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Abstract

Spatiotemporal chaos, or disorder in space and chaos in time, is studied in direct

numerical simulations of Rayleigh-Bénard convection. In particular, the following

results pertaining to spiral defect chaos are discussed.

First, in the absence of the mean flow, spiral defect chaos is found to collapse to a

stationary pattern comprising textures of stripes with angular bends. The quenched

patterns are characterized by mean wave numbers that approach those uniquely se-

lected by focus-type singularities, which, in the absence of the mean flow, lie at the

zig zag instability boundary. In addition, mean flow is shown to contribute to the

phenomenon of rolls terminating perpendicularly into lateral walls. In the absence of

the mean flow, rolls begin to terminate into lateral walls at an oblique angle. This

obliqueness increases with the Rayleigh number.

Second, the transport of passive tracers in the presence of advection by spiral

defect chaos is found to be characterized by normal diffusion. The enhancement in

the tracer diffusivity follows two regimes. When the molecular diffusivity of the tracer

concentration is small, the enhancement is proportional to the Péclet number. When

the molecular diffusivity is large, the enhancement is proportional to the square root

of the Péclet number. This difference is explained in terms of the dependence of the

transport on the local wave numbers. It is found that tracer concentrations with

small molecular diffusivity experience enhanced longitudinal diffusion and suppressed

lateral diffusion at regions of the flow occupied by defects.

Third, perturbations in spiral defect chaos are found to propagate in a localized

manner. In particular, they nucleate around the defect structures in the flow. In

addition, an oscillatory instability at the spiral core is discovered. Finally, the propa-
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gation in pre-chaotic stripe textures is explained in terms of the diffusion of the phase

variable of the stripe state.
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Chapter 1

Introduction

1.1 Motivation

The study of chaos in systems with a few degrees of freedom is already a mature

subject. For example, the chaotic behavior observed in low-dimensional dynamical

systems such as the Lorenz model can be completely understood in terms of their

spectra of positive Lyapunov exponents or the fractal properties of their phase space

attractors [60, 87]. However, much less is known about the chaos that is observed in

spatially-extended and continuous media that have many (possibly an infinite number

of) degrees of freedom. Examples may be found in many fluid, chemical, and biolog-

ical systems, such as the oceans and the atmosphere [62], the Belousov-Zhabotinsky

reaction system [77], the chlorite-iodide-malonic acid reaction-diffusion system and

its variants [78], morphogenesis in embryos of fruit flies [97], neuronal activities in

brains of humans [20] and animals [67], etc.

Although the mechanisms for the generation of disorder may be specific to each

individual system, universal features may exist. One such universal feature that will

be the focus of this dissertation is the occurrence of spatiotemporal chaos [28, 39, 43].

It refers to the system exhibiting chaos in its temporal dynamics in localized regions,

and that these localized regions then mutually interact with one another to generate

spatial disorder. In other words, the system can be said to be exhibiting disorder in

both space and time, and acquires a large attractor dimension (possibly diverging as

the system size diverges).
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In principle, one can still apply the techniques used for studying low-dimensional

chaos to spatiotemporal chaos. For example, one can reconstruct from time series

measurements the attractor in phase space and analyze the properties of this high-

dimensional attractor. However, this approach becomes impractical as the size of

the system becomes very large. Consequently, new descriptions and techniques are

needed. However, because these are not yet forthcoming, many questions about

spatiotemporal chaos remain unanswered. How does spatiotemporal chaos start to

appear in a continuous system with infinitely many degrees of freedom? How does

spatiotemporal chaos develop as parameters of the system are changed? What is the

nature of the transitions between different states (both from a stationary state to

spatiotemporal chaos and between different kinds of spatiotemporal chaos)? What

are the most appropriate statistical measures to characterize spatiotemporal chaos?

This dissertation describes the research done to answer some aspects of these ques-

tions pertaining to spatiotemporal chaos. However, rather than study each system

exhibiting spatiotemporal chaos individually, a simple idealized model that captures

the essential physics is studied. In this dissertation, this model is a fluid that is be-

ing thermally driven far from equilibrium to give rise to convection [10]. In certain

parameter regimes, the fluid gives rise to a kind of spatiotemporal chaos called spiral

defect chaos [56] that will be the focus of this dissertation.

Although experiments have traditionally played a significant role in exploring the

properties of spatiotemporal chaos, many of the observed phenomena are difficult to

analyze theoretically [28]. As a result, there is a need for the use of direct numerical

simulations of these experiments to make quantitative comparisons between theory

and experiment. This dissertation focuses on making such quantitative comparisons.

In particular, simulations are used to explore parameter regimes that are not easily

attained by experiment, and to calculate quantities that are difficult to deduce from

experimental data. Finally, it should be emphasized that this dissertation does not

seek to use the simulations to reproduce previous experimental results, but to provide

new avenues of exploration that are complementary to the experimental ones, and to

stimulate further experimental work in novel parameter ranges.
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1.2 Overview

In the remaining part of this chapter, the system studied in this dissertation, buoyancy-

driven convection, is introduced. In Chap. 2, details of the algorithms used in this

dissertation for the direct numerical simulations of buoyancy-driven convection are de-

scribed. The next three chapters discuss the investigations of three separate problems

on spiral defect chaos. In Chap. 3, the question of how the appearance of spiral defect

chaos can be traced to the presence of nonlocal mean flow modes is addressed [21].

In Chap. 4, the transport of passive neutrally-buoyant tracers in spiral defect chaotic

flows is described. In Chap. 5, the spatial propagation of perturbations in spiral

defect chaos is described. Finally, in Chap. 6, conclusions are presented.

1.3 Rayleigh-Bénard convection

The model used in this dissertation is buoyancy-driven convection, also more com-

monly known as Rayleigh-Bénard convection [10, 27, 38, 52]. It has played a vital

role in developing ideas in low-dimensional chaos [1] and spatiotemporal chaos [2, 9],

and is generally regarded as the canonical example of a continuous system capable

of generating and sustaining spatiotemporal chaos. It has the advantages that the

underlying equations [see Eqs. (1.5)–(1.7) below] are well understood, and that there

is a close connection between theory and experiment.

In a Rayleigh-Bénard convection experiment, illustrated in Fig. 1.1, a fluid layer is

confined between two horizontal plates, and is thermally driven far from equilibrium

by maintaining the bottom plate at a temperature that is higher than that of the top

plate.

The dynamics of the fluid layer is then governed to a good approximation by the

Boussinesq equations. They are the combination of the incompressible Navier-Stokes

and heat equations in three dimensions, with the further assumptions that density
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Figure 1.1: Schematic illustrations of Rayleigh-Bénard convection. A fluid layer of
depth d is confined between two horizontal plates. The bottom plate is maintained
at a temperature ∆T higher than that of the top plate. The left panel illustrates the
formation of ideal straight and parallel convection rolls in a rectangular cell. The right
panel illustrates the formation of ideal axisymmetric convection rolls in a cylindrical
cell. The arrows denote fluid streamlines.

variations are proportional to temperature variations

ρ = ρ̃
[
1 − α(T − T̃ )

]
(1.1)

with ρ̃ and T̃ some reference values and α the isobaric thermal expansion coefficient,

and that this density variation appears only in the buoyancy force. The equations

read:

(∂t + u •∇)u(x, y, z, t) = −∇
(
p

ρ̃

)
+ ν∇2u + gα(T − T̃ )ẑ, (1.2)

(∂t + u •∇)T (x, y, z, t) = κ∇2T, (1.3)

∇ • u = 0. (1.4)

The field u(x, y, z, t) is the velocity field at point (x, y, z) and time t, while p and T

are the pressure and temperature fields, respectively. The variables x and y denote

the horizontal coordinates, while the variable z denotes the vertical coordinate, with

the unit vector ẑ pointing in the direction opposite to the gravitational acceleration

g. The parameters ν and κ are the kinematic viscosity and the thermal diffusivity

of the fluid, respectively. These parameters are assumed to be independent of the

temperature of the fluid. These equations can also be expressed in dimensionless
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form:

σ−1 (∂t + u •∇)u(x, y, z, t) = −∇p + ∇2u +RT ẑ, (1.5)

(∂t + u •∇)T (x, y, z, t) = ∇2T, (1.6)

∇ • u = 0. (1.7)

Space is now measured in units of the cell depth d, and time is measured in units

of the vertical diffusion time d2/κ. Dedimensionalization also reduces the number of

parameters in the equations to just two. They are the Rayleigh number R, which

can be thought of as the dimensionless temperature difference ∆T across the top and

bottom plates,

R =
αgd3

νκ
∆T, (1.8)

and the Prandtl number σ, which is the ratio of the fluid’s thermal to viscous diffu-

sivities,

σ =
ν

κ
. (1.9)

The reduced Rayleigh number,

ε =
R− Rc

Rc
, (1.10)

where Rc ≈ 1708 is the critical Rayleigh number at the onset of convection in an

infinite domain [27], will also be frequently used.

In this dissertation, the material walls of the cell are assumed to be no-slip, so

that the velocity field satisfies

u = 0, on all material walls. (1.11)

The temperature field is assumed to be constant on the top and bottom plates:

T
(
x, y, z = ∓1

2
, t
)

= ±1

2
, (1.12)
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and the lateral walls are assumed to be perfectly insulating, so that

n̂ •∇T = 0, on lateral walls, (1.13)

where n̂ is the unit vector perpendicular to the lateral walls at a given point. The

pressure field p has no associated boundary condition since it does not satisfy a

dynamical equation.

The influence of the lateral walls on the dynamics is determined by the dimen-

sionless aspect ratio Γ, defined to be the half-width-to-depth ratio of the cell if it

is rectangular and the radius-to-depth ratio if it is cylindrical. For example, for a

rectangular geometry, the fluid occupies the region defined by

−Γx ≤ x ≤ Γx, −Γy ≤ y ≤ Γy, −1

2
≤ z ≤ 1

2
, (1.14)

where Γx and Γy are the aspect ratios in the x and y directions, respectively.

If the Rayleigh number is small, R < Rc = 1708, the fluid remains motionless

and heat is transported only via conduction from the bottom plate to the top plate.

However, as the Rayleigh number is increased, the fluid undergoes an instability to

a state in which there is motion driven by the buoyancy forces. When the Rayleigh

number is above but near this convective threshold, the fluid spontaneously organizes

itself into convection rolls, each with a diameter that is close to the depth of the

cell. Images of the temperature field at mid-plane reveal patches of locally parallel

rolls. Examples of these laminar planforms are shown in Fig. 1.2. When the Rayleigh

number is increased, the fluid undergoes other instabilities [15] that may result in the

convection rolls developing a simple or a chaotic time dependence. Finally, when the

Rayleigh number is increased further, the convection rolls may collectively become

disordered in space and in time, and exhibit spatiotemporal chaos.

In particular, spiral defect chaos is observed for the Rayleigh number R >∼ 3000, the

Prandtl number σ ∼ 1, and the aspect ratio Γ >∼ 20. It is characterized by a disordered

collection of spirals of both the left- and right-handed kinds that rotate in the counter-
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Γ=8, ε=0.1 Γ=12, ε=0.1 Γ=16, ε=0.1 Γ=20, ε=0.1 Γ=28, ε=0.1

Γ=8, ε=1.0 Γ=12, ε=1.0 Γ=16, ε=1.0 Γ=20, ε=1.0 Γ=28, ε=1.0

Figure 1.2: Examples of convection planforms, including spiral defect chaos, observed
in direct numerical simulations of Rayleigh-Bénard convection. The mid-plane tem-
perature field T (x, y, z = 0) is plotted at time t = 500 for the reduced Rayleigh
number ε = 0.1 (top row) and ε = 1.0 (bottom row), the Prandtl number σ = 1,
and the aspect ratio Γ ranging from 16–56. Dark regions correspond to cold sinking
fluid, light regions to hot rising fluid. Spiral defect chaos appears in the rightmost
two planforms on the bottom row.

clockwise and clockwise senses, respectively. The spirals nucleate and annihilate in

seemingly random fashions. In addition to the spirals, dynamical defects such as grain

boundaries and dislocations are also present. Examples of spiral defect chaos are

shown in the rightmost two planforms, labelled Γ = 20, ε = 1.0 and Γ = 28, ε = 1.0,

on the bottom row of Fig. 1.2. A time sequence showing the evolution of a spiral

defect chaos planform is also shown in Fig. 1.3.

It is useful to characterize the convection planforms, both laminar and spiral defect

chaotic, by the distribution P (k) of wave numbers k. The wave number measures the

inverse width of the convection rolls, and can be approximated by a local method [33],

in which the wave number k(x, y) at the location (x, y) is computed using

k(x, y) ≈
∣∣∣∣∣−∇2T (x, y)

T (x, y)

∣∣∣∣∣
1/2

, (1.15)

where T (x, y) is the temperature field at location (x, y) and the mid-plane z = 0.
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(a) t=500 (b) t=502 (c) t=504

(d) t=506 (e) t=508 (f) t=510

(g) t=512 (h) t=514 (i) t=516

(j) t=518 (k) t=520 (l) t=522

Figure 1.3: Time sequence of the evolution of a spiral defect chaos planform in a cylin-
drical cell of aspect ratio Γ = 30 at the Rayleigh number R = 3500 and the Prandtl
number σ = 1 for a period of 22 time units. Spiral defect chaos is characterized by
a disordered collection of spirals of both the left- and right-handed kinds that rotate
in the counter-clockwise and clockwise senses, respectively. The spirals nucleate and
annihilate in seemingly random fashions. In addition to the spirals, dynamical defects
such as grain boundaries and dislocations are also present.
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(For smaller aspect ratios Γ <∼ 20, this method produces better statistics than global

Fourier transform methods that were used in previous experiments [44, 56, 57].)

The mean of this wave number distribution, 〈k〉 can then be computed as a func-

tion of the Rayleigh and Prandtl numbers, thus defining a “phase diagram” for the

convection planforms. An example for several different values of the reduced Rayleigh

number ε and the Prandtl number σ = 1 is shown in Fig. 1.4. This phase diagram

allows one to deduce certain trends about the convection planforms. First, it shows

that the variation of 〈k〉 with the reduced Rayleigh number ε is nearly independent

of the aspect ratio Γ ≡ Γx = Γy of a rectangular cell. Second, it shows that the mean

wave number 〈k〉 decreases approximately linearly with increasing Rayleigh number,

up to about ε ≈ 1. At this point, there is a change in the trend, with the mean

wave number 〈k〉 becoming essentially independent of the Rayleigh number. In the

larger aspect ratios, these points correspond to the convection planforms exhibiting

fully-developed spiral defect chaos. (In the smaller aspect ratio cells, the convection

planforms are chaotic but do not exhibit spiral defect chaos.) Experimentally, this

independence is not observed. For example, the mean wave number calculated in a

previous experiment [56, 57] performed in a cylindrical cell with Γ = 40 and σ = 0.98

decreases with increasing Rayleigh number, up until ε ≈ 5; c.f. Fig. 12 of Ref. [44].

Presumably, the smaller aspect ratios used in the simulations mean that their wave

numbers are affected by finite size effects.

In addition to the mean wave number, a correlation length, ξ, can also be defined

from the inverse width of the wave number distribution P (k). It is a measure of

the average length scale of correlated regions in the pattern, and generally speaking,

quantifies the average amount of spatial disorder in the convection planform. Values

of the correlation length as a function of the reduced Rayleigh number ε are plotted

in Fig. 1.5. It shows that the correlation length ξ is independent of the aspect ratio

and obeys approximately a power law dependence

ξ ∝ ε−1/2 (1.16)
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Figure 1.4: The reduced Rayleigh number ε vs. the mean wave number 〈k〉 − kc,
with kc = 3.117 the critical wave number at the onset of convection in an infinite
domain [27]. Solid symbols denote convection planforms where spiral defect chaos is
observed. Also shown are the instability boundaries [15] which limit the range for an
ideal state of straight and parallel rolls in an infinite domain. The various symbols
denote the various instability mechanisms: Eckhaus(E); zig zag(Z); skew varicose
(SV); oscillatory (O). The unique wave number that is selected in axisymmetric rolls,
kf , is also shown (see Sect. 3.3.4).

which is consistent with that predicted by the amplitude equation theory [27] (al-

though the range of Rayleigh numbers in the plot is much larger than the range over

which this theory might be expected to hold). A similar trend has also been noticed

in cylindrical geometry experiments [44, 57], although an experiment in a rectangular

cell [16] found a divergence at a nonzero value of ε.

The wave number distribution, the mean wave number, and the correlation length

will be used extensively to quantify the various properties of spiral defect chaos in

later chapters.



11

0 0.5 1 1.5 2 2.5 3
0

5

10

15

  ε

 
ξ

Γ=16                     
Γ=20                     
Γ=24                     
Γ=32                     
Γ=40                     
Γ=56                     
fit: ξ=1.54ε−0.495

10
−2

10
−1

10
0

10
0

10
1

ε

 
ξ
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probability distribution P (k), is plotted as a function of the reduced Rayleigh number
ε. The inset shows the same information but on a log-log scale. The straight line in
the inset has a slope 1/2 as would be predicted by amplitude equation theory that is
valid near threshold.

Finally, instead of the Boussinesq equations, Eqs. (1.5)–(1.7), models of Rayleigh-

Bénard convection have also been used in the study of spatiotemporal chaos. One

such example is the Swift-Hohenberg model equation [90] and its generalizations.

These models are computationally less expensive to integrate than the Boussinesq

equations, and are useful when qualitative, and not quantitative, comparisons be-

tween theory and experiment are needed quickly. However, recent advances in paral-

lel computers and data storage have allowed for the development of direct numerical

simulations that allow for the efficient integration of the Boussinesq equations with

realistic boundary conditions and without any approximations to the physics. Two of

these algorithms will be discussed in Chap. 2. The availability of these direct numeri-
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cal simulations have largely obviated the need for model equations. Nevertheless, the

model equations are briefly discussed here for completeness.

The Swift-Hohenberg model equation [50, 90] describes the evolution of a real

scalar field ψ(x, y, t) that is supposed to mimic the convection planforms [such as the

temperature field T (x, y) at the mid-plane z = 0],

∂tψ(x, y, t) = εψ − (∇2 + 1)2ψ − ψ3. (1.17)

The stress parameter ε is supposed to mimic the role of the reduced Rayleigh number

defined in Eq. (1.10). Various other nonlinear terms can also be chosen in lieu of

the cubic ψ3 term. For example, the term 3(∇ψ)2∇2ψ has been used [41] because

it gives a better representation of the stability of the stripe state as the wave vec-

tor and stress parameter are varied. The behavior of the scalar field ψ(x, y, t) very

often reproduces the convection planforms observed in experiments. However, there

are several limitations to the Swift-Hohenberg modeling. First, the Swift-Hohenberg

model equation describes the spatiotemporal behavior of a field in two dimensions,

whereas convection is a three-dimensional phenomenon. Second, the long-time dy-

namics of the Swift-Hohenberg equation may not correspond to that of the Boussinesq

equations of convection. In particular, Swift-Hohenberg models exhibit spiral defect

chaos as a transient behavior, whereas in experiments, spiral defect chaos is known

to persist for much longer times [76]. Third, the small-scale structure of the depth-

averaged vorticity potentials at the cores of the spirals, which might be crucial for the

persistence of spiral defect chaos, are not perfectly captured in the Swift-Hohenberg

equation [10]. While some of these limitations may be overcome by using more elab-

orate modeling, this approach will not be followed in this dissertation. Instead, in

the next chapter, direct numerical simulations of the Boussinesq equations will be

discussed.
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Chapter 2

Direct numerical simulations

2.1 Introduction

This dissertation makes extensive use of two previously developed packages of di-

rect numerical simulations of the Boussinesq equations, Eqs. (1.5)–(1.7), in realistic

boundaries conditions, Eqs. (1.11)–(1.13). However, because details of the algorithms

are already available in the literature, they will not be presented here. Instead, the

goal of this chapter is to briefly describe these two solvers and their relevance to the

problems introduced in Chaps. 3–5.

The main characteristic of these two solvers that is relevant to this dissertation is

their ability to solve for large aspect ratios necessary for the study of spatiotemporal

chaos. The first solver, boxcode, is a serial second-order accurate finite difference

algorithm that uses a rectangular colocated mesh. Consequently, it can only simulate

rectangular cells but is highly efficient in doing so, as long as the aspect ratio is kept

moderate. The second solver, nek5000, is a parallel spectral element algorithm that

is second- or third-order accurate in time and exponentially convergent in space and

is able to treat complex geometries (including both rectangular and cylindrical cells).

The regime of large aspect ratio Γ poses significant computational challenges.

Many numerical degrees of freedom in the form of basis functions or mesh points are

needed to represent the spatial structure of the convecting fluid. In addition, the

dynamics needs to be studied over long times up to at least the horizontal diffusion

time scale, t ∼ Γ2, which is an estimate of the minimum time for thermal transients to



14

diffuse over the entire cell and thus for the spatial structure to reach an asymptotic

state. Because of this quadratic dependence on the aspect ratio, the time needed

to execute the numerical schemes so that an asymptotic state is reached becomes

prohibitively long for Γ >∼ 50 (based on current computational resources; for details,

see Ref. [22]). The many degrees of freedom and long integration times, together with

the need to repeat the simulations for different parameter values, imply that efficient

algorithms are essential for studying spatiotemporal chaos.

Because of these requirements, there have been few direct numerical simulations

of the Boussinesq equations, Eqs. (1.5)–(1.7), with aspect ratios Γ >∼ 20. Previous at-

tempts have included the following: Pesch et al. have carried out pseudo-spectral sim-

ulations (both serial and parallel) up to Γ = 32 to study spiral defect chaos[30, 34, 68].

However, their code uses periodic boundaries and not the experimentally-realistic

boundaries, Eqs. (1.11)–(1.13). Xi et al. [103] have studied the transition to spa-

tiotemporal chaos in a Γ = 30 square cell, but with the unphysical free-slip horizontal

boundaries. Arter and Newell [5], and Tomita and Abe [93] have also carried out sim-

ulations in small aspect ratios with thermally insulated no-slip sidewalls, the former

in a Γx = 8,Γy = 5.75 aspect ratio box, the latter in a Γ ≈ 10 square cell.

2.2 Finite difference solver: boxcode

The boxcode solver is a semi-implicit second-order accurate finite difference solver [22]

for a rectangular geometry with the boundary conditions prescribed by Eqs. (1.11)–

(1.13). (Periodic and perfectly conducting sidewalls are also possible but will not

be considered in this dissertation.) It currently works on a serial workstation, but

extending the solver to work on parallel workstations is possible [49]. This solver com-

plements the more flexible spectral element approach, discussed in the next section,

by being more than an order of magnitude more efficient on a serial processor (for a

box with the same aspect ratio and boundary conditions; see also Fig. 2.4). It is well

suited for studying long time dynamics of large-aspect-ratio boxes of Γ ∼ 50 [46].

The main advantages of boxcode are the simplicity of implementation and its
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efficiency on a single processor. Its simplicity arises from the use of a single mesh for

all field values. This is called a “non-staggered” or “colocated” mesh in contrast to

a “staggered” mesh for which the values of different fields appear at different points

in space [4, 66]. A non-staggered mesh reduces the effort to write and to validate a

code (compared to one using a staggered mesh). The use of a single non-staggered

mesh also helps to explain the efficiency of the algorithm. Using a standard oper-

ator splitting and projection method [8] together with second-order accurate finite

differences on a uniform three-dimensional mesh, the advancement of the velocity,

temperature, and pressure fields at each time step requires the numerical solution of

four Helmholtz equations and one Poisson equation. Because the resulting elliptic

equations and their boundary conditions are separable, they can be solved efficiently

using fast direct methods from the FISHPACK library [88, 89], with a complexity per

problem of O(N log(N)), where N is the total number of mesh points. Fast direct

methods are more efficient than most iterative methods on a single processor [12],

and have the additional advantage that no internal parameters need to be adjusted

to obtain convergence. However, fast direct methods are not applicable to complex

geometries, to problems with spatially varying parameters, or to complicated bound-

ary conditions that lead to non-separable equations. Complete detail of the algorithm

of boxcode is available in Ref. [22].

On a workstation with a 667 MHz 21264A 64-bit Alpha processor, a square box

with aspect ratio Γ = 20 and spatial resolution ∆x = ∆y = ∆z = 1/8 takes about

4.8 seconds per time step of ∆t = 0.001. This corresponds to 80 minutes per vertical

diffusion time and 90 days per horizontal diffusion time, so this code is too slow

to explore Γ >∼ 10 cells over time scales exceeding a horizontal diffusion time. On a

workstation with a 2 GHz 32-bit Pentium processor, the corresponding times for the

same test with same parameters are 4 minutes per vertical diffusion time and 4.5 days

per horizontal diffusion time. This then allows the code to explore Γ >∼ 50 cells over

time scales exceeding a horizontal diffusion time.

Although mathematically there is no boundary condition for the pressure field —

and by discretizing first space and then time, a boundary condition can be avoided
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— a Neumann condition,

n̂ •∇p = 0, on all walls, (2.1)

was imposed. This boundary condition has been shown [37, 92] to produce accept-

ably accurate results for problems in which the fluid is confined by no-slip surfaces.

However, the Gauss divergence theorem may not be satisfied for the Poisson equation

for the pressure field that results from applying the projection method,

∇2pn+1 = −∇2pn +
2

∆t
∇ • u∗∗, (2.2)

where pn+1 is the unknown pressure field to be solved, and pn and u∗∗ are the pressure

field at the previous time step and the intermediate velocity field, respectively. The

right-hand side of Eq. (2.2), which in general is nonvanishing, is incompatible with

the imposed boundary condition, Eq. (2.1). To overcome this problem, FISHPACK

instead computes the solution to Eq.(2.2) that minimizes the error in the least-squares

sense [88, 89]. The error incurred means that the velocity field is only approximately

divergence-free. In Fig. 2.1, the magnitude of this divergence is shown. It plots |∇ • u|
as a function of x along y = z = 0 for a mesh with Γx = Γy = 8 and spatial resolution

∆x = ∆y = ∆z = 1/8, and at the Rayleigh number R = 3000 and the Prandtl

number σ = 1. It can be seen that |∇ • u| ∼ 10−2 ∼ O(h2) where h is the larger of

the spatial resolutions ∆x, ∆y, and ∆z.

The algorithm is proven to be second-order by showing that the order of con-

vergence p → 2 in the limits of sufficiently fine time resolutions. By definition, the

convergence with respect to time resolution is of order p if ‖uh − uexact‖ = O(hp) in

the limit h → 0, where ‖u‖ =
√∑

ijk u
2
ijk denotes the Euclidean norm of a field u

on the spatial mesh, h = ∆t is the uniform time step, uh(x, y, z) denotes a discrete

numerical field obtained using a time step h, and uexact(x, yz) is the unknown exact

field on the spatial mesh. By writing uh(x, y, z) = uexact(x, y, z) + C(x, y, z)hp in the

limit h → 0, for some function C independent of h, the order p can be estimated by
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Figure 2.1: Magnitude of the divergence of the velocity field, |∇ • u|, plotted as a
function of x along y = z = 0 for a mesh with Γx = Γy = 8 and spatial resolution
∆x = ∆y = ∆z = 1/8, and at the Rayleigh number R = 3000 and the Prandtl
number σ = 1.

examining the quantity

ph = log2

(‖u4h − u2h‖
‖u2h − uh‖

)
, (2.3)

in the limit h→ 0. The estimate Eq. (2.3) involves field values at the three different

time steps 4h, 2h, and h, largest to smallest.

The convergence is evaluated for a three-dimensional box with perfectly insulating

sidewalls and for parameter values Γx = Γy = 2, R = 1725.0 ≈ 1.01Rc, and σ =

0.71. The initial conditions consisted of small random perturbation about the linearly

conducting state T = −z, u = 0, and these were integrated up to 20 time units at

which point the state became stationary. For various time steps h = 0.0001, 0.00005,

and 0.000025, all with a space resolution of N = 64, the convergence was found (using
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Eq. (2.3)) to be p = 1.7. This provides evidence that the code is indeed asymptotically

second-order accurate with respect to the time step.

Since an important practical feature of any production code is the largest time

step that can be taken before numerical instability occurs, the maximum stable time

step as a function of the Rayleigh and Prandtl numbers have also been calculated.

A three-dimensional box with periodic sidewalls and aspect ratio Γx = Γy = 2 was

used, with a spatial resolution ∆x = 16. The Euclidean norm of the temperature

field, ‖T‖, was calculated for various values of ∆t each time after a interval of twenty

vertical diffusion times so that transients decayed. The maximum stable time step

was then defined as the value of ∆t such that ‖T‖ remains bounded, i.e., ‖T‖ < 105.

In Fig. 2.2, the maximum stable time step as a function of the Rayleigh number

is plotted for two Prandtl numbers σ = 1 (squares) and σ = 10 (crosses). The

maximum stable time step decreases rapidly with increasing Rayleigh number. This

is to be expected since the magnitude of the velocity and temperature fields increase

with increasing Rayleigh number. In fact, a best log-log fit to the data yields the

relation

max(∆t) ∝ Rα (2.4)

where α = −1.2 when σ = 1, and α = −1.3 when σ = 10.

In Fig. 2.3, the maximum stable time step as a function of the Prandtl number

is plotted for fixed Rayleigh numbers R = 2048 (squares) and R = 8192 (crosses).

For R = 2048, the maximum stable time step decreases toward both small and large

Prandtl numbers. For R = 8192, the maximum stable time step decreases toward

small Prandtl numbers but is approximately constant at large Prandtl numbers. The

smaller time step needed at small Prandtl numbers can be attributed to the more dy-

namical nature of the convective flow at small Prandtl numbers, such as the presence

of spiral defect chaos [56].

Other methods of validating the accuracy of the algorithm, such as the calculating

the critical Rayleigh number and plotting the Nusselt number curve as a function of

the Rayleigh number are available in Ref. [22].
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Figure 2.2: Plot of the maximum stable time step as a function of the Rayleigh
number. The Prandtl number is kept constant at σ = 1 (squares) and σ = 10
(crosses). The cell has aspect ratio Γx = Γy = 2 and periodic sidewalls. The mesh
resolution is ∆x = 1/16. Small random perturbations in the temperature field are
used as initial conditions. The simulation is run until twenty vertical diffusion times,
at which time the Euclidean norm ‖T‖ is then calculated. The value of ∆t such that
this norm becomes greater than 105 is defined as the maximum stable time step.

2.3 Spectral element solver: nek5000

The nek5000 solver is a spectral element solver that is implemented efficiently on

modern parallel architectures [35]. It was developed by Fischer et al. to study chal-

lenging problems in fluid mechanics and heat transfer, such as the flow in a cartoid

artery, Rayleigh-Taylor instabilities, etc. It has been adapted by Fischer and Paul [63]

to solve the Boussinesq equations in a variety of geometry and boundary conditions,

such as cylindrical cells with Eqs. (1.11)–(1.13) [64] and cylindrical cells with a ra-
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Figure 2.3: Plot of the maximum stable time step as a function of the Prandtl number.
The Rayleigh number is kept constant at R = 2048 (squares) and R = 8192 (crosses).
The same aspect ratio, mesh resolution, and initial conditions as in Fig. 2.2 are used.

dial ramp in plate separation [65]. Complete detail of the algorithm of nek5000 is

available in Refs. [35, 96].

Briefly, the temporal discretization is based on the high-order operator splitting

approach of Ref. [51]. The nonlinear convective term is expressed as a material

derivative, which can be discretized by, for example, second-order backwards differ-

entiation, leading to a linearly symmetric Stokes problem that can be solved implicitly

at each time step using the iterative method of parallel preconditioned conjugate gra-

dients [37, 92]. The spatial discretization uses the spectral element method, which

is exponentially convergent, and can asymptotically achieve higher accuracy for a

given number of numerical degrees of freedom than a finite difference code such as

boxcode. These have been implemented efficiently on modern parallel architectures,
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Figure 2.4: Parallel speedup of the nek5000 solver. The wall time needed to integrate
one time step using nek5000 for an aspect ratio Γ = 20 rectangular cell with 8× 105

mesh points is plotted as a function of N , the number of processors used in parallel.
Ideal speedup is denoted by the dashed line. For comparison, the wall time needed to
integrate one time step using the boxcode solver for the same number of mesh points
and parameters is plotted as the solid horizontal line.

thus allowing the simulation of Rayleigh-Bénard convection in large aspect ratios of

up to Γ = 50.

To illustrate this efficiency, the parallel speedup of nek5000 is plotted in Fig. 2.4.

Speedup is measured by measuring the wall times needed in nek5000 to integrate,

say, one time step as a function of the number of processors used, while maintaining

the mesh size and all parameters of the problem constant. The nek5000 is able to

attain a near-ideal speedup. For comparison, the wall time needed in boxcode to

integrate one time step for the same mesh spacing and parameters is plotted as the

solid horizontal line.
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Chapter 3

Importance of mean flow in spiral
defect chaos

3.1 Introduction

Since the discovery of spiral defect chaos in Rayleigh-Bénard convection experiments

[56], the following facts about spiral defect chaos have been established: The param-

eter values for which it appears [44, 45, 48, 56, 57], namely, the Rayleigh number

R >∼ 3000, the Prandtl number σ ∼ 1, and the aspect ratio Γ >∼ 20; the distributions

of local roll properties such as the wave number [33]; statistics of spiral and defect

populations [32, 31]; the mechanisms for the generation of chaos from spatial disorder

[34]; the wave number selection mechanism for spirals [26, 95]; and the conditions

under which spiral defect chaos transitions to other states. Of particular interest to

this chapter are experiments [6, 7] that have observed that the spirals transform into

targets when the Prandtl number is increased from σ ∼ 1 to σ ∼ 10 and when the

Rayleigh number R >∼ 3500. While this observation establishes that spiral defect chaos

occurs only at low Prandtl numbers, it does not allow one to conclude which of the

many dynamic phenomena that occur at low Prandtl numbers [27] is responsible for

the formation of spiral defect chaos.

One particular phenomenon that becomes important at low Prandtl numbers is

the presence of mean flow [58, 59, 82]. Mean flow is the name given to the velocity

field with a non-zero mean over the depth of the convective cell that is generated



23

by the variations of the structure of the convection rolls such as their curvature,

amplitude, and wave number, and that in turn couples through advection to further

modify the roll structure [25]. Its magnitude is approximately inversely proportional

to the Prandtl number [29].

It is believed that spiral defect chaos is an effect of the mean flow which in turn is

important at low Prandtl numbers [56, 57]. This hypothesis has been investigated in

numerical studies of the Swift-Hohenberg model equation. For example, by coupling

a mean-flow-like field to the Swift-Hohenberg equation [50, 90], chaotic behavior is

observed [41]. Furthermore, when the parameter in the model that gives the strength

of the mean flow is made large, spatiotemporal chaotic states akin to spiral defect

chaos are observed [47, 94, 102, 101]. However, as discussed in Sect. 1.3, results

obtained from these model equations are tenuous.

The goal of this chapter is to describe the results of direct numerical simulations

of Rayleigh-Bénard convection that will show that spiral defect chaos is indeed a

consequence of the presence of mean flow. In the absence of mean flow, spiral defect

chaotic states are found to cease to exist, and are replaced by states whose statistical

properties differ from those of spiral defect chaos. In general, studies of mean flow

are difficult to perform in experiments, primarily because it is difficult to measure

mean flow in an experimental setup. This is due to several reasons, namely that the

magnitude of mean flow is small (typically of the order of 1% of the magnitude of the

velocity of the convecting rolls), and that it exists only in distorted and not regular

patterns. There has only been one experiment that has successfully imaged aspects

of the mean flow, but only in a simple distorted pattern [23, 70]. It is not clear if

such imaging techniques can be applied to more general and complicated patterns.

Thus, the direct numerical simulations described in Chap. 2 are particularly valuable

for the study of mean flow.

The novel approach of this dissertation is the construction of a gedanken fluid

whose velocity field is modified to have zero mean flow. By investigating the states

that arise from the dynamics of this fluid and by comparing them with spiral defect

chaos, the role of mean flow in the formation and dynamics of spiral defect chaos can
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be directly inferred.

The capability to remove mean flow from the fluid dynamics can be applied to

the study of other problems as well. One such problem is the relation between mean

flow and lateral boundaries. In Sect. 3.3.6, mean flow is shown to contribute to the

commonly observed phenomenon of convection rolls terminating perpendicularly into

lateral walls, an observation that is still without much theoretical understanding.

3.2 Definitions

3.2.1 Mean flow

When the convection pattern is made up of rolls that are neither concentric nor

straight and parallel, a mean flow, slowly varying in the horizontal coordinates, will

be set up. The importance of mean flow is that it is a nonlocal flow mode, and as

such, affects the global behavior of the convection pattern even though its magnitude

is small. A detailed derivation of mean flow can be found in Ref. [59]. Heuristically,

it can be understood as follows. When there are inhomogeneities in the amplitude

A(x, y) and wave vector k(x, y) (or equivalently, the phase φ(x, y) where ∇⊥φ = k)

of the convection rolls, a Reynolds stress will be generated locally from the gradients

of A and k. This results in a flow slowly varying in the plane. In addition, these

inhomogeneities will also induce a varying component ps(x, y, t) in the pressure field

that is constant across the depth of the cell and slowly varying in the plane. The

gradient ∇⊥ps will then drive a global flow that, together with the Reynolds-stress-

induced flow, distorts the convection rolls further. If the slowly varying flow is called

uD, then [29]

σ∂zzuD = ∇⊥ps +
1

2π

∫ 2π

0
dφu •∇u⊥, (3.1)

where the integral over the phase variable φ serves to average out the fast modes of the

integrand. The as yet unknown field ps can be determined via the incompressibility
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condition, Eq. (1.7), which requires that

∇⊥ •
∫ 1/2

−1/2
dz uD(x, y, z, t) = 0. (3.2)

Eq. (3.1) can then be integrated twice with respect to z, with boundary condition

Eq. (1.11), to completely give uD. Finally, the slow distortions, uD, advect the phase

contours of the convection rolls, yielding an additional advection term in the phase

equation [29],

∂tφ→ ∂tφ+ U •∇⊥φ. (3.3)

The velocity field U is called the mean flow. It is an average of the slow distortions

over the depth of the cell,

U(x, y, t) =
∫ 1/2

−1/2
dz uD(x, y, z, t)g(z), (3.4)

with g(z) a weighting function that in principle can be calculated from the nonlinear

structure of the rolls [27, 59].

The mean flow can be approximated from the direct numerical simulations as the

average over the depth of the cell of the slow components of the horizontal velocity,

U(x, y, t) ≈ 1

2π

∫ 2π

0
dφ

∫ 1/2

−1/2
dz u⊥(x, y, z, t). (3.5)

In practice, the integral over the phase variable φ is replaced with a Gaussian filter

of characteristic width O(1) so that variations over short length scales are smoothed

out.

For the approximation of Eq. (3.5), and with the no-slip boundaries Eq. (1.11),

the mean flow U(x, y, t) is solenoidal:

∇⊥ • U = 0. (3.6)

It is also sometimes convenient to use the mean flow stream function, ζ(x, y, t), and
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the vertical component of the mean flow vorticity, ωz, defined by

−∇2
⊥ζ = ωz = ẑ • (∇⊥ × U) . (3.7)

The stream function, in particular, is useful to visualize because it gives the stream

lines and so the geometry of the mean flow.

3.2.2 Quenching mean flow

In this section, a procedure to construct a modified velocity field that does not have

any mean flow is prescribed. The goal is to add a forcing term, Φ, to the fluid

equation, Eq. (1.5), to make the resulting fluid dynamics have zero mean flow. The

functional form of Φ will now be derived.

As mentioned above, the mean flow comprises a local component generated by

the Reynolds stress 1/(2π)
∫ 2π
0 dφu •∇⊥u⊥ and a global component driven by a slow

horizontal pressure gradient that is present in order to guarantee the incompressibility

condition, Eq. (1.7). Thus, if the Reynolds stress is subtracted from the dynamics at

all times, then mean flow will not be generated. The following can then be written,

Φ(x, y, t) = ρ
∫ 1/2

−1/2
dzu •∇u⊥, (3.8)

where the operator ρ
∫ 1/2
−1/2 dz serves as an average over the depth of the cell.

The value of the constant ρ now needs to be evaluated. To do this, the equation

for the slow distortions, Eq. (3.1), can be rewritten as

σ∂zzuD = ∇⊥ps +
1

2π

∫ 2π

0
dφu •∇u⊥ − Φ. (3.9)

Following Ref. [29], the Reynolds stress term near threshold takes the form

1

2π

∫ 2π

0
dφu •∇u⊥ ≡ I(k, z)R(x, y). (3.10)
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where

R(x, y) ≡ k∇⊥ • (kA2), (3.11)

and

I(k, z) ≡ w0(k, z)∂z
∂φ0(k, z)

∂k2
c

− ∂w0(k, z)

∂k2
c

∂zφ0(k, z), (3.12)

with w0(k, z) and φ(k, z) the vertical profiles of the vertical velocity and the potential

of the horizontal velocities, respectively. For systems satisfying the rigid boundary

condition, Eq. (1.11), these functions are the familiar Chandrasekhar functions [19].

Eq. (3.9) can then be rewritten as

σ∂zzuD = ∇⊥ps + I(k, z)R(x, y) − ρ
∫ 1/2

−1/2
dzI(k, z)R(x, y). (3.13)

Integrating Eq. (3.13) with respect to z twice, and making use of the boundary

condition, Eq. (1.11),

σuD = p(z)∇⊥ps + J(k, z)R(x, y) − p(z)ρ
∫ 1/2

−1/2
dzI(k, z)R(x, y), (3.14)

with

p(z) ≡ 1

2

(
z2 − 1

4

)
(3.15)

the Poiseuille profile, and J(k, z) the double integral of I(k, z) with respect to z.

Employing the incompressibility condition, Eq. (3.2), the following equality is derived:

ρ =
12
∫ 1/2
−1/2 dzJ(k, z)∫ 1/2

−1/2 dzI(k, z)
. (3.16)

These integrals can then be evaluated, and the resulting values of ρ as a function of k

are plotted in Fig. 3.1. The value of ρ is found to be approximately 1.5, independent

of k, suggesting the validity of treating it as a constant in the first place.

Finally, to numerically confirm this result, the quenching of the mean flow, as de-

scribed in Eq. (3.17), is carried out for a range of values for ρ, at the reduced Rayleigh

number ε = 1.0 and several values of the Prandtl number, and in a rectangular cell
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Figure 3.1: The value of ρ as a function of the wave number k evaluated according
to Eq. (3.16). It can practically be taken to be a constant, ρ ≈ 1.5 for all values of k.

of Γx = Γy = 20. At ten time units after affecting the quenching, the maximum

magnitude of the mean flow as a function of ρ is measured. The results are shown

in Fig. 3.2, where the maximum mean flow magnitude (normalized by the maximum

mean flow magnitude observed without quenching) vs. ρ is plotted. When ρ ≈ 1.5,

the normalized maximum mean flow magnitude is indeed zero.

Now, the additional term Φ given by Eq. (3.8) with ρ = 1.5 can be added to the

fluid equation, so that Eq. (1.5) becomes

σ−1 (∂t + u •∇)u(x, y, z, t) = −∇p + ∇2u +RT ẑ + σ−1Φ. (3.17)

If Φ is introduced at time t = tq, the time needed for the modified velocity field

u to respond to this additional forcing can be estimated by applying dimensional

arguments on the terms in Eq. (3.17). This time scale is O(σ). For example, when
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Figure 3.2: The maximum mean flow magnitude vs. various trial values of ρ. The
mean flow magnitudes are normalized by their values at ρ = 0, i.e., when there is no
quenching. When ρ ≈ 1.5, the mean flow goes to zero, for all three Prandtl numbers.

σ = 1 when spiral defect chaos appears, the mean flow is expected to be quenched in

a time scale of O(1) from time tq.

For a pattern that does not have mean flow, such as a pattern comprising straight

parallel rolls with no defects or concentric circular rolls, the quenching procedure

should leave the convective properties, such as the Nusselt number N , of the fluid

unchanged. [The Nusselt number is the ratio of convective heat transfer to heat

transfer that would occur by conduction alone if the fluid remained at rest. It can be

computed by

N = 1 + 〈w (T − Tcond)〉, (3.18)

where w is the z-component of the velocity field and Tcond = −z is the temperature

profile of the linear conducting state with u = 0. The brackets 〈· · ·〉 denote an average
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Figure 3.3: Time series of the Nusselt number N(ε, t) for patterns comprising straight
parallel rolls that have no mean flow at several values of ε before (denoted by solid
lines) and after (dotted lines) quenching of the mean flow, which occurred at time
tq = 50. All data reported here are for the Prandtl number σ = 1 and in a rectan-
gular cell of aspect ratio Γx = Γy = 20. (In order to achieve straight parallel rolls,
periodic lateral boundaries were imposed and a small sinusoidal perturbation in the
temperature field was used as the initial condition.)

of a quantity over the cell.] This is shown to be true in Fig. 3.3. The Nusselt numbers

before (denoted by solid lines) and after (dashed lines) the quenching procedure, which

occurred at t = tq = 50, are indeed the same.
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3.3 Results

3.3.1 Quenching mean flow applied to spiral defect chaos

Using the boxcode and nek5000 solvers described in Chap. 2, Eqs. (1.6), (1.7), and (3.17)

are evolved from the initial conditions

u(x, y, z, t = 0) = 0, p(x, y, z, t = 0) = 0, (3.19)

and

T (x, y, z, t = 0) = −z + η(x, y, z), (3.20)

where T = −z is the linear conduction profile and η is randomly chosen from a

uniform distribution such that −10−5 ≤ η ≤ 10−5. Spiral defect chaos is observed

when the parameters are chosen such that the reduced Rayleigh number ε lies in the

range 0.6 ≤ ε ≤ 3.0, the Prandtl number σ ≈ 1, and the aspect ratio lies in the

range 16 ≤ Γ ≤ 30. In Fig. 3.4(a), an example is shown: a planform of the mid-plane

temperature field T (x, y, z = 0) at time t = 500 for parameters ε = 1.0, σ = 1, and

Γx = Γy = 20. In general, the planforms observed are qualitatively similar to those

observed in experiments in both cylindrical [56] and rectangular [16] geometries.

In the rest of this section, results are reported on simulations performed in a

rectangular cell of aspect ratio Γx = Γy = 20 integrated for 500 time units. At time

t = tq = 500, the forcing term given by Eq. (3.8) that will quench the mean flow

dynamics is invoked. In Fig. 3.4(b), the mid-plane temperature field at time t = 510

which is ten time units after the quenching of the mean flow has begun is plotted.

[Recall that the quenching takes place in a time of O(σ) so the quenched state at

ten time units should have already been asymptotic for these σ = 1 states.] As can

be seen, the rolls have “straightened out” in that they have lost their curvature and

have developed angular bends. More strikingly, the straightened roll patches become

stationary, leaving the only dynamics in the pattern to come from the motion of

defects such as dislocations and grain boundaries. To illustrate this transition from a
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Figure 3.4: (a) An example of spiral defect chaos observed in a numerical simulation
using the boxcode solver. The mid-plane temperature field is plotted at time t = 500
for parameters ε = 1.0, σ = 1, and Γx = Γy = 20. Dark regions correspond to
cold sinking fluid, light regions to hot rising fluid. The spiral defect chaos planform
is characterized by a disordered collection of spirals rotating in both directions and
coexisting with dynamical defects such as grain boundaries and dislocations. The
labels “1” to “4” are discussed in Fig. 3.5. (b) When mean flow is quenched, spiral
defect chaos collapses to a stationary pattern of textures of stripes with angular bends.
The planform shown here is at 10 time units after the quenching has been introduced
to the state shown in (a). All other parameters are unchanged.

dynamical state to a seemingly “frozen” one, Fig. 3.5 shows the time series of the rate

of change of the temperature field at several locations in the cell. For t < tq = 500,

the derivative dT (x, y)/dt fluctuates and is significantly different from zero at all

t < tq. However, after the quenching of the mean flow is initiated at t = tq = 500, the

derivative dT (x, y)/dt relaxes to approach zero in a time scale of O(1), suggesting that

all dynamics is becoming “frozen” and that a stationary pattern is being approached.

The quenching of the mean flow has also been repeated at other Rayleigh num-

bers ranging from ε = 0.6 to 3.0, and for different instances of the initial condition

Eq. (3.20). In all cases, similar stationary planforms as shown in Fig. 3.4(b) are ob-

served. In addition, this spiral-to-angular transition can be observed in the reverse

direction. When the mean flow quenching is turned off at a later time t = 550 so

that mean flow is again restored to the system, the angular bends develop into spirals
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Figure 3.5: The rate of change of the temperature field dTi/dt versus time t for the
four locations in the cell indicated in Fig. 3.4(a). Prior to quenching of the mean flow
which takes place at time t = tq = 500, the derivative dT/dt fluctuates and differs
from zero. After quenching, it approaches zero in a time scale of O(1), suggesting
that the pattern is approaching stationarity.

and the stationary planform becomes dynamical again. Spiral defect chaos is fully

restored. Furthermore, the stationary textures of stripes with angular bends can also

be observed when the quenching is initiated at other times. For example, instead of

initiating the mean flow quenching procedure at a time when a spiral defect chaotic

state is already asymptotic, the quenching procedure has also been initiated imme-

diately at the start of the simulation, t = tq = 0, again using Eqs. (3.19)–(3.20) as

initial conditions. In Fig. 3.6(a), the planform after 100 time units for the parameters

ε = 1.0, σ = 1, and Γx = Γy = 20 is shown. It is comprised of patches of locally

straight rolls ending into each other in angular bends. There are no spirals present.

When mean flow is restored at time t = 100, after a time of O(1), spiral defect chaos

appears, as can be seen in Fig. 3.6(b) which shows the planform at 500 time units
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Figure 3.6: (a) Stationary patches of stripes with angular bends at time t = 100
when mean flow quenching is introduced at time t = 0. The parameters are ε = 1.0,
σ = 1, and Γx = Γy = 20. (b) When the quenching is turned off at time t = 100 so
that mean flow is restored, spiral defect chaos is observed. The planform shown here
is at 500 time units after the restoration of mean flow.

after the mean flow has been restored.

Thus, this section has shown that spiral defect chaos does not exist without the

presence of mean flow.

Before concluding this section, the differences between the states observed when

mean flow is quenched and at high Prandtl numbers, for which mean flow is weak,

are qualitatively compared. (Recall that the magnitude of mean flow is inversely

proportional to the Prandtl number.) Starting from the state shown in Fig. 3.4(a),

the Prandtl number for that state is instantaneously increased from σ = 1 to σ = 10

at time t = 500. Although increasing the Prandtl number changes the convective

properties of the fluid and hence the dynamics of the state, it is nevertheless observed

[see Fig. 3.7(a)] that stripes with angular bends are similar to those observed when

the mean flow is quenched. Thus, the states observed when the mean flow is quenched

and unquenched states observed at high Prandtl numbers are similar. In addition,

in Fig. 3.7(b) the state observed when the mean flow quenching procedure after

increasing the Prandtl number to σ = 10 is shown. It is again similar to the pattern
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Figure 3.7: (a) The pattern observed when the Prandtl number is instantaneously
increased from σ = 1 to σ = 10 comprises stripes with angular bends that are similar
to the quenched patterns in Fig. 3.4(a). The pattern shown here is at 100 time
units after the Prandtl number has been instantaneously increased. The parameters
correspond to those of the state in Fig. 3.4. (b) When the mean flow is quenched for
the σ = 10 state of (a), the resulting pattern is qualitatively unchanged. Shown here
is the state at 100 time units after the mean flow has been quenched.

at σ = 10, suggesting that even at σ = 10, the residual mean flow components are

negligible.

Finally, it is also worthwhile to note that, contrary to the results of Assenheimer

and Steinberg [6, 7], the transition from spirals to targets as the Prandtl number is

increased to σ = 10 is not observed. Several explanations are plausible: First, in the

Assenheimer and Steinberg experiments, non-Boussinesq effects are significant [6, 7],

whereas in this dissertation, the direct numerical simulations are only for Boussinesq

fluids. Second, the smaller aspect ratios may not support the formation of targets, and

that the direct numerical simulations would indeed see the spiral to target transition

in larger aspect ratios. Third, the transition to targets may be strongly dependent

on the history of the system, in particular on the path (in parameter space) that the

parameters traverse.
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(a) (b)

Figure 3.8: (a) Mid-plane temperature field at time t = 500 for parameters ε = 0.15,
σ = 1 and Γx = Γy = 20. The stripe texture comprises patches of locally parallel rolls
and arcs that are stationary. (b) The state of (a) observed at 10 time units after the
mean flow is quenched. The curved rolls have transitioned into stripes with angular
bends that are stationary.

3.3.2 Quenching mean flow applied to pre-chaotic stripe tex-

tures

At lower Rayleigh numbers near the convective threshold, the planforms observed

take the form of stripe textures rather than exhibiting spiral defect chaos. While

stripe textures are not a form of spatiotemporal chaos, it is nevertheless interesting

to study how quenching the mean flow affects them. They comprise patches of locally

parallel rolls and arcs such that each patch terminates at the boundaries of another at

a different orientation, and the boundaries between the patches are usually populated

by defects. In general, the stripe textures are stationary after transients, except for

the motion of defects at the grain boundaries. In Fig. 3.8(a), a planform of the

mid-plane temperature field is shown at time t = 500 at ε = 0.15 and σ = 1 in a

rectangular cell of aspect ratio Γx = Γy = 20 .

When the mean flow is quenched at time t = tq = 500, the stationary stripe

textures remain stationary, and those rolls that are curved are straightened out. The
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resulting pattern, shown in Fig. 3.8(b) which is at 10 time units after the quenching,

comprises patches of angular structures that replaced patches of curved arcs.

3.3.3 Nusselt number variations

One way to quantify the changes introduced by the quenching procedure to a pat-

tern is to look at its global convective properties, such as the Nusselt number. For

a pattern with mean flow, the Nusselt number will be different from those of the

unmodified velocity field of Eq. (3.17) because the latter is not a solution to the

Boussinesq equations. An alternate way of saying this is that Eq. (3.17), together

with Eqs. (1.6) and (1.7), can be interpreted as the driven Boussinesq equations with

a driving force σ−1Φ that is turned on at time tq. Owing to this driving, the con-

vective properties of the fluid is expected to be stronger at time t > tq than at time

t < tq. This is illustrated in Fig. 3.9. The fractional change in the Nusselt number

∆N/N caused by the introduction of the quenching of the mean flow increases with

the reduced Rayleigh number. A best linear fit to the data yields the relation

∆N/N = (0.052 ± 0.005)ε. (3.21)

Thus, for example, when ε ∼ 1, modifying the velocity field to quench the mean flow

introduces a change of approximately 5% to the averaged convective properties of the

fluid.

3.3.4 Wave number distributions

In this section, the differences between the patterns observed with mean flow and with

mean flow quenched are quantified by studying the wave number distributions. The

probability density function of wave numbers, P (k), is computed from a time-average

of the patterns, using Eq. (1.15). The mean of the wave number distribution then

gives the mean wave number 〈k〉(ε) as a function of the reduced Rayleigh number

ε. The mean wave numbers obtained from the above numerical simulations of spiral
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Figure 3.9: Time series of the Nusselt number N(ε, t) for stripe textures and spiral
defect chaos at several values of ε before (denoted by solid lines) and after (dotted
lines) quenching of the mean flow which occurred at time tq = 500. All data reported
here are for Prandtl number σ = 1 and a rectangular cell of aspect ratio Γx = Γy = 20.

defect chaos lie within the Busse stability balloon [15]. In addition, they are also

consistent with existing theory for the selection of wave numbers in spiral defect chaos

[26, 95], which suggests that the wave numbers of convecting spirals are “frustrated,”

i.e., they lie between two competing selection mechanisms, selection by focus-type

singularities [13, 14] and selection by dislocations [10, 69]. The former is the unique

wave number possessed by axisymmetric rolls (as illustrated in the right panel of

Fig. 1.1) in large geometries. The latter is the wave number in straight and parallel

rolls (as illustrated in the left panel of Fig. 1.1) at which an added dislocation does

not climb in either direction along the rolls. These two sets of selected wave numbers,

at σ = 1, are denoted in Fig. 3.10 by the dashed and the dotted lines, respectively.

The direct numerical simulations produced wave numbers (denoted by the circles)

that lie within these two sets of selected wave numbers. For comparison purposes,
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Figure 3.10: Mean wave numbers 〈k〉 vs. reduced Rayleigh numbers ε. The circles
denote wave numbers estimated for spiral defect chaotic states at σ = 1 and Γx =
Γy = 20. The crosses denote wave numbers for states observed at 10 time units
after mean flow is quenched. For comparison, the diamonds denote wave numbers
obtained in the experiment of Ref. [56]. The dashed line denotes the unique wave
number kf of Eq. (3.23). The dotted line denotes the unique wave number kd selected
by dislocations.

the mean wave numbers calculated in a previous experiment [56, 57] performed in a

cylindrical cell with Γ = 78 and σ = 0.95 (diamonds) are also included. At lower

Rayleigh numbers, the mean wave numbers from the direct numerical simulations

agree with the experimental findings. However, at higher Rayleigh numbers, the wave

numbers from the simulations are smaller than those of the experiments. Presumably,

the smaller aspect ratios used in the simulations mean that their wave numbers are

affected by finite size effects.

For the range 0.6 ≤ ε ≤ 1.2, the mean wave numbers of the stripes with angular

bends when mean flow is quenched (denoted by the crosses in Fig. 3.10) appear to
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fall onto a straight line whose mathematical form can be obtained from a linear fit,

〈k〉 = (3.14 ± 0.05) − (0.16 ± 0.06) ε. (3.22)

This relation is consistent with the wave numbers selected by focus-type singularities

at Prandtl number σ = 1 [13, 14],

kf = 3.117 − 0.13 ε. (3.23)

The local pattern in focus-selected convection includes rolls that form closed contours

about a point within the cell. In the rectangular geometries of the direct numerical

simulations, the four corners act as focus centers, as can be seen by the presence of

approximately axisymmetric roll patches emanating from the corners, see Fig. 3.4(a).

In the absence of mean flow, the wave number selected therefore appears to be dom-

inated by that selected by the focus centers (i.e., the corners) to give a mean wave

number consistent with that selected in focus-type singularities.

Furthermore, in the absence of mean flow, the wave numbers kf lie at the boundary

of the zig zag instability [29]. The patterns observed with mean flow quenched are

thus dominated by lateral “zig and zag” bendings, leading to the stripes with angular

bends observed in Figs. 3.4(b) and 3.8(b).

The correlation length ξ(ε) of the patterns can also be computed as a function

of the reduced Rayleigh number ε. In Fig. 3.11, ξ(ε) is plotted for both unquenched

patterns (circles) and for patterns observed when the mean flow is quenched (crosses).

For comparison purposes, the correlation lengths calculated from a previous experi-

ment [56, 57] performed in a cylindrical cell with Γ = 78 and σ = 0.95 (diamonds) are

included. The correlation lengths for the states when mean flow is quenched are, on

the average, about twice as large as those for spiral defect chaos at all values of ε. In

addition, the correlation lengths for the unquenched patterns can be fitted with the

power law ξ ∝ ε−1/2. However, the same cannot be said for the quenched states. In

fact, the data suggests that while an exponent of −1/2 might be fitted for ε >∼ 0.7, the
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Figure 3.11: Correlation length ξ vs. reduced Rayleigh number ε. The symbols are
as defined in Fig. 3.10. The dashed line corresponds to the power law ξ ∝ ε−1/2.

correlation lengths appear to have saturated at ξ ∼ Γ = 14 for ε <∼ 0.7. This suggests

that finite size effects become important, and that, in order to obtain a better esti-

mate of the scaling relation for the patterns observed when mean flow is quenched, a

larger aspect ratio would be needed. Owing to the lack of data over more decades of

reduced Rayleigh numbers, actual fits to the data were not carried out.

3.3.5 Curvature distributions

How much the quenching of the mean flow straightens the rolls can be quantified

by looking at the distribution of the local curvature χ, defined at every point in the

planform to be the magnitude of the divergence of the unit wave vector:

χ = |∇ • k̂|. (3.24)
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A value of χ = 0 corresponds to a straight roll, whereas a value of χ = 1 corresponds

to a roll with a radius of curvature of unity.

The probability density function P (χ) for spiral defect chaos observed at ε = 1.0,

σ = 1, and Γx = Γy = 20 are computed, as well as for the resulting stripes with

angular bends observed at 10 time units after mean flow is quenched. In Fig. 3.12,

the two distributions are plotted. The curvature distribution for spiral defect chaos

(solid line) peaks at a value of χ ≈ 0.1, suggesting that the pattern is dominated by

spirals whose radius of curvature is χ−1 ∼ 10, consistent visually with the pattern

shown in Fig. 3.4(a). This peak broadens to become a plateau at 0 <∼χ <∼ 0.1 for the

quenched state (dashed line), suggesting an increase in the dominance of straighter

rolls in the pattern.

Similar results are also observed for the comparison of the curvature distribution

for the stripe textures. In Fig. 3.13, the comparisons for a state at ε = 0.15 is shown.

Both distributions, with (solid line) and without (dashed line) mean flow decrease

approximately monotonically and rapidly with increasing χ. Both the comparisons for

spiral defect chaos and for stripe textures suggest that the consequence of quenching

mean flow is to straighten out the rolls.

In addition, the distribution at ε = 0.15 for the quenched case is higher for χ <∼ 0.05

as well as for 0.1 <∼χ <∼ 0.4 (see the inset of Fig. 3.13), and lower otherwise. This

suggests that another consequence of quenching mean flow is the development of

angular structures that have large curvatures.

3.3.6 Mean flow and lateral boundaries

In experiments where the Rayleigh number is sufficiently high, it has been frequently

observed that convection rolls terminate perpendicularly into the lateral walls. In this

section, it is shown that mean flow generated by amplitude gradients near lateral walls

can be used to explain this phenomenon, although the applicability of this argument

rests on a number of factors, among them the presence of defects which affects the

ability of the patterns to reorient themselves.
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Figure 3.12: The probability density function P (χ) of the curvature χ. The solid line
is for the spiral defect chaotic state at ε = 1.0, σ = 1, and Γx = Γy = 20 averaged
over different random initial conditions and times t = 400 to 500. The dashed line
is for the stripes with angular bends observed at 10 time units after mean flow has
been quenched.

If n̂ is the outward unit vector normal to the lateral boundary and k̂ the wave

director of the rolls, then the wall-roll obliqueness angle can be defined as

Θ ≡ arccos |k̂ • n̂|. (3.25)

In practice, the numerical value of Θ at a particular location along the lateral bound-

ary is obtained by averaging Eq. (3.25) over a length r = 0.5 to r = 1.5, where r is

the perpendicular distance away from that location along the lateral boundary. The

value Θ = π/2 corresponds to rolls terminating perpendicularly into the walls. The

common occurrence of this value remains a phenomenological observation, without
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Figure 3.13: The probability density function P (χ) of the curvature χ. The solid line
is for stripe textures at ε = 0.15, σ = 1, and Γx = Γy = 20 averaged over different
random initial conditions and times t = 400 to 500. The dashed line is for the stripes
with angular bends observed at 10 time units after mean flow has been quenched.
The inset shows the region 0.1 ≤ χ ≤ 0.4 enlarged.

much theoretical underpinning, although it has been found [24] that Θ is not fixed

by the physical boundary conditions, Eqs. (1.11)–(1.13).

However, when rolls do not terminate perpendicularly at a lateral boundary, vari-

ations in the amplitude of the convection rolls as it decays near the lateral boundaries

results in the generation of a mean flow. [Recall from Eq. (3.1) that a mean flow is

generated by inhomogeneities in the wave numbers and amplitudes of the convection

rolls.] This mean flow then tends to restore the rolls back to being perpendicular to

the lateral boundary. The various quantities used in this section are defined in the

sketch in Fig. 3.14.

For simplicity, the wave vectors of the rolls are assumed to be constant near the
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Figure 3.14: Straight and parallel convection rolls with wave director k̂ terminating
at a lateral boundary with outward normal n̂ at an angle of obliqueness Θ. Note that,
by definition, 0 < Θ < π/2. The perpendicular distance away from the lateral wall is
x.

lateral boundary,

k = (−k cos Θ,−k sin Θ). (3.26)

(If the assumption that the wave numbers of the rolls are constant is relaxed, then the

compression and dilation of the rolls as well as inhomogeneities in their curvatures

will also contribute to the mean flow.) In addition, the convection amplitude within

a correlation length ξ of a lateral boundary is assumed to be suppressed [27, 100]:

A(x, y) = A0 tanh

(
x

ξ cos Θ

)
. (3.27)
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The quantity A0 is the amplitude in the bulk. The correlation length ξ =
√

2ε−1/2ξ0

with ξ0 = 0.385. The variable x is the perpendicular distance away from the lateral

boundary.

Then, from the Cross-Newell equation [29], the amplitude gradients near the lat-

eral wall will result in a non-zero mean flow vorticity, ω, given by

ω = γẑ •∇⊥ × [k∇⊥ • (kA2)], (3.28)

where γ is a constant that is inversely proportional to the Prandtl number σ. Sub-

stituting Eqs. (3.26) and (3.27) into Eq. (3.28) then gives

ω(x) = 2γA2
0k

2ξ−2f(Θ, x) (3.29)

where the normalized mean flow vorticity,

f(Θ, x) = tan(Θ)sech2

(
x

ξ cos Θ

)
×
[
1 − 3 tanh2

(
x

ξ cos Θ

)]
(3.30)

is plotted in Fig. 3.15(a) for several representative values of Θ. The mean flow vorticity

ω is positive for x/ξ <∼ 1, and negative otherwise. The currents from this vorticity pair

will then drive the rolls back to a perpendicular orientation.

The mean flow generated by this vorticity can also be easily computed. Along the

lateral wall, it is given by

|U| = γ|ky|∇⊥ · (kA2). (3.31)

(The component of the mean flow normal to the lateral wall is cancelled by the flow

coming from the slow pressure gradient.) Using Eqs. (3.26) and (3.27),

|U| = 2γA2
0k

2ξ−1g(Θ, x) (3.32)

where the normalized restoring mean flow magnitude in the direction of the lateral
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Figure 3.15: (a) The function f(Θ, x) defined in Eq. (3.30) which is the normalized
vertical component of the mean flow vorticity. It is plotted here for several values of
Θ and vs. x/ξ. (b) The function g(Θ, x) defined in Eq. (3.33) which is the normalized
mean flow magnitude. It is plotted here for several values of Θ and vs. x/ξ.

wall,

g(Θ, x) = sin(Θ)sech2

(
x

ξ cos Θ

)
tanh

(
x

ξ cos Θ

)
(3.33)

is plotted in Fig. 3.15(b) for several representative values of Θ.

Finally, the quantity max |U| as a function of Θ is plotted in Fig. 3.16. The restor-

ing mean flow magnitude grows monotonically from zero at Θ = 0 (corresponding to

sets of rolls parallel to the lateral wall) to attain its largest value at Θ → π/2 (cor-

responding to sets of rolls perpendicular to the wall). This analysis actually breaks

down for |Θ−π/2| <∼ ε1/4 because modifications at the next order in Eq. (3.27) become

important [24].

The importance of this restoring mean flow in ensuring that the rolls terminate
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Figure 3.16: The maximum magnitude of the mean flow U as a function of the wall-
roll obliqueness angle Θ. It increases monotonically from zero at Θ = 0 (rolls parallel
to the wall).

perpendicularly is indicated by observing that, in the absence of mean flow, oblique

rolls are more prevalent. In Fig. 3.17, the wall-roll obliqueness angle averaged over

the lateral boundaries is plotted for planforms observed at t = 500 at various reduced

Rayleigh number ε, the Prandtl number σ = 1, and in a rectangular cell of aspect

ratio Γx = Γy = 20, with mean flow and with the mean flow quenched. With mean

flow, the rolls are close to perpendicular, Θ ≈ π/2. However, when mean flow is

quenched, the rolls are more oblique, Θ <∼ π/2. In fact, the difference in the mean

wall-roll obliqueness angle between the states with mean flow and with mean flow

quenched, ∆〈Θ〉, increases approximately linearly with ε,

∆〈Θ〉 = (0.16 ± 0.01)ε, (3.34)
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Figure 3.17: The mean wall-roll obliqueness angle 〈Θ〉 as a function of the reduced
Rayleigh number ε for states with mean flow (circles) and with mean flow quenched
(crosses). The inset shows the difference between the two sets of data, ∆〈Θ〉, as a
function of ε.

as the inset of Fig. 3.17 depicts.

When mean flow is quenched, the reorientation of the rolls away from Θ = π/2 is

almost instantaneous. This result is illustrated in Fig. 3.18 for one particular reduced

Rayleigh number, ε = 1.0. In this case, the mean flow quenching takes place at time

t = tq = 500. At time t = 500, the mean wall-roll obliqueness angle moves away from

Θ = π/2 in a time scale of O(1).

The above argument that mean flow restores the rolls to a perpendicular orien-

tation may not always be applicable. Two scenarios are presented here. First, when

the simulations are performed in a cylindrical cell of aspect ratio Γ = 30, it is found

that, at ε = 1.0, the mean wall-roll obliqueness angle 〈Θ〉 still remains close to π/2

when mean flow is quenched. This can be seen more clearly in Fig. 3.19, where the
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Figure 3.18: The change in the mean wall-roll obliqueness angle 〈Θ〉 as a function
of time, averaged over different random initial conditions. The parameters here are
ε = 1.0, σ = 1, and Γx = Γy = 20. Mean flow quenching takes place at time
t = tq = 500, so that, for 490 ≤ t ≤ 500, the mean wall-roll obliqueness angle is for a
pattern whose bulk dynamics exhibits spiral defect chaos, whereas for 500 ≤ t ≤ 510,
the bulk dynamics is made up of stripes with angular bends.

probability density P (Θ) of wall-roll obliqueness angles along the lateral boundaries

is shown for states observed in a rectangular cell of aspect ratio Γx = Γy = 20 and

cylindrical cell of aspect ratio Γ = 30. In a cylindrical cell with mean flow quenched,

the peak at Θ ≈ π/2 is still observed after the mean flow has been quenched. One

possible explanation might be that, in a cylindrical cell, there are more defects exist-

ing near the lateral boundaries and that these defects then pin the rolls, preventing

them from reorienting away from Θ = π/2 when the mean flow is quenched.

A second scenario where the above argument does not apply is at low Rayleigh

numbers. From Eq. (3.32), the magnitude of the mean flow |U| ∝ ε1/2 so that at

low Rayleigh numbers, the mean flow may not be strong enough to reorient the rolls
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Figure 3.19: (a) Distribution of angles that rolls terminate at a lateral boundary in
a rectangular cell of aspect ratio Γx = Γy = 20. The solid line shows the distribution
for the spiral defect chaotic state averaged over different initial conditions at ε = 1.0
and σ = 1. The dashed line shows the distribution for the state with mean flow
quenched. (b) The solid line shows the distribution for spiral defect chaos observed
in a cylindrical cell of aspect ratio Γ = 30 at ε = 1.0 and σ = 1. The dashed line
shows the distribution for this state but with mean flow quenched.

perpendicularly. This is evident in Fig. 3.8(a), where, at the reduced Rayleigh number

ε = 0.15, rolls are seen to terminate with an acute angle at the lateral walls. In this

case, the presence of a restoring mean flow can also be visualized. The mean flow

vorticity plot corresponding to this pattern, shown in Fig 3.20(a), shows the presence

of strong vorticity along the bottom half of the left wall and the top half of the right

wall. There, the restoring mean flow vorticity takes the form of long and narrow

circulating “jets” that are about one roll size wide and several roll sizes long. In

Fig. 3.20(b), the vorticity is plotted as a function of distance away from the lateral

wall along the solid and dashed horizontal lines shown in Fig. 3.20(a). The existence
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Figure 3.20: (a) The mean flow vorticity ωz(x, y) corresponding to the stripe texture
of Fig. 3.8(a) obtained using Eq. (3.7). Light regions correspond to positive vorticity,
dark regions to negative vorticity. The important feature in this vorticity map is the
presence of “jet”-like structures along the bottom half of the left wall and the top half
of the right wall. (b) The vorticity ωz(x) is plotted along the solid and the dashed
horizontal lines shown in (a). The shape of ωz(x) is to be compared with the plot
of f(Θ, x/ξ) in Fig. (3.15), where a positive and a negative vorticity patch sets up a
restoring mean flow.

of a positive vorticity patch close to the wall and a negative patch further away

from the wall, which together indicates the presence of a restoring mean flow, agree

qualitatively with the theoretical results f(Θ, x/ξ) in Fig. 3.15. When the Rayleigh

number of the state in Fig. 3.8 is increased from ε = 0.15 to ε = 1.0, the mean flow

becomes strong enough to reorient the rolls to become perpendicular to the lateral

walls, and subsequently disappears.

3.4 Conclusions

In this chapter, a procedure to construct a modified velocity field that does not have

any mean flow in a convecting flow is first described. This procedure is then used
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to show that spiral defect chaos does not survive when the mean flow is quenched.

Instead, a pattern characterized by textures of stripes with angular bends appears.

The mean wave numbers of these quenched patterns approach those selected by focus-

type singularities, which, in the absence of the mean flow, lie at the boundary of the

zig zag instability.

In addition, a heuristic argument on how the mean flow can contribute to rolls

terminating into a lateral boundary perpendicularly. Data is provided to show that,

in the absence of the mean flow, the rolls begin to deviate from a perpendicular

orientation, and this obliqueness increases with the Rayleigh number. However, the

ability of this mean flow to restore the rolls to a perpendicular orientation may be

impeded by the presence of defects that do not allow the rolls to reorient themselves,

and at low Rayleigh numbers where the restoring mean flow is weak.
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Chapter 4

Transport of passive tracers in
spiral defect chaos

4.1 Introduction

This chapter addresses the transport of passive neutrally buoyant tracers in Rayleigh-

Bénard convection exhibiting spiral defect chaos. As mentioned in Chap. 1, spiral

defect chaos is an example of spatiotemporal chaos that is characterized by disorder

in both space and time [28, 39, 43]. An important characteristic of such spatially

disordered flows is that fluctuations in space play a significant role in their dynamics,

resulting in non-trivial advection of the passive tracers. The transport of passive trac-

ers is governed by this non-trivial advection in addition to molecular diffusion arising

from collisions between tracers or thermal fluctuations. The goal of this chapter is to

understand the net transport of passive tracers as a function of these two competing

mechanisms. This is a problem that is of considerable importance in many branches

of science and engineering. For example, it may allow one to gain insight into heat

and mass transport in atmospheric and oceanic flows and also in chemical engineering

processes such as combustion.

Previous studies of the properties of passive transport in convective flows have

focused on the following regimes: laminar and time-independent, and oscillatory

and weakly time-dependent, but not spatiotemporal chaotic. For example, in two-

dimensional time-independent laminar Rayleigh-Bénard convection flow, experiments
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have shown that the transport is effectively diffusive in the long time limit, with an ef-

fective diffusivity that is greater than the molecular diffusivity by a factor that scales

as the square root of the Péclet number (defined in Eq. (4.5) to be the ratio of the

strength of advection to diffusion) [84]. This enhancement, in the large Péclet number

limit, has also been calculated theoretically using the matched asymptotic expansion

method [74, 80]. In addition, higher-order corrections to the diffusion process, for ar-

bitrary Péclet numbers, have been calculated numerically using the homogenization

method [53, 54]. For nearly two-dimensional time-periodic convection, experiments

near the onset of the oscillatory instability [15] have shown that the transport is

again effectively diffusive but with an effective diffusivity that depends linearly on

the local amplitude of the roll oscillations [83]. This result has also been confirmed

theoretically by which the invariant structures of the flow were identified that acted

as templates for the motion of the tracers [17, 18]. Passive tracer transport has also

been studied in other types of laminar flows, including capillary waves generated by

the Faraday instability [72, 73] and Taylor-Couette flow in a rotating annulus [85, 86].

In addition, the subject of passive tracer diffusion in turbulent flows is also a subject

that has been extensively investigated [55, 81]. Experimentally, in Taylor-Couette

flow, the effective diffusivity has been measured to vary linearly with the scale of the

Taylor vortices [91]. Theoretically, mean transport quantities have been calculated

as averages over ensembles of the velocity field. The latter is usually evaluated with

the supplement of approximate closure schemes.

4.2 Definitions

The transport of passive neutrally buoyant tracers in a flow can be described by the

advection-diffusion equation. Written in a dimensionless form, it is

(∂t + u •∇)ψ(x, y, z, t) = L∇2ψ. (4.1)
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The scalar field ψ(x, y, z, t) is the passive tracer concentration at point (x, y, z) and

time t. The velocity field u is obtained from solving the Boussinesq equations,

Eqs. (1.5)–(1.7). The parameter L is the Lewis number, defined to be the molec-

ular diffusivity D of the tracers made dimensionless by the thermal diffusivity κ of

the fluid,

L =
D

κ
. (4.2)

In this chapter, small Lewis numbers in the range 10−3 ≤ L ≤ 10−1 will be considered.

In comparison, the Lewis numbers of passive tracers used in previous convection

experiments [84] in water at approximately 300 K, namely micrometer-sized latex

spheres (vinyl toluene t-butylstyrene) and methylene blue dye, are L = 1.2 × 10−5

and L = 3.9 × 10−3, respectively.

The tracers are assumed to be passive, i.e., their motions in the fluid do not

modify the fluid’s velocity field. The Soret and Dufour effects are also assumed to be

negligible. The former refers to the additional passive tracer concentration current

driven by gradients of the temperature field, whereas the latter refers to the additional

heat current driven by gradients of the passive tracer concentration. In addition, the

lateral walls are assumed to be impermeable to the tracers, so that

n̂ •∇ψ = 0, on lateral walls, (4.3)

where n̂ is the unit vector perpendicular to the lateral walls at a given point.

Eq. (4.1) is also commonly written in the literature in an alternate but entirely

equivalent form. By dividing it throughout by a characteristic velocity scale ||u||,
Eq. (4.1) becomes

(∂t + ũ •∇)ψ(x, y, z, t) =
1

P
∇2ψ, (4.4)

with ũ the rescaled velocity field, and P the Péclet number, defined to be the ratio

of the relative importance of the advection of the tracers to their molecular diffusion,

P =
||u||
L

. (4.5)
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Finally, it should also be noted that instead of studying the passive tracer concen-

tration field χ in the space coordinates defined in the laboratory frame (the Eulerian

approach), one could also study the trajectories of each passive tracer individually

(the Lagrangian approach) by integrating, for each passive tracer,

dx(t)

dt
= u(x(t), t) + η(t), (4.6)

where x(t) is the position of the tracer [initially at x(0)], u is the Eulerian velocity

field at space x(t) and time t, and η(t) is a Langevin noise introduced to represent

molecular diffusion. However, this approach is not pursued in this chapter because of

the difficulties associated with integrating Eq. (4.6). In fact, even if the velocity field

u can be explicitly determined and has a very simple form, the tracer trajectories x

can have very complicated dynamics [3].

4.3 Results

The transport equation, Eq. (4.1), is integrated concurrently with the Boussinesq

equations, Eqs. (1.5)–(1.7), for the following parameters: the Rayleigh number rang-

ing from the onset of spiral defect chaos at R ≈ 3000 to fully developed spiral defect

chaos at R ≈ 4000, the Prandtl number σ = 1, and the Lewis number ranging from

L = 10−3 to L = 10−1. The direct numerical simulations have been performed in

both cylindrical and rectangular three-dimensional cells of various aspect ratios using

both the boxcode and nek5000 solvers. In this chapter, data from a cylindrical cell

of aspect ratio Γ = 30 will be reported. The initial condition used for the passive

tracer concentration field is a localized concentration at the center of the cell:

ψ(x, y, z, t = 0) = exp

[
−x

2 + y2 + z2

6∆2

]
, (4.7)

with ∆ = 0.25 a small constant to ensure that the passive tracer concentration is

initially localized. At time t = 0, the temperature, velocity, and pressure fields

correspond to an asymptotic state of spiral defect chaos, i.e., one that has been
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evolved from random thermal perturbations up to a time of O(Γ2). Because the focus

is only on cells of large aspect ratio, Γ � 1, the z-dependence of the passive tracer

concentration field is found to be essentially constant. As such, the z-dependence will

be dropped in subsequent discussions and the passive tracer concentration ψ(x, y, t)

will be considered as a function of two-dimensional horizontal space and time.

In Fig. 4.1, the evolution of the passive tracer concentration field ψ(x, y, t) at the

mid-plane z = 0 for the parameters R = 3500, σ = 1, and L = 10−2 is shown for

various times t. The passive tracer concentration is seen to spread outwards with time.

In Sect. 4.3.1, this spreading is quantified by studying the mean square displacement

of the passive tracer concentration field. In Sect. 4.3.2, this spreading is shown to be

governed by normal diffusion. In Sect. 4.3.3, the local dependence of the spreading

on the wave number is discussed.

4.3.1 Statistics of moments of passive tracer concentration

The spreading of the passive tracers can be quantified by its mean square displacement

V (t), or the second moment of the passive tracer concentration field,

V (t) =

∫ Γ
0

∫ 2π
0 [r − r̄(t)]2ψ(r, θ, t) r dr dθ∫ Γ

0

∫ 2π
0 ψ(r, θ, t) r dr dθ

. (4.8)

Here, (r, θ) is the radial coordinate with origin at the center of the cell. In practice,

V (t) is computed as the average over different instances (typically three to five) of

ψ obtained from different initial conditions of spiral defect chaos, i.e., the velocity,

temperature, and pressure fields used at t = 0 are different instances of fully-developed

spiral defect chaos. The quantity r̄(t) is the center of mass of the tracer distribution,

r̄(t) =

∫ Γ
0

∫ 2π
0 rψ(r, θ, t) r dr dθ∫ Γ

0

∫ 2π
0 ψ(r, θ, t) r dr dθ

. (4.9)

In Fig. 4.2, the mean square displacement V (t) is plotted for several different

values of the Rayleigh number R and the Lewis numbers L = 10−3 and L = 10−2. It

is found that, in all cases, the mean square displacement V (t) is directly proportional
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Figure 4.1: Evolution of the passive tracer concentration field ψ(x, y, z = 0, t) for
various times t, obtained by numerically solving Eq. (4.1). The Rayleigh number
R = 3500, the Prandtl number σ = 1, and the Lewis number L = 10−2, and the
cylindrical cell has the aspect ratio Γ = 30. The initial condition for ψ at t = 0 is
given by Eq. (4.7).
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R γ

L = 10−2 L = 10−3

3074 1.07 1.07

3500 1.04 1.11

4270 1.14 1.14

Table 4.1: The mean square displacement V (t) is fitted to a power law ∼ tγ for several
different values of the Rayleigh number R and Lewis number L. The exponent γ is
approximately unity in all instances.

to the time t to a very good approximation. Least squares fits of V (t) to power laws

∼ tγ yield exponents γ of approximately unity, as shown in Table 4.1. Thus, the

spreading of the passive tracer concentration field is described by a normal diffusive

process. In other words, the passive tracer concentration when averaged azimuthally,

ψ̄(r, t), is described by the one-dimensional normal diffusion equation,

∂tψ̃(r, t) = L∗∂rrψ̃ (4.10)

with L∗ an effective Lewis number. The quantity (L∗ −L) is then the increase in the

Lewis number of the passive tracer concentration brought upon by the advection of

the spiral defect chaotic flow.

The effective Lewis number, L∗, of the resulting one-dimensional normal diffusion

of the passive tracer concentration can be extracted from the mean square displace-

ment as

V (t) = 4L∗t. (4.11)

Several values of the effective Lewis number for various values of the parameters are

tabulated in Table 4.2.

In principle, the effective Lewis number will depend on both the properties of the

advecting fluid, namely the Rayleigh and Prandtl numbers, as well as the property of

the passive tracer concentration, namely, its Lewis number. However, it is found that,
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Figure 4.2: The mean square displacement V (t) of the passive tracer concentration
field for two different Rayleigh numbers R = 3074 (top) and 3500 (bottom). The
Prandtl number is σ = 1 in both cases. The triangle and circle symbols denote data
for the Lewis number L = 10−3 and L = 10−2, respectively. The solid lines have slope
of unity on the log-log scales. The exponents obtained from power law fits of the data
are given in Table. 4.1.

in the range of small Lewis numbers, 10−3 ≤ L ≤ 10−2, the mean square displacement,

and consequently the effective Lewis number, is independent of the Lewis number L.

Thus, for small Lewis numbers at constant Prandtl number σ = 1, the effective Lewis

number is then a function of only the Rayleigh number. This relation is plotted in

Fig. 4.3, which shows that the increase in Lewis number is proportional to the square

root of the reduced Rayleigh number,

L∗ − L ∝ ε1/2. (4.12)

In other words, the effect of the advection of spiral defect chaos is to cause an increase
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L = 10−3 L = 10−2 L = 10−1

R = 3074 0.290 0.291 0.382

R = 3500 0.350 0.351 0.498

R = 4270 0.420 0.413 0.529

Table 4.2: The effective Lewis number L∗ computed from Eq. (4.11) for various values
of the Rayleigh number R and the Lewis number L.

in the Lewis number of the passive tracer concentration that is proportional to the

square root of the reduced Rayleigh number.

In addition, because it is also known that the characteristic velocity scale ||u||
of spiral defect chaos is proportional to the square root of the reduced Rayleigh

number [27], it can also be deduced that the increase in Lewis number is directly

proportional to the characteristic velocity scale of spiral defect chaos,

L∗ − L ∝ ||u||, (4.13)

An alternate way to state this result is to divide both sides of Eq. (4.13) by the Lewis

number L to define the enhancement in Lewis number,

∆ ≡ L∗ − L

L
, (4.14)

so that one obtains the relation between this enhancement and the Péclet number,

∆ ∝ P. (4.15)

Recall that the above result applies when the Lewis number is small, L ≤ 10−2

(or equivalently, when the Péclet number is large). On the other hand, when the

Lewis number is large (when the Péclet number is small), similar calculations show

that, although the net transport is still diffusive, a relation different from Eq. (4.15)
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Figure 4.3: The effective Lewis number L∗ − L vs. the reduced Rayleigh number ε.
The solid lines represent power laws with an exponent of 1/2.

is obtained,

∆ ∝ P 1/2. (4.16)

This square root dependence of the enhancement on the Péclet number is similar

to the result obtained experimentally [84] and calculated theoretically [74, 80] in

the spreading of passive tracers in time-independent convection flows comprised of

straight parallel rolls. In this case, the enhancement can be attributed to the Shraiman

mechanism, which refers to the expulsion of the gradient of the passive tracer con-

centration from regions of closed stream lines [80]. Near a separatrix between two

sets of closed stream lines, the only transport of the passive tracers from one roll to

the next comes from the random walks of the passive tracers that lie within a thin

layer of width d of the roll boundary (the roll itself is of unit width in the dimension-

less unit system adopted in this dissertation). Thus, a fraction d of passive tracers
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contribute to an increase, dL, in the effective Lewis number of the diffusion. The

width d can be estimated from dimensional analysis [11] to be d2 ∼ P−1. Combining

these estimates leads immediately to Eq. (4.16). Thus, the result above suggests that

the Shraiman mechanism, although strictly derived in a time-independent convection

flows comprised of straight parallel rolls, may be a universal mechanism at sufficiently

high Lewis numbers independent of the structure of the underlying flow field.

The enhancement in the Lewis number as a function of the Péclet number is

summarized in Fig. 4.4. The two regimes given by Eqs. (4.15)–(4.16) are evident.

In Sect. 4.3.3, the origin of these two distinct regimes is discussed in terms of the

dependence of the wave number on the transport.

Finally, before concluding this section, some details are presented in the way the

least squares fits are performed. First, data from early times are ignored due to the

presence of transients. One such transient effect could be that, at very early times

prior to the turnover time scale τc ∼ ||u||−1 ∼ O(10−1), the passive tracers “feel”

that it is being transported by a constant velocity field, and so will exhibit ballistic

behavior with γ = 2. There is then a crossover time in which γ decreases to unity,

and this regime is to be ignored too. Second, data from late times are also ignored

due to finite size effects. The effects of finite size are illustrated in Fig. 4.5, in which

the exponent γ, obtained from the logarithmic derivative

γ(t) =
d log[V (t)]

d log(t)
, (4.17)

is plotted as a function of time for the parameters R = 3074 and L = 10−3 (solid line)

and for a purely diffusive process without advection (dashed line, whose diffusivity

is chosen to match that of effective diffusivity of the above process). The value of

the exponent γ is found, in both cases, to be essentially a constant of approximately

unity for all times t <∼ 80. The decrease at t >∼ 80 is therefore a consequence of finite

size effects.
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Figure 4.4: The enhancement in Lewis number ∆ defined in Eq. (4.14) vs. the Péclet
number P for various Rayleigh numbers R and the Prandtl number σ = 1. Note that,
when the Péclet number approaches zero (i.e., when the advection becomes negligible
so that the transport equation, Eq. (4.1), is the diffusion equation), the enhancement
should approach zero as well. Thus, the data points are expected to pass through the
origin (P = 0,∆ = 0).

4.3.2 Normal diffusion vs. anomalous diffusion

In this section, several other tests are conducted on the passive tracer concentration

to show that the spreading process is indeed governed by normal diffusion, and not

anomalous diffusion. Anomalous diffusion is defined when the mean square displace-

ment grows differently than being proportional to time, i.e., when V (t) ∝ tγ with the

exponent γ �= 1. It has been observed in the transport of passive tracers in cellular

Taylor-Couette flow in a rotating annulus [85, 86], and in various other geophysical

turbulent flows arising from the presence of Lévy trajectories [79]. However, this sec-

tion will show that there is no evidence of anomalous diffusion in transport in spiral
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Figure 4.5: The logarithmic derivative γ vs. time t. The solid line is for the case
of R = 3074 and L = 10−3 . The dashed line is for a purely diffusive process (i.e.,
Eq. (4.1) with u = 0 and a Lewis number chosen to match the effective Lewis number
of the previous case).

defect chaos, at least for the range of Lewis numbers investigated.

First, if the passive tracer concentration is spreading by normal diffusion, i.e., it

obeys Eq. (4.10), then it can be expressed in the form of a Gaussian,

ψ̃(r, t) ∼ 1

t
exp

(
r2

4L∗t

)
, (4.18)

and a plot of the logarithm of the scaled passive tracer concentration log[t • ψ̃(r, t)]

vs. the scaled distance squared r2/4t for different times t will all collapse onto the

same straight line. This is indeed the case as shown in Fig. 4.6, which shows the

data at times t = 30, t = 40, and t = 70 (triangles, squares, and circles, respectively)

collapsing onto the same straight line. However, data from an earlier time t = 5 (dots)
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Figure 4.6: The scaled passive tracer concentration tψ(r, t) vs. the scaled distance
squared r2/4t. The various symbols denote different values of the times t. The data
for times t = 30, t = 40, and t = 70 (triangles, squares, and circles, respectively)
collapse onto the same straight line, suggesting the validity of the Gaussian form in
this time range.

do not collapse onto the same straight line, presumably because of the presence of

transient effects. Similarly, data from a later time t = 100 (crosses) do not collapse

onto the same straight line, owing to the presence of finite size effects.

Second, there exists in general a relation between the mean square displacement

of passive tracers and the correlation function of their Lagrangian velocities. More

precisely, the Taylor relation for a passive tracer [11, 55] states that

d〈|xi(t) − xi(0)|2〉
dt

= 2
∫ t

0
Cii(τ)dτ (4.19)

where

Cij(τ) ≡ 〈vi(x(t)vj(x(t+ τ))〉 (4.20)
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is the correlation function of the Lagrangian velocities. The subscripts i and j repre-

sent x ,y, or z. This relation, discovered by G. I. Taylor in 1921, is a particular case

of the Kubo formula [61] applied in a fluid dynamical context. Eq. (4.19) can then be

integrated to give the mean square displacement in terms of the Lagrangian velocity

correlation function,

V (t) ≡ 〈|xi(t) − xi(0)|2〉 = 2
∫ t

0
(t− τ)Cii(τ)dτ. (4.21)

If the long time behavior of the correlation function Cii decays exponentially, then

the mean square displacement can be shown to grow linearly with time, thus yielding

normal diffusion. However, if the long time behavior of the correlation function decays

much more slowly, such as in an algebraic manner Cii(t) ∼ t−η with 0 < η < 1, then

the mean square displacement can be shown to grow faster than linearly, thus yielding

anomalous diffusion, 〈|xi(t) − xi(0)|2〉 ∼ t2−η. So, to verify whether the passive

tracer concentration is spreading by normal diffusion or by anomalous diffusion, one

can compute the Lagrangian velocity correlation function and study its long time

decay. Unfortunately, the Lagrangian correlation function is not available in this

dissertation because only the Eulerian approach is simulated. However, a “mean-

field” hypothesis can be invoked to replace the Lagrangian correlation function with

the Eulerian correlation function [11],

Cij(τ) ≈ 〈ui(x, t+ τ)uj(x, t)〉. (4.22)

Although this will almost certainly yield the wrong numerical values, one hopes that

the form of the correlation function, i.e., whether it decays exponentially or alge-

braically, will be correctly reproduced. If the long time behavior of the Eulerian

velocity autocorrelation function decays exponentially, then one expects from the

Wiener-Khinchinte theorem [61] that the behavior of the power spectrum will follow

a Lorentzian decay,

P (f) ∼ lim
f→f0

[
1 + τ 2(f − f0)

2
]−1

, (4.23)
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in the vicinity f → f0 with a correlation time τ . If the long time behavior of the Eu-

lerian velocity autocorrelation function decays as a power law, then the low-frequency

behavior of the power spectrum will exhibit a power law cusp in the vicinity of f → f0.

In Fig. 4.7, the power spectrum of the Eulerian velocity field is plotted. At the max-

ima f → f0, the power spectrum does not exhibit cusp-like behavior. In fact, the solid

line is a fit to the Lorentzian form, Eq. (4.23). The good fit between the Lorentzian

and the data at small f − f0 suggests that the correlation function Cij(τ) is indeed

exponentially decaying at large times, and consequently, that the diffusion of the pas-

sive tracers is normal and not anomalous. (The power spectrum in Fig. 4.7 reveals

that f0 �= 0, a result not observed in power spectra obtained from experiments [57].

It is postulated that this artifact arises from the use of a velocity time series that is

not sufficiently long in time, and that finite length cutoffs are responsible for creating

spurious oscillations.)

Third, possible deviations from the Gaussianity of the passive tracer concentration

are checked by looking at the higher-order moments,

Mq(t) =

∫ Γ
0

∫ 2π
0 [r − r̄(t)]qψ(r, θ, t) r dr dθ∫ Γ

0

∫ 2π
0 ψ(r, θ, t) r dr dθ

. (4.24)

Note that, in this notation, the mean square displacement V (t) is simply M2(t). For

normal diffusion, the higher-order moments are expected to scale like

Mq(t) ∝ tq/2. (4.25)

Thus, if the passive tracer concentration is indeed of Gaussian form, then the scaled

higher-order moments t−1Mq(t)
2/q will be constants in time for all q over a certain time

range. In Fig. 4.8, the scaled higher-order moments for q = 2, 4, 6, and 8 are plotted

as functions of time. The top panel is for the passive tracer concentration when

the Rayleigh number R = 3500, the Prandtl number σ = 1 and the Lewis number

L = 10−2. The bottom panel is for a purely diffusive process with diffusivity chosen to

match the former’s effective diffusivity. Unfortunately, because of finite size effects,
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Figure 4.7: Power spectrum of the Eulerian velocity correlation function (circles) and
a Lorentzian fit (solid line) of the form suggested in Eq. (4.23).

the scaled higher-order moments have only a very small range for which they are

constant in time. For example, at q = 8, this range is only 5 <∼ t <∼ 20. Nevertheless, by

comparing both top and bottom plots, it is possible to discern that the scaled higher-

order moments exhibit constancy in time over rather similar ranges. In other words,

apart from finite size effects, there are no discernible deviations from Gaussianity for

the passive tracer concentrations.

Thus, all three observations above suggest that the spreading of the passive tracer

concentration is governed by normal diffusion.
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Figure 4.8: Scaled higher-order moments, t−1Mq(t)
2/q, of the passive tracer concen-

tration vs. time t for the parameters R = 3500, σ = 1, and L = 10−2 (top) and for
a purely diffusive process (bottom). As q increases, the range of time for which the
scaled moment stays constant in time decreases, owing to finite size effects.

4.3.3 Wave number dependence in the transport of passive

tracers

In this section, the existence of two distinct regimes for the enhancement in Lewis

number, namely at small Lewis numbers given by Eq. (4.15) and at large Lewis

numbers given by Eq. (4.16), is investigated in terms of the local wave number de-

pendence. First, a local quantity called the horizontal spreading orientation, Θ(x, y),

can be defined at every location in the cell,

cos(Θ) =
∇⊥ψ • k

|∇⊥ψ||k| , (4.26)
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Figure 4.9: Illustrations showing the definition of the horizontal spreading orientation,
Θ, at (a) Θ = π/2 corresponding to lateral spreading, and (b) Θ = 0 corresponding
to longitudinal spreading.

where the subscript ⊥ denotes the horizontal coordinates (x, y) and the wave vector

k is defined in Eq. (1.15). If the passive tracer concentration spreads laterally in

the direction parallel to the convection rolls, i.e., in the direction of k, then, as

illustrated in Fig. 4.9(a), the gradient ∇⊥ψ will be orthogonal to k, resulting in

the local horizontal spreading orientation acquiring the value of Θ = π/2. On the

other hand, if the passive tracer concentration spreads longitudinally in the direction

perpendicular to the convection rolls, i.e., in the direction orthogonal to k, then, as

illustrated in Fig. 4.9(b), the local horizontal spreading orientation will be Θ = 0.

For a particular passive tracer concentration, the horizontal spreading orientation

can then be computed locally at every point in the mid-plane of the convection cell

and then histogrammed. In Fig. 4.10, such a distribution of the horizontal spreading

orientation, P (Θ), is plotted for several values of the Lewis number ranging from

L = 10−4 to L = 10−1, the Rayleigh number R = 3500 and the Prandtl number

σ = 1 at the time t = 50. Consider first the distribution for the relatively large Lewis

number of L = 10−1 (denoted by crosses). This distribution has a dominant peak at

Θ = π/2. This suggests that, locally, the spreading of the passive tracer concentration

occurs mostly laterally [i.e., as illustrated in Fig. 4.9(a)]. This can be attributed to the
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Figure 4.10: Distribution of horizontal spreading orientations P (Θ) for the Rayleigh
number R = 3500, the Prandtl number σ = 1 and the Lewis number ranging from
L = 10−4 to L = 10−1.

Shraiman mechanism described earlier in Sect. 4.3.1. However, at the smaller Lewis

numbers of, say, L = 10−2, the distribution of the horizontal spreading orientation

is visibly different. In this case, the distribution shows a dominant primary peak at

Θ = 0 and then a smaller secondary peak at Θ = π/2. In other words, the spreading

of the passive tracer concentration is locally mostly longitudinal rather than mostly

lateral [i.e., as illustrated in Fig. 4.9(b)].

To find out what is the underlying mechanism that causes this local longitudinal

spreading, the following is performed. The local wave numbers that correspond to

locations in the convection mid-plane that exhibit longitudinal spreading (i.e., Θ →
0) is compared to those locations in the convection mid-plane that exhibit lateral

spreading (i.e., Θ → π/2). In Fig. 4.11, the distribution of wave numbers P (k)

for which the longitudinal spreading occurs is plotted (solid lines) together with the
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distribution for which lateral spreading occurs (dashed lines) for a large Lewis number

case [Fig. 4.11(a)] and a small Lewis number case [Fig. 4.11(b)]. Consider first the

region of wave numbers near the mean, 〈k〉 ≈ 2, of the spiral defect chaotic planform.

For both large and small Lewis numbers, lateral spreading (Θ → π/2, dotted lines)

dominates. This suggests that, at regions of the planform with wave numbers near

the mean, the Shraiman mechanism is the predominant mechanism for transport.

However, this predominance is suppressed as the Lewis number decreases (i.e., the

peak of the dotted distribution becoming smaller). At the same time, the magnitude

of longitudinal spreading increases. Consider next the region of wave numbers far

away from the mean, i.e., regions corresponding to the occurrence of defects. At large

Lewis numbers [Fig. 4.11(a)], the distributions for both lateral spreading (dotted line)

and longitudinal spreading (dashed line) are identical. This suggests that, in the

region of a defect structure, the transport at large Lewis numbers is isotropic rather

than by the Shraiman mechanism. However, at small Lewis numbers [Fig. 4.11(b)],

longitudinal spreading (solid line) actually becomes dominant. Thus, at small Lewis

numbers, the occurrence of defects suppresses the Shraiman mechanism but enhances

longitudinal spreading [as illustrated in Fig. 4.9(b)].

4.3.4 Numerical details

Finally, before this chapter is concluded, a detail pertaining to the use of the nek5000

solver in solving the transport equation, Eq. (4.1) is discussed. One well-known

difficulty [37, 92] associated with integrating Eq. (4.1) is that, for small Lewis numbers

L� 1 as was the focus of this chapter, the spatial resolution ∆x has to be very small.

This scale is set by the smallest scale in the tracer field, such as the thickness of the

interface where the tracer is initially zero on one side and unity on the other. The

interface is then stretched by a strain rate S ∼ ∂u/∂x ∼ ||u||, and its thickness will

be proportional to (L/S)1/2, i.e.,

∆x ∼
(

L

||u||
)1/2

= P−1/2. (4.27)
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Figure 4.11: Distribution of wave numbers P (k) for which longitudinal spreading
occurs (solid lines) and for which lateral spreading occurs (dashed lines), for (a) large
Lewis number L = 10−1 and (b) small Lewis number L = 10−3 at the Rayleigh
number R = 3500 and the Prandtl number σ = 1.

For the kind of spiral defect chaos considered in this chapter, the velocity magnitude

is ||u|| ∼ O(10). Thus, a simulation at the Lewis number of, say, L = 10−3 will require

∆x ∼ 10−2 in order to satisfy Eq. (4.27). However, current computational resources

dictate that ∆x be about >∼ 10−1, and in fact, in this dissertation, ∆x = 0.125.

This problem is overcome by using a simple filtering procedure developed by Fis-

cher and Mullen [36]. At the end of each time step, a filter is applied on an element-

by-element basis to the passive tracer concentration field ψ. In one dimension, the

filtered field can be written as

F (ψ;α) = αΠN−1(ψ) + (1 − α)ψ, (4.28)
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where the operator ΠN−1 first interpolates ψ onto the mesh points for a polynomial

of degree N − 1 determined by the mesh spacing and then interpolates the result

back onto the mesh points for a polynomial for degree N . In higher dimensions,

the tensor product form of Eq. (4.28) is used. Typical values of α used lie in the

range 0.05 ≤ α ≤ 0.2. This filtering procedure preserves inter-element continuity

and spectral accuracy. Using this filter and maintaining ∆x = 0.125, a stable Lewis

number of up to L = 10−3 can be attained.

To verify that the filter allows the diffusion to be sufficiently resolved at small

Lewis numbers, the following heuristic check is performed. First, a local advection

orientation, Φ(x, y), is defined via

cos(Φ) =
∇ψ • u

|∇ψ||u| , (4.29)

with u the velocity field. If the local passive tracer concentration is being advected

by the local velocity and diffusion is not being sufficiently resolved, then the gradient

of the former will be orthogonal to the local velocity, and consequently, Φ = π/2. On

the other hand, if the local passive tracer concentration exhibits diffusion, then it will

change in a direction perpendicular to the local velocity, yielding Φ = 0; see Fig. 4.12

for illustrations.

For small Lewis numbers where the effects of advection dominate over the effects

of molecular diffusion, the distribution of the local advection orientation, P (Φ), over

the mid-plane of the cell, should exhibit a strong peak at Φ = π/2. This peak will then

broaden as the Lewis number is increased, as the effects of diffusion cause the passive

tracer concentration to spread out at all orientations relative to the local velocity.

The presence of this broadening in the distribution of the local advection orientation

is then an indication that molecular diffusion has been sufficiently resolved. The

distributions P (Φ) for the various Lewis numbers ranging from L = 10−4 to L = 10−1

are plotted in Fig. 4.13.

The distribution for L = 10−2 is distinctly different from that for L = 10−3,

providing evidence that the molecular diffusion at L = 10−3 has been stably resolved,
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Figure 4.12: Illustrations showing the definition of the local advection orientation, Φ,
at (a) Φ = π/2 and (b) Φ = 0.

i.e., that the chosen grid spacing ∆x is sufficiently small for the simulation to be stable.

However, the relative similarity in the distributions for L = 10−3 and L = 10−4

suggests that diffusion for the latter case may not have been sufficiently resolved.

Consequently, the smallest allowed Lewis number is set at L = 10−3.

4.4 Conclusions

In this chapter, the spreading of a passive tracer concentration in a Rayleigh-Bénard

convection flow exhibiting spiral defect chaos is studied. It is found that, in the

presence of advection by spiral defect chaos, the spreading can be characterized by

normal diffusion. The enhancement in the diffusivity of the passive tracer concentra-

tion follows two regimes. When the molecular diffusivity of the tracer concentration

is small, the enhancement is proportional to the Péclet number. When the molecular

diffusivity is large, the enhancement is proportional to the square root of the Péclet

number. This difference is explained in terms of the dependence of the transport on

the local wave numbers. It is found that tracer concentrations with small molecular

diffusivity experience enhanced longitudinal diffusion and suppressed lateral diffusion



78

0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Φ/π

P
(Φ

)

L=10−1

L=10−2

L=10−3

L=10−4

Figure 4.13: Distribution of local advection orientations for various Lewis numbers
ranging from L = 10−4 to L = 10−1.

at regions of the flow occupied by defects.
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Chapter 5

Propagation of perturbations in
spiral defect chaos

5.1 Introduction

This chapter addresses the problem of how a perturbation, initially localized in space,

propagates through a state exhibiting spiral defect chaos. Knowledge of how these

perturbations, or “hot spots,” spread, as well as their dynamics, are of considerable

importance to the development of successful strategies for the control of chaos in

spatially-extended systems [42]. Consequently, there have already been theoretical

work to address this problem. However, these previous studies focussed primarily

on simple models, such as a one-dimensional reaction-diffusion model [99], a sys-

tem of coupled one-dimensional logistic maps [40], and two-dimensional coupled map

lattices [98]. In addition, there has also been efforts to study these “hot spots” ex-

perimentally [75]. For example, one could use optical heating to locally perturb a

particular region of a convection cell, and then look at the differences between the

images of the initial convection planform and the planform affected by the perturba-

tions. The modal structure of the dynamics that evolves from such a perturbation

can then be further extracted, and the growth rates of such modes calculated.

In this chapter, a computational approach to this problem of “hot spots” propaga-

tion is described. The approach is then used to study two particular problems. First,

the propagation of a perturbation initially localized at the core of one of the many



80

spirals in a state exhibiting spiral defect chaos is studied. Second, the propagation of

a localized perturbation in a pre-chaotic stripe texture is studied. Admittedly, a more

complete analysis of the propagation of perturbations can be performed. However,

these are left for the future because of the expensive cost associated with integrating

the perturbation equations [see Eqs. (5.2)–(5.4) below]. So, for now, only these two

applications are described.

5.2 Definitions

While it is possible to define the perturbations to a state in terms of the difference

between two states with initial conditions differing slightly in only a localized re-

gion, this definition will not be used in this dissertation, because the differences may

eventually grow to be of a substantial magnitude, thus causing numerical difficulties.

Instead, consider infinitesimal perturbations on a state, i.e., let the primitive vari-

ables describing Rayleigh-Bénard convection, namely the velocity, temperature, and

pressure fields, (u, T, p), be infinitesimally perturbed,

(u, T, p) → (u, T, p) + η(δu, δT, δp), (5.1)

where η is an infinitesimally small constant. Then, substituting these new perturbed

state variables into the Boussinesq equations, Eqs. (1.5)–(1.7), the resulting equations

at O(η) are

σ−1 (∂t + u •∇) δu(x, y, z, t) = −∇δp+ ∇2δu +RδT ẑ − δu •∇u, (5.2)

(∂t + u •∇) δT (x, y, z, t) = ∇2δT − δu •∇T, (5.3)

∇ • δu = 0. (5.4)

The terms at O(η2) are considered negligible. Eqs. (5.2)–(5.4) is a set of linear

equations that describe the evolution of the perturbations (δu, δT, δp). They are to

be evolved concurrently with the Boussinesq equations.
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Because the material walls of the cell are assumed to be no-slip, the velocity

perturbation field satisfies

δu = 0, on all material walls. (5.5)

Because the temperature field is constant on the top and bottom plates, the temper-

ature perturbation field satisfies

δT
(
x, y, z = ∓1

2
, t
)

= 0. (5.6)

Finally, because the lateral walls are assumed to be perfectly insulating,

n̂ •∇δT = 0, on lateral walls, (5.7)

where n̂ is the unit vector perpendicular to the lateral walls at a given point. The

pressure perturbation field δp has no associated boundary condition since it does not

satisfy a dynamical equation. The linearized perturbation equations are discretized

and integrated using the boxcode in a manner similar to that of the Boussinesq

equations as described in Chap. 2.

In this chapter, only the temperature field will be initially perturbed. The initial

velocity and pressure perturbations are set to zero,

δu(t = 0) = 0, δp(t = 0) = 0. (5.8)

It is found that, should the initial perturbation be in any one of the other fields apart

from the temperature field, the propagation of the perturbations in that field will

yield the same behavior as that of the temperature perturbations.
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5.3 Results

Eqs. (5.2)–(5.4) are evolved concurrently with the Boussinesq equations, Eqs. (1.5)–

(1.7), for the following parameters: the reduced Rayleigh number for fully-developed

spiral defect chaos at ε = 1.0 and for a pre-chaotic stripe texture at ε = 0.15, the

Prandtl number σ = 1, and a rectangular cell of aspect ratio Γ = 20. The initial

condition used for the temperature perturbation field is

δT (x, y, z, t = 0) = exp

[
−(x− x0)

2 + (y − y0)
2 + z2

6∆2

]
, (5.9)

where ∆ = 0.25 is a small constant to ensure that the perturbation is initially local-

ized. In Sects. 5.3.1–5.3.2, the location (x0, y0) is chosen to be at a spiral core. In

Sect. 5.3.3, it is chosen to be at the center of a convection roll. At time t = 0, the

temperature, velocity, and pressure fields correspond to an asymptotic state of spiral

defect chaos, i.e., one that has been evolved from random thermal perturbations up

to a time of O(Γ2). Because the focus is only on cells of large aspect ratio, Γ � 1, the

z-dependence of the perturbation fields are found to be essentially constant. As such,

the z-dependence will be dropped in subsequent discussions and the perturbation

fields, e.g., δT (x, y, t) will be considered as functions of two-dimensional horizontal

space and time.

5.3.1 Long time evolution of perturbations to spiral defect

chaos

In this section, the perturbations are initially localized at the core of one of the spiral

arms in a spiral defect chaotic planform at the reduced Rayleigh number ε = 1.0 and

the Prandtl number σ = 1. The perturbations are then allowed to evolve according

to Eqs. (5.2)–(5.4). This evolution of the temperature perturbation field δT (x, y, t)

at the mid-plane z = 0 is shown in Fig. 5.1 for long times up to t = 200.

It can be seen that, while the magnitude of the perturbation grows with time

(as is to be expected for a chaotic state), the location at which the perturbation
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Figure 5.1: Long time evolution of the temperature perturbation field ψ(x, y, z = 0, t)
in spiral defect chaos for various times t. The reduced Rayleigh number is ε = 1.0
and the Prandtl number σ = 1. Black and white colors denote negative and positive
perturbations, respectively.
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distribution at wave numbers far away from the mean suggests that the locations of
maximal perturbation are occupied by defects.

attains a maximum changes with time, “hopping” from one region of the planform to

another. More importantly, these locations of maximal perturbation are occupied by

defects. This is illustrated more quantitatively in Fig. 5.2, which plots the distribution

of wave numbers at these locations of maximal perturbation. It is seen that the

maximal perturbations are distributed predominantly at wave numbers that are far

away from the mean of 〈k〉 ≈ 2.2, corresponding to the occurrence of defects. Thus,

defects serve as nucleation sites for the perturbations. An initial perturbation spreads

out around a defect structure, and when this spreading perturbation reaches another

defect structure, the perturbation begins to grow rapidly around that defect structure.

Using the techniques of Chap. 4, the spreading of the thermal perturbation field

can be quantified by its mean square displacement V (t) and center of mass 〈r〉, using
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of the thermal perturbation field in a spiral core when the reduced Rayleigh number
ε = 1.0 and the Prandtl number σ = 1.

Eqs. (4.8) and (4.9), respectively, but with ψ(x, y, t) replaced by δT (x, y, t). The

mean square displacement and the center of mass of the temperature perturbation

field are plotted in Fig. 5.3. It is seen that both the mean square displacement and

the center of mass grows with time for short times t <∼ 50, but fluctuates after that.

Thus, least squares fits do not yield good power laws, and so, it cannot be concluded if

the spreading is described by normal diffusion or anomalous diffusion. This problem

can be overcome in the future by calculating the spreading over many more different

instances of the initial condition, thus resulting in better statistics for the mean square

displacement. These calculations are numerically expensive, but can be performed

simultaneously in parallel. Thus, advances in the development of grid and cluster

computing technologies should prove to be useful.

Finally, to verify that the growth of the perturbation is indeed chaotic, Fig. 5.4
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as shown in Fig. 5.5, vs. time t. The inset shows the growth at early times, and
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plots the maximal magnitude of the temperature perturbation as a function of time. It

can be seen that the perturbation grows exponentially. However, the inset of Fig. 5.4

shows that, on top of this trend of exponential growth, there exists at short times an

oscillatory behavior with a period of approximately one diffusion time unit. The next

section discusses the origin of this oscillatory behavior in the perturbations.

5.3.2 Perturbations to spiral core in spiral defect chaos

In this section, the short-time behavior of the oscillatory behavior in the perturbations

in the spiral core is studied. First, Fig. 5.5 shows the short-time evolution of the

temperature perturbation in the vicinity of the initial spiral core. It is found that

this oscillation occurs only at the spiral core, not throughout the planform. This
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is illustrated in the next figure, Fig. 5.6, which plots the thermal perturbation at

three locations (located by the cross and the two triangles in the inset planform) as a

function of time. Oscillations are observed in the perturbation δT (x = x0, y = y0, t)

at the spiral core (crosses). However, oscillations are not observed at the two other

locations near to, but not located at, the spiral core (dashed and dotted lines, for the

location marked by the down- and up-pointing triangles, respectively). Spiral core

oscillations have in fact been observed in Swift-Hohenberg models of spiral defect

chaos [26]. However, because this oscillation occurs at small length scales, the Swift-

Hohenberg modeling of the fluid behavior is not necessarily reproduced correctly. This

section thus provides evidence that this spiral core oscillation is indeed a real effect,

and not an artifact of the Swift-Hohenberg modeling. Thus, to sum up, the dynamics

of the spiral core is locally chaotic, and the cause of this chaos is an oscillatory

instability.

5.3.3 Perturbations to pre-chaotic stripe textures

In this section, the perturbations are localized initially at the center of a convection

roll that is part of a texture of straight and parallel stripes. The reduced Rayleigh

number is ε = 0.15 and the Prandtl number is σ = 1. In Fig. 5.7, the evolution of the

temperature perturbation field δT (x, y, t) at the mid-plane z = 0 is shown for various

times t.

The temperature perturbation is seen to spread rapidly outwards with time. Ini-

tially, the spreading is isotropic, with the perturbation field spreading outwards in

an approximately circular manner. However, at later times, this spreading becomes

anisotropic, spreading into an approximate “X”-shape. The presence of this convex

shape in the anisotropic spreading, instead of a more common concave elliptical shape,

is still not understood. It is postulated to be caused by the presence of curvature in

the convection rolls in the texture far away from the cell center. Thus, regions parallel

to the roll are being “invaded” more quickly then regions perpendicular to the rolls

in regions with curvature. However, despite the presence of curvature, the anisotropy
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can still be understood in terms of the diffusion of the phase variable.

The idea of phase diffusion is as follows. Consider a set of ideal straight and

parallel convection rolls near threshold. They can then be described by the state

A(x) = A exp(ikx) (5.10)

for some amplitude A and some wave number k. Now, consider a small perturbation

to the state A(x),

A(x) = (A+ δA) exp(ikx+ iδφ) (5.11)

with δA and δφ being perturbations in the amplitude variableA and the phase variable

φ, respectively. Substituting Eq. (5.11) into the amplitude equation [27] valid near
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threshold then yields the phase diffusion equation [71],

∂tδφ = D‖(k)∂xxδφ+D⊥(k)∂yyδφ, (5.12)

where the diffusivities D‖ and D⊥ are functions of the reduced Rayleigh number ε

and wave number k,

D‖ =
ξ2
0

τ0

ε− 3ξ2
0k

2

ε− ξ2
0k

2
, (5.13)

and

D⊥ =
ξ2
0

τ0
kkc, (5.14)

with constants ξ2
0 = 0.148, τ−1

0 = 19.65σ/(σ + 0.5117), and kc = 3.117 the critical

wave number at the onset of convection in an infinite domain [27].

In Fig. 5.8, the mean square displacement V (t) of the spreading thermal pertur-

bation field is computed and plotted using Eq. (4.8) of the previous chapter. A least

squares fit to the power law ∼ tγ yields an exponent γ = 1, suggesting that the per-

turbations are spreading by normal diffusion. To verify that this diffusion is indeed

the phase diffusion, the displacements corresponding to diffusion with diffusivities

corresponding to both parallel and perpendicular diffusion are plotted (dashed and

dash-dotted lines, respectively). It can be seen that the mean square displacement

V (t) for the temperature perturbation field is well described by diffusion with an

effective diffusivity that is the average of the two phase diffusivities, (D‖ +D⊥)/2.

5.4 Conclusions

In this chapter, the propagation of perturbations is studied in two scenarios, in spiral

defect chaos and in pre-chaotic stripe textures. In the former case, the defects are

found to be nucleation centers for the perturbations. In addition, an oscillatory core

instability is discovered. In the latter case, the propagation is explained in terms of the

diffusion of the phase variable of the stripe state. The effective diffusivity is calculated

to be the arithmetic mean of the parallel and perpendicular phase diffusivities.
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Chapter 6

Conclusions

In summary, three problems that relate to the formation and the dynamics of spa-

tiotemporal chaos, specifically spiral defect chaos, arising in Rayleigh-Bénard convec-

tion are investigated in this dissertation.

In Chap. 3, the formation of spiral defect chaos is explained in terms of the gen-

eration of the nonlocal mean flow. This is achieved through the construction of a

gedanken fluid whose velocity field is modified to have zero mean. It is found that,

in the absence of the mean flow, spiral defect chaos collapses to a stationary pattern

comprising textures of stripes with angular bends. The quenched patterns are shown

to have statistical properties that differ from those of spiral defect chaos. For exam-

ple, the quenched patterns have mean wave numbers that approach those uniquely

selected by focus-type singularities, which, in the absence of the mean flow, lie at

the zigzag instability boundary. The quenched patterns also have larger correlation

lengths and are comprised of rolls with less curvature. In addition, mean flow is

also shown to contribute to the commonly observed phenomenon of rolls terminating

perpendicularly into lateral walls. In the absence of the mean flow, rolls begin to

terminate into lateral walls at an oblique angle. This obliqueness increases with the

Rayleigh number.

In Chap. 4, the spreading of a passive tracer concentration in a Rayleigh-Bénard

convection flow exhibiting spiral defect chaos is studied. It is found that, in the

presence of advection by spiral defect chaos, the spreading can be characterized by

normal diffusion. The enhancement in the tracer diffusivity follows two regimes.
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When the molecular diffusivity of the tracer concentration is small, the enhancement

is proportional to the Péclet number. When the molecular diffusivity is large, the

enhancement is proportional to the square root of the Péclet number. This difference

is explained in terms of the dependence of the transport on the local wave numbers.

It is found that tracer concentrations with small molecular diffusivity experience

enhanced longitudinal diffusion and suppressed lateral diffusion at regions of the flow

occupied by defects.

In Chap. 5, the propagation of perturbations is studied in two scenarios, in spiral

defect chaos and in pre-chaotic stripe textures. In the former case, the defects are

found to be nucleation centers for the perturbations. In addition, an oscillatory core

instability is discovered. In the latter case, the propagation is explained in terms of the

diffusion of the phase variable of the stripe state. The effective diffusivity is calculated

to be the arithmetic mean of the parallel and perpendicular phase diffusivities.

Finally, this dissertation focuses almost exclusively on spiral defect chaos as an

example for spatiotemporal chaos, and exclusively on Rayleigh-Bénard convection as

a model capable for generating and sustaining spatiotemporal chaos. It could have

been helpful to study a second instance of spatiotemporal chaos, such as domain chaos

that arise in rotating Rayleigh-Bénard convection. Results obtained for spiral defect

chaos could then be checked to see if they apply in domain chaos, thus presenting an

opportunity to check for universal features. In addition, this dissertation makes use

of direct numerical simulations almost exclusively. Unfortunately, the limitations of

computing speed and memory means that simulations cannot achieve system sizes as

large as those used in experiments. Thus, when performing simulations, one always

has to worry about the lack of “clean” statistics. It is hope that advances in compu-

tational science, such as the development of grid and cluster computing technologies,

will alleviate these problems.
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