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Abstract

This thesis is in the �eld of machine learning: the use of data to automatically learn
a hypothesis to predict the future behavior of a system. It summarizes three of my
research projects.

We �rst investigate the role of margins in the phenomenal success of the Boosting
Algorithms. AdaBoost (Adaptive Boosting) is an algorithm for generating an ensem-
ble of hypotheses for classi�cation. The superior out-of-sample performance of Ad-
aBoost has been attributed to the fact that it can generate a classi�er which classi�es
the points with a large margin of con�dence. This led to the development of many
new algorithms focusing on optimizing the margin of con�dence. It was observed
that directly optimizing the margins leads to a poor performance. This apparent
contradiction has been the topic of a long unresolved debate in the machine-learning
community. We introduce new algorithms which are expressly designed to test the
margin hypothesis and provide concrete evidence which refutes the margin argument.

We then propose a novel algorithm for Adaptive sampling under Monotonicity
constraint. The typical learning problem takes examples of the target function as
input information and produces a hypothesis that approximates the target as an
output. We consider a generalization of this paradigm by taking di�erent types of
information as input, and producing only speci�c properties of the target as output.
This is a very common setup which occurs in many di�erent real-life settings where
the samples are expensive to obtain. We show experimentally that our algorithm
achieves better performance than the existing methods, such as Staircase procedure
and PEST.

One of the major pitfalls in machine learning research is that of selection bias.
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This is mostly introduced unconsciously due to the choices made during the learning
process, which often lead to over-optimistic estimates of the performance. In the third
project, we introduce a new methodology for systematically reducing selection bias.
Experiments show that using cloned datasets for model selection can lead to better
performance and reduce the selection bias.
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Chapter 1

Introduction

1.1 Adaptive Learning

The main focus of this thesis is on Adaptive Learning algorithms. In Adaptive Learn-
ing, the algorithm is allowed to make decisions and adapt the learning process based
on the information it already has from the existing data and settings. We consider two
types of adaptive settings, the �rst in which the algorithm adapts to the complexity
of the dataset to add new hypothesis forming an ensemble. In the second settings,
the algorithm uses the data it has to decide the optimal data-point to sample from.
This is very useful in problems where the data is at premium.

In the �rst setting, we analyze the Adaptive Boosting algorithm [Freund and
Schapire 1996] which is a popular algorithm to improve the performance of many
learning algorithms. It improves the accuracy of any base learner by iteratively gen-
erating an ensemble of base hypotheses. AdaBoost maintains a set of weights for the
training examples and adaptively focuses on hard examples by giving them higher
weights. It has been successfully applied to many real world problems with huge
success [Guo and Zhang 2001, Schapire and Singer 2000, Schwenk and Bengio 1997,
Schwenk 1999]. The superior out-of-sample performance of AdaBoost has been at-
tributed to the fact that by adaptively focusing on the di�cult examples, it can
generate a classi�er which classi�es the points with a large margin of con�dence.
The bounds on the out-of-sample performance of a classi�er which are based on it
having large margins are however very weak in practice. Any attempts to optimize
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the margins further has lead to worsening in performance [Li et al. 2003, Grove and
Schuurmans 1998]. In this thesis, we present new variants of the AdaBoost algorithms
which have been designed to test the margin explanation. Experimental results show
that the margin explanation is at best incomplete.

The second setting for Adaptive learning that we consider is the more conventional
approach in which the algorithm is allowed to adaptively choose a data-point. This
approach has many practical implications, especially in �elds where the cost of ob-
taining a data-point is very high. The typical learning problem takes examples of the
target function as input information and produces a hypothesis that approximates the
target as an output. We consider a generalization of this paradigm by taking di�erent
types of information as input, and producing only speci�c properties of the target as
output. We present new algorithms for estimating under monotonicity constraint and
adaptively selecting the next data-point.

1.2 Data Cloning

One of the major pitfalls in Machine Learning research is that of Selection Bias.
This is mostly introduced unconsciously due to the choices made during the learning
process which often lead to over optimistic estimates of the performance. In this
chapter, we introduce a new methodology for systematically reducing selection bias.
Using cloned dataset for model selection results in a consistent improvement over
cross validation and its performance is much closer to the out-of-sample selection.
Experimental results on a variety of learning problems shows that the cloning process
results in a signi�cant improvement in model selection over insample selection.
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Chapter 2

Boosting The Margins: The Need For
a New Explanation

In any learning scenario, the main goal is to �nd a hypothesis that performs well on
the unseen examples. In recent years, there has been a growing interest in voting
algorithms, which combine the output of many hypotheses to produce a �nal output.
These algorithms take a given �base� learning algorithm and apply it repeatedly to re-
weighted versions of the original dataset, thus producing an ensemble of hypotheses
which are then combined via a weighted voting scheme to form a �nal aggregate
hypothesis.

AdaBoost [Freund and Schapire 1995] is the most popular and successful of the
boosting algorithms. It has been successfully applied to many real-world problems
with huge success [Guo and Zhang 2001, Schapire and Singer 2000, Schwenk and Ben-
gio 1997, Schwenk 1999]. One interesting experimental observation about AdaBoost
is that it continues to improve the out-of-sample error even when the training error
has converged to zero [Breiman 1996, Schapire et al. 1997]. This is a very surpris-
ing property as it goes against the principle of Occam's razor which favors simpler
explanations.

The most popular explanation for this phenomenon is that AdaBoost produces
classi�ers which have a large margin on the training points [Schapire et al. 1997].
So, even though the classi�er has correctly classi�ed all the training points, the ad-
ditional hypotheses increases the margin of con�dence on those points. Mason et al.
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[2000b] showed that AdaBoost does gradient descent optimization on the soft-min of
the margin in a functional space. There are theoretical bounds on the out-of-sample
performance of an ensemble classi�er which depends on the fraction of training points
with small margin. It has however been observed that directly optimizing the min-
imum margin leads to poor performance [Grove and Schuurmans 1998]. There has
been a long debate in the machine-learning community about the validity of the mar-
gin explanation [Breiman 1994; 1996; 1998; 1999, Schapire et al. 1997, Reyzin and
Schapire 2006]. We propose variants of the boosting algorithm and prove empirically
that the margin explanation is at best incomplete and motivates the need for a new
explanation which would lead to the design of better algorithms for machine learning.

We will �rst introduce the notation and then describe the AdaBoost algorithm
and its generalization, AnyBoost. We discuss the bounds provided by the margin
theory. We introduce two variants of AdaBoost �AlphaBoost and DLPBoost� and
discuss the results, which empirically refute the margin explanation and motivate the
need for a new explanation.

2.1 Notation

We assume that the examples (x, y) are randomly generated from some unknown
probability distribution D on X ×Y , where X is the input space and Y is the output
space. We will only be dealing with binary classi�ers, so in general we will have
Y = {−1, 1}. Boosting algorithms produce a voted combination of classi�ers of the
form sgn(F (x)) where

F (x) =
T

∑

t=1

αtft(x)

where ft : X → {−1, 1} are base classi�ers from some �xed hypothesis class F ,
and αt ∈ R

+with
∑T

t=1 αt = 1 are the weights of the classi�ers. The class of all
convex combinations of functions from the base classi�ers will be called conv(F), so
F ∈ conv(F).
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The margin(∆) of an example (x, y) for the classi�er sgn(F (x)) is de�ned as yF (x).
Margin is a measure of the con�dence on the decision. A large positive margin implies
a con�dent correct decision.

Given a set S = {(x1, y1), ..., (xn, yn)} of examples drawn from D, the goal of
learning is to construct a hypothesis �in our case a voted combination of classi�er�
so that it minimizes the out-of-sample error which is de�ned as π = PD[sgn(F (x)) 6=
y], i.e., the probability that F wrongly classi�es a random point drawn from the
distribution D. The in-sample distribution over the training points would be denoted
by S , with the in-sample error de�ned as ν = PS[sgn(F (x)) 6= y].

2.2 AdaBoost

AdaBoost is one of the most popular boosting algorithms. It takes a base learning
algorithm and repeatedly applies it to re-weighted versions of the original training
sample, producing a linear combination of hypothesis from the base learner. At each
iteration, AdaBoost emphasizes the misclassi�ed examples from the previous itera-
tion, thereby forcing the weak learner to focus on the �di�cult� examples. Algorithm
1 gives the pseudo-code of AdaBoost.

The e�ectiveness of AdaBoost has been attributed to the fact that it tends to
produce classi�ers with large margins on the training points. Theorem 1 bounds the
generalization error of a voted classi�er in terms of the fraction of points with a small
margin.

Theorem 1 [Schapire et al. 1997]
Let S be a sample of N examples chosen independently at random according to

D. Assume that the base hypothesis space F has VC-dimension d, and let δ > 0.
Then with probability at least 1− δ over the random choice of the training set S,every
weighted function F ∈ lin(F) satis�es the following bound for all γ > 0
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Algorithm 1 AdaBoost(S,T ) [Freund and Schapire 1995]
• Input: S = (x1, y1), ..., (xN , yN)

• Input: T the number of iterations

• Initialize wi = 1
N

for i = 1, .., N

• For t = 1 to T do

� Train the weak learner on the weighted dataset (S, w) and obtain ht: :
X → {−1, 1}

� Calculate the weighted training error εt of ht :

εt =
N

∑

i=1

wiI[ht(xi) 6= yi]

� Calculate the weight αt as:

αt =
1

2
log

1 − εt

εt

� Update weights
wnew

i = wi exp{−αtynht(xn)}/Zt

where Zt is a normalization constant
� if εt = 0 or εt ≥ 1

2
then break and set T = t − 1

• Output FT (x) =
∑T

t=0 αtht(x)

PD[sgn(F (x)) 6= y] ≤ PS[yF (x) ≤ γ] + O

(
√

γ−2d log(N/d) + log(1/δ)

N

)

AdaBoost has been found to be particularly e�ective in increasing the margin of
�di�cult� examples (those with small margin), even at the price of reducing the mar-
gin of other examples. So, it seems that the e�ectiveness of AdaBoost comes from
maximizing the minimum margin. Grove and Schuurmans [1998] devised an algo-
rithm LPBoost which expressly maximizes the minimum margin, and achieves better
minimum margin than AdaBoost. However, this lead to a worse out-of-sample perfor-
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mance. They concluded that no simple version of the minimum margin explanation
can be complete.

2.3 AnyBoost: Boosting as Gradient Descent

Mason et al. [2000b] presents a generalized view of boosting algorithms as a gradient
descent procedure in the functional space. Their algorithm, AnyBoost, iteratively
minimizes the cost function by gradient descent in the functional space.

The base hypotheses and their linear combinations can be viewed as elements of
an inner product space (C,D), where C is a linear space of functions that contain
lin(F), a generalization of conv(F). The algorithm AnyBoost starts with the zero
function F and iteratively �nds a function f ∈ F to add to F so as to minimize the
cost C(F + εf) for some small ε. The new added function f is chosen such that the
cost function is maximally decreased. The desired �direction� is the negative of the
functional derivative of C at F , −∇C(F ), where

∇C(F )(x) :=
∂C(F + δ1x)

∂δ
|δ=0

where 1x is the indicator function of x. In general it is not possible to choose the
new function as the negative of the gradient since we are restricted to picking from F ,
so instead AnyBoost searches for f which maximizes the inner product 〈f,−∇C(F )〉

Most of the boosting algorithms use a cost function of the margin of points:

C(F ) =
1

N

N
∑

i=1

c(yiF (xi))

where c : R → R
+is a monotonically non-decreasing function. In this case, the

inner product can be de�ned as

〈f, g〉 =
1

N

N
∑

i=1

f(xi)g(xi) (2.1)

So,



8

Algorithm 2 AnyBoost(C, S, T ) [Mason et al. 2000b]
Requires:

• An inner product space (X , 〈, 〉)containing functions mapping X to Y

• A class of base classi�er F

• A di�erentiable cost functional C : lin(F) → ℜ

• A weak learner L(F ) that accepts F ∈ lin(F) and returns f ∈ F with a large
value of −〈∇C(F ), f〉

• Input: S = (x1, y1), ..., (xN , yN)

• Input: T is the number of iterations

� Let F0(x) := 0

� for t = 0 to T do
∗ Let ft+1 := L(Ft)

∗ if −〈f,−∇C(F )〉 ≤ 0

· return Ft

∗ Choose αt+1

∗ Let Ft+1 = Ft + αt+1ft+1

� return FT+1
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〈−∇C(F ), f〉 =
1

N2

N
∑

i=1

yif(xi)c
′(yiF (xi)) (2.2)

So, maximizing 〈−∇C(F ), f〉 is equivalent to minimizing the training error with
examples weights, D(i) ∝ −c′(yiF (xi)).

AdaBoost can be seen as a special case of AnyBoost with the cost function
c(yF (x)) = e−yF (x)and the inner product 〈F (x), G(x)〉 = 1

N

∑N
i=1 F (xi)G(xi). Many

of the most successful voting methods are special cases of AnyBoost with the appro-
priate cost function and step size.

Table 2.1: Voting Methods Seen as Special Cases of AnyBoost
Algorithm Cost Function Step Size
AdaBoost e−yF (x) Line Search
ARC-X4 (1 − yF (x))5 1/t

LogitBoost ln(1 + e−yF (x)) Newton-Rapson

2.4 Margin Bounds

The most popular explanation for the performance of AdaBoost is that it tends to
produce classi�ers which have large margins on the training points. This has lead to a
great deal of development in algorithms which can optimize the margins [Boser et al.
1992, Demiriz et al. 2002, Grove and Schuurmans 1998, Li et al. 2003, Mason et al.
2000a]. Schapire et al. [1997] introduced the margin explanation and provided a bound
for the generalization performance of the AdaBoost solution. Theorem 1 bounds the
generalization performance by the fraction of training points which have a small
margin and a complexity term. This was improved by Koltchinskii and Panchenko
[2002]

Theorem 2 With probability at least 1 − ε ,the following bound holds for all F ∈
conv(H)
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PD[yF (x) ≤ 0] ≤ inf
δ∈(0,1]

[

PS[yF (x) ≤ δ] +
C

δ

√

V (H)

n
+

(

log log2(2δ
−1)

n

)1/2
]

+

√

1

2n
log

2

ε

Experimentally it has been observed that this bound is very loose. It has been
shown that as long as the VC-Dimension of the base classi�er used in the boosting
process is small, the margin bound can be improved. Koltchinskii et al. [2000a]
introduced a new class of bounds called the γ-bounds. If the base classi�ers belong
to a model with a small random entropy, then the generalization performance can
be further bound based on the growth rate of the entropy. Given a metric space
(F , d), the ε−entropy of F , denoted by Hd(F ; ε) is de�ned as log Nd(F ; ε), where
Nd(F ; ε) is the minimum number of ε−balls covering F . The γ−margin δ(γ; f) and
the corresponding empirical γ-margin δ̂(γ; f) are de�ned as

δ(γ; f) = sup δ ∈ (0, 1) : δγP{yf(x) ≤ δ} ≤ n−1+γ/2

δ̂(γ; f) = sup δ ∈ (0, 1) : δγPS{yf(x) ≤ δ} ≤ n−1+γ/2

Theorem 3 Suppose that for some α ∈ (0, 2) and some constant D

HdPn,2
(conv(F ; u) ≤ Du−α, u > 0 a.s.

then for any γ ≥ 2α
2+α

, for some constants A,B > 0 and for large enough n

P
[

∀f ∈ F : A−1δ̂n(γ; f) ≤ δn(γ; f) ≤ Aδ̂n(γ; f)
]

≥ 1 − B(log2 log2 n) exp−nγ/2/2

The random entropy of the convex hull of a model can be bounded in terms of its
VC-dimension.

HdPn,2
(conv(H; u) ≤ sup

Q∈P(S)

HdQ,2
(conv(H; u) ≤ Du− 2V−1

V
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From Theorem 3, it can be deduced that with high probability, for all f ∈ F ,

P [yf(x) ≤ 0] ≤ c
(

n1−γ/2δ̂(γ; f)γ
)−1

where γ ≥ 2(V −1)
2V −1

.
The bound is the weakest for γ = 1, and at this value it reduces to the bound

in Theorem 2. Smaller values of γ give a better generalization bound. So, if the
base classi�er has a very low VC-dimension, then this gives a much tighter bound
on the generalization performance. It has been observed empirically, that the bound
holds for smaller values of γ than what has been proved. The conjecture is that the
classi�ers produced by boosting belong to a subset of the convex hull, which has a
smaller random entropy than the whole convex hull.

Koltchinskii et al. [2000a] provided new bounds for the generalization performance
which uses the dimensional complexity of the generated classi�er as a measure of
complexity. The dimensional complexity measures how fast the weights given to the
hypothesis decrease in the ensemble. For a function F ∈ Conv(F), the approximate
∆-dimension is de�ned as the integer d ≥ 0 such that there exists N ≥ 1, functions
fj ∈ F ,j = 1, .., N and numbers λj ∈ ℜ, satisfying F =

∑N
j=1 λjfj,

∑N
j=1 |λj| = 1 and

∑N
j=d+1 |λj| ≤ ∆. The ∆-dimension of F is denoted as d(F, ∆).

Theorem 4 If H ⊂ Conv(F) is a class of functions such that for some β > 0

sup
F∈H

d(F, δ) = O(∆−β)

then with high probability, for any h ∈ H, the generalization error can be bounded
by

1

n1−γβ/2(γ+β)δ̂(h)γβ/(γ+β)

This bound reduces to the one in Theorem 3 for β = ∞ ,and for smaller values of
β, provides a tighter bound on the generalization performance.
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The proof and discussion about these bounds can be found in Koltchinskii et al.
[2000a;b] and Koltchinskii and Panchenko [2002]

2.5 AlphaBoost

In this section, we introduce an algorithm which produces an ensemble with much
lower value for the cost function than AdaBoost. AlphaBoost improves on AnyBoost
by minimizing the cost function more aggressively. It can achieve signi�cantly lower
values of cost function much faster than AnyBoost. AnyBoost is an iterative algorithm
which is restricted to adding new hypothesis and the corresponding weight to the
ensemble. It can not go back and change the weights it had assigned to a hypothesis.

2.5.1 Algorithm

AlphaBoost starts out by calling AnyBoost to obtain a linear combination of hypothe-
ses from the base learner. It then optimizes the weights given to each of the classi�er
in the combination to further reduce the cost function. This is done by doing a con-
jugate gradient descent [Fletcher and Reeves 1964] in the weight space. Algorithm 3
gives the pseudo-code of AlphaBoost. We used conjugate gradient instead of normal
gradient descent because it uses the second-order information of the cost function and
so the cost is reduced faster.

The �rst step is to visualize the cost function as a function of the weight of the
hypotheses, rather than of the aggregate hypothesis. So once we've �xed the base
learners which will vote to form the aggregate hypothesis, we have a cost function
C(α) which depends on the weight each hypothesis gets in the aggregate. We can
then do a conjugate gradient descent in the weight space to minimize the cost function
and thus �nd the optimal weights.

Suppose AnyBoost returns FT (x)=
∑T

i=1 αihi(x) as the �nal hypothesis. Then we
have,
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C(α) =
n

∑

i=1

c(yiFT (xi)) (2.3)

and so, the gradient can be computed as

∂C(α)

∂αt

=
n

∑

i=1

yiht(xi)c
′(yiFT (xi)) (2.4)

So the descent direction at stage t is computed as dt = −∇C(αt). Instead of using
this direction directly, we choose the search direction as

dt = −∇C(αt) + βtdt−1 (2.5)

where βt ∈ ℜ and dt−1 is the last search direction. The value of βt controls how
much of the previous direction a�ects the current direction. It is computed using the
Polak-Ribiere formula

βt =
〈dt, dt − dt−1〉
〈dt−1, dt−1〉

(2.6)

Algorithm 3 uses a �xed step size to perform conjugate descent. We can also do
a line search to �nd an optimal step size at each iteration.

2.5.2 Generalization Performance on Arti�cial Datasets

For analyzing the out-of-sample performance of AlphaBoost, we used AdaBoost's
exponential cost function. Once we �x a cost function, AnyBoost, which reduces to
AdaBoost in this case, and AlphaBoost are essentially two algorithms which try to
optimize the same cost function.

To compare the generalization performance of AlphaBoost, we used the Caltech
Data Engine to generate random target functions. The Caltech Data Engine [Pratap
2003] is a computer program that contains several prede�ned data models, such as
neural networks, support vector machines (SVM), and radial basis functions (RBF).
When requested for data, it randomly picks a model, generates (also randomly) pa-
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Algorithm 3 AlphaBoost(C, S,T,A)
Requires:

• An inner product space (X , 〈, 〉)containing functions mapping X to Y

• A class of base classi�er F

• Input: S = (x1, y1), ..., (xN , yN)

• Input : T the number of iterations of AnyBoost and A is the number of conjugate
gradient steps

• Input: C is a di�erentiable cost functional C : lin(F) → ℜ

� Let FT (x)=α.H(x) be the output of AnyBoost(C,S,T )
� d0 = 0 and α0 = α

� For t = 1 to A

∗ dt = −∇C(αt)

∗ βt = 〈dt,dt−dt−1〉
〈dt−1,dt−1〉

∗ dαt = −dt + βtdαt−1

∗ αt = αt−1 + ηdαt−1

rameters for that model, and produces random examples according to the generated
model. A complexity factor can be speci�ed which controls the complexity of the
generated model. The engine can be prompted repeatedly to generate independent
data sets from the same model to achieve small error bars in testing and comparing
learning algorithms.

The two algorithms were compared using function of varying complexity and from
di�erent models. For each target, 100 independent training sets of size 500 were
generated. The algorithms were tested on an independently generated test set of size
5000. AlphaBoost was composed of 100 steps of AdaBoost, followed by 50 steps of
conjugate gradient with line search, and it was compared with AdaBoost running
for 150 iterations. In all the runs, AlphaBoost obtained signi�cantly lower values of
cost function. However, the out-of-sample performance of AdaBoost was signi�cantly
better.

Figure 2.1 shows the �nal cost and out-of-sample error obtained by the two algo-
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rithms on di�erent targets generated from the data engine. The error bar on all the
runs was less than 10−3 of the values, and so are not shown in the �gures.

The cost function and out-of-sample error at each iteration for one such run is
shown in Figure 2.2

The cost function at the end of AlphaBoost is signi�cantly lower than the cost
function at the end of AdaBoost. However, the out-of-sample error achieved by
AdaBoost is signi�cantly lower.

2.5.3 Experimental Results on Real World Datasets

We tested AlphaBoost on six datasets from the UCI machine learning repository[Blake
and Merz 1998]. The datasets were the Pima Indians Diabetes Database; sonar
database; heart disease diagnosis database from V.A. Medical Center, Long Beach;
and Cleveland Clinic Foundation collected by Robert Detrano, M.D., Ph.D. Johns
Hopkins University Ionosphere database, 1984; United States Congressional Voting
Records Database; and breast cancer databases from the University of Wisconsin
Hospitals [Mangasarian and Wolberg 1990]. Decision stumps were used as the base
learner in all the experiments. For the experiments, the dataset was randomly divided
into two sets of size 80% and 20% and they were used for training and testing the
algorithms. AlphaBoost was composed of 100 steps of AdaBoost, followed by 50 steps
of conjugate gradient with line search as in the previous section and it was compared
with AdaBoost running for 150 iterations. All the results were averaged over 50 runs.

Table 2.2 shows the �nal values obtained by the two algorithms. As expected,
AlphaBoost was able to achieve signi�cantly lower value of the cost function. Though
AdaBoost achieved better out-of-sample error than AlphaBoost, the error bars are
too high in these limited datasets to make any statistically signi�cant conclusions.
Figures 2.3�2.8 show the cost function value and out-of-sample error as a function
of the number of iterations. For the �rst 100 iterations, AdaBoost and AlphaBoost
perform exactly the same, so the curves coincide for this period. The cost function
takes a steep dip around iteration 101 for AlphaBoost when it starts doing conjugate
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Table 2.2: Experimental Results on UCI Data Sets
Data Set Algorithm Cost π min(∆) ∆

Pima Indian AlphaBoost 0.5139 0.2638 −0.0979 0.0658
AdaBoost 0.5763 0.2463 −0.1576 0.1023

Sonar AlphaBoost 0 0.1833 0.1099 0.2128

AdaBoost 0.0003 0.167 0.1088 0.2099
Cleveland AlphaBoost 0.0386 0.2421 −0.183 0.0979

AdaBoost 0.0651 0.2047 −0.0747 0.1366

Ionosphere AlphaBoost 0 0.1 0.0652 0.1849
AdaBoost 0.0094 0.0894 0.0459 0.1886

Vote AlphaBoost 0.3576 0.2222 −0.1359 0.2724
AdaBoost 0.3756 0.2155 −0.1757 0.3104

Cancer AlphaBoost 0.0015 0.0483 −0.0052 0.2377
AdaBoost 0.0509 0.0419 −0.0511 0.2638

gradient descent. The out-of-sample error increases during this stage. Also shown are
the distribution of the margins at the end of 100 iterations of AdaBoost, and at the
end of 100 iterations of AdaBoost and 50 iterations of conjugate gradient descent. The
distribution of the margins at the end of 100 iterations of AdaBoost is the starting
point for both the algorithms, and from that point forward, they do di�erent things
for the next 50 iterations. AlphaBoost tends to maximize the minimum margin better
than AdaBoost at the expense of lowering the maximum margin.

2.5.4 Discussion

The results of this section indicate that aggressively optimizing the cost function in
boosting leads to worsening of the performance. The AlphaBoost ensemble uses the
exact same weak hypothesis as the AdaBoost ensemble, so there is no additional
complexity that was introduced by the alpha-descent step. The only explanation for
this result is that the soft-min cost function tends to over�t. These results agree
with the �ndings of Li et al. [2003], where conjugate descent is used, but there the
hypotheses used are di�erent from that of AdaBoost. This, however, does not refute
the margin theory explanation, as we are optimizing on one particular cost function
of the margin. The margin explanation relies on the reasoning that large margins are
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good for generalization. If we can show that optimizing any possible cost function of
the margin would lead to bad generalization, this would refute the margin explanation.

2.6 DLPBoost

DLPBoost is an extension of AdaBoost which optimizes the margin distribution pro-
duced by AdaBoost. It has been expressly designed to test the margin explanation
for the performance of AdaBoost. We have seen in the case of AlphaBoost that
decreasing the cost function leads to larger minimum margin, but at the expense of
decreasing the margin of some of the points. In most of the extensions and variants of
AdaBoost, the margin distribution produced does not dominate the margin distribu-
tion of AdaBoost. We say that a distribution P1 dominates another distribution P2 if
P1(t) ≤ P2(t),∀t. As a result, there are some cost functions of the margin that would
be worsened by the variant. The only algorithm which could produce a better margin
distribution was Arc-gv [Breiman 1998]. This algorithm was, however, criticized for
producing complex hypotheses and hence the increase in error was attributed to the
additional complexity used [Reyzin and Schapire 2006]. This is an important consid-
eration in the design of DLPBoost. We want to make sure that the di�erence in the
solutions of AdaBoost and DLPBoost can only be accounted for by the di�erence in
the margins. It is therefore crucial to keep all other factors constant.

In DLPBoost, we provide an algorithm which consistently improves the entire
distribution of the margins. This condition ensures that DLPBoost has a better
margin cost than AdaBoost for any possible de�nition of margin cost. Thus, all the
margin bounds for AdaBoost would hold for DLPBoost, and as the complexity terms
are not changed, the bounds become tighter. This would lead to better performance
if the margin explanation is true.

2.6.1 Algorithm

DLPBoost uses the AdaBoost solution as the starting point and optimizes the maxi-
mum margin subject to constraints on the individual margins. The general problem of



26
Algorithm 4 DLPBoost
Given (x1, y1), ..., (xN , yN)
Run AdaBoost/AnyBoost for T iterations to get (h1, ..., hT ) and (α∗

1, ..., α
∗
T )

De�ne m(α, i) =
∑T

t=1 yiαtht(xi)
Solve the linear programming problem

maxα

∑N
i=1 m(α, i)

Subject to constraints
m(α, i) ≥ m(α∗, i)
∑

αt = 1,αt ≥ 0

improving the margin distribution is very hard, optimization-wise, as it also involves
a combinatorial component. So, instead we set up a restricted problem in which we
require that the margin on none of the points is decreased. Any solution of the latter
problem would be a feasible solution for the original problem, though it might not be
optimal. Our goal here is to produce better margin distribution, and the restricted
setup ensures that any solution we produce would have margin distributions at least
as good as those of the AdaBoost solution.

Algorithm 4 illustrates DLPBoost. The base classi�ers produced by DLPBoost
are the exact same as the one produced by AdaBoost, and, by design, the margin of
each training example is not reduced. Thus, by de�nition, DLPBoost does not �cheat�
on the complexity and produces a solution which dominates (or at least equals) the
margin distribution produced by AdaBoost.

2.6.2 Properties of DLPBoost

DLPBoost uses linear programming to �nd new weights for the hypotheses which
would maximize the average margin, while ensuring that all the training examples
have a margin at least as large as that of the AdaBoost solution. The weights gen-
erated by AdaBoost, α∗, are a feasible solution to the optimization problem in DLP-
Boost. The simplex procedure which is used to solve the optimization starts with a
zero solution, i.e., all the weights are initially zero. It then makes each of the weights
non-zero, one at a time, until it �nds the optimal solution. One interesting byprod-
uct of this procedure is that the �nal solution produced by DLPBoost would have a
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smaller number of hypotheses with non-zero weights. This is a very useful feature,
both theoretically and practically. Theoretically it means that the DLPBoost solution
has a smaller dimensional complexity than the AdaBoost solution. In many practical
situations, like visual recognition, where real-time processing of the data is critical,
the DLPBoost solution can be useful as it tends to have a smaller ensemble size.

One of the interesting aspects of the DLPBoost setup is that the function being
optimized is ad hoc. The important thing is to �nd a non-trivial feasible solution to
the constraints. The trivial solution in this case would be the AdaBoost solution in
which all the inequalities are exactly satis�ed. We have used the average margin as
the goal, but we can use any general linear combination of the margins as the goal
and still have a working setup. The most general setup would be a Multi-objective
optimization setup, in which we can maximize the margin on each point. There are
popular algorithms [Deb et al. 2002] to solve this kind of problem but we do not use
those, as the added advantage of a sparse solution generated by linear programming is
very appealing in our case. In addition, any non-trivial feasible solution would be an
added improvement on the margin distribution and serve the purpose of our analysis.

2.6.3 Relationship to Margin Theory

All the bounds discussed in section 2.4 hold for DLPBoost. For DLPBoost, by de�-
nition

∀δPS[yFD(x) ≤ δ] ≤ PS[yFA(x) ≤ δ]

(where FD is the DLPBoost solution and FA is the AdaBoost solution). Hence we
have that the bound on the generalization error of DLPBoost is smaller than the
bound on the generalization error of AdaBoost.

The setup of DLPBoost is a very optimistic one. It is a very constrained op-
timization problem, as the number of constraints is of the the order of number of
examples in the dataset. An improvement in all the margins would indicate that the
optimization procedure used in AdaBoost is very ine�cient. The design of DLPBoost
ensures that we do not introduce any additional complexity in the solution. Arc-GV,



28

which can also be used to generate ensembles with better margin distribution, has
been criticized for using additional hypothesis complexity [Reyzin and Schapire 2006].
It also uses hypotheses which are di�erent from those used by AdaBoost, and so it is
plausible that the solution generated is more complicated, thus any negative results
there might not contradict the margin explanation. In DLPBoost, we have isolated
the margin explanation and any di�erence in performance can only be accounted for
by the di�erence in the margin distributions. This would give us a fair evaluation of
the margin explanation.

2.6.4 Experiments with Margins

We study the behavior of the margins and the solution produced by DLPBoost.
Figures 2.9, 2.10 and 2.11 show the margins and the weights on the hypotheses ob-
tained by AdaBoost and DLPBoost on the WDBC dataset. In this setup, we weight
the margins of the points in the linear programming setup by their cost function.
This weighing promotes the points with smaller margin. The out-of-sample errors
for AdaBoost was 2.74% and for DLPBoost was 3.75%. The margin distribution for
DLPBoost is clearly much better than that of AdaBoost, and from the �nal weights
obtained, we can see that the hypotheses removed from the AdaBoost solution by
DLPBoost had signi�cant weights assigned to them. Figure 2.10 shows the weights
assigned by the two algorithms to the weak hypotheses which are indexed by the
iteration number. It can be seen that DLPBoost emphasizes some hypotheses which
were generated late in AdaBoost training and it also killed some of the hypotheses
which were generated early. AdaBoost is a greedy iterative algorithm. This kind
of behavior is expected, as AdaBoost has no way of going back and correcting the
weights of hypotheses already generated. Note that the one-norm of both the solu-
tions is normalized to one, and so the DLPBoost solution having a smaller number
of hypotheses (64, compared to the 168 of AdaBoost) has overall larger weights and
this result is for a single run.

Figures 2.12, 2.13 and 2.14 show the same results for one run on the Australian
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Figure 2.9: Margins Distribution for WDBC Dataset with 300 Training Points
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Figure 2.11: α Distribution for WDBC Dataset with 300 Training Points

dataset. Here the errors for both the algorithms were 18.8% while the number of
hypotheses was reduced from 423 to 201. In this case, there is very small improvement
in the margin distribution and the out-of-sample error did not change. The hypotheses
killed by the DLPBoost step had signi�cant weights.

This points to an inverse relationship between the margins and the out-of-sample
performance. In the next two sections, we will investigate this relationship in detail
and give statistically signi�cant results.

2.6.5 Experiments with Arti�cial Datasets

We test the performance of DLPBoost and compare it with that of AdaBoost on a
few arti�cial datasets.

2.6.5.1 Arti�cial Datasets Used

We used the following arti�cial learning problems for evaluation the performance of
the cloning process.

Yin-Yang is a round plate centered at (0, 0) and is partitioned into two classes. The
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Figure 2.14: α Distribution for Australian Dataset with 500 Training Points

�rst class includes all points (x1, x2) which satis�es

(d+ ≤ r) ∨
(

r < d− ≤ R
2

)

∨
(

x2 > 0 ∧ d+ > R
2

)

,

where the radius of the plate is R = 1 and the radius of the two small circles is
r = 0.18, d+ =

√

(x1 − R
2
)2 + x2

2 and d− =
√

(x1 + R
2
)2 + x2

2.

LeftSin ([Merler et al. 2004]) partitions [−10, 10]× [−5, 5] into two class regions with
the boundary

x2 =











2 sin 3x1, if x1 < 0;

0, if x1 ≥ 0.

TwoNorm ([Breiman 1996]) is a 20-dimensional, 2-class classi�cation dataset. Each
class is drawn from a multivariate normal distribution with unit variance. Class
1 has mean (a, a, ..a) while Class 2 has mean (−a,−a, ..−a), where a = 2/

√
20.

The arti�cial learning problems can be used to generate independent datasets from
the same target to achieve statistically signi�cant results.
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Figure 2.15: YinYang Dataset

Figure 2.16: LeftSin Dataset
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Figure 2.17: Comparison of DLPBoost and AdaBoost on TwoNorm Dataset

2.6.5.2 Dependence on Training Set Size

In the �rst test, we evaluate the di�erence in performance between AdaBoost and
DLPBoost. We evaluate the di�erence in the out-of-sample error, the average change
in the margin on the training points, and the maximum change in the margin. We
also compare the number of hypothesis which have non-zero weight in the ensembles
of AdaBoost and DLPBoost. Each of the simulations used an independent set of
training and test points and was run for 500 iterations of AdaBoost with the training
set size varying from 200 to 2000. All the results are averaged over 100 independent
runs.
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Figure 2.18: Comparison of DLPBoost and AdaBoost on YinYang Dataset

Figure 2.17 shows the results for the TwoNorm dataset, which is 20-dimensional.
We observe that the out-of-sample performance of DLPBoost is consistently worse
than that of AdaBoost. The di�erence goes down to zero as the training set size
increases. The increase in the average margins and the maximum change in the
margin are indications of the ine�ciency of AdaBoost in optimizing the margins. We
can also see the number of hypotheses used by the DLPBoost increase as we increase
the training set size.

We observe similar behavior on the Yin-Yang dataset (Figure 2.18) which is 2-
dimensional, except in this case the change in the out-of-sample error is very small and
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Figure 2.19: Comparison of DLPBoost and AdaBoost on RingNorm Dataset

not signi�cantly di�erent from 0 in most of the cases. Another observation here is that
even for 3000 points in the training set, the DLPBoost solution does not use all the 500

hypotheses. In the TwoNorm case, with large training sets, the DLPBoost solution
used all the 500 hypotheses in its solution. Hence the ine�ciency in AdaBoost is a
function of the complexity of the dataset and the number of examples in the training
points. AdaBoost ended up using 500 hypotheses to explain the Yin-Yang dataset of
1000 examples or more which is a clear indication of over �tting. DLPBoost, on the
other hand, adjusts its complexity based on the complexity of the dataset.

The RingNorm dataset is more complicated than the TwoNorm dataset and it is
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Figure 2.20: Comparison of DLPBoost and AdaBoost on TwoNorm Dataset

re�ected in the results in Figure 2.19.

2.6.5.3 Dependence on the Ensemble Size

We ran the same experiments by �xing the ensemble size to 500 and varying the
number of iterations given to AdaBoost. Figures (2.20�2.22) give the results of these
experiments.

Here we observe that as we use more and more hypotheses in the AdaBoost en-
semble, DLPBoost is able to get more improvement in the margins. This also leads
to a consistent worsening of performance in the TwoNorm case. It is interesting to
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Figure 2.21: Comparison of DLPBoost and AdaBoost on YinYang Dataset
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Figure 2.22: Comparison of DLPBoost and AdaBoost on RingNorm Dataset
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Table 2.3: Experimental Results on UCI Data Sets
Data Set Algorithm Size of Ensemble π ∆ Maximum Change

Pima Indian DLPBoost 99.12(0.06) 0.2466(0.003) 0.00829 0.0061
AdaBoost 99.54(0.06) 0.2462(0.003) 0.0829 -

Sonar DLPBoost 78.78(0.05) 0.1643(0.0004) 0.2221 0.1374
AdaBoost 125.93(0.06) 0.1562(0.0005) 0.1978 -

Cleveland DLPBoost 68.33(0.04) 0.1963(0.0005) 0.1210 0.0038
AdaBoost 68.75(0.04) 0.1962(0.0005) 0.1201 -

Ionosphere DLPBoost 95.47(0.07) 0.0941(0.0003) 0.1801 0.0259
AdaBoost 107.76(0.05) 0.0904(0.0003) 0.1749 -

Vote DLPBoost 15.31(0.04) 0.0621(0.002) 0.4457 0.0166
AdaBoost 15.85(0.05) 0.0619(0.0002) 0.4422 -

Cancer DLPBoost 75.37(0.08) 0.028(0.0001) 0.3797 0.1087
AdaBoost 102.69(0.06) 0.026(0.0002) 0.3454 -

note that the DLPBoost solution uses almost the same number of hypothesis irre-
spective of the number of hypothesis in the AdaBoost ensemble. This also shows that
the number of hypotheses required to explain the dataset is dependent only on the
number of training points and the complexity of the dataset.

2.6.6 Experiments on Real World Datasets

We tested DLPBoost on the same six datasets from the UCI machine learning repos-
itory [Blake and Merz 1998] used in Section 2.5.3. Decision stumps were used as the
base learner in all the experiments. For the experiments, the dataset was randomly
divided into two sets of size 80% and 20%, used for training and testing the algo-
rithms. All the results are averaged over 100 di�erent splits to obtain the error bars.
The AdaBoost algorithm was run for 250 iterations and the size of the ensemble is
de�ned as the number of unique hypothesis in the ensemble. Table 2.3 summarizes
the results. The maximum change column refers to the maximum increase in the
margin of any point in the training set. The values in the parentheses denotes the
size of the standard error bar.

The average and the maximum change are just two statistics of the margin distri-
bution which are most informative to the discussion. The entire margin distribution
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Figure 2.23: Margin Distribution on Pima Indian Dataset

obtained by the two algorithms is reported in Figures 2.23�2.28
We can observe that the improvement in margins is signi�cant in some cases and

very little in other cases. This improvement is inversely proportional to the increase
in the errors. The two datasets Cancer and Sonar have a signi�cant change in the
distribution and a large maximum change. DLPBoost performs signi�cantly worse
on these two datasets.

2.7 Conclusions

AdaBoost is a gradient descent algorithm which produces an ensemble of classi�ers
and performs very well on many arti�cial and real-world problems. In this chapter,
we've investigated the popular margin explanation for the success of AdaBoost. We've
introduced two new extensions of AdaBoost, AlphaBoost and DLPBoost. AlphaBoost
optimizes the cost function of AdaBoost more aggressively and shows that the cost
function is prone to over�tting. DLPBoost tackles a more generalized problem and
optimizes all the reasonable cost functions of margin. The very fact that there is
room for improvement in the margin distribution shows the ine�ciency of AdaBoost
in terms of the margins. The performance of DLPBoost indicates that improving
the margins will also lead to over�tting. It also shows that improving any particular
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Figure 2.24: Margin Distribution on Sonar Dataset
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Figure 2.25: Margin Distribution on Cleveland Dataset
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Figure 2.26: Margin Distribution on Ionosphere Dataset
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Figure 2.27: Margin Distribution on Voting Dataset
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Figure 2.28: Margin Distribution on Cancer Dataset

statistic of the margin is futile and would not lead to improvement in the performance
of the algorithm.

AdaBoost is improving the soft-max of the margins. This criterion gives very good
performance on a variety of learning problems. The results of this chapter suggest that
this criterion is only weakly correlated with the real explanation and the regularization
of AdaBoost is really through poor optimization. Any further attempt to improve it
has met with loss in the performance. This motivates the need for further research
into the real criterion which would lead to design of better algorithms for machine
learning.
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Chapter 3

Adaptive Estimation Under
Monotonicity Constraints

3.1 Introduction

The typical learning problem takes examples of the target function as input informa-
tion and produces a hypothesis that approximates the target as an output. In this
chapter, we consider a generalization of this paradigm by taking di�erent types of
information as input, and producing only speci�c properties of the target as output.

Generalizing the typical learning paradigm in this way has theoretical and practi-
cal merits. It is common in real-life situations that we would have access to heteroge-
neous pieces of information, not only input-output data. For instance, monotonicity
and symmetry properties are often encountered in modeling patterns of capital mar-
kets and credit ratings [Abu-Mostafa 1995; 2001]. Input-output examples coming
from historical data are but one of the pieces of information available in such appli-
cations. It is also commonplace that we are not interested in learning the entirety of
the target function, and would be better o� focusing on only some speci�c properties
of the target function of particular interest and achieving better performance in this
manner. For instance, instead of trying to estimate an entire utility curve, we may
be only interested in the threshold values at which the curve goes above or below a
critical value.

Another common feature encountered in the applications that we have considered
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is that the data is very expensive or time consuming to obtain. In many such cases,
adaptive sampling is employed to get better performance with very small sample size
[Cohn et al. 1994, MacKay 1992]. In this chapter, we will describe a new adaptive
learning algorithm for estimating a threshold -like parameter from a monotonic func-
tion. The algorithm works by adaptively minimizing the uncertainty in the estimate
via its entropy. This, combined with a provably consistent learning algorithm, is able
to achieve signi�cant improvement in performance over the existing methods.

3.1.1 Applications

This problem is very general in nature and appears in many di�erent forms in Psy-
chophysics [Palmer 1999, Klein 2001] , Standardized testing like the GRE [Baker
2001], adaptive pricing, and drug testing [Cox 1987]. In all these applications, there's
a stimulus, and at each stimulus there is a probability of obtaining a positive response.
This probability is known to be monotonically increasing.

The most popular application of these methods is in the �eld of drug testing. It is
known that the probability of a treatment curing a disease is monotonic in the level
of dosage in the treatment, within a certain range. It is desirable to obtain a correct
dose level which will induce a certain probability of producing a cure. The samples
in this problem are very expensive and adaptive testing is generally the preferred
approach.

Standardized tests, like the SAT and the GRE, use adaptive testing to evaluate
the intelligence level of students. Item Response Theory [Lord 1980] models each
question that is presented in the test as an item and for each item, the probability of
a student correctly answering the question is monotonic in his intelligence. Each Item
has a di�erent di�culty level, and the next item presented to the student is adaptively
chosen based on his or her performance on the previous items. A student's GRE or
SAT score is de�ned as a di�culty level at which a student has a certain probability
of correctly answering the questions.

Another �eld where this kind of problem occurs is in determining the optimal
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discount level when pricing a product for sale. The probability of a customer buying
a certain product increases monotonically with the amount of discount o�ered. In
this application, it is not necessary to go after the entire price elasticity curve to
determine the discount value at which the expected pro�t is su�cient to achieve a
sales goal.

All these applications have the common theme that the target is a monotonic
function from which we can adaptively get Bernoulli samples which are otherwise
expensive to obtain. In each of the cases, we are not interested in the whole target
but only in a critical value of the input.

3.1.2 Monotonic Estimation Setup

Consider a family of Bernoulli random variables V (x) with parameters p(x) which
are known to be monotonic in x, i.e., p(x) ≤ p(y) for x < y. Suppose for X =

{x1, .., xM}, we have m(xi) independent samples of V (xi). We can estimate p(xi)

as the average number of positive responses yi. If the number of samples is small
then these averages will not necessarily satisfy the monotonicity condition. We will
discuss the existing methods which take advantage of the monotonicity restriction on
the estimation process and introduce a new regularized algorithm.

3.1.3 Threshold Function

We have a target function p : X → Y which is monotonically increasing. A threshold
functional θ maps a function p to X. The threshold function can take many forms,
the most common among them are:

Critical Value Crossing Functional. This is the most common form of the thresh-
old. The problem here is to estimate the input value at which the monotonic
function goes above a certain value. For example θ(h) = h−1(0.612) measures
the point at which the function crosses 0.612.

Trade-O� Functional. This takes the form θ(h) = argmaxxG(x)p(x), where G(x)
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is a �xed known function and is usually monotonically non increasing. This
kind of functional appears in the adaptive pricing problem, where the goal is to
maximize expected pro�t. If the probability of a sale upon o�ering a discount
rate of x is p(x), then the expected pro�t is given by θ(x) = (1 − x)p(x).

3.1.4 Adaptive Learning Setup

In the adaptive learning setup, given an input point x ∈ X, we can obtain a noisy
output y = p(x) + ε(x), where ε is a zero mean input dependent noise function.
For the scope of this chapter, Y = {0, 1} and the noisy sample at x would be a
Bernoulli random variable with mean p(x), i.e., y|x = B(p(x)). This scenario is
common in various real-world situations in which we can only measure the outcome
of the experiment (success or failure) and wish to estimate the underlying probability
of success. For adaptive sampling, we are allowed to choose the location of the next
sample based on the previous data samples and any prior knowledge that we might
have. In the following sections, we will introduce existing and new methods to sample
adaptively for monotonic estimation.

3.2 Existing Algorithms for Estimation under Mono-
tonicity Constraint

Most of the currently used methods employ a parametric estimation [Finney 1971,
Wichmann and Hill 2001] technique for �tting a monotonic function to the data. The
main advantage of this method is the ease in estimation and the high regularization
ability for small sample sizes, as there are only a small number of parameters to �t.

An alternate approach is to use the non-parametric method, MonFit (also known
in literature as isotonic regression [Barlow et al. 1972]) in which we do not assume
anything about the target function. This method has better performance as it does
not have the additional bias from the parametric assumption and is able to regularize
the estimate by enforcing the monotonicity constraint. This method is not used much
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in practice, as the output from it is a step-wise linear function with a lot of �at regions,
which is not very intuitive, although optimal in the absence of any assumptions about
the setup.

3.2.1 Parametric Estimation

Parametric estimation is the most popular method used in practice. The method
assumes a parametric form for the target and estimates the parameters using the
data. This gives the entire target as the output. In most of the parametric methods,
the target function is assumed to be coming from a 2-parameter family of functions.
The parameters are estimated from the data and the threshold or the threshold-like
quantity can be computed from the inverse of the parametric function. The most
commonly used methods for estimating the parameters are probit analysis [Finney
1971] and maximum likelihood [Watson 1971, Wichmann and Hill 2001]. In this
thesis, we will use the maximum likelihood method with the two parameter logistic
family [Hastie et al. 2001] as the model.

Flog = {f(x, a, b) = 1/(1 + e(x−a)/b)}

3.2.2 Non-Parametric Estimation

In the non-parametric approach (MonFit), [Barlow et al. 1972, Brunk 1955] the solu-
tion is obtained by a maximum likelihood estimation under the constraints that the
underlying variables are monotonic. It is equivalent to �nding the closest monotonic
series in the mean square sense.

MonFit is an algorithm which solves the optimization problem

min
µ

M
∑

i=1

m(xi) [µi − yi]
2 (3.1)



50

under the constraints

µi ≤ µj ∀i ≤ j

The MonFit estimator always exists and is unique. It has a closed-form solution
[Barlow et al. 1972]

µ̂∗
i = max

s≤i
min
t≥i

Av(s, t) (3.2)

where
Av(s, t) =

∑

i m(xi)yi
∑

i m(xi)

The solution can be computed in linear time by the Pool Adjusted Vector Algo-
rithm [Barlow et al. 1972]. The algorithm starts out with a pool of points, one for
each of the design points xi. The value of the estimator for each pool is computed
as the average value of the points inside the pool. If there are two consecutive pools
which violate the monotonicity restriction, then these pools are merged into one. This
procedure is repeated until all consecutive pools obey the monotonicity restriction.

Theorem 1 Given examples from a family of Bernoulli random variables with mono-
tonic probability, the MonFit estimate has a lower or equal mean square error than
the naive estimate

Proof Let us consider the case when we have one example in each bin. We will
denote the target as pi = p(xi) and assume that each bin has one sample, i.e., m(xi) =

1. Suppose the �rst pool of the MonFit estimate contains k points, then the partial
mean square error made in the �rst pool for the MonFit case would be

e1
mbt =

k
∑

i=1

(ȳ − pi)
2

where ȳ =
∑k

i=1 yi is the average pooled value which is assigned to each bin in the
�rst pool.

The partial mean square error by the naive estimate would be
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e1
naive =

k
∑

i=1

(yi − pi)
2

The di�erence between the errors can be written as

e1
naive − e1

mbt =
1

k

k
∑

i,j=1

(yi − yj)
2 +

2

k

k
∑

i=1

k
∑

j=i+1

(pi − pj)(yj − yi) (3.3)

Now, since the �rst k points were pooled, we have that

y1 ≥
y1 + y2

2
≥ y1 + y2 + y3

3
≥ . . . ≥

∑k
i=1 yi

k

From which we can conclude, that

y1 ≥ y2 ≥ y3 ≥ . . . ≥ yk

p′is are monotonic, therefore,

p1 ≤ p2 ≤ p3 ≤ . . . ≤ pk

So, each term in equation (3.3) is non-negative. So, we have that e1
naive ≥ e1

mbt.
The mean square error would be the sum of the partial mean square errors in each

pool, so enaive ≥ embt

For the general case, when each bin has a weight wi = m(xi), we can do similar
calculation and get

e1
naive − e1

mbt =
1

k

k
∑

i,j=1

wiwj(yi − yj)
2 +

2

k

k
∑

i=1

k
∑

j=i+1

wiwj(pi − pj)(yj − yi)

where, in this case,

e1
mbt =

k
∑

i=1

wi(ȳ − pi)
2
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where
ȳ =

∑k
i=1 wiyi

∑k
i=1 wi

and

e1
naive =

k
∑

i=1

wi(yi − pi)
2

and the ordering on y′
is still holds, so each term is again positive.

¤

Theorem 1 proves the advantage in enforcing the monotonicity constraint. The
naive estimate is unbiased, and by enforcing the additional constraints the MonFit
estimator becomes biased. However, the variance of the MonFit estimator is reduced.
This result proves that overall, the increase in the bias is less than the corresponding
decrease in the variance, making MonFit a better option for minimizing the mean
square error.

The MonFit solution only gives the target values at the design points. To esti-
mate the threshold, the function can be interpolated in any possible way. The most
common approach is to interpolate it linearly in between the design points, although
more sophisticated approaches are possible (like monotonic splines [Ramsay 1998]).
We use linear interpolation because of its simplicity and the fact that we do not have
any a priori knowledge to choose one over another. Theorem 2 proves the consis-
tency property of the MonFit estimate with constant interpolation but it can also be
extended to linear interpolation.

Theorem 2 Let f(x) be a continuous non-decreasing function on (a, b). Let {xn}be
a sequence of points dense in (a, b)with one observation made at each point. Let the
variance of the observed random variables be bounded. Let f̂n(x)be the estimate based
on the �rst n observations, de�ned to be constant between observation points and
continuous from the left. If c > a and d < b, then

P

[

lim
n→∞

max
c≤t≤d

∣

∣

∣
f(t) − f̂(t)

∣

∣

∣
= 0

]

= 1

Proof See Brunk [1958]
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3.3 Hybrid Estimation Procedure

The existing methods which we have discussed have their own advantages and disad-
vantages. We introduce a hybrid estimation technique, which is a combination of the
parametric and the nonparametric approaches that tries to combine the advantages
of both into one approach. We developed a regularized version of MonFit, which we
call Bounded Jump Regression, that uses jump parameters to smoothen and regu-
larize the MonFit solution. Bounded jump regression with a heuristic for parameter
selection is used here for estimation in the hybrid estimation procedure.

3.3.1 Bounded Jump Regression

One of the main drawbacks of the non-parametric approach is that the solution it
produces is a step function, which for many applications is non-smooth and tends to
have a lot of �at regions. Practically, this kind of behavior is unacceptable [Wichmann
and Hill 2001]. In this section, we introduce a new approach to estimating the solution
which introduces a parameter to the MonFit algorithm in order to make it smooth.

The non-parametric estimation technique solves a least squares regression problem
under the monotonicity constraint. The monotonicity constraint ensures that the
di�erence between two consecutive estimates is positive. In this section we introduce a
generalization of this problem where the di�erence between two consecutive estimates
is bounded above and below by certain parameters.

3.3.1.1 De�nition

We de�ne the Bounded Jump Regression problem as follows

min
µ

N
∑

i=1

(µi − yi)
2 (3.4)

Subject to the constraints that

δi ≤ µi+1 − µi ≤ ∆i ∀i = 0..N (3.5)
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where µ0 and µN+1 are �xed constants and {δi, ∆i}N
i=1are parameters for the model.

3.3.1.2 Examples

Many of the regression problems can be expressed as a special case of the bounded
jump regression problem. For regression of binomial probabilities which we are dealing
with in this chapter, we �x the boundary points µ0 = 0 and µN+1 = 1.

• When δi = −∞ and ∆i = ∞, the constraints are vacuous and the problem
reduces to normal mean squares regression.

• When δi = 0 and ∆i = ∞, the constraints enforce the monotonicity on µ′
is ,

and so, the problem reduces to monotonic regression.

• When δi = 1/N + 1, there is only one feasible solution and so there is no
regression problem to solve.

3.3.1.3 Solving the BJR Problem

The BJR problem can be reduced to a quadratic optimization problem under box
constraints by using suitable variable transformations. If we substitute

zi =
pi+1 − pi − δi

1 − ∑N
t=0 δt

and

Ci =
∆i − δi

1 − ∑

δt

and

Qij = min(N + 1 − i, N + 1 − j)

and

ynew
i =

i
∑

t=1

(

ȳt

1 − ∑N
r=0 δr

− δt

)
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then, BJR can be reduced to

min
1

2
zT Qz − zT ynew

under the constraints that

0 ≤ z ≤ C

and

zT
1 = 1

3.3.1.4 Special Cases

For the case when we have ∆i = ∞, the BJR can be reduced to monotonic regression
problem and hence can be solved in linear time.

By using the transform

zi =
pi −

∑i
t=1 δt

1 − ∑N
t=0 δt

and

ynew
i =

yi −
∑i

t=1 δt

1 − ∑N
r=0 δr

The BJR reduces to

min
µ

N
∑

i=1

(zi − ynew
i )2 (3.6)

Subject to the constraints that

zi+1 − zi ≥ 0 ∀i = 0..N (3.7)
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δ = 0

δ = 1/N

δ = −1

Figure 3.1: δ as a Complexity Parameter Controlling the Search Space

3.3.1.5 δ as a Complexity Parameter

Consider the case, when we have ∆i = ∞ , i.e., we're only bounding the minimum
jump between two consecutive bins, and δi = δ for all i. For the case when we have
δ = −∞, BJR reduces to normal regression and the set of feasible solution is the
entire R

N plane (or if we are working with probabilities, it will be [0, 1]N). As we
increase δ, the feasible region keeps shrinking. At δ = 0, the feasible region is the
set of all monotonic functions, and when δi = 1/N + 1, the feasible region contains
just one solution. So, δ can be seen as a measure of complexity of the solution space
and increasing delta will reduce the variance while increasing the bias. The number
of independent parameters in the feasible region can also be considered as a function
of δ. For δ = −∞, the number of independent parameters is N , and for δ = 1/N +1,
it is zero. This gives us a continuous control over the bias and variance trade-o�.
δ = −∞ corresponds to the zero bias solution and δ = 1/N + 1 corresponds to the
zero variance solution.
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3.3.2 Hybrid Estimation Algorithm

In the hybrid estimation algorithm we use bounded jump regression with the lower
bound δ as a parameter. By controlling δ, we are e�ectively controlling the size of the
feasible region and thus giving better generalization performance, especially when
we have a small number of examples. The jump parameter denotes the minimum
value of the gradient of the target function. As we have seen in 3.3.1.5 , it controls
the search space in which the non-parametric algorithm searches for the optimal
solution. However, we have the same number of parameters as the number of bins If
we estimate all of them from the data, it would really be a non-parametric procedure
as the number of parameters vary according to the data. To limit this, we use only a
single parameter and scale it di�erently for each bin. Estimating δ requires knowledge
about the nature of the target function and we estimate δ using the parametric �t.

The δ parameter is the lower bound on the jump between bins, i.e. pi+1 − pi ≥ δi.
This can be estimated by the gradient of the target function. We have

pi+1 − pi ≥ (xi+1 − xi) min(p′(x))

We estimate the gradient of the target function as the minimum of the gradient
of the parametric solution. We set

δi ∝ (xi+1 − xi) min
j

p̂(xj+1) − p̂(xj)

xj+1 − xj

The MonFit estimation algorithm does not take into account the change in input
value between the bins. The parametric method exploits the dependence nicely and
returns a function which depends on the location of the bins. This heuristic allows
us to introduce this dependence into the estimation procedure.

Ideally, if we have small number of samples then we should choose a smaller space
to search in; as we get more and more examples, we can a�ord to expand the search
space. We therefore decrease the jump parameter as we get more samples. In the
limit as we increase the number of samples, the hybrid estimation converges to the
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Algorithm 5 HybridFit(x, y, m)
• Input: x = (x1, .., xN), y = (y1, ..., yN), and m = (m1, ..., mN), where yi is the
average number of positive responses out of mi samples which were taken at xi

� Let fl(x) be the best logistic �t for the data (x, y, m)

� Calculate d = min
f(xj+1)−f(xj)

xj+1−xj
, the minimum gradient estimate

� Let δi = dxi+1−xi

mi

� De�ne ynew
i

=
yi−

Pi
j=1

δj

1−
PN

j=1
δj

� Let z = MonFit(y, m)

� Return µhybrid
i = zi(1 − ∑N

j=1 δj) +
∑i

j=1 δj

same solution as the monotonic regression. This allows us to derive the asymptotic
properties for the hybrid estimation, like consistency and convergence. We scale the
gradient at any point by the inverse of the number of samples at that point.

3.3.3 Pseudo-Code and Properties

Algorithm 5 describes the hybrid estimation algorithm. The hybrid estimation algo-
rithm inherits the asymptotic statistical properties from the MonFit estimator. As
the number of samples increase densely in the region of interest, the δ parameter goes
down to zero.

Corollary 1 Let f(x) be a continuous non-decreasing function on (a, b). Let {xn}be
a sequence of points dense in (a, b)with one observation made at each point. Let the
variance of the observed random variables be bounded. Let f̂n(x)be the hybrid estimate
based on the �rst n observations, de�ned to be constant between observation points
and continuous from the left. If c > a and d < b, then

P

[

lim
n→∞

max
c≤t≤d

∣

∣

∣
f(t) − f̂(t)

∣

∣

∣
= 0

]

= 1
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Proof Since, f is a continuous non-decreasing function on (a, b), the minimum of
the gradient of the parametric estimate used in the estimation of δ would be bounded.
The scaling factor is proportional to the di�erence between the consecutive sample
points. Since the points are dense in the region, the minimum jump parameter would
converge to 0 as n → ∞. With these observations, the Corollary follows directly from
Theorem 2. ¤

3.3.4 Experimental Evaluation

We compared the hybrid estimation algorithm with the MonFit and the parametric
�t algorithms. We compare the performance for various shapes of the target function
as shown in Table 3.1.

Table 3.1: Various Shapes of Target Function Used in the Comparison
Linear f(x) = x

Weibull f(x) = (1 − e−x2

)

NormCDF f(x) = Φ(x−0.5
0.25

)

Student-t Student's t distribution with 10 dof
Quadratic f(x) = x2

TR f(x) =











2x2 x ≤ 0.5

1 − 2(1 − x)2 x > 0.5

Exponential f(x) = 1

1+e
a−x

b

,a = 0.5, b = 0.05

Exponential2 f(x) = 1

1+e
a−x

b

,a = 0.4, b = 0.1

For each of the targets, we compute the deviation in the estimates which is de�ned
as

d(y, m) =
N

∑

i=1

m(xi)(yi − pi)
2/

N
∑

i=1

m(xi)

Figure 3.2 shows the deviation when we have one sample per bin (i.e. m(xi) = 1)
and Figure 3.3 shows the result when more samples are taken in the center than in



60

Linear Weibull NormCDF Student−t Quadratic TR Exp Exp2
0

0.01

0.02

0.03

0.04

0.05

0.06

Datasets

D
ev

ia
tio

n

 

 

ParamFit
MonFit
HybridFit

Figure 3.2: Comparison of Various Monotonic Estimation Methods with 1 Sample
Per Bin
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Figure 3.3: Comparison of Various Monotonic Estimation Methods with m(xi) =
min(i, N − i)
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the corners (i.e. m(xi) = min(i, N − i)).
We can see that hybrid �t generally outperforms both parametric and MonFit on

all the targets, as it uses information from both the parametric and MonFit to com-
pute its estimate. The performance ParamFit depends on how close the assumptions
made in the parametric model hold for the real target function. For some cases it
outperforms the MonFit method, but in those cases, there is not much di�erence in
the performance of the two methods.

3.4 Adaptive Algorithms For Monotonic Estimation

In most of the problems we have described, the samples are very few and expensive
to obtain. In these cases, whenever possible, it is bene�cial to adaptively select the
location of an example based on the known information. This way we can avoid
samples which provide little or no information and speed up the estimation process.
The problems described in the introduction �t into this framework. Computerized
standardized testing uses adaptive estimation to zero in on a person's score, simi-
larly most of the drug testing research is done adaptively. There are many existing
algorithms for estimating the threshold of a monotonic function. Two of the most
common approaches follow.

3.4.1 Maximum Likelihood Approach

One of the most popular approaches for adaptive sampling is the maximum likelihood
approach which is very similar to the Best PEST [Taylor and Creelman 1967, Pentland
1980](Parametric Estimation with Sequential Testing). As the name suggests, it
assumes a simple parametric form for the underlying function and estimates the
parameters using the maximum likelihood approach. It adaptively places the new
sample at the current value of the threshold [Leek 2001]. This approach has many
advantages, like very simple estimation procedure and a simple rule for adaptive
sampling. The major drawback of this method is that it assumes a parametric form
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for the underlying target. This assumption introduces a bias in the estimation which
can be very large if the actual target is far from the model.

3.4.2 Staircase Procedure

Staircase procedures [Cornsweet 1962] are the simplest and most commonly used pro-
cedure for estimating the threshold of a monotonic function with Bernoulli sampling.
They start out sampling at an arbitrary value and depending on the outcome of the
current sample, they either increase the input value or decrease it. Using this pro-
cedure, one can estimate the 50% threshold value. This procedure can be modi�ed
to target a few other threshold values. For example, if we do a two up, one down
procedure, in which we increase the input after two consecutive negative samples and
decrease it after every positive sample, this procedure would target the 70.7% thresh-
old value. The variations of this procedure would use di�erent number of consecutive
samples before increasing or decreasing the input. A major drawback of this algo-
rithm is that it can only target a few threshold values and so cannot be used for a
general threshold functional.

3.5 MinEnt Adaptive Framework

The MinEnt adaptive framework tries to place the new samples with an aim of min-
imizing the entropy of the threshold distribution. It uses a technique similar to the
one described in Fedorov [1972], and at each stage assumes the current estimate of
the underlying function as the true function and decides where to sample next based
on that.

3.5.1 Dual Problem

Adaptive sampling can be viewed as a dual problem of learning, if we assume the
current estimate to be the true target function. In learning, given the datasets, we
would like to estimate the true function. In sampling, we are trying to get the best
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sample which would have the maximal information about the function in general or
the threshold in particular. Consider a target function f : X → Y , and a learning
model H = {h : X → Y }, and a known functional θ which maps a function h to an
element in X. Our goal is to estimate θ(f) for an the function f . Given the locations
{x1, x2, ..., xn}, we can get noisy samples from {y1, y2, ..., yn} where yi = f(xi)+ ε(x) .
Using the combined input-output pairs, we can estimate the underlying function f or
its threshold θ(f), which now will be a random variable dependent on the noise ε. In
MinEnt setup, we try to minimize the dependence of the estimate on the underlying
noise. This is done by adaptively minimizing the entropy of the estimated threshold.

3.5.2 Algorithm

There are four main steps in the MinEnt adaptive sampling algorithm :

Estimation Given the current samples, the framework �rst uses the learning algo-
rithm to obtain an estimate of the target function.

Re-sampling We assume that the current estimate to be the actual target. Now,
the problem is reduced to the question in Section 3.5.1: given the current
sample locations, where in X should we sample next to minimize the entropy or
uncertainty in the threshold estimate? This is done by repeated sampling from
the estimated target and increasing the sample size by one at each of the possible
locations. Assuming that we have N possible locations {x1, ..., xN}to sample
from and we currently have m ={m1, ..., mN} number of samples from each of
the possible locations, and the current estimate learned from the samples is
h(x). Let ei = {0, .., 0, 1, 0, ..., 0} with a 1 in the ithrow denoting a sample at xi.
In the re-sampling step, we generate random samples from h(x) at {x1, ..., xn}
of size m+ ei. From each of these samples, we get an estimate of the threshold.

Computation For each possible location, we can then compute the distribution of
the threshold estimate when we take an additional sample at that location.
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Entropy
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New sample in First Bin Estimate of the target

Threshold Distribution for adding a sample at an input value

Figure 3.4: MinEnt Adaptive Sampling Algorithm

Evaluation From the threshold distribution at each location, we can compute the
entropy of the threshold estimate and take the next sample at the location level
which minimizes the entropy of the threshold.

The framework is shown in Figure 3.4
In practice, we �rst take one sample in each of the possible locations and then

adaptively choose the rest. As we continue to take more samples, the estimate of
the target would be closer to the real target. This way, the decision of the adaptive
sampling would become more accurate as we take more samples.
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3.5.3 Extensions of the Framework

The MinEnt framework can be easily extended to accommodate sampling at any
input value or any cost function. For sampling at any stimulus level, during the
re-sampling step, we also compute for the case when we sample in between two of
the input values. In the Evaluation step, we can replace the entropy of the threshold
by any other statistic, like variance. This way we can focus on di�erent aspects as
dictated by the application.

3.6 Comparison

We compared the MinEnt adaptive algorithm with the Staircase method [Cornsweet
1962] and the Best PEST procedure [Pentland 1980]. We compare the performance
for various shapes of the target function, as shown in Table 3.2, and for various values.
The testing is done only on known target functions, as it is not possible to use a �xed
dataset for adaptive testing. The target functions that we use provide us with a model
for the problem. There are other factors in the real world applications, for example
the concentration of the subject being tested in the GRE test can vary over time. We
do not consider these factors in the tests.

Linear f(x) = x

Weibull f(x) = (1 − e−x2

)

NormCDF f(x) = Φ(x−0.5
0.25

)

Student-t Student's t distribution with 10 dof
Quadratic f(x) = x2

TR f(x) =











2x2 x ≤ 0.5

1 − 2(1 − x)2 x > 0.5

Exponential f(x) = 1

1+e
a−x

b

,a = 0.5, b = 0.05

Exponential2 f(x) = 1

1+e
a−x

b

,a = 0.4, b = 0.1

Table 3.2: Various Shapes of Target Function Used in the Comparison
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Table 3.3: Comparison of MinEnt with Existing Methods for Estimating 50% Thresh-
old

Equal-Log�t Equal-MonFit Staircase PEST MinEnt
Linear 0.01(0.07) 0.011(0.037) 0.004(0.25) 0.003(0.04) 0.026(0.02)
Weibull 0.01(0.06) 0.016(0.032) 0.001(0.23) 0.073(0.012) 0.025(0.012)

NormCDF 0.017(0.03) 0.011(0.01) 0.001(0.25) 0.053(0.09) 0.003(0.01)
Student-t 0.005(0.01) 0.006(0.02) 0.005(0.24) 0.059(0.01) 0.036(0.01)
Quadratic 0.079(0.04) 0.079(0.01) 0.06(0.23) 0.116(0.01) 0.08(0.01)

TR 0.004(0.04) 0.008(0.01) 0.001(0.25) 0.041(0.01) 0.012(0.01)
Exponential 0.006(0.01) 0.003(0.01) 0.001(0.25) 0.043(0.002) 0.002(0.001)
Exponential2 0.003(0.03) 0.003(0.005) 0.003(0.2) 0.005(0.005) 0.003(0.004)

The Staircase method only works for certain values and form of the threshold, and
so it is not included in all the comparisons. We test the performance of the various
methods in estimating the 50% threshold and the 61.2% threshold. For simplicity, all
the methods were restricted to sample from a �xed grid of equally spaced locations and
were given a budget of three times the number of locations. For baseline comparison,
we also compare with the simple method, which allocates equal number of samples in
each location and then uses parametric estimation and non parametric estimation.

The results of the comparison are shown in Tables 3.3 and 3.4. The two values
in each cell of the table represent the bias and the variance of the estimate of the
threshold obtained by each algorithm. The variance is given in the parenthesis and
the total error would be composed of the two parts. To compare the algorithms on a
target function, we need to compare both the bias and the variance. Lower variance
denotes convergence in the estimate, while low bias denotes consistency.

MinEnt achieves lower variance for most of the comparisons. Its bias is at least
comparable if not better than the existing methods. For the 50% threshold estimation,
the Staircase method has a very low bias. This is because the method is unbiased,
however its variance is signi�cantly higher than the other methods, leading to a high
error value.

In Figures 3.5-3.12, we compare the mean square error in the estimate of the
threshold computed by PEST and MinEnt algorithm as we obtain additional samples
as dictated by the algorithms. The starting point for both the algorithms is the same,



68

Table 3.4: Comparison of MinEnt with Existing Methods for Estimating 61.2%
Threshold

Equal-Log�t Equal-MonFit PEST MinEnt
Linear 0.015(0.016) 0.0158(0.027) 0.06(0.009) 0.014(0.0137)
Weibull 0.0154(0.008) 0.0236(0.016) 0.0589(0.01) 0.0118(0.0048)

NormCDF 0.0103(0.006) 0.0143(0.017) 0.07(0.013) 0.0076(0.009)
Student-t 0.005(0.01) 0.022(0.018) 0.0292(0.013) 0.0174(0.01)
Quadratic 0.0956(0.005) 0.0899(0.008) 0.1017(0.008) 0.0601(0.007)

TR 0.0106(0.004) 0.0076(0.008) 0.0690(0.01) 0.0123(0.009)
Exponential 0.0086(0.002) 0.0024(0.002) 0.0429(0.004) 0.0044(0.0015)
Exponential2 0.0241(0.004) 0.0084(0.005) 0.0637(0.006) 0.0132(0.0032)

one sample per bin and the x-axis denotes the number of additional samples used.
We can see that in some targets the error of PEST algorithm at the beginning is

much lower than the other methods. This is partly due to the fact that PEST being
a curve-�tting procedure has an advantage in cases where the target is either in or
very close to the model used in PEST. MinEnt, however has a much better rate of
convergence and is quickly able to focus on the threshold and reduce the errors there.
In almost all of the cases, MinEnt with MonFit and HybridFit achieves lower error
and better convergence.

3.7 Conclusions

We have described a new algorithm for using adaptive sampling in the non parametric
estimation of a threshold-like parameter. This new algorithm allows us to use the
power and consistency of the non-parametric methods in an adaptive setting. The
performance of this new algorithm is better than the existing adaptive algorithms
for parametric estimation. It achieves quick convergence and has low bias in its
estimates, thereby making it ideally suitable for applications where the samples are
very expensive.
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Figure 3.5: Results on Linear Target
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Figure 3.6: Results on Weibull Target
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Figure 3.7: Results on Normal Target
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Figure 3.8: Results on Student-t Distribution Target
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Figure 3.9: Results on Quadratic Target
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Figure 3.10: Results on TR Target
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Figure 3.11: Results on Exp Target
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Figure 3.12: Results on Exp2 Target
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Chapter 4

Data Cloning for Machine Learning

One of the major pitfalls in machine learning is that of selection bias. This is mostly
introduced unconsciously due to the choices made during the learning process which
often lead to over-optimistic estimates of the performance. We introduce a new
methodology for cloning a dataset which can systematically reduce the selection bias.

Cloning produces a dataset of similar complexity and su�ciently independent from
the original dataset. Using cloned dataset for model selection results in a consistent
improvement over cross validation and its performance is much closer to the out-
of-sample selection. Experimental results on a variety of learning problems shows
that the cloning process results in a signi�cant improvement in model selection over
insample selection.

4.1 Introduction

While applying machine learning techniques to a real world problem, many decisions
have to be made. These include which learning algorithm to use and how to select the
parameters for the learning algorithm. This �ne tuning of the learning process can
be done based on domain-speci�c heuristics and prior knowledge about the problem.
A lot of these decisions are, however, made based on the available data. This can
lead to a "contamination" of the dataset and introduce selection bias in the learning
process [Salzberg 1997].

This issue also arises while designing generic algorithms in machine learning re-
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search. Here the decision to be made is whether the new algorithm is better than
existing methods. The �No Free lunch theorem� [Scha�er 1994, Rao et al. 1995,
Wolpert 1996] states that no algorithm can universally be better than any other al-
gorithm for all problems. It is therefore important to test the algorithms on a variety
of problems coming from di�erent �elds in order to evaluate their e�ectiveness on
commonly encountered types of problems. One such repository of real world datasets
is the UCI Machine Learning Repository [Blake and Merz 1998]. The archive has
been widely used by researchers all over the world as a primary source of machine
learning data sets and has been cited over 1000 times. The main limitation of a
dataset generated from a real world problem is that the number of samples are small,
as they are expensive to obtain and label. The comparison between algorithms is
usually done by taking di�erent bootstrapped samples to get statistically signi�cant
results. This can introduce a great deal of selection bias especially since there are
very few datasets and these have been used for a very long time now for comparing
algorithms.

We introduce a methodology to replicate a dataset, i.e., to generate a dataset
similar in di�culty to the original dataset but independent from it, so testing on them
would not introduce additional selection bias. The cloned dataset can also be used
for model selection while working on a real world application to avoid contamination
of the available dataset. In this work, we do not focus on generating new unlabeled
samples for the cloned dataset, but only on generating labels for them based on the
existing dataset. [Shakhnarovich 2001] and [Shakhnarovich et al. 2001] looked at
generating new unlabeled samples by learning the distribution of the dataset. These
methods can be used along with our cloning techniques, but for the purpose of this
work, we will focus on generating labels for new data-points.

4.2 Complexity of a Dataset

The complexity of a dataset is a measure of the di�culty it presents to a learning
algorithm. It can be de�ned in terms of the complexity of a classi�er required to
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describe the dataset. Li [2006] provides a framework for de�ning the complexity of
the dataset with respect to a �xed learning model which allows for in-sample errors
and accounts for them in the complexity.

De�nition 1 For a given learning model H and a positive constant λ, the data com-
plexity of a dataset D with a lookup table is de�ned as

CH,λ(D) = min |h| + λeD(h) : h ∈ H

The constant λ is the complexity of implementing one lookup table with the
learning model. This method is very closely related to the principle of minimum
description length (MDL) [Rissanen 1978].

If we use support vector machine [Vapnik 2000] as our learning model, then the
complexity of the dataset can be de�ned as the sum of the number of support vectors
in the learned model and the number of in-sample points that were misclassi�ed.
This provides a practical measure for the complexity which can be easily computed.
The other factors in the description of the hypothesis which include the description
of the bias and the kernel computation program can be ignored when comparing the
complexities as they remain constant for a �xed model.

4.3 Cloning a Dataset

The cloning process is a two step procedure. The �rst step is to create a cloner
function which will generate examples which are similar to the ones generated by the
target function that generated the original dataset. The second step is to generate
new unlabeled points, classify them using the cloner function, and select points which
would make up a dataset of similar complexity to the original dataset. As mentioned
earlier, we will assume that we can generate new unlabeled points and so we will only
focus on selecting points for the new dataset. We will discuss each of these steps in
detail in the following sections.
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4.4 Learning a Cloner Function

In this step, we will use a �xed learning model to learn a classi�er from the dataset
and then use it to create cloned copies. We will present two di�erent approaches to
generating a cloner.

4.4.1 AdaBoost.Stump

AdaBoost [Freund and Schapire 1995] is a popular and very successful machine learn-
ing algorithm. It is described in Algorithm 1. We use AdaBoost, along with decision
stumps as the base learner, as a model to generate a cloner. The decision stump is a
very simple learning model which bases its output on thresholding one input variable
of the dataset. The advantage of using decision stump is that the hypothesis will be
independent of the scale factor in the individual attributes. The learned hypothesis
can be used to determine the labels for the generated dataset. This is a model free
approach as we do not need to know the learning algorithm that would be used on
the replicated dataset. Using a �xed but powerful learning model has an additional
bene�t of not introducing additional selection bias, as the model is chosen before
looking at the dataset.

The performance of a learning algorithm on the cloned dataset gives an indica-
tion of the performance on the original dataset. We can bound the generalization
performance which can be expected on the original dataset by the generalization
performance of the classi�er learned on the cloned dataset.

Theorem 5 Given a dataset S generated from a distribution D and a target ft, a
cloner fc ∈ Fc and for all hypothesis f ∈ F , with high probability,

PD[f(x) 6= ft(x)] ≤ PD[f(x) 6= fc(x)] + PS[ft(x) 6= fc(x)] + Complexity(Fc)

The Theorem follows from the generalization bound for the cloner function and
the triangle inequality,
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Theorem 5 bounds the out-of-sample error of a hypothesis learned on the cloned
function. If the cloner is appropriately chosen such that it has a small in-sample
error from a �xed class of functions, then the di�erence between the out-of-sample
performance on the target becomes close to that on the cloner. One interesting
observation here is that the bound is independent of the complexity of the hypothesis
class F , thereby allowing us to do model selection between a large number of models
and incur a �xed and quanti�able amount of bias.

4.4.2 ρ-learning

ρ-learning [Nicholson 2002] is an algorithm which uses a learning model for data
valuation and uses that valuation to classify new points. The ρ-value of a point for
a given learning model is de�ned as the correlation between the performance on that
point of a function with the overall generalization error of the function. Given that
the points are generated according to a distribution D and a probability distribution
over the learning model G, PG, the ρ-value of a data point denotes the correlation
between the error a function makes on that point and the overall out-of-sample error
of that function.

ρ((x0, y0)) = corrg∈G ([g(x0) 6= y0], PD[g(x) 6= y])

A negative ρ-value for a data point implies that for better out-of-sample perfor-
mance, it is optimal to misclassify that point. ρ-learning computes both ρ(x, 1) and
ρ(x,−1) and decides the label based on the larger of the two values. The correlation
is calculated with respect to the original dataset S, giving the classi�cation rule as

y|x = sign (corrg([g(x) 6= 1], PS [g(x) 6= y]))

If we choose points with high correlation to the dataset to make up a new set, it
will have a good correlation with the original dataset.

Theorem 6 Given two datasets, S1and S2, and a negation symmetric learning model
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G (i.e., PG[g] = PG[−g],∀g ∈ G) we have

Corrg(νS1
, νS2

) =
1

|S1|2
∑

x∈S11

Corrg(νx, νS2
)

Proof For general random variables {Xi}N
i=1and Y , we have

Corr(
N

∑

i=1

Xi, Y ) =

∑

σXi
Corr(Xi, Y )
∑

σXi

(4.1)

For negation symmetric learning models, we have that PG[νx = 1] = 1/2, therefore
V arg(νx) = 1/4.

νS1
=

1

|S1|
∑

x∈S1

νx

By 4.1, we have the theorem.
¤

A high correlation between the datasets would roughly imply that if a learning
algorithm does well on the replicated dataset, it should do well on the original dataset
as well and vice-versa. This means that the replicated dataset has approximately the
same amount of �di�culty� as the original dataset. The choice of the learning model
G is ad-hoc and in general it can be di�erent from the model used for learning. If
we use the same learning model for learning and replication, then we ensure that
the replicated set is highly correlated with the original set. This would, however,
introduce additional bias into the cloning process. Li et al. [2005] used ρ-values for
categorizing the data and found that the concept of correlation holds independently
of the model. We will use neural networks with 5 neurons in the hidden layer as our
model for estimating the ρ-values.
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4.5 Data Selection

The cloner function provides a mechanism which can be used to generate as many
examples as needed. It is vital to choose the new data points in such a way that they
represent the characteristics of the original dataset. It is always possible to generate
a dataset of very high or very low complexity from a function by choosing the data
points appropriately.

One of the important properties of a learning algorithm is its handling of noise
in the dataset. It is therefore important to estimate the noise level in the original
dataset and introduce the appropriate noise in the cloned dataset. We consider a
generalization of this paradigm which was introduced by Li et al. [2005]. They cat-
egorized a dataset into three categories instead of the usual two, according to their
usefulness to the learning process. A data point could either be noisy (i.e., it is
misclassi�ed), or typical (which implies that it is noiseless but not very informative
about the target), or critical (which means that it should be given a higher priority
in the learning process as it carries important information about the target). We can
extend this concept and do categorization at various levels instead of just three. This
would allow us to get a �ner handle on the information content of the examples. We
can then select the new points such that each category has an equal or almost equal
representation in both the cloned and the original dataset. Li et al. [2005] introduced
three practical methods for categorizing data, two of which are directly applicable to
our cloning techniques.

4.5.1 ρ-values

The ρ-value of a point was primarily introduced by Nicholson [2002] as a measure
of data valuation, i.e., measuring its importance to the learning process. A negative
ρ-value implies that the point is mislabeled. A small positive value indicates that
the point will be a critical point and a large value would indicate that the example is
typical. In this approach, we select a new set which has similar distribution of ρ-values
as the original dataset. Since we know the cloner function, we can easily compute the
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correlation coe�cient based on this knowledge, instead of the usual cross-validation
approach which is generally used for computing the correlation. This step ensures
that the cloned dataset contains roughly the same amount of information about the
cloner target as the original dataset does about the actual target, therefore the same
amount of complexity.

4.5.2 AdaBoost Margin

AdaBoost [Freund and Schapire 1996] improves the accuracy of any base learner by
iteratively generating an ensemble of base hypotheses. During its iterations, some
examples are more likely to be misclassi�ed than others, and are thus �hard� to learn
[Merler et al. 2004]. AdaBoost maintains a set of weights for the training examples
and gradually focuses on hard examples by giving them higher weights. At iteration
t, the ensemble f̃t(x) =

∑t
s=1 αshs(x) is constructed, where hs is a base hypothesis

and αs is the coe�cient for hs. The data weight w
(t)
i , proportional to e−yig̃t(xi), is thus

tightly related to the ensemble con�dence margin yig̃t(xi), and shows how hard it is
to get an example correct at iteration t [Freund and Schapire 1996]. Noisy examples
tend to get misclassi�ed a lot by base hypotheses and would have very large weights
for most of the iterations. Easy examples, on the other hand, are almost always
classi�ed correctly and would have small weights. Thus, the average weight over
di�erent iterations can be used for data categorization.

The margin of a point is de�ned as the magnitude of the real output of the
ensemble and is a measure of the con�dence of the ensemble in the binary output.
It is also an indication of the usefulness of the point to the learning process. In this
approach, we select points which have similar distribution of AdaBoost margins as
the original dataset. This ensures that the cloned dataset contains roughly the same
amount of information about the cloner target as the original dataset does about the
actual target function.
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4.6 Data Engine

The Caltech Data Engine [Pratap 2003] is a computer system that contains several
prede�ned models, such as neural networks, Support Vector Machines (SVM), and
radial basis functions (RBF). When requested for data, it randomly picks a model,
generates (also randomly) parameters for that model, and produces examples ac-
cording to the generated target function. A complexity factor can be speci�ed which
controls the complexity of the generated target function. The engine can be prompted
repeatedly to generate independent data sets from the same model to achieve small
error bars in testing and comparing learning algorithms.

This approach has been used for comparing the performance of learning ap-
proaches [Li et al. 2003]. It allows us to obtain statistically signi�cant comparison.
DEngin is the �rst step in data cloning. It generates data according to the speci�ed
complexity. Genuine data cloning should however uses the existing data to replicate
its complexity and other characteristics. We will use the DEngin to generate typical
learning problems in order to evaluate the e�ectiveness of the cloning process.

4.7 Experimental Evaluation

4.7.1 Arti�cial Datasets

We used the datasets described in 2.6.5 along with the following arti�cial datasets for
evaluating the performance of the cloning process.

Ring Norm [Breiman 1996] is a 20-dimensional, 2-class dataset. Each class is drawn
from a multivariate normal distribution. Class 1 has mean zero and covariance
4 times the identity. Class 2 has mean (−a,−a, .. − a) and unit covariance,
where a = 2/

√
20.

DEngin [Pratap 2003] DEngin generates multiple target functions for evaluating the
e�ectiveness of the cloning process over a variety of targets.
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4.7.2 Complexity of Cloned Dataset

In this test, we test the relationship between the complexity of the cloned dataset and
the complexity of the original dataset. Ideally we would expect the cloned dataset to
have a similar complexity to the original dataset. We also test the usefulness of the
data selection step in the cloning process.

4.7.2.1 Experimental Setup

We use the arti�cial targets to generate multiple datasets from a �xed target and
compute the histogram of the complexity using the support vector machine model
with Gaussian kernel. We compare this to the histogram of the complexity of a
cloned dataset.

4.7.2.2 Results

Figures 4.1-4.8 show the histogram of the complexities of the original problem and
the cloned datasets. We normalize the complexity by the number of samples in the
original dataset so that it is a number between 0 and 1. In each of the �gures, the top
plot shows the distribution of the complexity of a dataset generated from the original
target. The middle and the bottom �gure shows the distribution of the complexities
of cloned datasets generated from one original dataset. The expected complexity of
the cloned dataset is very close to that of the dataset used to generate the cloner. We
observe that the complexity of the cloned dataset are distributed in a very similar
way to the original problem.

The complexity of the TwoNorm and RingNorm datasets is quite low, which is
expected as the two datasets are generated from a Gaussian distribution, which is the
model used for the estimation of the complexities. This kind of behavior is possible
but highly unlikely for a real-world dataset.

Figure 4.9 shows the histograms of the cloned dataset for the YinYang problem
without the data selection step. It clearly shows the advantage of the data selection
step, since the randomly selected dataset has a much lower complexity than the
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original dataset. .

4.7.3 Cloning for Model Selection

To evaluate the e�ectiveness of the cloning procedure for model selection, we compare
it with existing methods for model selection and compare the generalization perfor-
mance under the two methods. Cross validation [Kohavi 1995] is the most popular
method for model selection in machine learning. The optimal method would be to do
an out-of-sample model selection. However this is not practical, as it would require
additional training samples which can be better used in the training stage. Since we
are testing on arti�cial datasets, we can evaluate the Oracle solution and use it for
baseline comparison.

4.7.3.1 Experimental Setup

The model selection problem that we consider is the selection of the optimal param-
eters for a SVM classi�er with the RBF kernel. There are two parameters that need
to be selected and this is usually done by using cross validation. The Oracle method
uses extra training samples for selecting the optimal parameters, as discussed it is not
practical, but we will use it as a baseline for comparison. In the cloning approach, an
AdaBoost of decision stumps is generated from the dataset, and that is then used to
generate multiple cloned copies of the training set and a large test set. The optimal
parameters are then chosen using the cloned dataset, similar to the Oracle proce-
dure. The average value of the generalization error which is de�ned as the di�erence
between the out-of-sample error and the in-sample error, is then computed.

4.7.3.2 Results

Table 4.1 summarizes the results of LeftSin dataset using the AdaBoost-Stump and
ρ-learning as cloners. All results are averaged over 50 independent runs and the
generalization errors are reported in percentage. We compare the 4 methods by
varying the number of models that they have to select from. The models are nested,
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Figure 4.1: LeftSin with 400 Examples
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Figure 4.3: YinYang with 400 Examples
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Dataset cloned by ρ-Cloner from a
Dataset of complexity 0.125

Figure 4.5: TwoNorm with 400 Examples
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Figure 4.6: TwoNorm with 200 Examples
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Figure 4.7: RingNorm with 400 Examples
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Figure 4.8: RingNorm with 200 Examples
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Figure 4.9: YinYang with 400 Examples without Data-Selection

Table 4.1: Performance of Cloning on LeftSin Dataset
Method/# choices 5 10 15 20

In-Sample 9.2217 ± 0.1298 14.8387 ± 0.09 15.6 ± 0.074 15.4587 ± 0.0941
CV 3.8450 ± 0.2436 5.2630 ± 0.4621 4.83 ± 0.4662 3.643 ± 0.301

ρ-cloning 2.2160 ± 0.1445 2.3808 ± 0.1082 2.723 ± 0.259 1.6102 ± 0.0936
AdaBoost-Cloning 2.7311 ± 0.1612 2.9412 ± 0.1340 3.1211 ± 0.421 2.012 ± 0.132

Oracle 1.803 ± 0.1316 2.0871 ± 0.0537 1.4557 ± 0.0695 1.0637 ± 0.0604
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Table 4.2: Performance of Cloning on RingNorm Dataset
Method/# choices 5 10 15 20

In-Sample 2.3976 ± 0.0024 2.4836 ± 0.0018 2.4226 ± 0.002 2.5324 ± 0.0027
CV 1.6166 ± 0.0122 1.7744 ± 0.0126 1.5580 ± 0.0089 1.7348 ± 0.0071

ρ-cloning 1.4540 ± 0.0133 1.6772 ± 0.0151 1.3112 ± 0.0095 1.3591 ± 0.0074
AdaBoost-Cloning 1.4121 ± 0.021 1.6213 ± 0.0241 1.2336 ± 0.0067 1.2864 ± 0.0076

Oracle 1.1544 ± 0.009 1.1114 ± 0.0094 1.1101 ± 0.0063 1.0864 ± 0.0059

i.e., all choices available in the 5-model problem are available for selection in the 10-
model problem, and are of increasing complexity. The 10-model problem contains all
the models in the 5-model problem, plus 5 additional models which are more powerful.

We can see a consistent improvement by using cloning over cross validation, and
the results are much closer to the Oracle approach, indicating that the cloned datasets
are of similar complexity and su�ciently independent from the original dataset. The
in-sample selection is consistently worsening as we increase the number of choices,
which is expected. The cross-validation approach follows the same trend as the Oracle
approach, i.e., its bias decreases as the bias of the Oracle approach decreases. The
cloning approach, although not following the exact trend in the Oracle approach,
gives results closer to the Oracle approach.

Table 4.2 summarizes the results of the 20-dimensional RingNorm dataset. We
observe results similar to that of the LeftSin dataset, although the magnitude of errors
here is much smaller.

4.7.4 Cloning for Choosing a learning algorithm

Here we test the cloning approach in choosing between two learning algorithms. We
use the same arti�cial datasets and use cloned datasets to select between two learning
algorithms. In an ideal setting, if we had access to the entire target function, we would
then choose the algorithm which would have a lower out-of-sample error upon learning
from that dataset. We will use this concept as the baseline for comparison.
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4.7.4.1 Experimental Setup

We use the Caltech Data Engine to generate di�erent target functions from various
learning models. For each target, we generate a dataset of size 400. We can then
clone each dataset and get a cloned set of the same size. We train a 2− 5− 1 neural
network and support vector classi�er on the original and cloned datasets, and report
how often the performance on the cloned set matches the Oracle decision (which uses
"illegal" information about the target function to choose a model). We also report
the generalization performance of a system which uses the cloning process to decide
which algorithm to use.

Given a target function f and a dataset S1, ..., SN generated from f , we generate
the cloners f c

1 , ..., f
c
N and cloned datasets Sc

1, ..., S
c
N . Given two learning algorithms

A1and A2 which map a dataset S to a hypothesis h = Ai(S) for i = 1, 2. De�ne
πij = e(Ai(Sj), f) and πij = e(Ai(S

c
j ), f

c
j ), as the out-of-sample performances of the

two models. We de�ne the hit-rate of a cloning process as

h =
1

N

N
∑

i=1

([πi1 < πi2] = [πc
i1 < πc

i2])

The hit-rate measures how often the decision of an algorithm on the cloned dataset
matches the actual Oracle decision. The hit-rate of the in-sample process can also be
similarly de�ned.

The performance of the Oracle chooser is de�ned as

Or =
1

N

N
∑

i=1

min (πi1, πi2)

and the performance of the cloner is de�ned as

Cln =
1

N

N
∑

i=1

(πi1[π
c
i1 < πc

i2] + πi2[π
c
i1 ≥ πc

i2])

A similar performance measure can be calculated for the selection which is done
in-sample
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IS =
1

N

N
∑

i=1

(πi1[νi1 < νi2] + πi2[νi1 ≥ νi2])

These quantities measure the overall performance of an algorithm which uses the
methods to select a learning model. The Oracle method will have the lowest error
measure, but it is not possible to implement that method.

4.7.4.2 Results

The cloning procedure was evaluated on 20 target functions generated using the date
engine from di�erent models. Figure 4.10 shows the hit-rates of the cloning method
against the in-sample selection. A random choice would give a hit-rate of 50%. The
cloning process has a higher hit-rate than the in-sample selection and is always better
than random. Figure 4.11 summarizes the performance of the cloning process in terms
of the average error obtained by choosing an algorithm based on the cloned dataset.
There is a signi�cant improvement in the selection process by using the cloner over
the in-sample method.

4.8 Conclusion

We have presented a methodology to create cloned copies of datasets which can
inherit the properties and structure of the original dataset, while minimizing the
contamination of the original dataset. We showed that the cloned datasets have a
similar complexity to the original datasets. We tested the cloning approach for the
purpose of model selection and choosing a learning algorithm. The experimental
results indicate that the technique can be very useful in machine learning.
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