DYNAMIC VIEWS OF STRUCTURE AND FUNCTION

DURING HEART MORPHOGENESIS

Thesis by

Arian S. Forouhar

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2006

(Defended May 12, 2006)

© 2006

Arian S. Forouhar

All Rights Reserved

The work presented here was generated from the efforts of an All-Star team. And since the game of basketball has taught me so much...here is my way of saying thank you.

The front office: Mory Gharib (*Donald Sterling*), Scott Fraser (*John Wooden*), Mary Dickinson (*Shaquille O'Neal*), Jay Hove (*Antoine Walker*), and Michael Dickinson (*Rick Fox*).

The starting lineup: Michael Liebling (*Steve Nash*), Julien Vermot (*Manu Ginobili*), John Dabiri (*LeBron James*), Reinhard Koster (*Scottie Pippen*), and Aaron Hawkey (*Tim Duncan*).

The bench: Mehrdad Zarandi (*John Stockton*), Anna Hickerson (*Tracy McGrady*), Michele Milano (*Ron Artest*), Derek Rinderknecht (*Gary Payton*), Arash Kheradvar (*Dirk Nowitzki*), Sean Megason (*Reggie Miller*), David Koos (*Ray Allen*), Le Trinh (*Karl Malone*), Luca Caneparo (*Jason Williams*), Jian Lu (*Smush Parker*), Abbas Moghaddam (*Vlade Divac*), Ying Gong (*Ed O'Bannon*), Magdalena Bak (*Gilbert Arenas*), Chris Waters (*Tony Parker*), and Gabriel Acevedo-Bolton (*Marcus Camby*).

The assistant coaches: Kristy Hilands (*Maurice Williams*), Martha Salcedo (*B.J. Armstrong*), Kathleen Hamilton (*Jeff Hornacek*), and Linda Scott (*Derek Fisher*).

In the stands: Brian Zid (*Dennis Rodman*), Armin Sorooshian (*Jason Terry*), Danson Njoroge (*Vince Carter*), John Bird (*Ben Wallace*), Jordan Carlson (*Jerry West*), Marie Giron (*Jason Richardson*), Yezdan Badrakhan (*Chris Anderson*), and David Zito (*Stephon Marbury*)

In the suite: My wife Parvin (*Baron Davis*), Mom (*Michael Jordan*), Dad (*Elton Brand*), and Pamon (*Dwayne Wade*). Manijeh (*Rasheed Wallace*), Guiv (*Magic Johnson*), Bahram (*Charles Barkley*), Meech (*Sam Cassell*), and Kat (*Dikembe Mutombo*). Dedication

My Dad.

Abstract

Congenital heart defects remain the most common birth defect in humans, occurring in over 1% of live births. The high prevalence of cardiac malformations can be partially attributed to limited knowledge regarding the embryonic roots of the disease. A variety of congenital heart defects are thought to arise from combinations of genetic and epigenetic factors. In an effort to better understand this dynamic relationship, our study explores the structure and function of the developing heart and valves and examines hemodynamic factors influencing valvulogenesis. In order to study cardiac mechanics, we employed novel high-speed confocal microscopy and four-dimensional visualization techniques. A dynamic four-dimensional dataset describing heart and valve development along with blood flow patterns throughout cardiac morphogenesis is presented. Utilizing newly developed tools, we propose a novel pumping mechanism in the valveless embryonic heart tube via elastic wave propagation and reflection. We show that this form of pumping leads to oscillatory shear stresses in the developing atrio-ventricular canal, a phenomenon that had not previously been documented. An in vivo method to modulate trans-valvular oscillatory flows is described and used to test our hypothesis that oscillatory shear stress across the primitive valve cushions stimulates heart valve leaflet formation. Our results suggest hemodynamic forces contribute to valvulogenesis and enhance our understanding of normal and abnormal heart valve development.

rable of Content.	Tabl	e of	Conten	ts
-------------------	------	------	--------	----

Acknowledgements	iii
Dedication	v
Abstract	vi
Table of Contents	vii
List of Figures	Х
CHAPTER 1: Prologue	1
1.1 Introduction	1
1.2 Organization	3
1.3 Goals	5
1.4 Chapter References	7
CHAPTER 2: Vertebrate Heart Development	8
2.1 Introduction	8
2.2 Vertebrate Heart Morphogenesis	8
2.3 Embryonic Zebrafish as a Model	9
2.4 Zebrafish Heart Morphogenesis	11
2.5 Factors Influencing Heart Morphogenesis	13
2.5.1 Genetic Contributions	13
2.5.2 Epigenetic Contributions	14
2.6 Discussion	17
2.7 Chapter References	19
CHAPTER 3: Zebrafish Cardiac Imaging Tools and Techniques	22
3.1 Introduction	
3.2 Zebrafish Preparation	23
3.3 Fluorescent Contrast Agents	26
3.3.1 Transgenic Lines	26
3.3.1.1 <i>Tg</i> (<i>gata1:GFP</i>)	27
3.3.1.2 Tg(cmcl2:GFP)	28
3.3.1.3 <i>Tg</i> (<i>tie</i> 2: <i>GFP</i>)	29
3.3.2 Vital Dyes	31
3.4 High Speed Confocal Microscopy	32
3.5 Four-Dimensional Reconstructions	34
3.5.1 Data Collection	35
3.5.2 Algorithm	36
3.5.3 Limitations	38
3.5.4 Conclusions	40
3.6 Four-Dimensional Data Analysis	41
3.6.1 Volume Measurements	41
3.6.2 Cardiac Cell Tracking	43
3.6.3 Qualitative Flow Analysis	45
3.7 Blood Flow Visualization	46
3.7.1 Digital Particle Imaging Velocimetry	47
3.7.2 Particle Tracking	49
-	

3.8 Chapter References	51
CUADTED 4: Embryonia Haart Tuba Diamaghanias	53
CHAPTER 4: Embryonic Heart Tube Biomechanics 4.1 Introduction	
4.2 Embryonic Heart Tube is Not Peristaltic	54 55
4.2.1 Bidirectional Wave	55
4.2.2 Blood Velocity Exceeds Heart Wall Wave Speed	57
4.2.3 Nonlinear Frequency-Flow Relationship	58
4.3 Embryonic Heart Tube is a Dynamic Suction Pump	59
4.3.1 Resonance Peaks in Frequency-Flow Relationship	59
4.3.2 Reflections at Mismatched Impedance Sites	60
4.3.3 Pressure-Flow Relationship	61
4.3.4 Net Flow Reversal	62
4.4 Materials and Methods	6 <u>4</u>
4.4.1 Imaging Parameters	64
4.4.2 Quantitative Flow Analysis	64
4.4.3 Pressure Variation Estimates	65
4.5 Discussion and Perspectives	68
4.6 Chapter References	71
	, -
Chapter 5: Oscillatory Flow and Valvulogenesis	72
5.1 Introduction	72
5.2 Methods	75
5.2.1 High-Speed Confocal Imaging	75
5.2.2 Brightfield Imaging	75
5.2.3 Discrete Flow Representation	75
5.2.4 Methods to Control Heart Rate	76
5.2.4.1 Lidocaine Treatment	76
5.2.4.2 Temperature	76
5.2.5 Valve Development Assay	76
5.3 Intracardiac Flow Patterns	77
5.4 Zebrafish Valvulogenesis	80
5.4.1 Valve Morphogenesis	80
5.4.2 Valve Dynamics	83
5.5 Frequency and Flow	89
5.5.1 Decreased Heart Rate	89
5.5.2 Oscillatory Flow Reduction Mechanism	91
5.5.2 Lidocaine Treatment	92
5.6 Reduced Oscillatory Flow Induces Valve Defects	93
5.6.1 Range of Valve Defects	94
5.6.2 Incidence of Valve Dysmorphology	95
5.7 Control Experiments	96
5.8 Discussion and Perspectives	99
5.9 Chapter References	102
Chapter 6: Conclusions	105
6.1 Primary Contributions	105

viii

	Challenges Future Work	107 108
Appendix		110
А.	Intracardiac Fluid Forces Are an Essential Epigentic Factor for	
	Embryonic Cardiogenesis	110
B.	Viewing Angles for Cardiac Imaging	131
C.	Shear Stress Sensitive Genes Involved in Valve Formation	147

List of Figures

Figure 2.1 Embryonic zebrafish and heart development	11
Figure 2.2 Hemodynamic forces are essential for proper cardiogenesis	17
Figure 3.1 Blocked pigment formation in PTU-treated embryos	24
Figure 3.2 Heart morphogenesis in $Tg(gata1:GFP)$ embryos	28
Figure 3.3 Heart morphogenesis in $Tg(cmcl2:GFP)$ embryos	29
Figure 3.4 Heart morphogenesis in $T_g(tie2:GFP)$ embryos	30
Figure 3.5 BODIPY-ceramdie stained embryos reveal non-tissue-specific	
fluorescent contrast	32
Figure 3.6 Acquiring and synchronizing nongated motions in sequential	
optical planes	36
Figure 3.7 Period determination in the zebrafish heart	37
Figure 3.8 Realignment artifacts due to non-periodic cardiac cycles	39
Figure 3.9 Four-dimensional data of heart contractions in $Tg(cmlc2:GFP)$	0,7
embryos	40
Figure 3.10 Embryonic cardiac volume renderings	43
Figure 3.11 Cardiac cell tracking in $Tg(cmlc2:GFP)$ embryos	45
Figure 3.12 Quantitative description of endocardial cushion dynamics	45
Figure 3.13 First use of DPIV to characterize blood flow in the embryonic	
zebrafish	48
Figure 3.14 Intracardiac blood flow characterization utilizing DPIV	49
Figure 3.15 Blood cell tracking through a $Tg(gata1:GFP)$ heart tube	50
Figure 4.1 Biomechanics of embryonic heart tube contractions contradicts	
peristalsis as the main pumping mechanism	56
Figure 4.2 Endocardial cell trajectories during heart tube contractions	
contradict peristalsis	57
Figure 4.3 Blood cell velocities greatly exceed the traveling wave velocity	58
Figure 4.4 Non-linear frequency flow relationship for 26 hpf zebrafish	
heart tube despite similar contraction amplitudes	59
Figure 4.5 Hydroelastic nature of the embryonic heart tube wall	61
Figure 4.6 Pressure gradient estimations	62
Figure 4.7 Net flow reversal in the heart tube at different contractile frequencie	
Figure 4.8 Blood cell velocity measurements over a range of frequencies	65
Figure 5.1 Silent heart mutants undergo incomplete cardiogenesis	74
Figure 5.2 Oscillatory flow across the developing valve	79
Figure 5.3 AV valve morphogenesis in BODIPY-ceramide stained embryos	82
Figure 5.4 Temporal asymmetry in valve leaflet formation	83
Figure 5.5 Valve dynamics and blood flow in 36 hpf embryos	84
Figure 5.6 Valve dynamics and blood flow in 72 hpf embryos	86
Figure 5.7 Valve dynamics and blood flow in 84 hpf embryo	87
Figure 5.8 Valve dynamics and blood flow in 120 hpf embryos	89
Figure 5.9 The duration of retrograde flow decreases with decreased heart rate	90
Figure 5.10 Oscillatory flow reduction mechanism	92
Figure 5.11 Lidocaine decreases heart rate	93
Figure 5.12 Range of valve dysmorphology at 96 hpf	95

Figure 5.13 Incidence of valve dysmorphology	96
Figure 5.14 Valve dysmorphology rescue with elevated temperature	98
Figure 5.15 Heart valve dysmorphology rescue in embryos treated	
with 0.15% lidocaine	98
Figure 5.16 Heart valve dysmorphology resuce in embryos treated	
with 0.09% lidocaine	99
Figure A.1 Cardiac dynamics in the zebrafish embryonic heart at 4.5 dpf	125
Figure A.2 High-velocity, high-shear conditions generated in the 4.5 dpf	
embryonic zebrafish heart	126
Figure A.3 Dynamics of valveless atrio-ventricular junction in the 37 hpf	
embryonic zebrafish heart	128
Figure A.4 Impaired blood flow influences cardiogenesis	129
Figure B.1 30 hpf stack	132
Figure B.2 30 hpf left lateral progression	133
Figure B.3 30 hpf right lateral progression	134
Figure B.4 48 hpf stack	135
Figure B.5 48 hpf left lateral progression	136
Figure B.6 48 hpf right lateral progression	137
Figure B.7 72 hpf stack	138
Figure B.8 72 hpf left lateral progression	139
Figure B.9 72 hpf right lateral progression	140
Figure B.10 96 hpf stack	141
Figure B.11 96 hpf left lateral progression	142
Figure B.12 96 hpf right lateral progression	143
Figure B.13 144 hpf stack	144
Figure B.14 144 hpf left lateral progression	145
Figure B.15 144 hpf right lateral progression	146

xi