N-HETEROCYCLIC CARBENE LIGANDS FOR NICKEL ETHYLENE POLYMERIZATION CATALYSTS: TOWARD THE INCORPORATION OF POLAR COMONOMERS

Thesis by

Andrew W. Waltman

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, CA

2006

(Defended June 9, 2005)

© 2006

Andrew W. Waltman

All Rights Reserved

Acknowledgments

Having had the opportunity to work and study at Caltech for the last five years has been a privilege, and even, at times, a pleasure. I'd like to think that I have grown as a person and as a scientist in this time.

Working for Bob has been an educating experience. I think that it is important to work for somebody who respects you, and whom you respect, too. I believe that this is true for Bob and me. Thank you, Bob, for letting me work in your group, and for giving me the freedom to take my research in whichever direction I felt it should go.

I must thank the rest of my committee, professors Brian Stoltz, David MacMillan, and the chairman, David Tirrell, who have been a source of both encouragement and advice.

In the Grubbs group, working on "the nickel project" is something of a singular experience. One has much freedom in directing the course of research; however, one can feel a bit detached from the rest of the group. This is a feeling that Todd Younkin no doubt could sympathize with. It was his enthusiasm for this project, and his impressionable manner that convinced this (at the time) young and somewhat naïve student to devote his graduate career to this always interesting and often frustrating project. My only regret was that he could not have stayed longer so that a bit more of his thorough approach might have rubbed off. Over my time here, Stuart Cantrill and Anatoly Chlenov also contributed more or less to the advancement of this project. The latest addition, Connie Hou, has already had some success, and it is in her capable hands that I leave the project.

My research has been supported entirely by the Rohm and Haas corporation. Our contacts, Willy Lau and Brian Goodall, are to be thanked for their patience and enthusiasm, even when results were slow in coming. The members of Brian's lab, Jenn Petoff, Han Shen and Tom Kirk, were very helpful and accommodating during my visits to southeastern Pennsylvania. Most of all, Lester McIntosh is to be thanked for the above, as well as his assistance in performing polymerization experiments.

Working in the Grubbs group has been almost entirely a pleasurable experience. I especially want to give "shouts out" to old-school 130 Church – Steve Goldberg, Justin

Gallivan, Dean Toste and Arnab Chatterjee – and its newer incarnation – Andy Hejl, Tim Funk and Jacob Berlin. All of these people are great friends, great scientists, and were great help to me, both in the lab and out (especially on the Foosball table). I must also acknowledge Tobias Ritter, who has started working with me recently, and has given me much encouragement for my upcoming tenure in Switzerland.

Bill Ward and Stuart Cantrill were great friends, although I probably ended up getting into a little bit too much mischief with the two of them. Their presence has been sorely missed since their departure, and the lab-ball courts have fallen silent.

In the last few months, I have had the chance to get to know Greg Beutner, someone with whom I have a lot in common. It's been great to work with you, and I wish you the best. We'll both figure out what we're meant to do someday, but it's probably not that big a deal.

I have had the great fortune to share my working space with two wonderful scientists – Christiane Marti and Erin Guidry. Christiane was a source of much helpful advice and encouragement, and I most certainly would not be headed to Switzerland had she not been my baymate. Erin's progress has been remarkable, and I really am proud of her, no less because, like me, she has been largely alone on her project.

There are a few other members of the group that I would like to acknowledge (in no particular order): Jon Seiders, James Tsai, Al Nelson, Choon Woo Lee, Dan Sanders, J. P. Morgan, Jen Love, Donde Anderson and Melanie Sanford. All other members of the group are to be thanked as well. Finally, I would like to thank Christophe Saudan for informing us all exactly what is *the Muguet*.

The polished piece of work that you hold in your hands got that way chiefly due to the work of my editors: Raissa Trend, Greg Beutner, Al Nelson, Tobias Ritter, Erin Guidry, Donde Anderson, Tim Funk and Anna Wenzel.

Of course, one of the benefits of working at Caltech is the open atmosphere that exists between groups. Some of my best friends have been in other labs. In the Stoltz group, I must thank Neil Garg, Uttam Tambar and Eric Ferreira as good friends and great sources of advice. From the Bercaw group, I would like to thank Jon Owen and Susan Schofer, who are good friends. Jon also provided a lot of help when I was trying to figure out difficult mechanistic problems. Jeff Byers provided helpful discussion and a little MAO. Dave Weinberg, just remember – that's what friends are for. From the Benzer group, Bader Al-Anzi can always be counted on to inflict social damage. From the Zewail group, John Feenstra, one of the finest birders in the country, never ceases to impress me with his knowledge of and dedication to birds and chemistry. In the MacMillan group, Joel Austin has been a close friend and an unfailing source of amusement. It would be hard to imagine a nicer person than Brian Kwan, bless his heart. From the Tirrell lab, Rebecca Connor has been one of my dearest friends. I'm sorry I didn't see you as much over the years, but it's been great watching Dylan grow up. Finally, I want to thank my former roommate and his lovely wife, Jeremy and Susanna Widicus-Weaver. You guys have been great friends, and serving as your best man was a great honor.

There is a wonderful support staff in the Chemistry department, and I could not imagine how anything would get done without them. Special thanks to Steve Gould, Lilian Kremar, Rick Gerhart, Joe Drew, Mo Renteria, Terry James, Chris Smith, Linda Syme and especially Dian Buchness. Mona Shahgholi's help with mass spectroscopy was invaluable. Scott Ross' efforts in the NMR facility were especially appreciated. The names of Mike Day and Larry Henling, our department crystallographers, appear often in acknowledgments, and it is little wonder why – they are terrific. Mike Echevarria at the Ath is a great bartender and a great friend. I will miss him.

I want to thank my parents, John and Jean Waltman, and my sister, Claire, who throughout my life have always given me all of the support and encouragement that I needed, and who accepted this scientific freak in a family of English majors.

My deepest thanks go to Raissa Trend, who has been, among many other things, a brilliant editor, a sounding board for scientific discussion, a source of unwavering love and support, and a true inspiration. This thesis and all of the work that went into it would not have been possible without her. I love you, Raissa.

And finally, last but certainly not least, I would be remiss if I neglected to acknowledge Pepper and Green Bean, who have done more for me than they can ever realize.

"Let's all go to Dean's desk!" - Hiro

v

The development of a catalyst capable of incorporating vinyl-functionalized polar olefins (methyl acrylate, acrylonitrile) into a linear polyethylene backbone is one of the most prominent challenges in organometallic chemistry. Recent developments in group 10 catalysts (Ni and Pd) have shown promise; however, there remains no system capable of this goal. Our group has developed a series of neutral Ni complexes which are excellent catalysts for the polymerization of ethylene but are rapidly deactivated in the presence of methyl acrylate and other polar olefins. This thesis presents our studies toward the cause of catalyst deactivation by these olefins, and describes the design of novel Ni complexes based on the findings of the deactivation study.

To determine the cause of deactivation by polar olefins, our neutral Ni catalysts were allowed to react with methyl acrylate (MA). Examination of the products revealed that, upon coordination of MA, the catalysts form chelated enolate complexes which are susceptible to deactivating protonolysis across Ni–C bonds. Furthermore, it was determined that MA itself is a potential source of hydrogen atoms for this cleavage, implying protolytic deactivation is an unavoidable result whenever olefins capable of chelation are introduced to the catalysts. Therefore, it was decided that chelation should be made less favorable through the use of more electron-donating ligands. For this purpose, N-heterocyclic carbenes (NHCs) were chosen.

NHCs are stable carbenes which have found increasing use as electron-rich ligands for transition metals. In order to make viable catalysts, NHC ligands capable of chelation through a phenoxide moiety were required. An efficient synthesis of these ligands was developed, and they were successfully ligated to Pd. However, it was found

that upon attempted ligation to Ni, a series of unexpected and undesired compounds were obtained, one of which is the apparent result of an unprecedented C–N cleavage of the NHC heterocycle. Unfortunately, when a targeted Ni complex was finally synthesized, it proved inactive toward ethylene polymerization. Finally, it was shown that group 4 (Ti and Zr) complexes of the novel NHC ligands are good catalysts for ethylene polymerization, as well as the copolymerization of ethylene with other olefins.

viii **Table of Contents**

Acknowledgments	iii
Abstract	vi
Table of Contents	viii
List of Figures and Schemes	xii
Abbreviations	xix

Chapter 1: Late Metal Catalysts for the Polymerization of Ethylene and

the Copolymerization of Ethylene with Polar Olefins......1

Abstract	.2
Introduction	.3
The Mechanism of Olefin Polymerization	.5
SHOP Catalysts	.7
Cationic Group 10 Diimine Catalysts	.8
Neutral Ni Salicylaldimine Catalysts	13
Further Developments	16
Conclusion	17
References	18
	Introduction The Mechanism of Olefin Polymerization SHOP Catalysts Cationic Group 10 Diimine Catalysts Neutral Ni Salicylaldimine Catalysts Further Developments

Ch	Chapter 2: Deactivation of Ni-Based Olefin Polymerization Catalysts in					
the	Presence of Vinyl-Functionalized Olefins					
2.1	Abstract					
2.2	Introduction					
2.3	Experimental Protocol and Observations					
2.4	Mechanistic Considerations					
2.5	Discussion					
2.6	Conclusion					
2.7	Acknowledgments					
2.8	Experimental Details					
2.9	References					

Chapter 3: A Novel Class of Chelating N-Heterocyclic Carbene Ligands

and	1 Their Complexes of Palladium	.44
3.1	Abstract	.45
3.2	Introduction	.46
3.3	N-Heterocyclic Carbenes	.46
3.4	Ligand Synthesis	.50
3.5	Synthesis and Characterization of Pd Complexes	.57
3.6	Conclusion	.63
3.7	Acknowledgments	.64
3.8	Experimental Details	.64
3.9	References	.77

NT	Jeteneovelie Contone Lizende	01
IN-J	Heterocyclic Carbene Ligands	81
4.1	Abstract	82
4.2	Introduction	83
4.3	Inorganic Nickel Complexes	83
4.4	Organometallic Nickel Complexes	90
4.5	N-Heterocyclic Carbene Ring Opening	100
3.6	Polymerization Activity	102
3.7	Conclusion	103
4.8	Acknowledgments	105
4.9	Experimental Details	105
4.1(References	112

Chapter 5: Bis-ligated Complexes of Chelating N-Heterocyclic Carbene

Lig	ands on Group IV Metals	115
5.1	Abstract	116
5.2	Introduction	117
5.3	Synthesis of Group 4 Catalysts	119
5.4	Polymerization Activity	121
5.5	Conclusion	123
5.6	Acknowledgments	124
5.7	Experimental Details	124
5.8	References	127

Chapter 4: The Synthesis of Nickel Complexes of Chelating

		-					-					
Δ	nnen	div	1.	The	Develo	nment	ofa	Nove	1 N.	.Heterc	ovelie	Carbene
	ppen	шл	1.	Inc	DUVUU	pment	UI a	11010	T T 4-		<i>i</i> y chc	Car bene

Liga	nd Featuring a Chelating Imine Moiety	129
A1.1	Abstract	130
A1.2	Introduction	131
A1.3	Ligand and Complex Synthesis	133
A1.4	Conclusion	139
A1.5	Acknowledgments	140
A1.6	Experimental Details	140
A1.7	References	143

Appendix 2: The Synthesis of "Magic Ring" Rotaxanes using Olefin

Meta	athesis	146
A2.1	Abstract	147
A2.2	Introduction	148
A2.3	Rotaxane Synthesis and Characterization	149
A2.4	"Magic Ring" Rotaxane Synthesis	154
A2.5	Conclusion	156
A2.6	Acknowledgments	158
A2.7	Experimental Details	158
A2.8	References	164

Appendix 3:	X-ray C	Crystallographic	e Data	168
-------------	---------	------------------	--------	-----

xii Figures, Schemes and Tables

Figure 1.1. The three main types of polyethylene	3
Figure 1.2. Some SHOP catalysts for ethylene oligomerization	7
Figure 1.3. Ni(sal) catalysts for the polymerization of olefins	14
Figure 1.4. Some neutral Ni catalysts presented by Brookhart and coworkers	16

Scheme 1.1. The desired copolymerization of ethylene with functionalized olefins	.4
Scheme 1.2. General mechanism for olefin polymerization	6
Scheme 1.3. Group 10 diimine catalysts for olefin polymerization	.9
Scheme 1.4. Large ligands decrease the rate of chain transfer	9
Scheme 1.5. "Chain running" leads to branched polymer	10
Scheme 1.6. Fe and Co catalysts for the addition polymerization of olefins	11
Scheme 1.7. The ethylene/MA copolymer produced by Brookhart's	
diimine catalysts	12
Scheme 1.8. The mechanism of ethylene/MA copolymerization by	
Pd diimine catalysts	13
Scheme 1.9. Neutral Ni catalysts incorporate functionalized olefins	
into polyethylene	15
Scheme 1.10. Proposed mechanism of deactivation of Pd(sal) complexes during	
attempted ethylene homopolymerization	15
Scheme 1.11. Drent's Pd catalyst for ethylene/MA copolymerization	17

Scheme 2.1. Reaction between 1.16 and MA24
Scheme 2.2. Reaction between 1.16 and MA in the presence of excess H(D) ₂ O25
Scheme 2.3. Reaction between 1.16 and MA- d_3
Scheme 2.4. Reaction between 1.16 and allylbenzene
Scheme 2.5. Reaction between Pd complex 2.6 and MA
Scheme 2.6. 2,1-Insertion leads to a Ni-enolate(2.7). Three possible bonding modes of a
Ni-enolate
Scheme 2.7. Protonolysis of 2.7 leads to 2.10, then 2.2 via tautomerization
Scheme 2.8. Fate of Ni-enolate 2.7
Scheme 2.9. Hypothetical mechanism for the formation of β -deuterated 2.2, which is not
observed
Scheme 2.10. Deactivation of Ni-anilinotropone catalysts reported by Brookhart
Scheme 2.11. Reaction between 1.16 and MA with added free phenolic ligand
Scheme 2.12. A: Direct hydride transfer between 2.11 and 2.7 may lead to deactivation.
B: Reaction of 2.1 with a Ni-hydride provides 2.2
Scheme 2.13. Proposed mechanism of reaction between Pd complex 2.6 and MA34
Scheme 2.14. A: Proposed mechanism of the reaction between 1.16 and allylbenzene. B:
Initiation of Ni–Ph precatalysts via formation of styrene and a Ni-hydride35
Scheme 2.15. Proposed mechanism of reaction between 1.16 and MA

Figure 3.1. Molecular orbital diagram of an NHC	47
Figure 3.2. An NHC analogue of sal ligands	50
Figure 3.3. Hoyveda's example of an <i>N</i> , <i>N</i> ['] -diaryl substituted NHC	53
Figure 3.4. Molecular structure of Pd complex 3.25	59
Figure 3.5. Molecular structure of Pd complex 3.28	59
Figure 3.6. Molecular structure of cyclized product 3.29	61

Scheme 3.1. N-heterocyclic carbenes and their ligation to metal atoms
Scheme 3.2. NHC substitution enhances olefin metathesis activity
Scheme 3.3. Traditional approaches to the synthesis of saturated NHCs
Scheme 3.4. Attack of an imidazole on an alkyl electrophile can provide an unsaturated
NHC precursor
Scheme 3.5. A: Formation of saturated NHCs by treatment with an alkoxide base.
B : Formation of unsaturated NHCs by treatment with an alkoxide base
Scheme 3.6. Anticipated formation of a cyclized product
Scheme 3.7. General protocol for the synthesis of unsymmetrically
substituted NHCs
Scheme 3.8. Synthesis of NHC precursors 3.15 and 3.16
Scheme 3.9. Synthesis of NHC precursor 3.21
Scheme 3.10. Synthesis of NHC precursor 3.24
Scheme 3.11. Synthesis of Pd complexes of chelating NHCs
Scheme 3.12. Synthesis of cyclized product 3.29 by reaction of 3.24 with KHMDS 60

Scheme 3.13. Proposed mechanism for the ligation of chelating NHCs to Pd	2
Scheme 3.14. Decomposition of group ten alkyl/NHC complexes	2

Figure 4.1. Molecular structure of Ni complex 4.1	84
Figure 4.2. Molecular structure of Ni complex 4.2	85
Figure 4.3. Destabilizing interactions between 2,6-diisopropylphenyl grou	ps and ortho
substituents in complex 4.1	86
Figure 4.4. Molecular structure of Ni complex 4.3	87
Figure 4.5. Molecular structure of Ni complex 4.4	
Figure 4.6. Molecular structure of Ni complex 4.9	93
Figure 4.7. Molecular structure of Ni-mesityl complex 4.13	96
Figure 4.8. Molecular structure of compound 4.24	
Figure 4.9. Comparison between complexes 4.9 and 4.24	

Scheme 4.1. The synthesis of Ni compounds 4.1 and 4.2	
Scheme 4.2. The likely cause of bis-ligation	86
Scheme 4.3. Synthesis of bis-ligated compound 4.3	
Scheme 4.4. Synthesis of bis-ligated compound 4.4	
Scheme 4.5. The synthesis of Ni(sal) complexes	
Scheme 4.6. Attempted synthesis of a Ni complex of ligand 3.16	
Scheme 4.7. Synthesis of ring-opened compound 4.9	
Scheme 4.8. A proposed mechanism for the formation of 4.9	

Scheme 4.9. Synthesis of Ni-mesityl complex 4.13	95
Scheme 4.10. Synthesis of Ni-mesityl complex 4.14	97
Scheme 4.11. Ligand 3.16 cannot protect the reactive metal center of 4.15	97
Scheme 4.12. Reaction of 3.24 with a Ni-hydride	98
Scheme 4.13. First mechanism proposed for the formation of 3.29 and 4.16	99
Scheme 4.14. Revised mechanism for the formation of 3.29 and 4.16	100
Scheme 4.15. Planned synthesis for NHC ligand 4.19	101

Figure 5.1. Group 4 salicylaldimine catalysts for olefin polymerization	117
Figure 5.2. A chelating NHC complex of Ti	
Figure 5.3. Molecular structure of Ti complex 5.3	
Figure 5.4. Molecular structure of Zr complex 5.4	

Scheme 5.1. The synthesis of group 4 complexes of chelating NHCs......119

Table 5.1. Conditions and results for olefin polymerization by complexes

5.3 and 5.4

Appendix 1

Figure A1.1. Proposed imine/carbene ligands A1.2 as analogs of diimine
ligands (A1.1)

Figure A1.2. Phosphine and phosphinidine diimine analogs presented by Brookhart and	
coworkers	132
Figure A1.3. Molecular structure of Ag complex A1.12	135
Figure A1.4. Molecular structure of Ni complex A1.14	136
Figure A1.5. Molecular structure of Pt complex A1.16	

Scheme A1.1. Synthesis of ligand A1.5 and Pd complex A1.6	
Scheme A1.2. The synthesis of NHC precursor A1.9	
Scheme A1.3. The synthesis of Ag carbenes	
Scheme A1.4. The synthesis of Ag carbene A1.12	134
Scheme A1.5. Attempted synthesis of Ni-NHC complex A1.13	136
Scheme A1.6. Attempted synthesis of Pt-NHC complex A1.15	

Appendix 2

Figure A2.1.	Molecular structure of [2]rotaxane A2.8	151
Figure A2.2.	Molecular structure of benzo-[2]rotaxane A2.13	

Scheme A2.1. Dialkylammonium ions show affinity toward binding crown ethers148		
Scheme A2.2. The synthesis of macrocycle A2.6		
Scheme A2.3. Interaction of macrocycle A2.6 with an ammonium salt150		
Scheme A2.4. Synthesis of [2]rotaxane A2.8151		
Scheme A2.5. Hydrogenation of A2.8		
Scheme A2.6. Synthesis of benzo-crown macrocycle A2.12		

xviii	
Scheme A2.7. Synthesis of benzo-[2]rotaxane A2.13	
Scheme A2.8. The "magic ring" syntheses of [2]rotaxane A2.8 and	
benzo-[2]rotaxane A2.13	

Abbreviations

acac	acetylacetonate
Ad	adamantyl
Ar	aryl
ATRP	atom transfer radical polymerization
n-BuLi	<i>n</i> -butyllithium
Bz	benzoyl
cod	cyclooctadiene
dme	dimethoxyethane
GC-MS	gas chromatograph-mass spectrometer
HDPE	high density polyethylene
IMesH ₂	1,3-dimesityl-4,5-dihydroimidazol-2-ylidene
KHMDS	potassium hexamethyldisilylazide
LDPE	Low Density Polyethylene
LLDPE	Linear Low Density Polyethylene
MA	methyl acrylate
MALDI/TOF	matrix assisted laser desorption ionization/time of flight (mass spectrometer)
ΜΑΟ	methaluminoxane
MMA	methyl methacrylate
NHC	N-heterocyclic carbene
PCy ₃	tricyclohexylphosphine
PE	polyethylene
PEt ₃	triethylphosphine

xix

	XX
Ph	phenyl
PPh ₃	triphenylphosphine
sal	salicylaldimine
SHOP	Shell Higher Olefin Process
THF	tetrahydrofuran
tmeda	N, N, N, N, N -tetramethyl ethylenediamine