}}$$ $$(\hat{\mathbf{k}}_{\mathbf{x}}, \hat{\mathbf{k}}_{\mathbf{z}}) = 0$$ $$(\hat{\mathbf{k}}_{\mathbf{y}}, \hat{\mathbf{k}}_{\mathbf{z}}) = 0$$ $$(2.2.28)$$ One now has the new definitions of $\varnothing_{\mathtt{i}\mathtt{j}}$: $$\mathcal{B}_{11} = L \hat{k}_{x}^{2} + M (\hat{k}_{y}^{2} + \hat{k}_{z}^{2})$$ $$\mathcal{B}_{12} = N \left\{ \hat{k}_{x} \hat{k}_{y} \right\} - i \frac{K}{2} \frac{|e|\mathcal{H}}{ch}$$ $$\mathcal{D}_{13} = N \left\{ \hat{k}_{x} \hat{k}_{z} \right\} = N \hat{k}_{x} k_{z}$$ $$\mathcal{D}_{21} = N \left\{ \hat{k}_{x} \hat{k}_{y} \right\} + i \frac{K}{2} \frac{|e|\mathcal{H}}{ch}$$ $$\mathcal{D}_{22} = L \hat{k}_{y}^{2} + M (\hat{k}_{x}^{2} + \hat{k}_{z}^{2})$$ $$\mathcal{D}_{23} = N \left\{ \hat{k}_{y} \hat{k}_{z} \right\} = N \hat{k}_{x}
k_{z}$$ $$\mathcal{D}_{31} = N \left\{ \hat{k}_{x} \hat{k}_{z} \right\} = N \hat{k}_{x} k_{z}$$ $$(2.2.29)$$ $$\mathcal{D}_{32} = N \left\{ \hat{k}_{y} \hat{k}_{z} \right\} = N \hat{k}_{y} k_{z}$$ $$\mathcal{D}_{33} = L \hat{k}_{z}^{2} + M \left(\hat{k}_{x}^{2} + \hat{k}_{y}^{2} \right) \qquad (2.2.29)$$ It is obvious that the spin-orbit perturbation matrix $\|\mathbf{v}_{ij}^{\text{SO}}\|$ is unaffected by the change from \mathbf{k}_{α} to $\hat{\mathbf{k}}_{\alpha}$. The transformation given by equation 2.1.26 can therefore be used on both the new \mathbf{D}_{ij} and $\mathbf{v}_{ij}^{\text{SO}}$ to transform them to the J m representation. The energy is again measured from the top of the valence band. The transformed matrix is once more given by equation 2.1.28 with G and Γ defined by equations 2.1.29 and 2.1.30. The important differences in the new results will arise from the fact that in the presence of the magnetic field one no longer has $\mathcal{D}_{ij} = \mathcal{D}_{ji}$. One now gets for the elements of G and Γ : $$\frac{\mathcal{D}_{11} + \mathcal{D}_{22} + i(\mathcal{D}_{12} - \mathcal{D}_{21})}{2} = \frac{1}{2} P - \frac{i}{2} i K \frac{|e|\mathcal{H}}{ch}$$ $$-\frac{\mathcal{D}_{13} + i\mathcal{D}_{23}}{\sqrt{3}} = -i\mathcal{L}$$ $$\frac{\mathcal{D}_{13} - i\mathcal{D}_{23}}{\sqrt{6}} = \frac{i}{\sqrt{2}} \mathcal{L}$$ $$-\frac{31 - i\mathcal{D}_{23}}{\sqrt{3}} = i\mathcal{L}^*$$ $$\frac{\mathcal{D}_{11} + \mathcal{D}_{22} + i\mathcal{D}_{33} + i(\mathcal{D}_{12} - \mathcal{D}_{21})}{6} = \frac{1}{6} P + \frac{2}{3} Q - i \frac{iK}{6} \frac{|e|\mathcal{H}}{ch}$$ (2.2.30) $$\frac{\mathcal{E}_{11} + \mathcal{E}_{22} - 2\mathcal{E}_{33} + i(\mathcal{E}_{12} - \mathcal{E}_{21})}{3\sqrt{2}} = \frac{1}{3\sqrt{2}} (P - 2Q) - i \frac{iK}{3\sqrt{2}} \frac{|e|\mathcal{H}}{ch}$$ $$\frac{\mathcal{D}_{31} + i\mathcal{D}_{32}}{\sqrt{6}} = -\frac{i}{\sqrt{2}} \mathcal{Z}^*$$ $$\frac{\mathcal{D}_{11} + \mathcal{D}_{22} + \mathcal{D}_{33} + i(\mathcal{Z}_{12} - \mathcal{Z}_{21})}{3} - \Delta = \frac{1}{3} (P + Q) - i \frac{iK}{3} \frac{|e|\mathcal{H}}{e^{i}} - \Delta$$ $$\frac{- \mathcal{D}_{11} + \mathcal{D}_{22} + i(\mathcal{D}_{12} + \mathcal{D}_{21})}{2\sqrt{3}} = - \mathcal{M}$$ $$\frac{-\mathcal{D}_{11}^{+}\mathcal{D}_{22}^{+} \cdot i(\mathcal{E}_{12}^{+}\mathcal{D}_{21}^{-})}{\sqrt{6}} = -\sqrt{2} \mathcal{M}$$ $$\frac{\mathcal{D}_{11} - \mathcal{D}_{22} - i(\mathcal{D}_{12} + \mathcal{D}_{21})}{2\sqrt{3}} = \mathcal{M}$$ $$\frac{\mathcal{Z}_{31} - \mathcal{Z}_{13} + i(\mathcal{Z}_{23} - \mathcal{Z}_{32})}{3} = 0$$ $$\frac{\mathcal{D}_{13} + 2\mathcal{D}_{31} - i(\mathcal{D}_{23} + 2\mathcal{D}_{32})}{3\sqrt{2}} = i\sqrt{\frac{3}{2}} \mathcal{L}$$ $$\frac{\mathcal{Z}_{11} - \mathcal{D}_{22} - i(\mathcal{Z}_{12} + \mathcal{Z}_{21})}{\sqrt{6}} = \sqrt{2} \mathcal{M}$$ $$\frac{-2\mathcal{D}_{13} - \mathcal{D}_{31} + i(2\mathcal{D}_{23} + \mathcal{D}_{32})}{3\sqrt{2}} = -i\sqrt{\frac{3}{2}} \mathcal{Z}$$ $$\frac{\mathcal{D}_{13} - \mathcal{D}_{31} + i(\mathcal{D}_{32} - \mathcal{D}_{23})}{3} = 0$$ (2.2.30) The following definitions have been used (following in form Luttinger and Kohn (1), although L,M,N, constants used here are different numerically from their A,B,C): $$P = (L + M)(\hat{k}_{x}^{2} + \hat{k}_{y}^{2}) + 2M k_{z}^{2}$$ $$Q = M(\hat{k}_{x}^{2} + \hat{k}_{y}^{2}) + L k_{z}^{2}$$ $$\mathcal{L} = \frac{iN}{\sqrt{3}} (\hat{k}_{x} - i\hat{k}_{y})k_{z}$$ $$\mathcal{D} = \frac{1}{\sqrt{12}} \left[(L - M)(\hat{k}_{x}^{2} - \hat{k}_{y}^{2}) - 2iN \left\{ \hat{k}_{x}\hat{k}_{y} \right\} \right]$$ (2.2.31) The matrix $\|\mathbf{V}_{i,j}\|$ may now be explicitly written. The ordering of terms in $\|\mathbf{V}_{i,j}\|$ as given by equation 2.1.28 is the following: $$(\frac{3}{2}) \frac{3}{2}; (\frac{3}{2}) \frac{1}{2}; (\frac{1}{2}) \frac{1}{2}; (\frac{3}{2}) - \frac{3}{2}; (\frac{3}{2}) - \frac{1}{2}; (\frac{1}{2}) - \frac{1}{2}$$ (2.2.32) Reordering the matrix elements so as to conform with Luttinger and Kohn (1) one gets (2.2.33) $$s = \frac{|e|\mathcal{H}}{ch} \tag{2.2.34}$$ Now if $||V_{ij}||$ is transformed using the transformation $||\mathcal{U}||$: $$||\mathcal{U}|| = \begin{vmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$ (2.2.35) and K is set equal to zero, a matrix is obtained which is identical in form with the final result of Luttinger and Kohn (1). The matrix $||V_{i,j}||$ must now be allowed to operate on linear combinations of the harmonic oscillator wavefunctions f_n . This is most conveniently done by writing the operators \hat{k}_x and \hat{k}_v in terms of the raising and lowering operators. The problem of a particle in a magnetic field is treated from the operator point of view in Appendix II. It is shown there that the raising and lowering operators are given by Raising Operator: $$\frac{1}{\sqrt{2n}} \sqrt{\frac{nc}{|e|\mathcal{H}}} \left(-\hat{k}_{x} - i\hat{k}_{y} \right)$$ (2.2.36) Lowering Operator: $$\frac{1}{\sqrt{2n}} \sqrt{\frac{nc}{|e|\mathcal{H}}} \left(-\hat{k}_{x} + i\hat{k}_{y} \right)$$ (2.2.37) Lowering Operator: $$\frac{1}{\sqrt{2n}} \sqrt{\frac{\cancel{k}c}{|e|\mathcal{H}}} \left(-\hat{k}_{x} + i\hat{k}_{y}\right)$$ (2.2.37) One may define: $$a^{+} = -\frac{1}{\sqrt{2}} \sqrt{\frac{nc}{|e|\mathcal{H}}} (\hat{k}_{x} + i\hat{k}_{y})$$ (2.2.38) $$a = -\frac{1}{\sqrt{2}} \sqrt{\frac{\cancel{k}c}{|e|\mathcal{H}}} (\hat{k}_{x} - i\hat{k}_{y}) \qquad (2.2.39)$$ Then $$f_n = n^{-1/2} a^+ f_{n-1}$$ or $a^+ f_n = (n+1)^{1/2} f_{n+1}$ (2.2.40) $$f_{n-1} = n^{-1/2} a f_n$$ or $a f_n = n^{1/2} f_{n-1}$ (2.2.41) a⁺ and a being our raising and lowering operators respectively. Using the following relations: $$a^{+}a = \frac{1}{2} \frac{\cancel{k}c}{|e|\mathscr{H}} (\mathring{k}_{x}^{2} + \mathring{k}_{y}^{2} - \frac{|e|\mathscr{H}}{\cancel{k}c})$$ $$aa^{+} = \frac{1}{2} \frac{\cancel{k}c}{|e|\mathscr{H}} (\mathring{k}_{x}^{2} + \mathring{k}_{y}^{2} + \frac{|e|\mathscr{H}}{\cancel{k}c})$$ $$(a,a^{+}) = 1$$ $$a^{+2} = \frac{1}{2} \frac{\cancel{k}c}{|e|\mathscr{H}} (\mathring{k}_{x}^{2} - \mathring{k}_{y}^{2} + i\mathring{k}_{x}\mathring{k}_{y} + i\mathring{k}_{y}\mathring{k}_{x})$$ $$a^{2} = \frac{1}{2} \frac{\cancel{k}c}{|e|\mathscr{H}} (\mathring{k}_{x}^{2} - \mathring{k}_{y}^{2} - i\mathring{k}_{x}\mathring{k}_{y} - i\mathring{k}_{y}\mathring{k}_{x})$$ $$(2.2.42)$$ one obtains $$\hat{k}_{x}^{2} + \hat{k}_{y}^{2} = \frac{|e|\mathcal{H}}{\hbar c} (2aa^{+} - 1) = \frac{|e|\mathcal{H}}{\hbar c} (2a^{+}a + 1)$$ $$\hat{k}_{x}^{2} - \hat{k}_{y}^{2} = \frac{|e|\mathcal{H}}{\hbar c} (a^{2} + a^{+2})$$ $$\{\hat{k}_{x}\hat{k}_{y}\} = \frac{|e|\mathcal{H}}{\hbar c} \frac{1}{2i} (a^{+2} - a^{2})$$ (2.2.43) Using the definitions $$\frac{\chi^{2}}{2m} \ell = L$$ $$\frac{\chi^{2}}{m} \chi = K$$ $$\frac{\chi^{2}}{2m} \mu = M$$ $$\sqrt{\frac{|e|\mathcal{H}}{Mc}} d = \sqrt{s} d = k_{z}$$ $$\frac{\chi^{2}}{2m} \nu = N$$ $$\frac{\chi^{2}}{mc} \Delta' = \Delta$$ $$(2.2.44)$$ and relationships 2.2.43, one may write $$P = \frac{\mu^{2}}{m} s \left[(\ell + \mu)(a^{+}a + \frac{1}{2}) + \mu d^{2} \right]$$ $$Q = \frac{\mu^{2}}{m} s \left[\mu(a^{+}a + \frac{1}{2}) + \frac{\ell}{2} d^{2} \right]$$ $$\mathcal{L} = \frac{\mu^{2}}{m} s (\frac{1}{\sqrt{6}} \nu) a d$$ $$\mathcal{M} = \frac{\mu^{2}}{m} s \frac{1}{4\sqrt{3}} \left[(\ell - \mu - \nu)a^{+^{2}} + (\ell - \mu + \nu)a^{2} \right]$$ $$\mathcal{L}^{*} = -\frac{\mu^{2}}{m} s (\frac{1}{\sqrt{6}} \nu)a^{+}d$$ $$\mathcal{M}^{*} = \frac{\mu^{2}}{m} s \frac{1}{4\sqrt{3}} \left[(\ell - \mu + \nu)a^{+^{2}} + (\ell - \mu - \nu)a^{2} \right]$$ Now reordering the terms in V_{ij} again in a manner which will be found convenient and which is used by Luttinger (2) and by Burstein et al. (4) in their equation 27, one gets the result: $$\|v_{4,3}\| + \frac{\mu \| a^*a + \frac{1}{2} \|}{2} + \frac{1}{\sqrt{3}} \left[(L_{24} - v) a^{\frac{1}{2}} + \frac{1}{\sqrt{6}} v \text{ ad} \right] 0 - \frac{1}{2\sqrt{3}} v \text{ ad} - \frac{1}{\sqrt{3}} \sqrt{\frac{3}{3}} \left[(L_{34} - v) a^{\frac{1}{2}} + \frac{1}{\sqrt{6}} v \text{ ad} \right] 0 - \frac{1}{2\sqrt{3}} v \text{ ad} - \frac{1}{\sqrt{3}} \sqrt{\frac{3}{3}} \left[(L_{34} - v) a^{\frac{1}{2}} + \frac{1}{\sqrt{6}} v \text{ ad} \right] 0 - \frac{1}{2\sqrt{3}} v \text{ ad} - \frac{1}{\sqrt{3}} \sqrt{\frac{3}{3}} \left[(L_{34} - v) a^{\frac{1}{2}} + \frac{1}{\sqrt{6}} v \text{ ad} \right] 0 - \frac{1}{2\sqrt{3}} v \text{ ad} a$$ Now the terms $\frac{\chi^2}{2m} \hat{k}^2$ and $\frac{|e|}{2mc} \vec{\sigma} \cdot \vec{\mathcal{H}}$ which appear in equation 2.2.18 and which have been ignored so far, must be introduced. In connection with the $\frac{\chi^2}{2m} \hat{k}^2$ term, matrix elements of the following form must be evaluated: $$v_{ij}^{k^2} = \int \phi_i^* \frac{k^2}{2m} \hat{k}^2 \phi_j d\bar{r}$$ (2.2.47) Since the operator \hat{k} is simply a multiplier as far as the wavefunctions ϕ_i are concerned, the result is $$v_{ij}^{k^2} = \frac{k^2}{2m} \hat{k}^2 \delta_{ij}$$ (2.2.48) The 6 x 6 matrix $||\mathbf{v_{ij}^{k^2}}||$ must now be transformed by U , equation 2.1.26 after which it may be added to $||\mathbf{v_{ij}}||$. Again using equations 2.1.29 and 2.1.30 one obtains $$\frac{v_{11}^{k^{2}} + v_{22}^{k^{2}} + i(v_{12}^{k^{2}} - v_{21}^{k^{2}})}{2} = \frac{\kappa^{2}}{2m} \hat{k}^{2}$$ $$\frac{v_{11}^{k^{2}} + v_{22}^{k^{2}} + 4v_{33}^{k^{2}} + i(v_{12}^{k^{2}} - v_{21}^{k^{2}})}{6} = \frac{\kappa^{2}}{2m} \hat{k}^{2}$$ $$\frac{v_{11}^{k^{2}} + v_{22}^{k^{2}} + 4v_{33}^{k^{2}} + i(v_{12}^{k^{2}} - v_{21}^{k^{2}})}{6} = \frac{\kappa^{2}}{2m} \hat{k}^{2}$$ $$\frac{v_{11}^{k^{2}} + v_{22}^{k^{2}} + v_{33}^{k^{2}} + i(v_{12}^{k^{2}} - v_{21}^{k^{2}})}{3} = \frac{\kappa^{2}}{2m} \hat{k}^{2}$$ all other elements of $\mbox{\ensuremath{G}}$ and $\mbox{\ensuremath{\Gamma}}$ being zero. The transformed matrix is therefore $$||v_{ij}^{k^2}|| = |
\frac{k}{2m} \hat{k}^2 \delta_{ij}||$$ (2.2.50) $$\hat{k}^2 = \hat{k}_x^2 + \hat{k}_y^2 + \hat{k}_z^2 = \frac{e \mathcal{H}}{hc} \left[2(a^+a + \frac{1}{2}) + d^2 \right]$$ (2.2.51) Therefore, $$||v_{ij}^{k^2}|| = \frac{Ne \mathcal{H}}{mc} \left| \left[(a^{\dagger}a + \frac{1}{2}) + \frac{d^2}{2} \right] \delta_{ij} \right|$$ (2.2.52) These additional terms can be easily accounted for in the matrix of equation 2.2.46 by substituting in place of ℓ and μ , ℓ' and μ' defined as follows: $$\ell' = \ell + 1$$ $\mu' = \mu + 1$ (2.2.53) One must now evaluate the contribution of the $\frac{|\mathbf{e}|}{2mc}$ $\overline{\sigma}$ $\cdot \overline{\mathcal{H}}$ term. In the ϕ_i representation this is simply: $$||v_{i,j}^{\sigma \cdot \mathcal{H}}|| = \frac{\mathsf{M}(e)\mathcal{H}}{mc} \begin{vmatrix} 1/2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1/2 \end{vmatrix}$$ (2.2.54) This must be transformed using U. Unfortunately equations 2.1.28, 2.1.29 and 2.1.30 can no longer be used. Instead one has to find how a matrix of the form $$||v_{i,j} \delta_{i,j}||$$ (2.2.55) transforms under the transformation U. The result is: $$\mathbf{v}^{-1}||\mathbf{v_{ij}}\delta_{ij}||\mathbf{v}| =$$ | V ₁₁ + V ₂₂ | 0 | 0 | 0 | $\frac{-v_{11}+v_{22}}{2\sqrt{3}}$ | $\frac{-v_{11}+v_{22}}{\sqrt{6}}$ | $(\frac{3}{2}) \frac{3}{2}$ | |---------------------------------------|--|--|--|--|---|-------------------------------| | 0 | $\frac{4v_{33} + v_{44} + v_{55}}{6}$ | $\frac{-2 v_{33}^{+} v_{44}^{+} v_{55}}{3 \sqrt{2}}$ | v ₄₄ - v ₅₅ 2√3 | 0 | 0 | $(\frac{3}{2})^{\frac{1}{2}}$ | | 0 | $\frac{-2v_{33}^{+} v_{44}^{+} v_{55}^{-}}{3\sqrt{2}}$ | $\frac{v_{33} + v_{44} + v_{55}}{3}$ | $\frac{v_{44} - v_{55}}{\sqrt{6}}$ | 0 | 0 | $(\frac{1}{2}) \frac{1}{2}$ | | 0 | $\frac{v_{44} - v_{55}}{2\sqrt{3}}$ | $\frac{v_{44} - v_{55}}{\sqrt{6}}$ | ν ₄₄ + ν ₅₅
2 | 0 | 0 | $(\frac{3}{2}) - \frac{3}{2}$ | | $\frac{-V_{11}+V_{22}}{2\sqrt{3}}$ | 0 | 0 | 0 | V ₁₁ + V ₂₂ + 4V ₆₆ | $\frac{v_{11} + v_{22} - 2v_{66}}{3\sqrt{2}}$ | $(\frac{3}{2}) - \frac{1}{2}$ | | $\frac{-v_{11}^{+} v_{22}}{\sqrt{6}}$ | 0 | 0 | 0 | $ \frac{-v_{11} + v_{22}}{2\sqrt{3}} $ 0 0 $ \frac{v_{11} + v_{22} + 4v_{66}}{6} $ $ \frac{v_{11} + v_{22} - 2v_{66}}{3\sqrt{2}} $ | V ₁₁ + V ₂₂ + V ₆₆ | $(\frac{1}{2}) - \frac{1}{2}$ | | | | | | | | | In the present case $$\frac{v_{11}^{\sigma \cdot \mathcal{H}} + v_{22}^{\sigma \cdot \mathcal{H}}}{2} = \frac{1}{2}$$ $$\frac{v_{11}^{\sigma \cdot \mathcal{H}} + v_{55}^{\sigma \cdot \mathcal{H}}}{2} = -\frac{1}{2}$$ $$\frac{-v_{11}^{\sigma \cdot \mathcal{H}} + v_{22}^{\sigma \cdot \mathcal{H}}}{2\sqrt{3}} = 0$$ $$\frac{-v_{11}^{\sigma \cdot \mathcal{H}} + v_{55}^{\sigma \cdot \mathcal{H}}}{2\sqrt{3}} = 0$$ $$\frac{-v_{11}^{\sigma \cdot \mathcal{H}} + v_{22}^{\sigma \cdot \mathcal{H}}}{2\sqrt{3}} = 0$$ $$\frac{-v_{11}^{\sigma \cdot \mathcal{H}} + v_{22}^{\sigma \cdot \mathcal{H}}}{2\sqrt{3}} = 0$$ $$\frac{v_{11}^{\sigma \cdot \mathcal{H}} + v_{22}^{\sigma \cdot \mathcal{H}}}{6} + v_{66}^{\sigma \cdot \mathcal{H}}}{6} = -\frac{1}{6}$$ $$\frac{-2v_{33}^{\sigma \cdot \mathcal{H}} + v_{44}^{\sigma \cdot \mathcal{H}}}{3\sqrt{2}} + v_{44}^{\sigma \cdot \mathcal{H}}}{\sqrt{55}} = 0$$ $$\frac{v_{44}^{\sigma \cdot \mathcal{H}} - v_{55}^{\sigma \cdot \mathcal{H}}}{2\sqrt{3}} = 0$$ $$\frac{v_{44}^{\sigma \cdot \mathcal{H}} - v_{55}^{\sigma \cdot \mathcal{H}}}{2\sqrt{3}} = 0$$ $$\frac{v_{44}^{\sigma \cdot \mathcal{H}} + v_{44}^{\sigma \cdot \mathcal{H}}}{\sqrt{55}} = 0$$ $$\frac{v_{44}^{\sigma \cdot \mathcal{H}} + v_{44}^{\sigma \cdot \mathcal{H}}}{\sqrt{55}} + v_{66}^{\sigma \cdot \mathcal{H}}}{\sqrt{55}} = \frac{1}{6}$$ $$\frac{v_{33}^{\sigma \cdot \mathcal{H}} + v_{44}^{\sigma \cdot \mathcal{H}}}{\sqrt{55}} = -\frac{1}{6}$$ $$(2.2.57)$$ Reordering the terms one gets: $$\|\mathbf{v}_{\mathbf{i}\mathbf{j}}^{\sigma \cdot \mathcal{H}}\| = \frac{|\mathbf{j}| |\mathbf{i}| |\mathcal{H}|}{|\mathbf{m}|} = \frac{|\mathbf{j}| |\mathbf{i}| |\mathcal{H}|}{|\mathbf{j}|} = \frac{|\mathbf{j}| |\mathbf{i}| |\mathcal{H}|}{|\mathbf{i}|} = \frac{|\mathbf{j}| |\mathbf{i}|}{|\mathbf{j}|} = \frac{|\mathbf{j}| |\mathbf{i}|}{|\mathbf{j}|} = \frac{|\mathbf{j}| |\mathbf{i}|}{|\mathbf{j}|} = \frac{|\mathbf{j}| |\mathbf{i}|}{|\mathbf{j}|} = \frac{|\mathbf{j}| |\mathbf{j}|}{|\mathbf{j}|} |\mathbf{j}|}{|$$ One may now write the complete perturbation Hamiltonian $||V_{i,j}||$ by adding equations 2.2.46 and 2.2.58 and replacing ℓ by ℓ' and μ by μ' : (2.2.59) Here the definition $\chi = -(3\kappa + 1)$ was used. To compare this result with Luttinger's (2) the following approximations are introduced. - 1) 4×4 matrix in the upper left-hand corner may be decoupled from the 2×2 matrix in the lower right hand corner. This approximation seems to be valid in case small k_{Z} (or d) and a small number of energy levels close to the band edge are of interest and in case Δ , the spin-orbit splitting, is appreciable. - 2) d = 0 (i.e., $k_z = k_{z} = 0$) - 3) $\ell \mu \nu = 0$ which implies spherically symmetric energy bands. Luttinger makes this approximation in all cases except that of the magnetic field in the [111] direction, and then treats $\ell \mu \nu \neq 0$ case by perturbation theory. This procedure seems to be applicable to Ge where $\ell \mu \nu$ is small but is questionable in case of Si. One also defines $$\gamma_1 = -\frac{1}{3} (\ell' + 2\mu')$$ $$\gamma_2 = -\frac{1}{6} (\ell' - \mu')$$ $$\gamma_3 = -\frac{1}{6} \nu$$ (2.2.60) γ_1 , γ_2 , γ_3 being the constants used by Luttinger. Assumption 3) listed above implies $$r_2 = r_3 = \overline{r} \tag{2.2.61}$$ The resulting 4 x 4 matrix is as follows: $$||\nabla_{\mathbf{1},\mathbf{j}}^{4}\mathbf{x}|| = \frac{|\mathbf{x}| = |\mathbf{x}|}{mc} \begin{vmatrix} -(\gamma_{1} + \overline{\gamma})(\mathbf{a}^{+}\mathbf{a} + \frac{1}{2}) - \frac{3}{2} & \sqrt{3} \ \overline{\gamma} \ \mathbf{a}^{2} & 0 & 0 \\ \sqrt{3} \ \overline{\gamma} \ \mathbf{a}^{+2} & -(\gamma_{1} - \overline{\gamma})(\mathbf{a}^{+}\mathbf{a} + \frac{1}{2}) + \frac{1}{2} & 0 & 0 \\ 0 & 0 & -(\gamma_{1} - \overline{\gamma})(\mathbf{a}^{+}\mathbf{a} + \frac{1}{2}) - \frac{1}{2} & \kappa & -\sqrt{3} \ \overline{\gamma} \ \mathbf{a}^{2} \\ 0 & 0 & -\sqrt{3} \ \overline{\gamma} \ \mathbf{a}^{+2} & -(\gamma_{1} + \overline{\gamma})(\mathbf{a}^{+}\mathbf{a} + \frac{1}{2}) + \frac{3}{2} & \kappa \end{vmatrix}$$ (2.2.62) If the energy is measured in units of $\frac{|\mathbf{x}| \cdot |\mathbf{x}|}{mc}$ as Luttinger does, and the sign of the above matrix is changed, i.e., one deals with holes instead of the electrons, one obtains a matrix which is identical with Luttinger's equation 71 with the exception of some signs. It is easily shown, however, that these signs do not affect the solutions. # III. LANDAU LEVEL STRUCTURE OF Ge AND Si AT k_H = O FOR H IN THE [OO1] DIRECTION In this section the energy levels in the valence bands of Ge and Si will be calculated for a special case of the external magnetic field H in the [001] direction and $k_{\rm H}=0$. This special case is analogous to the case of $k_{\rm Z}=0$ but $k_{\rm X}$ and $k_{\rm Y}$ finite in the nomagnetic-field problem. The resulting energy levels are the ones involved in the interband magneto-optical transitions and probably in most of the cyclotron resonance transitions. They are thus of primary importance in the interpretation of the experimental data. Since no approximations, aside from the basic ones which have already been discussed, are being made in this calculation, it will serve as a basis of comparison for other calculations. The results should also indicate the behavior of the Landau levels as a function of the magnetic field and thus give the variation of the effective mass with the applied magnetic field. ### 3.1 Reduction of the Problem to an Algebraic One Upon setting d=0 (i.e., $k_H=k_Z=0$) in the matrix of equation 2.2.59 and changing its sign so as to deal with holes instead of electrons, the following two matrices are immediately obtained $$||v^{3x3}|| = \frac{||A|| + |A||}{mc} \qquad -(\beta a^2 + \delta a^{+2}) \qquad -\sqrt{2} (\beta a^2 + \delta a^{+2}) \qquad (\frac{3}{2}) \frac{3}{2}$$ $$||v^{3x3}|| = \frac{||A|| + |A||}{mc} \qquad -(\beta a^{+2} + \delta a^2) \qquad \zeta(a^{+}a + \frac{1}{2}) - \frac{1}{2} \kappa \qquad \rho(a^{+}a + \frac{1}{2}) - \frac{\kappa + 1}{\sqrt{2}} \qquad (\frac{3}{2}) - \frac{1}{2}$$ $$-\sqrt{2} (\beta a^{+2} + \delta a^2) \qquad \rho(a^{+}a + \frac{1}{2}) - \frac{\kappa + 1}{\sqrt{2}} \qquad \lambda(a^{+}a + \frac{1}{2}) - \frac{2\kappa + 1}{2} + \Delta' \qquad (\frac{1}{2}) - \frac{1}{2} \qquad (3.1.1)$$ $$||v^{3x3}_{i,j,2}|| = \frac{|\lambda| |e| \mathcal{H}}{mc} \qquad ||\zeta(a^{+}a + \frac{1}{2}) + \frac{1}{2}\kappa \qquad ||\beta a^{2} + \delta a^{+2}|| \qquad ||\rho(a^{+}a + \frac{1}{2}) + \frac{\kappa + 1}{\sqrt{2}}|| \qquad (\frac{3}{2}) \frac{1}{2}$$ $$||v^{3x3}_{i,j,2}|| = \frac{|\lambda| |e| \mathcal{H}}{mc} \qquad ||\beta a^{+2} + \delta a^{2}| \qquad ||\alpha(a^{+}a + \frac{1}{2}) - \frac{3}{2}\kappa \qquad ||\nabla(a^{+}a + \frac{1}{2}) + \frac{\kappa + 1}{2}|| \qquad (\frac{3}{2}) - \frac{3}{2}$$ $$||\rho(a^{+}a + \frac{1}{2}) + \frac{\kappa + 1}{\sqrt{2}}| \qquad ||\nabla(a^{+}a + \frac{1}{2}) - \frac{3}{2}\kappa \frac$$ where for convenience the following definitions have been used: $$\alpha = \frac{-\ell' + \mu'}{2} \qquad \beta = -\frac{\ell' - \mu' + \nu}{4\sqrt{3}} \qquad \delta = -\frac{\ell' - \mu' - \nu}{4\sqrt{3}} \qquad \zeta =
-\frac{\ell' + 5\mu'}{6}$$ $$\eta = -\frac{\mu' + 2\ell'}{6} \qquad \rho = -\frac{\ell' - \mu'}{3\sqrt{2}} \qquad \lambda = -\frac{\ell' + 2\mu'}{3} \qquad (3.1.3)$$ Equations 3.1.1 and 3.1.2 must now be allowed to operate on some linear combination of the harmonic oscillator wave functions and then the result must be substituted into an equation of the form 2.1.9. This is equivalent to solving the following eigenvalue problem: $$||v_{i,j}^{3x3}|| F = E ||I|| F$$ (3.1.4) where ||I|| is the unit matrix and F can be taken to be of the form $$F = \begin{bmatrix} \sum_{i} a_{i}f_{i} \\ \sum_{j} b_{j}f_{j} \\ \sum_{k} c_{k}f_{k} \end{bmatrix}$$ (3.1.5) Letting $\frac{\cancel{H} \mid e \mid \cancel{H} \mid}{mc} \in E$ measuring energy in units of $\frac{\cancel{H} \mid e \mid \cancel{H} \mid}{mc}$, and remembering that $$a \sum_{i} a_{i} f_{i} = \sum_{i} a_{i} i^{1/2} f_{i-1}$$ $$a^{+} \sum_{i} a_{i} f_{i} = \sum_{i} a_{i} (i+1)^{1/2} f_{i+1}$$ $$a^{+} a \sum_{i} a_{i} f_{i} = \sum_{i} a_{i} i f_{i}$$ $$a^{2} \sum_{i} a_{i} f_{i} = \sum_{i} a_{i} [i(i-1)]^{1/2} f_{i-2}$$ $$a^{+2} \sum_{i} a_{i} f_{i} = \sum_{i} a_{i} [(i+1)(i+2)]^{1/2} f_{i+2}$$ $$(3.1.6)$$ one obtains by substituting equations 3.1.1 and 3.1.5 into 3.1.4, the following sets of equations: $$\begin{split} \sum_{\mathbf{i}} & \left[\alpha (\mathbf{i} + \frac{1}{2}) + \frac{3}{2} \kappa - \epsilon \right] \, a_{\mathbf{i}} \mathbf{f}_{\mathbf{i}} - \sum_{\mathbf{j}} \, b_{\mathbf{j}} \left\{ \beta [\mathbf{j}(\mathbf{j} - \mathbf{l})]^{1/2} \, \mathbf{f}_{\mathbf{j} - 2} + \delta [(\mathbf{j} + \mathbf{l})(\mathbf{j} + 2)]^{1/2} \, \mathbf{f}_{\mathbf{j} + 2} \right\} - \\ & - \sum_{\mathbf{k}} \sqrt{2} \, c_{\mathbf{k}} \left\{ \beta [\mathbf{k}(\mathbf{k} - \mathbf{l})]^{1/2} \, \mathbf{f}_{\mathbf{k} - 2} + \delta [(\mathbf{k} + \mathbf{l})(\mathbf{k} + 2)]^{1/2} \, \mathbf{f}_{\mathbf{k} + 2} \right\} = 0 \end{split}$$ II $$-\sum_{\mathbf{i}} a_{\mathbf{i}} \left\{ \beta [(\mathbf{i}+\mathbf{l})(\mathbf{i}+2)]^{1/2} f_{\mathbf{i}+2} + \delta [\mathbf{i}(\mathbf{i}-\mathbf{l})]^{1/2} f_{\mathbf{i}-2} \right\} + \sum_{\mathbf{j}} [\zeta(\mathbf{j}+\frac{1}{2}) - \frac{1}{2} \kappa - \epsilon] b_{\mathbf{j}} f_{\mathbf{j}} + \sum_{\mathbf{k}} c_{\mathbf{k}} [\rho(\mathbf{k}+\frac{1}{2}) - \frac{\kappa+1}{\sqrt{2}}] f_{\mathbf{k}} = 0$$ III $$-\sum_{i} \sqrt{2} a_{i} \left\{ \beta [(i+1)(i+2)]^{1/2} f_{i+2} + \delta [i(i-1)]^{1/2} f_{i-2} \right\} + \sum_{j} b_{j} [\rho(j+\frac{1}{2}) - \frac{\kappa+1}{\sqrt{2}}] f_{j} + \sum_{i} c_{k} [\lambda(k+\frac{1}{2}) - \frac{2\kappa+1}{2} + \Delta' - \epsilon] f_{k} = 0$$ (3.1.7) -5h- bi II $$\frac{-\beta[(i+1)]}{\chi(i+2)]^{1/2}} - \zeta(i+\frac{1}{2}) - \frac{1}{2}\kappa - \epsilon \qquad \rho(i+\frac{1}{2}) - \frac{\kappa+1}{\sqrt{2}} \qquad -\delta[i(i-1)]^{1/2}$$ III $$-\sqrt{2}\beta[(i+1) \\ \chi(i+2)]^{1/2} \qquad \rho(i+\frac{1}{2}) - \frac{\kappa+1}{\sqrt{2}} \qquad \lambda(i+\frac{1}{2}) - \\ -\frac{2\kappa+1}{2} + \Delta' - \epsilon$$ Now if the energy bands are assumed to be spherically symmetric, i.e., $\ell' - \mu' - \nu = 0$ (or $\gamma_2 = \gamma_3 = \overline{\gamma}$ in Luttinger's (2) notation), one may write, j = i + 2, k = i + 2. Then for each i a set of three simultaneous equations is obtained, the solution of which will involve simply a diagonalization of a 3x3 matrix. If the assumption of spherical symmetry is not made $(\ell' - \mu - \nu \neq 0)$ one must use the orthogonality properties of f_n 's to obtain algebraic equations for the coefficients a_i , k_j , and c_k . This yields an infinite number of coupled algebraic equations which may be arranged in such a way that the system determinant has the following form (the symbolism employed should be obvious): The elements in any three rows of this matrix labeled I, II, III may be determined from Table 3.1. For example, the elements of the three rows labeled I f_2 , II f_4 , III f_4 are given by It will be observed that the infinite set of equations can be decoupled into four independent sets (labeled A,B,C,D), which reduces the problem to the solution of four independent infinite determinants, two of each of the following types: and Each of these four determinants can be quite accurately solved by truncating it sufficiently far from the 3x3 block which gives rise to the eigenvalue of interest. This is possible because the terms involving δ are smaller than those in the main blocks. As will be discussed in greater detail later, in this process one must avoid the "decoupling" of levels close to each other in energy. Now in a similar fashion, equations 3.1.2 and 3.1.5 can be substituted into 3.1.4, yielding the equations: $$\begin{split} & \sum_{\mathbf{i}} \left[\zeta \left(\mathbf{i} + \frac{1}{2} \right) + \frac{1}{2} \kappa - \epsilon \right] \mathbf{a}_{\mathbf{i}} \mathbf{f}_{\mathbf{i}} + \sum_{\mathbf{j}} \mathbf{b}_{\mathbf{j}} \left\{ \beta \left[\mathbf{j} \left(\mathbf{j} - \mathbf{l} \right) \right]^{1/2} \mathbf{f}_{\mathbf{j} - 2} \right. + \\ & + \delta \left[\left(\mathbf{j} + \mathbf{l} \right) \left(\mathbf{j} + 2 \right) \right]^{1/2} \mathbf{f}_{\mathbf{j} + 2} \right\} + \sum_{\mathbf{k}} \left[\rho \left(\mathbf{k} + \frac{1}{2} \right) + \frac{\kappa + 1}{\sqrt{2}} \right] \mathbf{c}_{\mathbf{k}} \mathbf{f}_{\mathbf{k}} = 0 \end{split}$$ $$\begin{aligned} & \prod_{\mathbf{j}} \mathbf{a}_{\mathbf{i}} \left\{ \beta \left[\left(\mathbf{i} + \mathbf{l} \right) \left(\mathbf{i} + 2 \right) \right]^{1/2} \mathbf{f}_{\mathbf{i} + 2} + \delta \left[\mathbf{i} \left(\mathbf{i} - \mathbf{l} \right) \right]^{1/2} \mathbf{f}_{\mathbf{i} - 2} \right\} \right. + \\ & + \sum_{\mathbf{j}} \left[\alpha \left(\mathbf{j} + \frac{1}{2} \right) - \frac{3}{2} \kappa - \epsilon \right] \mathbf{b}_{\mathbf{j}} \mathbf{f}_{\mathbf{j}} + \\ & + \sum_{\mathbf{k}} \sqrt{2} \mathbf{c}_{\mathbf{k}} \left\{ \beta \left[\left(\mathbf{k} + \mathbf{l} \right) \left(\mathbf{k} + 2 \right) \right]^{1/2} \mathbf{f}_{\mathbf{k} + 2} + \delta \left[\mathbf{k} \left(\mathbf{k} - \mathbf{l} \right) \right]^{1/2} \mathbf{f}_{\mathbf{k} - 2} \right\} \right. = 0 \quad (3.1.12) \end{split}$$ III $$\sum_{i} a_{i} \left[\rho(i + \frac{1}{2}) + \frac{\kappa + 1}{\sqrt{2}}\right] f_{i} + \sum_{j} \sqrt{2} b_{j} \left\{\beta \left[j(j-1)\right]^{1/2} f_{j-2} + \delta \left[(j+1)(j+2)\right]^{1/2} f_{j+2}\right\} + \sum_{k} \left[\lambda \left(i + \frac{1}{2}\right) + \frac{2\kappa + 1}{2} + \Delta - \epsilon\right] c_{k} f_{k} = 0$$ (3.1.12) Again, if $\delta=0$ one may get j=i+2, k=i, obtaining for each i a set of three simultaneous equations. If, on the other hand, $\delta\neq 0$ as is actually the case, one proceeds as indicated in the previous case obtaining an infinite matrix of the form in which the elements are computed with the help of Table 3.2. This matrix also decouples into four infinite matrices which are solved by the same method as equations 3.1.10 and 3.1.11. II $$\beta[(i+1)(i+2)]^{1/2} \quad \alpha(i+\frac{1}{2}) - \frac{3}{2}\kappa - \epsilon \quad \sqrt{2} \, \beta[(i+1)(i+2)]^{1/2} \quad \delta[i(i-1)]^{1/2} \quad \sqrt{2} \, \delta[i(i-1)]^{1/2}$$ III $$\sqrt{2} \delta [(i+1)]_{\chi(i+2)}^{2}$$ $(i+\frac{1}{2}) + \frac{\kappa+1}{\sqrt{2}}$ $\sqrt{2} \beta [i(i-1)]^{1/2}$ $\lambda(i+\frac{1}{2}) + \frac{2\kappa+1}{2} + \Delta' - \epsilon$ # 3.2 The Numerical Constants Characterizing the Valence Bands of Ge and Si The constants ℓ ', μ ', ν and κ which appear in the above analysis have not as yet been evaluated analytically. One must therefore rely on the experimentally determined values. The determinations based on experimental data have been made by Dresselhaus, Kip and Kittel (6), Dexter, Zeiger and Lax (7), Dexter and Lax (30), and Goodman (3). The first three estimates have been based on the "semi-classical" model of cyclotron resonance described briefly on page 11, while the last one by Goodman is based on fitting the quantum mechanical energy level calculation (for Ge at $k_{\rm H}=0$) to the data obtained by Fletcher, Yager and Merritt (31). The various estimates are summarized in Tables 3.3 and 3.4 for Ge and Si respectively. The following relations hold between the various constants quoted in the tables: $$L = A - 1 + 2B A = \frac{1}{3} (L + 2M) + \frac{\chi^2}{2m}$$ $$M = A - 1 - B B = \frac{1}{3} (L - M)$$ $$N = -3 (\frac{1}{3} C^2 + B^2)^{1/2} C^2 = \frac{1}{3} [N^2 - (L - M)^2]$$ (3.2.1) $$\gamma_{1} = \frac{2m}{N^{2}} \left[-\frac{1}{3} \left(L + 2M \right) - 1 \right] = -\frac{2m}{N^{2}} A$$ $$\gamma_{2} = \frac{2m}{N^{2}} \left[-\frac{1}{6} \left(L - M \right) \right] = -\frac{1}{2} \frac{2m}{N^{2}} B$$ $$\gamma_{3} = \frac{2m}{N^{2}} \left(-\frac{1}{6} N \right) = \frac{1}{2} \frac{2m}{N^{2}} \left(\frac{1}{3} c^{2} + B^{2} \right)^{1/2}$$ (3.2.2) $$\ell' = \frac{2m}{N^2} L + 1$$ $$\mu' = \frac{2m}{N^2} M + 1$$ $$\nu = \frac{2m}{N^2} N$$ (3.2.3) #### TABLE 3.3 NUMERICAL CONSTANTS, Ge | Source of Original
Data | | | | | Remarks | | |-------------------------------------|---|---|-----------------------|----------------|---|--------| | DL (1954)
Assuming | $A = -13.6 \frac{\chi^2}{2m}$ | $L = -32.8 \frac{\chi^2}{2m}$ | γ ₁ = 13.6 | | | | | k _H = 0 | $B = -9.1 \frac{\chi^2}{2m}$ | $M = -5.5 \frac{\text{M}^2}{2\text{m}}$ | r ₂ = 4.55 | | | | | | $ c = 11.2 \frac{\text{M}^2}{\text{M}}$ | $N = -33.5 \frac{\chi^2}{2m}$ | r ₃ = 5.59 | | | | | DKK (1955)
Assuming | $A = -(13.0 \pm 0.2) \frac{v^2}{2m}$ | $L = -31.8 \frac{\chi^2}{2m}$ | γ ₁ = 13.0 | | IMN given by DKK (6) | | | $k_{H} = 0$ | $B = -(8.9 \pm 0.1) \frac{1/2}{2m}$ | $M = -5.1 \frac{\text{M}^2}{2\text{m}}$ | $\gamma_2 = 4.45$ | | | | | | $ c = (10.3 \pm 0.2) \frac{1}{4^2}$ | $N = -32.1 \frac{\cancel{N}^2}{2m}$ | $r_3 = 5.36$ | | | | | DKK
(1955)
Considering ther- | $A = -(13.2 \pm 0.1) \frac{\dot{M}^2}{2m}$ | $L = -32.0 \frac{y^2}{2m}$ | γ ₁ = 13.2 | l' = -31.0 | LMN used by Kane (15) $\gamma_1 \gamma_2 \gamma_3$ used by Luttinger(2) | ,
H | | mal distribution around $k_{H} = 0$ | $B = -(8.9 \pm 0.05) \frac{\chi^2}{2m}$ | $M = -5.3 \frac{\text{M}^2}{2m}$ | r ₂ = 4.45 | $\mu' = -4.3$ | | | | | $C = (10.6 \pm 0.2) \frac{\text{M}^2}{2\text{m}}$ | $N = -32.4 \frac{\text{M}^2}{2m}$ | r ₃ = 5.4 | v = -32.4 | | | | DZL (1956)
Considering ther- | $A = -(13.1 \pm 0.4) \frac{1/2}{2m}$ | $L = -30.7 \frac{\chi^2}{2m}$ | Υ ₁ = 13.1 | | | | | mal distribution around $k_H = 0$ | $B = -(8.3 \pm 0.6) \frac{1/2}{2m}$ | $M = -5.8 \frac{\text{M}^2}{2m}$ | Υ ₂ = 4.15 | | | | | Н | $C = (12.5 \pm 0.5) \frac{\text{M}^2}{2\text{m}}$ | $N = -33.0 \frac{\text{½}^2}{2m}$ | r ₃ = 5.5 | | | | | FYM (1955) | | | γ ₁ = 13.2 | l' = -29.6 | Deduced by Goodman (3) from Fletcher, Yager, | | | | | | γ ₂ = 4.1 | μ ' = -5.0 | Merritt (31) data. | | | | | | $r_3 = 5.6$ | v = -33.6 | | | | | | | κ = 3 . 9 | | | | # TABLE 3.4a NUMERICAL CONSTANTS, Si | Source of Original
Data | | | | Remarks | |---|---|--|-------------------------|---| | DL (1954) | $A = -4.0 \frac{\kappa^2}{2m}$ | $L = -7.6 \frac{y^2}{2m}$ | γ ₁ = 4.0 | | | Assuming
k _H = 0 | $B = -1.3 \frac{\text{M}^2}{2m}$ | $M = -3.7 \frac{\chi^2}{2m}$ | $\gamma_2 = 0.65$ | | | | $ C = 3.6 \frac{\text{y}^2}{2m}$ | $N = -7.33 \frac{\text{½}^2}{2\text{m}}$ | r ₃ = 1.22 | | | DKK (1955) | $A = -(4.1 \pm 0.2) \frac{\chi^2}{2m}$ | $L = -8.3 \frac{\text{M}^2}{2\text{m}}$ | γ ₁ = 4.1 | | | Assuming $k_{\overline{H}} = 0$ | $B = -(1.6 \pm 0.2) \frac{\text{M}^2}{2m}$ | $M = -3.5 \frac{\text{M}^2}{2m}$ | $\gamma_2 = 0.8$ | | | | $ c = (3.3 \pm 0.5) \frac{1/2}{2m}$ | $N = -7.5 \frac{\text{M}^2}{2\text{m}}$ | r ₃ = 1.25 | | | DKK (1955) | $A = -(4.0 \pm 0.2) \frac{1/2}{2m}$ | $L = -7.2 \frac{\text{M}^2}{2\text{m}}$ | γ ₁ = 4.0 ℓ | = -6.2 LMN used by Kane (15) | | Considering
thermal distri-
bution around | $B = -(1.1 \pm 0.5) \frac{1/2}{2m}$ | $M = -3.9 \frac{\text{M}^2}{2m}$ | Υ ₂ = 0.55 μ | $r_1 r_2 r_3$ close to values quoted by Luttinger(2) | | k _H = 0 | $ c = (4.0 \pm 0.5) \frac{1/2}{2m}$ | $N = -7.7 \frac{1/2}{2m}$ | r ₃ = 1.28 | except he left signs of r_2 and r_3 undefined | | DZL (1956) | $A = -(4.0 \pm 0.1) \frac{\text{M}^2}{2\text{m}}$ | $L = -7.2 \frac{\text{M}^2}{2\text{m}}$ | Υ ₁ = 4.0 | $r_1 r_2 r_3$ close to values | | Considering
thermal distri-
bution around | $B = -(1.1 \pm 0.4) \frac{1/2}{2m}$ | $M = -3.9 \underline{M}^2$ | Υ ₂ = 0.55 | quoted by Luttinger (2) except he left signs of γ_2 and γ_3 undefined | | k _H = 0 | $ C = (4.1 \pm 0.4) \frac{1/2}{2m}$ | $N = -7.8 \frac{\text{M}^2}{2m}$ | Υ ₃ = 1.30 | 12 13 | # TABLE 3.4b NUMERICAL CONSTANTS, Si | Source of Original
Data | | | | Remarks | |---|--|--|------------------------|-----------------------| | DL (1954) | $A = -4.0 \frac{\chi^2}{2m}$ | $L = -2.4 \frac{\text{M}^2}{2\text{m}}$ | $\gamma_1 = 4.0$ | | | Assuming $k_{H} = 0$ | $B = 1.3 \frac{\text{M}^2}{2\text{m}}$ | $M = -6.3 \frac{\cancel{h}^2}{2m}$ | $\gamma_2 = -0.65$ | | | | $ C = 3.6 \frac{\text{M}^2}{2\text{m}}$ | $N = -7.33 \frac{\cancel{N}^2}{2m}$ | $r_3 = 1.22$ | | | DKK (1955) | $A = -(4.1 \pm 0.2) \frac{1/2}{2m}$ | $L = -1.9 \frac{\cancel{N}^2}{2m}$ | r ₁ = 4.1 | LMN quoted by DKK (6) | | Assuming
k _H = 0 | $B = (1.6 \pm 0.2) \frac{\text{M}^2}{2m}$ | $M = -6.7 \frac{\chi^2}{2m}$ | $\gamma_2 = -0.8$ | | | | $ c = (3.3 \pm 0.5) \frac{\text{M}^2}{2\text{m}}$ | $N = -7.5 \frac{\text{M}^2}{2\text{m}}$ | $r_3 = 1.25$ | | | DKK (1955) | $A = -(4.0 \pm 0.2) \frac{1/2}{2m}$ | $L = -2.8 \frac{\text{M}^2}{2\text{m}}$ | $\gamma_1 = 4.0$ | £' = -1.8 | | Considering
thermal distri-
bution around | B = $(1.1 \pm 0.5) \frac{\text{M}^2}{2\text{m}}$ | $M = -6.1 \frac{\text{M}^2}{2m}$ | r ₂ = -0.55 | μ' = -5.1 | | k _H = 0 | $ C = (4.0 \pm 0.5) \frac{1/2}{2m}$ | $N = -7.7 \frac{\text{M}^2}{2m}$ | $r_3 = 1.28$ | $\nu = -7.7$ | | DZL (1956) | $A = -(4.0 \pm 0.1) \frac{1/2}{2m}$ | $L = -2.8 \frac{\text{M}^2}{2\text{m}}$ | γ ₁ = 4.0 | | | Considering
thermal distri-
bution around | $B = (1.1 \pm 0.4) \frac{1/2}{2m}$ | $M = -6.1 \frac{\text{M}^2}{2m}$ | $\gamma_2 = -0.55$ | | | k _H = 0 | $ C = (4.1 \pm 0.4) \frac{x^2}{2m}$ | $N = -7.8 \frac{\text{M}^2}{2\text{m}}$ | $r_3 = 1.30$ | | It should be noted that due to the difficulty of determining the A, B, C, constants for Si with sufficient degree of precision, there arises an ambiguity in the sign of the constant B. Dresselhaus, Kip and Kittel (6) chose the positive sign which gives rise to constants in Table 3.4b, while Kane (15) prefers the negative sign (Table 3.4a) since it makes the bands in Si similar qualitatively to those of Ge. Of course, more accurate cyclotron resonance data for Si should resolve this ambiguity. In the calculations which follow, the negative sign is chosen. All of the above constants, as well as the antisymmetric constant κ can be related to the constants (sums of matrix elements) F, G, H_1 , and H_2 defined by Dresselhaus, Kip and Kittel (6). If H_2 is taken to be zero, which is the value quoted by Dresselhaus, Kip and Kittel, the constant κ can be easily evaluated. In summary, the following are the constants used in the subsequent calculations: For Ge $$\ell' = -31.0$$ $\mu' = -4.3$ $\nu = -32.4$ $\kappa = 3.3$ $\Delta = 0.29 \text{ ev (ref. 15)}$ (3.2.4) For Si $$\ell' = -6.2$$ $\mu' = -2.9$ $\nu = -7.7$ (3.2.5) $\kappa = -0.016$ $\Delta = 0.0441 \text{ ev (ref. 32)}$ # 3.3 Numerical Results for Ge The energy eigenvalues for the valence band of Ge at $k_{\rm H}=0$, as well as the coefficients in the corresponding wave function expansions, are determined by solving the various determinants specified by equations 3.1.8 and 3.1.13. Thus a total of eight eigenvalue problems must be solved. The four problems arising from equation 3.1.8 result in eigenvalues which correspond to the two ϵ_1 ladders of Luttinger (2). This is so because the eigenvalues involved have eigenfunctions composed of linear combinations of the harmonic oscillator functions multiplied by the $\phi_{3/2}^{(3/2)}$, $\phi_{-1/2}^{(3/2)}$, and $\phi_{-1/2}^{(1/2)}$ angular momentum functions only. Thus if one assumes $\delta=0$ and Δ° very large so that in each 3x3 block the third row and the third column can be ignored, the remaining eigenfunctions are found to be of the form $$af_{i-2} \phi_{3/2}^{(3/2)} + bf_{i} \phi_{-1/2}^{(3/2)}$$ (3.3.1) which is exactly of the same form as the eigenfunctions characterizing the eigenvalues in the ϵ_1 ladders of Luttinger. Similarly, the eigenvalues arising from equation 3.1.13 correspond to the ϵ_2 ladders of Luttinger. Although in the case treated here the eigenfunctions are considerably more complicated than 3.3.1, the eigenvalues can still be assigned to various ladders (mainly for the sake of convenience in applying the selection rules and in comparing with previously obtained results) according to the leading terms in the corresponding eigenfunction expansions. As pointed out in Section 3.1, it is possible to solve fairly accurately the infinite determinants involved in this problem by truncating them judiciously. In Appendix 3 are shown the numbers resulting from the solution of various size determinants corresponding to the eight eigenvalue problems described above. To illustrate the method by which accuracy of solutions has been estimated, consider the solutions to the "B" determinant of equation 3.1.8 given on page 175. It will be observed that the change from an 8x8 determinant to the lixil determinant has not affected the values of ϵ_1 and ϵ_2 . It is thus shown that the solution of the 8x8 determinant gives ϵ_1 and ϵ_2 essentially exactly. It may therefore be assumed that the solution of the lixil determinant gives ϵ_1 through ϵ_5 exactly. Assuming this, one finds that the 8x8 determinant gives values for ϵ_3 , ϵ_4 , and ϵ_5 which are inaccurate by considerably less than 1%. Following a similar procedure in other cases, it is found that in general for Ge in order to find the first n eigenvalues, a determinant of the order of n + 3 must be solved. Another important consideration which in certain cases may render the above arguments invalid, is that of close-lying energy levels. Thus if a certain heavy hole level is close in energy to a light hole level arising from another basic 3x3 block, their decoupling during the truncating process may introduce larger than ordinary errors into the corresponding eigenvalues. This, of course, is completely analogous to the results of the higher order perturbation theory where the zero-order energy differences enter in the denominator of the correction. Thus on page 176 the effect on ϵ_2 ($\epsilon_{1+}(0,2)$) of going from 6x6 determinant to a 9x9 determinant is slightly greater than ordinary since ϵ_7 $(\epsilon_1$ -(8,10)) lies fairly close in value to ϵ_2 . However, this effect becomes smaller as the basic blocks which give rise to the close lying levels become farther separated. Thus for Ge there seem to be few if any cases where the above must be seriously considered. The eigenvalues for Ge are plotted in Figures 3.1 through 3.4 as functions of the external magnetic field. The ordinate is normalized so that the actual energy of a given level above the band edge is given by $$E = \frac{1/|e|
\mathcal{H}}{mc} \in (3.3.2)$$ It will be observed that the energy levels for the heavy holes (ϵ_{1-} and ϵ_{2-} ladder) depend very little on the magnetic field. This is to be expected since the energy levels shown lie quite close to the band edge (thus the $\epsilon_{1-}(5,7)$ level is ~0.014 ev above the band edge at H = 50 kg) and therefore the interaction of these levels with the V₃ valence band is quite small. This interaction is, of course, the one responsible for the dependence of the energy eigenvalues on the magnetic field. The light hole energy levels, on the other hand, show a more marked dependence on the magnetic field. This again is not surprising in view of the above arguments. On the average, the "effective mass" for the ϵ_{1^+} holes increases by about a factor of 1.12 as the field changes from 1 kgauss to 50 kgauss. The corresponding increase in the mass of the ϵ_{2^+} holes is by a factor of 1.07. The higher lying levels are, of course, affected more strongly than the low lying ones. Table 3.5 shows the values of the coefficients in the eigenfunction expansions for TABLE 3.5 ### WAVE FUNCTION EXPANSION COEFFICIENTS ## for Ge at d = 0 and H = 5 kg TABLE 3.5 Continued Fig. 3.1 Landau Levels belonging to the $\ \varepsilon_1\text{--}$ Ladder in Ge as Functions of the Magnetic Field Fig. 3.2 Landau Levels belonging to the $~\varepsilon_{\text{l}^{+}}$ Ladder in Ge as Functions of the Magnetic Field Fig. 3.3 Landau Levels belonging to the ε_{2^-} Ladder in Ge as Functions of the Magnetic Field. Fig. 3.4 Landau Levels belonging to the ϵ_{2^+} Ladder in Ge as Functions of the Magnetic Field the various levels. From the table it can be seen that although the leading coefficients for a given level are in most cases appreciably larger than the others, significant mixing does occur in some instances. In these cases transitions of relatively high probability may occur between an $\epsilon(n,n+2)$ level and the $\epsilon(n+3,n+5)$ or $\epsilon(n+5,n+7)$ levels. The $\epsilon(n,n+2)$ to $\epsilon(n+3,n+5)$ transition will be a negative mass transition, i.e., it will be caused by a circularly polarized photon with the sense of polarization opposite to that causing the normal cyclotron resonance transitions (8,4). # 3.4 Numerical Results for Si The calculations for this case are very similar to the ones described in Section 3.3. However, because the δ terms for Si are relatively larger than for Ge, larger determinants must be solved to obtain the same number of eigenvalues accurately. Thus to obtain the first n eigenvalues, it was found by a procedure similar to that described previously, that a determinant of the order of n+6 must be solved. Also the difficulties due to the proximity in energy of the heavy and light hole levels arise somewhat more frequently here than in the case of Ge. For example, on page 184, Appendix 4, the change in the value of ϵ_5 ($\epsilon_{1+}(4,6)$) caused by increasing the order of the determinant from 9 to 12 is 2.25%, whereas the corresponding change in the value of ϵ_4 ($\epsilon_{1-}(4,6)$) is only 0.23%. This is caused by the fact that ϵ_5 is very close in energy to $\epsilon_{10}(\epsilon_{1-}(12,14))$. Another example of very strong coupling is provided by the $\epsilon_{1+}(5,7)$ and the $\epsilon_{1-}(13,15)$ levels. The coupling between these increases to such an extent with the magnetic field, that ### WAVE FUNCTION EXPANSION COEFFICIENTS for Si at d = 0 and H = 5 kg TABLE 3.6 (Continued) one level actually changes gradually into the other as \mathcal{H} increases (see Figures 3.5 and 3.6). The above phenomenon manifests itself also in the behavior of the coefficients in the eigenfunction expansions quoted in Table 3.6. It will be observed that for the $\epsilon_{1+}(4,6)$ and the $\epsilon_{1+}(5,7)$ levels a_{12} and a_{13} are larger respectively than a_{8} and a_{9} , and a_{14} and a_{15} are larger than a_{10} and a_{11} . The energy levels can be identified and classified in the same way as for Ge but in the present instance the task is somewhat more difficult since in many cases, as has just been pointed out, mixing is quite strong (see Table 3.6). As may be seen from Figures 3.5 through 3.8 the effect of the magnetic field on the energy levels is in this case appreciably more pronounced than in the case of Ge. Thus for the ϵ_{1} , ϵ_{1} , ϵ_{2} , and ϵ_{2} ladders, the approximate changes in the effective masses are by factors of 1.03 to 1.4, 1.08 to 1.5, 1.01 to 1.05, and 1.08 to 1.5 respectively. This is due to the small spin-orbit splitting in Si and the consequent strong mixing between the V_{1} and V_{2} band levels, and the V_{3} band levels. In Figures 3.5 through 3.8 the dotted lines indicate levels whose energies are not as accurately known as some of the others. Since in Si mixing between the Landau levels is quite strong, as Table 3.6 demonstrates, many interesting transitions should be possible. Some of these are shown in Figures 3.9 and 3.10. In Figure 3.9 levels belonging to the ϵ_1 ladders are shown, together with those wave function expansion coefficients which are equal to or greater than 0.50. These coefficients specify the harmonic oscillator functions as well as the Fig. 3.5 Landau Levels belonging to the $\ensuremath{\varepsilon_1}\xspace$ Ladder in Si as Functions of the Magnetic Field Fig. 3.6 Landau Levels belonging to the ϵ_{1^+} Ladder in Si as Functions of the Magnetic Field Fig. 3.7 Landau Levels belonging to the $\ensuremath{\varepsilon_{\text{2}}}$ -Ladder in Si as Functions of the Magnetic Field Fig. 3.8 Landau Levels belonging to the $\ensuremath{\varepsilon_{2^+}}$ Ladder in Si as Functions of the Magnetic Field functions $\emptyset_{\rm m}^{({ m J})}$ making up the wave function corresponding to a given level. Because only large coefficients have been considered, all of the transitions indicated should occur with a relatively high probability. It will be observed that some of the transitions are "negative mass" (NM) transitions, i.e., are caused by polarization of the incident radiation opposite to that causing ordinary transitions. They thus may be of a very high practical value. Figure 3.10 shows analogous transitions in the ϵ_2 ladders. No transitions between the ϵ_1 and ϵ_2 ladders are, of course, possible at $k_{\rm H}=0$. Table 3.7 shows the expansion coefficients for the external magnetic field of 50 kgauss. Although in most cases there seem to be few qualitative changes as compared to coefficients in Table 3.6 (except for stronger coupling to the V₃ band), some levels do change the mixing pattern sufficiently so that their identity is essentially changed. Thus the absorption spectrum must be expected to be somewhat different at different values of the magnetic field. The high field transitions should therefore be examined in their own right for possible practically useful ones. As was pointed out in the introduction, the "nonparabolic" effects in the V_2 band of Si appear at about .015 ev below the valence band edge according to the calculations of Kane (15). The deepest light hole energy level computed here is the ϵ_{2+} (12,14) level which lies about .017 ev away from the band edge at $\mathcal{H}=20$ kgauss. Thus the "nonparabolic" effects should start manifesting themselves. However, in order to see them clearly a few additional deep lying levels would have to be calculated. This can be done by either solving larger determinants than the largest one solved here, or by truncating the infinite determinants at Fig. 3.9 Transitions between the Landau Levels belonging to the ϵ_1 Ladders in Si at \mathcal{H} = 5 kgauss. Expansion coefficients considered are approximately equal to or greater than 0.50. Transitions marked NM are of the "Negative Mass" type. Fig. 3.10 Transitions between the Landau Levels belonging to the ϵ_2 ladders in Si at $\mathcal{H}=5$ kgauss. Expansion Coefficients Considered are Approximately Equal to or Greater than 0.50. Transitions marked NM are of the "Negative Mass" type. both ends. The latter method would allow one to go to arbitrarily large energies within the limits of validity of the perturbation theory. TABLE 3.7 #### WAVE FUNCTION EXPANSION COEFFICIENTS for Si at d = 0 and H = 50 kg TABLE 3.7 (Continued) # IV. VALENCE BAND LANDAU LEVELS AS FUNCTIONS OF k_H FOR H IN THE [OO1] DIRECTION # 4.1 Check on the Validity of an Approximation Involving the Decoupling of the V_1 and V_2 Bands from the V_3 Band Because of the complicated nature of equation 2.2.59, it is desirable to introduce some approximations before proceeding with further numerical computations. The approximation that has been extensively used so far involves an assumption that the states corresponding to $j=\frac{3}{2}$ and $j=\frac{1}{2}$ states in the tight binding limits couple only weakly and, therefore, may be assumed to be decoupled. According to Dresselhaus, Kip and Kittel (6), who used the assumption in computing the band structure of Ge and Si without the magnetic field, the error involved is of the order of k^4/Δ where Δ is the spin orbit splitting. Thus the assumption is good near the center of the Brillouin zone and should be much better for Ge than for Si. As far as the problem of a crystal in a magnetic field is concerned, this assumption is expected to be reasonably good for small $k_{\rm H}$ and for energy levels lying close to the band edge. To check the extent of the validity of the approximation just discussed, one may simply compare the solutions to the exact and the approximate problems for some reasonably chosen special case. A convenient special case is that considered in Section III, i.e., the case of $k_{\rm H}=0$ and ${\cal H}$ in the [001]
direction. A calculation for this case provides sufficient information to enable one to deduce the extent to which the approximation is valid for $k_{\rm H}\neq 0$. The assumption that the $j=\frac{3}{2}$ and the $j=\frac{1}{2}$ states decouple, i.e., that the coupling matrix elements in the 2x4 and 4x2 strips in equation 2.2.59 may be neglected, reduces equation 2.2.59 to the following two matrices (see definitions on p. 51, equation 3.1.3). $$\| v_{i,j}^{4}\|_{l} = \frac{|A| = |A|}{mc}$$ $$| (3/2)| \frac{3}{2}| \frac{3}{2}|$$ $$| (3/2)| \frac{1}{2}|$$ (4/2)|$$ $$| (4/2)|$$ and The $4x^4$ matrix of equation 4.1.1 is of primary interest. In anticipation of the future needs d=0 is not assumed at this point. As in Section 3.1 the problem to be solved is the following: $$||V_{1,j}^{\downarrow_{X,\downarrow}}|| F = E ||I||F$$ (4.1.3) where F is assumed to be $$F = \begin{bmatrix} \sum_{i} a_{i}f_{i} \\ \sum_{j} b_{j}f_{j} \\ \sum_{k} c_{k}f_{k} \\ \sum_{\ell} g_{\ell}f_{\ell} \end{bmatrix}$$ $$(4.1.4)$$ Making proper substitutions and carrying out the operations on f_n one obtains in units of $\frac{\cancel{h} \mid e \mid \mathcal{H}}{mc}$ $$\sum_{i} \left[\alpha(i + \frac{1}{2}) - \frac{\mu'}{2} d^{2} + \frac{3}{2}\kappa - \epsilon \right] a_{i} f_{i} - \sum_{j} b_{j} \left\{ \beta[j(j-1)]^{1/2} f_{j-2} + \delta[(j+1)(j+2)]^{1/2} f_{j+2} \right\} - \sum_{k} \frac{\nu}{\sqrt{6}} d c_{k} k^{1/2} f_{k-1} = 0$$ II $$-\sum_{i} a_{i} \left\{ \beta [(i+1)(i+2)]^{1/2} f_{i+2} + \delta [i(i-1)]^{1/2} f_{i-2} \right\} +$$ $$+\sum_{j} [\zeta(j+\frac{1}{2}) + \eta d^{2} - \frac{1}{2}\kappa - \epsilon] b_{j} f_{j} - \sum_{\ell} \frac{\nu}{\sqrt{6}} d g_{\ell} \ell^{1/2} f_{\ell-1} = 0$$ (4.1.5) III $$-\sum_{i} \frac{\nu}{\sqrt{6}} d a_{i} (i+1)^{1/2} f_{i+1} + \sum_{k} [\zeta(k+\frac{1}{2}) + \eta d^{2} + \frac{1}{2}\kappa - \epsilon] c_{k} f_{k} +$$ $$+\sum_{\ell} g_{\ell} \left\{ \beta[\ell(\ell-1)]^{1/2} f_{\ell-2} + \delta[(\ell+1)(\ell+2)]^{1/2} f_{\ell+2} \right\} = 0$$ IV $$-\sum_{j} \frac{\nu}{\sqrt{6}} d b_{j} (j+1)^{1/2} f_{i+1} + \sum_{k} c_{k} \left\{ \beta[(k+1)(k+2)]^{1/2} f_{k+2} +$$ $$+ \delta [k(k-1)]^{1/2} f_{k-2} \right\} + \sum_{\ell} [\alpha(\ell+\frac{1}{2}) - \frac{\mu'}{2} d^{2} - \frac{3}{2}\kappa - \epsilon] g_{\ell} f_{\ell} = 0$$ (4.1.5) In this case the assumption of $\delta=0$ leads to the substitutions j=i+2 k=i+1, $\ell=i+3$, which result in sets of four equations for each i. In the case of $\delta\neq 0$ one has $$\alpha(i + \frac{1}{2}) - \frac{\mu'}{2} d^{2} + \frac{3}{2} \kappa - \epsilon \qquad -\beta[i(i-1)]^{1/2} \qquad -\frac{\nu}{\sqrt{6}} d^{2} i^{1/2} \qquad 0 \qquad 0$$ $$-\beta[i+1)(i+2)]^{1/2} \qquad \frac{\zeta(i + \frac{1}{2}) + \eta d^{2} - \frac{\nu}{\sqrt{6}} d^{2} i^{1/2}}{-\frac{1}{2} \kappa - \epsilon} \qquad 0 \qquad -\frac{\nu}{\sqrt{6}} d^{2} i^{1/2} \qquad 0$$ where the elements in any four rows labeled I,II,III,IV are determined from Table 4.1. The matrix as in Section III decouples into four independent ones of the following form: (4.1.7) (4.1.8) The solutions are obtained by solving determinants of the order of n+4 if the first n energy eigenvalues are required (see Appendix 5). The eigenvalues for Ge are shown in Figure 4.1, while the eigenfunction expansion coefficients are summarized in Table 4.2. The percentages quoted in Figure 4.1 represent the deviation of the eigenvalues given there from the "correct" ones given in Section III at $\mathcal{H}=$ 20 kgauss. The deviations seem to range from .05% to 3.8% increasing with the energy of the eigenvalue. This last result is, of course, to be expected since the higher lying energy levels are influenced more strongly by the \mathbf{V}_3 band. However, for the levels considered, the errors introduced by decoupling the $4\mathbf{x}4$ and the $2\mathbf{x}2$ matrices seem to be sufficiently small to make the approximation an excellent one. In Figure 4.2 are shown the eigenvalues for Ge calculated using Goodman's (3) parameters. The results are seen to agree very well (within 1%) with Goodman's results even though he used the first order perturbation theory to introduce the δ -terms. The only levels to show marked disagreement with Goodman's values are the $\epsilon_{1+}(0)$ and the $\epsilon_{2+}(0)$ levels. This may be due to the fact that the low-lying levels couple more strongly to the other levels (to be discussed below) and therefore the perturbation theory treatment of the δ terms introduces larger errors into the low-lying levels than into the other ones. Similar calculations have been performed for Si with the results shown in Figure 4.3. Here the deviations from the eigenvalues given in Section III range from ~.15% to ~3.0% at 10 kgauss and from ~1.2% to ~15% at 50 kgauss. The eigenfunctions given in Table 4.3 are quite appreciably in error compared to the correct ones at 50 kgauss. but are not as bad when compared to the 5 kgauss. eigenfunctions. The decoupling approximation may therefore be assumed to be satisfactory for low magnetic fields (below ~10 kgauss) especially since the ℓ' , μ' , ν and κ TABLE 4.2 WAVE FUNCTION EXPANSION COEFFICIENTS for Ge at d = 0.0 Fig. 4.1 Landau Levels in Ge at $d=k_{\rm H}=0$ for ${\cal H}$ in the [001] Direction. Percentage Figures Indicate Deviation from Results of Section III. Fig. 4.2 Landau Levels in Ge at $d=k_{\rm H}=0$ for H in the [001] Direction Calculated Using R.R. Goodman's (3) Parameters parameters for Si are not very accurately known at the present time. Therefore, a more accurate calculation for Si involving the 6x6 matrix operator given by equation 2.2.59 is probably not warranted until more accurate experimental data is available. Thus in the calculations which follow, the results for Ge may be assumed to be quite accurate for a wide range of magnetic fields, while those for Si are probably applicable only for the magnetic fields below ~ 10 kgauss and even then, may involve errors as large as $\sim 5\%$. TABLE 4.3 WAVE FUNCTION EXPANSION COEFFICIENTS for Si at d = 0.0 Fig. 4.3 Landau Levels in Si at $d = k_{\text{H}} = 0$ for H in the [001] Direction. Percentage Figures Indicate Deviation from Results of Section 3. #### 4.2 Landau Levels as Functions of kH in the Valence Band of Ge Before proceeding with the complete calculations for Ge, it is instructive to compute some of the energy levels using the assumption $\delta = 0$. This corresponds to Luttinger's (2) D of equation 81, where warping of the energy surfaces is included to zero order. The resulting levels contain some of the important features of the actual levels except, of course, for the coupling between them. The numerical results are tabulated in Appendix 6 and the energy levels resulting from the determinants of the types given by equations 4.1.7 through 4.1.10 are plotted in Figures 4.4 through 4.10. The following important features should be observed. The heavy hole levels seem to occur in pairs consisting of an ϵ_1 -(n,n+2) level and an ϵ_2 -(n+1,n+3) level. The separation between these levels at d = 0 decreases as n increases. One of the levels, the ϵ_1 -level, has a curvature corresponding to negative mass in the $k_{\rm H}$ direction near d = 0, reaches a minimum at some finite value of d , and soon acquires the same curvature as the $\,\epsilon_{ m 2}^{}\,$ member of the pair. The higher pairs seem to have smaller average curvatures than the lower ones and thus crossing of the levels occurs. Beyond the crossover, the cyclotron resonance effective mass is negative in the sense that the transitions are caused by radiation circularly polarized in the opposite sense to that causing the transitions before the crossover. The crossing over, however, is very gradual and occurs at relatively high values of d. The character of the energy levels changes as d increases. The main change is in the leading coefficients in the eigenfunction expansions according to the following rule: Fig. 4.4 Energy Sub-Bands Resulting from the Solution of Equation 4.1.7 (9x9 Determinant) for Ge Assuming $\delta = 0$ Fig. 4.5 Energy Sub-Bands Resulting from the Solution of Equation 4.1.7 (9x9 Determinant) for Ge, Assuming δ = 0 Fig. 4.6 Energy Sub-Bands Resulting from the Solution of Equation 4.1.8 (6x6 Determinant) for Ge, Assuming δ = 0 Fig. 4.7 Energy Sub-Bands Resulting from the Solution of Equation 4.1.9 (7x7 Determinant) for Ge, Assuming $\delta=0$. Fig. 4.8 Energy Sub-Bands Resulting from the Solution of Equation 4.1.9 (7x7 Determinant) for Ge, Assuming $\delta=0$ Fig. 4.9 Energy Sub-Bands Resulting from the Solution of Equation 4.1.10 (8x8 Determinant) for Ge, Assuming δ = 0 Fig. 4.10 Energy Sub-Bands Resulting from the Solution of Equation 4.1.10 (8x8 Determinant) for Ge, Assuming δ = 0 | | <pre>leading coeff. d = 0</pre> | leading coeff.
d large | | |-------------------------------|-------------------------------------|-----------------------------------|--| | $\epsilon_{ extsf{l}}$ levels | a _i b _{i+2} | a _i c _{i+l} | | | € levels | c _i g _{i+2} | b _{i+l} g _{i+2} | | It should be noted that mixing occurs rather rapidly as a function of d. Thus at d=0 the wave functions belonging to the ϵ_1 levels have $c_i=g_i\equiv 0$. However, at even small $d\ (\sim 0.3)$, certain c_i and g_i become appreciable even though the leading coefficients are still a_i and b_{i+2} . The expansion coefficients, in this as well as in all subsequent cases, have been actually computed for various values of d listed in Appendix 6, although they are not tabulated here. The above behavior of the eigenfunctions, however, is very easy to understand by inspecting the matrix elements in equations 4.1.7 through 4.1.10. Let us now turn our attention to the complete Ge problem including the coupling terms δ . As was mentioned earlier, a determinant of n+4 order must be solved to obtain the first n
eigenvalues. This can be seen by inspecting the numbers in Appendix 7. The solutions of various determinants are plotted in Figures 4.11 through 4.14. It will be observed that the general behavior of the levels is of the same nature as in the case of $\delta=0$. The heavy hole levels still occur in pairs which approach each other and cross as d increases. However, the interaction between the levels does cause some important modifications. Thus in Figure 4.11 the $\epsilon_{2+}(0)$ and the $\epsilon_{1-}(1,3)$ levels no longer seem to cross at $d\approx 1.2$ but each simply changes gradually into the other as is illustrated in Figure 4.15. This figure also illustrates clearly the strong mixing which Fig. 4.11 Energy Sub-Bands Resulting from the Solution of Equation 4.1.7 (13x13 determinant) for Ge Fig. 4.12 Energy Sub-Bands Resulting from the Solution of Equation 4.1.8 (10x10 Determinant) for Ge Fig. 4.13 Energy Sub-Bands Resulting from the Solution of Equation 4.1.9 (llxll Determinant) for Ge Fig. 4.14 Energy Sub-Bands Resulting from the Solution of Equation 4.1.10 (12x12 Determinant) for Ge Fig. 4.15 Wave Function Expansion Coefficients for the ϵ_1 (ϵ_{2+} (0) at d=0) and ϵ_3 (ϵ_1 -(1,3) at d=0) Energy Levels Resulting from the Solution of Equation 4.1.7 (13x13 Determinant) for Ge occurs whenever one level "crosses" another. (Observe peaks in values of certain coefficients at $d \approx 3.45$ and $d \approx 3.65$). In most cases whenever any two levels approach each other very closely and seem to cross over, their identity past such a region can be established only by looking at the leading coefficients in the eigenfunction expansions for the corresponding levels. This has been done in several cases in Figures 4.11 through 4.14. In general, coupling between the heavy and the light hole levels seems to decrease as d increases and as the quantum numbers associated with them increase. Mathematically the former is due simply to the relative decrease in importance of the 8 terms as d increases, while the latter is due to the fact that the heavy and light hole eigenvalues which coincide in energy come from the basic 4x4 blocks which are firther removed from each other as quantum numbers increase. A simple physical reason for this can also be given: classically, when the continuous orbiting light hole (m₁) coincides with that of an orbit of each hole (m₂) we have, employing standard symbols: $$\frac{1}{2}$$ m₁ ω_1^2 r₂ = $\frac{1}{2}$ m₂ ω_2^2 r₂ or $$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \sqrt{\frac{\mathbf{m}_1}{\mathbf{m}_2}}$$ from which $r_2 - r_1 = r_1 \left(\sqrt{\frac{m_2}{m_1}} - 1 \right) \sim \sqrt{E}$. Thus as energy increases the difference in the radii of the light hole and the heavy hole orbits increases, decreasing the interaction between them. Because at large d $\delta = 0$ is such an excellent approximation, no TABLE 4.4 #### WAVE FUNCTION EXPANSION COEFFICIENTS #### for Ge at d = 4.1 Table 4.4 Cont'd. Fig. 4.16 Landau Levels in Ge at d = 4.1 for H in the [001] Direction Fig. 4.17 Landau Levels in Ge at d = 6.3 for H in the [001] Direction Fig. 4.18 Landau Levels in Ge at d = 12.0 for H in the [001] Direction Fig. 4.19 Energy Sub-Bands Belonging to the ϵ_1 - Ladder in Ge for H in the [001] Direction Fig. 4.20 Energy Sub-Bands Belonging to the ϵ_2 - Ladder in Ge for H in the [001] Direction plots have been made for d > 5 for the complete Ge problem. The rule given on page 110 governing the change in the composition of the eigenfunctions as d increases still holds in the present case as it did in the case of $\delta=0$, which is demonstrated in Table 4.4. Although when $d \neq 0$ transitions can occur between all four ladders with relatively high degree of probability in some cases, it is still convenient to classify the various levels and plot them according to the ladders. This has been done for the heavy holes in Figures 4.19 and 4.20. In general, it can be said that the first order transitions take place between the adjoining levels. It should be noted that, judging by the curvatures of the $\epsilon_{1+}(0)$ and the $\epsilon_{2+}(0)$ levels, their effective mass is much larger than that of the light holes, although they are assigned to the light hole ladders by Luttinger (2). ## 4.3 Landau Levels as Functions of $k_{\mbox{\scriptsize H}}$ in the Valence Band of Si Qualitatively the behavior of the Landau levels in the valence band of Si is similar to that in Ge. However, as can be seen from the plots in Figures 4.21 through 4.24 the couplings between levels are much stronger and therefore the levels are so strongly mixed--especially at low values of d and low quantum numbers, that the general pattern discussed in Section 4.2 is not always easily recognizable. This accounts for the rather confused appearance of the heavy hole ladder plots in Figs. 4.25 and 4.26. Here the levels at finite values of d were identified as belonging to a certain ladder defined by the levels at d = 0 by inspecting the coefficients in the eigenfunction expansions. One such set of coefficients for d = 4.1 is shown in Table 4.5. As is evident from the Fig. 4.21 Energy Sub-Bands Resulting from the Solution of Equation 4.1.7 (13x13 Determinant) for Si Fig. 4.22 Energy Sub-Bands Resulting from the Solution of Equation 4.1.8 (14x14 Determinant) for Si 4.1.9 (15x15 Determinant) for Si Fig. 4.24 Energy Sub-Bands Resulting from the Solution of Equation 4.1.10 (12x12 Determinant) for Si TABLE 4.5 #### WAVE FUNCTION EXPANSION COEFFICIENTS #### for Si at d = 4.1 Table 4.5 Cont'd. Fig. 4.25 Energy Sub-Dands Belonging to the ϵ_{1} - Ladder in Si for H in the [001] Direction Fig. 4.26 Energy sub-Bands Belonging to the $\, \epsilon_2 \,$ Ladder in Si for H in the [001] Direction plots and the table, the levels assume a more or less "normal" character as d increases. # V. VALENCE BAND LANDAU LEVEL STRUCTURE OF Ge AND S1 FOR IN THE [101] AND THE [111] DIRECTIONS In this section the assumption of the decoupling of the V_1 and V_2 bands from the V_3 band will be retained. As has been shown, this assumption is a very good one in the case of Ge and is acceptable in the case of Si at low magnetic fields. This assumption will permit the use of certain canonical transformations suggested by Luttinger (2), which simplify the operator matrices obtained in the course of the solution of equation 2.2.18 by perturbation theory with \hat{k} given by 2.2.17. Thus following Luttinger, the matrix $||V_{i,j}^{l_{x,l_{1}}}||$ of equation 4.1.1 may be written as $$\begin{aligned} || v^{4x4} || &= \frac{\hbar^2}{m} \left\| -\frac{1}{4} (3\ell' + \mu') \frac{\hat{k}^2}{2} + \frac{1}{6} (\ell' - \mu') (\hat{k}_x^2 J_x^2 + \hat{k}_y^2 J_y^2 + \hat{k}_z^2 J_z^2) \right. \\ &+ \frac{1}{3} \nu \left(\left\{ \hat{k}_x \hat{k}_y \right\} \left\{ J_x J_y \right\} + \left\{ \hat{k}_y \hat{k}_z \right\} \left\{ J_y J_z \right\} + \left\{ \hat{k}_z \hat{k}_x \right\} \left\{ J_z J_x \right\} \right) \right. \\ &+ \left. \frac{e}{\hbar c} \kappa J \cdot \mathcal{H} \right\| \end{aligned} (5.0.1)$$ where J's are the $\frac{3}{2}$ angular momentum matrices. Now, according to Luttinger whenever the transformation 2.2.17 is used one should also set $$\begin{vmatrix} J_{x} \\ J_{y} \end{vmatrix} = ||A|| \begin{vmatrix} J_{1} \\ J_{2} \end{vmatrix}$$ $$\begin{vmatrix} J_{3} \end{vmatrix}$$ (5.0.2) where $$J_{1} = \begin{vmatrix} 0 & 0 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 & 3/2 \\ \sqrt{3}/2 & 1 & 0 & 0 \\ 0 & 3/2 & 0 & 0 \end{vmatrix}$$ (5.0.3) $$J_{2} = \begin{vmatrix} 0 & 0 & -i\sqrt{3}/2 & 0 \\ 0 & 0 & i & -i\sqrt{3}/2 \\ i\sqrt{3}/2 & -i & 0 & 0 \\ 0 & i\sqrt{3}/2 & 0 & 0 \end{vmatrix}$$ (5.0.4) $$J_{3} = \begin{vmatrix} 3/2 & 0 & 0 & 0 \\ 0 & -1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & -3/2 \end{vmatrix}$$ (5.0.5) ### 5.1 Magnetic Field in the [101] Direction Considering first the case of the magnetic field in the [010] plane, one writes $$\hat{k}_{x} = c\hat{k}_{1} + s\hat{k}_{3}$$ $$\hat{k}_{y} = \hat{k}_{z}$$ $$\hat{k}_{z} = -s\hat{k}_{1} + c\hat{k}_{3}$$ (5.1.1) $$J_{x} = cJ_{1} + sJ_{3}$$ $$J_{y} = J_{2}$$ $$J_{z} = -sJ_{1} + cJ_{3}$$ (5.1.2) where $s = \sin \theta$ and $c = \cos \theta$. Substitution of equations 5.1.1 and 5.1.2 into 5.0.1 gives $$\begin{split} \left\| \mathbf{v}^{4}\mathbf{x}^{4} \right\| &= \frac{\hbar^{2}}{m} \left\| -\frac{1}{4} \left(3\ell' + \mu' \right) \frac{\hat{\mathbf{k}}^{2}}{2} + \right. \\ &+ \frac{1}{6} \left[\left\{ \left[\left(\ell' - \mu' \right) \left(\mathbf{s}^{4} + \mathbf{c}^{4} \right) + 2\nu \; \mathbf{s}^{2} \mathbf{c}^{2} \right] \; \hat{\mathbf{k}}_{1}^{2} + 2\mathbf{s}^{2} \mathbf{c}^{2} \left(\ell' - \mu' - \nu \right) \hat{\mathbf{k}}_{3}^{2} \right. \\ &+ 2\mathbf{s} \mathbf{c} \left(\mathbf{c}^{2} - \mathbf{s}^{2} \right) \left(\ell' - \mu' - \nu \right) \hat{\mathbf{k}}_{1} \hat{\mathbf{k}}_{3} \right\} \; \mathbf{J}_{1}^{2} + \left(\ell' - \mu' \right) \mathbf{k}_{2}^{2} \; \mathbf{J}_{2}^{2} \; + \\ &+ \left\{ 2\mathbf{s}^{2} \mathbf{c}^{2} \left(\ell' - \mu' - \nu \right) \mathbf{k}_{1}^{2} + \left[\left(\ell' - \mu' \right) \left(\mathbf{s}^{4} + \mathbf{c}^{4} \right) + 2\nu \; \mathbf{s}^{2} \mathbf{c}^{2} \right] \hat{\mathbf{k}}_{3}^{2} \; - \\ &- 2\mathbf{s} \mathbf{c} \left(\mathbf{c}^{2} - \mathbf{s}^{2} \right) \left(\ell' - \mu' - \nu \right) \hat{\mathbf{k}}_{1} \hat{\mathbf{k}}_{3} \right\} \; \mathbf{J}_{3}^{2} \; + \\ &+ 2\nu \left\{ \hat{\mathbf{k}}_{1} \hat{\mathbf{k}}_{2} \right\} \left\{ \mathbf{J}_{1} \mathbf{J}_{2} \right\} \; + 2\nu \left\{ \hat{\mathbf{k}}_{2} \hat{\mathbf{k}}_{3} \right\} \left\{ \mathbf{J}_{2} \mathbf{J}_{3} \right\} \; + \\ &+ \left\{ 2\mathbf{s} \mathbf{c} \left(\mathbf{c}^{2} - \mathbf{s}^{2} \right) \left(\ell' - \mu' - \nu \right) \hat{\mathbf{k}}_{1}^{2} - 2\mathbf{s} \mathbf{c} \left(\mathbf{c}^{2} - \mathbf{s}^{2} \right) \left(\ell' - \mu' - \nu \right)
\hat{\mathbf{k}}_{3}^{2} \; + \\ &+ \left[\left(\ell' - \mu' \right) 8\mathbf{c}^{2} \mathbf{s}^{2} + 2\nu \left(\mathbf{c}^{2} - \mathbf{s}^{2} \right)^{2} \right] \hat{\mathbf{k}}_{1} \hat{\mathbf{k}}_{3} \right\} \; \left\{ \mathbf{J}_{1} \mathbf{J}_{3} \right\} \; \left\{ \mathbf{J}_{1} \mathbf{J}_{3} \right\} \; \right\| \; + \frac{\mathbf{e} \mathcal{X}}{\hbar \mathbf{c}} \; \kappa \; \mathbf{J}_{3} \; \right\|_{(5.1.3)} \end{split}$$ If the energy bands are now assumed to be spherically symmetric, one obtains $$||v^{4}x^{4}|| = \frac{\cancel{k}^{2}}{m} \left\| -\frac{1}{4} (3\cancel{\ell}' + \mu') \frac{\hat{k}^{2}}{2} + \frac{1}{6} \nu(\hat{k}_{1}^{2} J_{1}^{2} + \hat{k}_{2}^{2} J_{2}^{2} + \hat{k}_{3}^{2} J_{3}^{2}) + \right. \\ + \frac{1}{2} \nu \left(\left\{ \hat{k}_{1} \hat{k}_{2} \right\} \left\{ J_{1} J_{2} \right\} + \left\{ \hat{k}_{2} \hat{k}_{3} \right\} \left\{ J_{2} J_{3} \right\} + \left\{ \hat{k}_{1} \hat{k}_{3} \right\} \left\{ J_{1} J_{3} \right\} \right) + \\ + \frac{e \cancel{H}}{\cancel{h}c} \kappa J_{3} \left\| (5.1.4) \right\}$$ which should have been expected since for symmetrical bands the direction of the magnetic field is immaterial. Consider now the special case of $\theta = 45^{\circ}$, i.e., \mathcal{H} in the [101] direction. Then $s = c = 1/\sqrt{2}$ and $$\begin{split} ||v^{4}x^{4}|| &= \frac{N^{2}}{m} \left\| -\frac{1}{4} \left(3\ell' + \mu' \right) \frac{\hat{k}^{2}}{2} + \frac{1}{6} \left[\left(\frac{\ell' - \mu' + \nu}{2} \hat{k}_{1}^{2} + \frac{\ell' - \mu' - \nu}{2} \hat{k}_{3}^{2} \right) J_{1}^{2} + \right. \\ &+ \left. \left(\ell' - \mu' \right) \hat{k}_{2}^{2} J_{2}^{2} + \left(\frac{\ell' - \mu' - \nu}{2} k_{1}^{2} + \frac{\ell' - \mu' + \nu}{2} k_{3}^{2} \right) J_{3}^{2} + \right. \\ &+ 2\nu \left\{ \hat{k}_{1} \hat{k}_{2} \right\} \left\{ J_{1} J_{2} \right\} + 2\nu \left\{ \hat{k}_{2} \hat{k}_{3} \right\} \left\{ J_{2} J_{3} \right\} + 2(\ell' - \mu') \left\{ k_{1} k_{3} \right\} \left\{ J_{1} J_{3} \right\} \right] \\ &+ \frac{e \mathcal{H}}{hc} \kappa J_{3} \left\| (5.1.5) \right. \end{split}$$ $||v^{4x^{4}}||$ may now be rewritten in terms of the raising and lowering operators using the following equalities: $$\hat{k}_{1} = -\frac{1}{\sqrt{2}} \sqrt{\frac{|e|\mathcal{H}}{hc}} (a^{+} + a)$$ $$\hat{k}_{2} = \frac{i}{\sqrt{2}} \sqrt{\frac{|e|\mathcal{H}}{hc}} (a^{+} - a)$$ (5.1.6) $$\begin{cases} \hat{k}_{1}\hat{k}_{2} \\ \end{cases} = \frac{|e|\mathcal{H}}{hc} \frac{1}{2i} (a^{+2} - a^{2})$$ $$\hat{k}_{1}^{2} = \frac{1}{2} \frac{|e|\mathcal{H}}{hc} (2a^{+}a + 1 + a^{2} + a^{+2})$$ $$\hat{k}_{2}^{2} = \frac{1}{2} \frac{|e|\mathcal{H}}{hc} (2a^{+}a + 1 - a^{2} - a^{+2})$$ $$\hat{k}_{3} = \sqrt{\frac{|e|\mathcal{H}}{hc}} d$$ (5.1.6) The result is: $$\begin{split} || v^{4}x^{4}|| &= \frac{\cancel{h}| e| \mathcal{H}}{mc} \left\| \left(-\frac{3\cancel{l}' + \mu'}{4} + \frac{\cancel{l}' - \mu' + \nu}{12} J_{1}^{2} + \frac{\cancel{l}' - \mu'}{6} J_{2}^{2} + \frac{\cancel{l}' - \mu' - \nu}{12} J_{3}^{2} \right) (a^{+}a + \frac{1}{2}) - \\ &- \frac{3\cancel{l}' + \mu'}{4} \frac{d^{2}}{2} + \\ &+ \frac{a^{2} + a^{+2}}{2} \left(\frac{\cancel{l}' - \mu' + \nu}{12} J_{1}^{2} - \frac{\cancel{l}' - \mu'}{6} J_{2}^{2} + \frac{\cancel{l}' - \mu' - \nu}{12} J_{3}^{2} \right) + \\ &+ \frac{\cancel{l}' - \mu' - \nu}{12} d^{2} J_{1}^{2} + \frac{\cancel{l}' - \mu' + \nu}{12} d^{2} J_{3}^{2} + \\ &+ i \frac{\nu}{6} (a^{2} - a^{+2}) \left\{ J_{1}J_{2} \right\} - i \frac{\sqrt{2}}{6} \nu(a - a^{+}) d \left\{ J_{2}J_{6} \right\} - \\ &- \frac{\sqrt{2}}{6} (\cancel{l}' - \mu')(a^{+} + a) d \left\{ J_{1}J_{3} \right\} + \kappa J_{3} \end{split}$$ $$(5.1.7)$$ If ℓ ' - μ ' = ν (spherical symmetry) and d = 0 (i.e., k_H = 0) are assumed Luttinger's equation 70 is obtained. Substitution of equations 5.0.3, 5.0.4, and 5.0.5 into 5.1.7 gives (5.1.8) | | $-\frac{1}{8}[(3\ell'+5\mu'+\nu)(a^{+}a+\frac{1}{2}) + \\ +(4\mu'+\delta_{1})d^{2}-\frac{1}{2}\delta_{1}(a^{2}+a^{+2})]+\frac{3}{2}\kappa$ | $\frac{\sqrt{3}}{24} \left[\frac{1}{2} (2\nu + 3\beta_1) a^2 - \delta_1 (a^{\dagger} a + \frac{1}{2} - a^2 - \frac{3}{2} a^{+2}) \right]$ | $-\frac{1}{6}\sqrt{\frac{3}{2}}\left[\beta_{1}\mathbf{a}+\delta_{1}\mathbf{a}^{\dagger}\right]$ d | o | |--|--|--|---|--| | | $-\delta_1(a^{\dagger}a + \frac{1}{2} - a^2 - \frac{3}{2}a^2)$ | $-\frac{1}{8}\left[\frac{7\ell'+17\mu'-3\nu}{3}\left(a^{+}a+\frac{1}{2}\right)+\frac{5\ell'+7\mu'+3\nu}{3}d^{2}+\right.$ $+\frac{1}{2}\delta_{1}(a^{2}+a^{+2})\left.\right]-\frac{1}{2}\kappa$ | 0 | $\frac{1}{6}\sqrt{\frac{3}{2}}\left[\beta_{1}\mathbf{a}+\delta_{1}\mathbf{a}^{+}\right] d$ | | | $-\frac{1}{6}\sqrt{\frac{3}{2}} \left[\beta_{1}a^{+}+\delta_{1}a\right] d$ | 0 | $-\frac{1}{8} \left[\frac{7\ell' + 17\mu' - 3\nu}{3} (a^{+}a + \frac{1}{2}) + \frac{5\ell' + 7\mu' + 3\nu}{3} a^{2} + \frac{1}{2} \delta_{1}(a^{2} + a^{+2}) \right] + \frac{1}{2} \kappa$ | $\frac{\sqrt{3}}{24} \left[\frac{1}{2} (2\nu + 3\beta_1) a^2 - \delta_1 (a^+ a + \frac{1}{2} - d^2 - \frac{3}{2} a^{+2}) \right]$ | | | o | $\frac{1}{6}\sqrt{\frac{3}{2}} \left[\beta_{\mathbf{l}}\mathbf{a}^{+}\!\!+\!\delta_{\mathbf{l}}\mathbf{a}\right] \mathrm{d}$ | $\frac{\sqrt{3}}{24} \left[\frac{1}{2} (2\nu + 3\beta_1) a^{+2} - \delta_1 (a^+ a + \frac{1}{2} - d^2 - \frac{3}{2} a^2) \right]$ | $-\frac{1}{8}[(3\nu'+5\mu'+)(a^{+}a+\frac{1}{2}) + \\ +(4\mu'+\delta_{1})d^{2}-\frac{1}{2}\delta_{1}(a^{2}+a^{+2})]-\frac{3}{2}\kappa$ | where the definitions $(\ell'-\mu'-\nu) = \delta_1$ and $(\ell'-\mu'+\nu) = \beta_1$ have been used. Now if $d \to 0$ Goodman's (3) equation 5.13 is obtained except for some differences in signs. The differences are superficial and arise from the fact that Goodman's 5.13 has been derived for $\mathcal H$ in the [110] instead of the [101] direction. For purposes of computation let $$-\frac{3\ell' + 5\mu' + \nu}{8} = \alpha'$$ $$-\frac{4\mu' + \delta_1}{8} = \eta'$$ $$\frac{\sqrt{3}}{48} (2\nu + 3\beta_1) = \beta^+$$ $$-\frac{7\ell' + 17\mu' - 3\nu}{24} = \zeta'$$ $$-\frac{5\ell' + 7\mu' + 3\nu}{24} = \eta^+$$ $$\frac{\delta_1}{16} = \delta'$$ $$-\frac{\sqrt{3}}{24} \delta_1 = \delta^+$$ $$-\frac{1}{6}\sqrt{\frac{3}{2}} \delta_1 = \delta^*$$ $$-\frac{1}{6}\sqrt{\frac{3}{2}} \beta_1 = \beta'$$ (5.1.9) Then, $$||v^{l_4x^{l_4}}|| = \frac{\cancel{k} |e| \cancel{k}}{mc}$$ $$||v^{l_4x^{l_4}}||$$ Assuming the solution: $$\mathbf{F} = \begin{bmatrix} \sum_{\mathbf{i}} \mathbf{a}_{\mathbf{i}} \mathbf{f}_{\mathbf{i}} \\ \sum_{\mathbf{j}} \mathbf{b}_{\mathbf{j}} \mathbf{f}_{\mathbf{j}} \\ \sum_{\mathbf{k}} \mathbf{c}_{\mathbf{k}} \mathbf{f}_{\mathbf{k}} \\ \sum_{\mathbf{k}} \mathbf{g}_{\mathbf{k}} \mathbf{f}_{\mathbf{k}} \end{bmatrix}$$ (5.1.11) to the equation $\|V_{i,j}^{l_4x_l}\|_F = E \|\|I\|\|_F$ one gets: $$\begin{split} \mathrm{I} & \sum_{\mathbf{i}} \left\{ [\alpha'(\mathbf{i} + \frac{1}{2}) + \eta' \mathbf{d}^2 + \frac{3}{2} \kappa - \varepsilon] \mathbf{f_i} + \delta'[\mathbf{i}(\mathbf{i} - \mathbf{l})]^{1/2} \mathbf{f_{i-2}} + \delta'[(\mathbf{i} + \mathbf{l})(\mathbf{i} + 2)]^{1/2} \mathbf{f_{i+2}} \right\} \mathbf{a_i} + \\ & + \sum_{\mathbf{j}} \mathbf{b_j} \left\{ \beta^+[\mathbf{j}(\mathbf{j} - \mathbf{l})]^{1/2} \mathbf{f_{j-2}} + \delta^+(\mathbf{j} + \frac{1}{2} - \mathbf{d}^2) \mathbf{f_j} - \frac{3}{2} \delta^+[(\mathbf{j} + \mathbf{l})(\mathbf{j} + 2)]^{1/2} \mathbf{f_{j+2}} \right\} + \\ & + \sum_{\mathbf{k}} \mathbf{c_k} \left\{ \beta' \mathbf{k}^{1/2} \mathbf{f_{k-1}} + \delta *(\mathbf{k} + \mathbf{l})^{1/2} \mathbf{f_{k+1}} \right\} \mathbf{d} = 0 \end{split}$$ II $$\sum_{i} a_{i} \left\{ \beta^{+}[(i+1)(i+2)^{1/2} f_{i+2} + \delta^{+}(i+\frac{1}{2}-d^{2}) f_{i} - \frac{3}{2} \delta^{+}[i(i-1)]^{1/2} f_{i-2} \right\} +$$ $$+ \sum_{j} b_{j} \left\{ [\zeta'(j+\frac{1}{2}) + \eta^{+} d^{2} - \frac{1}{2} \kappa - \epsilon] f_{j} - \delta'[j(j-1)]^{1/2} f_{j-2} - \delta'[(j+1)(j+2)]^{1/2} f_{j+2} \right\} -$$ $$- \sum_{\ell} g_{\ell} \left\{ \beta' \ell^{1/2} f_{\ell-1} + \delta^{*}(\ell+1)^{1/2} f_{\ell+1} \right\} d = 0$$ $$(5.1.12)$$ $$\begin{split} & \text{III} \quad \sum_{\mathbf{i}} \ \mathbf{a}_{\mathbf{i}} \left\{ \beta'(\mathbf{i}+\mathbf{l})^{1/2} \mathbf{f}_{\mathbf{i}+\mathbf{l}} + \delta^* \mathbf{i}^{1/2} \mathbf{f}_{\mathbf{i}-\mathbf{l}} \right\} \, \mathbf{d} \, + \, \sum_{\mathbf{k}} \ \mathbf{c}_{\mathbf{k}} \left\{ \left[\zeta'(\mathbf{k}+\frac{1}{2}) + \eta^+ \mathbf{d}^2 + \, \frac{1}{2} \, \kappa - \epsilon \right] \mathbf{f}_{\mathbf{k}} \, - \right. \\ & \left. - \, \delta'(\mathbf{k}(\mathbf{k}-\mathbf{l}))^{1/2} \mathbf{f}_{\mathbf{k}-2} \, - \, \delta'((\mathbf{k}+\mathbf{l})(\mathbf{k}+2))^{1/2} \mathbf{f}_{\mathbf{k}+2} \right\} \, + \, \sum_{\ell} \mathbf{g}_{\ell} \left\{ \beta^+ [\ell(\ell-\mathbf{l})]^{1/2} \mathbf{f}_{\ell-2} \, + \right. \\ & \left. + \, \delta \, \left(\ell + \frac{1}{2} - \mathbf{d}^2 \right) \mathbf{f}_{\ell} - \, \frac{3}{2} \, \delta \, \left[(\ell+\mathbf{l})(\ell+2) \right]^{1/2} \mathbf{f}_{\ell+2} \right\} \, = \, 0 \end{split}$$ $$\begin{split} \text{IV} & - \sum_{\mathbf{j}} \, b_{\mathbf{j}} \left\{ \beta^{\, \prime} (\mathbf{j} + \mathbf{l})^{1/2} \mathbf{f}_{\mathbf{j} + \mathbf{l}} + \delta^{\, \ast} \mathbf{j}^{\, 1/2} \mathbf{f}_{\mathbf{j} - \mathbf{l}} \right\} \, d + \sum_{\mathbf{k}} \, c_{\mathbf{k}} \left\{ \beta^{\, \dagger} [(\mathbf{k} +
\mathbf{l})(\mathbf{k} + 2)]^{1/2} \mathbf{f}_{\mathbf{k} + 2} + \right. \\ & + \delta^{\, \dagger} (\mathbf{k} + \frac{1}{2} - \mathbf{d}^{\, 2}) \mathbf{f}_{\mathbf{k}} - \frac{3}{2} \, \delta \, \left[\mathbf{k} (\mathbf{k} - \mathbf{l}) \right]^{1/2} \mathbf{f}_{\mathbf{k} - 2} \right\} + \sum_{\ell} \, \mathbf{g}_{\ell} \left\{ \left[\alpha^{\, \prime} (\ell + \frac{1}{2}) + \eta^{\, \prime} \mathbf{d}^{\, 2} - \frac{3}{2} \, \kappa - \epsilon \right] \mathbf{f}_{\ell} + \right. \\ & + \left. \delta^{\, \prime} \left[\ell (\ell - \mathbf{l}) \right]^{1/2} \mathbf{f}_{\ell - 2} + \left. \delta^{\, \prime} \left[(\ell + \mathbf{l})(\ell + 2) \right]^{1/2} \mathbf{f}_{\ell + 2} \right\} = 0 \end{split}$$ ### TABLE 5.1 | | b ₁ | °i | 81 | 41 | bi | c _i | 81 | a _i | bi | e _i | 8 ₁ | a ₁ | bi | c ₁ | 8 ₁ | 1 a ₁ | bi | c ₁ | 61 | | |----|----------------------------------|----|----------------------------------|-------------|---------------------------|---------------------------|-----------------------------------|--|---|--|---|------------------------------|-----------|--------------------------|----------------|---------------------------------|----|------------------------------|-----|--| | ı | - 3/2 8 ⁺ √(1+1)(1+2) | 0 | 0 | 8°√(1+1)(1+ | 2) $8^+(1+\frac{1}{2}-d)$ | ²) 5*√(1+1) d | 0 | $\alpha'(1+\frac{1}{2})+\eta'd^2+$ $+\frac{3}{2}\kappa-\epsilon$ | $\beta^+\sqrt{1(1-1)}$ | β'√1 d | 0 | 5'√1(1-1) | 0 | 0 | 0 |
 °
 | 0 | 0 | 0 | | | п | 0 | 0 | 0 |
 °
 | -5√(1+1) (1 | -2) 0 | -6* √1+1 d | √(1+1)(1+2) β* | $\zeta'(1+\frac{1}{2})+\eta^*d^2-$
-\frac{1}{2}\kappa - \epsilon | •. | -β' √1 d | $b^{+}(1+\frac{1}{2}-d^{2})$ | -8√1(1-1) | 0 | 0 |
 -3/25 [*] √1(1-1) | 0 | 0 | 0 | | | ш | 0 | 0 | - 3/2 b [†] √(1+1)(1+2) |
 0
 | 0 | -5'√(±+1)(±+2) | $\delta^{+}(1+\frac{1}{2}-d^{2})$ | β'√1+1 d | 0 | $\zeta'(1 + \frac{1}{2}) + \eta^+ d^2 + \frac{1}{2} \kappa - \epsilon$ | $\beta^{+}\sqrt{\mathtt{i}(\mathtt{i+1})}$ | 5*√1 a | 0 | -6' \(\sqrt{1(1-1)}\) | 0 |

 | 0 | - 3 5 ⁺ 1(1-1) |) 0 | | | IV | 0 | 0 | | 1 0 | 0 | o | 8'√(1+1)(1+2) | 0 | -β'√1+1 d | β [*] √(1+1)(1+2) | $\alpha'(1+\frac{1}{2})+\eta'd^2$ $-\frac{3}{2}\kappa-\epsilon$ | . 0 | 8* √1 d | $6^+(1+\frac{1}{2}-d^2)$ | 8'√1(1-1) |
 | 0 | - 3/2 8 ⁴ √1(1-1) |) o | | These yield the determinant of the form where the elements are determined from Table 5.1. This determinant decouples into two determinants of the following form: ## g₀ b₁ c₀ g₂ a₁ b₃ c₂ g₄ a₃ b₅ c₄ g₆ a₅ b₇ c₆ g₈ a₇ b_g c₈ g₁₀ a₉ b₁₁ c₁₀ | IV f | € | δ* | δ+ | 81 | | | 8+ | | | | | | | | | | | | | | | | | |--|----|----------|------------|----------------|----------------|------------------|---------|----------|---------|------------|----------|-----|---------|------------|---------|----------|----------|----------------|---------------|----------|----------------|----|----------| | V for II for IV for III for IV for III IIII for III II | δ* | € | | β¹ | δ ⁻ | + 8 | | | 8+ | | | | | | | | | | | | | | | | IIIfo | 8+ | | ϵ | β'
β+ | 83 | | 81 | | | | | | | | | | | | | | | | | | IV f2 | 81 | B' | β+ | € | | δ: | | + | | | 8+ | | | | | | | | | | | | | | I f ₁ | | δ+
δ' | δ* | | € | β ⁺ ε | β' | | 81 | | | | | | | | | | | | | | | | II f3 | | 81 | | δ*
δ+
δ' | β+ | ϵ | | β'
β+ | 8+ | 81 | | | 8+ | | | | | | | | | | | | IIIf ₂ | 8+ | | 81 | δ+ | β' | | ε
β+ | | δ* | | δ'
8+ | | | | 2.0 | | | | | | | | | | IV f4 | | | | 81 | | β' | β+ | € | | 8* | | 81 | | | 81 | | | | | | | | | | I f ₃ | | 8+ | | | 81 | δ+
δ' | δ* | v | €
β+ | β+
ε | β' | | 8! | | | | | | | | | | | | II f ₅ | | | | - 1 | | 81 | | δ* | β+ | ϵ | | β' | δ+ | 81 | | | 8+ | | | | | | | | III f4 | | | | 8+ | | | 81 | 8+ | β' | | ε
β+ | β+ | δ* | δ* | 8! | | | | n+ | | | | | | IV f6 | | | | | | - 4 | | 81 | | β' | β+ | E | | 8" | | 81 | | | 8+ | | | | | | I f ₅ II f ₇ III f ₆ IV f ₈ | | | | | | 8+ | | | 81 | δ+
δ' | δ* | - ¥ | €
β+ | β+
ε | β' | | 81 | | | | | | | | II f ₇ | | | | | | | | | | 8 | | δ* | β+ | ϵ | | B! | δ+
δ* | 81 | | | 8+ | | | | IIIf ₆ | | | | | | | | 8+ | | | 8 | 8+ | β' | | €
β+ | β+ | 8" | δ* | 81 | | | | 0.1 | | IV f8 | | | | | | | | | | | | 81 | | β¹ | BT | € | | | δ+ | 81 | | | 8+ | | I f7 | | | | | | | | | | δ+ | | | 81 | 8+ | δ* | ~* | € | β+
ε | β' | | 81 | | | | II f ₉ | | | | | | | | | | | | c+ | | 81 | | δ* | β+
β' | ϵ | | β'
β+ | δ ⁺ | 81 | 61 | | III f8 | | | | | | | | | | | | 8+ | | | 81 | δ+
δ' | B. | 81 | E
R+ | €
E | 0 | δ* | δ'
8+ | | T f | | | | | | | | | | | | | | 8+ | | 0 | 81 | β'
δ+
δ' | ε
β+
δ* | - | € | β+ | β' | | TT £9 | | | | | | | | | | | | | | • | | | 0 | 81 | • | 8* | β+ | E | P | | TTTE | | | | | | | | | | | | | | | | 8+ | | | 81 | δ*
δ+ | B' | | \in | | I f7 II f9 III f8 IV f10 I f9 III f11 IIII f10 IV f12 | | | | | | | | | | | | | | | | | | | δ'
δ' | | 1 | BI | €
β+ | | - · - T2 | - | | (5.1.14) II $$f_{0} = 0$$ $f_{0} = 0$ f The coupling between the various basic 4x4 blocks is seen to be quite strong and becomes stronger as d increases. This will undoubtedly make the convergence of the eigenvalues much slower than before and will probably completely invalidate the use of the first order perturbation theory for this case. No attempt has been made to solve the matrix numerically. Such solution will probably be of interest only after more experimental data is available. #### 5.2 Magnetic Field in the [111] Direction For this case the transformations to be used in equation 5.0.1 are as follows: $$\hat{k}_{x} = \frac{1}{\sqrt{6}} \hat{k}_{1} - \frac{1}{\sqrt{2}} \hat{k}_{2} + \frac{1}{\sqrt{3}} \hat{k}_{3}$$ $$\hat{k}_{y} = \frac{1}{\sqrt{6}} \hat{k}_{1} + \frac{1}{\sqrt{2}} \hat{k}_{2} + \frac{1}{\sqrt{3}} \hat{k}_{3}$$ $$\hat{k}_{z} = -\sqrt{\frac{2}{3}} \hat{k}_{1} + \frac{1}{\sqrt{3}} \hat{k}_{3}$$ (5.2.1) and $$J_{x} = \frac{1}{\sqrt{6}} J_{1} - \frac{1}{\sqrt{2}} J_{2} + \frac{1}{\sqrt{3}} J_{3}$$ $$J_{y} = \frac{1}{\sqrt{6}} J_{1} + \frac{1}{\sqrt{2}} J_{2} + \frac{1}{\sqrt{3}} J_{3}$$ $$J_{z} = -\sqrt{\frac{2}{3}} J_{1} + \frac{1}{\sqrt{3}} J_{3}$$ (5.2.2) The complete operator matrix has, however, already been derived by Goodman (3) and will therefore not be recomputed here. The result is shown in 5.2.4, where $$\alpha'' = -\frac{2\ell' + \frac{1}{4}\mu' - \nu}{6} = \gamma_1 + \gamma_3$$ $$\eta'' = -\frac{\ell' + 2\mu' - \nu}{6} = \frac{1}{2} (\gamma_1 - 2\gamma_3)$$ $$\eta^* = -\frac{\ell' + 2\mu' + \nu}{6} = \frac{1}{2} (\gamma_1 + 2\gamma_3)$$ $$\beta'' = -\frac{\ell' - \mu' + 2\nu}{6\sqrt{3}} = \frac{1}{\sqrt{3}} (\gamma_2 + 2\gamma_3)$$ $$\beta^* = -\frac{2\ell' - 2\mu' + \nu}{3\sqrt{6}} = \sqrt{\frac{2}{3}} (\gamma_3 + 2\gamma_2)$$ $$\delta'' = \frac{\ell' - \mu' - \nu}{3\sqrt{6}} = \sqrt{\frac{2}{3}} (\gamma_3 - \gamma_2)$$ $$\delta^\circ = \frac{\ell' - \mu' - \nu}{3\sqrt{6}} = \sqrt{\frac{2}{3}} (\gamma_3 - \gamma_2)$$ $$\zeta''' = \frac{2\ell' + 2\mu' - \nu}{6} = \gamma_1 - \gamma_3$$ (5.2.3) $$||v_{i,j}^{4}|| = \frac{\cancel{k}|e|}{mc}||e| \frac{\cancel{k}|e|}$$ (5.2.4) Proceeding as before with the solution of the form given by equation 5.1.11, one gets $$\begin{split} \mathrm{I} & \sum_{\mathbf{i}} \ \mathrm{a}_{\mathbf{i}} [\alpha''(\mathbf{i} + \frac{1}{2}) + \ \eta'' \mathrm{d}^2 + \ \frac{3}{2} \ \kappa - \ \varepsilon] \mathbf{f}_{\mathbf{i}} - \sum_{\mathbf{j}} \mathbf{b}_{\mathbf{j}} \left\{ \beta'' [\ \mathbf{j}(\mathbf{j} - \mathbf{1})\]^{1/2} \mathbf{f}_{\mathbf{j} - 2} + \delta'' \mathrm{d}(\mathbf{j} + \mathbf{1})^{1/2} \mathbf{f}_{\mathbf{j} + 1} \right\} - \\ & -
\sum_{\mathbf{k}} \mathbf{c}_{\mathbf{k}} \left\{ \delta^{\circ} [\ (\mathbf{k} + \mathbf{1}) (\mathbf{k} + 2)\]^{1/2} \mathbf{f}_{\mathbf{k} + 2} + \beta^* \mathrm{d} \ \mathbf{k}^{1/2} \mathbf{f}_{\mathbf{k} - 1} \right\} = 0 \end{split}$$ $$\begin{split} \text{II} & - \sum_{\mathbf{i}} \mathbf{a_i} \left\{ \beta'' [(\mathbf{i} + \mathbf{l})(\mathbf{i} + 2)]^{1/2} \mathbf{f_{i+2}} + \delta'' \mathbf{d} \ \mathbf{i}^{1/2} \mathbf{f_{i-1}} \right\} \ + \ \sum_{\mathbf{j}} \ \mathbf{b_j} \ [\zeta'' (\mathbf{j} + \frac{1}{2}) + \ \eta^* \mathbf{d}^2 - \ \frac{1}{2} \ \kappa - \varepsilon] \mathbf{f_j} \ + \\ & + \ \sum_{\ell} \ \mathbf{g_\ell} \left\{ \delta^\circ [(\ell + \mathbf{l})(\ell + 2)]^{1/2} \mathbf{f_{\ell+2}} + \ \beta^* \mathbf{d} \ \ell^{1/2} \mathbf{f_{\ell-1}} \right\} \ = 0 \end{split}$$ $$\begin{split} \text{III} & - \sum_{\mathbf{i}} \mathbf{a}_{\mathbf{i}} \left\{ \delta^{\circ} [\mathbf{i} (\mathbf{i} - \mathbf{l})]^{1/2} \mathbf{f}_{\mathbf{i} - 2} + \beta^{*} \mathbf{d} (\mathbf{i} + \mathbf{l})^{1/2} \mathbf{f}_{\mathbf{i} + 1} \right\} + \sum_{\mathbf{k}} \mathbf{c}_{\mathbf{k}} [\zeta''(\mathbf{k} + \frac{1}{2}) + \eta^{*} \mathbf{d}^{2} + \frac{1}{2} \kappa - \varepsilon] \mathbf{f}_{\mathbf{k}} \\ & - \sum_{\ell} \mathbf{g}_{\ell} \left\{ \beta'' \left[\ell (\ell - 1) \right]^{1/2} \mathbf{f}_{\ell - 2} + \delta'' \mathbf{d} (\ell + 1)^{1/2} \mathbf{f}_{\ell + 1} \right\} & = 0 \end{split}$$ $$\text{IV} \qquad \sum_{\mathbf{j}} \, b_{\mathbf{j}} \left\{ \delta^{\circ} [\, \mathbf{j} (\, \mathbf{j} - \mathbf{1}) \,]^{1/2} \mathbf{f}_{\, \mathbf{j} - 2} \, + \, \beta^{\ast} \mathbf{d} (\, \mathbf{j} + \mathbf{1})^{1/2} \mathbf{f}_{\, \mathbf{j} + 1} \right\} \, - \, \sum_{\mathbf{k}} \, c_{\mathbf{k}} \left\{ \beta^{\prime\prime} [\, (\mathbf{k} + \mathbf{1}) \, (\mathbf{k} + 2) \,]^{1/2} \mathbf{f}_{\mathbf{k} + 2} \, + \, \delta^{\prime\prime} \mathbf{d} \, \, \mathbf{k}^{1/2} \mathbf{f}_{\mathbf{k} - 1} \right\} \, + \\ + \, \sum_{\mathbf{k}} \, \mathbf{g}_{\mathbf{k}} \, \left[\alpha^{\prime\prime\prime} (\, \ell + \, \frac{1}{2}) + \, \eta^{\prime\prime} \mathbf{d}^{2} - \, \frac{3}{2} \, \kappa - \, \epsilon \, \right] \, \mathbf{f}_{\mathbf{k}} \qquad = \quad 0$$ $$(5.2.5)$$ These equations yield the determinant (see Table 5.2 for elements). TABLE 5.2 | b _i | ci | gi | a _i | b _i | ^c i | $\mathbf{g_{i}}$ | a _i | b _i | °i | |----------------|----------------|---------------|---|---|---|--|----------------|----------------|--------| | -δ"d√(i+1) | -6°√(i+1)(i+2) | 0 | $\alpha''(i + \frac{1}{2}) + \eta'' d^2 + $ $+ \frac{3}{2} \kappa - \epsilon$ | -β"√ <u>i(i-l)</u> | -β*d√i | 0 | 0 | 0 | 0 | | 0 | 0 | δ°√(1+1)(1+2) | -β"√(i+1)(i+2) | $\zeta''(1 + \frac{1}{2}) + *d^2 - \frac{1}{2} \kappa - \epsilon$ | 0 | β [*] d√i | -8"d√i | 0 | 0 | | 0 | 0 | -8"d√1+1 | -β*ā√ <u>i+l</u> | 0 | $\xi''(i + \frac{1}{2}) + *d^2 + \frac{1}{2} \kappa - \epsilon$ | -β" √1(1-1) | -8°√i(i-l) | . 0 | 0 | | 0 | 0 | 0 | o | $\beta^* d\sqrt{1+1}$ | -β"√(i+1)(i+2) | $\alpha''(i + \frac{1}{2}) + \eta''d^2 - \frac{3}{2}\kappa - \epsilon$ | 0 | δ°√i(i-l) | -δ"d√i | This determinant decouples into three independent ones as indicated, which will probably converge quite rapidly for small d . For large d, difficulties might arise since the δ " coupling term is directly proportional to d . The coupling patterns for the levels in this case will be different from both previous cases. Thus in general, transitions will be possible between all four "ladders" even at d=0. It should be noted that this problem is exactly solvable when d=0. This can be seen more easily if the equations are arranged to give a determinant of the following form: Thus, since β^* and δ'' both contain d as a factor, the basic blocks decouple at d = 0 and can be solved exactly. As d increases, however, the coupling increases quite rapidly. For even small values of d transitions should be possible not only between adjacent levels but also between the $\epsilon(n+2,n+4)$ and the $\epsilon(n+4,n+6)$ levels, the former transition being of the "negative mass" type. # VI. SOME POSSIBLE PRACTICAL APPLICATIONS OF LANDAU LEVELS IN Ge AND Si In recent years there has been a number of proposals dealing with the practical applications of energy bands and Landau levels in semiconductors. In 1958 Krömer (33,34) proposed to use the reentrant nature of the constant energy contours in the valence bands of Ge and Si (see Figure 1.3) to obtain a negative resistance element. This was to be achieved by populating with holes a region in k-space where the energy contours are reentrant, i.e., along <100> directions in Ge. Since in such a region the transverse (with respect to the direction in which the contours are reentrant) effective mass of the carriers is negative, their contribution to the resistance of the sample would be negative. Thus if sufficient number of carriers could be concentrated in a negative mass region, a negative resistance circuit element would in principle be obtained. Krömer estimated that such a device could be useful up to frequencies of about 1000 kmc/sec. His experiments, however, failed to show the effect. The failure was attributed to acoustical phonon scattering of the carriers out of the negative mass cone. A few months later, G. C. Dousmanis (8) proposed to detect the negative mass carriers just mentioned by cyclotron resonance. Their effect on the spectrum would be a decrease in absorption rather than an increase. By the end of 1958 Dousmanis et al (9) reported an experiment which seemed to indicate the presence of negative mass carriers. It was soon pointed out by Kittel (35), Mattis and Stevenson (36), and Kaus (37) that to obtain net emission by cyclotron resonance, one needs to populate preferentially certain regions in k-space. In terms of the Landau levels discussed in Section IV, negative mass cyclotron resonance corresponds to transitions between levels whose quantum number ordering is opposite to the normal ordering. Thus a negative mass CR absorption corresponds to an $f_n \to f_{n-1}$ transition. In Section IV such transitions were seen to occur in regions past the crossover of the heavy hole levels. In March 1960 Duncan (11) pointed out that if certain of these levels could be preferentially populated, a maser action between the negative mass levels could be achieved. This scheme would have the advantage over some other maser schemes (to be discussed below) of avoiding absorption by transitions between the heavily populated low lying positive effective mass levels. This could be done by using circularly polarized radiation of the sense that can induce negative mass transitions only. In view of the results of Section IV, several objections can be raised in connection with the above scheme. As has already been pointed out, the crossing of the levels occurs rather slowly. That means that unless one works at fairly high \mathbf{k}_{H} , the transition frequencies will be quite low even at high magnetic fields. Moreover, even at liquid helium temperatures the thermal distribution in \mathbf{k}_{H} about some chosen \mathbf{k}_{H} may be sufficient to broaden the lines to the extent that they will not be easily identifiable. At the present time it appears that the relaxation times between Landau levels are rather short (of the order of 10^{-12} sec). It is therefore difficult to obtain appreciable population inversion between these levels. The use of relatively high k_{H_0} necessary for the above scheme will make the task of maintaining proper level populations even harder. Another important consideration is that of the density of states. According to Burstein et al (4) for simple bands this is given by $$N_{n}(\epsilon) = 2\left(\frac{s}{2\pi}\right)\left(\frac{2m^{*}}{h^{2}}\right)^{1/2} \left|\epsilon - \epsilon_{n}\right|^{-1/2}$$ (6.0.1) where $s=e\mathcal{H}/hc$ and ϵ_n is the energy of the band at $k_H=0$. Thus, as k_H increases, the density of states decreases rapidly. A more straightforward way of utilizing the Landau levels in semiconductors, namely that of using them for a maser-type device, has been proposed by Lax (10). He pointed out that in the case of a free electron or an electron in a simple energy band, maser action between Landau levels is impossible since the levels are equally spaced. Thus after one of the levels is populated by the pump, the signal frequency would induce both emissive and absorptive transitions. In fact, since the matrix elements are proportional to $(n+1)^{1/2}$ the absorption transitions would in general predominate. However, Lax noted that according to calculations of Luttinger (2) and Goodman (3) the low lying Landau levels in degenerate bands (valence bands of Ge and Si) are unequally spaced due to quantum effects. Such levels could therefore be utilized in a maser type device. Oscillatory magnetoabsorption experiments (4,5) indicated that infrared pumping from the conduction band could probably be utilized to achieve level populations required for maser action. Assuming pump power of 10 - 100 mw and a relaxation time $\tau = 10^{-12}$ sec, Lax estimated the number of carriers that can be excited at $\sim 10^6$ cm⁻³. Then using the formula of Shawlow and Townes (38) $$n_{ex} = \frac{h(1 - \alpha)Ac}{v + 16\pi^2\mu^2}$$ (6.0.2) where A is the cavity wall area, α the reflection coefficient of the cavity walls, and μ is the electric dipole moment; and using $A = 1 \text{ cm}^2$ and $\mu = 10^{-14}$ e.s.u., Lax concluded that the number of excited carriers necessary for emission is $\sim \! 10^8$ cm⁻³. Thus there is a factor of 10^2
difference between the required and the available number of carriers. The difficulty seems to arise mainly as a consequence of the very short relaxation times involved in cyclotron resonance transitions. Lax, however, suggested that the presently available estimates of the relaxation times may be somewhat too pessimistic and that better materials may result in longer relaxation times. It has been suggested by Zeiger (10) that one does not necessarily need to populate a single discrete level thus if one has a set of levels which are equally spaced up to a certain energy, it should be possible to produce inverted populations in all of these. A scheme of this nature may be applicable to the light hole levels in Si where only a limited number of levels is nearly equally spaced, the higher lying ones being affected by the interaction with the V_3 band (see Section III). Inspection of the results quoted in Section III and IV suggests several new schemes of utilizing the Landau levels in semiconductors. One of these is based on the fact that the ϵ_{1} - levels generally have a curvature corresponding to negative effective mass at k_{H} = 0. Thus if one were able to populate one of these preferentially, a negative resistance in the Fig. 6.1 Valence Band Landau Levels in Ge and Si near $\,k_{\rm H}=0$, some of which may have device applications--see text. H direction could in principle be obtained. This scheme is similar in some respects to the proposal of Krömer. However, it seems to have some advantages over the latter scheme. Thus the negative effective masses occur at $k_{\text{H}}=0$. The energy levels are continuous in only one direction and therefore the phonon scattering is possible only in that direction. The probability of successfully maintaining the desired population distribution seems to be greater in this case than in the case of no magnetic field. Difficulties may arise in connection with this scheme due to the fact that the heavy hole levels seem to come in pairs $(\epsilon_1$ - and ϵ_2 -), only one member of which $(\epsilon_1$ -) exhibits the negative mass characteristics. Thus in populating the ϵ_1 - level it may, in general, be impossible to avoid populating the ϵ_2 - level, in which case the positive resistance contribution of the ϵ_2 - level may cancel the negative resistance contribution of the ϵ_1 - level. It may therefore be necessary to use only the low lying ϵ_1 - levels where the splitting between the ϵ_1 - and ϵ_2 - levels is appreciable. Thus the ϵ_1 -(0,2) and the ϵ_1 -(1,3) levels may be suitable. It may be advantageous to use relatively high magnetic fields in connection with this scheme since high fields imply a wide range of $k_{\rm H}$ over which the effective masses in the ϵ_1 - levels are negative. In addition, such fields will enable one to select the required level more easily. There are several ways of populating the desired Landau levels. One of the most obvious ones is to use infrared excitation across the energy gap. This would create both holes and electrons. The holes will have a negative effective mass provided an excitation frequency can be selected so that no hole levels except the desired ϵ_1 level are excited. The conductivity is then given by $$\sigma = q(-\mu_{p}p + \mu_{n}n) = qp(\mu_{n} - \mu_{p})$$ (6.0.3) Thus to have negative over-all conductivity, the condition $\mu_p > \mu_n$ must be satisfied. But $\mu \sim \tau/m^*$, therefore (assuming for the moment the collision time τ to be the same for holes and electrons) one must have the absolute value of m^* for holes to be smaller than that for electrons. In addition, positive conductivity will be contributed by the holes which will be scattered into the positive effective mass regions. For Ge it is easy to calculate that the effective mass of the holes is m* $$\approx$$ -.074 m in the ϵ_1 -(0,2) level and m* \approx -.071 m in the ϵ_1 -(1,3) level. The effective mass of electrons in the Γ_2 conduction band is $$m* \approx 0.04 \text{ m}$$ and the effective masses in the L_1 band are $$m_{\ell}^{\star} = 1.58 \text{ m}_{0}$$ $m_{t}^{\star} = 0.082 \text{ m}_{0}$ Thus if most of the electrons created in the conduction band drop to the conduction band edge (L_1) by means of phonon transitions, a negative resistance device should, in principle, be possible. For Si the corresponding figures are $m^* = -0.67 \text{ m}_0$ for holes in ϵ_{1} -(0,2) level $m^* = -0.315 \text{ m}_0$ for holes in ϵ_{1} -(1,3) level $m^*_{\ell} = 0.97 \text{ m}_0$ for electrons at conduction band edge $m^*_{t} = 0.19 \text{ m}_0$ The m* at the band edge is given because the electrons, even if excited at $k_H^-=0$, are most likely to drop to the band edge through phonon transitions. The above numbers indicate that one should be able to obtain negative resistance in Si for certain orientations of magnetic field quite easily, especially if the $\epsilon_{1-}(1,3)$ level is excited. A difficulty might arise due to the proximity of the $\epsilon_{1+}(0)$ and the $\epsilon_{1+}(1)$ levels to the $\epsilon_{1-}(0,2)$ and $\epsilon_{1-}(1,3)$ levels respectively. However, the difficulty may turn out to be not too great because of the high effective masses in the $\epsilon_{1+}(0)$ and $\epsilon_{1+}(1)$ levels and the consequently small contribution to the conductivity. As an alternative excitation scheme one may use transitions to some impurity or exciton state in the energy gap. In this case the electron mobility should not enter the picture at all. This, of course, is a decided advantage. Another possible method of exciting the required ϵ_1 . Landau level is to use cyclotron resonance transitions together with a shallow impurity which would create carriers in the valence band. However, before a specific set of levels can be selected for use with this scheme, the relative relaxation times between the various levels must be known. Another interesting application possibility arises from the fact that there are many "negative mass" transitions even at $\,k_{_{\! H}} \! = 0$. This is Fig. 6.2 "Negative Mass" Transitions between the Landau Levels belonging to the ϵ_1 Ladders in Si at $\mathcal{H}=5$ kgauss. Expansion coefficients considered are approximately equal to or greater than 0.5 Fig. 6.3 "Negative Mass" Transitions between the Landau Levels belonging to the ϵ_2 Ladders in Si at $\mathcal{H}=5$ kgauss. Expansion coefficients considered are approximately equal to or greater than 0.5 especially true in the case of Si for which all of the "negative mass" transitions between the low lying levels have been summarized in Figs. 6.2 and 6.3. These transitions will be observed to vary quite widely in frequency, thus minimizing the problem of equal level spacings discussed in connection with Lax's maser proposals. The most interesting transitions seem to be those between the ϵ_1 - and ϵ_1 + levels and the ϵ_2 - and ϵ_2 + levels. In the case of Si, many of these fall into a very convenient frequency range. Thus at K = 5 kg the κ_1 +(1,3) $\rightarrow \kappa_1$ -(2,4) transition occurs at 71 kmc. The considerable advantage of such transitions is that one may accidentally populate some of the levels which lie close to the desired one without causing any absorptive transitions. This, of course, will be true only if circularly polarized radiation is used for the signal Because of the numerous second order transitions which are in general possible between the Landau levels--especially those of Si, possibilities seem to exist for low frequency pumping. Thus in most cases the $\epsilon(n,n+2) \rightarrow (n+3,n+5)$, as well as the $\epsilon(n,n+2) \rightarrow \epsilon(n+5,n+7)$ transition is possible, (see page 75). One could therefore use one of these as the signal transition while pumping at the cyclotron frequency. The requirement here (aside from the usual ones) is that there are to be no levels above the one to be populated separated from it by the cyclotron pump frequency. An example of such a level configuration in Si is shown in Fig. 6.4. Many other level configurations suitable for application in a masertype device could be found in both Ge and Si, especially if one also considers the levels arising from the application of the external magnetic field in other than the [001] direction. From Section V it can be seen that the [101] direction may be especially interesting, since the coupling Fig. 6.4 An Example of a Set of Energy Levels in Si (ϵ_1 - Ladder at $\mathcal{H}=5$ kgauss) Suitable, in Principle, for a Low-Frequency-Pump Maser between the Landau levels for that case is quite strong. However, all of these possibilities, as well as the specific ones discussed above, will to a very large extent depend for their success on one's ability to find sufficiently powerful pump sources, and on the outcome of the relaxation time studies. Such studies will no doubt be necessary before any of the ideas presented above can be realized. #### APPENDIX 1 #### SIMULTANEOUS DIAGONALIZATION OF TWO PERTURBATION HAMILTONIANS The basic perturbation theory expansions are as follows (27): $$\Psi = \sum_{\ell} c_{\ell} \Psi_{\ell}^{(O)}$$ (A1.1) $$(E - E_k^{(0)}) c_k = \sum_{\ell} V_{k\ell} c_{\ell}$$ (A1.2) $$E = E_k^{(0)} + E_k^{(1)} + E_k^{(2)} + \cdots$$ (Al.3) $$c_{\ell} = c_{\ell}^{(0)} + c_{\ell}^{(1)} + c_{\ell}^{(2)} + \cdots$$ (A1.4) where $\psi_{\ell}^{(0)}$ and $E_k^{(0)}$ are the zero order wave functions and energies respectively, $V_{k\ell}$ are the matrix elements between the zero order wave functions, and $E_k^{(1)}$, $E_k^{(2)}$, \cdots , are the first, second, etc. order eigenvalue corrections. Suppose the unperturbed (zero order) wave functions are $$\psi_{n}^{(0)}, \psi_{n'}^{(0)} \cdots
\psi_{m}^{(0)} \cdots$$ (Al.5) where all $\psi_n^{(0)}$, $\psi_{n'}^{(0)}$... are degenerate. The problem is to find the corrections to $E_n^{(0)}$ to second order. The correct perturbed eigenfunction is given by $$\Psi = \sum_{n'} c_{n'} \psi_{n'}^{(0)} + \sum_{m} c_{m} \psi_{m}^{(0)}$$ (Al.6) In Al.2, letting $k = n,n' \cdots$, one gets correct to second order the following set of equations: $$(E_n^{(1)} + E_n^{(2)})(c_n^{(0)} + c_n^{(1)}) = \sum_{n'} V_{nn'}(c_{n'}^{(0)} + c_{n'}^{(1)}) + \sum_{m} V_{nm}c_{m}^{(1)}$$ (Al.7) since $c_{m}^{(0)} = 0$. Considering $k = m \neq n, n' \cdots$, one obtains to first order, $$(E_n^{(0)} - E_m^{(0)}) c_m^{(1)} = \sum_{n'} V_{mn'} c_{n'}^{(0)}$$ (Al.8) from which $$c_{m}^{(1)} = \sum_{n'} \frac{V_{mn'} c_{n'}^{(0)}}{E_{n}^{(0)} - E_{m}^{(0)}}$$ (Al.9) Substituting Al.9 into Al.7 $$(E_{h}^{(1)} + E_{n}^{(2)})(c_{n}^{(0)} + c_{n}^{(1)}) = \sum_{n'} V_{nn'}(c_{n'}^{(0)} + c_{n'}^{(1)}) +$$ $$+ \sum_{m} \sum_{n'} \frac{V_{nm} V_{mn'} c_{n'}^{(0)}}{E_{n}^{(0)} - E_{m}^{(0)}}$$ (Al.10) Now a third order term, $\sum_{m} \sum_{n'} \frac{V_{nm} V_{mn'} c_{n'}^{(1)}}{E_{n}^{(0)} - E_{m}^{(0)}}$, may be added to the right hand side of Al.10, with the result $$(E_n^{(1)} + E_n^{(2)})(c_n^{(0)} + c_n^{(1)}) = \sum_{n'} (V_{nn'} + \sum_{m} \frac{V_{nm} V_{mn'}}{E_n^{(0)} - E_m^{(0)}})(c_{n'}^{(0)} + c_{n'}^{(1)})$$ (Al.11) For these equations to be compatible the following condition must be satisfied: $$V_{nn'} + \sum_{m} \frac{V_{nm} V_{mn'}}{E_{n}^{(0)} - E_{m}^{(0)}} - (E_{n}^{(1)} + E_{n}^{(2)}) \delta_{nn'} = 0$$ (A1.12) This gives the required corrections to second order. Now consider a perturbation Hamiltonian V consisting of two parts: $$\hat{\mathbf{v}} = \hat{\mathbf{v}}^1 + \lambda \hat{\mathbf{v}}^2 \tag{Al.13}$$ where λ is first order compared to unity. Then $$V_{nn'} = V_{nn'}^1 + \lambda V_{nn'}^2 \qquad (Al.14)$$ $$v_{nm} = v_{nm}^{1} + \lambda v_{nm}^{2}$$ (Al.15) $$V_{mn'} = V_{mn'}^{1} + \lambda V_{mn'}^{2}$$ (Al.16) $$v_{nm} v_{mn} = v_{nm}^1 v_{mn}^1 + \lambda (v_{nm}^2 v_{mn}^1 + v_{nm}^1 v_{mn}^2) +$$ $$+ \lambda^{2}(v_{nm}^{2} + v_{mn}^{2})$$ $$= V_{nm}^{\perp} V_{mn}^{\perp}, \qquad (A1.17)$$ to second order. Al.12 then becomes $$\left|V_{nn'}^{1} + \lambda V_{nn'}^{2} + \sum_{m} \frac{V_{nm}^{1} V_{mn'}^{1}}{E_{n}^{(0)} - E_{m}^{(0)}} - (E_{n}^{(1)} + E_{n}^{(2)}) \delta_{nn'}\right| = 0$$ (Al.18) In Section 2.1, $V^1 = V^{k \cdot p}$ and $\lambda V^2 = V^{so}$. In this case, $V_{nn'}^1 = 0$. #### APPENDIX 2 #### ELECTRON IN A HOMOGENEOUS MAGNETIC FIELD The problem of an electron in a constant homogeneous magnetic field has been solved by L. Landau (20) The Hamiltonian is $$\hat{H} = \frac{1}{2m} \left(\hat{p} + \frac{|e|\hat{A}}{c} \right)^2 + \frac{|e|}{2mc} \sigma \cdot \hat{\mathcal{H}}$$ (A2.1) Landau chooses the gauge: $$A_{x} = -Hy$$, $A_{y} = A_{z} = 0$ (A2.2) Using this and observing that in A2.1 spin and coordinate parts of the Hamiltonian are separable, one gets $$\left[\frac{1}{2m}\left(p_{x} - \frac{|e|\mathcal{H}_{y}}{c}\right)^{2} + \frac{\hat{p}_{y}^{2}}{2m} + \frac{\hat{p}_{z}^{2}}{2m} + \frac{|e|}{2mc}\sigma\mathcal{H}\right]\psi = E\psi$$ (A2.3) where ψ is a function of coordinates only. Now since \hat{p}_x and \hat{p}_z commute with \hat{H} one may write: $$\psi = e^{\frac{1}{\hbar}(p_X x + p_Z z)} \chi(y) \tag{A2.4}$$ where $\chi(y)$ satisfies the equation $$-\frac{\chi^2}{2m}\frac{\partial^2 \chi}{\partial y^2} + \frac{1}{2}m\left(\frac{|e|\mathcal{H}}{mc}\right)^2(y-y_0)^2\chi = (E - \frac{p_z^2}{2m})\chi$$ (A2.5) in which $$y_0 = -\frac{cp_x}{e\mathcal{H}}$$ (A2.6) Recalling the equation for the harmonic oscillator: $$-\frac{1/2^2}{2m}\frac{\partial^2 \psi}{\partial q^2} + \frac{1}{2} m \omega^2 q^2 \psi = E \psi$$ (A2.7) The solution to the problem is obtained $$\psi = e^{\frac{1}{\cancel{h}}(p_x^x + p_z^z)} e^{-\frac{1}{2}\frac{|e|\mathcal{H}}{\cancel{h}c}(y - y_o)^2} \left[H_n^y(y - y_o) \sqrt{\frac{|e|\mathcal{H}}{\cancel{h}c}} \right]$$ (A2.8) $$= e^{\frac{1}{N}(p_X x + p_Z z)} f_n(y)$$ $$E = (n + \frac{1}{2}) \frac{|e| \cancel{N} \mathcal{H}}{mc} + \frac{p_Z^2}{2m} + \frac{|e|}{2mc} \sigma \mathcal{H}$$ (A2.9) The harmonic oscillator problem is conveniently treated using raising and lowering operators which have the following properties: Raising operator $$a_r \equiv \frac{1}{\sqrt{2n}} \left(-\frac{\partial}{\partial \xi} + \xi \right)$$ (A2.10) $$\psi_n = a \quad \psi_{n-1} \tag{A2.11}$$ Lowering operator $$a_{\ell} = \frac{1}{\sqrt{2n}} \left(\frac{\partial}{\partial \xi} + \xi \right)$$ (A2.12) $$\psi_{n-1} = a_{\ell} \psi_n \tag{A2.13}$$ where $$\xi = \sqrt{\frac{m\omega}{n}} q$$ Similar operators may be defined for the problem of an electron in a magnetic field. Comparing A2.7 with A2.5 one has $$\omega \rightarrow \frac{|e|\mathcal{H}}{mc}$$ (A2.14) $$q \rightarrow y - y_0 \tag{A2.15}$$ Therefore, Raising operator = $$\frac{1}{\sqrt{2n}} \left[-\sqrt{\frac{nc}{|e|\mathcal{H}}} \frac{\partial}{\partial y} + \sqrt{\frac{|e|\mathcal{H}}{nc}} (y-y_0) \right]$$ (A2.16) Lowering operator = $$\frac{1}{\sqrt{2n}} \left[\sqrt{\frac{nc}{|e|\mathcal{H}}} \frac{\partial}{\partial y} + \sqrt{\frac{|e|\mathcal{H}}{nc}} (y-y_0) \right]$$ (A2.17) Using the definitions 2.2.24, the final results are obtained Raising operator = $$\frac{1}{\sqrt{2n}} \sqrt{\frac{n}{|e|\mathcal{H}}} \left(-\hat{k}_x - i\hat{k}_y\right)$$ (A2.18) Lowering operator = $$\frac{1}{\sqrt{2n}} \sqrt{\frac{hc}{|e|\mathcal{H}}} \left(-\hat{k}_x + i\hat{k}_y\right)$$ (A2.19) These operators have the properties $$f_n(y) = \frac{1}{\sqrt{2n}} \sqrt{\frac{nc}{|e|\mathcal{H}}} (-\hat{k}_x - i\hat{k}_y) f_{n-1}(y)$$ (A2.20) $$f_{n-1}(y) = \frac{1}{\sqrt{2n}} \sqrt{\frac{nc}{|e|H}} (-\hat{k}_x + i\hat{k}_y) f_n(y)$$ (A2.21) APPENDIX 3 Ge: Numerical Solution of Equation 3.1.8, Part A 5x5 Determinant | H
(kgauss) | Δ' | $\epsilon_{ t l}$ | € ₂ | €3 | ϵ_{4} | € ₅ | €6 | €7 | €8 | | |---------------|--------------------|-----------------------|------------------|-----------------------------|-------------------------|------------------|-----------------------|---------|---------|-----| | 1 | 25x10 ³ | 2.662 | 25010.4 | 13.361 | 73.392 | 25063. | | | | | | 2.5 | 10 | 2.662 | 10010.4 | 13.361 | 73.228 | 10063.5 | | | | | | 5.0 | 5 | 2.662 | 5010.4
2510.4 | 13.360 | 72.955
72.407 | 5063.7
2564.3 | | | | | | 10 | 2.5 | 2.662
2.661 | 1670.4 | 13.359 | 71.851 | 1724.9 | | | | | | 15 | 1.66 | 2.661 | 1260.4 | 13.357
13.355 | 71.307 | 1315.4 | | | | | | 20 | 1.25
.835 | 2.660 | 845.449 | 13.352 | 70.210 | 901.497 | | | | | | 30
50 | •500 | 2.660 | 510.481 | 13.346 | 67.999 | 568.711 | | | | | | ,0 | •)00 | 2.000 | 710.101 | 25.5 | 0.000 | ,000.122 | | | | | | | | | | | | | | | | 1 | | | | | 8: | x8 Determin | ant | | | | | 1/1 | | | | $\epsilon_{1}^{+}(0)$ | | (2,4) € ₁ -(2,4) | $\epsilon_{1}^{+(2,4)}$ | | € ₁ -(6,8) |) | | ī | | 1 | | 2.661 | 25010.4 | 13.046 | 73.391 | 25063. | 28.387 | 163.874 | 25116.5 | | | 2.5 | | 2.661 | 10010.4 | 13.045 | 73.227 | 10063.5 | 28.385 | 163.189 | 10117. | | | 5.0 | | 2.661 | 5010.4 | 13.044 | 72.953 | 5063.8 | 28.382 | 162.038 | 5118.3 | | | 10 | | 2.661 | 2510.4 | 13.040 | 72.405 | 2564.3 | 28.377 | 159.709 | 2620.6 | | | 15 | | 2.661 | 1670.4 | 13.037 | 71.849 | 1724.9 | 28.371 | 157.318 | 1783.0 | | | 20 | | 2.660 | 1260.4 | 13.034 | 71.305 | 1315.4 | 28.366 | 154.958 | 1375.4 | | | 30 | | 2.660 | 845.449 | 13.027 | 70.208 | 901.542 | 28.355 | 150.159 | 965.169 | | | 50 | | 2.659 | 510.481 | 13.014 | 67.997 | 568.782 | 28.333 | 140.467 | 639.863 | | | | | | Ge: Nu | merical S | Solution (| of Equat | ion 3.1.8 | 8, Part B | | | | | |---|---|--|--|--|--------------------|--|--|--|--|--|--|--| | | Δ^{t} | | | | 5x5 De | terminan | t | | | | | | | (kgauss) | Δ | | € ₁ | €2 | €3 | | €14 | €5 | €6 | €7 | €8 | | | 1
2.5
5.0
10
15
20
30
50 | 25xl0 ³ 10 5 2.5 1.66 1.25 .835 .500 | 11
11
11
11
11 | .189
.187
.182
.174
.166
.157
.141 | 25023.6
10023.6
5023.6
2523.7
1683.7
1273.7
858.79 ¹
523.920 | _ | 82 95
80 95
75 94
70 93
65 92
55 90 | .926
.666
.232
.358
.468
.595
.831 | 25076.6
10016.8
5077.3
2578.1
1735.0
1329.9
916.674
585.247 | | | | | | | | | | | 8x8 De | terminan | .t | | | | | | | | | ϵ_1 | (1) | | € ₁ -(3 | ,5) ∈ ₁ + | (3,5) | | € ₁ -(7,9 | 9) | | | | 1
2.5
5.0
10
15
20
30
50 | | 11.176
11.173
11.169
11.161
11.152
11.144
11.127 | | 25023.6
10023.6
5023.6
2523.7
1683.7
1273.7
858.79 ¹
523.920 | | 41 95
37 95
29 94
21 93
13 92
98 90 | .400
.640
.206
.333
.444
.572
.810
.245 | 25076.6
10076.8
5077.3
2578.2
1739.1
1330.0
916.735
585.339 | 32.146
32.144
32.140
32.133
32.126
32.119
32.104
32.076 | 186.554
185.681
184.213
181.235
178.172
175.144
168.981
156.595 | 25129.8
10130.7
5132.1
2635.1
1798.2
1391.2
982.345
659.735 | | | | | | | | llxll | Determin | ant | | | | | | | Δ^{\dagger} | $\epsilon_{ t l}$ | €2 | € ₃ | ϵ_{14}
 € ₅ | €6 | €7 | €8 | €9 | € ₁₀ | ϵ_{11} | | | .500x10 ³ | 10.898 | 523.920 | 16.850 | 87.245 | 585.339 | 30.845 | 156.570 | 659.874 | 47.059 | | 747.069 | | Ge: Numerical Solution of Equation 3.1.8, Part C | 3~3 | Determinant | |-----|---------------| | 14 | De cerminan c | | H
(kgauss) | $\triangle^{\mathbf{t}}$ | $\epsilon_{ exttt{l}}$ | € ₂ | € 3 | €14 | €5 | €6 | €7 | €8 | €9 | |---------------|--------------------------|------------------------|-----------------------|--------------------|-----------------------|---------------------|----------------------------------|--------|---------|---------| | 1
2.5 | 25x10 ² | 4.511
4.509 | 29.471
29.445 | 25037.
10037. | | | | | | | | | | | | | 6x6 Dete | rminant | | | | | | 1
2.5 | | 4.429
4.427 | 29.613
29.571 | 25037 ·
10037 · | 20.717
20.716 | 118.545
118.166 | 25090 .
10090 . | | | | | | | | | | 9x9 Dete | rminant | | | | | | | | € ₁ -(0,2) | ϵ_{1} +(0,2) | • | € ₁ -(4,6) | <pre>€1+(4,6)</pre> | | | | | | 1 | | 4.428 | 29.604 | 25037. | 20.136 | 118.496 | 25090. | 35.912 | 209.233 | 25143. | | 2.5 | | 4.426 | 29.579 | 10037. | 20.134 | 118.117 | 10090. | 35.909 | 208.149 | 10144. | | 5.0 | | 4.422 | 29.537 | 5036.9 | 20.130 | 117.484 | 509099 | 35.905 | 206.325 | 5146.0 | | 10 | | 4.415 | 29.453 | 2537.1 | 20.123 | 116.207 | 2592.2 | 35.895 | 202.616 | 2649.7 | | 15 | | 4.408 | 29.368 | 1697.2 | 20.115 | 114.904 | 1753.5 | 35.886 | 198.792 | 1813.5 | | 20 | | 4.400 | 29.285 | 1287.3 | 20.108 | 113.623 | 1344.8 | 35.876 | 195.006 | 1407.3 | | 30 | | 4.386 | 29.119 | 872.582 | 20.093 | 111.026 | 932.417 | 35.858 | 187.304 | 1000.03 | | 50 | | 4.357 | 28.784 | 538.097 | 20.063 | 105.765 | 602.725 | 35.821 | 171.928 | 680.418 | Ge: Numerical Solution of Equation 3.1.8, Part D | æ | | | | 3 x 3 | Determinar | ıt | | | | | |---|----------------------------|--|--|--|--|--|--|--|--|---| | (kgauss) | $\triangle_{\mathfrak{t}}$ | $\epsilon_{\mathtt{l}}$ | €2 | €3 | ϵ_{14} | €5 | €6 | €7 | €8 | €9 | | 2.5 | 25x10 ³ | 9.265
9.269 | 51.083
51.011 | 25050.
10050. | | | | | | | | | | | | 6x6 | Determinan | nt | | | | | | 1 2.5 | | 9.076
9.075 | 51.117
51.045 | 25050.1
10050.2 | 24.611
24.610 | 141.201
140.681 | 25103.2
10103.7 | | | | | | | | | 9x9 | Determinan | ıt | | | | | | | | $\epsilon_{1}^{-(1,3)}$ | $\epsilon_{1^{+}}(1,3)$ | | $\epsilon_{1}^{-(5,7)}$ | $\epsilon_{1^{+}(5,7)}$ | | | | | | 1
2.5
5.0
10
15
20
30
50 | | 9.072
9.072
9.071
9.069
9.067
9.065
9.062
9.055 | 51.121
51.045
50.929
50.689
50.446
50.208
49.727
48.755 | 25050.1
10050.2
5050.31
2550.61
1710.92
1301.22
886.828
553.042 | 23.851
23.848
23.843
23.833
23.823
23.813
23.794
23.754 | 141.128
140.608
139.737
137.978
136.177
134.403
130.800
123.503 | 25103.2
10103.7
5104.56
2606.34
1768.16
1359.96
948.595
620.946 | 39.650
39.647
39.642
39.631
39.620
39.609
39.588
39.545 | 231.909
230.591
228.370
223.845
219.170
214.539
205.123
186.487 | 25156.5
10151.8
5160.0
2664.52
1829.20
1423.82
1018.24
701.888 | ## Ge: Numerical Solution of Equation 3.1.13, Part A | H
(kgau | ss) Δ' | $\epsilon_{ t l}$ | €2 | € ₃ | $\epsilon_{1\!4}$ | € ₅ | €6 | €7 | €8 | €9 | €
10 | |---|--|---|--|--|---|--|--|--|--------------------------------------|--|--| | 1
2.5
5.0
10
15
20
30
50 | 25x10 ³ 10x103 5x103 2.5x103 1.66x103 1.25x103 .835x103 | 3.694
3.693
3.692
3.691
3.690
3.688
3.683 | 10.162
10.160
10.157
10.151
10.144
10.138
10.126
10.101 | 87.943
87.829
87.639
87.251
86.849
86.447
85.613
83.815 | 25029.
10029.
5029.6
2530.0
1690.4
1280.8
866.65
533.48 | | | | | | | | | | | | | 7x7 I | etermina) | nt | | | | | | 1
2.5
5.0
10
15
20
30
50 | | 3.691
3.690
3.689
3.687
3.686
3.684
3.679 | 9.972
9.969
9.965
9.956
9.948
9.939
9.922
9.888 | 88.108
87.995
87.804
87.415
87.012
86.609
85.772
83.968 | 25029.
10029.4
5029.6
2530.0
1690.4
1280.8
866.647
533.471 | 24.658
24.653
24.645
24.629
24.612
24.596
24.564
24.498 | 178.583
178.004
177.024
175.009
172.897
170.767
166.288
156.613 | 25082.
10083.
5084.0
2586.0
1748.1
1340.3
429.798
604.558 | | | | | | | | | | 10x10 | Determi | nant | | | | | | | | € ₂ +(0) | € ₂ -(2,4 | ·) $\epsilon_{2}^{+}(2,4)$ |) | € ₂ -(6,8) | € ₂₊ (6,8) | | | | | | 10
15
20
30
50 | | 3.687
3.686
3.684
3.679 | 9.943
9.935
9.917
9.882 | 87.013
86.611
85.773
83.969 | 1690.4
1280.8
866.647
533.471 | 23.920
23.893
23.867
23.813
23.704 | 173.040
171.105
166.430
156.736 | 1748.1
1340.3
929.773
604.497 | 39.459
39.430
39.377
99.267 | 255.201
248.854
238.634
215.278 | 1809.9
1405.3
1001.63
690.191 | # Ge: Numerical Solution of Equation 3.1.13, Part B | (kgauss) | Δ' | €l | €2 | €3 | ϵ_{14} | €
5 | €6 | €7 | €8 | €9 | € ₁₀ | |---|-------------------------------|--|--|--|---|--|--|---|--|---|--| | 1
2.5
5.0 | 25x10 ³
10
5 | 21.917
21.917
21.916 | 13.312
13.310
13.305 | 110.564
110.369
110.039 | 25043.
10043.
5043.1 | | | | | | | | | | | | | 7x7 Dete | rminant | | | | | | | 1
2.5
5.0
10
15
20
30
50 | | 13.040
13.036
13.030
13.017
13.003
12.990
12.964
12.910 | 21.881
21.881
21.880
21.880
21.879
21.879
21.877 | 110.723
110.528
110.198
109.524
108.824
108.123
106.658
103.488 | 25043.
10043.
5043.06
2543.7
1704.46
1295.16
881.642
549.836 | 28.381
28.376
28.366
28.348
28.329
28.310
28.273
28.197 | 201.206
200.513
199.237
196.608
193.845
191.054
185.180
172.563 | 25096.
10096.
5097.75
2600.4
1763.19
1356.01
946.930
624.654 | | | | | | | | | | 10x10 Det | erminant | | | | | | | | | € ₂₊ (1) | € ₂ -(3,5) | $\epsilon_{2+}(3,5)$ | | € ₂ -(7,9) | € ₂₊ (7,9) | | | | | | 10
15
20
30
50 | | 21.877
21.876
21.876
21.874
21.872 | 13.009
12.996
12.982
12.955
12.900 | 109.525
108.825
108.124
106.659
103.489 | 2543.7
1704.46
1295.16
881.642
549.836 | 27.473
27.440
27.408
27.344
27.213 | 196.743
193.984
191.194
185.320
172.678 | 2600.4
1763.18
1355.99
946.891
624.562 | 43.225
43.195
43.166
43.106
42.986 | 281.445
275.142
268.752
255.374
227.937 | 2659.7
1826.03
1422.47
1020.96
713.653 | Ge: Numerical Solution of Equation 3.1.13, Part C | H
(kgauss) | $\triangle^{\mathfrak{r}}$ | $\epsilon_{ t l}$ | ϵ_2 | €3 | ϵ_{14} | € ₅ | €6 | €7 | €8 | €9 | | |---|----------------------------|--|---|--|--|---|--|--|--
--|--| | 1
2.5
5.0
10
15
20
30
50 | | 2.100
2.100
2.100
2.100
2.099
2.099
2.099 | 43.090
43.074
43.047
42.993
42.937
42.882
42.768
42.527 | 25003.
10003.
5002.9
2502.9
1663.0
1253.0
838.16
503.43 | | | | | | | | | | | | | | 6x6 De | terminant | | | | | | | 1
2.5
5.0
10
15
20
30
50 | | 2.058
2.058
2.057
2.057
2.057
2.056
2.056
2.055 | 43.299
43.283
43.256
43.201
43.145
43.089
42.974
42.730 | 25002.8
10002.8
5002.86
2502.92
1662.98
1253.04
838.164
503.427 | 17.207
17.204
17.198
17.187
17.175
17.164
17.141
17.094 | 133.224
132.923
132.416
131.378
130.296
129.210
126.935
122.003 | 25055.8
10056.1
5056.62
2557.67
1718.77
1309.86
897.164
567.147 | | | | | | | | | | | 9x9 De | terminant | | | | | | | 5.0
10
15
20
30
50 | | 2.057
2.057
2.057
2.056
2.056
2.055
2.054 | € ₂₊ (0,2)
43.263
43.208
43.152
43.096
42.981
42.737 | 5002.86
2502.92
1662.98
1253.04
838.164
503.427 | \(\epsilon_2 - (4,6) \) 16.790 16.773 16.756 16.739 16.704 16.634 | € ₂₊ (4,6)
132.569
131.531
130.449
129.361
127.083
122.140 | 5056.62
2557.67
1718.76
1309.86
897.155
567.125 | 32.050
32.028
32.006
31.985
31.942
31.855 | 221.383
218.054
214.548
211.001
203.537
187.635 | 5111.62
2614.97
1778.51
1372.09
964.611
645.648 | | # Ge: Numerical Solution of Equation 3.1.13, Part D | | | | | | 3x3 Det | erminant | | | | | |---|--|--|--|---|--|--|--|--|--|--| | (kgauss |) ^Δ ' | $\epsilon_{ t 1}$ | €2 | € ₃ | €4 | € ₅ | €6 | €7 | €8 | €9 | | 1
2.5
5.0
10
15 | 25x10 ³
10
5
2.5
1.66 | 6.157
6.155
6.152
6.147
6.141 | 65.406
65.353
65.263
65.081
64.893 | 25016.
10016.
5016.2
2516.4
1676.6 | | | | | | | | | | | | | 6x6 Det | erminant | | | | | | 1
2.5
5.0
10
15
20
30
50 | | 6.049
6.047
6.044
6.037
6.030
6.023
6.008
5.980 | 65.584
65.530
65.440
65.256
65.067
64.879
64.489
63.655 | 25016.0
10016.1
5016.18
2516.37
1676.57
1266.76
852.59
518.011 | 20.943
20.939
20.932
20.919
20.905
20.891
20.861
20.808 | 155.901
155.472
154.748
153.263
151.811
150.149
146.869
139.762 | 25069.1
10069.5
5070.25
2571.75
1733.32
1324.90
912.212
585.385 | | | | | | | | | | 9x9 Det | erminant | | | | | | | | $\epsilon_{2}^{-}(1,3)$ | € ₂ +(1,3 |) | € ₂ -(5,7) | $\epsilon_{2}^{+}(5,7)$ | | | | | | 2.5
10
15
20
30
50 | | 6.046
6.035
6.028
6.021
6.006
5.978 | 65.532
65.259
65.070
64.881
64.491
63.657 | 10016.1
2516.37
1676.57
1266.76
852.159
518.011 | 20.397
20.365
20.343
20.321
20.278
20.190 | 155.618
153.411
151.859
150.296
147.014
139.893 | 10069.5
2571.75
1733.32
1324.89
913.196
585.347 | 35.790
35.754
35.729
35.705
35.651
35.559 | 245.448
239.345
235.002
230.603
221.355
201.859 | 10123.6
2629.71
1794.09
1388.52
982.843
667.508 | APPENDIX 4 ## Si: Numerical Solution of Equation 3.1.8, Part A | | | | | | | 52 | c5 Determ | inant | | | | | | | | |---|--|--|------------------------------|----------------------------------|--|--|----------------------------|--|--|--|--|--|-----------------|-----------------|-------------------------------| | H
(kgauss) | Δ^{t} | $\epsilon_{\mathtt{l}}$ | €2 | €3 | €4 | €5 | €6 | €7 | €8 | €9 | € ₁₀ | ϵ_{11} | € ₁₂ | € ₁₃ | €14 | | 2.5 | 3.8x10 ³ | 1.626
1.625 | 3802.49
1522.49 | 7.645
7.639 | 19.325
19.300 | 3818.51
1538.54 | | | | | | | | | | | | | | | | | 8x8 | 8 Determ | inant | | | | | | | | | 1 2.5 | 3.8x10 ³ | 1.625
1.624 | 3802.49
1522.49 | 7.385
7.376 | 20.531 20.504 | 3818.51
1538.55 | 16.355
16.339 | 41.489
41.367 | 3834.57
1554.11 | | | | | | | | | | | | | | 1.1 | xll Dete | rminant | | | | | | | | | | | <pre>€₁+(0)</pre> | | € ₁ -(2,4 | ·) ε ₁₊ (2, | 4) 6 | 1-(6,8) | € ₁ +(6,8 |) ∈ | 1-(10,12) | € ₁ +(10,1 | 2) | | | | | 1
2.5
5.0
10
15
20
30
50 | 3.8x10 ³ 1.52 .76 .38 .253 .190 .127 .076 | 1.625
1.624
1.623
1.621
1.619
1.618
1.614
1.607 | 129.507 | 7.354
7.324
7.294
7.265 | 20.021
19.991
19.942
19.843
19.745
19.647
19.454
19.071 | 778.618
398.752
271.886
209.018 | | 41.572
41.453
41.254
40.851
40.442
40.033
39.213
37.580 | 3834.59
1554.75
795.022
415.558
289.094
226.520
164.645
115.587 | 27.420
27.390
27.341
27.244
27.148
27.053
26.870
26.517 | 64.248
63.999
63.496
62.472
61.428
60.386
58.332
54.500 | 3850.69
1571.00
811.519
432.583
306.672
244.764
183.938
137.087 | | | | | | | | | | | 14 | xl4 Dete | rminant | | | | | | | | | 20
30
50 | | 1.618
1.614
1.607 | 192.499
129.507
78.523 | 7.208 | 19.358 | 209.018
146.278
95.792 | 15.356
15.183
14.847 | 39.533 | 226.624
164.656
115.625 | | 58.266 | 245.311
184.576
137.662 | 36.365 | | 264.435
205.455
161.623 | Si: Numerical Solution of Equation 3.1.8, Part B | (kgauss) | $\epsilon_{ t l}$ | € ₂ | €3 | ϵ_{4} | €5 | €6 | €7 | €8 | €9 | €10 | ϵ_{11} | ϵ_{12} | € 1 3 | ϵ_{14} | |---|--|---|---|--|---|----------------------------|--|--|----------------------------|--|--|-----------------|--------------|--------------------| | 2.5 | 4.858
4.856 | 3806.49
1526.49 | 10.445
10.435 | 24.729
24.687 | 3822.52
1542.57 | | | | | | | | | | | | | | | | 8 x 8 | Determin | ant | | | | | | | | | 2.5 | 4.850
4.848 | 3806.49
1526.49 | 10.015 | 25.385
25.342 | 3822.53
1542.59 | 19.382
19.362 | 47.162
47.004 | 3838.60
1558.77 | | | | | | | | | | | | | llxl | L Determi | nant | | | | | | | | | | | E | 1-(3,5) | $\epsilon_{1+}(3,5)$ |) | € ₁ -(7,9) | € ₁₊ (7,9 |) | ^(11,13) | $\epsilon_{1^{+}}(11,13)$ | | | | | | 1
2.5
5.0
10
15
20
30 | 4.849
4.848
4.845
4.839
4.833
4.827
4.816
4.794 | 3806.49
1526.49
766.495
386.506
259.517
196.528
133.551
82.598 | 10.001
9.987
9.964
9.918
9.873
9.828
9.741
9.567 | 24.927
24.884
24.812
24.669
24.525
24.383
24.100
23.536 | 3822.53
1542.59
799.165
402.902
276.111
21.3.316
150.721
100.514 | 18.180
18.069
17.960 | 47.133
46.980
46.723
46.202
45.673
45.142
44.081
41.982 | 3838.62
1558.82
782.694
419.846
293.525
231.191
169.485
120.907 | 29.774
29.665
29.454 | 70.036
69.680
69.079
67.855
66.607
65.362
62.922
58.462 | 3854.73
1575.09
815.707
436.970
311.266
249.567
189.150
143.011 | | | | | | | | | | 14x1 | + Determi | nant | | | | | | | | | 30
50 | 4.816
4.794 | 133.551
82.598 | | 23.890
23.303 | | 17.604
17.141 | | 169.502
120.960 | | 62.834
58.458 | 189.791
143.491 | | | 211.111
168.078 | # Si: Numerical Solution of Equation 3.1.8, Part C | H
(kgauss) | $\epsilon_{ exttt{l}}$ | €2 | €
3 | ϵ_{14} | €
5 | €6 | €7 | €8 | €9 | € ₁₀ | ϵ_{11} | ϵ_{12} | | |------------------------------------|--|---|--
--|--|---|--|--|---|--------------------------------------|--|---|-----| | 1
2.5
5.0 | 1.539
1.537
1.534 | 9·341
9·336
9·328 | 3810.49
1530.50
770.506 | | | | ; | | | | | | | | | | | | | 6x6 De | terminant | | | | | | | | | 1 2.5 | 1.509
1.507 | 8.650
8.645 | 3810.49
1530.50 | 13.301
12.288 | 30.253
30.189 | 3826.53
1546.61 | | | | | | | | | | | | | | 9x9 De | terminant | | | | | | | | | 1 2.5 | 1.509
1.506 | 8.606
8.600 | 3810.49
1530.50 | 12.704
12.686 | 30.636
30.572 | 3826.54
1546.64 | 22.132 22.109 | 52.858
52.658 | 3842.62
1562.84 | | | • H | 181 | | | | | | | 12x12 | Determinan | nt | | | | | | | | | € ₁ -(0,2) | $\epsilon_{1+}(0,$ | 2) | € ₁ -(4,6) | $\epsilon_{1+}(4,6)$ | 6 | (8,10) | $\epsilon_{1+}(8,1)$ | .0) | € ₁ -(12,14) |) € ₁₊ (12, | 14) | | | 2.5
5.0
10
15
20
30 | 1.506
1.503
1.495
1.488
1.481
1.468 | 8.599
8.589
8.569
8.550
8.532
8.495
8.424 | 1530.50
770.519
390.554
263.589
200.624
137.694 | 12.657
12.625
12.562
12.499
12.437
12.314
12.071 | 29.898
29.803
29.613
29.421
29.230
28.847
28.071 | 1546.64
786.786
407.087
280.387
217.683
155.265
105.397 | 20.786
20.716
20.578
20.442
20.309
20.052 | 52.533
52.211
51.557
50.890
50.221
48.885
46.270 | 1562.91
803.326
424.168
298.008
235.830
174.421
126.364 | 32.683
32.541
32.403
32.136 | 75.365
74.658
73.214
71.741
70.276
67.422
62.319 | 1579.19
819.911
441.391
315.915
254.445
194.473
149.081 | | Si: Numerical Solution of Equation 3.1.8, Part D | 2372 | Determinant | | |---------|---------------|---| | J-72" J | Decementation | , | | H
(kgauss) | € ₁ | €2 | € ₃ | €4 | €
5 | €6 | € ₇ | €8 | €9 | €
10 | €
11 | €
12 | | |--|---|--|--|--|--|---|--|--|---|--|--|---|-------| | 1
2.5
5.0 | 4.738
4.734
4.727 | 14.135
14.123
14.102 | 3814.50
1534.51
774.539 | | | | | | | | | | | | | | | | | 6x6 Dete | rminant | | | | | | | | | 1
2.5 | 4.617
4.612 | 12.720
12.709 | 3814.50
1534.52 | 16.500
16.483 | 35.848
35.758 | 3830.55
1550.65 | | | | | | | | | | | | | | 9x9 Dete | rminant | | | | | | | -185- | | 1
2.5 | 4.616
4.610 | 12.501
12.487 | 3814.50
1534.52 | 15.848
15.826 | 36.060
35.971 | 3830.57
1550.69 | 24.787
24.761 | 58.511
58.324 | 3846.56
1566.91 | | | | 35- | | | | | | 1 | 2x12 Det | erminant | | | | | | | | | | € ₁ -(1,3) | € ₁ +(1,3) |) | € ₁ -(5,7) | $\epsilon_1^{+(5,7)}$ | ') | 1-(9,11) |) ₁₊ (9,1 | LL) | € ₁ -(13,15 |) ₆₁₊ (13, | 15) | | | 2.5
5.0
10
15
20
30
50 | 4.610
4.602
4.585
4.568
4.551
4.519
4.457 | 12.477
12.452
12.402
12.353
12.304
12.209
12.023 | 1534.52
774.560
394.636
267.712
207.787
141.936
91.231 | 15.781
15.741
15.661
15.581
15.502
15.346
15.039 | 36.668
36.538
36.278
36.021
35.769
33.162
32.360 | 1550.69
790.895
411.305
284.715
222.119
159.911
110.435 | 23.077
22.913
22.752
22.595
22.293 | 58.102
57.707
56.903
56.082
55.258
53.615
50.444 | 1566.99
807.504
428.525
302.542
240.537
179.952
131.951 | 34.119
34.036
33.868
33.696
33.522
35.287
34.436 | 81.052
80.229
78.546
76.829
75.125
71.832
66.083 | 1583.30
824.132
445.899
320.621
259.401
199.909
155.287 | | # Si: Numerical Solution of Equation 3.1.13, Part A | H
(kgaus: | s) [€] l | €2 | €
3 | €4 | €
5 | €6 | €7 | €8 | €9 | €10 | € ₁₁ | € ₁₂ | €13 | | |---|--|--|--|---|--|--|--|--|--|--|----------------------------|--------------------------------------|--|-------| | 2.5 | 2.132 | 6.623
6.622 | 22.644 | 3809.53
1529.56 | | | | | | | | | | | | | | | | | 7x7 | Determin | ant | | | | | | | | | 1
2.5 | 2.129 | | 23.640
23.618 | 3809.53
1529.56 | 15.186
15.175 | 44.995
44.877 | 3825.00
1545.73 | | | | | | | | | | | | | | 10x1 | .O Determ | inant | | | | | | | | | | € ₂ +(0) | € ₂ -(2,4) | € ₂ +(2,4 |) | € ₂ -(6,8) | € ₂₊ (6,8 |) | e ₂ -(10,12 | e) ∈ ₂₊ (10,1 | 2) | | | | | | 1
2.5
5.0
10
15
20
30
50 | 2.129
2.128
2.127
2.124
2.121
2.118
2.113
2.102 | 6.473
6.471
6.466
6.456
6.447
6.438
6.415
6.382 | 23.002
22.976
22.933
22.846
22.756
22.666
22.479
22.076 | 3809.53
1592.56
769.601
389.688
262.779
199.871
137.062
86.483 | 14.675
14.654
14.619
14.549
14.479
14.409
14.271
13.995 | 45.713
45.599
45.404
44.999
44.574
44.134
43.206
41.174 | 3825.60
1545.73
785.952
406.402
279.869
217.346
155.335
106.467 | 25.643
25.623
25.590
25.523
25.454
25.385
25.245
24.954 | 67.698
67.407
66.911
65.875
64.784
63.659
61.331
56.627 | 3841.73
1562.05
802.593
423.732
297.932
236.170
175.734
129.935 | | | | -186- | | | | | | | 13x1 | 3 Determ | inant | | | | | | | | | 5.0
10
15
20
30 | 2.127
2.124
2.121
2.118
2.113
2.102 | 6.466
6.456
6.447
6.438
6.419
6.382 | 22.548
22.420
22.289
22.158
21.892
21.347 | 769.601
389.688
262.779
199.871
137.062
86.483 | 14.591
14.516
14.440
14.365
14.215
13.910 | | 785.952
406.402
279.869
217.346
155.334
106.463 | | 67.450
66.459
65.407
64.314
62.033
57.387 | 802.582
423.690
297.839
236.010
175.409
129.276 | 34.594
34.481
34.369 | 87.104
85.036
82.926
78.716 | 819.528
441.685
316.969
256.313
198.034
155.692 | 3 | | | | | Si: N | umerical S | Solution | of Equat | tion 3.1. | 13, Part | В | | | | | | |------------------------|--|--
--|---|--|--|---|--
--|--|--|--|--|---| | e | | | |
| | | | | | | | | | | | | €l | €2 | [€] 3 | €14 | €5 | €6 | €7 | €8 | €9 | € ₁₀ | ϵ_{11} | €12 | € ₁₃ | | | •5 | 6.112 | 9.654
9.654 | 28.170
28.130 | 3813.55
1533.59 | | | | | | | | | | | | | | | | | 7x7 De | eterminar | nt | | | | | | | | | •5 | | | | 3813.55
1533.59 | | | | | | | | | | | | | | | | | 10x10 | Determin | ant | | | | | | | | | | € ₂ +(1) | € ₂ -(3,5) | € ₂ +(3,5) | | [€] 2-(7,9) | € ₂₊ (7,9) | | € ₂ -(11,1; | 3) € ₂₊ (11 | 13) | | | | | | 0 0 0 0 0 0 0 0 0 | 6.079
6.076
6.070
6.058
6.046
6.034
6.010
5.963 | 9.418
9.414
9.408
9.395
9.383
9.370
9.346
9.297 | 29.680
29.646
29.588
29.470
29.348
29.224
28.968
28.422 | 266.969
204.129
141.460 | 16.788
16.700
16.526 | 51.171
50.918
50.392
49.837 | 1549.80
790.08
410.67
284.27
221.90
160.18 | 26.842
3 26.793
0 26.688
8 26.582
0 26.479
7 26.256 | 73.05
1 72.46
3 71.22
2 69.91
5 68.57
6 65.81 | 4 1566.1
1 806.7
3 428.1
9 302.5
5 241.0
7 181.1 | .5
98
.59
.96
.77 | | | 100 | | | | | | | 13x13 | Determin | nant | | | | | | | | | .0
0
5
0
0 | 6.070
6.058
6.046
6.034
6.010
5.963 | 9.408
9.395
9.383
9.370
9.345
9.296 | 29.243
29.103
28.958
28.810
28.503
27.832 | 773.663
393.814
266.969
204.129
141.460
91.188 | 16.920
16.822
16.724
16.626
16.431
16.040 | 50.557 | 221.900 | 24.985 | 72.948
71.767
70.513
69.211
66.508
61.137 | 428.102
302.470
240.862
180.700 | 37.121
37.002
36.884
36.649 | 94.588
92.339
89.976
87.576
82.840
74.509 | 823.809
446.276
321.890
261.566
203.903
162.426 | | | | .uss) .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 6.112
6.109
6.109
6.080
6.080
6.076
6.076
6.079
6.076
6.070
6.070
6.058
6.046
6.010
6.058
6.046
6.010
6.058
6.046
6.058
6.046
6.058
6.046
6.058
6.046
6.058
6.046
6.058
6.046
6.058
6.046
6.058
6.046
6.058
6.046
6.058
6.058
6.010 | ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{3} ϵ_{5} ϵ_{6} ϵ_{1} ϵ_{2} ϵ_{6} ϵ_{1} ϵ_{2} ϵ_{6} ϵ_{1} ϵ_{2} ϵ_{6} ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{3} ϵ_{5} ϵ_{6} ϵ_{6} ϵ_{6} ϵ_{6} ϵ_{7} ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{2} ϵ_{1} ϵ_{2} ϵ_{3} ϵ_{5} ϵ_{6} ϵ_{6} ϵ_{7} ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{3} ϵ_{5} ϵ_{6} ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{3} ϵ_{5} ϵ_{6} ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{3} ϵ_{5} ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{3} ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{3} ϵ_{1} ϵ_{2} ϵ_{2} ϵ_{3} ϵ_{2} ϵ_{3} ϵ_{3} ϵ_{1} ϵ_{2} ϵ_{3} ϵ_{1} ϵ_{2} ϵ_{3} ϵ_{2} ϵ_{3} ϵ_{3} ϵ_{2} ϵ_{3} ϵ_{3} ϵ_{3} ϵ_{3} ϵ_{2} ϵ_{3} ϵ_{3 | (auss) \$\begin{array}{cccccccccccccccccccccccccccccccccccc | enuss) \$\begin{array}{c c c c c c c c c c c c c c c c c c c | **A** Defenses** **Parameter** | 4x4 Determinar 6x1 | Ax4 Determinant Determ | Axh Determinant Determ | ### Determinant 4x4 Determi | #x4 Determinant 6.112 9.654 28.170 3813.55 5 6.109 9.654 28.130 1533.59 7x7 Determinant 6.080 9.425 29.061 3813.55 17.723 50.651 3829.63 5 6.076 9.422 29.023 1533.59 10x10 Determinant 62+(1) 62-(3,5) 62+(3,5) 6.079 9.418 29.680 3813.55 5 6.076 9.414 29.646 1533.59 17.036 51.319 3829.63 6.079 9.408 29.588 773.663 6.0606 9.383 29.348 266.969 6.0607 9.488 29.224 204.129 6.079 9.346 28.968 7.070 10.00 21.171 1549.80 6.080 9.383 29.348 266.969 6.080 9.383 29.348 266.969 6.080 9.383 29.224 204.129 6.080 9.380 29.224 204.129 6.080 9.380 29.224 204.129 6.080 9.380 29.292 7.080 20.292 7.090 20.292 7.000 20.292 7.000 20.292 7.000 20.292 7.000 20.292 7.000 20.292 7.000 20.292 7 | Ax4 Determinant | #x ⁴ Determinant 6.112 9.654 28.170 3813.55 7x7 Determinant 7x7 Determinant 6.080 9.425 29.061 3813.55 17.723 50.651 3829.63 10x10 Determinant 6.079 9.418 29.680 3813.55 6.076 9.414 29.646 1533.59 17.703 51.319 3829.63 6.079 9.418 29.680 3813.55 17.036 51.319 3829.63 6.079 9.448 29.686 3813.55 17.036 51.319 3829.63 26.873 73.401 3845.77 5 6.076 9.414 29.646 1533.59 17.010 51.171 1549.80 28.417 39.3814 16.877 50.918 79.083 28.719 72.461 806.798 28.828 71.223 428.159 38.838 49.837 284.278 28.688 38.848 71.223 428.159 38.849 6.046 9.383 29.348 266.969 16.788 49.837 284.278 38.849 6.046 9.3840 29.224 204.129 16.700 49.261 221.900 26.475 68.575 241.077 38.849 79.083 29.278 28.422 91.188 16.82 50.557 410.670 25.353 71.767 428.102 37.121 29.339 13x13 Determinant | Part | # Si: Numerical Solution of Equation 3.1.13, Part C | (1 | H
kgauss |) ⁶ 1 | ϵ_2 | € ₃ | ϵ_{4} | € ₅ | €6 | €7 | €8 | €9 | € ₁₀ | €11 | € ₁₂ | | |----|--|--|--|--|---|--|--|--|--|---|--|--|---|--| | | 1
2.5
5.0 | 1.221
1.221
1.220 | 11.892
11.888
11.882 | 3801.52
1521.52
761.530 | | | | | | | | | | | | | | | | | | 6x | 6 Determin | nant | | | | | | | | | 1
2.5 | 1.201 | 13.569
13.567 | 3801.52
1521.52 | 9.667
9.660 | 33.747
33.686 | 3817.56
1537.63 | | | | | | | | | | | | | | | 9x | 9 Determin | nant | | | | | | | | | 1 2.5 | 1.201 | 13.318
13.313 | 3801.52
1521.52 | 9.504
9.494 | | 3817.56
1537.63 | 20.246 | 56.321
56.127 | 3833.66
1553.87 | | | | | | | | | | | | 12 | xl2 Determ | ninant | | | | | | | | | | € ₂ -(0,2) | € ₂ +(0,2) | | € ₂ -(4,6) | € ₂₊ (4,6) | 6 | 2-(8,10) | € ₂₊ (8,10) | | € ₂ -(12,14) | € ₂₊ (12,1 | 4) | | | | 2.5
5.0
10
15
20
30
50 | 1.200
1.199
1.197
1.195
1.193
1.189 | 13.297
13.287
13.267
13.247
13.227
13.185
13.096 | 1521.52
761.530
381.543
254.558
191.572
128.602
77.668 | 9.489
9.472
9.438
9.404
9.369
9.301
9.163 | 34.821
34.723
34.521
34.311
34.095
33.645
32.664 | 1537.63
777.742
397.974
271.215
208.460
145.971
96.089 | 19.348
19.294
19.186
19.078
18.971
18.762
18.351 | 56.751
56.433
55.768
55.066
54.337
52.803
49.544 | 1553.87
794.232
414.974
288.743
226.529
165.151
117.557 | 29.640
29.589
29.487
29.383
29.279
29.068
28.622 | 78.704
78.005
76.545
75.006
73.426
70.208
64.040 | 1570.26
811.023
432.627
307.323
246.069
186.643
142.554 | | Si: Numerical Solution of Equation 3.1.13, Part D | H
(kgauss | s) ⁶ 1 | €2 | €
3 | €4 | € ₅ | €6 | € ₇ | €8 | €9 | €10 | € | ϵ_{12} | | |--|---|--|--|--|--|---|--|--|---|--|--|---|---| | 1 2.5 | 3.910
3.910 | 17.198
17.186 | 3805.52
1525.54 | | | | | | | | | | | | | | | | | 6x6 D | eterminant | • | | | | | | | | 1 2.5 | 3.841
3.839 | 18.395
18.386 | 3805.52
1525.54 | 12.565
12.555 | 39·359
39·271 | 3821.58
1541.68 | | | | | | | | | | | | | | 9x9
D | eterminant | | | | | | | 1 | | 2.5 | 3.840
3.838 | 18.090
18.077 | 3805.52
1525.54 | 12.225 | 40.126
40.041 | 3821.58
1541.68 | 22.817
22.799 | 62.004
61.764 | 3837.69
1557.96 | | | | 7 | | | | | | | 12 x 12 | Determina | nt | | | | | | | | | € ₂ -(1,3) | € ₂₊ (1,3) | | € ₂ -(5,7) | € ₂₊ (5,7) |) e | 2-(9,11) | € ₂₊ (9,11) | | ₂ -(13, 15) | € ₂₊ (13,15 |) | | | 2.5
5.0
10
15
20
30
50 | 3.838
3.836
3.831
3.826
3.821
3.811
3.792 | 18.027
18.002
17.950
17.896
17.842
17.729
17.481 | 1525.54
765.557
385.598
258.641
195.685
132.776
81.977 | 12.196
12.170
12.115
12.060
12.005
11.895
11.674 | 40.263
40.120
39.824
39.515
39.196
38.526
37.061 | 1541.68
781.838
402.170
275.514
212.866
150.596
101.183 | 21.750
21.687
21.564
21.441
21.320
21.085
20.634 | 62.337
61.945
61.125
60.257
59.355
57.465
53.526 | 1557.95
798.398
419.314
293.263
231.232
170.226
123.344 | 32.223
32.170
32.063
31.956
31.849
31.634
31.187 | 84.355
83.542
81.839
80.046
78.210
74.506
67.606 | 1574.38
815.266
437.135
312.113
251.148
192.280
149.064 | | ### APPENDIX 5 Ge: Numerical Solutions for d = 0 | | €2+(0) €2-(| $(2,4) \epsilon_{1}(1,3) \epsilon_{1}$ | 1+(1,3) E2+ | (2,4) E1-(5, | 7) ϵ_{2} (6,8) | | 1 | | | |--------------------------------|--------------------------------------|--|--|--------------|---------------------------|----------------------|------------|---------------|-----------------| | Solution 5x5 Determinant | - | 163 9.269 9 | | | 2 | | | | | | of 9x9 Determinant | 3.691 9. | 974 9.076 | The state of s | 184 24.612 | 24.661 1 | 41.547 178.96 | 6 | | | | Eq. 4.1.7 13x13 Determinant | 3.691 9. | 970 9.073 5 | | 185 23.853 | 23.974 1 | 41.473 179.10 | 2 39.538 | 39.652 232.78 | 0 270.214 | | | e (0) e | (1) e ₂ (3,5) e | (2.4) € | (2.4) € (3. | 5) | | | | | | 11.1 | | | | | | | | | | | Solution 6x6 Determinant | | 917 13.362 1 | | | | | | | | | of 10x10 Determinant | 2.661 21. | 881 13.043 1 | 3.047 73. | 501 110.853 | 28.388 2 | 8.385 164.329 | 201.763 | | | | Eq. 4.1.8 14x14 Determinant | 2.661 21. | 878 13.036 1 | 3.039 73. | 500 110.855 | 27.538 2 | 7.451 164.228 | 201.888 | 43.426 43.285 | 255.619 293.046 | | | | | | | | | | | | | | ϵ_{2} -(0,2) ϵ_{1} | $\epsilon_{2+}(0,2)$ | ϵ_{1} (3,5) | €2-(4,6) €1+ | (3,5) €2+(4, | 6) | | | | | Solution 7x7 Determinant | 2.058 11 | .191 43.310 | 17.385 | 17.210 96. | 100 133.42 | 3 | | | | | of llxll Determinant Eq. 4.1.9 | 2.057 11 | .178 43.317 | 16.946 | 16.806 96. | 074 133.57 | 6 32.069 32. | 149 187.13 | 33 224.572 | | | Eq. 4.1.9 | | | | | | | | | | | * | | | | | | | | | | | | €1-(0,2) €2. | $(1,3) \epsilon_{1+}(0,2)$ | € ₂₊ (1,3) € | 1-(4,6) €2-(| $5,7) \epsilon_{1+}(4,6)$ | $\epsilon_{2+}(5,7)$ | | | | | Solution 8x8 Determinant | 4.431 6.0 | | | | 46 118.797 | | | | | | of 12x12 determinant | | | | | | | 802 35.914 | 209.951 247 | .389 | #### Ge: Numerical Solutions for d = 0 ## R. R. Goodman's (3) Parameters | | | € ₂₊ (0) | e ₂ -(2,4) | € ₁ -(1,3) | $\epsilon_{1^{+}}(1,3)$ | € ₂₊ (2,4) | € ₁ -(5,7) | € ₂ -(6,8 | 3) | | 1 | | | | | |-----------------------------|---|-------------------------|----------------------------|-----------------------|----------------------------|----------------------------------|-------------------------------|----------------------|--------------------|--------------------|--------------------|---------|---------|---------|---------| | Solution of Eq. 4.1.7 | 5x5 Determinant
9x9 Determinant
13x13 Determinant | 2.464
2.454
2.454 | 11.180
10.716
10.694 | 9.791 | 51.449
51.555
51.593 | 86.281 | 26.541
24.952 | 26.659
24.974 | 140.994
140.814 | 175.807
176.139 | 43.025 | 43.389 | 231.378 | 266.118 | | | | | € ₁₊ (0) | E ₂₊ (1) | € ₁ -(2,4) |) ₆₂ -(3,5) | (2,4)€ ₁₊ (2,4) | | | | | | | | | | | | 6x6 Determinant
10x10 Determinant
14x14 Determinant | 2.453 | 21.322
21.116
21.088 | 13.891 | 13.047 | 73.622 | 108.279
108.681
108.693 | 30.692
28.788 | 30.875
28.778 | 163.558
163.310 | 198.363
196.663 | 47.663 | 47.224 | 254.015 | 288.726 | | | | € ₂ -(0,2) |) ₆ 1+(1) | € ₂₊ (0,2) |) e ₂ -(4,6 | s) _{\(\epsilon_1\)-(3,} | 5) ε ₁₊ (3, | 5) | | | | | | | | | Solution of Eq. 4.1.9 | 7x7 Determinant
llxll Determinant | | | | | | 95.991
95.935 | | | 6 35.069 | 186.147 | 220.93 | 35 | | | | | | € ₁ -(0,2) | ε ₂ -(1, | 3) ₁₊ (0 | ,2) ₆₂₊ (1 | .,3) e ₁₋ (| 4,6) € ₂ -(| 5,7) | | | | | | | | | Solution
of
Eq.4.1.10 | 8x8 Determinant
12x12 Determinant | | 6.501
6.492 | 30.438 | | | | | 465 153
349 153 | .269
.629 38.8 | 344 39.2 | 99 208. | 755 243 | .521 | | Si: Numerical Solutions for d = 0 Ge: Numerical Solution of Equation 4.1.7, Assuming $\delta = 0$ 9x9 Determinant | d | $\epsilon_{2^+}(0)$ | € ₂ -(2,4) | $\epsilon_{1}^{-(1,3)}$ | $\epsilon_{1^{+}}(1,3)$ | € ₂₊ (2,4) | ϵ_{1} -(5,7) | € ₂ -(6,8) | $\epsilon_{1+}(5,7)$ | € ₂₊ (6,8) | |------|---------------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------------------|-----------------------|-------------------------|-----------------------| | 0.0 | 3.875 | 9.985 | 9.269 | 51.131 | 88.015 | 24.535 | 24.679 | 141.465 | 178.921 | | 0.1 | 3.897 | 10.137 | 9.118 | 51.259 | 88.150 | 24.358 | 24.850 | 141.600 | 179.057 | | 0.2 | 3.961 | 10.432 | 8.826 | 51.643 | 88.554 | 24.119 | 25.067 | 142.004 | 179.465 | | 0.3 | 4.069 | 10.757 | 8.510 | 52.282 | 89.227 | 23.874 | 25.279 | 142.678 | 180.145 | | 0.4 | 4.219 | 11.083 | 8.200 | 53.176 | 90.165 | 23.627 | 25.483 | 143.620 | 181.095 | | 0.5 | 4.413 | 11.401 | 7.911 | 54.321 | 91.367 | 23.382 | 25.678 | 144.827 | 182.313 | | 0.6 | 4.649 | 11.710 | 7.650 | 55.716 | 92.828 | 23.142 | 25.865 | 146.298 | 183.798 | | 0.7 | 4.929 | 12.009 | 7.425 | 57.357 | 94.544 | 22.912 | 26.045 | 148.032 | 185.547 | | 0.8 | 5.251 | 12.301 | 7.239 | 59.243 | 96.513 | 22.694 | 26.220 | 150.023 | 187.559 | | 0.9 | 5.617 | 12.589 | 7.099 | 61.369 | 98.728 | 22.491 | 26.393 | 152.271 | 189.829 | | 1.0 | 6.025 | 12.877 | 7.006 | 63.731 | 101.186 | 22.308 | 26.565 | 154.772 | 192.355 | | 1.2 | 6.977 | 13.470 | 6.971 | 69.153 | 106.816 | 22.014 | 26.919 | 160.520 | 198.163 | | 1.4 | 8.089 | 14.115 | 7.169 | 75.483 | 113.373 | 21.838 | 27.306 | 167.242 | 204.958 | | 1.6 | 9.379 | 14.859 | 7.592 | 82.701 | 120.832 | 21.801 | 27.752 | 174.915 | 212.716 | | 1.8 | 10.841 | 15.720 | 8.250 | 90.791 | 129.175 | 21.926 | 28.280 | 183.515 | 221.415 | | 2.0 | 12.475 | 16.728 | 9.145 | 99.742 | 138.385 | 22.227 | 28.913 | 193.024 | 231.035 | | 2.3 | 15.249 | 18.553 | 10.926 | 114.770 | 153.807 | 23.039 | 30.105 | 208.957 | 247.155 | | 2.6 | 18.409 | 20.791 | 13.224 | 131.711 | 171.138 | 24.312 | 31.637 | 226.855 | 265.260 | | 2.9 | 21.957 | 23.467 | 16.026 | 150.562 | 190.369
218.964 | 26.067 | 33.553 | 246.688 | 285.316 | | 3.3 | 27.289 | 27.735 | 20.518 | 178.679 | 250.941 | 29.178 | 36.760 | 276.109 | 315.049 | | 3.7 | 32.810 | 33.177 | 25.847 | 245.195 | 286.316 | 33.309 | 40.758 | 308.910 | 348.171 | | 4.1 | 40.017 | 38.690 | 31.984 | 293.777 | 335.337 | 38.062 | 95.574 | 345.082 | 384.666 | | 4.6 | 49.369 | 47.154 | 40.757 | 347.785 | 389.723 | 45.398 | 52.763 | 395.043 | 435.020 | | 5.1 | 59.796 | 56.836 | 50.720 | 419.786 | 462.110 | 54.073 | 61.253 | 450.292 | 490.645
564.380 | | 5.7 | 73.728 | 70.028 | 64.212 | 499.660 | 542.305 | 66.207
80.171 | 73.141 | 523.608
604.617 | | | 6.3 | 89.208 | 84.905 | 79.346 | 602.823 | 645.775 | 99.047 | 86.856 | 708.908 | 645.771
750.459 | | 7.0 | 109.225 | 104.354 | 98.714 | 602.023 |
04).11) | 122.798 | 105.119 | 100.900 | 150.459 | | 7.8 | 134.681 | 128.909 | 124.227 | | | 152.190 | 129.298 | | | | 8.7 | 166.609 | 160.778 | 155.920 | | | 153.492 | 159.310 | | | | 9.7 | 206.169 | 199.958 | 195.285 | | | 191.973 | 197.513 | | | | 10.8 | 254.651 | 248.122 | 243.607 | | | 239.532 | 244.816 | | | | 12.0 | 313.475 | 306.683 | 30 2.300 | | | 297.576 | 302.633 | | | | 13.3 | 384.188 | 377.181 | 372.908 | | | 367.640 | 372.497 | | | | 14.7 | 468.468 | 461.285 | 457.103 | | | 451.381 | 456.067 | | | | 16.3 | 575.108 | 567.774 | 563.670 | | | 557.551
690.281 | 562.083 | | | | 18.1 | 708.236 | 700.775 | 696.737 | 1 | 1011 | | 694.679 | (= 0) | /- O' | | | $\epsilon_{2+}(0)$ | ϵ_{2} -(3,4) | ϵ_{1} (1,2) | $\epsilon_{1+}(1,2)$ | $\epsilon_{2^{+}}(3,4)$ | ϵ_{1} -(5,6) | ϵ_{2} (7,8) | $\epsilon_{1}^{+}(5,6)$ | $\epsilon_{2+}(7,8)$ | Ge: Numerical Solution of Equation 4.1.8 Assuming $\delta = 0$ 6x6 Determinant | đ | $\epsilon_{1}^{+}(0)$ | € ₂₊ (1) | € ₂ -(3,5) | <1 ^{-(2,4)} | $\epsilon_{1^{+}}^{(2,4)}$ | € ₂ +(3,5) | |--|---|---|--|---|--|---| | 0.1230.456.789.124.6803.693.71.6.1730.877.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.617.308.77.803.4.633.734.6334.6334.6334.6334.6334.633 | 2.725
2.742
2.795
2.883
3.009
3.172
3.375
3.618
3.903
4.231
4.602
5.477
6.530
7.764
9.177
10.769
13.491
16.610
20.125
25.424
31.419
38.107
47.441
57.855
71.775
87.245
107.254
132.703
164.624
204.180
252.659
311.480
382.191
466.469
573.107
706.234 | 21.525
21.640
21.983
22.555
23.353
24.378
25.627
27.100
28.795
30.711
32.848
37.781
43.592
50.278
57.841
20.587
96.872
115.137
142.574
173.539
208.035
256.121
309.727
381.343
460.913
563.976 | 13.715
13.883
14.159
14.444
14.723
14.994
15.255
15.508
15.855
15.999
16.244
16.751
17.308
17.947
18.697
19.581
21.203
23.221
25.667
29.625
34.398
48.117
57.496
70.368
84.968
104.143
128.828
160.073
199.045
247.030
305.440
375.810
699.129 | 13.310
13.138
12.851
12.552
12.552
12.257
11.711
11.472
11.084
10.944
10.791
10.825
11.064
11.520
12.200
13.648
15.61 2
18.090
22.175
27.132
32.934
41.340
50.990
64.164
79.036
98.487
123.438
154.930
194.121
242.298
300.870
371.379
455.492
561.989
694.997 | 73.490
73.622
74.018
74.677
75.597
76.776
78.211
79.899
81.836
84.019
86.445
92.008
98.499
105.894
114.173
123.323
138.658
155.908
175.061
203.560
235.449
270.743
319.675
373.984
446.291
526.418
629.823 | 110.685
110.821
111.227
111.903
112.847
114.056
115.528
117.258
119.244
121.482
123.967
129.666
136.312
143.879
152.347
161.170
177.347
194.923
214.406
243.336
275.637
311.318
360.692
415.894
488.114
568.594
672.347 | | | $\epsilon_{1^{+}}(1)$ | € ₂₊ (0,1) | € ₂ -(4,5) | $\epsilon_{1}^{-(2,3)}$ | $\epsilon_{1^{+}}(2,3)$ | € ₂₊ (4,5) | Ge: Numerical Solution of Equation 4.1.9, Assuming $\delta = 0$ 7x7 Determinant | đ | € ₂ -(0,2) | $\epsilon_{1^{+}}(1)$ | € ₂ +(0,2) | € ₁ -(3,5) | € ₂ -(4,6) | $\epsilon_{1^{+}(3,5)}$ | € ₂₊ (4,6) | |--|--|--|---|--|---|--|--| | 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 | 2.100
2.166
2.360
2.673
3.086
3.577
4.116
4.675
5.231
5.769
6.287
7.281
8.285 | 11.475
11.522
11.665
11.919
12.302
12.843
13.576
14.533
15.742
17.222
18.980
23.323
28.718 | 43.100
43.230
43.620
44.266
45.167
46.317
47.713
49.350
51.222
53.326
55.658
60.992
67.202 | 17.131
16.951
16.681
16.402
16.125
15.856
15.599
15.359
15.141
14.948
14.785
14.562
14.497 | 17.395
17.568
17.823
18.077
18.323
18.561
18.790
19.012
19.228
19.442
19.656
20.099
20.587 | 96.069
96.203
96.604
97.271
98.203
99.397
100.851
102.561
104.526
106.741
109.202
114.852
121.446 | 133.405
133.541
133.949
134.626
135.573
136.787
138.265
140.004
142.001
144.254
146.757
152.504
159.214 | | 1.6
1.8
2.0
2.3
2.6
2.9
3.7
4.1
5.7
6.3
7.8
8.7 | 9.370
10.584
11.956
14.344
17.149
20.381
25.353
31.075
37.538
46.643
56.874
70.621
85.958
105.814
131.188
163.020 | 35.109
42.456
50.733
64.863
81.022
99.195
126.544
157.446
191.895
239.938
293.512
365.101
444.650
547.516
678.340
842.426 | 74.296
82.205
90.985
105.751
122.433
141.041
168.861
200.136
234.885
283.225
337.031
408.835
488.550
591.565
722.518
886.711 | 14.613
14.926
15.446
16.635
18.326
20.525
24.246
28.855
34.333
42.371
51.693
64.527
79.108
98.275
122.961
154.213 | 21.147
21.808
22.593
24.047
25.878
28.124
31.804
36.296
41.612
49.414
58.489
71.033
85.343
104.224
128.625
159.608 | 128.962
137.379
146.678
162.255
179.760
199.173
228.015
260.234
295.838
345.123
399.747
472.383
552.791
656.473
788.038
952.775 | 166.861
175.424
184.883
200.720
218.501
238.202
267.450
300.030
336.001
385.716
440.734
513.794
594.574
698.629
830.522
995.620 | | 9.7
10.8
12.0
13.3
14.7
16.3
18.1
20.0 | 202.501
250.919
309.691
380.363
464.609
571.220
704.324
852.944
€2-(1,2) | 1045.741 $\epsilon_{1+}(0)$ | | 193.195
241.192
299.613
369.996
454.005
560.411
693.342
848.825
\$\(\begin{array}{c} \) (3,4) | 198.344
246.123
304.356
374.578
458.451
564.737
697.566
852.966
€2-(5,6) | € ₁₊ (3,4) | 1199.789
€ ₂₊ (5,6) | Ge: Numerical Solution of Equation 4.1.10, Assuming $\delta = 0$ | đ | € ₁ -(0,2) | € ₂ -(1,3) | $\epsilon_{1^{+}}(0,2)$ | € ₂₊ (1,3) | $\epsilon_{1}^{-(4,6)}$ | $\epsilon_{2}^{-}(5,7)$ | $\epsilon_{1^{+}}(4,6)$ | € ₂₊ (5,7) |
--|---|---|---|---|--|--|--|--| | 0.01
0.03
0.04
0.06
0.06
0.06
0.06
0.06
0.06
0.06 | 4.513
4.412
4.174
3.891
3.613
3.365
3.160
3.004
2.905
2.864
2.884
3.111
3.586
4.308
5.271
6.468
8.685
11.390
14.562
19.494
25.200
31.660
40.769
51.010
64.769 | €2-(1,3) 6.158 6.276 6.563 6.928 7.321 7.718 8.109 8.488 8.856 9.215 9.571 10.295 11.074 11.951 12.960 14.125 16.200 18.699 21.637 26.246 31.644 37.820 46.617 56.590 70.082 85.210 104.559 130.070 161.750 201.102 249.413 308.097 378.696 462.883 569.444 | e ₁ +(0,2)
29.487
29.601
29.943
30.515
31.320
32.361
33.639
35.156
36.910
38.902
41.128
46.271
52.319
59.254
67.062
75.737
90.367
106.935
125.444
153.154
184.340
219.014
267.278
321.024
392.770
472.440
575.414
706.330
870.494 | 65.442
65.576
65.976
66.642
67.562
68.756
70.197
71.888
73.825
76.003
78.417
83.940
90.364
97.671
105.843
114.870
130.004
147.041
165.981
194.202
225.833
260.891
309.560
363.640
435.715
515.648
618.867
750.003
914.355 | 61-(4,6) 20.857 20.677 20.423 20.163 19.902 19.646 19.398 19.162 18.742 18.566 18.300 18.170 18.199 18.404 18.802 19.783 21.247 23.209 26.606 30.896 36.068 43.747 52.742 65.226 80.118 98.364 122.758 153.742 192.485 240.274 298.519 368.752 452.636 558.933 | €2-(5,7) 21.046 21.219 21.454 21.685 21.907 22.121 22.396 22.524 22.718 22.908 23.099 23.493 23.925 24.423 25.011 27.026 28.697 30.768 34.199 38.433 43.491 50.979 51.971 85.984 104.902 128.661 159.360 197.839 245.389 303.423 373.475 457.205 563.364 | 61+(4,6) 118.743 118.876 119.281 119.952 120.890 122.092 123.557 125.281 127.262 129.496 131.981 137.688 144.356 151.961 160.480 169.896 185.668 203.386 223.024 252.172 284.695 320.592 370.222 425.162 495.137 578.842 682.821 814.672 979.671 | 156.154
156.290
156.698
157.377
158.386
159.542
161.024
162.769
169.775
167.037
169.553
175.335
182.093
189.802
198.440
207.988
223.978
241.934
261.824
291.319
324.192
360.433
410.476
465.803
539.202
620.287
724.656
856.886 | | | 698.566
854.189
€₁-(0,1) | 702.506
858.092
ϵ_{2} (2,3) | € ₁₊ (0,1) | € ₂₊ (2,3) | 691.771
847.179
$\epsilon_{1}^{(4,5)}$ | 696.083
851.395
ϵ_{2} (6,7) | € ₁₊ (4,5) | € ₂ +(6,7) | APPENDIX 7 Ge: Numerical Solution of Equation 4.1.7 | ϵ_1 | ϵ_2 | € 3 | ϵ_{4} | €5 | €6 | €7 | €8 | €9 | € ₁₀ | ϵ_{11} | € ₁₂ | € ₁₃ | | |---|---|--|--|---|---|---|--|--|--|--|--|--|----------------------------------| | 3.715
3.776
3.877
4.019
4.200
40.054 | 10.163
10.287
10.552
10.858
11.170
11.479
38.674
306.683 |
9.269
9.147
8.888
8.597
8.309
8.042
31.957
302.297 | 51.131
51.259
51.643
52.283
53.177
54.323
245.200 | 88.018
88.153
88.557
89.230
90.168
91.369
286.316 | | | | | | | | | -10 | | | | | | 9x | 9 Determ | inant | | | | | | | -197- | | 3.772
3.874
4.015
4.195
40.054 | 10.088
10.338
10.628
10.927
11.223
38.816
306.694 | 8.963
8.728
8.444
8.170
7.915
31.938
302.297 | 51.292
51.675
52.312
53.202
54.345
245.199 | 88.313
88.722
89.393
90.329
91.528
286.369 | 24.115
23.852
23.590
23.333
37.710 | 24.890
25.133
25.368
25.593
25.807
45.687
302.624 | 141.682
142.087
142.761
143.703
144.910
345.137 | 179.102
179.510
180.189
181.138
182.356
384.671 | | | | | | | | | | | 13 | xl3 Dete | rminant | | | | | | | | | € ₂₊ (0) | € ₂ -(2,4) | € ₁ -(1,3) | € ₁ +(1,3) | € ₂₊ (2,4) | € ₁ -(5,7) | € ₂ -(6,8) | | | | | | | | | 3.691
3.711
3.772
3.874
4.015
4.195
40.054
313.478 | 9.970
10.084
10.333
10.623
10.922
11.218
38.777
306.695 | 9.073
8.960
8.717
8.441
8.167
7.913
31.938
302.130 | 51.168
51.296
51.678
52.315
53.205
54.346
245.199 | 88.185
88.370
88.723
89.394
90.331
91.530
286.369 | 23.853
23.669
23.433
23.194
22.956
22.723
37.598
297.578 | 23.974
24.154
24.377
24.595
24.805
25.008
45.148
302.727 | 141.473
141.608
142.013
142.687
143.630
144.838
345.123 | 179.239
179.647
180.326
181.226
182.494
384.785 | 39.371
39.151
38.921
38.686
38.449
47.825 | 39.810
40.003
40.188
40.362
40.525
55.670 | 232.916
233.323
234.000
234.947
236.163
441.429 | 270.350
270.759
271.439
272.390
273.61 | 9 | | | 3.694 3.715 3.776 3.877 4.019 4.200 40.054 313.478 3.711 3.772 3.874 4.015 4.195 4.054 313.478 62+(0) 3.691 3.772 3.874 4.015 4.195 4.095 4.195 | 3.694 10.163
3.715 10.287
10.552 10.858
11.170 11.479
3.691 306.683
1.3711 10.088
3.772 10.338
3.674 10.628
1.479 11.223
3.874 10.628
1.495 11.223
3.816 313.478 306.694
1.479 11.223
3.816 306.694
1.479 10.084
1.479 10.084
1.495 10.084
1.479 10.084
1.40.054 3.772 10.333
1.478 306.695 | 3.694 10.163 9.269 1.3.715 10.287 9.147 1.3.776 10.552 8.888 3.877 10.858 8.597 1.1.170 8.309 1.4.200 11.479 8.042 38.674 31.957 313.478 306.683 302.297 1.3.711 10.088 8.963 2.3.772 10.338 8.728 3.874 10.628 8.444 4.015 10.927 8.170 11.223 7.915 1.40.054 38.816 31.938 313.478 306.694 302.297 1.3.711 10.084 8.960 2.4(0) \(\epsilon_2 - (2, 4) \) \(\epsilon_1 - (1, 3) \) 3.691 9.970 9.073 1.3.711 10.084 8.960 1.3.772 10.333 8.717 1.3.874 10.623 8.441 1.4.015 10.922 8.167 1.4.195 11.218 7.913 1.40.054 38.777 31.938 1.3.478 306.695 302.130 | 3.694 10.163 9.269 51.131 10.287 9.147 51.259 10.552 8.888 51.643 3.877 10.858 8.597 52.283 11.170 8.309 53.177 11.479 8.042 54.323 38.674 31.957 245.200 313.478 306.683 302.297 313.478 306.683 302.297 313.478 306.694 302.297 313.478 306.694 302.297 313.478 306.694 302.297 313.478 306.695 302.130 | 3.694 10.163 9.269 51.131 88.018 1.3715 10.287 9.147 51.259 88.153 10.552 8.888 51.643 88.557 10.858 8.597 52.283 89.230 11.170 8.309 53.177 90.168 11.170 8.309 53.177 90.168 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.479 8.042 54.323 91.369 11.23 7.72 10.338 8.728 51.675 88.722 10.338 8.728 51.675 88.722 10.338 8.728 51.675 88.722 10.338 8.744 52.312 89.393 11.223 7.915 54.345 91.528 11.223 7.915 54.345 91.528 11.223 7.915 54.345 91.528 11.223 7.915 54.345 91.528 11.223 7.915 54.345 91.528 11.238 7.913 54.346 88.185 11.3711 10.084 8.960 51.296 88.370 10.333 8.717 51.678 88.723 13.478 10.623 8.441 52.315 89.394 10.623 8.441 52.315 89.394 10.623 8.441 52.315 89.394 10.623 8.441 52.315 89.394 10.623 8.441 52.315 89.394 10.623 8.441 52.315 89.394 10.922 8.167 53.205 90.331 11.218 7.913 54.346 91.530 11.218 7.913 54.346 91.530 11.3478 306.695 302.130 | 3.694 10.163 9.269 51.131 88.018 3.715 10.287 9.147 51.259 88.153 3.776 10.552 8.888 51.643 88.557 3.877 10.858 8.597 52.283 89.230 4.019 11.170 8.309 53.177 90.168 4.200 11.479 8.042 54.323 91.369 4.0054 38.674 31.957 245.200 286.316 3.711 10.088 8.963 51.292 88.313 24.377 3.772 10.338 8.728 51.675 88.722 24.115 3.3874 10.628 8.444 52.312 89.393 23.852 4.015 10.927 8.170 53.202 90.329 23.590 54.195 11.223 7.915 54.345 91.528 23.333 40.054 38.816 31.938 245.199 286.369 37.710 297.550 13x13 Dete | 0 3.694 10.163 9.269 51.131 88.018 1 3.715 10.287 9.147 51.259 88.153 2 3.776 10.858 8.597 52.283 89.230 4 4.019 11.170 8.309 53.177 90.168 5 4.200 11.479 8.042 54.323 91.369 1 40.054 38.674 31.957 245.200 286.316 2 3.772 10.338 8.728 51.675 88.722 2 3.772 10.338 8.728 51.675 88.722 2 3.772 10.338 8.728 51.675 88.722 2 3.852 25.368 4 4.015 10.927 8.170 53.202 90.329 23.590 25.593 2 4.195 11.223 7.915 54.345 91.528 23.333 25.807 2 3.691 9.970 9.073 51.168 88.185 23.853 23.974 2 3.772 10.338 8.726 51.296 88.370 286.369 3 3.691 9.970 9.073 51.168 88.185 23.853 23.974 2 3.772 10.333 8.717 51.678 88.722 24.154 2 3.772 10.333 8.717 51.678 88.723 23.433 24.377 3 3.691 9.970 9.073 51.168 88.185 23.853 23.974 2 3.772 10.333 8.717 51.678 88.723 23.433 24.377 3 3.874 10.623 8.441 52.315 89.394 23.433 24.377 3 3.874 10.623 8.441 52.315 89.394 23.194 24.595 3 4.195 11.218 7.913 54.346 91.530 22.723 25.008 3 13.478 306.695 302.130 | 10.163 9.269 51.131 88.018 | 10.163 9.269 51.131 88.018 3.715 10.287 9.147 51.259 88.153 3.377 10.858 8.597 52.283 89.230 4.019 11.170 8.309 53.177 90.168 4.0054 38.674 31.957 245.200 286.316 3.313.478 306.683 302.297 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10.163 | 10.163 9.269 51.131 88.018 | 10.163 9.269 51.131 88.018 | Ge: Numerical Solution of Equation 4.1.8 | đ | ϵ_1 | ϵ_2 | € 3 | ϵ_{4} | € ₅ | €6 | |-----------------------|----------------|---------------------------------------|---|---|---------------------------------------|--| | 0.
0.
4.
12. | 2.679
2.732 | 21.917
22.024
22.347
208.044 | 13.362
13.669
13.998
40.035
305.439 | 13.314
13.011
12.692
32.873
300.863 | 73.501
73.663
74.030
270.757 | 110.694
110.830
111.236
311.319 | Ge: Numerical Solution of Equation 4.1.8 10x10 Determinant ``` \epsilon_{1+}(0) \epsilon_{2+}(1) |\epsilon_{2-}(3,5) \epsilon_{1-}(2,4) \epsilon_{1+}(2,4) \epsilon_{2+}(3,5) d 73.500 110.853 73.632 110.988 28.388 13.047 28.385 164.329 201.763 13.043 21.881 2.661 0.0 28.142 28.623 164.465 12.734 201.899 21.989 2.679 13.359 0.1 74.028 111.394 28.851 27.892 164.870 202.307 12.430 22.313 13.673 0.2 2.731 74.686 112.069 27.640 165.546 29.070 202.987 12.137 22.856 13.981 2.819 0.3 75.606 113.012 76.784 114.220 27.327 166.489 11.858 29.277 203.937 14.281 23.620 0.4 2.943 27.140 167.700 29.474 205.156 24.605 14.569 11.596 3.105 0.5 78.219 115.689 29.662 26.913 169.176 206.642 11.356 25.800 14.846 3.307 0.6 79.907 117.418 81.844 119.402 29.842 11.141 26.580 170.915 208.393 27.334 15.112 3.548 0.7 10.956 30.022 26.393 172.915 210.407 28.952 15.369 3.831 0.8 10.804 84.028 121.637 30.147 26.185 175.172 15.621 212.681 30.880 4.157 0.9 10.688 86.453 124.120 30.326 25.992 177.685 215.213 15.872 32.977 4.525 1.0 92.017 129.813 30.655 25.666 183.463 10.581 221.039 16.389 37.875 5.392 1.2 98.509 136.453 31.004 25.447 190.225 227.860 10.660 43.663 16.955 6.435 1.4 10.945 105.904 144.014 31.339 25.356 197.949 235.655 17.603 50.334 1.6 7.651 11.455 114.185 152.475 31.866 25.415 57.886 206.613 244.401 18.361 9.033 1.8 161.818 25.640 19.255 12.215 123.335 32.429 216.196 254.078 66.318 10.565 2.0 13.985 138.671 177.460 33.498 26.319 232.259 20.890 270.302 80.615 12.990 2.3 27.442 15.311 155.921 195.027 34.889 250.308 22.918 288.533 96.894 2.6 16.767 17.888 175.074 214.502 36.651 29.037 270.306 308.731 115.155 25.370 2.9 20.197 203.573 243.422 31.929 299.964 338.674 22.028 39.636 25.454 142.588 29.322 3.3 235.461 275.715 43.401 35.734 333.013 372.022 27.014 34.054 31.426 173.550 3.7 47.981 40.541 408.748 208.044 39.493 32.835 270.755 311.388 369.435 38.091 4.1 360.752 54.876 319.686 46.955 419.703 459.394 47.397 41.257 48.249 256.128 4.6 415.448 373.994 63.082 55.469 475.247 515.304 50.916 309.732 57.349 57.968 5.1 488.160 67.318 548.892 446.299 74.651 589.365 71.814 381.348 70.246 64.097 5.7 526.425 568.635 88.079 81.005 84.832 78.968 630.202 671.059 87.768 460.917 6.3 629.829 672.382 99.277 734.805 776.068 563.800 103.970 98.391 106.056 107.272 7.0 129.653 122.901 123.502 7.8 132.715 128.527 154.934 159.227 160.288 153.365 164.634 8.7 197.281 191.588 199.118 194.118 204.187 9.7 244.359 238.908 242.292 247.064 252.664 10.8 301.958 296.743 300.865 305.458 311.484 12.0 371.626 366.624 375.821 371.374 387.914 13.3 450.211 455.026 560.888 459.816 566.210 455.488 561.985 466.472 14.7 556.244 573.109 16.3 \epsilon_{1+}(1) \epsilon_{2+}(0,1) \mid \epsilon_{2-}(4,5) \quad \epsilon_{1-}(2,3) \quad \epsilon_{1+}(2,3) \quad \epsilon_{2+}(4,5) ``` 14x14 Determinant Ge: Numerical Solution of Equation 4.1.9 | | | | | | 7 | x7 Determ | inant | | | | |
---|--------------------------------------|--|--|--|--|--|--|---|--|--|--| | đ | €l | €2 | €3 | €4 | € ₅ | €6 | €7 | €8 | €9 | € ₁₀ | € ₁₁ | | 0.0 | 2.058
37.541 | 11.191
191.895 | 43.310
239.907 | 17.385
34.224 | 17.210
41.667 | 96.100
295.864 | 133.423
336.003 | | | | | | | | | | | 1. | lxll Dete | rminant | | | | | | | $\epsilon_{2}^{-}(0,2)$ | $\epsilon_{1^{+}}(1)$ | € ₂₊ (0,2) | € ₁ -(3,5) | € ₂ -(4,6) | $\epsilon_{1+}^{(3,5)}$ | € ₂₊ (4,6) | | | | | | 0.0
0.1
0.2
0.3
0.4
0.5
0.7
0.8
0.9
1.0
1.4
1.6
1.8
2.3
2.3
2.3
3.7
4.6
5.1 | 31.106
37.537
46.616
56.803 | 157.446
191.895
239.938
293.512 | 141.075
168.892
200.163
234.907
283.243
337.046 | 16.946
16.593
16.323
16.057
15.802
15.570
15.386
15.350
14.440
14.450
14.363
14.218
14.206
14.366
14.719
15.279
16.537
18.341
20.834
23.931
28.638
34.160
42.230
51.572 | 16.806
17.156
17.418
17.676
17.925
18.166
18.401
18.632
18.866
19.127
19.593
19.612
20.140
20.715
21.394
22.192
23.665
25.513
27.772
31.461
35.945
41.213
48.763
58.537 | 96.074
96.207
96.608
97.275
98.207
99.402
100.857
102.568
104.534
106.750
109.212
114.864
121.461
128.979
137.397
146.698
162.276
179.782
199.196
228.038
260.256
295.859
345.142
399.765 | 133.576
133.712
134.119
134.796
135.742
136.955
138.431
140.170
142.166
144.416
146.918
152.661
159.366
167.009
175.507
185.020
200.849
218.622
238.315
267.534
300.125
336.087
385.793
440.080 | 32.069 31.872 31.633 31.389 31.142 30.895 30.651 30.413 30.184 29.966 29.762 29.413 29.164 29.018 29.017 29.170 29.722 30.697 32.125 34.773 38.303 42.752 49.745 57.174 | 32.149 32.338 32.553 32.758 32.953 33.137 33.311 33.476 33.634 33.781 34.228 34.541 34.888 35.314 35.822 36.794 38.071 39.704 42.499 46.059 50.423 57.044 64.977 | 187.133
187.268
187.674
188.350
189.296
190.509
191.988
193.731
195.736
198.000
200.522
206.323
213.118
220.885
229.601
239.247
255.423
273.604
293.751
323.626
356.905
393.564
444.122
499.960 | 224.572
224.708
225.116
225.796
226.746
227.966
229.453
231.207
233.224
235.502
238.040
243.881
250.726
258.553
267.340
277.069
293.386
311.728
332.055
362.190
395.745
432.689
483.612
539.797 | | | | 2) ₆₁₊ (0) | | | | | ε ₂₊ (5,6) | | , | .,,,,,,,,, | /3/• | Ge: Numerical Solution of Equation 4.1.10 8x8 Determinant | | | | | | ONO De | Ser milian o | | | | | | | |---|--|---|--------------------------|-----------------------|--|--|-------------------------|-----------------------|--|--|---|--| | đ | $\epsilon_{ t l}$ | €2 | € ₃ | € ₄ | € 5 | €6 | €7 | €8 | € 9 | € ₁₀ | € ₁₁ | € ₁₂ | | 0.0 | 4.431
31.653 | 6.051
37.847 | 29.655
219.014 | 65.619
260.928 | 20.717 | 20.946 | 118.797
320.632 | 156.184
360.438 | | | | | | | | | | | 12x12 De | terminan | t | | | | | | | | $\epsilon_{1}^{-}(0,2)$ | € ₂ -(1,3) | € ₁ +(0,2) | € ₂₊ (1,3) | € ₁ -(4,6) | € ₂ -(5,7) | $\epsilon_{1^{+}}(4,6)$ | € ₂₊ (5,7) | | | | | | 0.0
0.1
0.2
0.4
0.5
0.6
0.7
0.8
0.9
1.4
1.6
1.8
2.3
2.9
3.7
4.6
4.6 | 4.430
4.332
4.101
3.826
3.555
3.313
2.963
2.868
2.831
2.854
3.085
3.565
4.290
5.255
6.454
8.673
11.379
14.553
19.486
25.193
31.653
40.762 | 6.049
6.162
6.440
6.794
7.174
7.559
7.938
8.307
8.667
9.020
9.370
10.088
10.865
11.742
12.751
13.915
15.985
18.466
21.359
25.755
37.838
46.591 | | 260.928
309.591 | 20.138
19.988
19.755
19.513
19.274
19.041
18.816
18.605
18.410
18.234
18.081
17.862
17.775
17.845
18.090
18.526
19.563
21.088
23.131
26.782
30.492
35.792
43.537 | 20.409
20.558
20.790
21.029
21.264
21.493
21.715
21.929
22.137
22.340
22.542
22.955
23.404
23.917
24.521
25.239
26.574
28.266
30.355
38.047
43.094
50.495 | 370.251 | 410.569 | 35.802
35.627
35.399
35.163
34.924
34.686
34.170
33.956
33.738
33.163
32.879
32.701
32.648
32.790
33.181
34.025
35.307
37.738
41.030
45.212
51.748 | 35.914
36.080
36.282
36.476
36.659
36.832
36.996
37.153
37.339
37.414
37.557
38.110
38.428
38.806
39.265
40.150
41.325
42.847
45.462
48.830
52.992
59.352 | 209.951
210.086
210.483
211.170
212.116
213.331
214.812
216.559
218.857
230.838
223.365
229.186
236.007
243.808
252.568
262.267
278.540
296.836
317.115
347.185
380.675
417.554
468.398 | 247.389
247.525
247.934
248.613
249.564
250.785
252.273
254.028
256.048
256.048
258.330
260.871
266.726
273.590
281.444
290.266
300.037
316.435
334.876
355.318
385.625
419.372
456.518
507.702 | | | e1-(0,1) | ϵ_{2} -(2, | 3) E ₁₊ (0,1) | $\epsilon_{2+}(2,3)$ | € ₁ -(4,5) | ϵ_{2} -(6,7) | $\epsilon_{1} + (4,5)$ | € ₂₊ (6,7 |) | | | | ## APPENDIX 8 Si: Numerical Solution of Equation 4.1.7 5x5 Determinant | d | ϵ_1 | €2 | € ₃ | €14 | € ₅ | €6 | €7 | €8 | €9 | | |---|--|--|--|--|--
--|--|--|---|--| | 0.0
0.1
0.2
0.3
0.4
0.5
4.1 | 2.132
2.146
2.185
2.251
2.343
2.459
26.691 | 4.741
4.716
4.649
4.557
4.457
4.364
20.093 | 6.623
6.660
6.761
6.909
7.086
7.275
23.028 | 14.143
14.164
14.229
14.341
14.505
14.729
62.668 | 22.659
22.708
22.852
23.091
23.420
23.856
76.673 | | | | | | | | | | | | 9x | 9 Determ | inant | | | | | 0.0
0.1
0.2
0.3
0.4
0.5
4.1 | 2.130
2.143
2.183
2.248
2.340
2.455
26.691 | 4.621
4.599
4.540
4.458
4.369
4.285
20.074 | 6.478
6.509
6.595
6.722
6.873
7.036
23.230 | 12.727
12.743
12.792
12.868
12.960
14.955
62.666 | 23.655
23.695
23.816
24.019
24.302
24.666
76.829 | 16.512
16.544
16.631
16.750
16.883
13.049
22.691 | 15.194
15.168
15.100
15.019
14.959
17.017
27.423 | 35.908
35.949
36.070
36.273
36.556
36.919
91.809 | 45.073
45.123
45.269
45.513
45.850
46.280
104.220 | | Si: Numerical Solution of Equation 4.1.7 13x13 Determinant | | € ₂₊ (0) | ε ₁₋ (1,3 |) ₆₂₋ (2,4) | $\epsilon_{1^{+}}(1,3)$ | € ₂₊ (2,4) | $\epsilon_{1}^{-}(5,7)$ | € ₂ -(6,8) | $\epsilon_{1^{+}(5,7)}$ | € ₂₊ (6,8) | | | | | |----------|---------------------|----------------------|-------------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|---------|--------|------------------|------------------| | d
0.0 | 2.130 | 4.619 | 6.475 | 10 511 | 02 010 | 15 900 | 1). 000 | 20 100 | 1.5 700 | 0). 005 | 05 055 | =0 === | 25 002 | | 0.1 | 2.143 | 4.597 | 6.506 | 12.511 | 23.019 | 15.863
15.885 | 14.689 | 36.120 | 45.789
45.837 | 24.805 | 25.657 | 58.735 | 67.889 | | 0.2 | 2.183 | 4.539 | 6.592 | 12.565 | 23.125 | 15.947 | 14.637 | 36.155
36.263 | 45.982 | 24.764 | 25.704 | 58.778
58.910 | 67.937
68.082 | | 0.3 | 2.248 | 4.457 | 6.718 | 12.624 | 23.229 | 16.035 | 14.599 | 36.443 | 46.222 | 24.593 | 25.971 | 59.129 | 68.321 | | 0.4 | 2.340 | 4.367 | 6.869 | 12.692 | 23.312 | 16.138 | 14.589 | 36.698 | 46.555 | 24.594 | 26.128 | 59.434 | 68.656 | | 0.5 | 2.455 | 4.284 | 7.030 | 14.635 | 24.739 | 12.752 | 16.250 | 37.031 | 46.980 | 23.315 | 26.288 | 59.824 | 69.082 | | 0.6 | 2.593 | 4.217 | 7.194 | 14.760 | 25.037 | 12.787 | 16.370 | 37.441 | 47.492 | 23.231 | 26.439 | 60.300 | 69.600 | | 0.7 | 2.751 | 4.176 | 7.354 | 14.970 | 25.440 | 12.789 | 16.507 | 37.932 | 48.090 | 23.093 | 26.605 | 60.858 | 70.207 | | 0.8 | 2.924 | 4.169 | 7.507 | 15.248 | 25.873 | 12.762 | 16.677 | 38.502 | 48.769 | 22.930 | 26.827 | 61.497 | 70.900 | | 0.9 | 3.106 | 4.207 | 7.659 | 15.553 | 27.206 | 12.716 | 16.917 | 39.152 | 49.527 | 22.760 | 26.219 | 62.216 | 71.677 | | 1.0 | 3.288 | 4.301 | 7.807 | 17.273 | 27.794 | 12.663 | 15.830 | 39.879 | 50.360 | 22.591 | 26.416 | 63.013 | 72.535 | | 1.2 | 4.685 | 3.628 | 8.105 | 18.402 | 29.364 | 12.570 | 16.206 | 41.561 | 52.241 | 22.280 | 26.585 | 64.834 | 74.486 | | 1.4 | 5.310 | 3.966 | 8.432 | 19.961 | 31.251 | 12.530 | 16.446 | 43.527 | 54.391 | 22.029 | 26.660 | 66.944 | 76.733 | | 1.6 | 6.116 | 4.369 | 8.815 | 21.701 | 33.383 | 12.570 | 16.669 | 45.760 | 56.793 | 21.971 | 26.716 | 69.328 | 79.259 | | 1.8 | 7.065 | 4.875 | 9.275 | 23.956 | 35.738 | 12.706 | 16.926 | 48.240 | 59.432 | 21.739 | 26.790 | 71.974 | 82.047 | | 2.0 | 8.142
9.978 | 5.502
6.685 | 9.829
10.867 | 26.282 | 38.302 | 12.948 | 17.245 | 50.955 | 62.297 | 21.734 | 26.910 | 74.868 | 85.084 | | 2.6 | 11.954 | 8.166 | 12.292 | 30.181
34.518 | 42.523
47.182 | 13.526
14.380 | 17.875 | 55.440 | 66.998 | 21.928 | 27.194 | 79.653 | 90.081 | | 2.9 | 14.547 | 9.947 | 13.637 | 39.292 | 52.268 | 15.520 | 19.808 | 60.398
65.809 | 72.165
77.781 | 22.371 | 27.671 | 84.944 | 95.581 | | 3.3 | 18.124 | 12.792 | 16.167 | 46.324 | 59.708 | 17.495 | 21.665 | 73.707 | 85.949 | 23.081 | 28.364 | 90.718 | 101.561 | | 3.7 | 22.173 | 16.169 | 19.187 | 54.115 | 67.895 | 20.024 | 24.013 | 82.369 | 94.880 | 26.354 | 31.444 | 108.356 | 119.731 | | 4.1 | 26.690 | 20.073 | 23.154 | 62.666 | 76.829 | 22.660 | 26.869 | 91.786 | 104.563 | 28.773 | 33.712 | 118.352 | 129.984 | | 4.6 | 32.551 | 25.685 | 28.119 | 74.428 | 89.049 | 27.445 | 31.166 | 104.610 | 117.717 | 32.994 | 37.271 | 131.919 | 143.867 | | 5.1 | 40.024 | 32.087 | 34.082 | 87.387 | 102.444 | 32.899 | 36.278 | 118.600 | 132.032 | 37.184 | 41.652 | 146.664 | 158.921 | | 5.7 | 49.418 | 40.373 | 42.324 | 104.533 | 120.078 | 40.954 | 43.446 | 136.930 | 150.743 | 43.941 | 48.008 | 165.902 | 178.520 | | 6.3 | 59.856 | 50.804 | 52.318 | 123.429 | 139.427 | 49.173 | 51.689 | 156.948 | 171.131 | 51.454 | 55.576 | 186.818 | 199.787 | | 7.0 | 73.354 | 63.237 | 64.460 | | | 60.866 | 63.754 | | | 62.302 | 65.946 | | | | 7.8 | 90.521 | 79.822 | 80.388 | | | 75.986 | 78.134 | | | 75.986 | 80.606 | | | | 8.7 | | 101.126 | | | | 96.228 | 98.213 | | | 94.820 | 97.145 | € (0) | €. (1.2 |) e ₂ -(3,4) | €(1.2) | € (3.4) | €. (5.6) | €(7,8) | €. (5.6) | € (7.8) | | | | | | | 2+. / | T-, , | 2=, | T+,-,-, | 5+,0, | T | 2-1.7-1 | T+/>/-/ | 2+1.707 | | | | | Si: Numerical Solution of Equation 4.1.8 | | | | | | 6 x 6 | Determina | nt | | | | | | | | |--|---|---|---|---|--|--|--|--|--|--|--|--|---|---| | d | $\epsilon_{ t l}$ | €2 | €3 | ϵ_{4} | €5 | € ₆ | €7 | €8 | €9 | €10 | ϵ_{11} | € ₁₂ | € ₁₃ | €14 | | 0.0
0.1
4.1 | 1.626
1.633
23.321 | 6.114
6.124
52.464 | 7.650
7.652
20.370 | 9.654
9.676
23.900 | 19.341
19.371
70.409 | 28.197
28.246
83.838 | | | | | | | | | | | | | | | 10x | 10 Determ | inant | | | | | | | | | 0.0
0.1
4.1 | 1.625
1.631
23.261 | 6.082
6.090
52.464 | 7.391
7.399
20.339 | 9.428
9.444
23.623 | 20.549
20.565
70.404 | 29.087
29.131
84.040 | 16.366
16.353
24.417 | 17.732
17.755
28.869 | 41.571
41.612
98.593 | 50.752
50.801
110.772 | | | | | | | | | | | 14x | 14 Determ | dnant | | | | | | | | | | $\epsilon_{1^+}(0)$ | € ₂ +(1) | € ₁ -(2,4) | € ₂ -(3,5) | $\epsilon_{1}^{+(2,4)}$ | € ₂₊ (3,5) | | | | | | | | | | 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.8
2.0
2.3
2.6
2.9
3.7
4.1 | 1.625
1.631
1.651
1.686
1.736
1.804
1.891
1.999
2.131
2.288
2.471
2.919
3.483
4.972
5.899
7.504
9.717
11.789
15.133
18.990
23.257
€1+(1) | 6.082
6.090
6.128
7.623
7.819
8.081
8.402
8.763
9.134
10.701
11.696
13.080
16.622
18.696
22.198
26.137
30.518
37.045
44.359
52.464 | 7.384 7.393 7.425 7.496 6.135 6.124 6.097 6.061 6.027 6.000
5.987 6.021 6.152 6.761 7.257 8.267 9.252 10.962 13.568 16.688 20.338 | 9.420
9.436
9.482
9.553
9.643
9.748
9.867
10.003
10.169
10.388
9.474
9.966
10.318
11.069
11.551
12.454
13.604
15.020
17.344
20.183
23.608
62-(4,5) | 20.041
20.057
20.114
20.354
20.553
20.818
21.160
21.584
22.095
22.689
24.060
25.952
30.196
32.648
36.733
41.270
46.244
53.543
61.597
70.404 | 29.702
29.734
29.829
29.989
30.220
30.528
30.923
31.409
31.409
31.405
37.084
41.748
44.406
48.775
53.587
58.832
66.488
74.891
84.041 | 15.749
15.737
15.625
15.640
15.562
15.469
15.368
15.262
15.155
15.053
14.959
14.805
14.718
14.773
14.960
15.444
16.193
17.220
19.039
21.388
24.291 | 17.054
17.075
17.138
17.237
17.366
17.516
17.648
17.829
17.973
18.100
18.211
18.396
18.560
18.954
19.234
19.787
20.554
21.555
23.286
25.500
28.215 | 41.651
41.689
41.805
41.999
42.272
42.624
43.057
43.571
44.163
44.338
45.590
47.318
49.334
54.154
56.927
61.510
66.572
72.095
80.149
88.975
98.559 | 51.417
51.466
51.612
51.855
52.192
52.621
53.139
53.744
54.432
55.201
56.046
57.955
60.140
65.268
68.184
72.969
78.228
83.943
92.251
101.328
111.161 | 26.893
26.824
26.671
26.485
26.285
26.077
25.866
25.449
25.250
25.063
24.786
24.393
24.011
23.966
24.086
24.451
25.076
26.337
28.104
30.392 | 27.440
27.512
27.675
27.873
28.083
28.288
28.473
28.631
28.756
28.852
29.003
29.042
29.085
29.177
29.413
29.824
30.445
31.645
33.307
35.458 | 64.496 64.540 64.672 64.893 65.200 65.594 66.072 66.635 67.280 68.005 68.809 70.645 72.775 77.857 80.784 85.625 90.980 96.825 105.350 114.681 124.796 | 73.628
73.676
73.820
74.059
74.392
74.818
75.334
75.940
76.632
77.410
78.269
80.225
82.482
87.831
90.893
95.937
101.494
107.538
116.324
125.911
136.277 | Si: Numerical Solution of Equation 4.1.9 | | | | | | 7x7 De | terminant | | | | | | | | | | |--|--------------------------|--|--|---|--|--|--|--|--|---|--|---|--|--|--| | đ | ϵ_1 | €2 | €3 | €4 | €5 | €6 | €7 | €8 | €9 | € ₁₀ | ϵ_{11} | € 12 | € 13 | ϵ_{14} | € ₁₅ | | 0.0 | 1.202
1.224
22.482 | 4.859
4.861
44.630 | 13.571
13.591
61.317 | 10.451
10.523
21.010 | 9.672
9.617
24.888 | 24.757
24.792
77.774 | 33.788
33.837
90.784 | | | | | | | | | | | | | | | llxll | Determina | nt | | | | | | | | | | 0.0
0.1
4.1 | | 4.851
4.853
44.630 | 13.321
13.342
61.317 | 10.024
10.111
20.962 | 9.511
9.439
24.502 | 25.414
25.438 | 34.609
34.655
91.033 | 19.395
19.343
25.765 | 20.256
20.313
30.409 | 47.267
47.310
105.264 | 56.449
56.498
117.242 | | | | | | | | | | | 15x15 | Determina | nt | | | | | | | | | | | € ₂ -(0,1) | $\epsilon_{1^{+}}(1)$ | € ₂₊ (0,2) | € ₁ -(3,5) | € ₂ -(4,6) | $\epsilon_{1+}^{(3,5)}$ | € ₂₊ (4,6) | | | | | | | | | | 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
9
1.0
1.4
1.8
2.3
2.6
9
3.7
4.1 | | 4.851
4.853
4.859
4.872
4.897
4.998
5.088
5.215
5.388
5.619
6.293
7.277
10.325
12.164
19.089
23.356
29.563
36.686
44.630 | 13.307
13.328
13.393
13.506
13.673
13.903
14.202
14.578
15.032
15.559
16.146
17.730
19.326
23.327
25.621
29.435
33.680
38.353
45.247
52.900
61.317 | 10.010
10.097
9.286
9.127
8.972
8.826
8.694
8.576
8.474
8.392
8.330
8.277
8.345
9.059
9.887
11.010
12.451
15.009
17.516
20.961 | 9.506
9.433
10.285
10.509
10.744
10.977
11.197
11.397
11.573
11.727
11.864
12.111
12.357
12.976
13.396
14.174
15.215
16.509
18.660
21.315
24.485 | 24.956
24.984
25.069
25.215
25.424
25.700
26.044
26.451
26.897
28.117
27.316
29.956
31.960
36.280
38.841
43.083
47.784
52.925
60.451
68.733
77.765 | 34.917
34.957
35.079
35.284
35.573
36.407
36.951
37.577
38.282
39.064
40.842
42.885
47.691
50.427
54.921
59.249
73.094
81.691
91.034 | 18.405
18.374
18.292
18.177
18.045
17.766
17.630
17.500
17.383
17.291
16.937
16.874
16.872
17.407
17.407
18.063
18.990
20.666
22.862
25.593 | 19.402
19.434
19.519
19.636
19.767
19.900
20.028
20.145
20.249
20.341
20.421
20.560
20.696
20.998
21.240
21.738
22.433
23.365
24.971
27.061
29.646 | 47.234
47.275
47.396
47.599
47.884
48.251
48.700
49.230
49.842
50.533
51.303
53.080
55.126
60.036
62.862
67.530
72.686
78.309
86.505
95.480
105.217 | 57.061
57.110
57.257
57.502
57.841
58.274
58.797
59.407
60.102
60.879
61.733
63.667
65.881
71.084
74.045
78.906
84.249
90.053
98.489
107.701
117.674 | 29.691
29.585
29.381
29.156
28.925
28.6695
28.472
28.266
28.107
27.040
26.736
26.312
26.225
26.275
26.566
27.112
28.261
29.909
32.074 | 30.108
30.208
30.392
30.585
30.766
30.929
31.070
31.187
31.280
31.350
31.402
31.472
31.478
31.478
31.659
32.008
32.562
33.663
35.218
37.257 | 70.271 70.316 70.449 70.670 70.980 71.376 71.857 72.423 73.072 73.801 74.611 76.461 78.608 83.735 86.690 91.580 96.993 102.904 111.524 120.961 131.188 | 79.379 79.427 79.570 79.808 80.140 80.564 81.080 81.684 82.376 83.153 84.013 85.973 88.238 93.616 96.700 101.786 107.393 113.496 122.371 132.056 142.528 | | | $\epsilon_{2}^{-}(1,2)$ | $\epsilon_{1+}(0)$ | $\epsilon_{2^{+}}(1,2)$ | $\epsilon_{1}^{-(3,4)}$ | ϵ_{2} -(5,6) | $\epsilon_{1}^{+}(3,4)$ | $\epsilon_{2^{+}(5,6)}$ | | | | | I | | | | Si: Numerical Solution of Equation 4.1.10 8x8 Determinant | d | $\epsilon_{ t 1}$ | ϵ_2 | € ₃ | ϵ_{14} | € ₅ | €6 | €7 | €8 | €9 | € ₁₀ | ϵ_{11} | €
12 | |--|--|--
--|---|--|--|---|--|--|--|--|---| | 0.0
0.1
4.1 | 1.510
1.499
20.420 | 3.842
3.876
22.514 | 8.653
8.666
54.307 | 18.402
18.435
69.310 | 12.572
12.498
21.873 | 13.309
13.387
26.086 | 30.295
30.334
84.885 | 39.417
39.466
97.565 | | | | | | | | | | | 1 | 2x12 Dete | erminant | | | | | | | | € ₁ -(0,2) | € ₂ -(1,3 |) ₁₊ (0,2 | 2) ₆₂₊ (1,3) | (4,6) € ₁ -(4,6) | € ₂ -(5,7 |) _{\$1+} (4,6 |) ₆₂₊ (5,7) | | | | | | 0.0
0.1
0.2
0.4
0.5
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7 | 1.510
1.499
1.470
1.430
1.390
1.359
1.347
1.376
1.432
1.517
1.780
2.171
2.694
3.351
4.142
5.581
7.320
9.356
12.530
16.221
20.419
26.340
33.149 | 3.841
3.875
3.972
4.122
4.311
4.526
4.754
4.985
5.433
5.646
6.061
6.970
7.526
8.176
9.356
10.8524
15.251
18.407
22.497
27.925
34.179 | 8.609
8.622
8.662
8.731
8.835
8.980
9.170
9.406
9.676
9.944
10.148
12.341
13.678
15.596
17.479
19.661
23.261
27.341
38.568
46.049
54.307
65.727
78.374 | 18.098 18.133 18.238 18.413 18.660 18.975 19.351 19.758 20.097 21.386 21.978 23.456 25.386 27.385 29.621 32.072 36.113 40.587 45.487 52.678 60.618 69.310 81.238 94.352 | 12.716
12.799
11.991
11.811
11.636
11.476
11.231
11.177
11.216
11.414
10.300
10.355
10.463
10.664
10.975
11.665
12.640
13.910
16.084
18.886
21.814
26.678
32.236 | 12.236
12.155
12.966
13.150
13.330
13.497
13.648
13.783
13.903
14.011
14.111
14.307
14.568
14.579
14.924
15.296
16.007
16.941
16.125
20.428
22.615
25.622
30.111
36.028 | 30.678
30.710
30.804
30.963
31.192
31.493
31.870
32.326
32.862
33.479
34.175
35.795
37.701
39.871
42.287
44.932
49.306
54.144
59.429
67.153
75.635
84.869
97.464
111.228 | 40.182
40.230
40.372
40.609
40.937
41.858
42.446
43.113
43.857
44.676
46.522
48.631
50.985
53.572
56.378
60.985
66.048
71.555
79.570
88.342
97.862
110.810
124.920 | 22.147
22.076
21.913
21.718
21.516
21.321
21.144
21.017
21.041
20.194
20.122
19.886
19.677
19.539
19.505
19.803
20.332
21.732
22.640
24.667
27.226
31.187
35.405 | 22.828
22.898
23.054
23.418
23.591
23.747
24.000
24.097
24.177
24.331
24.653
25.008
25.553
26.324
27.740
29.633
32.027
35.747
40.292 | 52.991
53.034
53.164
53.381
53.683
54.069
54.539
55.725
56.436
57.225
59.026
61.112
63.469
66.082
68.940
73.662
78.882
84.578
92.884
101.979
111.845
125.245
139.819 | 62.162
62.211
62.356
62.596
62.932
63.360
63.878
64.486
65.178
65.954
66.811
68.754
70.989
73.497
76.261
79.269
84.213
89.650
95.559
104.143
113.510
123.642
137.367
152.259 | | 5.7 | 42.239
ε ₁ -(0,1) | ⁴ 3.263
€ ₂ −(2,3) | 95.180 $\epsilon_{1+}(0,1)$ | 111.669
) $\epsilon_{2+}(2,3)$ | $\epsilon_{1}^{(4,5)}$ | 42.774
€ ₂ -(6,7) | $\epsilon_{1+}^{(4,5)}$ | $\epsilon_{2+}(6,7)$ | 42.519 | 46.850 | 158.848 | 171.659 | | | | | | | | | | | | | | | ### REFERENCES - 1. J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869-883 (Feb. 1955) - 2. J. M. Luttinger, Phys. Rev. 102, 1030-1041 (May 1956) - 3. R. R. Goodman, doctoral dissertation, University of Michigan, 1958 - 4. E. Burstein, G. S. Picus, R. F. Wallis and F. Blatt, Phys. Rev. <u>113</u> 15-33 (Jan. 1959) - 5. S. Zwerdling, B. Lax, L. M. Roth, and K. J. Button, Phys. Rev. <u>114</u>, 80-89 (April 1959) - 6. G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. <u>98</u>, 368-384, (April 1955) - 7. R. N. Dexter, H. J. Zeiger and B. Lax, Phys. Rev. <u>104</u>, 637-644 (Nov. 1956) - 8. G. C. Dousmanis, Phys. Rev. Letters 1, 55-56 (July 1958) - 9. G. C. Dousmanis, R. C. Duncan Jr., J. J. Thomas, and R. C. Williams, Phys. Rev. Letters 1, 404-407 (Dec. 1958) - 10. B. Lax, Quantum Electronics--A Symposium, ed. C. H. Townes, Columbia University Press, New York, 1960. - 11. R. C. Duncan and B. Rosenblum, Bulletin of the American Phys. Society Series II, 5, 177 (March 1960) - 12. C. Kittel, <u>Introduction to Solid State Physics</u>, John Wiley and Sons Inc., New York 1956. - 13. J. R. Reitz, Solid State Physics VI, ed. F. Seitz and D. Turnbull, Academic Press Inc., New York 1955 - 14. H. Brooks, Advances in Electronics and Electron Physics V.7, ed. L. Marton, Academic Press Inc., New York 1955 - 15. E. O. Kane, J. Phys. and Chem. of Solids 1, 82-99 (1956) - 16. G. Dresselhaus, quoted by E. Burstein et al, Ref. 4 - 17. L. M. Roth, B. Lax, S. Zwerdling, Phys. Rev. <u>114</u>, 90-104 (April 1959) - 18. H. Kromer, Private Communication - 19. E. O. Kane, J. Phys. and Chem. of Solids 1, 249-261 (1957) - 20. L. D. Landau, Z. Physik 64, 629 (1930) - 21. W. Shockley, Phys. Rev. 78, 173 (1950) - 22. H. J. Zeiger, B. Lax, and R. N. Dexter, Phys. Rev. <u>105</u>, 495-501 (Jan. 1957) - 23. J. Callaway, Solid State Phys. V7, ed. F. Seitz and D. Turnbull, Academic Press Inc., New York 1958 - 24. G. Dresselhaus, doctoral dissertation, University of California, Berkeley, 1955 - 25. F. Herman, Physica 20, 801-812 (1954) - 26. F. C. Von der Lage and H. Bethe, Phys. Rev. 71, 612-622 (May 1947) - 27. L. D. Landau and E. M. Lifschitz, Quantum Mechanics, Addison-Wesley Publishing Co., Reading, Mass. 1958 - 28. R. B. Leighton, <u>Principles of Modern Physics</u>, McGraw-Hill Book Co., Inc., New York, 1959 - 29. F. Bloch, Z. Physik 52, 555 (1928) - 30. R. N. Dexter, B. Lax, Phys. Rev. 96, 223 (1954) - 31. R. C. Fletcher, W. A. Yager, and R. F. Merritt, Phys. Rev. <u>100</u>, 747, (1955) - 32. S. Zwerdling, K. J. Button, B. Lax and L. M. Roth, Phys. Review Letters 4, 173-176 (Feb. 1960) - 33. H. Kromer, Phys. Rev. 109, 1856 (March 1958) - 34. H. Kromer, Proc. IRE 47, 397 (March 1959) - 35. C. Kittel, Proc. of Natl. Academy of Sci. 45, 744-747 (May 1959) - 36. D. C. Mattis and M. J. Stevenson, Phys. Rev. Letters 3, 18 (1959) - 37. P. Kaus, Phys. Rev. Letters 3, 20 (1959) - 38. A. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1940-1949 (1958) - 39. F. Herman, Rev. Mod. Phys. 30, 102-121, (Jan. 1958) - 40. L. P. Bouckaert, R. Smoluchowski and E. Wigner, Phys. Rev. 50, 58-67 (1936)