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Abstract

Given a link L in S3, one can build simplicial complexes MS(L) and IS(L), called the Kakimizu

complexes. These complexes have isotopy classes of minimal genus and incompressible Seifert sur-

faces for L as their vertex sets and have simplicial structures defined via a disjointness property.

The Kakimizu complexes enjoy many topological properties and are conjectured to be contractible.

Following the work of Gabai on sutured manifolds and Murasugi sums, MS(L) and IS(L) have been

classified for various classes of links. This thesis focuses on hyperbolic knots; using minimal surface

representatives and Kakimizu’s formulation of the path-metric on MS(K), we are able to bound the

diameter of this complex in terms of only the genus of the knot. The techniques of this paper are

also generalized to one-cusped manifolds with a preferred relative homology class.
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Chapter 1

Introduction

1.1 Seifert Surfaces and Links

Seifert surfaces have immensely aided the understanding of link theory. At the most basic level, one

may use well-known topological properties of surfaces (e.g., their genera and fundamental groups)

to make the classification of links a more manageable program. Furthermore, many invariants of

knots, like the genus and Alexander polynomial, may be computed using any Seifert surface of a

knot. Operations defined at the level of a Seifert surface (e.g., Murasugi sum) many times seem to

say more about the boundary links than the surfaces themselves.

Since minimal genus and incompressible Seifert surfaces are, in many regards, the surfaces of

minimal complexity for a link, their classification is of the utmost importance. Understanding the

space of possibilities for these surfaces as well as how they interact provides much insight into the

topology of a link complement. Therefore, the Kakimizu complexes MS(L) and IS(L) provide a

natural combinatorial representation that may have very deep ramifications in the decomposition of

links.

1.2 Classifying Seifert Surfaces

The technology developed in the last few decades provide concrete tools for finding and describing

all possible minimal genus and incompressible Seifert surfaces for a link. Beginning with Hatcher

and Thurston’s seminal work on the classification of incompressible surfaces in two-bridge knot com-

plements, several low-dimensional topologists have subsequently determined incompressible Seifert

surfaces for many combinatorially defined links. In particular, the work of Gabai has been a sine

qua non; his developments in sutured manifold theory and its implications in the Murasugi sums of

surfaces have thrust explicit calculations of MS(L) and IS(L) into the realm of possibility.

The motivating conjecture in studying these Kakimizu complexes insists that, as topological

spaces, they are contractible. Since MS(L) and IS(L) represent a space of choices defined in a
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natural way, contractibility would imply that, in a variety of contexts, the choice of minimal genus

or incompressible Seifert surface is immaterial. In particular, the contractibility of the complexes may

have implications in classifying Murasugi sum structures on the level of links (instead of surfaces).

1.3 Minimal Surfaces and Hyperbolic Knots

A potential complication in studying the Kakimizu complexes lies in the definition of their vertex

sets as isotopy classes of surfaces. To choose a canonical or natural representative in each isotopy

class, one must invoke the geometry of the knot complement. Hyperbolic knots are, therefore, the

most natural class of knots in which one benefits from requiring surfaces to have vanishing mean

curvature. After obtaining existence results for minimal surfaces in hyperbolic knot complements,

one then almost immediately obtains curvature, area, and distance bounds on these geometric Seifert

surfaces.

1.4 The Bounded Diameter Theorem

By manipulating these surfaces as geometric objects and the ambient manifold as a negatively curved

space, one is able to control the growth of these complexes relative to purely topological quantities

via the Gauss-Bonnet Theorem. The Bounded Diameter theorem provides an explicit diameter

bound on MS(K) for a hyperbolic knot in terms of only the genus g of K. This bound indicates

that, unlike satellite knots, these complexes are relatively small for low genus hyperbolic knots.

The hope is that this result will add to the growing body of knowledge on the Kakimizu complex.

Understanding the topology and combinatorics of MS(L) and IS(L) is necessary to more fully

incorporating link theory in the blossoming field of 3-dimensional geometric topology.
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Chapter 2

Preliminaries

2.1 Topological Definitions

2.1.1 Manifolds

We will be working almost exclusively with manifolds. Recall that an n-manifold is a second-

countable, Hausdorff topological space which is locally homeomorphic to Rn with its standard metric

topology. Many times, we will be interested in manifolds-with-boundary ; these are n-manifolds that

may be partitioned into interior points (which are locally homeomorphic to Rn) and boundary points

(which are locally homeomorphic to the half-space Rn
+ = {(x1, x2, . . . , xn) |xn ≥ 0}). This thesis

deals almost exclusively with manifolds of dimension 1 and 2 lying in 3-manifolds.

The most relevant 3-manifold we will be discussing is the 3-dimensional sphere S3. We define S3

to be the set of vectors in R4 with unit length and endow it with the subspace topology. Thus,

S3 = {(x, y, z, w) ∈ R4 |x2 + y2 + z2 + w2 = 1}.

Equivalently, we will many times consider S3 to be the one-point compactification of R3 obtained

by adding a point at infinity. This latter interpretation is particularly useful when visualizing knots

in R3 by keeping track of the extra point at infinity, usually using it as a basepoint.

2.1.2 Knots and Links

Note that the unique connected, closed 1-manifold is the circle. In knot theory, one considers how

these circles can lie in R3 (or more practically in S3). Thus, we define a knot to be a continuous

embedding of the circle S1 into S3. We many times speak of a knot as this embedding or its image

in S3. In more generality, we may consider a link as a many-component knot. Formally, a link is

given by a continuous embedding of a disjoint union of circles into S3; the number of circles known

as the number of components of the link. Intuitively, one considers knots or links to be equivalent
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if they can be moved around in 3-space without breaking or tearing the knot. This concepts is

formalized by the notion of ambient isotopy: two knots g, h : S1 → S3 are ambient isotopic if there

is a homotopy ft : S3 → S3 such that f0 = id, each ft is a homeomorphism, and h = g ◦ f1. When

we speak of knots, we really mean the ambient isotopy class of the knot. Any two such knots that

are in the same isotopy class are considered equivalent.

Thus, a knot is simply a 1-component link. As embeddings of circles into S3 may be quite

unwieldy, we restrict our discussion to tame knots, which are knots equivalent to finite-sided polygons

in R3; a knot that is not tame is called wild. If a knot is tame, then it has a regular knot diagram

on the plane. Thus, we may represent the tame knot K by a projection onto a plane P where only

transverse double-points are allowed. At the double points, a choice of over or under-crossings must

be made. This information defines a knot in S3, though not uniquely. Reidemeister [43] classified

three local moves (called Reidemeister moves) such that any two diagrams of an equivalent knot

may be transformed from one to the other by a finite sequence of these moves. This classification

has been immensely important in defining invariants for knots; many of these invariants are defined

on the level of the knot diagram and then are shown to be invariant under these three Reidemeister

moves.

In studying a link, it is many times useful to consider its complement in the 3-sphere; thus, we

frequently investigate the exterior or link complement:

E(L) = S3−
◦

N(L) .

Here, we actually delete the interior of a tubular neighborhood of the knot, producing a compact

3-manifold with toral boundary components. When studying the geometry of these complements,

we many times delete only the knot to obtain a non-compact 3-manifold. After much time as a

conjecture, the following theorem, due to Cameron Gordon and John Luecke [20], states that knots

are determined by their complements.

Theorem 2.1. Two knots K1 and K2 are equivalent if and only their knot complements E(Ki) =

S3−
◦

N(Ki) are homeomorphic.

Note that the above theorem is not true in the more general case of links; there are inequivalent

2-component links that have homeomorphic link complements.

2.1.3 Seifert Surfaces

A well-known classical topology theorem states that any closed, orientable surface is homeomorphic

to a surface of genus g for some g ≥ 0. The genus 0 surface is the sphere S2, the genus 1 surface is

the torus T 2 = S1×S1, and a higher genus surface is merely called a surface of genus g. If we allow
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that our surfaces have boundary, then for any surface S, its boundary ∂S will be a disjoint union

of circles. If we are given a particular embedding i : S ↪→ S3, the restriction of i to the boundary

i|∂S :
⋃

S1
i → S3 will give an oriented link. Thus, we may ask the inverse question: Does every

oriented link L ⊂ S3 have a surface S such that ∂S = L. If we can find such a surface S with no

closed components, then we say that S is a Seifert surface for L.

Seifert’s algorithm is the most concrete way to show that any tame knot has a Seifert surface.

His algorithm constructs, given a regular projection of the link L, a compact, orientable surface

S with boundary ∂S = L with no closed components; we review the construction here. Given a

regular projection of the oriented link L, we may resolve each over and under-crossing by replacing

them with short-cut arcs, the unique resolution of the crossing respecting the orientation of L. This

gives a collection of disjoint simple closed oriented curves in the plane (called Seifert circles), which

may be nested. Each of these curves bounds a disk in the plane; if the curves are nested, we may

imagine pushing one off the other slightly. We may orient these individual disks by giving a positive

orientation to the disks with boundary circle oriented counterclockwise and a negative orientation

to those with clockwise oriented boundary. We may then reconnect these disks together via their

old crossings with half-twists to form an oriented surface S whose boundary is the original link L.

If L is a knot, then S is automatically connected. Otherwise, we may join the components my tubes

to create a connected surface if we wish. Our definition of Seifert surface does not require that they

be connected, but only have no closed components.

From this construction, it is a straightforward exercise to compute the genus g of the Seifert

surface S. If s is the number of Seifert circles, n the number of components of L, and c the number

of crossings in the diagram, we obtain the formula

g = 1− s + n− c

2

by considering the Euler characteristic. Given a knot, the set of possible genera for Seifert surfaces

are a subset of the natural numbers and are thus well-ordered. So, we define the genus of a knot to

be

g(K) = min{g |K has a Sefiert surface of genus g}.

By its very definition, genus is a knot invariant; it hast has been useful in distinguishing certain knot

pairs. One remarkable fact about the genus of a knot is that it completely classifies the unknot; that

is, a tame knot has genus 0 if and only if it is the unknot. Clearly, the disk is Seifert surface for the

unknot. Conversely, since the disk is the unique surface of genus 0 with 1 boundary component, the

boundary knot can be contracted to a single point by following the disk radially inward, giving it

the structure of an unknot.
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2.2 Geometric Definitions

2.2.1 Riemannian Manifolds

Given a topological manifold M with a smooth structure, we may assign a smoothly varying choice

of inner product at each tangent space TpM called a Riemannian metric; this may be viewed as

a symmetric, bilinear 2-form on the tangent bundle of the manifold. Given some local coordinate

system x1, . . . , xn in a neighborhood of p ∈ M , this metric tensor takes the form of a matrix denoted

by g, where the components are given by gij =
〈

∂
∂xi

, ∂
∂xj

〉
with

{
∂

∂xj

}
serving as a basis for TpM .

One may use this version of the metric to define geometries entities like length, area, volume, and

curvature.

We now investigate some classic examples of Riemannian metrics. Euclidean n-space En with

its standard Euclidean metric and the standard coordinate functions is represented by the matrix

gEn =




1 0 · · · 0

0 1 0
...

... 0
. . . 0

0 0 · · · 1




,

the n× n identity matrix. When viewing this as a symmetric, bilinear form on two tangent vectors

v = 〈v1, v2, . . . , vn〉 ,w = 〈w1, w2, . . . , wn〉 ∈ TpEn, we obtain the usual inner product:

vT gw =
[

v1 v2 . . . vn

]
·




1 0 · · · 0

0 1 0
...

... 0
. . . 0

0 0 · · · 1



·




w1

w2

...

wn




= v1w1 + v2w2 + · · · vnwn.

Another critical Riemannian manifold in geometric topology is that of hyperbolic space. Topo-

logically, Hn may be represented in its upper-half space model given by

Hn = {(x1, x2, . . . , xn) ∈ Rn |xn > 0} .

Using the given coordinates x1, . . . , xn, the metric on hyperbolic space is given by the matrix

gHn =
1
x2

n

In,

where In is the n× n identity matrix (i.e., the Euclidean metric). It can be shown that hyperbolic

space has constant sectional curvature −1.
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When we restrict to hyperbolic 3-space, the group of isometries is isomorphic to PSL(2,C) acting

by Möbius transformations on the upper-half space H3. Thus, if we are given any finitely-generated

torsion-free subgroup Γ of PSL(2,C) acting discretely on H3, we will obtain a 3-manifold that

is locally isometric to H3. Thus, these are hyperbolic manifolds in that they also have constant

sectional curvature of −1 and have H3 as a universal cover with the covering map a local isometry.

2.3 Combinatorial Definitions

We will use simplicial complexes, which are combinatorial objects, to describe classes of Seifert

surfaces and how they lie in S3. The building blocks of a simplicial complex is the n-simplex. It

may be defined linearly as follows:

∆n =

{
(t0, t1, . . . , tn) ∈ Rn+1

∣∣∣∣∣
∑

i

ti = 1 and ti ≥ 0

}
.

Given this description, we endow ∆n with the subspace topology coming from Rn+1. These simplices

are convex subsets of Rn+1 and therefore contractible.

For any n-simplex, there are n + 1 distinguished points corresponding to the unit coordinate

vectors

vi = (0, 0, . . . , 1, . . . , 0, 0).

Intuitively, these points correspond to the corners of ∆n and are known as the vertices. In fact, we

many times represent an n-simplex by its vertices:

∆n = [v0, v1, . . . , vn] .

A face of a simplex ∆n is a k-simplex (with 0 ≤ k ≤ n) which is a subset of ∆n defined by some subset

of its vertices. Thus, any subset of the vertices of ∆n = [v0, v1, . . . , vn] will define a k-dimensional

face, where k + 1 is the cardinality of the subset.

A simplicial complex K is a collection of simplices subject to the following two conditions:

(1) If ∆ is a simplex in K, then any face of ∆ is also a simplex in K.

(2) If ∆1 and ∆2 are simplices in K, then their intersection ∆1 ∩∆2 is a face of both ∆1 and ∆2.

Given any simplicial complex K, we can consider the subcomplex Kr consisting of all simplices

∆n with n at most some r; this subcomplex is called the r-skeleton of K. Thus, the 0-skeleton of K
is the disjoint union of the vertices of the simplicial complex. Note that the 1-skeleton of a simplicial

complex is a graph. The dimension of a simplicial complex T is the highest n for which T contains

an n-simplex. If no such n exists, then the simplicial complex is infinite-dimensional.
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In general, mathematicians are many times only interested in a simplicial complex at the level

of its 1-skeleton. A simplicial complex is connected if it is connected as a topological space. Since

the individual simplices are connected, a simplicial complex is connected if and only if its 1-skeleton

is a connected graph. Furthermore, a simplicial complex is locally finite if its 1-skeleton has finite

valence at every vertex.

Every simplicial complex K may also be endowed with a metric, where the n-simplices are given

the standard Euclidean metric coming from their definition as a subspace of Rn+1. More practically,

one is many times only interested in the metric restricted to the 1-skeleton. In particular, given any

two vertices v, w ∈ K0, we define the distance d(v, w) to be the minimum number of edges one must

traverse in C1 to join v and w. This is equivalent to the path-metric on C1 and is quasi-isometric to

the path-metric on all of K. We define the diameter diam(K) to be the maximum of d(v, w), where

v and w run over all vertices.



12

Chapter 3

The Kakimizu Complexes

3.1 Defining the Kakimizu Complexes

3.1.1 Definitions.

Given an oriented link L in S3, we may build a simplicial complex S(L) as follows. The vertex set

of S(L) consists of isotopy classes of oriented Seifert surfaces for L. A set of k + 1 isotopy classes

[S0], . . . , [Sk] span a k-simplex in S(L) if and only if there exist representatives Si of each isotopy

class such that Si ∩ Sj = ∅ in S3−
◦

N(L) for i < j.

The complex S(L) is commonly too cumbersome, so one frequently restricts attention to any one

of a variety of subcomplexes. One of the most natural classes of subcomplexes is MS(L) ⊂ S(L),

where the vertices are minimal genus Seifert surfaces for the link L; that is, one considers Seifert

surfaces with no closed components that maximize the Euler characteristic χ.

One may also consider a slightly larger subcomplex IS(L), where the vertex set is now the isotopy

classes of incompressible Seifert surfaces. These surfaces are defined as those whose inclusion map

i : S ↪→ S3 −N(L) induces a monomorphism of fundamental groups:

i∗ : π1(S) ↪→ π1(S3−
◦

N(L)).

The Loop Theorem tells us that incompressibility for a Seifert surface S is equivalent to the absence

of compressing disks for S. So, if a minimal genus Seifert surface contained a compressing disk,

cutting along this disk would produce a Seifert surface of strictly lesser genus. Thus, we have the

following inclusions of subcomplexes:

MS(L) ⊆ IS(L) ⊂ S(L).

Though these two smaller subcomplexes MS(L) and IS(L) deal with Seifert surfaces of least com-

plexity, their properties are quite distinct. Generally speaking, MS(L) lends itself well to geometric
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analysis (by considering area bounds), while IS(L) is tailor-made for combinatorial arguments. In

this spirit, it is many times fruitful to consider the complex Sg(L), where one considers Seifert

surfaces of genus at most g for some g ≥ genus(L). Thus, we also have the following inclusions:

MS(L) ⊂ Sg(L) ⊂ S(L).

In general, there are links with incompressible Seifert surfaces of arbitrarily high genus, so we may

not include IS(L) in this inclusion for all g and an arbitrary link L.

3.2 Motivating the Kakimizu Complex

3.2.1 The Murasugi Sum

The Murasugi Sum is a topological operation defined on two compact oriented surfaces-with-boundary

S1, S2 embedded in S3; more relevantly, these surfaces should be viewed as Seifert surfaces for two

oriented links ∂Si = Li. Intuitively, the Murasugi Sum is a way to glue our two Seifert surfaces to

obtain a new Seifert surfaces for a different link.

The oriented surface S ⊂ S3 is a 2n-Murasugi Sum of two connected oriented surfaces S1, S2 ⊂ S3

if we have a decomposition of the surfaces

S = S1 ∪D S2 with D = 2n− gon

along with a decomposition of S3 into two 3-balls of the following form:

S3 = B1 ∪B2

S1 ⊂ B1, S2 ⊂ B2 with B1 ∩B2 = R a 2-sphere and

S1 ∩R = S2 ∩R = D.

Note that when n = 1, a 2-Murasugi Sum S is the well-known boundary-connected sum of S1

and S2 and the boundary link ∂S = K is a link connected sum of ∂Si = Li :

L = L1#L2.

There exists many classical results about link connected sums in Knot Theory literature; many of the

motivating questions surrounding analysis of the Murasugi Sum operation are natural generalizations

of these theorems.

When n = 2, the 4-Murasugi Sum is known as a plumbing of our two Seifert Surfaces. Plumbings
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are also relatively well-understood [obtain references for plumbings]. Unlike the more manageable

operation of connected sum, a plumbing of two surfaces S1 and S2 depends critically on the choice

of plumbing disk D and how the two 3-balls B1 and B2 are glued. Consider a Hopf link and its

Seifert Surfaces of a ±2 twisted unknotted annulus. Varying the above choices in the Murasugi

Sums produces the Seifert surface for a trefoil, figure-8 knot, or a 3-component link. In this regard,

Murasugi Sum is many times seen as a generalized plumbing.

Clearly, this definition of Murasugi Sum may be extended from surfaces in S3 to those in a

general closed 3-manifold M by replacing the decomposition

B1 ∪B2 = S3

with

B1 ∪B2 = M,

a decomposition of M into two compact submanifolds Bi with homeomorphic boundaries. In this

case, the boundaries of our surfaces can be seen as knots in our 3-manifold M ; necessarily, these

knots must be null-homologous, as they bound Seifert surfaces.

Gabai’s seminal work [16] [18] on Murasugi Sums asserts that this operation preserves many of

the best qualities of our surfaces and their boundary links. We will explore these in more detail in

a later section.

3.3 Connected Sum Decomposition for Knots

Since Murasugi Sum is a natural generalization of the operation of connected sum of two knots in

S3, hopes of expanding classical results about this simpler operation motivate a great many open

questions in Knot Theory.

The most important theorem about this connected sum operation is arguably the Prime De-

composition Theorem of Schubert. We say that a knot K is prime if K can never be written as a

non-trivial connected sum. Explicitly, if K is given as the connected sum

K = K1#K2,

then at least one Ki must be the unknot. Any knot which is not prime is called composite.

Clearly, connected sum is a well-defined associative, commutative, binary operation on the space

of oriented knots; moreover, the unknot obviously serves as the identity element in this monoid. So,
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a prime knot is one that has no non-trivial factors with respect to this operation. Using the equality

g(K1#K2) = g(K1) + g(K2)

and the fact that g(K) = 0 if and only if K is the unknot, we see that any non-trivial knot does not

have an inverse in the monoid of knots. Further, any genus 1 knot must be prime.

The Prime Decomposition Theorem says that any non-trivial knot is the connected sum of a

finite number of non-trivial prime knots.

Theorem 3.1 (Schubert [53]). Let K be a non-trivial knot in S3. Then K may be decomposed as

K = K1#K2# · · ·#Kn

of non-trivial prime knots. Furthermore, this decomposition is unique up to permuting summands.

Clearly, this theorem mirrors the prime decomposition of positive integers, with prime knots

playing the role of prime numbers (thus justifying the terminology) and the unknot serving as the

unit element 1 ∈ Z.

This theorem also allows us to calculate the genus of composite knots by using its prime sum-

mands. We may extend the additivity of the genus to obtain the following equality for the genus of

K:

g(K) =
n∑

k=1

g(Ki),

where this sum ranges over the prime summands of Ki. Coincidentally, this also demonstrates that

there exists knots of arbitrary genus g by taking the connected sum of g copies of a prime knot (e.g.,

the trefoil knot or the figure-8 knot).

3.4 Conjectures about the Kakimizu Complex

The main motivation of computing the Kakimizu complexes MS(L) and IS(L) is that they categorize

the least complexity Seifert surfaces for L along with information on how these surfaces sit relative

to each other in the link complement. Since many operations on knots are defined on minimal genus

or incompressible Seifert surfaces, it would be very helpful to obtain qualitative information about

this complex and how a choice of Seifert surface impacts these operations.

More concretely, we have seen that Murasugi sum is a very natural operation; in future sections,

we will see that Murasugi sum also provides for many applications in knot theory. However, the

definition of Murasugi sum is defined on the level on its Seifert surfaces. Since Murasugi sum is also

a generalization of connected sum, it is reasonable to ask if the classical theorems can be extended

to the Murasugi sum operation. Thus, Sakuma [47] raises the following question.
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Question 3.2. Is there a certain kind of uniqueness in the decomposition of links into Murasugi

sums?

One of the key components in beginning to answer this question is to classify the minimal genus

or incompressible Seifert surfaces for links. A deep understanding of the simplicial structure of

MS(L) or IS(L) may be required, as well, to classify Murasugi sum structures of Seifert surfaces.

Since the Kakimizu complexes give a combinatorial description of the space of choices for the

Murasugi sum operation, various topological properties about these spaces become desirable in

hopes that they will lead to an independence of choices. Thus, Kakimizu gives the following bold

conjecture.

Conjecture 3.3. MS(L) and IS(L) are contractible as topological spaces.

As we shall see, this conjecture has been verified for several large classes of links, but no program

is yet in place to prove contractibility in more generality.
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Chapter 4

Properties of the Kakimizu
Complexes

4.1 Local Properties

4.1.1 Finite Dimensional

One of the cornerstones of classic 3-manifold topology is the Haken-Kneser Finiteness Theorem.

Essentially, this theorem bounds the number of non-parallel, 2-sided, pairwise disjoint incompressible

surfaces in a compact, irreducible 3-manifold M using only the combinatorial and homological data

of M .

While various different explicit quantities exist for the upper bound (Bachman [3], Hatcher [24],

Haken [22]), they all arise from a variation of the same method. Given a triangulation τ of the

compact manifold M , the surfaces Si are put in normal form with respect to τ . In this form, the

surfaces Si must meet each simplex transversely in either triangles or rectangles and are subject

the gluing conditions of the triangulation; furthermore, the incompressibility of the surfaces and the

irreducibility of the manifold imply the intersection of a surface with a 2-simplex may be isotoped

to contain no Jordan curves. From this, one obtains a linear bound on the number of components of

M −⋃
Si in terms of the t, the number of 2-simplices in τ and the number of non-trivial I-bundles.

The latter is then bounded by the second homology of M with Z2 coefficients. For example, Hatcher’s

proof [24] of the Haken-Kneser Finiteness Theorem gives the upper bound as

4t + dimH2(M ;Z2).

The importance of Haken-Kneser Finiteness in classic 3-manifold topology lies in the almost im-

mediate corollaries of the Prime Decomposition Theorem and the JSJ Torus Decomposition Theorem

of 3-manifolds. The Prime Decomposition Theorem states that any compact, orientable 3-manifold
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M can be written as

M = P1#P2# · · ·#Pn

where each Pi is a prime manifold; furthermore, this decomposition is unique up to a permutation

of the factors Pi. The Torus Decomposition Theorem is the analogue when the splitting surfaces

are tori; that is, any orientable, compact 3-manifold can be split along a finite collection of disjoint

tori Ti such that every components of M −⋃
Ti is atoroidal. This result contrasts with the Prime

Decomposition Theorem in that the atoroidal pieces are not unique.

In the context of the Kakimizu complexes, the Haken-Kneser Finiteness theorem says that the

complex IS(L) is finite-dimensional. For any link a non-split link L, the theorem gives an explicit

bound on the number of disjoint, non-parallel incompressible Seifert surfaces. Since MS(L) is a

subcomplex, it is also finite-dimensional.

Note that the complex S(L) – the complex of all Seifert surfaces – does not have such a property.

Given any link L and any Seifert surface S of genus g, we can form a countable collection of disjoint

Seifert surface Sk of genus g + k by adding trivial handles and shrinking slightly. This highlights

the importance of the subcomplexes MS(L) and IS(L):their finite-dimensional property makes the

combinatorics of these complexes more manageable.

4.1.2 Local Finiteness

A simplicial complex is said to be locally finite if any vertex is contained in only finitely many

1-simplices. Thus, every vertex in a locally finite complex is adjacent to a finite number of other

vertices. In terms of the Kakimizu complexes, local finiteness is equivalent to every isotopy class of

minimal genus (resp. incompressible) Seifert surface being disjoint from only finitely minimal genus

(resp. incompressible) Seifert surfaces classes.

We will, in a future section, present a class of knots which do not have locally infinite IS(K).

These knots have the property that there exists an infinite family of incompressible surfaces all

disjoint from one minimal genus Seifert surfaces. These incompressible surfaces are, however, not

minimal genus.

4.2 Global Properties

4.2.1 Connectedness

Given a topological space with sufficient structure (e.g., simplicial, cellular), one of the fundamental

properties of appeal is that of connectedness. In the context of MS(L) and IS(L), to be connected

is equivalent to the existence of a a path in the one-skeleton of the complexes from any vertex to any

other. Phrased in the language of Seifert surfaces, this connectedness is equivalent to, given any two
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isotopy classes σ, σ′ ∈ MS(L) (resp. IS(L)), does there exist a sequence of minimal genus (resp.

incompressible) Seifert surfaces S0, S1, S2, . . . , Sn such that σ = [S0], σ′ = [Sn] and Si ∩ Si+1 = ∅ in

the link complement for 0 ≤ i ≤ n− 1.

For a knot K, Scharlemann and Thompson [49] find such a path using the notion of double-curve

sum and least area surfaces. Given two oriented Seifert surfaces S and T in general position for

our knot K with non-trivial intersection S ∩ T in S3 −N(K), double-curve sum allows us to alter

alter the topology of the two surfaces while leaving the sum of the Euler characteristics constant.

Specifically, a neighborhood A of S∩T can be viewed as (S∩T )×D2, where S and T intersect each

component of A in the horizontal or vertical axes, respectively. If α is the line running from (1, 0)

to (0,−1) and β the line running from (−1, 0) to (0, 1) in D2, we can obtain the double-curve sum

S ³ T by replacing S∩T in A by (S∩T )× (α∪β). This double-curve sum operation is supported in

A and resolves the intersection of these surfaces. Since this operation simply removes and replaces

neighborhoods of arcs and circles and glues them back differently, χ(S ³ T ) = χ(S) + χ(T ).

Scharlemann and Thompson use this double-curve sum operation to obtain the following result,

implying the connectedness of MS(L):

Proposition 4.1. If S and T are minimal genus Seifert surfaces for K, then three is a sequence of

minimal genus Seifert surfaces S = S0, S1, . . . , Sn = T such that for each 0 ≤ i ≤ n−1, S∩Si+1 = ∅.

Scharlemann and Thompson obtain this result by starting with S and T and iteratively taking

double-curve sum until some complexity defined in terms of a lexigraphical order reaches zero. It is

precisely the sequence corresponding to zero complexity that provides the appropriate sequence of

Seifert surfaces (and thus a path in the one-skeleton of MS(K)). Least area surfaces and the usual

cut and area reduction arguments are used to obtain control on the possible intersections.

Using vastly different techniques, Kakimizu generalizes this result in his seminal paper [28]:

Theorem 4.2. Let L be a non-split link. Both MS(L) and IS(L) are connected.

In fact, Kakimizu’s interpretation of the path metric on MS(L) and IS(L) has as a crucial step

the construction of a sequence connecting two isotopy classes.

4.2.2 Diameter Bounds

The question of trying to bound the diameter of the complexes MS(L) and IS(L) is certainly of

great importance in understanding the topology of these complexes and the nature of Seifert surfaces

of various classes of links. The main result of this paper will focus on obtaining distance bounds

on the complex MS(K) for hyperbolic knots K. As we shall see, there are many (non-hyperbolic)

knots where the diameter of the Kakimizu complexes are infinite. Thus, in the trichotomy of knots,

hyperbolic knots are a compromise (with respect to diam(MS(L))) between torus knots (with trivial

MS(L)) and satellite knots (which allows for unbounded MS(L))
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Chapter 5

Tools Employed in Calculating the
Complex

5.1 Sutured Manifolds and Thurston Norm

Gabai defined and has used sutured manifolds to answer very deep theorems in knot theory and

the foliation theory of 3-manifolds [16],[18],[19],[17]. A sutured manifold is a pair (M, γ) with M a

compact oriented 3-manifold and a set γ ⊂ ∂M of pairwise disjoint annuli A(γ) and tori T (γ); in all

of the relevant applications and examples, we will be in the situation where T (γ) = ∅. The interior

of each annulus in A(γ) contains a suture, a homologically non-trivial oriented simple closed curve;

the set of sutures is denoted by s(γ). Furthermore, every component of ∂M− ◦
γ is oriented; define

R+(γ) and R−(γ) to be the components of ∂M− ◦
γ whose normal vector points out of or into M ,

respectively. The orientations on this complement R(γ) must also be coherent with respect to the

sutures s(γ).

While examples of sutured manifold abound, we restrict ourselves to the relevant ones that aid

in the understanding of minimal genus Seifert surfaces and foliations. First, note that if (N, γ) is

a sutured manifold and M is a codimension 0 manifold, then (M − N, γ) has a natural sutured

manifold structure. Next, if we are given a compact surface F with boundary in S3 with no closed

components (i.e., a Seifert surface for some link ∂F ), then (F × I, ∂F × I) is a sutured manifold in

S3. We may view the sutures as the level sets s(γ) = ∂F × 1/2, while R+(γ) and R−(γ) correspond

to the two sides of F . The exact distinction between R+(γ) and R−(γ) depends on the orientation

given to F .

Sutured manifolds that admit certain decompositions are of special interests to 3-dimensional

topologists. A disc decomposition of a sutured manifold is a removal of embedded disks that preserve

the suture manifold structure. Specifically, assume that we have a sutured manifold (M0, γ0) in S3

with D× I embedded in S3−
◦

M0, where D is a disc, D× ∂I is properly embedded in S3−
◦

M0, and

the boundary annulus A = ∂D × I is embedded in ∂M0. If the annulus A is transverse to γ0 and
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the corresponding sutures s(γ0) and each arc of ∂A ∩ γ0 intersects s(γ0) exactly once, then we may

define the disc decomposition

(M0, γ0)
D−→ (M1, γ1).

The new manifold M1 is obtained by M1 = M0 ∪ D × I and the new sutures s(γ1) are obtained

from s(γ0) by modifying s(γ0) near D × I. Depending on how many sutures D × I meet, there are

potential choices in how to glue glue s(γ0) to produce s(γ1). If D × s(γ0) is just two points, then

there is only one way to connect s(γ0). If D × s(γ1) consists of more than 2 points, there are two

distinct ways of creating s(γ1) from s(γ0).

A sutured manifold (M0, γ0) is said to be completely disc decomposable if there is a sequence

(M0, γ0)
D1−→ (M1, γ1)

D2−→ · · · Dn−→ (Mn, γn)

of disc decompositions such that

(1) Mn is connected;

(2) ∂Mn is a union of 2-spheres S1, S2, . . . , Sk; and

(3) Si ∩ S(γn) is a simple closed curve for 1 ≤ i ≤ k.

Gabai shows that when the sutured manifold obtained from a Seifert surface F for a link L in

S3 has a complete disc decomposition, then the link L is fibred with fibre F .

The connection with detecting the genus of a link comes when one considers how foliations

extend across these sutured manifold operations. Gabai’s main result [17] states that complete disc

decomposability of a sutured manifold allows for the existence of nice foliations.

Theorem 5.1. Let R be an oriented surfaces in S3 and let L be the oriented link L = ∂R. If

R 6= D2 is completely disc decomposable, then the following hold:

(1) There exists a C∞ transversely oriented foliation F of S3−
◦

N(L) such that F is transverse to

∂N(L), F|∂N(L) has no Reeb components, and R is the unique compact leaf of the foliation.

(2) p : S3 − (
◦

N(L) ∪R) → Space of leaves of F|(S3 − (
◦

N(L) ∪R)) is a fibration over S1, where p

contracts each leaf to a point.

(3) R is a surface of minimal genus (maximal Euler characteristic) for the oriented link L.

(4) If R has a decomposition such that for each term

(Mi, γi)
Di+1−→ (Mi+1, γi+1)
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of the decomposition, either Di+1 separates S3−
◦

M1 or Di+1 ∩ s(γi) is 2 points, then L is a

fibred link with fibre R.

The proof of this theorem is inductive on the length n of the decomposition. The base case of

n = 0 is trivial since then the complementary sutured manifold will be (S × I, ∂S × I), where S is

a union of discs; thus, this space can be given the product foliation, which satisfies the conclusion.

The content of the theorem is then a case-by-case analysis of how to extend the foliation over the

decompositions in the inductive step.

In fact, Gabai’s results allow him to give a geometric proof that applying Seifert’s algorithm

to an alternating knot diagram will produce a minimal surface. By treating the cases of nested or

un-nested Seifert circles separately, Gabai produces the following result.

Theorem 5.2. Let L be a non-split alternating link. If R is a Seifert surface obtained by applying

Seifert’s algorithm to an alternating projection, then R is disc decomposable.

Of course, using his previous result, he is then able to conclude that this Seifert surface is indeed

of minimal genus. This result had been obtained by Murasugi [35] and Crowell [13], but by more

algebraic means.

The connection between sutured manifolds and genus comes when one consider the Thurston

norm on the relative second homology of a 3-manifold M . Let S be a compact oriented surface

S =
⋃n

i=1 Si, with each Si a connected surface. The norm of the surface S is given by

x(S) =
∑

i|χ(Si)<0

|χ(Si)| .

If K is a codimension-0 submanifold of ∂M and z ∈ H2(M, K) is a relative second homology class,

define the norm

x(z) = min {x(S) | (S, ∂S)} ,

where the set runs over all properly embedded surfaces (S, ∂S) in (M,K) such that [S] = z ∈
H2(M, K). A properly embedded oriented surface S in M is norm-minimizing in H2(M, K) if ∂S ⊂
K, S is incompressible, and x(S) = x([S]) for [S] ∈ H2(M,K). Thurston [55] proved that x is

actually a pseudo-norm and that, in the presence of a nice foliation, can give information about

surfaces in M .

Theorem 5.3 (Thurston). Let M be a compact, oriented 3-manifold. Let F be a codimension-1,

transversely oriented foliation without Reeb components of M such that F is transverse to ∂M . If

R is a compact leaf of F , then R is norm-minimizing in H2(M,∂M).

Since the norm is stated in terms of the absolute value of the Euler characteristic of the connected

components of a surface, R being norm-minimizing is equivalent to R having minimal genus among
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all Seifert surfaces (which represent the same relative homology class in a link complement). Thus,

Gabai’s result gives a concrete algorithm for computing the genus of a link.

5.2 Sutured Manifold Theory and Murasugi Sums

Murasugi sums lend themselves well to sutured manifold and foliation theory since the decomposition

of a surface into Murasugi summands can be easily manipulated by operations on sutured manifolds.

Recall that an oriented surface R ⊂ S3 is a Murasugi Sum of oriented surfaces R1 and R2 in S3

if there is a decomposition of the following form:

(1) R = R1 ∪D R2, where D is a 2n-gon;

(2) R1 ⊂ B1, R2 ⊂ B2, where B1 ∩B2 = S, and S is a 2-sphere; and

(3) B1 ∪B2 = S3 and R1 ∩ S = R2 ∩ S = D.

Following in the same vein as the above results of foliations of sutured manifolds, Gabai [16] [18]

proves that the operation of Murasugi sum preserves the best properties of foliations.

Theorem 5.4 (Gabai). Let S be the Murasugi Sum of S1 and S2 and let Li = ∂Si and L = ∂S.

If there exists a C∞, transversely oriented foliation Fi on S3−
◦

N(Li) such that Fi is transverse to

∂N(Li), Fi has no Reeb components, Fi|∂N(Li) has no Reeb components, and Si is a a compact

leaf, then there exists a C∞ foliation F on S3−
◦

N(L) such that F is transverse to ∂N(L), F has

no Reeb components, F|∂N(L) has no Reeb components, and Sis a compact leaf. Furthermore,

a) If each leaf of F1 and F2 is compact, then F can be constructed to only have compact leaves

b) If for each i = 1, 2, the quotient map to the leaf space sending each leaf of the restricted foliation

F|(S3 − (
◦

N(Li) ∪Si) is a fibration over S1 or (0, 1), then F can be constructed so that the

quotient map to the leaf space of the restricted foliation F|S3 − (
◦

N(L) ∪R) is a fibration over

S1.

Using this foliations result, Gabai then proves many useful combination-type theorems for the

Murasugi sum operation. For example, Gabai shows that Murasugi sum preserves the minimal genus

property. Gabai’s result generalizes the classic theorem that the genus of a composite knot is the

sum of the genera of its summands.

Theorem 5.5 (Gabai). If S is a Murasugi Sum of S1 and S2 with ∂S = L and ∂Si = Li, then S

is a minimal genus Seifert surface for L if and only if Si is a minimal genus Seifert Surface for Li.

In a similar spirit, Gabai shows that incompressibility is preserved under Murasugi sum.
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Theorem 5.6 (Gabai). If S is incompressible in S3−
◦

N(Li) for i = 1, 2 and if S is any Murasugi

Sum of S1 and S2, then S is incompressible in S3−
◦

N(L) .

This theorem stands out since the converse is not true. A Seifert surface of a certain pretzel knot

was shown by Parris [39] to be incompressible; however, this surface has a Murasugi decomposition

in which one of the summands is clearly compressible.

Murasugi Sum also preserves fibredness of two Seifert surfaces and their boundary links.

Theorem 5.7 (Gabai). If S is a Murasugi Sum of S1 and S2, then L = ∂S is a fibred link with

fibre S if and only if Li = ∂Si is a fibred link with fibre Si for i = 1, 2.

The above theorems are many times paraphrased heuristically: Murasugi sum preserves the best

properties of the summands.
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Chapter 6

Explicit Examples of the Kakimizu
Complexes

6.1 Fibred Knots

Recall that a fibred knot is one whose knot complement fibres over S1; that is, it has the topological

description as the mapping torus of a surface and thus as a surface bundle over S1. Specifically,

if X = S3 − N(K), then K being fibred with fibre F means that there exists a continuous map

f : X → S1 called a fibration such that for every point θ ∈ S1, there is a neighborhood U such that

there exists a trivializing homeomorphism h : f−1(U) → U × F such that f = proj ◦ h on U .

From this definition, one may see that the complement of fibred knot (or fibred link, in more

generality) has the structure of a mapping torus of a compact surface with boundary. Specifically,

we may view the knot complement of a fibred link L as

S3 −N(L) =
F × I

(x, 0) ∼ (ϕ(x), 1)
,

where F is the fibre of the fibration and ϕ : F → F (known as the monodromy) is some orientation-

preserving self-homeomorphism of F . F is forced to have n boundary components, where n is the

number of components of the link L. Note that the topology of the knot complement is preserved

by an isotopy of ϕ, thus one need only specify ϕ in the mapping class group MCG(F ) to define the

link complement. In fact, more is true; any automorphism in MCG(F ) in the same conjugacy class

will produce an identical link complement.

For a fibred knot K, we can consider X̃, the cyclic cover of the knot complement X with covering

map p corresponding to the commutator subgroup of the knot group. Using the exponential map

exp : R1 → S1, we may build the following commutative diagram:
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X̃
f̃ - R1

X

p

? f - S1

exp

?

In this diagram, f̃ : X̃ → R1 is the lift of the map f : X → S1, which exists because R1 is

the universal cover of S1. Thus, we may view X̃ as a fibration over R1; since R1 is contractible,

elementary covering space theory says that the total space X̃ has a global product structure. Since

the fibre of f is a surface F , then X̃ is homeomorphic to F × R. Since F is a compact surface

with boundary K (being a Seifert surface of K), the fundamental group of this universal cover is a

finitely-generated free group of rank twice the genus of F :

π1(X̃) = π1(F × R) ∼= π1(F ) = Free(2g).

Thus, finite generation of the commutator subgroup of the knot group is a necessary condition.

Stallings [54] proved that it is also sufficient.

Theorem 6.1. A knot K is fibred if and only if the commutator subgroup [π1(X), π1(X)] of the

knot group π1(X) is a finitely generated free group.

In fact, the rank of the free group is precisely twice the genus of the knot (and not just the genus

of F ); that is, F is actually a minimal genus (and thus incompressible) Seifert surface. In fact, for

fibred knots (and fibred links in general), there is a unique incompressible (and thus minimal genus)

Seifert surface up to isotopy [9]; it is given by the fibre of the fibration over S1 and thus its genus

may be determined by computing its finitely generated commutator subgroup . In the language of

the Kakimizu complexes, MS(L) and IS(L) are single vertices.

One necessary condition for a knot K to be fibred is for its Alexander polynomial to be monic

[36]. Thus, a standard method for showing that certain knots are non-fibred is by computing their

Alexander polynomials and noting that the lead coefficient is not ±1.

Recall that Gabai’s notion of the product decomposition provides an algorithm for deciding if a

Seifert surface for a link is the fibre of a fibration. He obtains the following theorem.

Theorem 6.2. Let F be an oriented surface with ∂F = L its oriented link boundary. L is a fibred

link with fibre F if and only if (S3 − (F × I), ∂F × I) has a product decomposition.
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6.2 Torus Knots

Given an unknotted torus T in S3 with a longitude and meridian pair (l, m), the torus knot Tp,q

with gcd(p, q) = 1 is the knot that wraps p-times around the meridian m and q times around the

longitude l. The condition p and q be relatively prime guarantees that we do indeed obtain a knot;

in general, if gcd(m,n) = d, then we will will obtain d parallel copies of the torus knot Tp,q with

p = m/d and q = n/d. Equivalently, viewing a torus as the quotient of R2 by the standard action

of integer lattice Z2, Tp,q the torus knot Tp,q may be formed by taking the unique line of slope p/q

through the origin and translating it around R2 by the action of Z2; the quotient R2/Z2 is the torus

T 2 with a curve on its surface. Using the standard embedding of T 2 into S3, the curve on the surface

is the knot Tp,q.

Given two pairs of relatively prime integers (p, q) and (p′, q′), one wishes to classify when the

corresponding torus knots Tp,q and Tp′,q′ are isotopically equivalent in S3. Using the first definition

of torus knots, it is clear that the torus knots T±1,q and Tp,±1 are isotopic to the unknot. Also,

by interchanging the chosen meridian and longitude in the first example, one can see that Tp,q is

equivalent to Tq,p. Furthermore, changing the sign of p or q will not affect the isotopy type of the

torus knot. Aside from these obvious exceptions, all other torus knots are inequivalent. In fact,

Schreier [52] proves that if 1 ≤ p ≤ q, then the knot group of Tp,q determines the (unordered) pair

p, q. In fact, the torus knot group has a very straightforward presentation:

π1(S3 −N(Tp,q)) = 〈x, y;xp = yq〉 .

As shown by Burde and Zieschang [8], torus knots are unique in that they have the only knot groups

with non-trivial center. In fact, the center Z(π1) of the knot group is the infinite cyclic group

generated by the element xp = yq.

Torus knots also have interesting topological properties. If one takes the unknotted torus T 2 on

which Tp,q is embedded, and cuts along the knot, the resulting surface T 2−Tp,q is an incompressible,

properly embedded annulus. This incompressible annulus is an obstruction to hyperbolizing the knot

complement; that is, it does not admit a complete hyperbolic metric.

One important yet surprising knot-theoretic aspect of torus knots is that they are fibred. This

is supported (but not proven) by the fact that the Alexander polynomial of Tp,q is monic. In fact,

it has the form:

A(t) =
(1− t)(1− tpq)
(1− tp)(1− tq)

,

which is a monic polynomial of degree (|p| − 1)(|q| − 1). In fact, the Alexander polynomial for the

torus knots of type p, q and p′, q′ are distinct unless {|p|, |q|} = {|p′|, |q′|}, which gives us Schreier’s

classification theorem. The monodromy associated to the fibration of the complement of Tp,q is hard
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to compute in general. Rolfsen demonstrates that such computations are difficult by computing the

monodromy of the trefoil complement: 
 0 −1

1 1


 .

Regardless, since Tp,q are fibred knots, their Kakimizu complexes MS(L) and IS(L) are single

vertices.

6.3 Murasugi Sums of Fibred Knots

Using the technology developed in [19], Gabai is able to prove that the connected sum operation

preserves fibredness. In fact, he proves a much stronger theorem.

Theorem 6.3. Let F ⊂ S3 be a Murasugi sum of oriented surfaces F1, F2 ⊂ S3. L = ∂F is a fibred

link with fibre F if and only if Li = ∂Fi is a fibred link with fibre Fi for i = 1, 2.

Since connected sum is a 2-Murasugi sum, we see that the connected sum of fibred knots are

fibred. In particular, since MS(Li) = IS(Li) is a single vertex for fibred links, the same is true of

MS(L1#L2). Of course, the same is true for a general Murasugi sum of two fibred Seifert surfaces.

Since both Li are fibred links with fibre Fi, they have their respective monodromies

ϕi : Fi → Fi.

The monodromy of the Murasugi sum F of the two fibres can then be calculated in terms of ϕ.

Gabai’s following result says that the monodromy of F is a composition of the monodromies of the

summands Fi given certain conditions.

Theorem 6.4. Suppose that F is a Murasugi sum of F1 and F2, ∂F = L, ∂Fi = Li, and Li is a

fibred link with monodromy ϕ : Fi → Fi such that ϕi|∂Fi = id. Then L if a fibred link with fibre F

and monodromy

ϕ = ϕ′2 ◦ ϕ′1 : F → F

where ϕ′i|Ri = ϕi and ϕ′i|(R−Ri) = id.

Notice that the two extensions ϕ′i of ϕi commute since they restrict to the identity map on their

complements. Of course, this reflect the fact that Murasugi sum is a commutative operation, and

the monodromy is not affected by the order in which the sum is performed.



29

6.4 Murasugi Sums with Unique Seifert Surfaces

Using the technology of product decompositions in sutured manifold theory, Kobayashi [30] gives

necessary and sufficient conditions for the link of the Murasugi sum of two minimal genus Seifert

surfaces to have a unique minimal genus Seifert surface.

Theorem 6.5 (Kobayashi). Let Li be a link with minimal genus Seifert surface Ri for i = 1, 2 and

R a Murasugi sum of R1 and R2. The minimal genus Seifert surfaces for L = ∂R are unique if and

only if one of L1 and L2 (say L2) is fibred and the minimal genus Seifert surfaces for L1 are unique.

Note that when both L1 and L2 are fibred links, this gives precisely the fact that the boundary

of any Murasugi Sum of the fibres of L1 and L2 will have unique minimal genus Seifert surface.

Since the techniques employed rely heavily on sutured manifold theory, Kobayashi’s results do not

cover IS(L).

6.5 Connected Sum of Non-fibred Knots

One of the first examples of a knot with an infinite collection of minimal genus (or incompressible)

isotopy classes of Seifert surfaces was produced by Eisner [15] using the connected sum of non-fibred

knots. Given two oriented non-trivial knots K1 and K2, one may form the connected sum K1#K2,

which will have an incompressible torus in its knot complement; such swallow-follow tori place

composite knots in the class of satellite knots and therefore have complements which never admit a

complete hyperbolic structure. We will show that, with moderate conditions on the knots Ki, the

diameter of both MS(K1#K2) and IS(K1#K2) are unbounded.

Eisner’s construction of this infinite family of minimal genus Seifert surfaces was suggested by

Haken and illustrates the exotic behavior of MS(L) and IS(L) in the presence of an incompressible

torus.

Given two oriented knots K1 and K2 in S3 with minimal genus Seifert surfaces S1 and S2. Let N

be a regular neighborhood of a meridian m1 of K1, which meets S1 in a disk and does not meet K2

or S2. Then V1 = cl(S3−N) is an unknotted solid torus and has l1 = S1 ∩ ∂V1 as a longitude (since

l1 represents a meridian for N). Let V2 be a regular neighborhood of K2, meeting S2 in an annulus

having one boundary component K2 and the other being ∂V2∩S2. Furthermore, V2 has l2 = S2∩∂V

as a longitude (since it is isotopic in V to K2). Choosing a homeomorphism f : V1 → V2 satisfying

f(l1) = l2, we may set S̃1 = f(S1 ∩ V1), V ′ = cl(S3 − V2) and S̃2 = S2 ∩ V ′. Then we see that

the image f(K2) of K2 ⊂ V1 is precisely the composite knot K1#K2. Furthermore, we may form

a Seifert surface F = S̃1 ∪ S̃2 for the composite knot; since F is built from minimal genus Seifert

surfaces S1 and S2 by cutting and gluing along disks and circles, g(F ) = g(S1)+ g(S2) and thus (by



30

the additivity of knot genus), F is a minimal genus Seifert surface for K1#K2. Note as well that

this construction of K1#K2 satisfies an alternate definition for a satellite knot, defined in terms of

companionship.

The swallow-follow torus T = ∂V2 is an incompressible torus which we will use to construct this

infinite family of minimal genus Seifert surfaces. Choosing a meridian m for T , we may write this

torus as the product T = S1 × S1 = m × l, oriented consistently with K and S3. Given these

coordinates, a meridional roll R is the following isotopic deformation of the torus:

Rt(θ1, θ2) = (θ1 + 2πt, θ2) .

Note that this isotopy has the special property that R0 = R1. We may now extend R to an isotopic

deformation Et of V2 such that Et(K1#K2) = K1#K2 pointwise. We may now extend E1 to a

homeomorphism e of S3 by requiring that e be the identity on V ′ = cl(S3 − V2). For every integer

n, we may now define new Seifert surfaces Fn = en(F ) = (E1)n(S1) ∪ S2. Topologically, the map

e and its iterates serve to roll the Seifert surface F n times around the incompressible torus T to

obtain a new Seifert surface that is also of minimal genus.

Given these Seifert surfaces Fn, one must now decide if they represent distinct isotopy classes.

To this end, Eisner constructs the winding number w of an isotopy and a surface to distinguish these

separate classes. Eisner shows that the obstruction to which this rolling homeomorphism produces

a distinct isotopy class coincides precisely with the notion of a knot being fibred. If both K1 and K2

are non-fibred knots, Eisner uses the algebraic characterization of fibred knots (as those for which

the commutator of the knot group is finitely generated) to show that there do indeed exist an infinite

number of isotopy classes. In fact, the only manner in which K1#K2 may posses at most a finite

number of Seifert surface isotopy classes is for at least one summands K1 and K2 to be fibred. The

case that both are fibred, K1#K2 is also fibred and thus MS(K1#K2) = IS(K1#K2) is a single

vertex.

Kakimizu [28], using his characterization of the distance function on MS(K) and IS(K), explic-

itly computes his complexes when an extra assumption is placed on the summands.

Theorem 6.6 (Kakimizu). Let K = K1#K2 be a composite knot. Suppose that for i = 1, 2, Ki

is not fibred and the incompressible Seifert surfaces for Ki are unique. Then IS(K) = MS(K)

and they have the topology of Z ⊂ R. In particular, this infinite class coincides precisely with those

constructed by Eisner.

Certainly, for the composite knot K = K1#K2 to have infinitely many minimal genus Seifert

surfaces, both summands must be non-fibred by Eisner’s results. In fact, using Kobayashi’s result,

we see the weaker result of having plural minimal genus Seifert surfaces requires both knots to

be non-fibred. Using this extra (relatively moderate) condition that IS(K1) = IS(K2) be a sin-
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gle point, Kakimizu is able to precisely pin down the topology of the complexes for K. Clearly,

diam(MS(K)) = diam(IS(K)) = ∞.

6.6 Knots with 10 or fewer crossings

Using the vast technology and classification theorems established by the turn of the century, Kakimizu

[29] computes the complexes for prime knots of 10 or fewer crossings. In fact, Kakimizu proves that

most knots of 10 or fewer crossings have unique incompressible Seifert surfaces. For the 11 prime

knots that have plural incompressible Seifert surfaces, IS(K) = MS(K) and each K has at most

4 isotopy classes. Of course, Kakimizu does not include composite knots in this tabulation, as the

connected sum of the non-fibred knot 52 with itself has infinitely many minimal genus Seifert sur-

faces by Eisner’s result. Actually, there are many prime knots with 11 crossing with infinitely many

incompressible Seifert surfaces.

The content of Kakimizu’s paper actually rested in computing the complexes IS(K) for exactly

four knots: 1053, 1067, 1068, and 1074. These knots had complexes that were particularly difficult

to calculate because they are not 2-bridge knots and thus not subject to the Hatcher-Thurston [25]

classification theorem, described below.

6.7 Two-Bridge Knots

Hatcher and Thurston’s seminal paper [25] classifying incompressible surfaces in 2-bridge knot com-

plements has served as a model for classifying incompressible and minimal genus Seifert surfaces

for other combinatorially defined knots and links in S3. In particular, the Hatcher-Thurston paper

reinforces the technique of encoding isotopy classes of incompressible Seifert surfaces in terms of

other topological gadgets, which take the form of a branched surface in this context.

Given a rational number p/q with q odd, one can associate a 2-bridge knot by bridging a line

of slope p/q in a meaningful knot-theoretic manner to be defined later. In general, every knot is

a bridge knot in the following way. Given a knot K and a projection of K onto a plane P , an

overpass of a projection is a subarc of the knot that goes over at least one crossing but never under

a crossing. A maximal overpass is an overpass which cannot be extended further. The bridge number

of a projection is the number of these maximal overpasses (also known as bridges for obvious visual

reasons). This can be interpreted in a different manner by viewing these bridges as lying above the

projection plane P as individual unknotted arcs penetrating P in 2b distinct points. This becomes

an invariant for K when we define the bridge number b(K) of a knot K to be the least bridge number

of all possible projections for the knot K. Thus, the only 1-bridge knot is the unknot.
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Two-bridge knots lend themselves well to classification problems because of this relatively simple

combinatorial description. In fact, after pulling one of the strands straight, a 2-bridge knot can just

be thought of as defined by a 3-braid. This description of Kp/q can now be interpreted as an element

of the braid group B3 by considering continued fraction expansion of p/q. Recall that any rational

number has a continued fraction expansion given by

p

q
= r + [b1, b2, . . . , bk] = r +

1
b1 − 1

b2− 1

...− 1
bk

,

where r, bi ∈ Z with bk 6= 0. Conway [12] showed that the knot Kp/q knot was precisely the boundary

of the surface obtained by plumbing together k bands in a row, with the i-th band having bi half-

twists (being right-handed twists if bi > 0 and left-handed if bi < 0). As with most plumbing

operations, there are two distinct ways of plumbing these bands together; this becomes clear when

one recalls that the Conway sphere S2 for the plumbing has a choice of a square D or its complement

S2 −D.

The classification of incompressible surfaces in 2-bridge knot complements is best phrased in the

language of branched surfaces, which generalize the plumbing choices for Seifert surfaces. Given

a continued fraction expansion p/q = r + [b1, b2, . . . , bk], we may stack the boundary of k bands

with bi half-twists. We construct a branched surface Σ[b1, . . . , bk] by including these bands as well

as the sphere S2 that constitutes the two choices at each of the k − 1 horizontal band intersec-

tions. This branched surface can carry a large number of (possibly disconnected) surfaces labelled

Sn(n1, . . . nk−1) where n ≥ 1 and 0 ≤ ni ≤ n. This surface is given by taking n parallel sheets run-

ning closed to the vertical portion of the band of Σ[b1, . . . bk], which bifurcate into ni parallel copies

of the i-th inner plumbing square and n − ni parallel copies to the corresponding outer plumbing

square. Note that when n = 1, this corresponds precisely to the 2k−1 plumbing choices of the k

bands.

Hatcher and Thurston use these branched surfaces to classify all incompressible, ∂-incompressible,

possibly disconnected surfaces in the 2-bridge knot complement S3 −Kp/q.

Theorem 6.7. (a) A closed incompressible surface in S3−Kp/q is a torus isotopic to the boundary

of a tubular neighborhood of Kp/q.

(b) A non-closed incompressible, ∂-incompressible surfaces in S3 − Kp/q is isotopic to one of

the surfaces Sn(n1, . . . , nk−1) carried by Σ[b1, . . . , bk] for some continued fraction expansion

p/q = r + [b1, . . . bk] with |bi| ≥ 2 for each i.

(c) The surfaces Sn(n1, . . . , nk−1) carried by Σ[b1, . . . , bk] is incompressible and ∂-incompressible

if and only if |bi| ≥ 2 for each i.
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(d) Surfaces Sn(n1, . . . , nk−1) carried by distinct Σ[b1, . . . bk] with |bi| ≥ 2 for each i are not iso-

topic.

(e) The relation of isotopy among the surfaces Sn(n1, . . . , nk−1) carried by a given branched surface

Σ[b1, . . . bk] with |bi| ≥ 2 for each i is generated by the following: Sn(n1, . . . , ni−1, ni, ni+1, . . . nk−1)

is isotopic to Sn(n1, . . . , ni−1 + 1, ni + 1, . . . , nk−1) if bi = ±2.

Since these surfaces are not guaranteed to be connected, a further analysis is needed:

Theorem 6.8. Consider the surfaces Sn(n1, . . . , nk−1) carried by a given Σ[b1, . . . , bk]. The follow-

ing is true:

(1) If all the bi’s re even, Sn(n1, . . . , nk−1) is connected only when n = 1.

(2) If at least one bi is odd, each two-sheeted surface S2(n1, . . . , nk−1) is connected.

We note that the 1-sheeted surfaces are orientable if and only if all of the bi’s are even. Since

there is exactly one such fraction expansion p/q = r + [b1, . . . , bk] with each bi even, we obtain the

following classification for incompressible Seifert surfaces:

Corollary 6.9. The orientable incompressible Seifert surfaces for Kp/q all have the same genus and

are all isotopic if and only if at most one of the bi’s in the unique expansion p/q = r + [b1, . . . , bk]

with all bi even is not ±2.

Note that the band with ±2 half-twists corresponds to a fibred link (the Hopf link which has

complement T 2 × I). Since fibred links have unique incompressible Seifert surface and the Conway

sum (or Murasugi sum in more generality) of fibred links is fibred, then Kp/q where all bi = ±2 in

the even expansion will be fibred as well and also have a unique incompressible Seifert surface. In

fact, if m is the number of bk with bk 6= ±2, then there are precisely 2m−1 isotopy classes of minimal

genus (equivalently, incompressible) Seifert surfaces.

We require the terminology of the next section to completely describe the complex MS(Kp/q).

As we shall see, 2-bridge knots are a proper subclass of Arborescent Links, for which Sakuma has

classified the minimal genus Seifert surfaces and calculated the complexes MS(L). Clearly, the

work of Hatcher and Thurston motivated this classification, but Sakuma’s enumeration in terms of

orientations on a tree are much more natural combinatorial objects.

6.8 Special Arborescent Links

Arborescent links, as a generalization of 2-bridge knots, are defined combinatorially and thus lend

themselves well to classification. Arborescent links are defined via a finite, weighted plane tree, and

their minimal genus Seifert surfaces correspond to edge orientations on this tree.
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Let T be a finite plane tree and

w : V (T ) → Z−{0}

be a weight function from the vertex set of T to the set of non-zero integers. To each v ∈ V (T ),

associate an unknotted annulus F (v) in S3 with w(v) right-handed twists (and w(v) < 0 correspond-

ing to |w(v)| left-handed twists). To produce a core orientation on F (v), we draw the unknotted

annulus with its w(v) twists on the top portion of the band and no twists in the bottom portion.

Then, let cv be the counterclockwise orientation given by this realization and nv be the normal

orientation which points to the top of the page on the bottom (flat) part of the unknotted annulus.

Let e1, e2, . . . ek be the edges of T which have v as a vertex and suppose they lie around v in a

counterclockwise order (which is well-defined since T is a plane tree). We now specify k squares

D(e1, v), D(e2, v), . . . D(ek, v) lying on the bottom (flat) part of the unknotted annulus ordered ac-

cording to their cyclic order coming from the plane tree.

If two vertices v1 and v2 are incident in T by an edge e, then we plumb the bands F (v1) and

F (v2) by gluing the squares D(e, v1) and D(e, v2) together using the orientation rule that cv1 matches

with nv2 and cv2 matches with nv1 . This plumbing produces an orientable surfaces whose isotopy

class depends crucially on the way this plumbing occurs; however, the boundary of any surface

obtained by these plumbings are well-defined up to simultaneous change in orientation of the link

components (i.e., up to semi-orientation). Denote this semi-oriented special arborescent link by

L(T, w), reinforcing the dependence of the link on only the weighted plane tree.

Fixing a base vertex v∗, we may orient the unknotted annulus F (v) according to cv ∧ nv or

−cv ∧nv if v is an even or odd distance from v∗. Notice that this convention forces the gluing maps

utilized in the plumbings to be orientation-preserving and that the resulting surface is thus oriented;

furthermore, the choice of base vertex v∗ will not affect the semi-orientation class of the surfaces

and thus only affect the orientation of the surfaces by a simultaneous switch in orientation. We

may further use this orientation to produce well-defined method of plumbing the unknotted annuli.

Specifically, let ρ be an edge orientation on the plane tree T ; that is, ρ is a designation at each edge

e of T of which of its two vertices is the initial and terminal vertex. If v1 and v2 are the initial

and terminal vertices of an oriented edge e according to the orientation ρ, then plumb F (v1) and

F (v2) so that F (v2) lies above F (v1) with respect to the normal vector. Notice that the orientation

on the edge e then corresponds to the choice of square on the Conway sphere corresponding to this

plumbing.

The above construction of the special arborescent links and these Seifert surfaces is significant

because it signals that topological classifications may be described combinatorially. A weighted

plane tree T gives a well-defined semi-orientation class of a special arborescent link L; the further

structure of an edge orientation ρ on T describes many (potentially distinct) isotopy classes of Seifert



35

surfaces for L. Using the powerful tool of sutured manifolds, Sakuma [47] computes the minimal

genus Seifert surface using exactly these combinatorial descriptions:

Theorem 6.10. Let L be the special arborescent link defined by the plane tree T .

(1) Any minimal genus Seifert surface for a special arborescent link L is equivalent to one obtained

by plumbing according to some edge-orientation ρ on T .

(2) Two Seifert surfaces S and S′ for L given by the orientations ρ and ρ′, respectively, are isotopic

if and only if ρ and ρ′ are related by an iteration of a finite number of elementary operations.

Sakuma’s result thus completely classifies the minimal genus Seifert surfaces for L in terms of

orientations on T and relations amongst them. Thus, for any special arborescent link L coming

from a weighted plane tree T with n vertices (and thus n− 1 edges), there are at most 2n−1 isotopy

classes of minimal genus Seifert surfaces (since there are precisely 2n−1 edge orientations on T ).

To study the minimal genus Kakimizu complex MS(L), we must define a complex whose vertex

set is the set of orientations on the T , since these combinatorial objects define all possible minimal

genus Seifert surfaces for the special arborescent link L. To understand the simplicial structure of

MS(L) with these orientation as vertices, more combinatorial terminology related to the space of

orientations is required. A vertex v ∈ T is positive with respect to an orientation ρ on T if every

edge containing v has v as its terminal vertex. Let v(ρ) be the new orientation obtained by switching

all of the orientation of the edges containing a positive vertex v; thus, v is now the initial vertex of

all edges containing v in the new orientation v(ρ). A cycle is a sequence of orientations

ρ0
v0−→ ρ1

v1−→ ρ2 · · · ρn
vn−→ ρ0

with ρk+1 = vk(ρk) for a positive vertex vk with respect to ρk. Now, we define simplicial complex

K(T ) as follows. The vertex set of K(T ) is precisely this set of orientations, and a set of vertices

{ρ0, ρ1, . . . , ρk} span a k-simplex if there is a cycle containing them. We make a further refinement

by collapsing edges corresponding to vertices of weight w(v) = ±1. Specifically, collapse each edge

in K(T ) of the form ρ · v(ρ) to a point if |w(v)| = 1 which is positive with respect to ρ; call this new

simplicial complex K(T, w). Sakuma then makes the insight that this simplicial complex is precisely

the Kakimizu complex.

Theorem 6.11. For a special arborescent link L with plane tree T and weight w, MS(L) is simpli-

cially isomorphic to K(T, w).

The combinatorial type of the simplicial complex K(T,w) is then computed to give a triangulation

of the (n − 1)-dimensional cube (where, again, n is the number of vertices of T ) whose vertex
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set consists of its corners. Of course, since the unit cube is contractible, this verifies Kakimizu’s

conjecture for special arborescent links.

The purpose of passing to the quotient simplicial complex K(T,w) from K(T ) by contracting

edges arising from vertices of weight ±1 comes from the fact that an annulus with ±1 right-handed

twists is a fibred link. Thus, any two potentially different choices plumbings of this annulus are

isotopic via the fibre structure. Furthermore, note that even though two different plane trees T1

and T2 with n vertices give the same topological space of the (n − 1)-dimensional unit cube, the

underlying triangulation of this cube varies with the tree structures of T1 and T2.

We note that the set of 2-bridge links form a proper subclass of special arborescent links. In

particular, if Kp/q has p/q = r + [b1, b2, . . . , bk] as its unique continued fraction expansion with bi

even, then Kp/q is the special arborescent link with T an interval with k vertices weighted by bi/2

at the i-th vertex. Note that both Hatcher-Thurston and Sakuma do take into consideration the

plumbing of bands with ±1 right-handed twists since these correspond to plumbing fibred links.

6.9 Special Alternating Knots

Special alternating knots form a subclass of oriented alternating knots that have deep relations to

Seifert’s algorithm for finding a Seifert surface for a link given a projection. Recall that an alternating

link is a link L which possesses a link diagram that is alternating; that is, as we run around each

component of L, the crossing alternate between over and under-crossings. Seifert’s algorithm has as

an input a link diagram and produces a Seifert surface by resolving each crossing so that a set of

disjoint circles (called Seifert circles), which may or may not be nested; depending on the orientation

on the boundary of these circles, a disk with positive or negative side is produced with these circles

as their boundaries. Then, by adding twists at the crossings, an oriented surface S with ∂S = L.

If, when resolving the crossings in Seifert’s algorithm, only unnested Seifert circles are produced,

the diagram for the alternating link is called a special alternating diagram. A link which possesses

a special alternating diagram is known as a special alternating link. Note that since we are running

Seifert’s algorithm on alternating diagrams, the Seifert surfaces obtained must be minimal genus

[13],[17].

To manipulate these ideas, we develop some notation developed in [26]. Given a special alternat-

ing diagram D on the plane, it gives rise to an oriented link L(D). Running Seifert’s algorithm on

the diagrams D will produce a Seifert surface F (D). Given a diagram D, there is a natural transfor-

mation which produces a new diagram D′ called a flype. While changing the diagram from D to D′,

this flype move preserves the link type: L(D) = L(D′); thus, there exists a natural homeomorphism

ϕ : (S3, L(D)) → (S3, L(D′))
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called a flype homeomorphism. Since the diagrams are different, the Seifert surfaces F (D) and F (D′)

generated by D and D′ may be inequivalent. In fact, if F (D) and ϕ−1(F (D′)) are not isotopic, we

say that the diagram D′ is obtained from D by an essential flype.

Hirasawa and Sakuma [26] find that for a prime, special alternating link, all of its minimal genus

Seifert surfaces may be obtained from each other by a sequence of essential flypes.

Theorem 6.12. Let L be an oriented, prime, special alternating link L and let D be an oriented,

reduced, special alternating diagram representing L. Then for any minimal genus Seifert surface F

for L, there is a finite sequence of oriented, reduced, special alternating diagrams D1, D2, . . . , Dn

such that the following hold:

(1) D = D1 and D′ = Dn,

(2) Di+1 is obtained from Di by an essential flype (for 1 ≤ i ≤ n− 1), and

(3) F is equivalent to the pullback of F (D′) by ϕn−1 ◦ · · · ◦ ϕ2 ◦ ϕ1.

Of crucial importance in this theorem is that the diagrams in question be special alternating. In

fact, Hirasawa and Sakuma find that this theorem is far from true when considering the larger class

of prime alternating link diagrams.

Theorem 6.13. There are infinitely many prime alternating links with minimal genus Seifert sur-

faces which do not arise from alternating link diagrams. More precisely,

(1) For any positive integer d, there are infinitely many prime alternating links with the following

property: There is a minimal genus Seifert surface such that the minimal distance in MS(L)

from it to the minimal genus Seifert surfaces arising from running Seifert’s algorithm on

alternating diagrams is equal to d.

(2) There are infinitely many prime alternating links with arbitrarily many minimal genus Seifert

surfaces which do not arise from alternating diagrams, and that such surfaces are disjoint in

the link exteriors from one another and the minimal genus Seifert surfaces which arise from

alternating diagrams.

Thus, there are many alternating links with arbitrarily many Seifert surfaces that do not arise

from running Seifert’s algorithm on alternating link diagrams.

The calculation of MS(L) for special alternating links, as with that of the special arborescent

links, takes advantage of the combinatorial naturel of L. Since L is special alternating, the decom-

position in Seifert’s algorithm into unnested Seifert circles gives rise naturally to a planar graph

G, which has as its vertices the Seifert circles and edges the half-twists joining them to form the

surface S. If we embed G in S, this graph forms a spine are carries the homotopy information of
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the Seifert surface. In fact, G carries more structure; since the orientations of the disks that point

up in Seifert’s algorithm are given by the boundary orientations on the Seifert circles, the vertices

are marked with + or − depending this distinction.

Using this class of graphs with marked vertices, Hirasawa and Sakuma give a complete clas-

sification of minimal genus Seifert surfaces for special alternating links. The authors show that

MS(L), as a simplicial complex, is PL-homeomorphic to a finite product of ni-simplices (where the

ni are given by the combinatorial data). Thus, as a topological space, MS(L) is homeomorphic

to a finite-dimensional ball and thus contractible. The proof of this statement uses the technology

developed by Gabai in [17]: a sutured manifold decomposition corresponding to Murasugi sums of

Seifert surfaces.

6.10 Doubled Knots with Non-Fibred Companions

The incompressible torus produced in the construction of satellite knots like doubles of non-trivial

knots have been used in studying the Kakimizu complexes to demonstrate that IS(K) need not be

locally finite; that is, this complex need not have finite valence at a vertex.

Given a knot K1, we can build its untwisted doubled knot K by essentially joining two parallel

flat copies of K1 and joining them in a canonical. More specifically, Let V0 be an unknotted solid

torus and J the standard doubling simple closed curve in V0. Let V1 be a tubular neighborhood of

K1 and f : V0 → V1 a faithful homeomorphism; that is, we require that f(l0) = li and f(m0) = m1,

where (mi, li) ⊂ ∂Vi is a meridian-longitude pair for the two solid tori. The image K = f(J) is

called the untwisted doubled knot of K1. We say that the doubled knot K has K1 as its companion.

Note that by weakening the meridian-longitude assumption of f , we can form a general (twisted)

doubled knot.

General statements may be made about companionship when we don’t require J to be the

standard doubling knot, but any geometrically essential knot in the standardly embedded solid

torus. In this broader sense, we still say that f(J) has K1 as its companion. It is easy to see that

companionship is a reflexive and transitive relation. In fact, companionship forms a partial order

on the set of knots. Note that the unknot is a companion for every other knot, but it itself has no

other companion. Thus, the unknot is the unique minimal element in this partial order. More can

be said about the relationship between companions.

Theorem 6.14 (Rolfsen [44]). If K1 is a companion of K2, then the knot group of K2 contains a

subgroup isomorphic to the knot group of K1.

Since the knot group of a tame knot is infinite cyclic if and only if the knot is trivial, we can

deduce that any knot with a non-trivial companion is itself non-trivial.
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Doubled knots are of interest to knot-theorists because their construction produced an incom-

pressible torus ∂V1 assuming that the companion V0 is non-trivial. For such a doubled knot, the

image of the standard genus 1 surface for J in V0 is always exists a genus 1 Seifert surface for K.

Assuming that K2 is non-trivial, K will itself be non-trivial and thus have genus 1. Doubled knots,

however, may have many incompressible (non-minimal genus) Seifert surfaces.

Theorem 6.15 (Kakimizu [27]). Suppose that K1 is a non-fibred knot of genus g ≥ 1. Then the

untwisted doubled knot K of K1 has infinitely many non-equivalent incompressible Seifert surfaces,

each of which is of genus 2g > 1. Moreover, they are all disjoint from the canonical minimal genus

Seifert surface S of genus 1 for K.

The construction of this infinite class relies on spinning the standard incompressible genus 2g

surface about the incompressible torus. More concretely, if we take two parallel copies of a Seifert

surface F for K1 outside of V1 with opposite orientations, then we can connect the two surfaces

inside of V1 to the doubled knot. Note that at the twist in the double surface, we add a band

that necessitates the two copies of the surface having opposite orientations. This Seifert surface is

incompressible and is disjoint from the standard genus 1 surface S described above. Now, using

either branched surface theory or Haken sum, we can construct an infinite family of incompressible

Seifert surfaces by spinning F around the incompressible torus ∂V1. By taking more and more copies

of ∂Vi, we obtain incompressible Seifert surfaces of genus 2g that are potentially inequivalent; the

inequivalence of this family relies heavily on the fact that K1 is non-fibred. Clearly, every surface in

this family is disjoint from S and thus the Kakimizu complex IS(K) is not locally finite at [S].
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Chapter 7

Realizing the Path Metric

7.1 Kakimizu’s formulation of Distance

For any simplicial complex K, one can define the path-metric on the 1-skeleton K1 by giving every

edge a Euclidean distance of length 1. Thus, the distance between any two vertices v, w ∈ C1 is

given by

d(x, y) = min{# of edges traversed},

where the set runs over all possible paths from v to w in C1. Kakimizu’s great insight came from

noting that the path metric on IS(K) and MS(K) has a geometric formulation [28]. The result is

true for links, but we state it here for knots for simplicity.

Consider the knot group π1(S3 −K) and its commutator subgroup

A = [π1, π1] = {ghg−1h−1|g, h ∈ π1}.

For any group G, its commutator subgroup [G,G] is normal in G and we can thus form the quotient

group G/[G, G], called the abelianization of G. When G is the fundamental group of some topological

space X, the Hurewicz Theorem tells us that this abelianization gives us the first singular homology

of X:

π1(X)/[π1(X), π1(X)] ∼= H1(X;Z).

By Alexander Duality, the homology group of the link complement is just

H1(S3 −K;Z) = Z.

Since the commutator subgroup A / π1(S3 − L) is a normal subgroup, the cover it corresponds

to (called the universal abelian cover) is a regular cover, and its group of Deck transformations is
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given as the quotient group Z. For notational ease, we will let

E = S3 −N(K)

and Ẽ to this universal abelian cover. Thus, we have a covering

p : (Ẽ, a0) → (E, a)

such that p∗π1(Ẽ, a0) is the commutator subgroup of π1(E, a). Let τ be a generator of the Deck

group. Let S ⊂ E be a Seifert surface for K, and consider E0, the closure of a lift of E − S to Ẽ;

since Seifert surfaces have no closed components, E − S is connected, and thus its lift E0 is also

connected. Let Ej = τ j(E0) be the translated of E0 under the Deck group and let their overlaps be

Sj = Ej−1 ∩ Ej . Since τ generates the Deck group of this covering, we see that

Ẽ =
⋃

j∈Z
Ej , p−1(S) =

⋃
Sj

and that the restricted covering map

p|Sj : Sj → S

is a homeomorphism.

Clearly, we may perform this construction for any other Seifert surface S′ for the knot K. Giving

similar notation for the complement of the surface and its lifts, we have E′ = E−S′, E′
0 the closure

of a lift in Ẽ, and E′
j = τ j(E′

0). This gives an alternate description of the universal abelian cover in

terms of S′:

Ẽ =
⋃

k∈Z
E′

k, E′
k−1 ∩ E′

k = S′k, p−1(S′) =
⋃

k∈Z
S′k.

Kakimizu’s insight is that comparing these two descriptions of Ẽ will give a manifestation of

the path metric. This occurs by first considering a pseudo-distance function on the space of Seifert

surfaces, then modifying this to a bona fide distance well-defined on equivalence classes.

To this end, define

m = min{k ∈ Z |E0 ∩ E′
k 6= ∅}, r = max{k ∈ Z |E0 ∩ E′

k 6= ∅}.

We can thus measure how far E′
0 extends in Ẽ relative to E0 by taking the difference; thus, set

d(S, S′) = r −m.

This function d has some basic properties useful in defining the distance:
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(1) d(S, S′) ≥ 1

(2) d(S, S′) = 1 if and only if S ∩ S′ = ∅.

(3) Ej ∩ E′
k 6= ∅ if and only if m ≤ k − j ≤ r, and

(4) E0 ⊂
⋃

m≤k≤r E′
k, and Sj ⊂

⋃
m+1≤k≤r E′

k.

Using this function defined on the space of Seifert surfaces, we modify d to have a well-defined

function on the space of equivalence classes S(L). Let σ, σ′ denote two isotopy classes of Seifert

surfaces; define d on S(L) as follows:

d(σ, σ′) =





0 if σ = σ′

min {d(S, S′) |S ∈ σ, S′ ∈ σ′} if σ 6= σ′

Notice that if we use the d defined on Seifert surfaces (and not their isotopy classes) and consider

d(S, S) for the same surface S, then d(S, S) = 2 since the two closed lifts coincide. Further, any

parallel copy S′ of S will also have d(S, S′) = 1. Since d(S, S′) ≥ 1 for all Seifert surfaces, it is

necessary to require that d(σ, σ) = 0 in the distance function on S(L).

Using the above properties, one can show that this function d : S(L)× S(L) → Z+ satisfies the

distance axioms.

Proposition 7.1. For any isotopy classes of Seifert Surfaces σ, σ′, σ′′ ∈ S(L), the function d satisfies

the following:

(1) d(σ, σ′) = 0 if and only if σ = σ′.

(2) d(σ, σ′) = d(σ′, σ), and

(3) d(σ, σ′′) ≤ d(σ, σ′) + d(σ′, σ′′).

So, the function d is a distance function on S(L). However, when we restrict attention to the

subcomplexes of incompressible and minimal genus Seifert surfaces IS(L) and MS(L), the distance

function d is exactly the path metric. Kakimizu summarizes his main result as follows:

Theorem 7.2. Let L ⊂ S3 be a non-split link and S, S′ ⊂ E be two incompressible (resp. minimal

genus) Seifert surfaces for L. Suppose that n = d([S], [S′]) ≥ 1. Then there is a sequence of

incompressible (resp. minimal genus) Seifert surfaces S = F0, F1, . . . , Fn such that

(1) [Fn] = [S′],

(2) Fi−1 ∩ Fi = ∅ for each 1 ≤ i ≤ n, and

(3) d([S], [Fi]) = i for each 0 ≤ i ≤ n.
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Note that this proof strengthens a previous theorem of Scharlemann and Thompson, which

stated that IS(K) and MS(K) are connected complexes for a knot K. Kakimizu’s result applies to

non-split links. Prior to Scharlemann-Thompson, it was only known that the complex of all Seifert

surfaces S(L) is connected.

Let lI and lM be the path-metrics on IS(L) and MS(L), respectively. This theorem does not

directly state that this distance function d agrees with the path-metrics on the Kakimizu complexes.

However, we note that if we consider the same isotopy class σ, then it is clear from the definition of

d that

d(σ, σ) = 0 = lI(σ, σ) = lM (σσ).

Further, lI(σ, σ′) = 1 (resp,. lM (σ, σ′) = 1) if and only if σ, σ′ ∈ IS(L) (resp., in MS(L)) have

disjoint representatives. Using the property that d(S, S′) = 1 if and only if S and S′ are disjoint, we

see that d(σ, σ′) = 1 is equivalent to li(σ, σ′) = 1 (and equivalent to lM (σ, σ′) = 1 when the classes

are minimal genus). Using this, we can prove the following proposition.

Proposition 7.3. (1) lI(σ, σ′) = d(σ, σ′) for σ, σ′ ∈ IS(L).

(2) lM (σ, σ′) = d(σ, σ′) for σ, σ′ ∈ MS(L).

Proof. We give the proof for IS(L) since the MS(L) case is almost identical. Given two isotopy

classes of incompressible Seifert surfaces σ and σ′, the above theorem tells us that there exists a

path in IS(L) traversing vertices σ = [S0], [S2], [S3], . . . , [Sn−1], [Sn] = σ′ such that Si is disjoint

from Si+1 for 0 ≤ i ≤ n − 1 and d(σ, σ′) = n. Of course, this gives a path of length n in IS(L).

Thus, we have the inequality

lI(σ, σ′) ≤ n = d(σ, σ′).

For the other direction, if lI(σ, σ′) = n, then by the definition of the path-metric, there is a

sequence of vertices σ = σ0, σ1, σ2, . . . , σn = σ′ ∈ IS(L) with lI(σi, σi+1) = 1 for 0 ≤ 1 ≤ n − 1

(since they are connected by an edge). Since li(σ, σ′) = 1 is equivalent to d(σ, σ′) = 1, we have

lI(σ, σ′) = n = lI(σ0, σ1) + lI(σ1, σ2) + · · ·+ lI(σn−1, σn) =

d(σ0, σ1) + d(σ1, σ2) + · · ·+ d(σn−1, σn)

≥ d(σ0, σn) = d(σ, σ′).

These two inequalities give us the desired result lI(σ, σ′) = d(σ, σ′).
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Chapter 8

Hyperbolic Geometry in Knot
Theory

8.1 Hyperbolic Manifolds

A hyperbolic 3-manifold M is a Riemannian manifold with a complete metric of constant sectional

curvature −1. This is equivalent to M being the quotient of H3 by a subgroup Γ of Isom(H3)

acting freely, properly-discontinuously. Of course, any subgroup Γ′ conjugate to Γ will produce an

isometric manifold. The covering map p : H3 → M is a local isometry, and many local arguments in

M may be made in hyperbolic space. Since H3 is the universal cover of M , we have the identification

π1(M) ∼= Γ.

As we shall see, hyperbolic manifolds have many properties that make this subclass of Riemannian

3-manifolds a very active area of research. Even more striking is the fact that, in a certain sense,

most topological 3-manifolds may be hyperbolized; that is, they may be given complete hyperbolic

metrics of finite volume.

8.2 Mostow Rigidity

It is a fruitful question to ask if one can quantify or parameterize the space of complete hyperbolic

metrics on a given topological space. Clearly, many compact manifolds have various obstructions to

having being hyperbolic: non-trivial π2(M), essential tori, finite π1(M) to name a few). Mostow’s

insight was that for dimension n ≥ 3, these complete hyperbolic structures are unique. This contrasts

starkly with the dimension 2 case, in which the space of hyperbolic structures, called Teichmuller

space, is homeomorphic to a finite-dimensional ball.

In contrast to dimension 2, any 3-manifold which admits a complete hyperbolic metric of finite-

volume admits only one such metric [34]. Since such manifolds are described in terms of the subgroup
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of isometries Γ ⊂ Isom+(Hn) such that

M = Hn/Γ.

Of course, any conjugate subgroup gΓg−1 will yield an isometric hyperbolic manifold. Thus, we may

state Mostow Rigidity in its following algebraic form:

Theorem 8.1 (Mostow). Suppose Γ1 and Γ2 are two discrete subgroups of the group of isometries

of Hn for n ≥ 3 such that Hn/Γi has finite volume and suppose that ϕ : Γ1 → Γ2 is a group

isomorphism. Then Γ1 and Γ2 are conjugate subgroups.

The geometric implications of this algebraic theorem come when we realize that a hyperbolic

manifold always has π1(M) acting on Hn as a discrete subgroup of isometries.

Theorem 8.2 (Mostow). If M1 and M2 are two complete hyperbolic n-manifolds with finite total

volume and n ≥ 3, any isomorphism of the fundamental groups ϕ : π1(M1) → π1(M2) is realized by

a unique isometry.

Note that there is no a priori condition that ϕ be realized by a continuous map; the conclusion of

Mostow’s theorem, though, shows that ϕ is realized by not only a continuous map, but an isometry.

Thus, if any two complete hyperbolic manifolds of finite volume have isomorphic fundamental groups,

then they are isometric as Riemannian manifolds (and therefore homeomorphic as well). This means

that for this class of manifolds, any geometric invariant (e.g., hyperbolic volume, length of shortest

geodesic, first eigenvalue of the Laplacian) are actually topological invariants. In the case of knots,

for example, differing volumes of hyperbolic knot complements immediately indicate that the knots

inequivalent.

Since the universal cover of a hyperbolic manifold is contractible, it is an Eilenberg MacLane

K(π, 1) space. Thus, basic algebraic topology says that any two K(π, 1) spaces with isomorphic

fundamental groups must be homotopic. Thus, we obtain the following corollary.

Corollary 8.3. If M1 and M2 are complete hyperbolic manifolds of finite volume, then they are

homeomorphic if and only if they are homotopy equivalent.

Of course, for dimension 2, this is straightforward since the homeomorphism class of a hyperbolic

surface is given uniquely by its fundamental group (in fact, the rank of the fundamental group).

8.3 Margulis Thick-Thin Decomposition

Margulis’ Theorem provides a decomposition of a hyperbolic 3-manifold into components of bounded

geometry and controlled topology. This partition into submanifolds is derived from an an algebraic

statement about subgroups of the fundamental group of the manifold.
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8.3.1 The Margulis Lemma

Given a Riemannian manifold M and any piecewise differentiable path α in M , we can make sense

of the length L(α) in terms of the given metric. Since any homotopy class of loops in M based at

some point x contains such a piecewise differentiable representative based at x, we may define the

fundamental group π1(M, x) to be the set of homotopy classes of piecewise differentiable loops based

at x.

Given any positive constant ε > 0, we consider the following subsets of M :

M(0,ε] = {x| there exists some α ∈ π1(M,x) \ 1 such that l(α) ≤ ε}

M[ε,∞) = {x| there exists some α ∈ π1(M, x) \ 1 such that l(α) ≥ ε} .

The submanifold M(0,ε] is known as the ε-thin part of M and M[ε,∞) is the ε-thick part of M ; in

contexts in which ε is understood, we will simply refer to the regions as the thin and thick parts of

M .

Margulis’ Lemma is an algebraic statement about a particular fundamental group of a complete

hyperbolic n-manifold. Given any complete hyperbolic n-manifold M , it may be obtained from a

subgroup Γ of the group of isometries Isom(Hn) of hyperbolic n-space acting properly discontinu-

ously; thus, we view M as the quotient by this subgroup:

M = Hn/Γ.

Since Hn is simply-connected, the fundamental group of M is isomorphic to this proper discontinuous

subgroup:

π1(M) = Γ.

Let d(x, y) be the hyperbolic distance of two points x, y ∈ Hn.

Theorem 8.4 (Margulis’ Lemma). For every n ∈ N, there exists an εn > 0 so that for any properly

discontinuous subgroup Γ < Isom(Hn) and for any x ∈ Hn, the group Γεn generated by the set

Fεn = {γ ∈ Γ | d(x, γ(x)) ≤ ε}

is almost-nilpotent.

In general, a group G is said to be almost-nilpotent if it contains a finite-index subgroup H

which is nilpotent. The striking feature of this theorem is its universality: the constant εn > 0 is

dependent solely on the dimension n. Thus, when we restrict to the class of complete hyperbolic
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3-manifolds, the Margulis constant ε3 is completely universal.

8.3.2 Thick-Thin Decomposition

Using the Margulis Lemma [5], one is able to obtain surprising control on the topology of both the

εn-thin and thick parts of M . For example, one can obtain that the thick-part of any finite-volume

hyperbolic n-manifold is a compact submanifold.

Isometries of hyperbolic space come in 3 flavors—hyperbolic, parabolic, and elliptic—depending

on their fixed point set in Hn ∪ Sn−1
∞ , hyperbolic space together with its visual boundary. Elliptic

isometries are ruled out in our context since they correspond to a fixed point in the interior Hn

and thus do not act properly discontinuously. Hyperbolic isometries have two fixed points x, y on

the visual boundary Sn−1
∞ and preserve the unique geodesic with asymptotic endpoints x and y.

Parabolic isometries fix a unique point z on Sn−1
∞ and preserve (n − 1)-dimensional horospheres

tangent to z; one may conjugate a parabolic isometry to have z correspond to ∞. Margulis’ Lemma

then gives completely classifies the possibilities for the subgroup Γεn , viewed as isometries of Hn.

Theorem 8.5. The following three mutually exclusive possibilities are given for Γεn :

1) Γεn = {id}

2) Γεn = Z generated by a hyperbolic isometry.

3) Γεn consists of parabolic isometries with the same fixed point z at infinity; every horosphere

centered at z is Γεn-invariant and the action of Γεn restricted to these horospheres is isometric

with respect to their Euclidean structures. Thus, Γεn may be viewed as a discrete subgroup of

Isom(Rn−1).

Using this algebraic classification of the subgroup Γεn of π1(M) generated by εn-short loops, one

can now obtain strong topological control for the possibilities of the thin part of M .

Theorem 8.6. For any finite-volume hyperbolic manifold M , the thin part M(0,εn] is the union of

pieces homeomorphic to one of the following types:

1) Dn−1 × S1, or

2) V × [0,∞) where V is a differentiable oriented closed (n− 1)-manifold supporting a Euclidean

structure.

Moreover, these pieces have positive hyperbolic distance from each other and are finitely many.

In particular, we can also say more about the geometry of the thin part of M . The interior of

a Margulis tube C is diffeomorphic to Dn−1 × S1 and contains a unique geodesic loop β. Given a
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δ > 0 small enough, the δ-neighborhood of β is contained in C and is isometric to the Riemannian

manifold Br × Sρ (for r, ρ > 0 small enough), where Br is a closed ball of radius r in Rn−1 and Sρ

is a circle of length ρ. If y ∈ Br, z ∈ Sρ, v ∈ Rn−1, and l ∈ R, then the metric on Br×Sρ is given by

ds2
(y,z)(v, l) = ||v + ly||2 + l2.

In the case of a cusp component Dof the thin part, there is also much control on the geometric

topology. The interior of D is diffeomorphic to to B × R, where B is a closed orientable (n − 1)-

manifold supporting a Euclidean structure. As above, we gain some geometric control of a subset

D′ ⊂ D such that D′ is isometric to the Riemannian manifold B× [0,∞), where B has the following

metric:

ds2
(x,t)(v, l) = e−2tde2

x(v) + l2.

In this expression of the metric, de2
x is the Euclidean metric on B.

If we restrict to our relevant case of n = 3, then we gain a tremendous amount of rigidity in

the topological type for the thin pieces of a finite-volume hyperbolic 3-manifold. In particular, the

Margulis tubes have the topological type of a solid torus D2 × S1 containing a geodesic. Since

the unique orientable surface admitting a Euclidean structure is the torus T 2, the non-compact

components manifest themselves as a product T 2 × [0,∞).

In the even more specific case of a hyperbolic link complement S3−L, the cusp pieces correspond

exactly to a neighborhood of the deleted link. Since the metric is assumed to be unique, we imagine

these cusp pieces to exit the manifold and extend infinitely far away from the manifold. Along with

these cusp regions, the Margulis tube components of the thin part precisely consist of the regions of

the manifold with small injectivity radius.

8.4 Geometrization and the Trichotomy of Knots

In an attempt to topologically classify 3-manifolds, mathematicians have searched for geometric

structures that, in a very strong sense, constrain the possible topologies of the underlying topological

space. Motivated the Uniformization Theorem for surfaces and the insight that topological spaces

admitting a hyperbolic geometry were more the rule than the exception, Thurston conjectured that

every 3-manifold can be canonically decomposed into pieces, each of which may be given one of eight

geometries:

Conjecture 8.7 (Thurston’s Geometrization Conjecture). Any compact, connected 3-manifold can

be cut along essential spheres and tori so that the interior of the resulting pieces admits one of 8

geometric structures with finite volume.
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The eight possible model geometries were previously classified by Thurston. They include the

three geometries with constant curvature S3,E3,H3, the product geometries S2×R, H2×R, ˜SL(2,R),

and two exceptional geometries Nil and Solv. These model geometries come from considering all

simply-connected smooth 3-manifolds M with a transitive action of a Lie group G on M with

compact stabilizers; these geometries are also required to be maximal in the sense that the Lie

group G acting on M is maximal, and that there exist at least one compact manifold with that

geometry.

Assuming the Geometrization Conjecture (which may now be a theorem due to Perelman [40]),

other several deep conjectures become true. The most historically important is that of the Poincaré

Conjecture, which states that any closed, simply-connected 3-manifold is homeomorphic to S3; this

follows since the only compact geometry is S3 and thus any closed manifold with finite π1 must have

a spherical geometry. Furthermore, the Geometrization Conjecture also implies that any closed

irreducible, atoroidal 3-manifold admits a (unique) complete hyperbolic metric; this is many times

paraphrased by saying that most 3-manifolds are hyperbolic.

While the status of Perelman’s proof of Geometrization remains unclear (yet optimistic), this

conjecture has been known to be true for several decades for a proper subclass of 3-manifolds. An

compact, orientable 3-manifold is called Haken if it is irreducible and contains an orientable, 2-sided

incompressible surface. Since all links have an incompressible Seifert surface, link complements fall

into the class of Haken manifolds. In general, compact, irreducible 3-manifolds with positive first

betti number are also Haken for homological reasons.

Restricting to the subclass of knot complements, Thurston’s Geometrization Theorem gives us

the following trichotomy of knots: torus, satellite, and hyperbolic knots. This mutually exclusive

classification may be stated in terms of topological data. The presence of a properly embedded,

essential annulus give torus knots; clearly, if one has a torus knot on the standardly embedded torus

in S3, then cutting along the knot will produce such an annulus. Second, the presence of an essential

(i.e., incompressible and non-boundary parallel) torus corresponds to satellite knots; note that all

composite knots having an incompressible swallow-follow torus and are thus satellite (according to

this definition). The noteworthy part of Thurston’s theorem is that the absence of such an annulus

or torus are the only requirement for a knot complement to admit a complete hyperbolic structure

with finite volume. Thus, any anannuluar, atoroidal knot complement is hyperbolic.

8.5 Hyperbolic Knots

In many senses, hyperbolic knots are the most abundant among the class of prime knots. In fact, of

the 2977 non-trivial prime knots with 12 or fewer crossings, the only non-hyperbolic knots are seven

torus knots [1]. Given that the only topological obstructions to a complete hyperbolic metric is an
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essential annulus or torus, the fact that hyperbolic knots are so ubiquitous is not surprising.

Many geometers have tried to identify subclasses of knots with hyperbolic structures. One

such class are the arithmetic links; such links have link groups isomorphic with a Bianchi Group

PSL(2,Od), where d is a square-free integer and Od is the ring of integers in the imaginary quadratic

field Q
(√−d

)
. Baker [4] proved that every link in S3 is the sublink of an arithmetic link. For knots,

Reid [42] proved that the only arithmetic knot is the figure-eight knot. A more combinatorial class of

hyperbolic links are a certain subcollection of Montesinos links. These are generalizations of pretzel

links and are obtained by arranging rational tangles in a cyclic fashion. These links are denoted by

K
(

p1
q1

, p2
q2

, . . . , pn

qn

)
, where pi

qi
denotes the i-th rational tangle. Oertel [37] proved that a Montesinos

link is hyperbolic if is not a torus link and not equivalent to a finite collection of exception Montesinos

links.

One important operation on knots that preserves hyperbolicity is that of mutation. Given a knot

or link projection and a circle on the plane that intersects the link in 4 points and separates it into

two tangles, one can perform a mutation of the knot using this decomposition. This mutations takes

the form of flipping the interior tangle about a vertical or horizontal axis or rotating the tangle

by 180◦. Ruberman [45] showed that mutation on a hyperbolic link produces another hyperbolic

link with the same hyperbolic volume. Mutants are many times difficult to distinguish and cause

headaches in the search for complete knot invariants.
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Chapter 9

Minimal Surface Theory

9.1 Motivating Minimal Surfaces

9.1.1 Plateau’s Problem

The motivation for studying minimal surfaces is derived from analyzing Plateau’s problem for finding

an area or energy minimizing surface in R3 with certain boundary conditions. This question was

first posed by the nineteenth-century Belgian biologist Joseph Antoine Ferdinand Plateau after

attempting to describe the geometry of intersecting soap bubbles. Plateau’s problem asks, given a

Jordan curve γ ⊂ R3, is there a surface Σ with ∂Σ = γ that minimizes among all such surfaces with

boundary γ; this naive definition of a minimal surface as area-minimizing will soon be generalized. As

mathematicians varied the conditions on γ (e.g., rectifiable, piecewise-smooth) and Σ (e.g., immersed,

regular, embedded), different solutions and techniques have manifested themselves historically to give

rise to a crucial area of geometry and the calculus of variations with far-reaching applications.

One of the first major contributions to a solution of Plateau’s problem came from Jesse Douglas,

who pioneered the use of the Dirichlet Integral to solve such variational problems.

Theorem 9.1 (Douglas). Let Γ be an arbitrary Jordan curve in Rn. Then there exists a simply-

connected generalized minimal surfaced bounded by Γ.

Here, a generalized minimal surface is a non-constant map of a surface with a conformal structure

with various restrictions on the transition maps. As indicated above, his technique for finding such

a surface was to minimize the following Dirichlet integral:

D(x) =
∫ ∫

D

n∑

k=1

[(
∂xk

∂u1

)2

+
(

∂xk

∂u2

)2
]

du1 du2.

Here, the surface is given by the a the map x : D → Rn where the disk D has coordinates u1, u2 the

map x : D → Rn is given by x(u1, u2) = (x1(u1, u2), . . . , xn(u1, u2)).



52

In subsequent decades, refinements of Douglas’ result have been obtained by Osserman [38] and

Gulliver [21], who found a regular simply-connected surface Σ minimizing area with ∂Σ = Γ; regular

surfaces are defined as those whose Jacobian has full rank. If one adds the condition that the Jordan

curve Γ lie in the boundary of a convex body, then Meeks and Yau [33] prove that an area-minimizing

surface is indeed embedded.

The mathematical significance of Plateau’s problem stretches far beyond the intuitive soap-film

description of minimal surface. In fact, it is when one generalizes the definition of minimal surfaces

(beyond those which only minimize area) and allows such surfaces to lie in arbitrary Riemannian

manifolds that a rich theory with deep ramifications in geometric topology (and many other subfields)

begins to emerge.

9.2 Minimal Surfaces

9.2.1 Connections on a Riemannian Manifold

Given a smooth manifold M , a connection on M is a linear map

∇ : Γ(TM)⊗R Γ(TM) → Γ(TM)

X ⊗ Y 7→ ∇XY

which is tensorial in the first factor

∇fXY = f∇XY

and follows a Liebniz-type rule in the second factor:

∇XfY = X(f)Y + f∇XY.

Intuitively, a connection gives one a way of differentiating one vector field against another. With

respect to a given connection, one may define a path c : [0, 1] → M to be geodesic if

∇c′c
′ ≡ 0.

In the context of a Riemannian manifold with inner product 〈·, ·〉 on TM , we may ask that the

connection ∇ be metric:

X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 .

We may also ask that the connection ∇ be torsion-free; that is, we ask that it be symmetric up to
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Lie bracket:

∇XY −∇Y X = [X, Y ] .

Requiring that a connection be both metric and torsion-free defines it uniquely; this connection is

known as the Levi-Civita connection and is given explicitly by the following formula:

〈∇XY,Z〉 =
1
2
{X 〈Y, Z〉 − Z 〈X,Y 〉 − 〈X, [Y,Z]〉+ 〈Z, [X, Y ]〉+ 〈Y, [Z, X]〉} .

9.2.2 The Riemannian Curvature Tensor

Given a Riemannian manifold and its uniquely defined Levi-Civita connection ∇, we may define the

Riemannian curvature tensor R(·, ·) as a map

R(·, ·) : Γ(TM)⊗ Γ(TM) → Γ(End(TM))

given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Note that this map is both C∞(M)-linear and tensorial.

Using the Riemannian curvature tensor, one may define the various flavors of curvature on a

Riemannian manifold. In particular, one can, given any two linearly-independent vectors X, Y ∈
TpM spanning the 2-plane X ∧ Y in TpM , one may define the sectional curvature of X ∧ Y by

K(X ∧ Y ) =
〈R(X, Y )Y, X〉
||X ∧ Y ||

with ||X ∧ Y || denoting the area of the parallelogram spanned by X and Y in TpM . It is straight-

forward to check that K(X ∧ Y ) = K(Z ∧W ) if X and Y span the same plane as Y and W . On a

surface, the tangent spaces TpM are 2-dimensional and thus the sectional curvature K is a function

K : M → R.

Another important curvature used frequently in differential geometry is Ricci curvature. Viewing

the Riemannian curvature tensor R(X, Y ) as an endomorphism of the tangent bundle, the trace of

this map gives the Ricci curvature. Formally, if e1, . . . , en ∈ TpM form an orthonormal basis for the

tangent space at p ∈ M , then the Ricci curvature is given by

Ric(X, Y ) =
n∑

i=1

〈R(ei, X)Y, ei〉 =
n∑

i=1

〈R(X, ei)ei, Y 〉 .



54

Since Ric is a symmetric bilinear form, it is many times written as a (1, 1)-tensor:

Ric(X) =
n∑

i=1

R(X, ei)ei.

Ricci curvature should be viewed as a generalization of the Laplacian of the the metric. In fact, this

insight motivated Hamilton’s construction of Ricci flow [23] on a manifold to parallel the heat flow

equation (which is stated in terms of the Laplacian of the temperature function).

Riemannian manifolds with restrictions on their Ricci curvature frequently have very strong

geometric and topological constraints. In particular, some existence theorems for minimal surfaces

require restrictions on the sign of the Ricci curvature; this should be interpreted in the following

way. A Riemannian manifold is said to have Ric ≥ k if and only if all the eigenvalues of Ric(X) are

greater than or equal to k; indeed, since Ric(X) is symmetric, all of its eigenvalues must be real. A

particularly special Riemannian metric is one which is a scalar multiple of its Ricci curvature:

Ric(X,Y ) = λ · 〈X,Y 〉 .

These Einstein manifolds are of crucial importance in both Differential Geometry and Physics. Note

that if a Riemannian manifolds has constant sectional curvature k, then its metric is Einstein of

with Einstein coefficient (n− 1) · k. In dimension 3, the converse is true; an Einstein metric is also

a constant sectional curvature metric.

9.2.3 Mean Curvature

Intuitively, the mean curvature vector field on a surface S in a Riemannian manifold M should serve

as a type of gradient vector for the area functional on the space of (embedded, immersed, generalized

immersed) surfaces in M . Thus, given a co-orientation on a surface S, its mean curvature vector

field will be a normal vector field that points in the direction one should perturb S so as to reduce

area. If this vector field is everywhere zero, then the surface at hand is a critical point for this area

functional.

To make this precise, given some isometric immersion of S in a 3-manifold M , let e1, e2 be an

orthonormal basis for TpS and consider the average curvature given by µ(p) = ∇e1e1 +∇e2e2. Since

∇ is the Levi-Civita connection and e1, e2 form an orthonormal basis for the tangent space of the

surface, µ gives a normal vector field. Given the co-orientation of S in M , the vector field µ is

equivalent to a real-value function g : S 7→ R since the codimension of S in M is 1. Note that this

definition of the mean curvature vector field is independent of the choice of orthonormal basis and

is thus well-defined on S.

We will now demonstrate that µ does produce precisely the gradient vector field on the space of
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smooth embeddings of S into M . Let St be a 1-parameter variation of the surface S = S0 satisfying

the ordinary differential equation
dSt(p)

dt

∣∣∣∣
t=0

= f(p)ν,

where ν is the unit normal vector field defined by the co-orientation on S and t ∈ (−ε, ε). We can

view this differential equation as defining a family of surfaces flowing along f(p)ν.

Differentiation the area function on this 1-parameter variation yields the first variational formula:

dArea(St)
dt

∣∣∣∣
t=0

= −
∫

S

〈fν, µ〉 dA,

where dA is the area form on S and µ is the mean curvature vector field. Since the metric 〈·, ·〉
is positive-definite, S = S0 is a critical point for the area functional restricted to this perturbation

if and only if the mean curvature vector field µ vanishes identically. Since this is true for an

arbitrary perturbation f(p), this holds in general and µ is indeed the gradient vector field for the

area functional.

Thus, the formal definition of a minimal surface is given precisely in this language. An isometric

immersion S in a Riemannian 3-manifold M is a minimal surface if its mean curvature vector field

µ vanishes identically.

If we consider a surface S that minimizes area in its isotopy class, then the above arguments

demonstrates that S will be a minimal surface (since a minimum for the area functional is certainly

a critical point).

9.3 Properties of Minimal Surfaces

9.3.1 The Second Fundamental Form and Curvature Bounds

The second fundamental form for an isometrically immersed hypersurface in a Riemannian manifold

gives information on how the intrinsic and extrinsic metric properties of the submanifold differ. In

the context of a co-oriented surface in a 3-manifold, we may take any two vector fields e1, e2 ∈ Γ(TS)

and a unit normal vector ν to define

A(ei, ej) = 〈ν,∇eiej〉 .

This second fundamental form A for the surface S is tensorial and symmetric in e1 and e2; thus, A

defines a symmetric bilinear form on the tangent space TpS for each p ∈ M .

Gauss’ Lemma gives an explicit relationship between the curvature of the sectional curvature of

the surface and that of the ambient manifold M in terms of the second fundamental form. If KS and

KM are respectively the sectional curvatures of S (as a function) and M (in terms of the subspace
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of TM corresponding to TS), then the Gauss equation is given as follows.

Theorem 9.2 (The Gauss Lemma). If A denotes the second fundamental form of S, then

KS = KM + det(A).

Note that if we are given an orthonormal basis e1, e2 ∈ TpS, then the trace of the second

fundamental form A is precisely the mean curvature for S:

tr(A) = ∇e1e1 +∇e2e2.

By definition of a minimal surface, this trace will vanish; using this with the fact that A is symmetric,

we have the identity that

det(A) = −1
2

∑

i,j

|A(ei, ej)|2 .

Substituting into the Gauss equation, we see that

KS = KM − 1
2

∑

i,j

|A(ei, ej)|2 .

Since the determinant part is non-negative, we obtain the pointwise curvature bound for KS in

terms of the sectional curvature of the ambient manifold:

KS ≤ KM .

In the context of constant sectional curvature metrics, this provides moderate topological control

on the classes of minimal closed surfaces immersed in M . Recall that the Gauss-Bonnet Theorem

gives the following average curvature expression in terms of purely topological information:

∫

S

KS dA = 2πχ(S),

where χ(S) is the Euler characteristic of S. Using the well-known relation χ(S) = 2−2g between the

genus g of the surface and its Euler characteristics, we see in certain constant curvature manifolds,

certain immersed minimal surfaces are not possible. For example, if M is any quotient of E3 with

the quotient metric of constant 0 sectional curvature, then KS ≤ 0 and

0 ≤
∫

S

KS dA = 2πχ(S) = 2π(2− 2g).

Thus, it must follow that g ≥ 1 there are no immersed minimal spheres in flat 3-manifolds. Note,

however there are minimal (actually geodesic) embedded tori in T 3, so the bound g ≥ 1 is certainly
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sharp.

In hyperbolic manifolds, there a further constraint on the types of minimal immersed surfaces.

Using the above bound, we see that when M = H3/Γ is a hyperbolic manifold, then the curvature

bound gives a pointwise bound on the intrinsic curvature of an immersed minimal surface S: KS ≤
−1. Using Gauss-Bonnet and the curvature bound, we obtain an area bound on the entire surfaces:

Area(S) =
∫

S

1 dA ≤
∫

S

KS dA = 2πχ(S) = 2π(2− 2g).

Since the area of an immersed surface is always strictly positive, an immersed minimal surface must

have g ≥ 2. Thus, there are no immersed minimal spheres or tori in hyperbolic manifolds.

9.3.2 Totally Geodesic Surfaces

The special case where the second fundamental form A for a hypersurface S is identically zero is

called a totally geodesic surface; such an S is trivially a minimal surface as well. Such surfaces are

called totally geodesic because the vanishing of the second fundamental form is equivalent to the

condition that all geodesics on S remain geodesics in the ambient manifold M . In general, totally

geodesic surfaces are difficult to produce and form a very small subclass of minimal surfaces.

We restrict our attention to the more concrete case where the ambient manifold M is a hyperbolic

link complement; thus, this non-compact manifold is S3 − L admitting a complete finite-volume

metric of constant negative curvature. It is currently unknown whether closed totally geodesic

surfaces exist in link complements; necessarily, such surfaces must have negative Euler characteristics

(since they are minimal surfaces). Adams and Schoenfeld [2] were the first to produce totally geodesic

Seifert surfaces for several subclasses of hyperbolic links; they constructed both free (i.e., their

complements were handlebodies) and non-free Seifert surfaces. Such surfaces are not necessarily

minimal genus Seifert surfaces, but must be incompressible in the link complement.

Their work relies heavily on previous theorems by Thurston that classify the three types of Seifert

surfaces one can have for a hyperbolic link. The first type is that of an accidental surface. For such a

surface, there is a non-trivial simple closed curve that is not boundary parallel but does correspond

to a parabolic isometry; topologically, this implies that the curve is isotopic into a neighborhood of

the missing knot. The second type occurs when K is a fibred knot and the surface S lifts to a fibre

in some finite cover; this corresponds to the lift of S in H3 having the entire sphere at infinity S2
∞

as its limit set. The last class of Seifert surfaces, called Quasi-Fuchsian Seifert surfaces, are those

where the limit set on the sphere at infinity are quasi-circles. In the special case that the limit set

is a union of geometric circles, S is a totally geodesic Seifert surface and lifts to a union of geodesic

planes in H3.

The techniques in Adams and Schoenfeld’s papers rely on finding totally geodesic surfaces in
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hyperbolic orbifolds; then they lift these surfaces to Seifert surfaces for special classes of links. One

such class are balanced pretzel knots, which are pretzel knots K(n, n, . . . , n) with equivalent integral

tangles. They further use Hatcher-Thurston classification of incompressible Seifert surfaces to show

that any hyperbolic 2-bridge knot (i.e., non-torus 2-bridge knots) never admit totally geodesic Seifert

surfaces).

9.3.3 The Monotonicity Principle

The Monotonicity Principle for minimal surfaces gives monotonic control for the growth of the

intersection of metric balls with the surface. Consider the map

r 7→ Area(S ∩Br(p))
Area(Gr(p) ∩Br(p))

,

where Gr(p) is a geodesic surface passing through p and Br(p) is a metric ball in M with origin p. The

Monotonicity Principle states that this map is non-increasing. Note that there is no restriction on

the topology of the intersection of S with the ball Br(p). Certainly, this is true (using Gauss-Bonnet)

when the intersection is a disk in S, but the Monotonicity principle places no such requirement. In

fact, using Monotonicity, we see that the growth of the area of a ball of radius r on a minimal surface

is bounded below by the growth of the area of a ball in a geodesic surface. Such a statement should

not seem surprising as geodesic surfaces are a strict subclass of minimal surfaces.

When we apply this principle to the context of constant sectional curvature Riemannian mani-

folds, we obtain explicit quantitative lower bounds for disks in a minimal surface. In discrete, free

quotients of E3 with the induced metric, disks of radius r in geodesic surfaces have area 2πr. Thus,

the Monotonicity Principle states that any corresponding disk (or other subsurface of a minimal

surface will have area at least 2πr.

In the context of minimal surfaces in hyperbolic manifolds, we obtain similar geometric control

of the area. Since a geodesic plane in hyperbolic space has area 2π(cosh r − 1) = 4π sinh2
(

r
2

)
, this

gives a lower bound on the intersection of a metric ball Br(p) of radius r with a minimal surface S,

regardless of the topology inside Br(p).

In quantitative assessments of the area of minimal surfaces in constant curvature Riemannian

manifolds (where the area of geodesic disks are known explicitly), this form of the Monotonicity

Principle frequently provides an appropriate context from which one may produce lower bounds.

Coupled with an upper bound on the area coming from Gauss-Bonnet, these area constraints greatly

limit the topology of these minimal surfaces.
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9.3.4 The Barrier Principle

As a complete analog to the maximum principle in harmonic analysis, minimal surfaces enjoy a

barrier principle heuristically stating that minimal surfaces cannot have local maxima or minima.

Stated for two minimal surfaces S1 and S2 in a Riemannian manifold, this says that if x ∈ S1 ∩ S2

and there exists some neighborhood U of x such that S1 lies on one side of S2 in U , then S1 = S2.

Thus, one minimal surface acts as a barrier for another, and their intersections must be sufficiently

complicated.

In fact, we may generalize the above barrier principle further by introducing the notion of con-

vexity. A surface is said to be mean convex if it second fundamental form is definite. In the same

way that one minimal surface serves as a barrier for another, a mean-convex surface is a barrier for

any minimal surface. Thus, the above concepts also works when one of the surfaces satisfies the

weaker hypothesis of mean-convexity.

The importance of this lies in the ability to generalize statements about minimal surfaces in

closed manifolds to those with boundary. If M is a Riemannian manifold with ∂M mean-convex, its

mean-curvature vector field will all be pointing into the manifold. Since these boundaries serve as

barriers for minimal surfaces in the interior, many crucial existence theorems for closed manifolds

generalize to those with mean-convex boundary.

9.3.5 Convexity Property

One of the major constraining properties of minimal surfaces is that they must lie in convex sets.

Recall that a subset X of a metric space is convex if every geodesic between every two points in X

lies completely in X. The convex hull of a subset X is the smallest convex set containing X. In the

special case of subsets in Rn, the convex hull is the intersection of all halfspaces containing X.

Minimal surfaces must lie in the convex hull of their boundaries. Thus, in trying to solve Plateau’s

problem, one only needs to search for minimal surfaces in the convex hull of the boundary condition.

Remarkably, this holds for general Riemannian manifolds as well.

9.4 Minimal Surfaces in R3

The study if minimal surfaces in R3 is not only historically important, it also serves as a concrete

arena in which many properties of these surfaces that generalize to arbitrary Riemannian 3-manifolds

may manifest themselves more visually.
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9.4.1 The Minimal Surface Equation in Rn

If we are given a non-parametric surfaces S in Rn given by coordinates x1 = u1, x2 = u2, and

xk = f(u1, u2) for 3 ≤ k ≤ n, then partially differentiating we obtain the vectors

∂x

∂u1
=

(
1, 0,

∂f3

∂u1
, . . . ,

∂fn

∂u1

)
,

∂x

∂u1
=

(
0, 1,

∂f3

∂u2
, . . . ,

∂fn

∂u2

)
.

Thus, we may compute the metric gij by taking the Euclidean dot products of the vectors:

g11 = 1 +
n∑

k=3

(
∂fk

∂u1

)2

; g12 = g21 =
n∑

k=3

∂fk

∂u1

∂fk

∂u2
; g22 = 1 +

n∑

k=3

(
∂fk

∂u2

)2

.

If our surface S is a C2 surface (i.e., the fk functions have continuous second derivatives),

then we may further compute the second fundamental form with respect to any normal vector

N = (N1, N2, . . . , Nn) . Using the explicit form for our vectors above, we differentiate to see that

∂2x

∂ui∂uj
=

(
0, 0,

∂2f3

∂ui∂uj
, . . . ,

∂2fn

∂ui∂uj

)
.

Using the definition of A = aij , we obtain the equation

aij =
n∑

k=3

Nk
∂2fk

∂ui∂uj
.

After suitable cancellations and suitable choice for N and the introduction the vector notation

f(u1, u2) = (f3(u1, u2), . . . , f(u1, u2)) , the minimal surface equation becomes the following vector

equation (
1 +

∣∣∣∣
∂f

∂u2

∣∣∣∣
2
)

∂2f

∂u2
1

− 2
(

∂f

∂u1
· ∂f

∂u2

)
∂2f

∂u1∂u2
+

(
1 +

∣∣∣∣
∂f

∂u1

∣∣∣∣
2
)

∂2f

∂u2
2

= 0.

This formulation of the minimal surface equation indicates that many of the techniques to finding

solutions of elliptic second-order partial differential equations may be employed successful to find

such minimal surfaces.

9.4.2 Examples of Minimal Surfaces in R3

In the case of surfaces in R3, the vector f(u1, u2) in the above formulation becomes the scalar

f3(u1, u2) and the minimal surface equation is a single partial differential equation. Thus, it is more

straightforward to check that a given f does indeed supply a minimal surfaces.

The first example is the most trivial one. Namely, if we are given any plane P in R3, it is defined

via a linear function and thus all second degree derivatives vanish identically. So, any plane is a

minimal surface (actually, a geodesic surface). In fact, Bernstein [6] proves that the plane is the only
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minimal surface defined as f : D → R where the domain D the all of R2.

The helicoid another classic example of a minimal surface. It is give non-parametrically by the

function

f3(u1, u2) = arctan
(

u2

u1

)
,

which is defined on R2 minus the x-axis. The helicoid is also given implicitly by the equation

u2 = u1 tanu3.

This, along with the plane, are the only ruled surfaces, those minimal surfaces which can be generated

by straight lines or rulings [10].

The other classic minimal surface example is the catenoid, defined non-parametrically by

f3(u1, u2) = cosh−1
√

u2
1 + u2

2;

it is defined on R2 − {(0, 0}. Implicitly, this surface is the solution to

u2
1 + u2

2 = (cosh u3)2.

The minimal surface known as Scherk’s surface is of particular interest because of its periodic

nature. It is defined non-parametrically by

f3(u1, u2) = log
(

cosu2

cosu1

)
,

and is thus defined on a checkerboard of squares in the u1u2-plane where cos u2
cos u1

> 0. We note that

by properties of the logarithm, the defining function f3 can be written as

f3(u1, u2) = log(cos u2)− log(cos u1)

and thus is a minimal surface of translation; that is, its function can be written in the form

f3(u1, u2) = g(u1) + h(u2). This surface is doubly periodic since both functions g and h are pe-

riodic of period 2π. The implicit equation for Scherk’s surface is given by

eu3 cos u1 − cosu2 = 0.

9.4.3 The Weierstrass Representation

The use of complex analysis in the search for minimal surfaces in R3 has proven to be particularly

fruitful. One of the most noteworthy ramifications of such a consideration was the formulation of
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minimal surfaces in terms of the Enneper-Weierstrass representation. The representation data is

given by two complex-valued functions f and g defined on the unit disk or complex plane with f

analytic and g meromorphic. We further require that wherever g has a pole or order m, f has a zero

of order 2m (so that fg2 is holomorphic). Then, the surface defined parametrically by

x1(ζ) = Re

(
1
2

∫ ζ

0

f(z)(1− g(z)2) dz

)
+ c1,

x2(ζ) = Re

(
i

2

∫ ζ

0

f(z)(1 + g(z)2) dz

)
+ c2

and x3(ζ) = Re

(∫ ζ

0

f(z)g(z) dz

)
+ c3

is a minimal surface. Surprisingly, the converse is true as well; that is, any regular minimal surface

admits such a representation. The functions f and g are referred to as the Weierstrass data associated

to the minimal surface.

This representation is particularly useful because it allows one to more easily generate minimal

surfaces in R3. In particular, Enneper’s surface may be easily represented in terms of its Weierstrass

parametrization. Its Weierstrass data is given by f(z) = 1 and g(z) = z. Enneper’s surface is a

complete immersion and has the property that it contains two perpendicular straight lines.

9.4.4 Curvature

Given the Weierstrass representation of a minimal surface, the calculation of the Gaussian curvature

is straightforward. For a minimal surface S with Weierstrass data f and g, its curvature at any

point is given by

K = −
(

4|g′|
|f |(1 + |g|2)2

)2

.

Note this quantity is always non-positive, reinforcing the fact that the curvature of a minimal surface

is pointwise bounded above by the curvature of the manifold, which is zero in the case of R3. We

note that S is a plane if and only if K = 0 if and only if g′ ≡ 0. Furthermore, since g is analytic,

g′ is analytic and must be either be identically zero (in which case S is a plane) or g′ must have

isolated zeroes. Thus, the Gaussian curvature of any minimal surface must be identically zero or

have only isolated zeroes.

9.5 Minimal Surfaces in 3-manifolds

While the study of minimal surfaces in R3 has led to the formulation of a very important and

thriving field of differential geometry, much of its importance rests in the fact that many results can
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be generalized to Riemannian 3-manifolds as well as higher dimensional manifolds.

9.5.1 Existence Results for 3-manifolds

The general philosophy of existence results in 3-manifolds is that there exists least area surfaces in

the homotopy class of each incompressible surface. For compressible surfaces, homotopic minimal

surfaces do tend to exist, but they are no longer guaranteed to be least area.

The main existence results for incompressible surfaces come from two vastly different techniques.

The first set offers analytic and geometric measure-theoretic approach to minimal surfaces. Schoen

and Yau [51] prove the existence of a minimal immersion in the homotopy class of each incompressible

surface.

Theorem 9.3. Let M be a compact Riemannian manifold and S a surface of genus g ≥ 1. Let

f : S → M be a continuous map inducing an injection f∗ : π1(S) ↪→ π1(M). Then there is a minimal

immersion h : S → M so that h∗ = f∗ as maps on π1. If π2(M) = 0, then h may be chosen to be

homotopic to f .

Using more topological techniques, Freedman, Hass, and Scott [31] find a similar result .

Theorem 9.4. Let M be a closed, orientable Riemannian 3-manifold and let S be a closed surface

of genus g ≥ 1. Let f : S → M be a least area immersion such that f∗ is injective and such that f

is homotopic to a two-sided embedding h. Then either

(1) f is an embedding, or

(2) f double covers a one-sided surface K embedded in M and h(S) bounds a submanifold of M

which is a twisted I-bundle over a surface isotopic to K.

When one considers the genus g = 0 case and searches for minimal surface representatives of

non-trivial maps of spheres into 3-manifolds, the topic of the famous Sphere Theorem begins to

emerge. The topological Sphere Theorem states that if M is a 3-manifold with π2(M) 6= 0, then

there exists a non-trivial element of π2(M) that has an embeddings S2 ↪→ M as a representative.

Meeks and Yau [32] prove this topological theorem with the added result that the embedding is

actually a minimal surface.

Theorem 9.5. Let M be a closed 3-manifold with non-trivial π2(M). Amongst the set of all smooth

maps from S2 to M representing non-trivial elements of π2(M), there is a map f of least area.

Furthermore, f is either a smooth embeddings or a double cover a smoothly embedded projective

plane.

To obtain stronger embededness results, researchers have utilized geometric measure theory. In

particular, the results of Meeks, Simon, and Yau [56] state that there is a least area surface in the

isotopy class of any incompressible surface.
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Theorem 9.6. Let M be a closed, orientable, irreducible 3-manifold. Then every incompressible

surface S is isotopic to a globally least area minimal surface.

The same paper provides a similar statement for spheres.

Theorem 9.7. Let M be a closed, orientable, reducible 3-manifold. Then there is a globally least

area essential embedded sphere.

The above theorems are stated for closed 3-manifolds. However, wince mean convex surface

serve as barriers for minimal surfaces, many of these results generalize to the case with boundary

when we require that the boundary itself be mean-convex. In particular, if we choose that ∂M be

a totally geodesic boundary, then the above existence results go through. Intuitively, since these

mean-convex boundaries have inward-pointing mean-curvature vector fields, a surface may be pushed

into the manifold to reduce its area.

9.6 Applications of Minimal Surfaces to 3-dimensional geo-

metric topology

As we will see below, minimal surfaces seem to have much potential in obtaining topological results

about surfaces in 3-manifolds.

The above theorems deal with incompressible surfaces; when one turns attention to highly com-

pressible surfaces like Heegaard surfaces for a 3-manifold, such existence theorems for minimal

surfaces do exist, but these surfaces are not least area in general.

In particular, Rubinstein [46] has recently used minimal surfaces in a variety of topological and

geometric settings. One of his most striking applications is in attempting to quantify strongly

irreducible Heegaard splittings for closed 3-manifolds. Rubinstein, building off earlier work by Pitts

and Rubinstein [41], proves that in an arbitrary Riemannian metric, one may find a minimal surface

representative in the isotopy class of a strongly irreducible Heegaard surface S. Such a minimal

surface, though, may be of index 1 and thus not a minima for the area functional. Using this

existence theorem, he is able to prove the following topological result.

Theorem 9.8. Let M be a complete, finite-volume hyperbolic 3-manifold. Then there are finitely

many irreducible Heegaard splittings of bounded genus up to isotopy.

There has also been substantial interest in using geometric information to produce lower bounds

on the genus of a manifold (defined as the minimum genus of all Heegaard surfaces). In the same

paper, Rubinstein provides the following bound.
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Theorem 9.9. Let M be a closed or complete finite-volume hyperbolic 3-manifold. Let ρ′ be the

injectivity radius of the thick part of M . Then the Heegaard genus of M satisfies

g ≥ cosh ρ′ + 1
2

.

Using ideas from this paper along with an isoperimetric inequality for minimal surfaces in hy-

perbolic metric balls, Bachman, Cooper, and White [14] prove a similar theorem using the radius of

an embedded metric ball.

As a different application, Brittenham and Rieck [7] use minimal surfaces to study the structure

of Heegaard surfaces in hyperbolic bundles over S1. If M is a surface bundle over S1 with pseudo-

Anosov monodromy ϕ, it admits a hyperbolic structure by Thurston’s Geometrization of Haken

manifolds. Let Md be the cyclic cover of M with monodromy ϕd. A Heegaard surface for a bundle is

called standard if it may be constructed by tubing together disjoint fibers of the fibration. Brittenham

and Rieck’s result is that for high enough covers, every Heegaard splitting of low genus is standard.

Theorem 9.10. Let M be a bundle over S1 with pseudo-Anosov monodromy ϕ. Then for any

integer h ≥ 0, there exists a constant n so that for any d ≥ n, any Heegaard surface of genus ≤ h is

standard.
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Chapter 10

The Bounded Diameter Theorem

10.1 Statement and Proof

Kakimizu’s realization of the path-metric on MS(L) and IS(L) in terms of relative length in the

universal abelian cover of a link complement hints at the potential of geometric methods to obtain

diameter bounds on these complexes. The various properties of minimal surfaces (especially the

intrinsic curvature bounds) lend themselves well for use in geometries of bounded curvature. Given

Thurston’s Geometrization Theorem for Haken manifolds, the appropriate class of links for which

minimal surfaces could prove fruitful is hyperbolic links.

We obtain an upper bound on the diameter of the minimal genus complex MS(K) for hyperbolic

knots exactly using these arguments. This upper bound is quadratic in the genus g of the knot K.

Theorem 10.1. Let K be a hyperbolic knot of genus g. Then, the diameter of MS(K) is bounded

by a constant C(g) depending only on the genus of the knot. Furthermore, this bound is quadratic

in the genus g.

Proof. To satisfy the hypotheses for the existence of a minimal surface representative for a minimal

genus Seifert surface, we must first deform the geometry of the knot complement at the cusp to obtain

a Riemannian metric with inward-pointing mean curvature vector at the boundary torus. This is

obtained simply by smoothly transitioning to a Euclidean metric (which is conformally equivalent

to the original hyperbolic metric) as we approach the cusp. Thus, by deleting an open neighborhood

of the knot, we obtain a manifold with totally geodesic toral boundary; since this torus is geodesic,

its mean curvature vector field is equivalently zero and thus mean-convex.

Now, by Meeks-Simon-Yau [56], for any minimal genus Seifert surface S, there exists an area

minimizing (and thus minimal) Seifert surface Σ in its isotopy class. We may also ensure that the

boundary ∂Σ = Σ∩∂M has geodesic curvature kg identically zero. For if we consider the Riemannian

manifold with totally geodesic boundary described above and double it, the doubled surface remains



67

incompressible (since Σ was incompressible) and the boundary curve is invariant under the reflection

about this totally geodesic torus. Thus, it will have geodesic curvature kg ≡ 0.

Recall that by minimality, Σ has an intrinsic curvature bound KΣ ≤ KM = −1. Thus, 1 ≤ −KΣ;

integrating this inequality, using the Gauss-Bonnet Theorem, and recalling that kg ≡ 0, we obtain

the area bound in terms of the genus g:

Area(Σ) =
∫

Σ

1 dA ≤
∫

Σ

−KΣ dA = −
∫

Σ

KΣ dA =

−2πχ(Σ) +
∫

∂Σ

kg ds = −2π(1− 2g) = 4πg − 2π.

Next, we obtain a lower bound on the diameter of the minimal surface in terms of the 3-

dimensional Margulis constant ρ. For the moment, we assume that the knot complement has no

Margulis tubes in its thick-thin decomposition. Since the knot complement is equal to the thick part

of the manifold, we have a lower bound on the injectivity radius i(x) at each x:

ρ ≤ i(x).

Thus, at every point x ∈ Σ, Σ ∩ B(i(x), x)) has a global lower bound on its area in terms of the

area of a totally geodesic disk G of radius ρ containing x by the monotonicity principle for minimal

surfaces:

Area(G ∩B(ρ, x)) ≤ Area(G ∩B(i(x), x)) ≤ Area(Σ ∩B(i(x), x)).

Totally geodesic disks of radius r in hyperbolic spaces are known to have area 2π(cosh r−1). Applying

this to our above bound, we have

2π(cosh ρ− 1) ≤ Area(Σ ∩B(i(x), x)).

From this area bound, we will obtain a bound on the diameter of Σ via a covering argument. Let

x1, . . . , xm be a minimal collection of points on Σ such that Σ ∩B(ρ, xk) cover Σ. By compactness

of the surface, such a finite m exists. Since these the xk’s form a minimal collection, the regions

Σ ∩B(ρ/2, xk) are disjoint. Thus, we obtain the following lower bound on the area of Σ:

m∑

k=1

Area(Σ ∩B(ρ/2, xk)) ≤ Area(Σ).

At each xk, we can consider a geodesic surface of radius ρ/2 passing through xk. Using monotonicity

on each of these m regions gives

2πm(cosh ρ/2− 1) ≤
m∑

k=1

Area(Σ ∩B(ρ/2, xk)) ≤ Area(Σ).
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Combining this with the upper bound on area

Area(Σ) ≤ 4πg − 2π,

we obtain

2πm(cosh ρ/2− 1) ≤ Area(Σ) ≤ 4πg − 2π.

Thus, we obtain a bound linear in g on the number of regions needed to cover Σ:

m ≤ 4πg − 2π

2π(cosh ρ/2− 1)
=

2g − 1
cosh ρ/2− 1

.

We will now use the bound on m to obtain a diameter bound. Since Σ is a least area surface, it

is a stable minimal surface a subject to a lower bound on its curvature as well [50]:

−2 ≤ KΣ ≤ −1.

Thus, in any metric ball of radius ρ, the surface has a uniform upper bound d(ρ) ≥ Diam (Σ ∩B(ρ/2, xk)),

where d(ρ) depends only on the Margulis constant ρ and is thus independent of the topology of the

intersection. Since these patches of surface cover Σ,, we obtain the diameter bound by using our

bound on m:

Diam(Σ) ≤ md(ρ) ≤ d(ρ)(2g − 1)
cosh ρ/2− 1

,

which is linear in g.

Isometrically lifting this minimal Seifert surface to a lift Σ̃ in the universal abelian cover Ẽ will

give the same diameter bound. Recall that distance in the Kakimizu complex MS(L) is formulated

in terms of relative distance in the universal abelian cover. So far, we only have a numeric bound on

Diam(Σ̃). We need to reformulate this diameter in terms of the width of the lift of the complement

of our other Seifert surface S′. This pseudo-distance is given by how many translates of this lift

the surface Σ will meet. We will obtain an overestimate instead by counting the number of times Σ

intersects the boundary of the lift.

To this end, let us consider a minimal surface representative Σ′ in the isotopy class of a Seifert

surface S′. We consider the knot complement E = S3−
◦

N(K) and build the universal abelian cover

by translating the closure of an isometric lift E′
0 = E − Σ′ by the natural action of the Deck group

Z generated by τ . This domain E0 has two isometric copies of a lift of Σ′ in its boundary; call one

of these Σ̃′. The generator τ takes the minimal surface Σ̃′ isometrically to its translates, which are

also minimal surfaces.

Now, we obtain a bound on the number of translates of Σ̃′ that intersect Σ̃ in terms of the diameter

Diam(Σ̃). For any two points x and y in Σ̃, consider a geodesic γ joining x and y. Furthermore, let
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C be a neighborhood of γ of radius ρ, the Margulis constant. Our goal is now to divide this cylinder

C into t subcylinders Ci of height ρ; since the height of the subcylinders is uniform, we obtain the

bound t ≤ d(x,y)
ρ + 1. Since each subcylinder Ci has radius ρ and height ρ, we may consider C to

lie either in the universal abelian cover or the knot complement since it would lift isometrically by

Margulis’ theorem. Thus, in the knot complement, we can measure how many times n the minimal

surface Σ′ intersects the geodesic γ ⊂ Σ. By the Convexity property of minimal surfaces, since

each component of C ∩ Σ′ meets the geodesic γ, it will have area at least 2π(cosh ρ− 1). Since the

Gauss-Bonnet theorem also applies to Σ′, we obtain the area bound

Area(Σ′) ≤ 2π(2g − 1).

Thus, the intersection of the minimal surface Σ′ with the cylinder C will at most have n components,

where n satisfies

n · 2π(cosh ρ− 1) ≤ Area(Σ′) ≤ 2π(2g − 1).

Manipulating, this gives us a bound on n:

n ≤ 2π(2g − 1)
2π(cosh ρ− 1)

=
2g − 1

cosh ρ− 1
.

Since the length of the geodesic γ is bounded above by the diameter of Σ, we will can obtain a

bound on the number t of isometric copies of C that are needed to cover this path:

t ≤ Diam(Σ)
ρ

+ 1 ≤ d(ρ)(2g − 1)
ρ(cosh ρ/2− 1)

+ 1 =: e(g, p).

Note that e(g, ρ) is linear in g.

We can now combine our bound on t with the number of maximal times n that Σ′ can intersect

γ to produce an upper bound on the number of translates of Σ′ that the lift of γ will meet in the

universal abelian cover. By the Kakimizu formulation of distance in the Seifert surface complex,

this thus gives a bound on the diameter of the complex in terms of the genus g of the knot:

Diam(MS(K)) ≤ n · t ≤ 2g − 1
cosh ρ− 1

· e(g, ρ)

which is quadratic in g since both terms are linear in g.

We now consider the case where the knot complement does have a thin part. Thus, we must

analyze how the two minimal surfaces Σ and Σ′ intersect inside the finitely many Margulis tubes.

Recall that these Margulis tubes are topologically solid tori containing closed geodesics as cores.

Since both Σ and Σ′ are incompressible surfaces, any intersection with the Margulis tubes must be

as meridional disks or as annuli; of course, any intersection of higher genus would contradict the
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incompressibility of the Seifert surfaces.

First, we consider the case when one of the surfaces, say Σ meets a Margulis tube X in a disk.

Then, if Σ′ intersects this disk, the intersection must be essential in both surfaces; if not, we may

perform a disk swap and reduce area (see, for example, [31] or [11]). In this case, we can follow this

intersection out to the boundary ∂X, where it will correspond to an intersection in the thick part of

the manifold. Thus, if either of the surfaces meet X in a disk, we obtain a bound by the thick-part

argument above.

Thus, we are left with the case when the intersection of both Σ and Σ′ with a Margulis tube

X is an annulus. Note that the number of times that Σ may meet the union of all Margulis tubes

in an annulus is bounded above by the topology of Σ. These annular intersections are disjoint and

essential on the surface; furthermore, they are non-parallel since then any product region between

two parallel annuli can be used to decrease area. Thus, by Euler characteristic considerations, there

may be at most 3g − 2 Margulis tubes intersecting any given minimal Seifert surface. Furthermore,

any pair of local sheets may intersect only once or we can do a local exchange to decrease this local

intersection number. Thus, the total number of times they intersect annularly in Margulis tubes

is bounded above by the product, (3g − 2)2, which is, once again, quadratic in the genus. This

intersection bound in the knot complement gives a corresponding bound in the universal abelian

cover.

If the restriction of the surface to the thick part is separated by annuli intersecting the Margulis

tubes, the diameter bound obtained for the thick part is true for each component of the surface in

the thick part. By Euler characteristic considerations, there are only 2g−1 such components. Thus,

combining the corresponding bounds in the the thick and thin parts of the knot complement, we

obtain a bound that is at most quadratic and written in terms of only the genus.

10.2 Generalizations of the Bounded Diameter Theorem

10.2.1 One-cusped Hyperbolic 3-manifolds

The proof of Kakimizu’s realization of the distance on MS(L) and IS(L) follows when the ambient

manifold M is any one-cusped manifold. Thus, we may define a similar complex MS(M, α) and

IS(M, α) for a manifold M with one toral boundary component by defining its vertices to be isotopy

classes of minimal genus or incompressible surfaces with no closed components in a fixed homology

class α ∈ H2(M, ∂M). The simplicial structure, of course, may be defined via the same disjointness

property. Since Kakimizu’s proof goes through for this broader complex, the above theorem remains

valid in a broader sense.

Theorem 10.2. Let M be a one-cusped hyperbolic 3-manifold and α ∈ H2(M, ∂M). There is a
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constant C(g) such that

Diam(MS(M, α)) ≤ C(g),

where C(g) depends only on g and is quadratic in g.

10.2.2 Non-boundary Links

One of the crucial elements in the Bounded Diameter Theorem is that the Seifert surfaces in question

are connected, thus this theorem cannot be easily extended to links if we cannot guarantee that all

Seifert surfaces must be connected. To this end, we consider non-boundary links.

A link L with n ≥ 2 components is called a boundary link if its components bound disjoint Seifert

surfaces in S3. Thus, if a link is not a boundary link, all of its Seifert surfaces must be connected.

One sufficient condition for a link L to not be a boundary link is that it its components have non-zero

linking number.

Proposition 10.3 (Rolfsen [44]). If any two components of L ⊂ S3 have non-zero linking number,

then L is not a boundary link.

Thus, non-zero linking of any two components ensures that the Seifert surfaces for L are con-

nected. Some simple examples of non-boundary links are the Whitehead link and the Borromean

rings.

We obtain the following generalization of the Bounded Diameter Theorem.

Theorem 10.4. Let K be any non-boundary link of genus g with n components. There exists a

constant C(g) such that

Diam(MS(K)) ≤ C(g, n),

where C depends only on g and n. Furthermore, C is quadratic in both g and n.

10.3 Other Diameter Bounds

Very recently, Sakuma and Shackleton [48] have posted a similar quadratic bound on the diameter

of MS(K) for atoroidal knots using vastly different combinatorial techniques.

Theorem 10.5. Suppose that a genus g knot K is atoroidal in S3. Then MS(K) has diameter at

most 2g(3g − 2) + 1.

Note that atoroidal knots are exactly torus and hyperbolic knots. Since torus knots are fibred,

MS(K) is a single vertex an the result trivially follows. Thus, Sakuma and Shackleton’s result is

precisely for hyperbolic knots even though no geometry is used in their arguments.

The two theorems are similar only in that they both utilize Kakimizu’s formulation of the distance

in terms of the universal abelian cover.
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