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Abstract

I present three models of dynamic agenda formation and policy selection, and demonstrate

that in each, outcomes emerge which are in keeping with those predicted by cooperative

solution concepts such as the von Neumann-Morgenstern stable set and the core. These

outcomes are a consequence of players “thinking ahead,” or conditioning how they bargain

on the notion that policies selected today should stand up to tomorrow’s agenda. Players

are induced into taking the payoffs of others into account when voting over and proposing

policies, not because of a behavioral assumption such as altruism or inequality aversion,

but because they know that the behavior of others in large part determines which policies

are enacted in the future. In this sense, fairness is induced through the foresight of the

players involved.
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Chapter 1 Introduction

Social choice theory is the study of how decisions are made collectively. It examines the

idea that, for a given society, the preferences of individual members can be directly ag-

gregated to reflect a quintessential “social preference.” An example of such a preference

aggregation method is simple plurality rule, in which citizens vote for a candidate and the

candidate winning the most votes is deemed society’s most-preferred. In general, social

choice theory does not aim to analyze or predict behavior, but rather to compare and eval-

uate different means of aggregating preferences. However, for this technique to have any

relevance, it must be capable of making predictions. In this vein, Austen-Smith and Banks

(1998) write, “for the direct preference aggregation approach to work as a general theory

of politics, we need to determine the extent to which different aggregation methods insure

the existence and characterization of best alternatives.”

One of the most compelling social choice-theoretic notions is the idea of a core, or

alternative that can defeat all other alternatives via majority rule. Most would agree that

in the presence of such an alternative, we could expect it to be chosen as a policy out-

come. However, social choice theory is rife with nonexistence results. The well-known

Plott conditions prove that only in extremely rare circumstances does a core alternative

exist. Arrow’s Theorem tells us that the requirement that social choices be made on norma-

tively appealing criteria cannot lead to normatively appealing outcomes. And McKelvey’s

“chaos” Theorem says that if individuals vote sincerely, virtually any alternative can defeat

any other via a finite amendment agenda. And yet there is reason to remain hopeful; many

other social choice-theoretic concepts are capable of refining the set of “best alternatives”

in many environments, even in the absence of a core. Two of the most commonly cited

such concepts are the uncovered set and the Banks set.

An uncovered policy is an alternative that can defeat any other alternative by majority

rule in two or fewer steps; that is, if policy � is uncovered and there exists a policy � which

defeats � , then there also exists a third policy � , such that � defeats � and � defeats � . Miller
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(1980) was the first to define the uncovered set (or set of all uncovered policies) as a general

solution concept, useful particularly in the absence of a core. Shepsle and Weingast (1984)

examine finite agendas in a spatial setting and show that no outcome can be a sophisticated

voting outcome if an alternative that covers it is also included in the agenda. Banks (1985)

returns to Miller’s framework of strict preferences over a finite alternative space, and shows

that, for a specific definition of the uncovered set, all sophisticated voting outcomes are

uncovered yet all uncovered points are not sophisticated voting outcomes. He then provides

a method for calculating both the uncovered set and the set of sophisticated voting outcomes

in this setting. And McKelvey (1986) and Cox (1987) show that under general conditions

the uncovered set exists, shrinks to the core when a core exists, and becomes smaller the

closer individual preferences are to admitting a core. Thus, these authors demonstrate that

generally, and under many different institutional arrangements, strategic behavior by voters

leads to outcomes in the uncovered set.

However, there exists a particular institutional arrangement under which the predictions

yielded by the uncovered set are entirely useless: that of distributive politics. A distributive

setting is one in which there exists a fixed pie that players seek to divide among themselves.

Players’ preferences are solely a function of how much they get. Distributive games are

of particular interest to social scientists because strategic interaction between individuals

often involves money. Epstein (1998) and Penn (2001) compute the uncovered set (under

different definitions) for this class of game, and both find that the uncovered set has full

measure on the space of policies, under every definition of “covering”. Thus the entire

policy space, possibly minus a set of measure zero, is uncovered, and this concept leaves

us with with no way of characterizing the set of best alternatives.

In Chapter 2, I focus on the concept of the Banks set. The Banks set is an important

social choice-theoretic concept because it was one of the first to incorporate strategy into

a method of preference aggregation. The Shepsle-Weingast algorithm gives us a means of

finding the “sophisticated voting outcome” of an agenda; given an amendment procedure,

this outcome is defined to be the last item on the agenda that defeats all of its predeces-

sors given a fixed voting rule. If individuals are sophisticated and know which items will

be voted upon when, this algorithm computes the best alternative any person can procure
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for himself. The Banks set equals the set of policies that can be supported as sophisticated

voting outcomes of a finite-length, externally stable agenda, where external stability is sim-

ply the requirement that an agenda admits no further profitable amendments. Thus, while

McKelvey tells us that any alternative can be the outcome of an amendment procedure over

some finite agenda when people vote sincerely, Banks tells us that this is not really the case,

because the assumption that players vote sincerely does not always make sense.

In this chapter I characterize the Banks set for the class of 3-player distributive games

and find that we are again struck down, because, like the uncovered set, the Banks set also

has full measure on this policy space. Using this result as a starting point, the chapters that

follow argue that the frequent inability of social choice theoretic concepts such as these

to yield predictions arises not solely because the majority preference relation is unstable,

but also because social choice theory implicitly assumes a static environment. Yes, the

Shepsle-Weingast algorithm assumes the dynamics of the amendment procedure, but only

with respect to a predetermined, static agenda. How does this agenda get chosen? And how

can uncertainty about a future agenda effect individual behavior? Schattschneider (1960)

writes, “The definition of the alternatives is the supreme instrument of power,” and given

McKelvey’s chaos result, this claim becomes even more believable.

Dutta, Jackson, and LeBreton (2001) look at precisely the question of how agendas

are formed, and develop an elegant definition of equilibrium agenda formation under very

general conditions. Under an amendment procedure, the set of equilibrium outcomes gen-

erated by their definition coincides with the Banks set, but they also demonstrate that in

many instances their definition can yield even sharper predictions. However, this definition

can also predict indiscriminately, as is the case with the Banks set. In Chapter 2, I take a

less general approach to the question of how agendas are formed, and look at an extension

of a game of endogenous agenda formation by Banks and Gasmi (1987). The authors char-

acterize the minimax-Stackelberg equilibrium of a three-player game in which each player

gets to propose one item to an agenda. The constructed agenda is then voted upon via an

amendment procedure. The agenda that is constructed in equilibrium, however, is not ex-

ternally stable; there exist policies which defeat every item on the constructed agenda, and

it would be in the best interest of a player to propose one of these policies. Thus, a natural
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question to ask is “when do players want to stop proposing items to an agenda?” In this

chapter I extend their game by allowing players to make as many proposals as they wish,

until there exists no policy that defeats every item on the constructed agenda. Allowing for

an unspecified number of amendment proposals by players is appealing because it mim-

ics the setting of an informal negotiation between three people. Simply put, individuals are

randomly chosen to make proposals until no one wishes to make another proposal. In many

environments this game form is more natural than one in which the order of the players is

specified, or in which players are only allowed to make a certain number of proposals.

I find that such uncertainty about the future length of the agenda drives the first two

proposers to collude. Thus, while Banks and Gasmi find the outcome of their game to

be the universalistic allocation � � � � ���� ���� �� � , I find that the outcome to the same game

with no restrictions on agenda length is a policy in the simple von Neumann-Morgenstern

stable set, �*� �� � �� � $ � � � $ � �� � �� � � � �� � $ � �� ��� . Yet in both games, only three alternatives are ever

proposed. Thus, allowing for an arbitrarily large number of amendments does not change

the number of amendments actually made, but dramatically changes which amendments

are made. In particular, it motivates the first two proposers to work as quickly as possible

to ensure that the outcomes which leave them worst-off are infeasible. A consequence

of this is that the last player is completely disenfranchised, and in this way the outcome

generated here is less normatively “fair” than the outcome generated by Banks and Gasmi.

But interestingly, this noncooperative game generates the same outcome as that generated

by the cooperative solution concept of the von Neumann-Morgenstern stable set, which

in this setting predicts the emergence of minimal-winning coalitions that divide the dollar

evenly among every member. This cooperative result will be paralleled in the chapters that

follow.

When we consider the concept of “strategic” behavior, we often think of it as referring to

a situation in which players are willing to endure short-term losses for long-term gains.

In a setting where current policies have an effect on future legislation, legislators may

often forgo some satisfaction with respect to a minor policy in the short term to get a

more important policy passed in the future. In the last two chapters, I argue that social
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choice theory fails to account for this type of dynamic because the theory is concerned with

predicting a single social outcome. It fails to recognize the fact that societies collectively

choose many different outcomes over time, and that the choice of policy in one round

may effect which policies are feasible in the next. In these chapters I demonstrate that

predictions can be generated in institution-free environments, by allowing current policies

to effect future policies, and allowing players to have preferences over these future events.

These predictions can even be generated in the seemingly inextricable environment of the

divide-the-dollar, or distributive, game.

The notion of short- versus long-term gain is captured in these chapters by adding a

new dimension to the standard social choice-theoretic framework. Here, individuals rank

policies not only on the basis of the utility they yield, but also with respect to the types of

alternatives they can and cannot defeat. The types of alternatives a policy can defeat are

conditioned upon a probabilistic future agenda. In Chapter 3 this agenda is assumed to be

exogenous and static; some alternatives are more likely than others to be brought to the

floor in the future, regardless of the status quo at hand, and players know this. In Chapter

4 I allow the agenda setting process to be endogenous, so that players propose alternatives

themselves. In this case, players can condition upon the current status quo policy to propose

an alternative that defeats it and leaves them better-off.

Formal models to date have not been able to make compelling predictions in the setting

of a continuing program. Baron (1996) shows that in this setting, policy selection eventu-

ally converges to the median voter’s ideal point, when the policy space is one-dimensional.

However, this alternative is a Condorcet winner, and so predicting it as a policy outcome

is not particularly surprising. Indeed, if the model predicted something else, the space of

alternatives would most likely have been restricted by the model in some way or another.

Kalandrakis (2002) looks at continuing programs in the setting of a divide-the-dollar game,

and finds that the ideal points of the players emerge as policy outcomes, with probability

one. This result is disturbing because rarely in political environments does a legislative

dictator emerge, with probability one, in every round.

While continuing programs have been largely ignored in the formal literature, we would

expect these types of programs to be the most interesting from the standpoint of political
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science. Legislators are keenly aware of the fact that policy sets precedent, and that today’s

status quo greatly effects the types of alternatives that are feasible tomorrow. An example

is President Bush’s 2001 tax cut package, which mandated the gradual phase-out of the

estate tax by the year 2010, only to return to its 2001 levels in 2011. A lobbyist in favor

of the complete abolishment of the estate tax was quoted as saying “In Washington terms,

it’s the finality we needed. It’s very difficult for Congress to reinstate a tax once it’s been

repealed.” Thus, a bill eliminating a tax for one year and then reinstating it the next is

effectively similar to a bill eliminating the tax forever. Once the status quo of “no tax” has

been set, it is virtually impossible to defeat the status quo with a policy mandating “tax.”

In these chapters I model policy alternatives as not only yielding utility today, but also

leading to streams of future policy that are dependent upon the status quo. I find that,

even in the absence of a game form, players are not indifferent between different policies

which provide them with the same level of utility. This is because the space of alternatives

which defeat each policy, and which each policy defeats, matters. I show that in dynamic

environments, the space of alternatives which can and cannot defeat a policy, or the future

agenda conditioned upon that policy, may have as much impact on individual decision

making as the substance of the policy itself. These models provide one answer to the

question of “why so much stability?” Here, cooperative outcomes emerge and are sustained

as a consequence of looking at the probabilistic path of legislation a policy can lead to over

time. Thus, even though these models are ultimately sophisticated preference aggregation

techniques, they yield well defined sets of best alternatives.

Possibly most interesting is link between these chapters and cooperative game theory. Co-

operative game theory examines the types of allocations that coalitions of agents can pro-

cure for themselves, while remaining agnostic as to how these allocations arise, and how

they are enforced. In all of the chapters presented here, outcomes often emerge which are in

keeping with those predicted by cooperative solution concepts such as the von Neumann-

Morgenstern stable set. These outcomes are a consequence of players “thinking ahead,” or

conditioning how they bargain upon the idea that policies selected today should stand up

to tomorrow’s agenda. A consequence of all of these chapters is that players are induced
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into taking the payoffs of others into account when voting over and proposing policies, not

because of a behavioral assumption such as altruism or inequality aversion, but because

they know that when collective choices are being deliberated upon, the behavior of others

in large part determines how policies are chosen. In this sense, fairness is induced by the

foresight of the players involved. Perhaps modeling foresight in such a way can provide a

first step toward a behavioral rationalization of cooperative game theory.
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Chapter 2 A Distributive N-Amendment Game

with Endogenous Agenda Formation

2.1 Introduction

Much work has been done on the fact that under the assumption of a finite agenda, amend-

ment procedures can be solved by backward induction, yielding well defined results. McK-

elvey (1979) shows that when players vote sincerely, an agenda can be constructed such

that any point in ��� can be supported as the unique outcome of an amendment game, be it

Pareto efficient or not. However, when players vote sophisticatedly, the possible set of out-

comes that can be supported by an amendment game becomes significantly smaller (Banks,

1985), and is in fact a subset of the uncovered set. And when we allow sophisticated players

to set the agenda themselves, this outcome shrinks to a single point, M*, in a three-player,

two-amendment game with a maximin equilibrium concept (Banks and Gasmi, 1987).

This point, M*, possesses certain characteristics which are attractive from a normative

point of view. If the ideal points of the three players are equidistant from each other,

then M* is the barycenter of the Pareto set, giving all players equal utility. As the ideal

points become less symmetrical, M* tends toward the closer pair of ideal points, leaving

the player whose preferences are less similar in a disadvantageous position. The authors

specifically examine a two-dimensional spatial setting, however they demonstrate that their

analysis can be easily applied to a distributive, divide-the-dollar game, in which case M*

= � ���� ���� �� � .1 Yet Banks and Gasmi do not establish whether M* is an equilibrium outcome

if we allow for more amendments—intuitively, it seems as though any two players could

conspire to pick an alternative on their contract curve such that both could be better off.

Thus, a natural question to ask is whether the M* result is completely driven by limiting

1Duggan (2003) provides a formal proof of this in the case where the order of proposers is known. He also
establishes the existence of a subgame-perfect equilibrium in an endogenous agenda formation game similar
to that of Banks and Gasmi, where the order of the proposers is known and each player proposes once.
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the number of possible amendments to two.

This chapter answers this question in a distributive setting by characterizing those finite

agendas (and resulting outcomes) which could and would arise by allowing players to pro-

pose as many amendments as they wish, until no new alternative exists that defeats every

other previously proposed alternative via the majority preference relation. Using a maximin

solution concept similar to the one used by Banks and Gasmi, I find that the M* result can

not be supported as a maximin-Nash equilibrium outcome when then the two-amendment

restriction is removed. However, a unique set of equilibrium outcomes to this game does

exist. I will show that this set equals the three-element von Neumann-Morgenstern stable

set.

Allowing for an unspecified number of amendment proposals by players is appealing

for several reasons. First, the setting is quite informal. It is a bargaining process between

three players in which individuals are randomly chosen to make proposals until no one

wishes to make another proposal. This setting is much more natural than a setting in which

the order of the players is known, or in which players are only allowed to make a specified

number of proposals. And second, because the end of the proposal process is endogenously

determined, the final outcome will be stable in that no other alternative can defeat it, if

players vote sophisticatedly. It is well known that in a three player divide-the-dollar game,

there is no stable bargaining equilibrium, or core. The existence of an equilibrium in this

game relies on sophisticated voting and the nature of the amendment procedure—since it

is solved recursively, any new proposal must be weakly majority preferred to all of the

amendments that preceded it.

The chapter proceeds as follows: Section 2.2 describes the structure of voter prefer-

ences, the structure of the amendment game itself, the notion of the Banks set over an infi-

nite alternative space, and the equilibrium concept used in the game. Section 2.3 presents

some results about the Banks set needed for solving the game, and then proves that the

Banks set equals the uncovered set in a distributive three-player game with linear prefer-

ences. Section 2.4 solves for the set of outcomes of the N-amendment game, and Section

2.5 concludes.
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2.2 The Model

2.2.1 Setup and Preliminary Definitions

Consider a voting game consisting of a set � of players, where � � ��� � � � / � , and let the

set of alternatives be � � �*� ��� � ��� � ���1� �� $ � ��� ���
	���� � � � � � . Let � � denote the � -th
component of a vector � , and let � � be an element of � . For each � define � � � ���  �� �

by

� � � � � � � � for �  � and

� � �� !� ��� � .

In words, we are looking at a divide-the-dollar game; preferences are assumed to be linear

and the alternative space is the unit simplex. If no policy is chosen, all players receive a

payoff of negative one. Many of the following definitions and lemmas can be made in the

context of a more general set of alternatives and preferences. Assume this set of alternatives

is convex, and that preferences are strictly quasi-concave and continuous over this set. I

will call this set of alternatives ��� � � .

The point � is strictly majority preferred to � , written ��� � , if

� ��� �� � � � � � � " � � � � � � �� � .

Define � � � � as the set of all points in � that are strictly majority preferred to � , so that

� � �.� � � � !� � ��� � � . Similarly, ��" � � � � � � � !� � �#��� � . Let ���%$ � and � " � �&$ � be

the closures of � �&$ � and ��" � �%$ � , respectively.2

Given a finite set of alternatives ' � � � � � ) ) ) � �)( �+*,� with - � ��� � � � ) ) ) �/. � , define an

agenda, 0 , to be a permutation of ' , and let 1 denote the set of all agendas composed of

2The notation 2 is also used by Banks and Gasmi, and simply represents the weak majority preference
relation. In much of the literature it is termed 3 .
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elements of ' . Thus,

0  1 � �*� � ��� ��� � �
��� ��� � ) ) ) � �

��� ( � ���' ( �	��� - � - and � is � � � � )

Voting over the elements in an agenda follows an amendment procedure. Letting �
� � � ��� � � ,

for a given agenda 0 , a decision over the alternatives in an agenda is arrived at by: � � �
comparing � ( to � ( " � via the weak majority preference relation; � � � � comparing the winner

to � ( " � , and so on until a single remaining alternative is reached. This alternative is the

voting outcome. If a player is indifferent between two alternatives on an agenda, I assume

that he votes for the alternative proposed later in the agenda formation process. Although

this assumption has been used frequently, as in Banks and Gasmi (1987) and Austen-Smith

(1987), Duggan (2003) shows that it poses problems in proving the existence of subgame-

perfect equilibria. This is because while the assumption guarantees the existence of a best

response for the last proposer, it does not guarantee the existence of a best response for

the next-to-last proposer in all subgames. In the setting I examine, the assumption poses

no problem because I am not considering subgame perfection. However, this assumption

greatly effects the equilibrium that I construct, and this will be discussed in further detail

in Section 2.4.

2.2.2 Game Form and Solution Concepts

N-Amendment Games and Sophisticated Agendas

The N-amendment game considered here begins as one player is randomly selected to

propose an alternative to be considered, called the bill. After the bill is proposed, another

player is randomly selected to propose an amendment to the bill. This player may be the

same person who proposed the initial bill. Once this amendment is proposed, another player

is randomly selected to propose an amendment to the amendment. And so on. The process

continues until no players remain that wish to amend the last proposed amendment; i.e.,

until there is no remaining point on the simplex that is weakly majority preferred to every

other previously proposed alternative. The bill and subsequent amendments constitute an
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agenda. Once the agenda is set, the players then vote on the agenda via an amendment

procedure.

Suppose a bill, � � , and . � � amendments, � � � � ) ) ) � � ( � , are proposed. The resulting

agenda is 0 � � � � � ) ) ) � �)(�� . In the subsequent voting game, ��( is paired against � ( " � , with

the winner paired against � ( " � and so on. Consequently, the assumption of sophisticated

voting greatly restricts the types of amendments players choose to propose. If an amend-

ment is chosen that is not weakly majority preferred to every amendment proposed before

it, then that amendment cannot change the outcome of the game in any way and is there-

fore irrelevant. The following definition of a sophisticated equivalent agenda formalizes

this idea.

Definition: Given an agenda 0 � � � � � ) ) ) � �)(�� , the sophisticated equivalent agenda

0�� � � � ��� � ) ) ) � �)( � � is defined as,

i) � � � � � �

ii) for � � ��� . ,

� � � �
���� � � if � � �� �
	 and � �  � � �
	 � � ���� � �
� � " � � otherwise

and the reduced form, 0 � , of the sophisticated equivalent agenda 0 � is defined as the trun-

cated version of 0�� ; if 0�� � � � � � � � � � � � � � � then 0 � � � � � � � � � � � � . Consequently, the

effective strategy space for player � after alternatives � � � � ) ) ) � �)(�� have been proposed is

� ��� �)(���� � � �)( " � ��� $ $ $�� � � � � � ��� � � � � ) ) ) � �)( � , and I will restrict my attention to this space.

3

Externally Stable Chains

Given a set � and a binary relation, ' , on � , a chain � is defined as a subset of � such

that ' restricted to � is a linear order. A binary relation ' is a linear order if it is complete,

transitive, and anti-symmetric (for all � � �  � , ��' � and � ' � implies � � � ). Because

3Austen-Smith (1987) shows that when agendas are formed endogenously, sophisticated voting is obser-
vationally equivalent to sincere voting. This is precisely the reason that the effective strategy space is so
restricted after a sequence of proposals have been made.



13

we are considering sophisticated equivalent agendas, the related binary relation is the weak

majority preference relation, � , which is clearly not anti-symmetric. Define � *�� to

be a weak chain if a binary order � restricted to � is complete and transitive, but not

necessarily anti-symmetric. Thus, the alternatives in the reduced form of a sophisticated

equivalent agenda constitute a weak chain. Since the remainder of the chapter focuses

solely on weak chains, I will from now on refer to weak chains as chains.

Let � be the set of all finite chains in � . Then a chain � �� is externally stable if

and only if there exists no �  � ��� such that for all � �� , � � � . Thus, there is no

alternative outside of � that is weakly preferred to every alternative in � . Let � � *�� be

the set of externally stable chains in � , and for all � � �� � , define ��� � to be the set of

maximal elements of � � , so that for all �  � � � and all � �� � , � � � . Note that every

chain has at least one maximal element.

1

2 3
G

HI

Figure 2.1: A minimal externally stable chain.

An externally stable chain 	�*�� is a von Neumann-Morgenstern stable set if for all

� � � 
	 , it is not the case that ��� � . This property is termed internal stability. In the game

considered here, only one finite externally stable chain also satisfies the property of internal

stability. This chain is called the simple von Neumann-Morgenstern stable set. The simple

von Neumann-Morgenstern stable set refers to the unique finite stable set, which consists

of the points �*� ���� ���� $ � � � �� � $ � �� � � � $ � ���� �� ��� .
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A further restriction can be made on the set of externally stable chains. Consider Figure

2.1 which depicts the ideal points of the three players, three linear indifference curves, and

the simple von Neumann-Morgenstern stable set � � � � ��� � . The line connecting points �
and � represents all outcomes where Player 1 receives a payoff of �� . The shaded region

consists of all alternatives that are weakly majority preferred to both points � and � . It is

apparent that the points ��� � � ��� � form an externally stable chain. However, there are an in-

finite number of externally stable chains that can be constructed with starting points ��� � � �
and final element � . For example, any point � could be inserted into the chain between �
and � to form another externally stable chain ��� � � � � ��� � . Moreover, an arbitrarily large

number of points could be inserted into the chain, yielding an arbitrarily long externally

stable chain. Figure 2.2 illustrates this; pick a random point, � �  � ��������� � � � , and add

it to the chain. Then add point � �  � ����� � � � � � ��� ��� � � to the chain. Then add point

� �  � ����� � � � � � � � ��� � � � � ��� � � to the chain. And so on. By picking alternatives in

such a fashion, an infinite number of arbitrarily long externally stable chains can be con-

structed with beginning elements ��� � � � . However, all such chains must have the same

final element � , since � is strictly majority preferred to every point in the set � ����� � � � � � .
Thus, the shortest, or minimal, externally stable chain with beginning elements ��� � � � is

��� � � ��� � .

1

2 3

p1

p2

p3

G

HI

Figure 2.2: Constructing an arbitrarily long externally stable chain.
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Definition: An minimal externally stable chain is an externally stable chain � � � � ) ) ) � �)(�� ,
where for all � � . , � � � � ) ) ) � �

� " � � �
��� � � ) ) ) � � ( � is not externally stable.

In other words, you cannot remove an element of a minimal externally stable chain and

still have an externally stable chain. This implies that for all � � . , there exists a � 
��� � � � � $ $�$ � ��� � � " � � � ��� � ��� � � � $ $ $�� � � �)(�� such that either � � � � or � � � � . Let

�
� � � � denote the set of all minimal externally stable chains.

The Uncovered Set

For any set � , and any � � �  � , the covering relation
� *,��� � is defined as,

� � � if and only if

i) �  �+" � � � � , and

ii) � �+" � � � � � � � * � �+" � � � � � � � .4

In words, � “covers” � if and only if � strictly beats � and if � strictly beats � , then � also

strictly beats � .

The Banks set, with an infinite policy space

In his 1985 paper, Banks defines the set � � � � , later termed the Banks set, as the set of all

outcomes achievable as sophisticated voting outcomes under some agenda. In his definition

it is assumed that the policy space is finite and that an agenda is an ordering of every

element in the policy space. Banks then proves that this set is equivalent to the set of

maximal elements of maximal chains, and that this set is always a subset of the uncovered

set. However, his definition cannot be extended to the case of an infinite policy space

4McKelvey’s (1986) definition also requires that iii) 2	��
��� 2	����� . Under his definition of covering, the
entire simplex is uncovered in a divide-the-dollar game. Under my definition, the vertices of the simplex
are covered. For a discussion of different definitions of the covering relation and their implications in a
divide-the-dollar setting, see Penn (2001).
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because there is no well defined way to characterize every possible countable ordering of

every element in the space. Furthermore, it is unclear how an amendment procedure would

progress over this infinitely long agenda. To deal with this problem I have extended the

definition of the Banks set over an infinite policy space:

� � � � � � � 	  � ��� � �  � � with � 	  � � � � )
This definition is in keeping with that proposed by Banks for the case of a finite pol-

icy space, and implicitly assumes that the voting process takes place in discrete time and

terminates in finite time. Restricting our attention to finite externally stable chains also en-

ables us to maintain the result that the Banks set is a subset of the uncovered set (proved in

Lemma 4). It is possible to construct an infinitely long externally stable chain whose limit

point is covered. Consider the chain � � � � � � � � � ) ) ) � , where

� � �
���� �%� � � �� � � � � �� �

�
� $ � if � is odd

�%� � � �� � � � $ � � �� �
� � if � is even.

The beginning of � is pictured in Figure 2.3. This is an externally stable chain with limit

point �%� � $ � $ � , where �%� � $ � $ � is not an element of the uncovered set (proved in Proposition

3).

Moreover, because sophisticated equivalent agendas are chains, it is natural to relate

the concept of an externally stable chain to that of a endogenously formed sophisticated

equivalent agenda. If an agenda has been proposed that is not externally stable, then there

exists a point that is weakly majority preferred to every element of the agenda.
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1

2 3

x1 x2

x3 x4

x5 x6

x7 x8

Figure 2.3: An infinitely long externally stable chain whose limit point is covered.

Solution Concept and Extensive Form

We are now ready to specify the extensive form of the game. Using the definition provided

by Osborne and Rubinstein (1994), we are considering an infinite game of perfect infor-

mation with a possibly infinite horizon. The game is one of perfect information because

players are perfectly informed of all past events when taking actions. Denote by 1 ( the

set of all possible agendas of length . , with generic element 0 ( . Define 0�� �  and 1 �

to be the set of infinitely long sequences of distinct elements. Let 1 ����� ��� 1
�
��1 � ,

with generic element 0 . Let 	 �
��� ��� ��� � � � / �
�
, with generic element  . At a  �	 , the

extensive form of the game can be represented by the triple � � � 1 �  " , where

� � equals the set of players defined in Section 2.2.1.

� 1 equals the set of (possibly infinite) histories.

– A history, 0 , is terminal if 0  1 � or 0 �� � , the set of externally stable

chains.

�  assigns to each nonterminal history a player in � .

It is assumed that players vote sophisticatedly once a terminal node has been reached, and
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this assumption implies that for the game defined above and given a terminal history, 0 ,

players receive payoffs equal to zero if 0 is infinitely long, and equal to the sophisticated

voting outcome of agenda 0 if 0 
� � .
The solution concept employed here is maximin-Nash.5 A maximin-Nash equilibrium

is a strategy profile such that no player can guarantee himself a higher minimum possible

utility by utilizing a different strategy. Throughout, I will abuse notation by referring to an

agenda 0 ( as a set, when it is actually a sequence. Thus, ���  0
( is the
� (�� element of

agenda 0 ( , and � � 0 ( is the set of all alternatives minus the alternatives that are part of

the sequence 0 ( . A strategy is a sequence of functions, ��(� �%$ � �(�� � , such that � (� � 0 ( " � �
� �
0 ( " � . Since players are chosen randomly to propose items to the agenda, let ��� � 0 ( �
be the set of finite reachable maximal chains in periods .	� � , .
� � , ... under strategies � (� .
Then, for some   	 , a given � ���� � � 0 ( � would look like

� � � � 0 ( � � (
� �� � 0 ( � � � (

� �� � ( � ��� � 0 ( � � ( � �� � 0 ( � � � ) ) ) � )

Let � � � 0
(�� denote the corresponding set of sophisticated voting outcomes. Finally, let� � 0�� � � � �� � � 0 � � � 0� �  � ��� � 0 � 0� �	
� � � all � � 0�  1� � .

A maximin-Nash equilibrium at a given   	 is defined as a profile of strategies, �� (� �%$ � ,
such that for each ���� and . �� and for all �0 ( " � � � � � � ) ) ) � �)( " � �  1�� "�� such that

� �  �0 ( " � � � � � �� �� � � � � � � � ) ) ) � � ��" � � �
� ��)(� � �0 ( " � � �������! ��#"$ �&%(')+*-,�.

/  �0-12 �3%54 �768 *�,�.:9 $ � � � � �.�#; ,

where � 68 *�,�. �=<?> $ � 68 *-,7. � � � ��@ � � � �0 ( " � � .

Thus, �� is a maximin-Nash equilibrium if �� (� maximizes Player � ’s minimum possible

5Stackelberg equilibria are a subgame-perfect refinement of Nash in which players move sequentially.
Although players also move sequentially in this game, I call this equilibrium maximin-Nash because I am not
considering subgame perfection.
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utility when agenda �0 ( " � has occurred along the equilibrium path of play. The second

condition implies that the effective strategy space after a sequence of proposals has been

made equals the set of policies which weakly defeat every previously proposed alterna-

tive via majority rule, and which, when appended to agenda �0 ( " � , form the beginnings

of some minimal-externally stable chain. Thus, there exists an �
4  � � such that

�
4 � � �0 ( " � � �� (� � �0 ( " � � � ) ) ) � . This implies that players will not propose superfluous al-

ternatives, or alternatives which are not the outcome of the game, and could not change the

outcome of the game under any circumstance.

Given this definition, the maximin operation is defined only along the path of play.

Because of this, the equilibrium concept used here is not subgame-perfect, and thus not

equivalent to the minimax-Stackelberg equilibrium concept used by Banks and Gasmi.6

Although the equilibrium concept I use is quite weak, I will show that it yields a unique

set of equilibrium predictions. Furthermore, any minimax-Stackelberg equilibrium must

also be a maximin-Nash equilibrium, and so the results of Section 2.4 demonstrate that if a

subgame-perfect equilibrium exists, then it must also yield the same predictions.7

It is not clear that the equilibrium concept defined above is the only, or even the best,

concept to use in the context of this game. I use it for three reasons. First, because one of

the main motivations of this chapter is to test whether the Banks-Gasmi M* result remains

robust when the assumption of a three-item agenda is relaxed, an equilibrium concept is

needed that is consistent with the concept used by Banks and Gasmi. Maximin-Nash is

a weaker equilibrium concept than the minimax-Stackelberg concept that they use, and I

use it here solely for purposes of tractability. However, since the game yields unique Nash

predictions, we can infer that if a minimax-Stackelberg equilibrium exists, then it must

yield the same predictions as those generated here.

6Although Banks and Gasmi call their equilibrium concept minimax-Stackelberg, players are actually
maximin-utility maximizers. To be in keeping with their terminology however, I will also refer to the concept
as minimax-Stackelberg.

7As a helpful referee pointed out, proving the existence of a subgame-perfect equilibrium in this context
poses a real challenge, because the action spaces of the players are infinite and non-compact, and a player’s
actions in one period restrict the actions of the next player in a deterministic way.
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Second, when the order of the players is unknown Banks and Gasmi use a maximin

framework, as opposed to an expected utility framework, for tractability purposes. The

problem becomes extremely difficult when a maximin assumption is not made. Further-

more, in the environment considered here it is unclear whether a subgame-perfect equilib-

rium even exists.

Third, a maximin framework simply implies a different behavioral assumption than

does a traditional expected utility framework. Whether this behavioral assumption is cor-

rect or not is an empirical question. However, considering that the game is potentially

infinite-horizon, I argue that a simplifying assumption such as maximin is reasonable. More

work remains to be done on finding other solution concepts for such games.

2.3 Results

The following lemmas and propositions are used in the proofs of the two main results of

this chapter. The first result, Theorem 1, is that the Banks set equals the uncovered set in

a divide-the-dollar game with linear preferences. The second result, Theorem 2, is that the

unique set of maximin-Nash equilibrium outcomes that arise from the game described in

Section 2.2.2 is the simple von Neumann-Morgenstern stable set.

First, two definitions.

Definition: A convex component, � of a set ��� � � is a maximal convex subset of ��� � � with

respect to inclusion.

Definition: A convex component � dominates a convex component � � if there exists an

�  � such that �  � � �.� for all �  � � .8

Lemma 1 proves that, given a point �  � , one convex component of the set � � � �
dominates the other convex components of � � � � . This fact is needed in the proof of Theo-

8Note that the dominance relation is weak; two components can dominate each other.
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rem 1—it is used to show that, given any point � in the uncovered set, an externally stable

chain can be constructed with � in its set of maximal elements.

Lemma 1 For any �  � , � � � � is the union of one, two, or three convex components, and

one of these components, � � , dominates all of the others.

Proof: First, if � � �&� � $ � $ � then, because there does not exist a � � � �.� � �(� � �(� �� � such

that � � � $ for some � , ��� � � � � , which is the unique convex component of � � � � . The

remaining cases will be handled by the same argument. For example, if � � � � � � ��� � ���1�
with � � � ��� " $ and ��� � $ , then ��� � � consists of the union of two convex components,

�
� and ��� , where

�
� � ���  � �
�#�  � � and � �  ��� �

�	� � ���  � �
���  ��� and � �  ��� � )

�
� and ��� are both clearly convex, and intersect only at the point � . Similarly, if

� � � � � � ��� � ���1� with � � " $ for all � , then � � � � consists of three convex components,

where �#� and �	� are as above, and

�	� � ���  � �
�#�  � � and � �  ��� � )

Consider Figure 2.4. First suppose that � � � � � � ��� � $ � , so that � � � � consists of two

convex components. Also suppose, without loss of generality, that � � � ��� . Let �
� and

�	� be defined as above, and consider the point � � � � � � � $ � � � � � �� �
� . Then ���-� � � �  

� �-� � � � � , for all � � �  �	� . However, since the lowest payoff Player 2 can receive in region

�	� is ��� , it follows that the highest payoff Player 3 can receive in region �
� is � � ��� .
However, since ��� � ��� , it follows that � � ���  � � �� , for all � � �  �	� , which implies that

��� � � � � " ��� � � � � � . Thus, the point ���  � � � � � � , for every ��� �  �	� .
Now consider Figure 2.5. Suppose that � � � � � � ��� � ���1� so that � � � � consists of the

union of three convex components, as defined above. Suppose that � � � ��� �%��� . Then by
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Figure 2.4: Convex component ��� dominates ��� with the point � � .

precisely the same argument as above, the region ��� dominates region ��� with the point

� � � � � � � � � � � � $ � and �	� dominates �#� with the point � � � � �%� � ��� � ��� � $ � . �

Together, Lemma 2 and Proposition 1 prove that, given any chain � , a finite externally

stable chain can be constructed by adding points to the end of � . This result is needed in

the proof of Theorem 2, to show that the only restriction imposed by sophisticated voting is

that each amendment must be weakly majority preferred to all prior amendments. In other

words, a player can never propose a point that belongs only to chains that are infinitely

long; any chain can be ended.

Lemma 2 Given any chain � � � � ) ) ) � �)(�� such that � � � � ��� $#$)$�� ��� �)(�� is convex, a finite

externally stable chain can be constructed with beginning elements � � � � ) ) ) � �)(�� .

Proof: Let � � � � � � ��� ) ) ) � ��� �)(�� , and assume that � is convex. If � � � � � � ) ) ) � �)( � �  or

a singleton (call it � ( � � ), this proof is trivial because either � � � � ) ) ) � �)(�� or � � � � ) ) ) � �)( � �)(
� � �

is itself an externally stable chain. Suppose then, that � � � � � � ) ) ) � � ( � contains multiple

elements. Then � is a triangle with sides parallel to the edges of � . To see this, note

that for any � , ��� � � is a collection of equilateral triangles, with sides represented by the

indifference curves of the players. The indifference curves of any given player are parallel
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Figure 2.5: �	� dominates ��� with � � and �#� with � � � .

to each other. Clearly the intersection of two equilateral triangles with parallel sides is

an equilateral triangle or an isolated point. Thus, � is either empty, or a collection of

equilateral triangles (with edges parallel to the simplex) and (or) isolated points. Since I

have assumed that � is convex, and is neither empty nor an isolated point, it follows that

� is a triangle with edges parallel to the edges of the simplex.

The boundary of � is defined as the set of points �
�  � that are not at the center of

any � -ball ' 2�� � � . Thus,
� � � � �  � � � � � �.� � � � � � � , for all �  � , and for some�  ��� � � � / ��� . In words, the boundary of � consists of the set of points that make some

player worse off than any other point in � .

For any point � in
� � , and for some

�  ��� � � � / � , then for all �  � , � � � � � � � � � � � .
Define three distinct points � � � � � � � � � � � � � as follows: let �

�  ��� � 	1� , � � �  , where � �� �
� �� , � �� �  �0-1$ � � � �-� � � , � �� � � �� , � �� �  0 1$ � � ��� � � � , � �� � � �� and � �� �  �0-1$ � � ��� � � � . We also know

that
�	� � � �

�� � � for � � � � � � / . Thus we have a perfectly identified system of nine equations,

so the points � � � � � � � � exist and are unique. More specifically, letting � � �  �0-1$ � � � � � � � ,
then � � � � � "��
	 "���� � � .� � � � � � "�� . "��
	 � ���� � , � � � � � "��
	 "���� � � .� � � "�� . "���� � �	� � � � � , and

� � � ��� � � � "�� . "�� � � � 	� � � "�� . "�� 	 � � �� � .

I will now show that � � � � � � ) ) ) � �)( � � � � � � � � � � is an externally stable chain, i.e., � �
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Figure 2.6: Ending an externally stable chain with a “mini stable set.”

� " � � � � � � � " � � � � � � � " � � � � � � � � � � � � � � � � . To see this, consider Figure 2.6. Without loss

of generality, choose a point ���� � � � � � or � � such that �  � and �  ��� � � ��� � � � � � .
By the definition of � and the points � � and � � , it follows that � � � � � � � "�� . "�� � � � 	�
and � � � � � � � "�� . "�� 	 � � �� . Since � � � � � � � � "�� . "�� � � � 	� � � "�� . "�� 	 � � �� � , it is apparent

that Players 2 and 3 strictly prefer � � to � , and so �  ��" � � � � � . Consequently, � �
�+" � � � � � � �+" � � � � � � ��" � � � � � � � � � � � � � � � � .

It follows that the chain � � � � � � ) ) ) � �)( � � � � � � � � � � is externally stable.
�

Proposition 1 Given any chain � � � � ) ) ) � � ( � , a finite externally stable chain can be con-

structed with starting elements � � � � ) ) ) � � ( � .

Proof: Let � � � � � � � � $ $ $ � � � �)(�� . For any �  � � �*�&� � $ � $ � � � $ � � � $ � � � $ � $ � � ��� , � � � �
is composed of either two or three convex components, each separated by the indifference

curves of two out of three players, and connected only at the point � . More formally,

the phrase “separated by the indifference curves of two players” implies that for any two

convex components � � � � � � � ��� � � and any points �  � � and �  � � � , there exist two

players, � and  , such that for all � and � , � � � �.�  � � � � � and � 	 � � �  � 	 � � � , with equality

holding only at � � � � � . Thus, � � �#� � $%$ $ ��� � , where � � is a convex component.9 For

9By the discussion in the first paragraph of the proof of Lemma 2, we also know that every
���

is either an
isolated point or a triangle with sides parallel to the edges of the simplex.
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any two � � � � � �  � , � � and � � � are separated by indifference curves of at least two players,

and are either disjoint or connected at a single point � �  � � � � ) ) ) � �)( � . Thus,
� � � � � � � � ��� .

I will prove this proposition by constructing an algorithm for finding a sequence of

points � � � ) ) ) � �
�

such that � � � � ) ) ) � �)( � � � � ) ) ) � �
�
� is a chain and � � � � � � � � $ $ $
� ��� �

�
�

is convex. Then, by Lemma 2, there exists a “mini stable set” that ends the chain. Two

intermediary steps are needed.

Step 1: First I will show that for any two convex components � � � � � � � � , if the point � is

a vertex of � � , then � ���.� � � � � is convex.

Proof of Step 1: By Lemma 1 we know that � ���*� is the union of one, two, or three convex

components. First suppose that � � � �� � � , and suppose that � � � has a nonempty intersection

with two of the convex components of � ���*� . This implies that every player prefers some

point in � � � to the point �  � � . This contradicts the fact that � � and ��� � are separated by

the indifference curves of at least two players. Thus only one convex component of � ���*�
positively intersects � � � . Since � � � is itself convex, it follows that �����*� � � � � is convex.

Now suppose that � � � ��� � . Every convex component � can be defined by the min-

imum utility each player can attain in that component, since for all �  � , and for some�  ��� � � � / � ,
� � � � � �� � � � � �.� � � � � � � � . Let the minimum payoff that Player � can

receive in component � be denoted �
�� . It follows that a vertex of � can be defined as any

point in � where two players, � and  receive payoffs of �
�� and �

�	 , respectively. This im-

plies that two players weakly prefer every point in � � to the point � . Thus, � ���*�
� � � � � � ,
which is convex. This proves Step 1.

Step 2: Next, I will show that for any two convex components, � � � � � � � � , either � �
dominates � � � with one of its vertices, or � � � dominates � � with one of its vertices, or both.

Proof of Step 2: � � and � � � separated by the indifference curves of at least two players

implies that one player (call him Player 1) prefers every point in � � to every point in � � �
and another player (call him Player 2) prefers every point in � � � to every point in � � . Let
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� � � � � ���
� � �

���
� � � � �

���
� � �

���
� � be the point in � � that leaves Player 3 best off. Define

� � � similarly and note that these points are distinct and are also vertices of � � and � � � ,
respectively. Then ��� �! ��#"$ ����� � 9 � � ��� ��� � � � dominates the component that it is not an element of.

This proves Step 2.

Let � be the number of convex components in � . Given these two results, we can now

construct a sequence of points � � � ) ) ) � �
�

such that � � � � ) ) ) � �)( � � � � ) ) ) � �
�
� is a chain and � �

��� � � � � $ $ $ � ��� �
�
� is convex. Let �#� � ) ) ) � � � be any ordering of the convex components of � ,

and to simplify the notation I will first suppose that no two components in � simultaneously

dominate each other.

At each stage in the construction, we will compare two components via the dominance

relation. Let  ��� � � � � � and
� ���

� � � � � denote the two players whose indifference curves

separate the components being compared ( �
�

and � � in this case), and let 	 ���
� � � � � de-

note the third player. Assume  � �
. Then the sequence can be constructed as

�
� � ��� �! ��#"$ � � .�
 �

	
� �� � � . 9 �

	
�  ��� � �

� .	 � � . 9 � 	 � � �
� .� � � . 9 � 	 � � � � �

�
		 � � . 9 � 	 � � �

�
	� � � . 9 � 	 � ���

and for � � � ��� ,

�
� � �����! ��#"$ ��� � � ���  ��� � �

��� � ,7.�� � �	 � � �
��� � ,�.�� � �� � � � � �

� ��� .�� � �	 � � �
� ��� .�� � �� � ���

where � � �
� " ��

 � � � � �  � �
�� �  ��� 2 � ,�. � � � � � ��� � � � � � (with

� � and 	 � defined similarly),

� 2 � ,7. � � � � � � �
� " �  � � �

and � � � � 2 � ,7. � � ��� � � � � � .

In words, first �#� and �	� are compared via the dominance relation, and by Step 2 we

know that one of these components will dominate the other with one of its vertices, � � .
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Then the dominant component intersected with � � � � � is compared to ��� intersected with

��� � � � . By Step 1 we know that both of these sets are convex, and hence are themselves

convex components. By Step 2, one will dominate the other with vertex � � . This process is

repeated � times, where � is finite because there are a finite number of convex components.

Then the constructed sequence is transitive with respect to the weak majority preference

relation because each �
�

is chosen from the set � , which is restricted to � � � > � " �(�� � � � � ( � .
Because convex components are sequentially dominated (i.e., eliminated) as the sequence

is constructed, a single component will remain once the process is complete. By Lemma 2,

the chain can be ended by constructing a “mini stable set” on this remaining component.

In the case that two components dominate each other, then for some � two distinct points

will satisfy �����! �+"$ ��� � � �  ��� � �
� � � ,7.�� � �	 � �

� � � ,�. � � �� � � � �
� ��� .�� � �	 � �

� ��� .�� � �� ��� . To

extend the proof to this case, simply propose both points as �
�

and �
��� � and continue as

before.
�

Proposition 2 shows that in a divide-the-dollar game with linear preferences, the uncovered

set equals the unit simplex minus its vertices. This result is used in the proof of Theorem

1 to precisely define the uncovered set, and is used indirectly in the proof of Theorem 2, to

precisely define the Banks set.

Proposition 2 The uncovered set ������� equals � � �*�&� � $ � $ � � � $ � � � $ � � � $ � $ � � ���

Proof: � � �*�&� � $ � $ � � � $ � � � $ � � � $ � $ � � ��� � ����� � : proof by contradiction. Let � � � � � � ��� �
���1�	 � � �*�%� � $ � $ � � � $ � � � $ � � � $ � $ � � � � , and assume that there exists � � � �*� � �(� � �(� �  �
such that �

�
� � . Then, without loss of generality, we can assume that � � " � � , � � " ��� ,

� � � ��� , � � " $ , and � � " $ . Choose some � " $ such that � � " �(� � � and �
� � � .

Consider the point � � � � $ � � � � � � � � � � � � � . It is clear that � �  � ; 	� � � 9 � 9 � � �� � � and

� � �(� � � " � � ��� "%$ . Then � � "%$ implies that ���-� � � " ���1� �!� � and � � " �(� � � implies

that ��� � � � " � � � � � � , which together imply that � �  ��" � � � � . Similarly, � � �*� implies that

� � �(� � � " � � �(� � �!� � �(� , which in turn implies that � � � �!� � " ��� � � � , and � � � � " �(�
implies that � � � � � � " ��� � � � . It now follows that �  � " � � � � � , which contradicts the fact

that �
�

� � .
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������� � � � �*�&� � $ � $ � � � $ � � � $ � � � $ � $ � � ��� : Let � � �&� � $ � $ � . It is clear that there does

not exist a �  � such that �  ��" � � � � because there does not exist a � � � �.� � � � � � � �	 �
such that � � � $ for some � . Thus, � " � � � � �  . Consider the point �*� � � $ � ���� �� � . Then

��� � � � � " ��� � � � and ��� � � � � " ��� � � � imply �  ��" � � � � � . Also,  � ��" � � � ��� �+" � � � � � .
Thus, � � � � � . By symmetry it follows that ������� ��� � �*�%� � $ � $ � � � $ � � � $ � � � $ � $ � � � � .

�

Lemma 3 extends Banks’ 1985 proof that the Banks set is a subset of the uncovered set

to the setting of an infinite alternative space. Using this fact, the proof of Theorem 1 is

simplified to showing that the uncovered set is also a subset of the Banks set.

Lemma 3 The Banks set is a subset of the uncovered set ( � ����� * � ����� ).

Proof: Since we know that � ����� � � � �*�&� � $ � $ � � � $ � � � $ � � � $ � $ � � ��� , this statement can

be proved by showing that �%� � $ � $ � � � $ � � � $ � , and � $ � $ � � ��� � ����� . Suppose the contrary,

that there exists a finite externally stable chain, � � with � � � being a maximal element, and

without loss of generality let � � � � �%� � $ � $ � . Since ��" � � � � � � �  , it must be the case

that for all � � �� � , either � � � or � � � � $ . This implies that the entire chain must lie on two

edges of the simplex. The following paragraphs demonstrate that if this is the case, then

there must exist an � -neighborhood around �&� � $ � $ � that no point on the chain can defeat.

Let � � � ��� �! ��#"$ � � � ��� � $�� � � � �
�
� � . In words, � � is the point on the chain not equal to �%� � $ � $ �

that maximizes Player 1’s payoff. Without loss of generality, let � � � � � � � � � � � � $ � . Let

� � � $�� . � �� � � �
$�� . � �� � $ � . It is clear that � �
� , since � �� � � and � gives Player 1 a higher

payoff than any other point in the set � � � � � � � � ��� .

I will now show that �  � � � � � for all � �  � � . Let � �  � � � � � � � � . Either � � � or

� � � � $ . Suppose � � � � $ . Then � � " � � � and �(� " � � � imply that �  � � � � � . Now suppose

� � � � $ . Then � � � � � � and � � " � � � imply that �  ��� � � � . Finally, � � " � � �� and � � � � � ��
imply that �  � � � � � � . Thus the chain � � is not externally stable, a contradiction.

�

Theorem 1 The Banks set equals the uncovered set ( � ����� � ����� � ).

Proof: By Lemma 3 we know � ����� * ������� . I will prove that ����� � * � ����� by showing

that for any � � � � � � � � � �� � � �� �  � ����� , a finite externally stable chain can be constructed

with � � in its set of maximal elements. Consider Figure 2.7.
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Figure 2.7: Constructing an externally stable chain with maximal element ��� �������� .

By Proposition 2 we can assume, without loss of generality, that ��� � " $ and � �� " $ .
By Lemma 2 we know that ��� � � � is the union of either two or three convex components,

and that one of these components dominates the others. Call this dominant component � � ,
and assume that �#� � � �  � � ��� � � �  ��� � � � � and ��� � � �  ��� � � � ��� (which implies that

� � �  � �� and � � �  � �� ). Let �	� � � �  � � ���1� � �  � �-� � � � and ��� � � �  ��� � � � � � and let

�	� � � �  � � � �-� � �  � �-� � � � and ��� � � �  ��� � � � ��� .

Choose an arbitrary �  � $ � � � , and fix � such that � � ��$ � �� .

Step 1: Let the first point in our chain be � � � � $ � � � � �� � � �� � .

Step 2: Let the second point in our chain be � � � � � �� � $ � � � � �� � .

Step 3 � � � , �  / : If � $ � �� � � � � , let � � � � � $ � �� � � � $ � � � � $ � �� � � � and continue to Step

/ � � � � � . Otherwise, if � $ � ��  � � � , then let � � � � � � � � $ � � � � � � � , and continue to Step 4.

Step 4: Let  be the first integer such that � $ � ��  � � � . If � � � " � �� , the chain can then be

ended with the points � 	 � � � � $ � � �� � � � � �� � and �
	 � � � � � . If � � � � � �� , the chain can be
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ended with the points � 	 � � � � $ � � �� � � � � �� � , �
	 � � � � � � � � � � � � � � $ � , and �
	 � � � � � .

To see that this sequence of points forms an externally stable chain, first we must check

that there does not exist a �  � such that �  � � � � � � ) ) ) � ��� � � � � � � � � ) ) ) � � � � . Suppose

that such a � did exist. Then �  ��� � � � implies that either � � � � � �!� and � �� � � �/� or that

� � � � � � � and � �� � �(�/� or that � � �� � � � and � �� � � � � . The reader may find it helpful to refer

to Figure 2.7.

Suppose the first case (i.e., � �� � ). Since � � � � � � � � � � � � � � � � � �� , it follows

that ��� � � � �  ��� � � � , with equality possibly holding only if � � � � � � � � � � � � � $ � and � �� � � � � .
However, in this case, � � � 	 � � . Similarly, � � � � � �  ��� � �.� with equality holding only at

� � . Thus, Players 2 and 3 strictly prefer � � to � , so that � �  � � �.� .
Suppose the second case ( �  � � ). Then � � � �
	 � � �  ��� � � � , with equality holding only

at � � and � � � �
	 � � �  ��� � � � with equality holding only if � � � � � � � $ � � � � � � � and � �� � � � � .
However, � 	 � � � � � � $ � � � � � � � .

Suppose the third case ( �  �#� ). Then � is such that � �  � �� , �(�  � �� , � �� � � ,
� �� � $ � � �� � � � � �� � , and � �� � $ � � � � �� � � �� � . Then there exists a positive integer � such

that � $ � �� � � � �
� ��� � � � � � � � � � � $ � �� � � � . Find the smallest such � that satisfies

these inequalities, and note that when these inequalities are satisfied, Player 1 prefers � ��� �
to � . If � � � � � � � � � $*� �� � � , then the smallest such � satisfying these inequalities is

actually  from the last iteration of Step 3. In Figure 2.7, this is when  � � . Then

� � � � � � � � � � $(� �� � �
� � � � � � , which implies that Players 1 and 3 strictly prefer � 	

to � . Thus �
	  � � � � . If � � � � � $ � �� � � � � � � , then it follows that � � � � � �!� � � � �
� � �!� � � �� � � � � �� � � $ � �� � � � � � � � � $ � �� � � . � " $ implies that Player 3 prefers

� ��� � to � . Thus Players 1 and 3 prefer � ��� � to � , and so � ��� �  � � � � .
Last, we must check that � restricted to our sequence is transitive. First note that for

all � � � � ) ) ) �  , � � weakly beats � � " � � ) ) ) � � � , because Player 2 is indifferent between all of

these alternatives. It is clear that � �-� � � � " � �-� � � � � $ . To see that ��� � � � � " ��� � � � � ,
note that since � �� is the worst payoff Player 2 can receive from any point in region � � , it

follows that � � � �� is the payoff from a point in region ��� that leaves Player 3 best off.

Thus, � � ,� � � � � . Similarly, � � � � ) ) ) � �
	 � ,� � � � � . It is clear that Player 1 prefers these
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allocations to � � because ���1� � � � � $ . To see why Player 3 prefers these allocations to � � ,
note that � �� � � �� and that � 	 � � � � � � � . Since ��� � �
	-� � ��� � � � � for all �# � � � ) ) ) �  � � �
and � � � � � � � �� � � �� " � �� , it follows that � � � � ) ) ) � � 	 �� � � � � � . Next, � 	 � �  ��� � � �
since ���-� �
	 � � � � ���1� � � � � $ and ��� � �
	 � � � � � � � �� � � � � � � ��%" � �� � ��� � � � � .
Also, � 	 � �  ��� � � � � ) ) ) � � � � 	 � , because � � � � 	 � � � " $ � ��� � � � � for �� � � � ) ) ) �  � and

��� � � 	 � � � � � � � ��  ��� � � � � for �� � � � ) ) ) �  � . If � � � � � ��#" � �� , then � 	 � � � � � � � � � � � � � � $ � .
Since no point in our sequence so far gives Player 1 a better payoff than ��� � , � �-� �
	 � � �  
� �-� � � � , for all � �  � � . Similarly, the only points in our sequence so far that give player 2

a strictly positive payoff are � � and �
	 � � . However, � � � � � � � � � � �� � � � � � � � � � � �
	 � � �
and ��� � � 	 � � � � � �� � � � � � � . Thus, � 	 � �  ��� � � � , for all � �  � � . Finally, � � is weakly

majority preferred to every previously proposed point because no point yet proposed gives

either Player 1 or Player 2 higher utility than � � . Thus, � restricted to our sequence is

transitive.
�

Banks and Bordes (1988) show that the Banks set (defined analogously, but for a finite

policy space) is a subset of a different definition of the uncovered set than used here; namely

when � � ��� ��� � and � �  � � � � � � � � � � � � � � � . The authors also demonstrate that

the two different definitions of the uncovered set may not be the same in finite spaces. In

this setting the uncovered set equals the entire policy space under the definition used by

Banks and Bordes. Interestingly, in this continuous space, the Banks set is a subset of the

uncovered set under both definitions. 10

2.4 Equilibrium

The previous section demonstrated that in a distributive setting the Banks set, or the set of

finite agendas that admit no further possible amendments, coincides with the uncovered set,

and has full measure in the policy space � ) Thus, in this setting the concept of the Banks

set does not reduce the set of outcomes that are feasible in an amendment game. This

section demonstrates that imposing a further restriction that individuals play maximin-Nash

10I thank an anonymous referee for pointing this out.
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strategies reduces the set of feasible outcomes to a finite subset of the Banks set.

The following theorem provides a set of solutions to the three-player, N-amendment

game described in Section 2.2.2 in which players are randomly chosen to amend an agenda

until no player wishes to make another proposal. Banks and Gasmi (1987) examine a sim-

ilar game in which proposers are selected similarly but are only allowed a single proposal.

In contrast to their universalistic result, M*, I find that the outcome to the game considered

here is a point in the simple von Neumann-Morgenstern stable set, where one player is

guaranteed a payoff of zero. This outcome of a minimal winning coalition is in keeping

with Riker’s size principle and much of the literature on endogenous agenda formation in

divide-the-dollar games, such as Baron and Ferejohn (1989).

The proof of this theorem relies on the symmetry of the divide-the-dollar game and

the definition of maximin-Nash equilibria, which implies that the only information known

about a player is his ideal point and the effective strategy space after a sequence of proposals

has been made. Thus, if the effective strategy space after a sequence of proposals has been

made is perfectly symmetric about the ideal points of two players, then those players are

identical up to a relabeling of their names, and are guaranteed the same interim maximum

minimum payoff. The following lemma proves this fact.

If �� � is such that � � � ��� � ��� � ���1� , let the function � ��� � ��� � be defined so that
� ��� � � � � � ��� � � � � ���1� . Thus � ��� � � � permutes the first two elements of � . � ��� and � � � are

defined analogously.

Lemma 4 For any two players � �   � , if �  �0 ( " � implies � � 	 � � �  �0
( " � , then � 
��)(� � �0
( " � � implies � � 	 � �.�  ��)(	 � �0
( " � � )
Proof: Suppose not. Then there exists a �  �����! ��#"% ')+*-,7.

/  0 1
� �3%54 � 68 *�,�. 9 2 � � � � � �#; such that

� � 	 � � �%� ��� �! ��#"% ')+*-,�.
/  0 1

� �&%54 �#68 *-,7.:9 � � �
� 2 � � � 	 � � � ; . Without loss of generality, let � � � and

 ��� . We know that for all �  �0
( " � , it follows that � ��� � � �� �0 ( " � . Thus,

� �� 68 *-,7. � � ��� � �.� �� 68 *-,�. �
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because the majority preference relation is anonymous. Similarly,

�  � � � �0 ( " � � � � � � ��� � � �	�� � � �0 ( " � � � ��� � � � � )

Since � �-� � � � ��� � � ��� � � � � for all �  � , we have a contradiction. Thus, �  ���(� � �0
( " � �
implies � � 	 � �.�  ��)(	 � �0 ( " � � ) �

The following corollary follows immediately.

Corollary 1 If �  �0 ( " � implies � � 	 � � �  �0 ( " � , then at time . � � Players � and  are

guaranteed the same maximin level of utility.

Theorem 2 The unique set of maximin-Nash equilibrium outcomes of the game described

in Section 2.2.2 is the three-element simple von Neumann-Morgenstern stable set, �*� $ � �� � �� � �
� ���� $ � �� � � � �� � ���� $ ��� .

Proof: I will prove this theorem by proving three claims. First, I will show that if � has

been proposed first and Player 1 is selected to propose next, the outcome of the game will

be either � or � . Second, I will show that �� �� ����� � � , so that if � has been proposed

and Player 2 is selected to propose next, he will propose � . By Lemma 4, this claim is

equivalent to the claim that �� �� ����� � � , so that if Player 3 is selected to propose second, he

will propose � . And third, I will show that �� �� �� !� � � , so that Player 1 will always propose

� if selected to propose first.

To see that these three claims prove the theorem, first note that any externally stable

chain beginning with two points in the von Neumann-Morgenstern stable set must end with

the third point.11 By this, it follows that for all � , �� �� ��� � � � � � , and �� �� ��� ��� � ��� .

Claim 1: If 0 � ��� � �� � � ����� � ) ) ) � , then � � � 0�� � � � ��� � .

Proof of Claim 1: It is clear that argmax $ � � ��� � ��� �-� � ��� � � � ��� � . For all ���� , �� �� ��� � � � �
11For further clarification, see Figure 2.1 and the discussion of minimal externally stable chains that ac-

companies it.
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� and �� �� ��� ��� � � � , and so it follows that Player 1 can guarantee himself a payoff of ��
by proposing either � or � . Since Player 1 can guarantee himself a payoff of �� with

certainty and is playing a maximin-Nash strategy, it follows that he will choose � � � ����� so

that the outcome of the game will be � or � with certainty. Thus, if 0 � ��� � �� � � ����� � ) ) ) � ,� � � 0�� � � � ��� � .

Claim 2: �� �� ����� � � (or �� �� ����� � � ).

Proof of Claim 2: Suppose that �� �� �������� � with �� �� ����� � � � � � � � �� � � �� �� � ����� . Consider

Figure 2.8.12 Since Player 2 could have guaranteed himself a payoff of �� by proposing �
by the logic above, it follows that  �0-1 $ �&%54 � � 9 6$ 		 � ����� � � ��� is weakly greater than �� .

1

2 3

x2x3
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HI

Figure 2.8: If Player 2 proposes �� �� �������� � .

Now suppose that Player 3 is selected to propose next. Since Player 2 is already guar-

anteed a payoff of at least �� , the highest payoff Player 3 could guarantee himself is also
�� . Suppose he chooses the point � � � � � � � � � �� � � �� �� ������� � � � �� �� ����� � � � � � �� �� ������� . By

Proposition 1, an externally stable chain exists that begins with these three points.

After � � is proposed, the effective strategy space becomes � � � ������� ��� �� �� ����� � �
12Throughout the figures in this proof, the union of all shaded regions represents the effective policy space

after the first policy is proposed, and the more darkly shaded regions represent the effective policy space after
the second, and possibly third, policies are proposed.
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��� � � � � � � � �� �� ����� � � � � . Note that for each � � � ��� � ��� � ���1�  � � � �� �� � � � � , there is an

� �  � � � �� �� � � � � such that � � � � � � � ��� � ���1� . Thus it is apparent that � is nonempty if

�� �� ����� �� � , and for all �  � such that � � � � � � �(� � � � � , there exists a � �  � such that

� � � � �!� � �(� � �(� � . Furthermore, �� �� ����� will not equal � because then Player 2 would be

guaranteeing himself a payoff of zero when he could have guaranteed himself a payoff of
�� .

By Corollary 1, Player 3 is now guaranteed the same maximum minimum payoff of ��
as Player 2. However, since the point � $ � �� � �� � � � has already been proposed, there is no

point left in � that gives both players a payoff of �� , and so we have a contradiction. Thus,

�� �� ����� � � . By exactly the same logic, �� �� ����� � �

Claim 3: �� �� �� !� � � .

Proof of Claim 3: Suppose that Player 1 proposes a point �� �� �� !� � � � �� � � �� � � �� ���� � .

Since Player 1 could have guaranteed himself a payoff of �� by proposing � , it follows

that  �0-1 $ �3%54 � 6$ .. � � � � ��� �-� � � �  �� . To prove this claim, I have divided the simplex into six

regions, or cases. For each case, two things must be proved: first, that if �� �� �� !� is in the

region considered then Player 1’s maximin payoff is not strictly greater than �� , which is

what �� �� �� !� � � guaranteed her. And second, there exists no � �� � in the region considered

such that �  �� �� �� !� .
The six cases (or regions of the simplex) considered for this proof are as follows. First,

the case where � �� � � �� , second, the case where � �� " �� or � ���" �� , third, the case where

� �� " � �� " $ , fourth, the case where � �� � � �� , fifth, the case where � ��  �� , and sixth, the

case where � �� " � �� "%$ .

Case 1: � �� � � �� . First assume �� �� �� !� is such that � �� � � �� �� � �� . By Corollary 1, Player 2

is also guaranteed a maximum minimum payoff of �� and Player 3 is guaranteed a payoff of

zero. Thus, Player 1’s maximin payoff is not larger than �� .
Suppose that Player 3 is selected to propose next, and chooses � � � � � �� � � �� � � �� � . By

Corollary 1 this strategy guarantees him a maximum minimum payoff of at least �� , a con-
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tradiction since both 1 and 2 were also guaranteed at least �� .
If �� �� �� !� is such that � �� � � �� � � �� , then we immediately have a contradiction, because

by Corollary 1 all players are guaranteed the same payoff, but could not all be guaranteed

a payoff weakly greater than �� . Thus, Player 1 cannot guarantee himself a payoff weakly

greater than �� when � �� � � �� .

For Cases 2-4, suppose Player 2 is selected to propose next and chooses the point � � �
� � �� � � �� � � �� � . By the same argument as above, Players 1 and 2 are identical up to a relabeling

of their names, and so Player 2 is now also guaranteed a payoff of at least �� . As this is the

highest payoff Player 2 can guarantee himself, � � is indeed an equilibrium proposal for him

to make. It follows that Player 1 cannot guarantee himself a maximin payoff greater than �� ,
and that Player 3 will receive a payoff of zero with certainty. Let � be the effective strategy

space after �� �� �� !� and � � have been proposed, so that � � ��� �� �� �� !� � � � � � � � � ���� �� �� !� � � � � .

x1

x2
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Figure 2.9: If Player 1 proposes �� �� �� !���� � with � ��#" � ��#" $ .

Case 2: � �� " �� or � �� " �� . By the strategy of Player 2 defined above, both Players 1

and 2 are guaranteed a maximin payoff of �� . However, if either � �� or � �� is greater than
�� , then �� �� �� !�  � � � � , where � � � ���� ���� $ � , and so � � � � � �� �� �� !� � . Thus, we have a

contradiction. It follows that Player 1 cannot guarantee himself a maximin payoff weakly
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greater than �� when either � ���" �� or � ���" �� .

Case 3: � �� " � �� " $ . Consider Figure 2.9. Suppose that Player 3 is now recognized to

make the third proposal. The point � � � �&� � � �� � $ � � �� � is clearly in � because � � � �� �

� �� � � �� " � �� and � � � �� " � �� , which implies that Player 1 strictly prefers � � to both � �

and � � , and Player 3 is indifferent between all three points. Also, this point � � is strictly

preferred by Player 1 and Player 3 to every point in � that gives Player 3 a payoff of zero.

By Proposition 1 we know that a finite externally stable chain exists that begins with

the points � �� �� �� !� � � � � � � � , and so it must follow that there exists an � �  � � such that

� � � � � � � �
� � , since the addition of � � to the chain eliminated all externally stable chains

with maximal elements which allocated zero to Player 3. Thus, there is an equilibrium

proposal Player 3 can choose that guarantees him a payoff strictly greater than zero. This

contradicts the fact that both Players 1 and 2 each get a payoff greater than or equal to ��
with certainty. It follows that Player 1 cannot guarantee himself a maximin payoff weakly

greater than �� when � ���" � ���" $ .
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Figure 2.10: If Player 1 proposes �� � �� !���� � with � �� � � �� .

Case 4: � �� � � �� . Consider Figure 2.10. It is clear that � �� � �� , because if not, then the point

� � � , and consequently Players 1 and 2 could not both receive payoffs of �� . Suppose that
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Player 3 gets selected to make the third proposal, and chooses point � � � � � �� � � �� � � �� � . The

effective strategy space is now symmetric about the ideal points of all three players, and

so by Corollary 1 every player is guaranteed the same maximin payoff. However, since all

players cannot receive at least �� , we have a contradiction. It follows that Player 1 cannot

guarantee himself a maximin payoff weakly greater than �� when � �� � � �� .

For Cases 5 and 6, suppose Player 3 is selected to propose next and chooses the point

� � � � � �� � � �� � � �� � . By Corollary 1, Players 1 and 3 are identical up to a relabeling of their

names, and so Player 3 is now also guaranteed a payoff of at least �� . As this is the highest

payoff Player 3 could guarantee himself, � � is indeed an equilibrium proposal for him to

make. It follows that Player 1 cannot guarantee himself a maximin payoff greater than �� ,
and that Player 2 will receive a payoff of zero with certainty.
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Figure 2.11: If Player 1 proposes �� � �� !���� � with � �� � �� .

Case 5: � ��  �� . Clearly it is not the case that � ���" �� , since then �� �� �� !�  � � � � ,
and so � � � � � �� �� �� !� � . Thus, � �� � �� . Consider Figure 2.11. We also know that

� �� �� �� by Case 4, and that � �� �� �� , since � � � � � � � . Thus, � �� " $ and � �� " $ .
However, � � � �&� � � �� � � �� � $ �  � , since it is weakly preferred to both �� �� � � � �� � � �� � �� � and

� � � � ���� � �� � � �� � . Since � � � � � � � �� " �� , � � strictly defeats � , which is the only alternative
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in � that gives Player 2 a payoff of zero. Thus, if Player 2 is chosen to propose third, he

can propose � � and guarantee himself a payoff strictly greater than zero, a contradiction.

It follows that Player 1 cannot guarantee himself a maximin payoff weakly greater than ��
when � ��  �� .

Case 6: � �� " � �� " $ . The proof of this case is equivalent to the proof of Case 3, with the

labels of Players 2 and 3 reversed.

It follows that Player 1 will always propose �� �� �� !� � � .
�

It is clear that the solution provided by Theorem 2 depends greatly upon the tie-breaking

assumption used. If ties are broken in favor of the status quo, or broken randomly, it is

not clear that a solution to this game would exist. The fact that the agenda constructed in

equilibrium is not only externally stable but also internally stable reaffirms the importance

of the tie-breaking assumption, because no element of the constructed agenda strictly de-

feats any other element via majority rule. A good example of the effect of tie-breaking

rules on outcomes is the two-player analogue to this game, in which players are randomly

chosen to propose divisions of the dollar until no one wishes to make another proposal,

and the constructed agenda is then voted upon via unanimity rule. In this setting, the only

externally stable (weak) chain consists of every possible allocation of the dollar, and is thus

uncountably infinite. This is because every policy weakly majority defeats every other. In

this example both players get a payoff of zero.

There is a large literature on two-player bargaining games, and much of it has stemmed

from the work of Nash (1950, 1953). Nash approached the problem axiomatically, by

developing a list of five properties that any bargaining outcome should satisfy. Outcomes

should be Pareto efficient, individually rational (players should not get less from bargaining

than disagreement), scale covariant (changing the size of the pie should similarly change

payoffs), independent of irrelevant alternatives (eliminating alternatives that would not have

been chosen should not effect outcomes), and symmetric (if the game treats the players

symmetrically). The Nash bargaining solution to this problem is the allocation � ���� �� � .
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Rubinstein (1982) also solves a two-player bargaining game in which players sequen-

tially propose divisions of a pie that can be either accepted or rejected by the other player.

One difference between the game presented in this paper and Rubinstein’s game is that

Rubinstein’s players discount the future; the longer players take to reach an agreement, the

smaller the size of the pie gets. However, in Rubinstein’s game (with a pie equal to one)

the equilibrium allocation converges to � �� � �� � , the Nash bargaining solution, as discount

rates converge to one (i.e., as players become increasingly patient). Thus, in Rubinstein’s

game, payoffs converge to an efficient and equitable outcome. In this game, payoffs are not

efficient.

The opposite tie-breaking rule, biased in favor of the status quo, implies that we are

now considering strict external stability instead of weak external stability. In this case,

every policy is itself a strict maximal chain, because no policy strictly defeats any other.

The first proposer will propose his ideal point, and this will be the outcome of the game.

Thus, these two different tie-breaking rules each violate an axiom of Nash’s bargaining

solution; the first violates Pareto efficiency, the second violates symmetry. Both examples

demonstrate that the assumption of external stability in an equilibrium agenda may not be

appropriate in every bargaining game—in this case, a bargaining game under unanimity

rule.

In a constant-sum game under unanimity rule, no alternative strictly defeats any other,

and so the only externally stable chain of alternatives is uncountably infinite. The solution

presented in Theorem 2.4 also hints at the possibility that external stability may not be an

appropriate assumption in situations with many players. In a three-player constant-sum

game, the von Neumann-Morgenstern stable set forms the shortest externally stable chain.

If we hypothesize that this is also the case in constant-sum games with more than three

players, then the length of any possible externally stable chain will increase exponentially

with the number of players. In the three-player case, the size of the stable set is three. With

five players it grows to ten, with seven payers thirty-five, and so on. In a large legislature,

an agenda could conceivably require thousands of amendments in order to form an exter-

nally stable chain. Thus, the assumption of external stability may be more appropriate in

situations where a small number of players bargain informally, by tossing out ideas.
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2.5 Conclusions

Games of endogenous agenda selection pose many difficult modeling problems. One such

issue is the determination of the length of an agenda, and whether this length should be

endogenously or exogenously set. If the number of items on an agenda is not fixed, then

there is no well-specified end to the proposal process and we cannot backward induct to

solve for an equilibrium outcome. However, restricting the number of items on an agenda

can also lead to problems. As Banks and Gasmi’s results demonstrate, restricting players to

a specific number of proposals each can lead to minimax-Stackelberg equilibrium agendas

which are not externally stable. This chapter takes up where Banks and Gasmi left off to

ask the question of how agendas should naturally end when players are allowed to make

policy proposals for as long as they wish. While the equilibrium concept considered here is

somewhat unusual, it generates precise predictions in a very informal institutional setting,

and these predictions can be directly compared to those of Banks and Gasmi.

This chapter presents two results; first, it shows that the set of possible outcomes that

can be supported by a distributive amendment game with sophisticated voting (i.e., the

Banks set) equals the uncovered set, which has full measure over the space of alternatives.

Second, this chapter characterizes the unique minimax-Nash solution to an endogenous

agenda formation game with three players, and shows that this solution can be any of the

three points in the von Neumann-Morgenstern stable set. Thus, while virtually any division

of the dollar can be supported as a sophisticated voting outcome, allowing players to deter-

mine the agenda themselves narrows the set of potential outcomes to three unique points.

These two results provide a link between the concept of the Banks set, which has previ-

ously been defined only in terms of a finite policy space, and endogenous agenda formation

when an arbitrarily large number of proposals are allowed for. They are also in keeping with

much of the divide-the-dollar literature, such as Baron and Ferejohn (1989), which predicts

the emergence of minimal winning coalitions when agendas are endogenously determined.

This chapter also provides an interesting example of how finite and infinite-stage amend-

ment games are played out differently. I find that the solution to the N-amendment game

differs substantially from the universalistic M* solution to the two-amendment game found
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by Banks and Gasmi, even though in both games only three proposals are made. Allowing

for an arbitrarily large number of amendments does not change the number of amend-

ments actually made, but dramatically changes which amendments are made. In particular,

it motivates the first two proposers to work as quickly as possible to disenfranchise the

third player. Thus, this noncooperative game generates the same outcome as that generated

by a cooperative game in which two players collude—namely, a point in the simple von

Neumann-Morgenstern stable set.
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Chapter 3 A Model of Farsighted Voting

3.1 Introduction

Formal modeling has perhaps had its most important impact on the study of legislative pol-

itics. Beginning with the field of social choice theory a half-century ago, scholars sought

a formal means of directly aggregating individual preferences into collective outcomes.

However, the social choice theoretic technique proved to have limited predictive power;

the most well-known social choice theoretic results tell us that there is no normatively ap-

pealing means of aggregating individual preferences, and that, generically, any given policy

can defeat any other via an amendment agenda. These “impossibility” and “chaos” theo-

rems led many to believe that the direct aggregation of preferences into outcomes was not a

promising approach to the study of collective choice. As a solution to this dilemma, Shep-

sle (1979) presented the idea of a “structure-induced equilibrium,” in which institutional

detail is combined with social choice theory to yield core-based predictions. Shepsle’s ar-

gument is that, for a model to have predictive power, some specific institutional form must

generally be assumed. While the notion of SIE has today been discarded in favor of other

equilibrium concepts such as Nash, Shepsle’s argument in favor of institutions foreshad-

owed the course of formal modeling.

Institutional models today are generally noncooperative and game-theoretic, where the

game form (or institutional venue) is assumed exogenous. One of the advantages of these

models is that they have strong predictive power, as Nash equilibria virtually always ex-

ist. However the game theoretic approach can also prove problematic, particularly when

institutions are regarded as solutions to the so-called chaos problem. First, the predictions

of many models are not robust to slight institutional changes; Nash equilibria in particular

are highly sensitive to specific institutional detail. And second, when strict institutional

assumptions are made, they can effect outcomes in extreme, and sometimes quite unre-
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alistic, ways. Diermeier and Krehbiel (2002) argue that it is through the comparison of

institutional models that the link between institutions and outcomes should be drawn. In-

stitutional models in isolation should serve a more methodological, and less predictive,

role.

In this chapter I argue that the inability of social choice theory to yield predictions arises

not solely because the majority preference relation is unstable, but in large part because

social choice theory implicitly assumes a static environment. It fails to take into account the

fact that individuals may not only have immediate tastes over policies, but also preferences

over future turns of events. Thus, the behavior of a voter may depend on both his short

and long-term interests. This is captured in this model by adding a new dimension to the

standard social choice-theoretic framework. Here, individuals rank policies not only on the

basis of the utility they yield, but also with respect to the types of alternatives they can and

cannot defeat.

This model differs from much of the bargaining literature in several respects. First,

unlike Baron and Ferejohn (1989), I model bargaining as a dynamic process, in which

choices made today effect those feasible tomorrow. As in Baron and Ferejohn’s model,

proposals are made sequentially, however in this chapter proposals are not made by the

players themselves. Rather, policies to be pitted against the status quo arise exogenously.

The next chapter endogenizes the proposal process and in this way is more similar to Baron

and Ferejohn’s model. Another difference between this model and much of the bargaining

literature is that the bargaining process does not end once a policy has been agreed upon.

Instead, the chosen policy becomes the reversion point of the next round of bargaining. A

last difference is that this model often makes statistical, rather than point, predictions. In

this way, it is similar to McKelvey and Palfrey’s notion of quantal response equilibrium

although, again, the focus here is on the types of policies likely to emerge as a consequence

of bargaining over time.

Specifically, the chapter examines how individuals evaluate policies in a setting of re-

peated interaction, when they are aware that any policy enacted today will become tomor-

row’s status quo, and will lead to a future stream of legislation which is to some extent

dependent upon it. The focus is on continuing programs, in which policies remain in effect
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until new legislation is enacted. Examples of such programs include entitlements, regula-

tion, and both distributive and redistributive programs.1 Formal models to date have not

been able to make compelling predictions in the setting of a continuing program. I will

demonstrate that modeling farsightedness in this way is not only a more realistic approach

to the study of repeated bargaining, but that it also yields compelling predictions in a va-

riety of legislative environments. Furthermore, it does so in an “institution-free” way, by

keeping the level of institutional detail to a minimum. The chapter focuses on two main

questions. First, is there a way of evaluating policies in terms of what they are likely to

produce over time? And second, what do these individual-level evaluations imply about

the types of outcomes likely to emerge when programs are continuing?

The formal setup of the model is that of an infinite-horizon continuing program which

legislators vote on in discrete time. For every potential status quo, there exists a density

from which alternatives to replace that status quo are drawn, and this density is known by all

individuals. For each potential policy, individuals “look ahead”, and iteratively calculate

a long-term value based not only on the utility the policy yields, but also on the utility

yielded by policies which will likely defeat it in future rounds. Individuals then vote upon

the choices presented to them using these valuations. In equilibrium, the value every player

assigns to a policy equals the true expected value of that policy, given the valuations of the

other players. Using this information, we can then calculate a probability distribution over

the types of outcomes likely to emerge.

I show in this setting that, in the absence of a game form, players are not indifferent

between different policies which provide them with the same level of utility. This is be-

cause the space of alternatives which defeat each policy, and which each policy defeats,

are substantively different. In the setting of a continuing program in which status quos

are endogenously determined, we can expect a certain path dependence to be observed in

policy outcomes, and this path dependence cannot be captured in a simple one-shot model

of voting. In this model, it is precisely the probabilistic path which a policy leads to that

defines that policy. One consequence is that players are induced into taking the payoffs of

others into account when voting, not because of a behavioral assumption such as altruism,

1See Baron (1996) for a more detailed discussion of continuing programs.
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inequality aversion, or sophisticated voting, but because they know that the behavior of

others in large part determines which policies are enacted in the future.

A closely related paper is that of Kalandrakis (2002), in which the author analyzes an

infinitely repeated divide-the-dollar game with an endogenous reversion point, where the

status quo in any round is determined by the bargaining outcome of the previous round.

He finds that a Markov Perfect Nash equilibrium (in stage-undominated vote strategies)

of the game is characterized by a situation in which the proposer in each round allocates

himself the entire dollar, and this allocation is approved by a majority of players. This

result is interesting because it negates two common theories about the outcomes of repeated

bargaining games—namely, chaos and centrality. Under the characterized equilibrium,

only a finite number of outcomes are ever achieved with positive probability and once the

steady-state distribution is reached, every subsequent proposal allocates everything to the

proposer. Furthermore, the methodology used (MPNESUV) is appealing from a game-

theoretic point of view.

However, a distressing aspect of this result is that it seems entirely unrealistic. It is hard

to imagine any kind of democratic process by which a legislative dictator emerges, with

certainty, in every round. The author addresses this point in his paper by stating that the

strange result may generate intuition for the argument that, in actuality, budgets are delib-

erated under an exogenous reversion point. While this may be the case, it may also be the

case that different primitives of the model are incorrect; in reality, budget deliberations may

be history-dependent, policies to replace the status quo may arise probabilistically rather

than deterministically, and deliberators may tremble when casting votes. Thus, while Ka-

landrakis’ model tells us that only the most extreme policy allocations are ever generated

with positive probability, and McKelvey (1979) tells us that collective preference can be

manipulated to generate virtually any policy outcome, this model demonstrates that there

exists a methodological middle ground. By taking the agenda-setting process to be exoge-

nous and probabilistic, and by allowing players to ex ante evaluate policies on the basis of

what they are likely to produce over time, a unique distribution over observed outcomes

can be found.

The chapter proceeds as follows: Section 3.2 describes the notation used and presents
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the Markov model. Section 3.4 proves some analytic results. Under very general conditions

I prove that there exists a unique self-generating value function when the number of players

is large, or when players vote according to a stationary rule. Then I show that, regardless

of the number of players, there exists a self-generating value function in certain settings.

Section 3.5 provides some simple examples of the model in the setting of a unidimensional,

finite policy space. Section 3.6 discusses the specific applications of the model in greater

detail and presents numerical results concerning these applications in more complex policy

spaces. Section 3.7 concludes.

3.2 A Model of Farsighted Valuations

3.2.1 Notation

I assume a set � � ��� � � � ) ) ) � � � of voters (where � is odd), a compact set � � � �

of alternatives, or policies, and, for each �� � , voter preferences are represented by a

real-valued utility function, � � � � � � � . When the set � is infinite, also assume that

these utility functions are differentiable, and that their derivatives are uniformly bounded by

some constant � . A nonempty subset � ��� is called a coalition. I will restrict attention

to simple and anonymous games, so that given a collection of coalitions � with � �� ,

then � * � � implies � � �� . Anonymity implies that the voting rules considered here

are � -rules, such that for some fixed integer � " ��� � , � � � ��* � � � � �  ��� . The

collection � can be considered the set of winning or decisive coalitions.

3.2.2 The Markov Model, in Finite and Continuous Policy Spaces

Policy selection is modeled as a Markov process, and individual valuations over policies

are conditioned upon this process. First, assume � is finite. Players’ valuations at time .
are represented by a vector of continuous value functions � (

� � � �
�

. Player � ’s value

function at time . , � � ( is the � (�� element of vector � ( . We can define ��� to be the set of all

measurable functions from � into the real line. Then � � (  ��� and � ( 	� � � � ��� . The
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function � � ( is represented by

� � � � � � � � � � � � (3.1)

and

� � ( � � � � � � � � � � � � '��2 � �
�
� � ( � �.� � ��� ( � � � � � ( � �.� � � � � ( � � �-�%� � � ��� ( � � � � � ( � � � � ��� & � �.� ) (3.2)

The function � � � equals the utility player � receives from alternative � . The probability

of transitioning from state � to state � at time .
� � , given the two states are paired against

each other, is represented by � ��� ( � � � � � ( � �.� �  � $ � ��� . & � �.� is the probability mass from

which alternatives � to replace the status quo are drawn. '� � $ � � � is a discount factor.

In the infinite case, Equation 3.2 is written

� � ( � � � � � � � � � � � � '��2 � � � � ( � �.� � ��� ( � � � � � ( � �.� � � � � ( � � � �&� � � ��� ( � � � � � ( � � � � ���!& � � � (3.3)

and & � �.� is instead a density. In this case, & is assumed to have full support, and to be

continuous and differentiable in � . Let 	 be the space of continuous, real-valued functions

taking � to � � . Then � � ( �	 and � ( 
	 � .
Note that there are two types of transitions playing into the above equation, � and & . I

will refer to these as “transition probabilities” and “transition densities” (or “masses”, when

� is finite), respectively. Intuitively, alternatives to replace the status quo arise probabilis-

tically, picked from a stationary transition density & . Since & is exogenous, the model

assumes that legislators do not explicitly set the agenda themselves, but have fixed beliefs

over the types of alternatives which will be added to the agenda. These beliefs could be

uniform over all alternatives (uninformative), or could be generated by fixed external pres-

sures from political parties, special interests, constituencies, or some function of the ideal

points of the legislators themselves. However, once such an alternative is picked, it must

then be pitted against the status quo, and will defeat the status quo with some transition
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probability � .

Transition probabilities are possibly nonstationary because legislators retrospectively

update the values that they assign to policies, and vote according to these updated values.

A legislator could have initially assigned a very high value to policy � . However if � is

replaced by a stream of future policies that the legislator dislikes, then the value he assigns

to � will be brought down in subsequent rounds, and this will be reflected in how he votes.

The following two assumptions are made throughout the formal analysis of the model.

Assumption 1 Transition probability assumption

For all � � �  � , � ��� ( � � � � � ( � �.� � , or the probability of transitioning from policy � to policy

� at time .	� � , given � and � are put to a vote and given value function � ( , can be written

as the probability of victory of � over � :

� ��� ( � � � � � ( � � � � � �
� ���

�
�� � � � ��� � � � � � � � � �.� �

�
���� � �&�

� � � ��� � � � � � � � � � � � � (3.4)

where � � ��� � � � � � � � � �.� �  � $ � ��� represents Player i’s probability of voting for � over �
given value function � . It is assumed that � � is independent of � 	 for all � �   � , that

� � ��� � � � � � � � � �.� � � � � ��� � � � � � � � � � � � � � , and that � � is increasing in � � � �.� � � � � � � . Since � is

a function of � , which is indexed by time in the model, the transition functions are possibly

nonstationary. An example of a nonstationary transition function to be discussed later is

one in which players vote probabilistically, according to a logistic function. In this case,

� � ��� � � � � � � � � �.� � � ���	� ��

��

� �	� � 
��
� � � �	� � 


�� for some �  � � .

Assumption 2 Differentiability and non-determinism of individual transition probabilities

For the remainder of the formal analysis, it is assumed that for all � , � � ��� � � � � � � � � � � � is con-

tinuous and differentiable in both of its arguments, and that these derivatives are uniformly

bounded by some constant. Is is also assumed that for all � � � �� , � � ��� � � � � � � � � � � � 
� $ � � � , so that individuals can never vote with probability one for one alternative over an-

other. While the assumption is made solely to simplify the analysis, the reader should note

that it is always possible to approximate a discontinuous function with such a continuous
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and differentiable one. For example, the logistic vote function converges to the determinis-

tic case as � is driven to infinity.

Underlying the model of individual valuations over alternatives is a Markov process

by which policies are realized. A Markov process has the property that, given a current

realized state of the world (or status quo policy), future states of the world are independent

of the past. Thus, the Markov process defines a probability measure over � , conditioned

upon a status quo � �� which tells us how likely any given policy is to replace status quo

� . The following definition states this process explicitly.

Definition: The conditional transition measure � � * � . ��� � � � represents the relative likeli-

hood of transitioning to a policy in the set ��*,� at time .
� � , given a status quo � :

� � * � .����	� 
�����2 ����� ��� ( ��
������ ( ��������������� �"!$# � $ �%� � �2 � �
�'&)( � ��� ( ��
������ ( ����������������� ��* (3.5)

Since the vector � ( plays into this function, the process is dependent upon time . . Thus

the Markov process is said to be nonstationary. The following measures are also useful in

understanding the relationship between individual valuations and realized policy outcomes.

Definition: The marginal transition measure � � * � .� � � � represents the relative likelihood of

� being the status quo at time .�� � , and the marginal transition measure � � * � .+ � �.� represents

the relative likelihood of transitioning to policy � at time . � � . These measures are defined

recursively, with

� � .� � � � � �, 2 � � � �
(3.6)

� � *+ � �.� � � $ � � � � *� � � � $-� � * � �
� � � � � (3.7)

and

� � * � .� � � � � � � *+ � � � ) (3.8)
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Definition: The transition measure � � * � . � � � � � represents the relative likelihood of transi-

tioning from policy � to policy � at time . � � , and is simply the product of the conditional

and partial transition measures:

� � * � . � � � � � � � � * � . � �
� � � $-� � * � .� � � �

� � � * � . � �
� � � $-� � *+ � � � (3.9)

Of most interest to us is the marginal transition measure, � � * � .� � � � , or the likelihood policy

� is the observed status quo at time . � � . In the numerical simulations of Section 3.6, I

calculate both the equilibrium value functions of players and the equilibrium distribution

over outcomes that these value functions generate, as represented by the marginal transition

measure.

3.3 Dynamically Stable Voting Equilibria

The main focus of the following analysis is to prove the existence of, and numerically

compute, value functions which are self-generating. These functions are of interest because

they represent equilibria in beliefs. When a player behaves according to such a function,

the value he assigns to a policy equals the true future expected value of that policy. When

this holds for all players, then the vote strategies of players generate value functions which

generate the same vote strategies. Thus, beliefs and behavior are entirely consistent with

each other. The following equilibrium concept captures this notion.

Let � � be the set of probability measures over � . Let � be the set of functions taking

�
�
� �
�

to � $ � ��� . When the set � is infinite, then at a given � �	 � , �  � , and & �� � ,

a dynamically stable voting equilibrium is a collection of value functions, � � � � � � �� � ,

such that for all �� � and �  � ,

� � � � � � � � � � � � ' � 2 � � � � � � � � ��� � � � � � � � � � � � � � � � � � ��� ��� � � �.� � � � � � � � � �!& � �.� )

The case of a finite � is defined analogously. Thus, given the Markov process defined
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in Section 3.2.2 a dynamically stable voting equilibrium is reached at a fixed point, when

� ( � � � � ( .
If we define the functions � � to be deterministic, so that � � ��� � � � � � � � � �.� � � � if � � � �.�  

� � � � � and zero otherwise, then at a dynamically stable voting equilibrium, ��� , the collection

of functions � � would constitute a Nash equilibrium. In this case, the � � vector represents

the expected utility functions of the players, and strategies as specified by the functions � �
are consistent with the maximization of these expected utility functions. The proof of this

is straightforward.

Lemma 5 If � � ��� � � � � � � � � �.� � � � if � � � �.�  � � � � � and zero otherwise, then at a dynamically

stable voting equilibrium, � � , the collection of functions � � constitute a Nash equilibrium.

Proof: Let � � ���*�� � � � � �*�� � �.� � � � � � � � � � $ � � � denote Player � ’s strategy, the proba-

bility with which he votes for � over � , given valuations � �� . Let � � � � � ��� �� � � � � � �� � � � ���
�� � � �

denote the probability that � defeats � , given that players vote according to strategies � � .
Since we are considering a simple and anonymous game, � �%� � � � 	 ���*�	 � � � � �*�	 � �.� ��� 	 �� � �  
� � $ � � � 	 ��� �	 � � � � � �	 � � � ��� 	 �� � � . Thus, if Player � votes for � over � , then the likelihood that �

defeats � is weakly greater than it would have been had Player � voted for � over � .

The functions � � � � � and � � � �.� denote Player � ’s respective payoffs from policies �
and � being selected. Let � � ��� � � � " � � denote Player � ’s payoff from playing strategy � � ,
given that the other players are playing strategies � " � . Assume, without loss of general-

ity, that � �� � � �  � �� � �.� . Then if � � ��� �� � � � � � �� � �.� � � � if � �� � �.�  � �� � � � and zero other-

wise, � � � $ � � " � � � � �� � � � � � $ � � � 	 ��� �	 � � � � � �	 � � � ��� 	 �� � � � � �� � �.� � � $ � � � 	 ��� �	 � � � � � �	 � �.� � � 	 �� � �  
� �� � � � � �%� � � � 	 ��� �	 � � � � � �	 � � � ��� 	 �� � � � � �� � � � � �%� � � � 	 ��� �	 � � � � � �	 � � � ��� 	 �� � � . Thus, the proposed

strategies � � constitute a Nash equilibrium.
�

Another possibility is that � � has a logistic form, so that for all �� � , � � ��� � � � � � � � � � � � �
� � � 


��
� � � 
��

� � � � � 

�� . Although our equilibrium concept bears a close resemblance to the notion of a

quantal response equilibrium in this example, there are some subtle differences. The main

difference is that in the model presented here, players vote sincerely and do not condition

upon the consequences of their actions when voting. Thus, pivot probabilities are not
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taken into account. In a quantal response equilibrium, players condition their votes on the

expected consequences of those votes. For example, if the chance that any player is pivotal

is low enough, then players will be observed as voting with near fifty-fifty probability over

any two alternatives, because the effect of each vote is essentially zero. Because of this, it

is not clear that the two equilibrium concepts will yield the same fixed points. However,

both models are similar in that they assume a fixed functional form over behavior, and both

yield statistical predictions. The similarities between this equilibrium concept and quantal

response equilibrium will be discussed in further detail in the next chapter.

3.4 Analytic Results

At any given time . , � ( is a function of � ( " � . Let this function be called � , so that � ( � � �&$ � �
� ��� ( �%$ � � . The following proposition proves that if transition probabilities are stationary (i.e.,

people do not alter how they vote over time), then there exists a unique dynamically stable

voting equilibrium. Moreover, the Markov process will limit to this vector of functions.

Proposition 3 If transition probabilities, � , are stationary, then � is a contraction mapping.

Proof: Endow 	 with the following metric and the topology induced by it: � ��� � � � � � �
����� $ � � � � � � � � � � � � � � � and for � � �  	 � , � ��� � ��� �  ��#"� �

�
� ��� � � � � � . We must show that

for any two vectors of functions � � ���*� � ) ) ) � � � � � � � � �#� � ) ) ) � � � �# 	 � , � ��� ���*� � � � ��� � �
� � ��� � ��� , for a � ,� $ � � � . Redefine the domain of � so that � � � � � �

�
� � � � ��

�
� � �

� � � � � � $ � ��� . Then stationarity in � implies that for all � � �  	 � and all � � � !� ,

� ��� � � � � � � � � � � � �.� � � � � � � � � ��� �.� � � � �.� � � � � � � � � . Choose any � � �  	 � and let 	 �
� ��� � ��� . Then for every �  � ,


 ��� ��� � ���� ��� � ��� ����������$ � � � �2 � �
��� � ����� (�� � ��� ��� � � ��
 ����� ! ��� � ��
�� (�� � ��
 ��� � � ��� ��
 ��������� � � *

However, we know that � � � � � �.�� � $ � ��� , so the maximum value the argument of the

integral could take for any given � is  ��#" � � � � � �.� � � � � �.� � �
�
� � � � � � � � � � � � � . Our worst case

scenario is that & assigns all of its weight to the policy which maximizes this argument.



54

This implies that the maximum value � � � ���*� � � � ��� � could take is ' ��� � 2 � � � � � � �.� � � � � �.� �

which is equal to ' 	 which is strictly less than � 	 for �  ��' � � � . Since '� � $ � � � , we know

such a � exists. Thus � is a contraction mapping.
�

The next proposition proves that the Markov process will limit to a unique dynamically

stable voting equilibrium even when transitions are nonstationary, provided that the total

number of players is sufficiently large. This implies that with enough players, the process

described in Section 3.2.2 is a tâtonnement, or equilibrium-seeking, process. Note that

although the proof assumes that � is infinite, the same logic can be used to prove the result

when � is finite. The integrals are simply replaced by sums.

Proposition 4 There exists an � �� such that whenever � � � � � " � , the function

� ��� ( � � � ( � � is a contraction mapping

Proof: For � � � �	 � , let � � � � � � � � �  ��#"$ � � � � � � � � � � � � � � � , and let � � � � � � �  ��#"��
�

� � � � � � � � .
We must show that for any � � � �	 � , � ��� � ��� � � � � � � � � � � � � � .

Let � � � 	 � � 	 be such that for any � (  	 � , � � ��� ( � � � � ( � � . Thus, � � ��� � � ) ) ) � � � � . First

consider the gradient vector
� � � . For all �  � ,

� � ��� � � � � � � � � � � � ' �2 � � � � � �.� � ��� � � � � � � � � � � � � � � � �&� � � ��� � � � � � � �.� � � �!& � � � )

Thus, the components of
� � � ��� � � � � can be defined using the partial derivatives

� � � ��� � � � �
�
� � � � �

� '#� � � �2 � � � ��� � � � � � � � � � �!& � � ' �2 � � ���
� � � � � � � � � � �

� � ��� � � � � � � �.� �
�
� � � � � � & (3.10)

and for all  �� � ��� � ,
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� � � ��� � � � �
�
� 	 � � � � ' �2 � � ���

� � �.� � � � � � � �
� � ��� � � � � � � � � �

�
� 	 � � � �!& ) (3.11)

Using Assumption 1 we get that for all �  � ,

� � ��� � � � � � � �.� �
�
� � � � �

�
� � � ��� � � � � � � � � �.� �

�
� � � � � � � � � � 	 ��� 	 � � � � � 	 � � � ��� 	 � � � � � � � (3.12)

where, letting � 4� equal the set of minimal winning coalitions that � is in,

� � ��� � 	 ��� 	 ��
 ����� 	 ��������� 	 � � � � � � �  �
� � ���

�

�

	 � � � � � � � 	
��� 	 ��
 ����� 	 ��� ��� �	 �� �

�'&)( � 	 ��� 	 ��
������ 	 ����������*

� � � � � 	 ��� 	 � � � � � 	 � � � ��� 	 � � � � � � � represents the probability that Player � ’s vote is pivotal given

that all other players  vote according to the functions � 	 ��� 	 � � � � � 	 � �.� � . McKelvey and Patty

(2002, Lemma 1) prove that when people vote probabilistically (i.e when for all  �� ,

and all � � �  � , � 	 ��� 	 � � � � � 	 � � � �  � $ � � � ), all pivot probabilities � � �&$ � � $ as
� � � gets

large.

Combining Equations 3.11 and 3.12, we get for all  �� � ��� �

� � � ��� ��
����
� � 	 ��
 � �� �2 � �

��� � ��� � ( � � ��
 ��� � � 	 ��� 	 ��
������ 	 ��� ���� � 	 ��
�� � 	 ��� � � ��� � ��
 ����� � ��� ����� � � � � � 	 � ��� � *

By Assumption 2 we know that for all   � and � � � !� , 	�
 �
� �

�
� $ � 9 � �

� 2 � �
	
�

�
� $ � is bounded by

some constant. We also know that the difference
�
� 	 � �.� � � 	 � � � � is bounded by a constant,

since ' � � and utility is bounded. Since � 	 �&$ �
� $ as
� � � � � , it follows that for any

� " $ there exists an �  � such that for all � � � � � " � ,

� � � ��� � � � �
�
� 	 � � � �

� )
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Using Equation 3.10, by the same logic it follows that for any � "%$ there exists an �  �
such that for all � � � � � " � ,

� � � ��� � � � �
�
� � � � �

� ' � � � � 2 � � � ��� � � � � � � � � �!& � � � )

Define
� � � ���*� � such that

� � � ���*� � �  �#"� � 9 	 � � �
�  ��#"$ � ������

� � � ��� � � � �
�
� 	 � � � ����

�
)

Since ' � � � , 2 � � � ��� � � � � � � �.� � �!& �  � $ � � � for all ' � � , it follows that for
� � � sufficiently

large (i.e., � sufficiently small),
� � � ���.� � � � .

By the Mean Value Theorem we know that

� � � � ��� � � � � � � � � � � � � � � � � ���.� �

for some � on the line segment between � and � . Since, for any �  	 � , � � � ���*� � � � for
� � � sufficiently large, it follows that

� � � � ��� � � � � � � � � � � � � � )

Thus, there exists an �  � such that for all � � � � � " � , the function � is a contraction

mapping.
�

The final two propositions prove that when transitions are nonstationary there exists a dy-

namically stable voting equilibrium regardless of the number of players. When � is finite,

the proof relies only upon Assumptions 1 and 2. When � is infinite an additional assump-

tion is needed.

Proposition 5 If � is finite, then there exists a dynamically stable voting equilibrium.
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Proof: Since ' � � and � � is real-valued for all �� � , the upper bound any individual’s

value function could take is �� "��
 ��#"$ � � � � � � � , and the lower bound is zero. Thus, for ev-

ery � (  � ��
�
� � , � (  � ��

�
� $ � �� "��

 ��#"$ � � � � � � � � � , and so the set of value functions is

bounded. Furthermore, the set of value functions is convex, since the convex combination

of two bounded functions taking � to � is itself bounded. Last, the set of value functions

is closed, trivially. It follows that the set of value functions taking � into the real numbers

� is a nonempty, closed, bounded and convex subset of a finite-dimensional vector space,

� � .

The mapping � � � ��
�
� � � � ��

�
��� , such that � ��� ( � � � ( � � (see Equation 3.2) is

single-valued by definition, and is continuous by the continuity of every � � ��� � ( � � � � � � ( � �.� � .
By Brouwer’s Fixed Point Theorem, there exists a � (  � ��

�
� � such that � ��� ( � � � ( .

Thus, there exists a dynamically stable voting equilibrium.
�

For the infinite case, the following assumption is needed, along with a definition and a

Lemma.

Assumption 3 Multiplicative separability and boundedness of derivative of �

Let � ��� ��� � � � ��� � � represent the following metric:

� ��� ��� � � � ��� � � �  ��#"� �
�

�
� � ��� � � � � ��� � � )

Assume that for all � � �  � and all � �	 � ,
� �
� � � ��� � � � � � � � � � � �  ��#"� �

�

�
� �� � � ��� ' � �

where '  � is a constant and

� ' � �  ��#"	 9 
 � � � ��� ��� � � � ��� � � � � � '
' )

First, note that this condition is merely a sufficient, and not necessary, condition for the

existence of a fixed point. It may be the case that existence can be obtained in far less
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restrictive environments. And second, while this assumption may seem strange, many

commonly used vote functions satisfy it. Consider the example where individuals vote

probabilistically, according to a logistic function, and the voting rule is unanimity.

Example 1 The implications of Assumption 3 under logistic voting and unanimity.

Recall that in this case, � � ��� � � � � � � � � �.� � � � � � � 

��

� � � � 
��
� � � � � � 


��� . Since � is not assumed to be fixed

in this example, redefine the domain of � � to be 	 � 	 � � � , so that � � is now also a function

of �  � � . Thus,

�

� � � � ��� � � � � � � � � � � � � � � � �� � � � � ��� � � � � � � � � �.� � � � �

where � ��� � � � � � � � � � � � � � ��� ����� � � � � $ � ��� � � 2 � � ����� � � � $ � � ��� � � � 2 � � � )
Also assume that for all ���� and �  � , � � � � �	 � $ � ��� .

By Assumption 1 we get

�
� 
 � ��� ��
������ ��� ��� 
�
� � �

���
�
�� �

� �� ��
��
	"��� � ��
 ����� � ��� ����� � �

	 � � � � � � � 	
��� 	 ��
 ����� 	 ��������� � �	 �� �

�'&)( � 	 ��� 	 ��
������ 	 ��� ����� ����
( �

�
���� �

� �( ��
 �
	 ��� � ��
������ � ��� ����� � �	 � � � 	
��� 	 ��
������ 	 ��� ����� � �

	 �� � 
 �
�'&)( � 	 ��� 	 ��
 ����� 	 ��� ����� ��� �� �

��
�

� �� ��
��
	"��� � ��
 ����� � ��� ����� ��� � ��� � 	 ��� 	 ��
������ 	 ��� ����� ��� 	 � � � � � � � (3.13)

where, letting � be an indicator function,

� � ��� � 	 ��� 	 ��
 ����� 	 ��� ����� ��� 	 � � � � � � � �
� ���

� # � �� � � �

	 � � � � � � � 	
��� 	 ��
 ����� 	 ��� ����� � �	 �� �

�'&)( � 	 ��� 	 ��
 ����� 	 ��������� ���
( # � � �� � � �

	 � � � 	
��� 	 ��
������ 	 ��� ����� � �

	 �� � 
 � � �
�'&)( � 	 ��� 	 ��
 ����� 	 ��������� ��� � * (3.14)
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If we let � 4� be the set of minimal winning coalitions that � is a member of, then we can

rewrite

� � ��� � 	 ��� 	 ��
������ 	 ��� ����� ��� 	 � � � � � � � �
� � � �

�

�

	 � � � � � � � 	
��� 	 ��
������ 	 ��� ����� � �	 �� �

�'&)( � 	 ��� 	 ��
������ 	 ��� ����� ����*

The function � � can be thought of as the probability that Player � ’s vote is pivotal in deter-

mining the winning outcome. Since we are considering unanimity rule, � � is maximized

when the � � � other players vote with their maximum probability for � over � . Since

utility is restricted to the � $ � ��� interval, values are bounded below by zero and above by
�� "�� . Thus, the maximum probability with which a player can vote for one alternative over

another is � �. ,�� �.�%� � � �. ,�� � .
Using Equation 3.13 we get

� �
� � � ��� � � � � � � �.� � � �

� � �  �#"��
�

�
� �� � � � �  ��#"	 � � � � ��� 	 � � � � � 	 � �.� � � �

� � � �. ,��
� � � �. ,�� �

�
" �
)

By the assumption of logistic voting and the assumption that utility is bounded below by

zero, we get  ��#"	 � � � � ��� 	 � � � � � 	 � �.� � � �
� � � � )

Thus,

' � � �
� �%� � � ��:,7. � � " � )

Since utility is restricted to the interval � $ � ��� we get that for all � ,

 ��#"	 9 
 � � � ��� ��� � � � ��� � � � �
� � ' )



60

Thus,
� ' � �  �+"	 9 
 � � � ��� ��� � � � ��� � � � � "��

� for �
 $ such that

� � � ��' � � � � �%� � � ��:,7. � � " �
' � )

The right side of this equation is always strictly greater than zero, and so for any given � ,

there exists a � " $ such that Assumption 3 is met. Furthermore, for any �  � � , there

exists an �  � such that Assumption 3 is met, as the right side of the above equation

approaches infinity as � gets large.
�

Definition: A set of real-valued functions 	�� � 	 is equicontinuous if for all � " $ , there

exists a ' " $ such that

� ��� � . � � ' and � � �	 � � �
� � ��� � � � � � . �

� �
� )

For the purposes of the following proofs, we are concerned in particular with a set �
�4 �

	 � of vectors of differentiable functions taking � to � whose derivatives are uniformly

bounded by the constant � . This set is equicontinuous; let � be a bound for the derivatives

of the functions in � 4 , and recall that for � �	 � , � ��� ��� � � � � . � � �  ��#"� �
�

�
� � ��� � � � � � . �

�
. For

a �  � and � equal to the dimensionality of the policy space, let
� �

� � ��� � � �  ��#"	 ��� �
	
� �

	
�

�

�
.

Then, by an extension of the Mean Value Theorem, � ��� �/. � � ' implies that � ��� ��� � � � � . � � � ��#"� ���
� � ��� � � � ��� �/. � � � ' , for some � on the line segment between � and . . Thus, given

� " $ , the choice ' � � � � � � � � demonstrates that � 4 , and thus �
�4 , is equicontinuous.

Lemma 6 If Assumption 3 holds, then the function � ��� ( � � � ( � � maps a closed, bounded,

and equicontinuous subset of 	 � into itself.

Proof: Boundedness is attained because ' � � . Let �
�4 be the set of vectors of differen-

tiable functions whose derivatives are uniformly bounded by the constant � . The set �
�4
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is closed. I will show that there exists an �  � � such that for any �  	 � , if �  �
�4 ,

then � ���*�  �
�4 . By Equation 3.3 we know that for all � ,

� ��� � � � � � � � � � � � � ' � 2 � � � � � �.� � ��� � � � � � � � � �.� � � � � � � �-�%� � � ��� � � � � � � � � � � � � � & � �.�

and thus,

�

� � � ���
� � � � � � � �� � � � � ' � �� � � �-�%� � � 2 � � � ��� � � � � � � �.� � �!& � �.� �

� ' � 2 � � ��� � � �.� � � � � � � �
�

� � � ��� � � � � � � �.� � � & � �.� )

Using Assumption 3 we get

�
� 
 � ��� � ��
 ��� ��� �� ��
 �! �����	�	 � � � � �	 ��
�� ��
 & ( �2 � � � ��� ��
 ����� ��� ����� � ����� ! � � � �2 � �

��� � ��� � ( � � ��
 ����� � ������
� ���	�	 � � � �	 ��
 �"!������	�	 � � � � �	 ��
�� � *

for some
����� ��� & �

.

Let � �� ��#"	 � � � �	 � � � . � is assumed to be bounded. Now let � � �� "�� ) Then if �  �
�4 we

get

�
� 
 � ��� � ��
 ��� � � !����

 � !�� �&)(��
 �&)(�� � *

Thus, for all �� � and �  � , � ��� � � � � �  � 4 , and so � ��� � � � �  �
�4 . It follows that �

maps a closed, bounded and equicontinuous subset of 	 � into itself.
�
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Using this lemma, we can now establish the existence of a dynamically stable voting equi-

librium.

Proposition 6 If Assumption 3 holds, then there exists a dynamically stable voting equi-

librium when � is infinite.

Proof: The Heine-Borel Theorem in a function space tells us that a subset 	#�!� 	 is

compact if and only if it is closed, bounded, and equicontinuous.2 Lemma 6 proves that

the set of value functions can be restricted to the compact set �
�4 . Since the function

� � �
�4 � �

�4 such that � ��� ( � � � ( � � is continuous, we need only convexity of the set of

value functions to prove that there exists a self-generating value function.

Take the convex combination of any two value functions, � � �  �
�4 , so that for any

�  � $ � ��� , � � � � � � �&� � � � � � � � � � � � � . Clearly � is continuous, since � and � are

continuous. Furthermore, � ��� � � � � � � � � � � �&� � � � ��� � � � � � . Thus, � is differentiable,

and the derivative of � is bounded by the constant � . It follows that �  �
�4 , and that �

�4
is convex. By Brouwer’s Fixed Point Theorem, there exists a � such that � ���*� � � .

�

3.5 One-Dimensional Examples

In this section I will present some simple examples of dynamically stable equilibria in a

finite one-dimensional spatial setting under majority rule, when voters have single-peaked

preferences. In all of the examples I will assume that ' � ),+ and that voting is deterministic,

with

� � ��� � ( � � � � � � ( � �.� � �

�����
���
� � if � � ( � � � " � � ( � � �
$ if � � ( � � � � � � ( � � ��� otherwise.

Example 2 When value functions are not monotone in utility.

2This theorem is a direct consequence of the Arzela-Ascoli Propagation Theorem.
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Let � � / , and � � ��0 � ' � � � . The following figure depicts the spatial location of the

ideal points of the three players, the locations of the three policies, and the frequency ( & )

by which each policy is chosen to replace the status quo.

Player 1 Player 2 Player 3
� � �

A B C

Q(A)= �� Q(B)= �� Q(C)= ��

The above figure generates the following two tables, which show the utility functions of

the three players and the set of valuations yielded in the long term, at a dynamically stable

voting equilibrium.

Myopic Utility Equilibrium Valuations

� � � � 0�� � � � ' � � � ��� � � � � � 0�� � � � '�� � � ��� �
1 1 �� �� 1 ��� �� � � � �� � � �� �
2 �� �

�
�
� 2 ��� �

� � � �� � ��
3 0 �� �� 3 � � �� � ��� �� � � � �� �

The following table summarizes the above information by depicting individuals’ rankings

over the alternatives, in the short and long term. If Player � strictly prefers policy � to policy

� , it is notated ��� � . If Player � is indifferent between the two, it is written �	� � .

Individuals’ Rankings of Alternatives

Short Term Long Term

Player 1 A � B � C B � A � C

Player 2 B � C � A B � C � A

Player 3 C � B � A C � A � B

As is consistent with a traditional spatial model, the median voter is indifferent between

' and � , and strictly prefers both of these policies to 0 in both the short and long run.
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However, Player 1 (with ideal point A) strictly prefers ' to his own ideal point in the long

run. This is because when � is given an advantage over the other two policies by being

chosen more often from density & , the policy which makes Player 1 best off over time

is not his ideal point, but the policy closest to his ideal point which defeats � , his least

favorite policy. Thus, it is in Player 1’s best interest to concede some utility in the current

round to reap higher rewards in future rounds. Finally, Player 3 strictly prefers 0 to ' in

the long run, even though ' is closer to his ideal point. Loosely speaking, this is because

at 0 there is a 60 percent chance of transitioning to � , Player 3’s favorite policy, while at

' , this chance drops to 30 percent.

While this example is not surprising, it provides a clear picture of how this model works,

and and demonstrates that the predictions that this model yields are often quite intuitive.

In the next example I will add a fourth policy to the same three-player setting considered

above, and show that the independence of irrelevant alternatives property fails to hold in

the long term.

Example 3 Failure of IIA.

Consider the same setting and players as above, but now add a new policy � to policy space

� . The following figure depicts the spatial location of the ideal points of the three players,

the locations of the four policies, and the frequency ( & ) by which each policy is chosen to

replace the status quo. Note that the new frequencies of 0 , ' , and � are half of what they

were in the previous example (and so the relative frequencies of these policies are the same

as in the previous example).

Player 1 Player 2 Player 3
� � � �

A B CD

Q(A)= �� � Q(B)= �� � Q(C)= �� �Q(D)= ��

As in the previous example, the above spatial setting generates the following two tables,

which show the utility functions of the three players and the long-term valuations yielded
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at a dynamically stable voting equilibrium.

Myopic Utility Equilibrium Valuations

� � � � 0�� � � � ' � � � ��� � � � � � � � � � � 0�� � � � '�� � � ��� � � � � � �
1 1 �� �� �� 1 � � � � �� � ��� � � � � �� � � � ��� ��� �� � � � �

2 �� �
�

�
�

�� � 2 ��� � ���� � ��� � ���� � � ���� � +
3 0 �� �� �� 3 ��� � ���� � ��� � � � �� � � � � � � � �� � � � �

Again, the above information can be summarized in the following table, which depicts

individuals’ rankings over alternatives in both the short and long term.

Individuals’ Rankings of Alternatives

Short Term Long Term

Player 1 A � B � D � C A � D � B � C

Player 2 D � B � C � A D � B � C � A

Player 3 C � D � B � A C � B � D � A

Recall that the relative frequencies of our initial three policies (as defined by & ) are the

same as in Example 1, only halved. However, the presence of a Condorcet winner, � ,

makes the long-run behavior of the three initial policies very similar, as they are all likely

to be defeated by the Condorcet winner. Thus, starting utility differentiates these policies

more than their long-run behavior does. It follows that the players’ rankings over the initial

three alternatives changes with the addition of this fourth policy, and becomes monotone

with respect to starting utility. For example, before � was added to the policy space, Player

1 (in the long term) ranked the alternatives ' � 0 � � . After the addition of � , he ranks

the initial three policies 0 � ' � � . Also note that we can directly verify that � is a

Condorcet winner; at a fixed point, for any Condorcet winner � , � � ( ���-� � � � � ���-� � ' � � ( ���-� ,
which implies that � � ( ���-� � � � � ���-� �.�%� � '(� .

3.6 Numerical Results

What follows is a look at several numerical simulations of this model in continuous policy

spaces. The first setting is that of a three-player constant sum game and the second setting
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is that of a three-player, two-dimensional spatial model where players have convex prefer-

ences. The simulations were run by discretizing the policy space into approximately nine

hundred policies and then iterating the Markov process until it converged numerically to an

approximate dynamically stable voting equilibrium. The graphs that follow depict both the

equilibrium value functions of the players and the equilibrium marginal transition measure

� � � � � over alternatives. � � � � � represents the likelihood that any given alternative is a fu-

ture observed policy. In all of the simulations it is assumed that the voting rule is majority

rule, that ' � $.)0+ , and that players vote deterministically, as in the previous examples.

1

2 3

Figure 3.1: Player 1’s value function with uniform & .

Example 4 Three players divide a dollar when & � � � is uniform.

Figure 3.1 is a graph of Player 1’s value function. The setting is a divide-the-dollar

game in which players have linear preferences. The two-dimensional unit simplex is pic-

tured, and Player 1’s ideal point (the policy � � �&� � $ � $ � ) is at the top of the simplex. The

bottom of the simplex denotes those policies which give Player 1 no portion of the dollar.

The darkest areas correspond to the policies which yield the highest values, and the light-

est areas denote the policies which yield the lowest values. It is apparent that the policies

which Player 1 values most are not Player 1’s ideal point, but rather those which divide

the dollar about equally between himself and one other player, or � ���� ���� $ � and � ���� $ � �� � . In
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social choice theory the set of policies which divide the dollar evenly between all members

of a minimal winning coalition, in this case �*� ���� ���� $ � � � $ � ���� �� � � � ���� $ � �� ��� , is referred to as

the von Neumann-Morgenstern stable set.

1

2 3

Figure 3.2: Density over outcomes when & is uniform.

Figure 3.2 depicts � � � � � , the density over observed policy outcomes. This and all

subsequent pictures of � � � � � were generated by drawing approximately 200,000 policies

from the density � � � � � and then plotting their frequencies. The darkest areas correspond

to the most frequently observed policies. In this example, only a small subset of the total

policy space is ever observed with positive probability. In particular, the points in the stable

set appear to constitute a majority rule top cycle set with respect to players’ value functions.

Figure 3.1 demonstrates this—since the setting is symmetric, it is clear that each of Player

1’s most-preferred policies is also the most-preferred policy of another player.

Example 5 Three players divide a dollar when & draws heavily from the “corners” of the

simplex.

In this series of pictures the same divide-the-dollar setting is considered, however & is no

longer uniform. In these examples, & draws heavily from the “corners” of the simplex, or

from those policies which give most of the dollar to a single player. This particular & was

chosen so as to be observationally similar to the equilibrium agenda-setting process that
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1

2 3

Figure 3.3: Player 1’s value function when & draws heavily from the “corners”.

Kalandrakis considers, in which players repeatedly propose their ideal points.3

Figure 3.3 shows that when alternatives to replace the status quo are picked from this

different density, Player 1’s ranking over alternatives changes. In this case, holding the

portion of the dollar given to Player 2 or 3 fixed, Player 1’s value is now monotone in his

utility. This is because & weights most heavily those policies which are the least likely

to defeat any other policy, given our voting rule. Thus, every policy is likely to remain in

effect for a relatively long time once enacted, and so the utility a policy yields is a close

proxy for what it is likely to yield over time. Interestingly, Player 1’s preferences have

become concavified; holding his utility constant, the policies which he prefers most are

those which give the remainder of the dollar to only one other player.

Figure 3.4 shows that when & draws policies which lie near the ideal points of the

players, the ideal points of the players tend to emerge most often as outcomes. It is not

particularly surprising that the most frequently observed policies are those which are most

frequently proposed. However, it is interesting to note that, as in Kalandrakis’ model, if

a player is going to get no portion of the dollar, he prefers the allocation which gives the

entire dollar to another player. This is because once such an allocation passed, there is a

3The proposed agendas in Kalandrakis’ model and this example are not observationally equivalent because
agendas cannot be deterministic in this model. Every policy must have some � -probability of being proposed.
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1

2 3

Figure 3.4: Density over outcomes when & draws heavily from the “corners”.

high probability that he will get the entire dollar in a subsequent round.

This example is important because it hints at the possibility that it is really the endo-

geneity of the agenda-setting process in Kalandrakis’ model that is driving the result. In the

next chapter I show that the model presented here can also be extended to the case where

players are probabilistic agenda-setters. Depending upon the parameters of the model (such

as how much randomness there is in players’ vote and proposal functions and how highly

players discount the future), results are obtained which are both in keeping with, and anti-

thetical to, Kalandrakis’.

Example 6 Three players divide a dollar with different rates of discounting.

In this example, & is again uniform, but now players place different weights on future

events; ' is not the same for each player. Let ' � denote Player � ’s discount rate. For Player

1, a payoff at time . � � is worth $*),+ of what a payoff at time . is worth (i.e., ' � � )0+ ), but

for Players 2 and 3, it is worth only $*),/ of a time . payoff (i.e., ' � � '-� � $.)0/ ).
Player 1’s long-term value function looks much the same as in Figure 3.3. However, the

density over observed outcomes differs, and in particular, predicts the stable set alternatives

� ���� ���� $ � and � ���� $ � �� � as emerging with highest probability. This is pictured in Figure 3.5.

Thus, by being more “patient” than the other two players, Player 1 is more likely to be

included in a winning coalition. Similarly, if '(� � '-� � $.)0+ and '1� � $.),/ , Figure 3.6
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1

2 3

Figure 3.5: Density over outcomes with uniform Q, ' � � $.)0+ , and '-� � '1� � $.),/ .
1

2 3

Figure 3.6: Density over outcomes with uniform Q, ' � � '-� � $.)0+ , and '-� � $.),/ .

shows us that the most frequently observed outcome, � �� � �� � $ � , corresponds to a coalition

consisting of Players 1 and 2.

Example 7 A three-player, two-dimensional spatial model with circular preferences and

uniform & .

The last series of pictures depict a two-dimensional spatial model, where the ideal points of

the three players are no longer symmetric, but are located at � $ � �� � � � $ � $ � , and �%� � $ � . The

policy space is bounded by the lines connecting the ideal points of the three players, and
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& � �.� is assumed to be uniform. In this example preferences are assumed to be circular, so

that players are indifferent between all policies equidistant from their ideal points. Figure

3.7 depicts the spatial location of the ideal points of the three players and their indifference

curves. In this example, the policy space is equal to the Pareto set, or the set of alternatives

� !� such that there is no other alternative � !� with the property that � � � � �  � � �����
for all ���� and � � � � � " � � � � � for some � .

1

2 3

Figure 3.7: Two-dimensional spatial model with circular preferences.

1

2 3

Figure 3.8: Player 1’s value function with uniform & and circular preferences.

In this setting, the von Neumann-Morgenstern stable set approximately equals the points

�*� $ � ) � + � � � ) ��� � )0/ � � � � ) � + � $ � � . Figure 3.8 depicts the value function of Player 1, whose ideal

point is located at � $ � �� � . In Figure 3.8, we can see that Player 1’s most valued-alternative is

approximately � $ � ) ��� � , closer to the alternative in the stable set corresponding to a coalition

between himself and the player whose ideal point is � $ � $ � than to his own ideal point.
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1

2 3

Figure 3.9: Density over outcomes with uniform & and circular preferences.

Figure 3.9 shows us that the most observed outcome is approximately � $ � ) � � � , close to the

alternative in the stable set corresponding to a coalition between Players 1 and 2, the two

players whose ideal points are closest to each other. This alternative is essentially a core.

Example 8 Three-player, two-dimensional spatial model with elliptical preferences and

uniform & .

1

2 3

Figure 3.10: Two-dimensional spatial model with elliptical preferences.

In this last example, the preferences of Players 2 and 3 are now elliptical rather than circular,

and are defined by the equation

� � � � � � ���1� ��� ��� � � � � � � � � � $ $ ��� � � � ���1� � �
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where � � � ��� � � � � � � � is the ideal point of player � . Thus, Players 2 and 3 value the second

(or � ) dimension of the policy space ten times more than the first. The preferences of Player

1 have remained unchanged. Pictured in Figure 3.10 are the ideal points of the three players

and their indifference curves. The dotted curve represents the contract curve of Players 1

and 3, and is the upper bound of the Pareto set.

1

2 3

Figure 3.11: Player 1’s value function with uniform & and elliptical preferences.

1

2 3

Figure 3.12: Density over outcomes with uniform & and elliptical preferences.

Interestingly, even though Player 1’s utility function is the same as in the previous

example, his value function is quite different than both his utility function and his value

function in the previous example (when the preferences of the other two players were cir-

cular). Figure 3.11 shows that Player 1’s most-preferred alternatives now lie close to the

origin, the ideal point of Player 2. The reason for this is similar to the intuition behind

Example 2. Since & is uniform and the indifference curves of Players 2 and 3 both favor

policies which lie close to the � -axis, Player 1 knows that policies close to his own ideal
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point will surely be defeated. This is because the point � $ � �� � , Player 1’s ideal point, is the

alternative in � which is farthest from the � -axis. Thus, he is willing to concede utility

along the second dimension of the policy space in order to collude with Player 2 along the

first dimension.

Given the preferences of the players, the von Neumann-Morgenstern stable set approx-

imately equals �*� ) � � � ),$ / � � � $ � )0$ � � � � )0$ + � $ ��� . Figure 3.12 shows that there exists a single

alternative, � )0$ + � ),$ � � , which arises with near certainty. This alternative is close to the al-

ternative in the stable set corresponding to a coalition between Players 1 and 3, whose

“flattened” indifference curves now lie closer together than in the previous example.

3.7 Conclusions

This chapter presents a model of how individuals value policies in the environment of a

continuing program, in which status quos are endogenously determined. In this setting,

any policy enacted today will lead to a future stream of policies which are dependent upon

it, to the extent that every policy must have defeated its predecessor. The chapter first

presents a formal means of evaluating policies in terms of the types of outcomes they are

likely to produce over time. It then uses these equilibrium evaluations to make predictions

about the types of outcomes likely to emerge when programs are continuing and thus, when

policies are continually being selected and reevaluated.

Policy evaluation is modeled as a dynamic process in which individuals vote on policies

based upon the utility they believe the policies will yield in the long run. The focus of the

analysis is to examine the types of outcomes that emerge when players’ beliefs and voting

strategies are consistent with one another. When this consistency is achieved, the value

every player assigns to a policy equals the true future expected value of that policy, given

the valuations that the other players assign to every policy. This is defined as a dynamically

stable voting equilibrium.

I show in this setting that, in the absence of a game form, players are not indifferent be-

tween different policies which provide them with the same level of utility. This is because

the space of alternatives which defeat each policy, and which each policy defeats, are sub-
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stantively different. This model demonstrates that in dynamic environments, the space of

alternatives which can and cannot defeat a policy may have as much impact on individual

decision making as the substance of the policy itself.

Last, and possibly most interesting, is link between this model and cooperative game

theory. Cooperative game theory examines the types of allocations that coalitions can pro-

cure for themselves, while remaining agnostic as to how these allocations arise, and how

they are enforced. In the examples and numerical simulations presented here, outcomes

often emerge which are in keeping with those predicted by cooperative solution concepts

like the von Neumann-Morgenstern stable set and the core. Perhaps modeling foresight can

provide a first step toward a behavioral rationalization of cooperative game theory.
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Chapter 4 A Model of Farsighted Voting, with

Endogenous Agenda Formation

4.1 Introduction

A maintained assumption of the previous chapter was that policies to replace the status

quo arose probabilistically, drawn from a fixed distribution. Thus, the model assumed

that legislators do not explicitly set the agenda themselves, but have fixed beliefs over

the types of alternatives which will be added to the agenda. This assumption was made for

several reasons. The first was to construct a model of bargaining over a continuing program

that could yield compelling predictions. Kalandrakis (2002) presents a model of dynamic

agenda-setting and bargaining with an endogenous reversion point, and finds that the ideal

points of the players emerge as policy outcomes with probability one, in a Markov-perfect

Nash equilibrium. This result is, in large part, an artifact of the assumption that the players

themselves are deterministic agenda-setters, and capable of proposing any policy. In reality,

should a legislator deliberating over a collective choice be capable of proposing his ideal

point in every round, with probability one? Because all players involved know the exact

strategy of the next proposer, there is no incentive for players to propose policies that can

last. In equilibrium, the policy outcome jumps from the ideal point of one player to another.

In the previous chapter, the assumption of an exogenous agenda simply reflected the notion

that players vote with the knowledge that the future is uncertain. Yet over time, some

alternatives will be more likely to be brought to the floor than others, and legislators are

aware of, and condition their future behavior upon, this. An exogenous distribution over

future proposals could reflect the idea that the hands of an agenda-setter are often tied by

the interests of his constituents, or the state of nature.

Second, a fixed agenda provided us with a simple parameter to vary. For instance, in

Examples 4 and 5 of the previous chapter, the static agenda was varied from being uniform
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over the policy space, to drawing heavily from the “corners” of the two-dimensional unit

simplex, or the ideal points of the three players. In the first case the model predicted policy

outcomes in keeping with those predicted by cooperative game theory. In the second, the

model predicted the same result found by Kalandrakis. Thus, we could hypothesize that

it was the deterministic nature of the agenda-setting process that was driving Kalandrakis’

result, which allowed players to repeatedly propose their ideal points.

However, the assumption of an exogenously drawn agenda leaves us unsatisfied be-

cause there are clearly so many instances in which it is inappropriate. If the definition of

the alternatives is truly the supreme instrument of power, we would expect the process of

agenda-setting to be an essential part of legislative debate. Furthermore, McKelvey has

shown that for virtually any policy outcome, there exists an agenda that can induce it.

Thus, the agenda may be the most essential aspect of legislative bargaining and debate.

The definition of the alternatives on a legislative agenda dictates the issues that are defined

as important to society and worthy of attention, and directly governs whose problems get

attention and whose do not. In this sense the choice of agenda can, and often does, produce

distinct winners and losers.

In this chapter I extend the model of the previous chapter to allow for endogenous

agenda-setting on the part of legislators. Again, policy evaluation is modeled as a dynamic

process in which individuals vote on policies based upon the utility they believe the policies

will yield in the long run. However, now individuals also propose policies using these same

valuations. I find that the specification of how proposers behave greatly effects both the

types of policy outcomes likely to emerge, and the induced preferences of voters in the long

term. For example, do individuals propose policies “sincerely”, so that a given proposer

is more likely to suggest an alternative that gives him a higher long-run valuation? Or do

players propose “strategically”, and condition upon the status quo at hand to propose a

policy likely to defeat it? In Section 4.5 different specifications of behavior are discussed,

and examples are provided.

Surprisingly, I find that some of the conclusions from the previous chapter still hold, and

some do not. When players propose sincerely, we get an outcome similar to Kalandrakis;

players propose policies near their ideal points and outcomes jump from one such policy
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to another. However, when players make proposals strategically, cooperative outcomes can

emerge. An interesting finding is that there exists an “intermediate” level of randomness in

players’ strategies that generates cooperation. When Players are complete randomizers, or

when they are entirely deterministic, cooperation rarely emerges. However, when players

tremble only slightly in their strategies they become more capable of thinking ahead, and

condition how they bargain on the idea that policies selected today should stand up to

tomorrow’s agenda.

The chapter proceeds as follows: Section 4.2 describes the notation used and presents

the Markov model. Section 4.4 proves two analytic results. I first show that there always ex-

ists a self-generating value function. Then I prove that there exists a unique self-generating

value function when the number of players is large, and the Markov process limits to this

unique function. Section 4.5 provides analytic and numerical examples of the model in

different legislative settings. Section 4.6 concludes.

4.2 The Model

4.2.1 Notation and Assumptions

I assume a set � � ��� � � � ) ) ) � � � of voters (where � is odd), a finite set � � � � of

alternatives, or policies, and, for each �� � , voter preferences are represented by a real-

valued utility function, � � � � � � � . A nonempty subset � � � is called a coali-

tion. I will restrict attention to simple and anonymous games, so that given a collection

of coalitions � with �  � , then � * � � implies ���# � . Anonymity implies that

the voting rules considered here are � -rules, such that for some fixed integer � " ��� � ,
� � � � * � � � � �  ��� . The collection � can be considered the set of winning or

decisive coalitions.

4.2.2 The Markov Model, with Endogenous Agenda Formation

Policy selection is modeled as a Markov process, and individual valuations over policies

are conditioned upon this process. Players’ valuations at time . are represented by a vector
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of continuous value functions � (
� � � �

�
. Player � ’s value function at time . , � � ( is the � (��

element of vector � ( . We can interpret ��� as the set of all functions from � into the real

line. Then � � (  � � and � (  � ��
�
� � . The function � � ( is represented by

� � � � � � � � � � � � (4.1)

and

� � ( � � � � � � � � � � � (4.2)

� ' �2 � �
�
� � ( � � � � ��� ( � � � � � ( � �.� � � � � ( � � � �&� � � ��� ( � � � � � ( � � � � � � & ��� ( � � � � � ( � � � � � ( � )(4.3)

The function � � � equals the utility Player � receives from alternative � , and the function

� � ( � � � represents the expected utility Player � receives from having policy � enacted at time

zero, given that . more policies will be enacted after it. The probability of transitioning

from state � to state � at time .�� � , given the two states are paired against each other,

is represented by � ��� ( � � � � � ( � � � � �� $ � ��� . & ��� ( � �.� � � ( � � � � � ( � is the probability mass from

which alternatives � to replace status quo � are drawn. '� � $ � � � is a discount factor.

Individuals have an effect on policy selection through both the agenda setting process

and the subsequent vote that is taken. These two procedures are represented by the � and

& functions in the above equation. Alternatives to replace the status quo arise probabilis-

tically, picked from a transition measure, & ��� � � � � � � � � � �*� , which is dependent upon the

valuations of the voters and the status quo policy. Thus, the likelihood that a policy is se-

lected to be put to a vote against the status quo depends both upon how highly the voters

value that policy, and upon the likelihood that it defeats the status quo. If policies � and �

both defeat the status quo, but many voters assign a high value to policy � and a low value

to policy � , � will be more likely than � to be brought to a vote against the existing status

quo. Similarly, the likelihood that � will defeat the existing status quo � , or � ��� � � � � � � � � � ,
will also depend upon the voters’ valuations of � and � . Let � � be the likelihood that Player

� is the agenda-setter at any given time. Thus, 	 �� � � � � � .
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The following assumptions are made about the functional forms of & and � .

Assumption 4 Transition measure assumption

For all �  � , & ��� � �.� � �
�
� � � � � equals the probability that alternative � is chosen to be put

to a vote against the existing status quo � , given value vector � . It is assumed that

& ��� � �.� � � � � � � �.� � � ��
�

� � & � ��� � �.� � � � � � � �.� �

where & � ��� � � � � � � � � � �*� represents the likelihood that, if chosen to make a policy pro-

posal, Player � will propose � given value vector � and status quo � . It is assumed that

& � ��� � � � � � � � � � �*�  � $ � � � for all � , and 	 2 � � & � ��� � �.� � � � � � � �*� � � , so that every policy

has some probability of being proposed by Player � . It is also assumed that & � is continuous

and differentiable in all of its arguments.

Assumption 5 Partial derivatives of transition measure assumption

It is assumed that the function & � ��� � � � � � � � � � �*� is dependent upon � 	 , ( �� � ) only through

the transition probability function � ��� � � � � � � � � � . Thus, players care about the valuations

of others only insofar as the votes of others determine future outcomes. Formally, this

assumption implies that

� & � ��� � � � � � � � � � �*��
� 	 � � � �

� � ��� � � � � � � � � �
�
� 	 � � � $

� & � ��� � �.� � � � � � � �*�� � ��� � � � � � � � � � )

Assumption 6 Transition probability assumption

For all � � �  � , � ��� � � � � � � � � � , or the probability of transitioning from policy � to policy

� , given � and � are put to a vote and given value vector � , can be written as the probability

of victory of � over � :

� ��� � � � � � � � � � � �
� � �

�
�� � � � ��� � � � � � � � � � � �

�
���� � �&�

� � � ��� � � � � � � � � �.� � � (4.4)

where � � ��� � � � � � � � � �.� � represents Player i’s probability of voting for � over � given value

function � � . It is assumed that � � ��� � � � � � � � � �.� �  � $ � � � , and that � � ��� � � � � � � � � � � � � � � ��� � � �.� �
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� � � � � � � � . It is also assumed that � � is continuous and differentiable in both of its argu-

ments, and that � � is increasing in � � � �.� � � � � � � .

4.3 Dynamically Stable Voting Equilibria, With Endoge-

nous Proposals

As in the previous chapter, the focus of the following analysis is to prove the existence

of, and numerically compute, value functions which are self-generating. When a player

behaves according to such a function, the value he assigns to a policy equals the true future

expected value of that policy. When this holds for all players, then the strategies of players

generate value functions which generate the same strategies. Thus, beliefs and behavior

are entirely consistent with each other. The difference between this model and the previous

chapter is that now proposals are made endogenously.

Let � be the set of all functions taking taking �
�
� �

�
to the interval � $ � ��� . Let � �

be the set of probability measures over the set � . Last, let � be the set of functions taking

the set �
�
� � $ � � � � to � � . Then, at a given �  � ��

�
� � , �� � , and & �� , a

dynamically stable voting equilibrium with endogenous proposals is a collection of value

functions, � � � � � � � � � , such that for all ���� and � �� ,

� � � � � � � � � � � � '��2 � � � � � �.� � ��� � � � � � � � � � � � � � � � � �-��� ��� � � �.� � � � � � � � � & ��� � �.� � � � � � � �.� )

Given the Markov process defined in Section 4.2.2, a dynamically stable voting equilibrium

with endogenous proposals occurs at a fixed point, when � ( � � � � ( .
As in the previous chapter, this equilibrium concept also bears a close resemblance to

quantal response equilibrium in some settings. Assuming that individual transition proba-

bilities take a logistic form, the problem we ran into in the previous chapter was that in this

model players vote sincerely, and do not condition upon the consequences of their votes.

In the examples presented in Section 4.5, both sincere and strategic functional forms are

assumed over individual proposal strategies & � , and in the strategic case this model bears a
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closer resemblance to QRE than the model presented in the previous chapter. For example,

consider a logistic form over proposal strategies, so that for each player � ,

& � ��� � �.� � � � � � � �*� � � � � � � � 2 � 
 � � � $ � 9 � � 2 � � ��� � � $ � � � " 
 � � � $ � 9 � � 2 � � � �	
� � � � � � � � � � � 


� � � $ � 9 � � � � � ��� � � $ � � � " 
 � � � $ � 9 � � � � � � � (4.5)

for a � �� � . In this case, players make proposals based not only on how much they

value policies, but also on the likelihood that a policy will defeat the status quo at hand.

However, this concept is not the same as quantal response equilibrium because, given the

specification of the individual transition probabilities, � � , players can only condition on

their own valuations and not on the likelihood that a policy will defeat the status quo. This

is because � � is defined as a function of � � . An alternate specification could be used, so that

� � is instead a function of � , the vector of all players’ valuations. For example, consider

the case where players condition their votes on the likelihood that their votes are pivotal in

determining the winning outcome, so that � ’s expected value from casting a vote for � is

� � � � � 	 ��� � � � � � � � � �.� � � 	 �� � � � �� � � � �

or the likelihood that � ’s vote is pivotal in the vote between � and � times his valuation of

� . Letting � 4� equal the set of minimal winning coalitions that � is in,

� � ��� � 	 ��� � ��
 ����� � ��������� 	 � � � � � � �  �
� � � �

�

�

	 � � � � � � � 	
��� � ��
 ����� � ������� �	 �� �

�'& ( � 	 ��� � ��
 ����� � ����������*
When players vote according to these expected values, we can define � � such that

� � ��� � � � � � � �.� � � � � � � � � � 
 �
� � � � $ � 9 � � � 2 � � � ���� � � � �� � 2 � �� � � � � � � 
 �

� � � � $ � 9 � � � 2 � � � ���� � � � �� � 2 � � � � � � � � � � 
 �
� � � � 2 � 9 � � � $ � � � ���� � � � �� � $ � � ) (4.6)

If these two specifications of � � and & � are used, then it is not difficult to demonstrate

that the behavior generated by a dynamically stable voting equilibrium with endogenous

proposals is equivalent to a quantal response equilibrium.
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4.4 Analytic Results

It is assumed throughout that as
� � � � � , � � � $ for all � , so that as the number of players

gets large, the likelihood that any particular player is chosen to be the proposer gets small.

Proposition 7 There exists a self-generating vector of value functions.

Proof: Since ' � � and � � is real-valued for all �� � , the upper bound any individual’s

value function could take is �� "��
 ��#"$ � � � � � � � , and the lower bound is zero. Thus, for ev-

ery � (  � ��
�
� � , � (  � ��

�
� $ � �� "��

 ��#"$ � � � � � � � � � , and so the set of value functions is

bounded. Furthermore, the set of value functions is convex, since the convex combination

of two bounded functions taking � to � is itself bounded. Last, the set of value functions

is closed, as the set � ��
�
� $ � �� "��

 ��#"$ � � � � � � � � � is closed. It follows that the set of value

functions taking � into the real numbers � is a nonempty, closed, bounded and convex

subset of a finite-dimensional vector space, � � .

The mapping � � � ��
�
� � � � ��

�
��� , such that � ��� ( � � � ( � � (see Equation 4.2) is

single-valued by definition, and is continuous by the continuity of every � � ��� � ( � � � � � � ( � �.� �
and & � ��� ( � �.� � � ( � � � � � ( � . By Brouwer’s Fixed Point Theorem, there exists a � (  � �� � � �
such that � ��� ( � � � ( . Thus, there exists a self-generating vector of value functions.

�

The next proposition proves that when the number of players is large, the sequence � � ( �
defined by Equations 4.1 and 4.2 is such that � ( � � � as . � � . Thus, the Markov process

will limit to a unique self-generating vector of value functions, or dynamically stable voting

equilibrium with endogenous proposals.

Proposition 8 There exists an � �� such that whenever � � � � � " � , the function

� ��� ( � � � ( � � is a contraction mapping.

Proof: For � � �  � ��
�
� � , let � � � � � � � � �  �+"$ � � � � � � � � � � � � � � � , and let � � � � � � � ��#"��

�
� � � � � � � � . We must show that for any � � �  � � �

�
� � , � � � � ��� � � � � � � � � � � � � � .

Let � � � � � �
�
� � � � � be such that for all � (  � � , � � ��� ( � � � � ( � � . Thus, � �

���!� � ) ) ) � � � � . First consider the gradient vector
� � � with respect to � . For all �  � ,
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� � ��� � � � � � � � � � � � ' �2 � � � � � �.� � ��� � � � � � � � � � � � � � � � �&� � � ��� � � � � � � �.� � � & ��� � �.� � � � � � � �*� )

Thus, the components of
� � � ��� � � � � can be defined using the partial derivatives

� � � ��� � � � �
�
� � � � �

� (4.7)

' � � � �2 � � � ��� � � � � � � �.� � & ��� � � � � � � � � � �*�&�

� '��2 � � ��� � � � � � � � � � � �
� � ��� � � � � � � �.� �

�
� � � � � & ��� � �.� � � � � � � �*�

� '��2 � �
�
� � � � � � ��� � � � � � � �.� � � � � � � � �%� � � ��� � � � � � � � � � � � � & ��� � � � � � � � � � �*��

� � � � �

and for all  �� � ��� � ,

� � � ��� � � � �
�
� 	 � � � � (4.8)

' �2 � � ��� � � � � � � � � � � �
� � ��� � � � � � � �.� �

�
� 	 � � � & ��� � � � � � � � � � �*�

� ' �2 � �
�
� � � �.� � ��� � � � � � � �.� � � � � � � �-�%� � � ��� � � � � � � � � � � � � & ��� � �.� � � � � � � �.��

� 	 � � � )

Using Assumption 4 we get that for all �  � ,

� & ��� � �.� � � � � � � �*��
� � � � �

� �	 � � � 	
� & 	 ��� � �.� � � � � � � �.��

� � � � � ) (4.9)
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It follows that

� & ��� � �.� � � � � � � �*��
� � � � � � � �

� & � ��� � �.� � � � � � � �.��
� � � � � � �&� � � � �  �#"	 �� �

� & 	 ��� � � � � � � � � � �*�
� � � � � )

Since & � is a continuously differentiable function over a compact set, the derivatives of

& � must be bounded by a constant. Let
� & �  �+"��

�
<  ��#"$ 9 2 � � 	

� � � � � 2 ��� � � $ � 9 � �
	
� � � $ � @ . Similarly, let

� & " � �
� � �  ��#"	 �� � 	

�
�
� � � 2 ��� � � $ � 9 � �

	�

� � � $ � 9 � � 2 � � , where

� & " � �
� � is also bounded by a constant.

Using Assumption 6 we get that for all �  � ,

� � ��� � � � � � � �.� �
�
� � � � �

�
� � � ��� � � � � � � � � �.� �

�
� � � � � � � � � � 	 ��� 	 � � � � � 	 � � � ��� 	 � � � � � � � (4.10)

where, letting � 4� equal the set of minimal winning coalitions that � is in,

� � ��� � 	 ��� 	 ��
 ����� 	 ��������� 	 � � � � � � �  �
� � � �

�

�

	 � � � � � � � 	
��� 	 ��
 ����� 	 ��� ��� �	 �� �

�'&)( � 	 ��� 	 ��
������ 	 ����������*

For ease of notation, let � � � � � 	 ��� 	 � � � � � 	 � � � ��� 	 � � � � � � � � � � �%$ � ) � � �%$ � represents the prob-

ability that Player � ’s vote is pivotal given that all other players  vote according to the

functions � 	 ��� 	 � � � � � 	 � � � � . McKelvey and Patty (2002, Lemma 1) prove that when people

vote probabilistically (i.e when for all   � , and all � � �  � , � 	 ��� 	 � � � � � 	 � �.� �� � $ � � � ),
all pivot probabilities � � �&$ �+� $ as

� � � gets large. We also know that since � � is a con-

tinuously differentiable function over a compact set, the derivatives of � � are bounded by a

constant. Let Let
� � �  �+"��

�
<  ��#"$ 9 2 � � 	�
 �

� � � � $ � 9 � � � 2 � �
	
� � � $ � @ )

Let � �  ��#"� �
�
<  �#"$ 9 2 � � � ��� � � � � � � � � �.� � @ . We know that � is bounded by a constant because

utility is bounded and ' � � . Then, combining Equations 4.8, 4.9 and 4.10, and using

Assumption 5, we get for all  �� � ��� �
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� � � ��� � � � �
�
� 	 � � � � (4.11)

' �2 � � ��� � � �.� � � � � � � �
� � 	 ��� 	 � � � � � 	 � �.� �

�
� 	 � � � � 	 �%$ � & ��� � �.� � � � � � � �.�

� ' �2 � �
�
� � � �.� � ��� � � � � � � � � � � � � � � � �&� � � ��� � � � � � � �.� � � � �� � �

� & � ��� � �.� � � � � � � �*��
� 	 � � �� ' < � � � � 	 �&$ � � � � � � � � 	 � & � �%� � � 	 � � � � & " 	 � � � � 	 �&$ � � @ )

Since � 	 �&$ � � $ as
� � � � � , and since � � � $ as

� � � � � by assumption, it follows

that for any � "%$ there exists an �  � such that for all � � � � � " � ,

� � � ��� � � � �
�
� 	 � � � �

� )

Using Equation 4.7, by the same logic it follows that for any � " $ there exists an �  �
such that for all � � � � � " � ,

� � � ��� � � � �
�
� � � � �

� '.�&� � � � )

Define
� � � ���*� � such that

� � � ���*� � �  �#"� � 9 	 � � �
�  ��#"$ � ������

� � � ��� � � � �
�
� 	 � � � ����

�
)

Since ' � � , it follows that for any �  � � , and for
� � � sufficiently large (i.e., � sufficiently

small),
� � � ���.� � � � .

By the Mean Value Theorem we know that

� � � � ��� � � � � � � � � � � � � � � � � ���.� �
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for some � on the line segment between � and � . Since
� � � ���*� � � � for

� � � sufficiently

large, it follows that

� � � � ��� � � � � � � � � � � � � � )

Thus, there exists an �  � such that for all � � � � � " � , the function � is a contraction

mapping.
�

4.5 Examples

Although the results of Section 4.4 assume no specific functional form for � � and & � , for

the purposes of Examples 9 and 10 it is assumed that both possess a logistic form, and

that players make proposals based solely on their own valuations of policies and propose

policies irrespective of the status quo at hand. Thus,

� � ��� � � � � � � � � � � � � � � � � � 2 �� � � � � $ � � � � � � � 2 �
and

& � ��� � � � � � � � � � �*� � � � � � � 2 �	 $ � � � � � � � $ � �
for some �  � � ) I will refer to this as sincere proposing, because players make proposals

based solely on their valuations of policies, and not on the likelihood that their proposal

will defeat the status quo at hand. In all of the examples, it is assumed that � � � �� for all

���� , and that ' � $.),+ .
Example 9 examines this specification numerically, in a divide-the-dollar setting. The

policy space, � , equal to the two-dimensional unit simplex, has been uniformly discretized

into approximately nine hundred alternatives, and it is assumed that � � � and � � / . In

this setting it is assumed that for each � � � ��� � ��� � ���1�  � , � � � � � � � � .

Example 9 A divide-the-dollar game, with sincere proposals and � � � .

In this example, players propose policies sincerely and probabilistically, and at time . , are

more likely to propose policies which yielded them a high value at time . � � . Below, the
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value function of Player 1 is pictured, where Player 1’s ideal point (the policy � � �%� � $ � $ � )
is located at the top of the simplex. Dark areas correspond to the policies which yield Player

1 a high long-term value.

1

2 3

Figure 4.1: Player 1’s value function under probabilistic “sincere” proposing.

Figure 4.2 depicts the equilibrium density over observed outcomes, given players pro-

pose sincerely and probabilistically. Dark areas correspond to the more frequently observed

policies. In this figure we can see that the policies most likely to emerge as outcomes are

the ideal points of the players. This result is similar to the Markov-perfect equilibrium

found by Kalandrakis (2002), for a game in which players vote in discrete time over two

alternatives, and the status quo in a given round is the previous round’s winner. In each

round, the alternative to be pitted against the status quo is chosen strategically, by a ran-

domly chosen player. Interestingly, even though players propose sincerely in this example,

the outcomes are similar to those observed in Kalandrakis’ game; he finds that after a fi-

nite number of rounds, every implemented policy is the ideal point of some player. This

result is also generated when we allow proposals to occur exogenously, but picked from a

distribution which places more weight on the ideal points of the three players, as seen in

Example 5 of the previous chapter. Thus, the ideal points of the three players may emerge

as outcomes in three very different games; one in which proposals are endogenous and sin-

cere, one in which proposals are endogenous and strategic, and one in which proposals are
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exogenously chosen. However, the similarity between all of these settings is that the ideal

points of the three players are the alternatives most likely to be added to the agenda. This

leads us to question whether such a & is reasonable.

1

2 3

Figure 4.2: Density over outcomes under probabilistic “sincere” proposing.

1

2 3

Figure 4.3: A graph depicting the relative area of the simplex defeated by each policy.

Figure 4.3 graphs policies as a function of the area of the policy space that they defeat,

via the majority preference relation. The darker policies defeat a larger area of the pol-

icy space, when players vote according to their long-term valuations. Interestingly, even

though the ideal points of the players are the most frequently observed outcomes, this figure
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shows us that the policies which are the most “fit”, or defeat the most other policies when

players vote according to their long-term valuations, are actually centered around the points

�*� ���� ���� $ � � � $ � ���� �� � � � �� � $ � �� ��� , or the simple von Neumann-Morgenstern stable set. This is

not the result we get when players vote according to their short-term utility. The policy that

defeats the most others when players vote according to their utility is the centroid, � �� � �� � �� � .
A possible explanation for the fact that the ideal points of the three players are the most

frequently observed outcomes in this example is that � � � ; if � is too low, players may find

it in their best interest to propose their ideal points because there is a moderate likelihood

that the other players will “mess up” and vote in favor of it. However, it turns out that this

is not the case. The following figures depict the equilibrium value function of Player 1 and

the density over outcomes in this same setting, but when � � � $ . This, players are far less

likely to tremble in their vote and proposal strategies.

1

2 3

Figure 4.4: Player 1’s value function under sincere proposing, with � ��� $ .

We can see in comparing Figures 4.2 and 4.5 that when players propose alternatives

sincerely, increasing the size of � , or decreasing the amount of randomness in players’ vote

and proposal functions, actually leads to outcomes that are even more centered about the

ideal points of the three players.

Examples 10 and 11 examine this sincere specification analytically, under the most extreme
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1

2 3

Figure 4.5: Density over outcomes under sincere proposing, with � ��� $ .

cases of logistic voting; In Example 10, � � $ and in Example 11, voting is deterministic

(corresponding to � � � ). Since the policy space in Example 11 is continuous, it is

assumed instead that

& � ��� � � � � � � � � � �*� � � � � � � 2 �, $ � � � � � � � $ � � � )
Example 10 When players randomize completely ( � � $ ).

In this example it is assumed that players randomize completely, both in their proposing

and vote strategies. Thus,

� � ��� � ( � � � � � � ( � � � � � �
� for all � � �  �

and

& � ��� ( � �.� � � ( � � � � � ( � �
�� � � for all �  � )

Let Player � ’s average value at time . be denoted � � ( , so that

� � ( � �2 � � � � ( � �.� $ �� � � )
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Given � � and & � as defined above, at a fixed point

� � � � � � � � � � � � '*� �� � � � � � � �
� � � �

and thus,

� � � � � � �
�
� � ' � � �

� � � � � '
� � � � )

Using this formula we get

� � � �� � � �2 � � �
�
� � ' �-� �

� � � � � '
� � � �

� '
� � ' � � � �

� � '
�� � � �2 � � � � � � �

� �
� � � '

�� � � �2 � � � � � �.�

� �
� � ' �

� �

and solving for a fixed point we get

� �� � � � �
�
� � ' �

� � � � � '
� � � ' �-�%� � ' � �

� )

It follows that in this example, long-term valuations are simply a linear transformation of

starting utility. Furthermore, the equilibrium distribution over observed outcomes will be

uniform over the entire policy space.
�

Example 11 A divide-the-dollar game with deterministic voting and proposals.

Although Section 4.2 assumes that the policy space is finite, assume for the purposes of

this example, that
� � � � � , the two-dimensional unit simplex. Let

� � � � / . Thus, for

every � � � � � � ��� � ��� � �� , � �  $ , 	 � � � � � , and � � � � � � � � . Last, assume that players

vote for and propose policies deterministically, so that

� � ��� � ( � � � � � � ( � �.� � �
�� � � if � � ( � �.� " � � ( � � �
$ otherwise
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and, letting � � � � � � �  ��� �� �#"
� � �

� � ( � � ��� ,

& � ��� ( � � � � � ( � � � � � ( � �
���� ��������

��� � if �  � �
$ otherwise.

In case of a tie, players vote for the status quo.1 & � ��� ( � �.� � � ( � � � � � ( � has support equal to

the set of policies which maximize Player � ’s time . value function. Since value functions

are not necessarily continuous in this example, such maxima need not exist. However, I

will demonstrate that this setup yields a fixed point vector of value functions.

Note that at time . � $ , & � ��� � � �.� � � � � � � � � � � � � for � such that � � � � and, for  �� � ,
� 	 � $ . Thus, at time . � � , Player � ’s value function is

� � � � � � � � � � ' �/
<

� � � �%� � $ � $ � � ��� � � � � � � � � �%� � $ � $ � � � � � � � � � �-�%� � � ��� � � � � � � � � �&� � $ � $ � � � �� � � � � $ � � � $ � � ��� � � � � � � � � � $ � � � $ � � � � � � � � � �-�%� � � ��� � � � � � � � � � $ � � � $ � � � �� � � � � $ � $ � � � � ��� � � � � � � � � � $ � $ � � � � � � � � � � � �-�%� � � ��� � � � � � � � � � $ � $ � � � � � ��@
� � � � ' � � � � � �
� � � � ' � � )

Iterating this process, we can see that for all � and at time .3� � , � � ( � � � � � � � � � ' � � ( � � � . This

is because any status quo policy, �  � will defeat any policy � �� 	 � � � 	 with probability

one, and so � ’s payoff from having � enacted today equals his payoff from having � enacted

for every subsequent round, or �� "�� �
� . Thus, a fixed point is generated at �.�� � � � � �� "�� �

� ,
and so the long-term valuations of players simply equal their short-term utility, multiplied

by a constant. The equilibrium distribution over observed outcomes predicts the first status

quo alternative as the outcome in every subsequent round, with probability one.
�

1Under the definition of logistic voting given at the beginning of this section, ties should be broken prob-
abilistically, so that players vote with equal probability for policies they are indifferent between. The deter-
ministic tie-breaking assumption used in this example is made so that a maximum value function exists when
calculating 	 � .
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As in Example 10, here long-term valuations are also a linear transformation of initial

utility, and as in Example 10, the predictions yielded by this example are not particularly

compelling. Thus, the idea that players make proposals based solely on their own long-

term valuations does not appear to be a promising approach. In the next series of examples,

Players utilize information about other players’ valuations when making policy proposals,

and propose policies which leave them better off conditional upon defeating the status quo

at hand. In particular, I will assume the following functional form of & � :

& � ��� � � � � � � � � � �*� � � � � � � � 2 � 
 � � � $ � 9 � � 2 � � ��� � � $ � � � " 
 � � � $ � 9 � � 2 � � � �	
� � � � � � � � � � � 


� � � $ � 9 � � � � � ��� � � $ � � � " 
 � � � $ � 9 � � � � � � � � (4.12)

for a �  � � . As discussed earlier, this type of proposal strategy, where players condition

upon both the value they receive from a policy and upon the probability that it defeats the

status quo, will be referred to as strategic proposing.

Example 12 A divide-the-dollar game, with strategic proposals and � � � .

1

2 3

Figure 4.6: Player 1’s value function under probabilistic “strategic” proposing.

In this example I assume the functional form of & seen in Equation 4.12, in which

players propose policies based in part on the likelihood a policy will defeat the status quo
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1

2 3

Figure 4.7: Density over outcomes under probabilistic “strategic” proposing.

at hand. The policy space has been discretized to include about 120 alternatives.2 However,

as Figures 4.6 and 4.7 show, there appears to be little difference between the predictions

generated by this strategic functional form of & and the sincere functional form assumed

in Example 9. In both instances, the ideal points of the players are predicted to be the most

frequently observed outcomes. In this example, this may be because the value of � � � is

relatively low; players may find it in their best interest to propose their ideal points because

there is a moderate likelihood that the other players will “mess up”, and vote in favor of it.

In the next example we will examine what happens when we increase the size of � .

Example 13 A divide-the-dollar game, with strategic proposals and � ��� $ .

In this example I assume the same functional form of & seen in Equation 4.12 and

Example 12, in which players propose policies based in part on the likelihood a policy will

defeat the status quo at hand. However, here it is assumed that � � � $ , which implies

that although players propose and vote for policies probabilistically, the size of the random

shock that would induce a player to vote “incorrectly” (i.e., against his observable value) is

much smaller than in the previous example.

2The mesh by which the policy space is discretized is substantially coarser in this example than in Example
9. This is because the functional form of 	 used in this example requires considerably more processing power,
as 	 is now dependent upon the status quo.
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1

2 3

Figure 4.8: Player 1’s value function under strategic proposing, with � ��� $ .

Increasing the size of � appears to have a significant effect on both the equilibrium value

functions of the players, and on the equilibrium density over observed outcomes. Figure

4.6 showed us that when there was a moderate likelihood of players “messing up” in their

voting and proposing strategies, the favorite policy of Player 1 was his ideal point. Figure

4.8 shows that when vote and proposal strategies become closer to being deterministic,

Player 1 now has three favorite policies: he still favors his ideal point, but he also favors

the stable set alternatives which yield him half of the dollar just as much. Figure 4.9 shows

that when players’ long-term preferences are such, cooperative outcomes tend to emerge

most often, over time.

This result is exciting because it hints at the possibility that there is an intermediate

level of strategy in players’ proposal and vote functions that generates cooperation. The

results generated in Kalandrakis’ paper and in Example 10 also appear to support this. In

Kalandrakis’ model, there is no randomness in players’ strategies and players are purely

strategic. In every round the proposer is aware of exactly the policy (or policies) that defeat

the status quo and leave him best off. Since an absorbing set of outcomes is reached once

any player receives the entire dollar, the path of play is predetermined and leads to this set.

In Example 10 players are complete randomizers. The result is that long-term valuations

are simply a linear transformation of initial utility; players’ favorite policies in the long run
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1

2 3

Figure 4.9: Density over outcomes under strategic proposing, with � ��� $ .

continue to be their ideal points and every policy is equally likely to be an outcome.

In this example, players are more strategic than in the last example, because here the

random element in players’ strategies is small. However, a randomness still exists because

players are behaving probabilistically. Thus, they cannot condition entirely upon the future

proposal strategies of the other players as they do in Kalandrakis’ model. When players

possess this intermediate level of strategy, they become capable of thinking ahead, and

condition how they bargain on the idea that policies selected today should stand up to

tomorrow’s, possibly uncertain, agenda. Interestingly, cooperative outcomes emerge.

Example 14 The dynamics of endogenous agenda formation.

In this last example we will look at the dynamics of how agendas are formed in this

setting. We consider a constant-sum game with policy space � where
� � � � � and

� � �*�&� � $ � $ � � � $ � � � $ � � � $ � $ � � � � � �� � �� � $ � � � �� � $ � �� � � � $ � �� � �� ��� � ��� � � � / � 0 � ' � � � . Thus,

� consists of the three ideal points of the players (denoted by the Player’s number), and

the three elements of the simple von Neumann-Morgenstern stable set (denoted 0 , ' , � ).

Players propose strategically, so that & has the functional form seen in Equation 4.12. In

this example, it is also assumed that � ��� $ .
Figure 4.10 depicts the ideal points of the three players and the locations of the six

policies in both the short and long term. The long-term locations were calculated by renor-
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Figure 4.10: Spatial locations of policies in the short and long term.

malizing the value function vectors from �� "�� , or ten, to one. Since we are considering a

constant-sum game, value functions remain constant-sum, and so this is possible. As this

figure and the table of long-term valuations demonstrate, in the long run the policies all

yield similar values of about �� of the total pie to each player, because of the dynamic of

how the agenda-setting process is played out. For a given status quo policy in � , the table

of transition measures gives us the likelihood that any other policy is proposed to replace

it, and so allows us to examine the dynamics of how agendas are set in equilibrium.

Myopic Utility

� � � �&� � � � � � � � � � / � � � � 0�� � � � ' � � � ��� �
1 1 0 0 �� �� 0

2 0 1 0 �� 0 ��
3 0 0 1 0 �� ��

“Farsighted” Valuations

� � � �%� � � � � � � � � � / � � � � 0�� � � � ' � � � ��� �
1 3.859 3.070 3.070 3.602 3.602 2.796

2 3.070 3.859 3.070 3.602 2.796 3.602

3 3.070 3.070 3.859 2.796 3.602 3.602
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Equilibrium transition measures

Status Quo 1 2 3 A B C

1 0.115 0.020 0.020 0.109 0.109 0.627

2 0.020 0.115 0.020 0.109 0.627 0.109

3 0.020 0.020 0.115 0.627 0.109 0.109

A 0.339 0.339 0.004 0.004 0.157 0.157

B 0.339 0.004 0.339 0.157 0.004 0.157

C 0.004 0.339 0.339 0.157 0.157 0.004

In Figure 4.11 the six policies are depicted, with arrows pointing to the alternatives that

are most likely to be proposed to be pitted against them. This example gives us some

insight as to why cooperative outcomes are more difficult to attain when agenda formation

is endogenous. In this figure we see that, at the ideal point of a particular player, the

policy most likely to be pitted against the status quo is the outcome corresponding to a

coalition consisting of the two players that were disenfranchised. However, we can see

that these partnerships are fickle, because the alternatives most likely to be pitted against a

cooperative status quo policy are the least cooperative policies of all—the ideal points of

the players in the winning coalition.

1

2 3

A B

C

Figure 4.11: The dynamics of endogenous agenda formation.

In other words, at any given time behavior depends greatly on whether a player is
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presently being disenfranchised or not. If a player is not a member of a winning coali-

tion, he will attempt to collude with someone. However, if he is a member of a winning

coalition in one round, he will attempt to cheat his coalition partner in the next. Yet even

given these ungentlemanly proposal strategies, we still witness cooperative outcomes as

occurring roughly 95 percent of the time in this setting.

4.6 Conclusions

Schattschneider (1960) writes, “The definition of the alternatives is the supreme instrument

of power.” If this is true, we should expect the process of agenda-setting to be an essential

part of how individuals arrive at a collective choice. Alternatives on an agenda reveal the

issues that are important to society and worthy of attention, and directly govern whose

problems get attention and whose do not. In this way, the choice of agenda can, and often

does, produce distinct winners and losers, and is necessarily the subject of debate and

negotiation.

In this chapter I extend the model of the previous chapter to allow for endogenous

agenda-setting on the part of legislators. Again, policy evaluation is modeled as a dynamic

process in which individuals vote on policies based upon the utility they believe the policies

will yield in the long run. However, here individuals are also agenda-setters, and propose

alternatives to be voted upon using these same valuations. I find that the specification of

how proposals are made greatly effects both the types of policy outcomes likely to emerge,

and the induced preferences of voters in the long term. Specifically, I find that given a

sincere specification of proposal strategies, a result is generated in which the ideal points

of the players emerge most frequently as policy outcomes. However, when players pro-

pose alternatives strategically by conditioning their proposal upon the status quo at hand,

cooperation can emerge if players’ strategies are neither too random nor too precise. Thus,

when a small amount of uncertainty is incorporated into players’ vote and proposal strate-

gies, players become able to “think ahead”, and propose policies capable of standing up to

a future agenda.

The idea that moderate uncertainty drives cooperation is not far-fetched. If the future
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agenda is selected through a deterministic process, then players may be incapable of ma-

nipulating the future agenda through their choice of current policy. Yet if all strategies are

purely random, players again are incapable of effecting future outcomes, because anything

can happen. In the presence of moderate uncertainty about the future, players can condition

their choice of policy upon the likely agenda it will generate, and choose alternatives that

are the most resilient to future foes.

One difference between this chapter and the previous chapter is that previously players

could condition against a random agenda because their vote strategies were not purely

random. In the examples presented in this chapter it is assumed that players are equally

rational in all aspects of their behavior, and thus are as equally likely to tremble when voting

as when proposing. Clearly, if players are deterministic voters and random proposers, some

of the examples of the previous chapter would be generated. Whether legislators truly have

as much say in the choice of agenda as is assumed here is an empirical question, but as I

argued earlier, it is unlikely that legislators deliberating over a collective outcome would (or

could) repeatedly propose their ideal points. Rather, we would expect items on an agenda

to also reflect the state of the world, or the issues of importance to constituents.

Another difference between the results of this chapter and the previous chapter stems

from the observation that adding endogeneity to a dynamic model can quickly produce

knife-edged results. For example, if we assume that players are more likely to propose

policies that yield them higher value, we quickly generate Kalandrakis’ result, because

ideal points are proposed most frequently. By adding this additional layer of endogeneity

to the model of the previous chapter, we need to exert far more care in specifying the func-

tional forms that proposing and vote strategies take. This leaves us with the thought that,

in certain circumstances, perhaps modeling a process such as agenda formation in contin-

uing programs as exogenous can actually produce stronger predictions. Particularly in a

dynamic setting such as this, in which status quos are endogenously determined, a misstep

in identifying one of the parameters of the model can rapidly snowball as the process is

iterated hundreds of times.

How agendas are actually set in dynamic environments remains a rich topic for future

research. In the House of Representatives, for example, the Speaker of the House possesses
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considerable control over the legislative agenda in that he refers all bills to committee.

The Democratic Caucus and Republican Conference also greatly influence the legislative

agenda, both directly and indirectly. Party organizations elect the Speaker of the House,

make committee assignments, and assist party members in formulating and defending their

programs. Very rarely is an agenda-setting process direct; agendas are generally formed

through delegation. A question for future research is how the delegation of agenda-setting

powers to groups with no voting power, such as political parties, can alter the effective issue

space. In particular, if the agenda defines the issues that are of importance to us, we could

expect partisan specialization and issue salience to emerge endogenously as a consequence

of foresight on the part of agenda-setters.
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Chapter 5 Conclusions

Most things people want they cannot get by themselves.
—William H. Riker, 1988.

The formation of stable coalitions is indisputably central to political life, and yet game

theorists do not understand it. Without the threat of punishment, how can cooperation

between members of a coalition be maintained when it is always in the best interest of

someone to defect? In these chapters I argue that the answer to this question lies in the fact

that interaction between individuals is virtually always dynamic, and that politics rarely

revolves around a single issue or outcome. If a group of individuals is simply dividing up

a single dollar between its members, it is clearly in the best interest of everyone involved

to try to procure as much of the dollar as possible. However, in reality politics involves

collective choices that must be made over the course of many years, and choices made to-

day will greatly effect the types of choices that are feasible tomorrow. Furthermore, once

a selfish equilibrium has been reached, it is often very difficult to get out of. An empiri-

cal example is the difficulty seen in establishing representative democracy in countries that

once had dictatorships. A formal example discussed throughout the previous chapters is

the game of repeated policy selection solved by Anastassios Kalandrakis. The author ele-

gantly discovers that in continuing programs, purely selfish outcomes form an “absorbing

state.” Once such an outcome is reached, every subsequent proposal and outcome must be

of the same degenerate form. Traditional game theory also hints at the possibility of coop-

eration in dynamic environments. It is only in the infinitely repeated prisoner’s dilemma

that “cooperate, cooperate” can be supported as an equilibrium.

In Chapters 3 and 4 I look at a setting of political debate that has been largely ignored

by formal theorists—the setting of a continuing program. In continuing programs, policies

enacted today remain in effect until new legislation is enacted that overturns them. This
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type of environment is politically important because most policies that we care about are

continuing programs. Examples include entitlements, social policies, and both distributive

and redistributive policies. In fact, it is difficult to find examples of policies that are not

continuing. However, this setting has been largely ignored by game theorists because it is

difficult to model formally. If we think of players as strategically selecting policies today

to effect policy tomorrow, which in turn effects policy in the next round and so forth, we

can, in very few rounds, quickly become left with an intractable mess.

While continuing programs have been largely ignored in the formal literature, we would

expect these types of programs to be the most interesting from the standpoint of political

science. Legislators are keenly aware of the fact that policy sets precedent, and that today’s

status quo greatly effects the types of alternatives that are feasible tomorrow. An example

provided earlier was President Bush’s 2001 tax cut package, which mandated the gradual

phase-out of the estate tax by the year 2010, only to return to its 2001 levels in 2011. A

lobbyist in favor of completely eliminating the tax was quoted as saying “In Washington

terms, it’s the finality we needed. It’s very difficult for Congress to reinstate a tax once it’s

been repealed.”1 Thus, a bill eliminating a tax for one year and then reinstating it the next

is politically equivalent to a bill eliminating the tax forever. Once the status quo of “no tax”

has been set, it is effectively impossible to defeat the status quo with a policy mandating

“tax.” Examples such as this are not difficult to come by. Another closely related example

is the provision of any kind of right or benefit to a group, such as granting women the vote,

or reading offenders their Miranda rights.

Chapters 3 and 4 stem from the idea that in a setting in which current policies have an

effect on future legislation, legislators may often forgo some satisfaction with respect to a

policy in the short term to get a more important policy passed in the future. I argue that

social choice theory fails to account for this type of dynamic because the theory assumes

that we are bargaining over a single outcome. It fails to recognize the fact that oftentimes

programs are continuing, and the behavior of a voter may depend on both his short- and

long-term interests. The model of continuing programs I present is non game-theoretic, and

1Dan Blackenberg, lobbyist for the National Federation of Independent Business, quoted in the Washing-
ton Business Journal on June 4, 2001.
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instead captures the notion of short- versus long-term gain by adding a new dimension to

the standard social choice-theoretic framework. Here, individuals rank policies not only on

the basis of the utility they yield today, but also with respect to the types of alternatives they

will and will not be capable of defeating in the future. The types of alternatives a policy

can defeat are conditioned upon a probabilistic future agenda. In Chapter 3 this agenda

is assumed to be exogenous and static; thus some alternatives are simply more likely than

others to be brought to the floor in the future, regardless of the status quo at hand, and

players know this. In Chapter 4 I allow the agenda setting process to be endogenous, so

that players propose alternatives themselves. Thus, players can condition upon the current

status quo policy to propose an alternative that defeats it and leaves them better-off.

The most important result of these two chapters is that in dynamic environments, the

space of alternatives which can and cannot defeat a policy, or the future agenda conditioned

upon that policy, may have as much impact on individual decision making as the substance

of the policy itself. In this way, these models provide one answer to the question of “why

so much stability?” Cooperative outcomes emerge and are sustained as a consequence of

looking at the probabilistic path of legislation a policy can lead to over time. This is be-

cause foresight often results in players voting for cooperative alternatives over alternatives

which yield them higher utility in the short run. Even though these models are ultimately

sophisticated preference aggregation techniques, they can yield well defined sets of best

alternatives, and can do so in environments in which social choice theory fails to provide

any predictions.

In Chapter 2 I look at a game of endogenous agenda formation in which three players

bargain over a single dollar by proposing allocations and then voting upon the proposals.

The paper models a bargaining process with no predetermined end, and so players are

allowed to make proposals for as long as they wish. In a setting similar to one examined

by Banks and Gasmi, I show that if the end of a negotiation process is not predetermined,

players propose alternatives by utilizing information about the types of policies that can

be combined into externally stable agendas, or agendas that are immune to amendment. I

find that uncertainty about the future length of the agenda drives the first two proposers
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to collude, and that, although there is no restriction to the number of items allowed on an

agenda per se, in equilibrium only three proposals are actually made. Interestingly, the

outcome generated here differs from the universalistic outcome generated by Banks and

Gasmi in the same setting, only with the number of items on an agenda restricted to three.

Thus, while in both games the same number of proposals are made, removing the restriction

on the number of proposals a player can make dramatically changes the policy outcome. It

forces the first two proposers to act preemptively to collude to disenfranchise the third.

Removing the restriction on agenda length is appealing from a modeling standpoint,

because in reality it is hard to imagine a process of negotiation in which individuals are al-

lowed a single proposal. However, as in the previous two chapters, we are left with a result

that is difficult to interpret, because by endogenizing the length of the agenda we are left

with an outcome that is not as normatively appealing as the universalistic outcome gener-

ated by Banks and Gasmi. The point to be drawn from this chapter is not that universalistic

outcomes are a consequence of players only being allowed to make a single proposal, or

that allowing for an endogenous end to a proposal process truly drives first-movers to col-

lude so drastically. Rather, this chapter and Banks and Gasmi’s article demonstrate a similar

phenomenon. In both, players propose alternatives that restrict the future effective policy

space in a favorable way. When players are allowed a single proposal each, the final agenda

need not be immune to future amendment. In this setting, the last mover is given an advan-

tage, in that he can choose a policy that defeats the previous two proposals and maximizes

his utility. Thus, the first two proposers backward induct to realize that the best they can

get is a third each. In Chapter 2, the requirement that agendas be immune to amendment

gives the first two proposers an advantage, because in this setting there happens to exist an

externally stable chain of length three. Whether either of these results would hold in more

general settings, or in settings with more than three players, is unclear. However, they both

demonstrate the emergence of collusive behavior in environments in which proposals alter

the future policy space in a deterministic way.

As stated in the previous chapter, how agendas are actually set in dynamic environments

remains an important topic for future theoretical research. In the House of Representatives,

for example, the Speaker of the House possesses considerable control over the legislative
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agenda in that he refers all bills to committee. The Democratic Caucus and Republican

Conference also greatly influence the legislative agenda, both directly and indirectly. For

example, party organizations elect the Speaker of the House, make committee assignments,

and assist party members in formulating and defending their programs. Very rarely is an

agenda-setting process as direct as in Chapters 2 and 4, and as in Banks and Gasmi’s article;

agendas are generally formed through delegation. A question for future research is how

the delegation of agenda-setting powers to groups with no voting power, such as political

parties, can alter the effective issue space. In particular, if the agenda defines the issues

that are of importance to us, we could expect partisan specialization and issue salience to

emerge endogenously as a consequence of foresight on the part of both voters and agenda-

setters.

There exists an interesting link between these chapters and cooperative game theory. Coop-

erative game theory examines the types of allocations that coalitions of agents can procure

for themselves, while remaining silent as to how these allocations arise, and how they are

enforced. In all of the chapters presented here, outcomes emerge which are in keeping with

those predicted by cooperative solution concepts such as the von Neumann-Morgenstern

stable set. These outcomes are a consequence of players conditioning how they bargain

upon the idea that policies selected today should stand up to tomorrow’s agenda. A result

of all of these chapters is that players are induced into taking the payoffs of others into

account when voting over and proposing policies because they know that when collective

choices are deliberated upon, the behavior of others in large part determines which policies

are enacted. Thus, fair outcomes are induced through the foresight of players themselves.

Last, I have also tried to demonstrate in all of these models that, given a policy space

and individuals with preferences over that space, there is a good deal of information that

still remains untapped in the traditional social choice theoretic literature. Examples of

such types of information are the variety of policies an alternative is defeated by, or can

defeat, and the types of policies that can be combined into agendas that are immune to

amendment. By utilizing this kind of information in dynamic settings, we can generate

interesting predictions even with a minimum of institutional detail, in environments that
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concepts such as the Banks set, the uncovered set, and the core cannot.
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