
The complexity of formula minimization

Thesis by

David Buchfuhrer

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2008

(Submitted May 29, 2008)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Theses and Dissertations

https://core.ac.uk/display/11811269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

c© 2008

David Buchfuhrer

All Rights Reserved

iii

Acknowledgements

Thanks to Chris Umans for help obtaining and writing up the results contained herein.

An extended abstract version of the material presented in Chapter 2 is set to appear in ICALP in

2008 [BU08].

iv

Abstract

The Minimum Equivalent Expression problem is a natural optimization problem in the second level

of the Polynomial-Time Hierarchy. It has long been conjectured to be ΣP
2 -complete and indeed

appears as an open problem in Garey and Johnson [GJ79]. The depth-2 variant was only shown

to be ΣP
2 -complete in 1998 [Uma98], and even resolving the complexity of the depth-3 version has

been mentioned as a challenging open problem. We prove that the depth-k version is ΣP
2 -complete

under Turing reductions for all k ≥ 3. We also settle the complexity of the original, unbounded

depth Minimum Equivalent Expression problem, by showing that it too is ΣP
2 -complete under Turing

reductions.

We also consider a three-level model in which the third level is composed of parity gates, called

SPPs. SPPs allow for small representations of Boolean functions and have efficient heuristics for

minimization. However, little has been known about the complexity of SPP minimization. Here, we

show that SPP minimization is ΣP
2 -complete under Turing reductions.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Minimum Equivalent Expression 4

2.1 Description of the reduction . 4

2.2 Outline. 6

2.3 Preliminaries . 6

2.4 The problems . 7

2.5 Main results . 8

2.5.1 Top OR gate vs. unrestricted top gate . 8

2.5.2 Main reduction . 9

2.5.2.1 The z variable. 11

2.5.2.2 Properties of F̂ρ. 12

2.5.2.3 The X sub-formula. 13

2.5.2.4 Position of the z variable. 14

2.5.2.5 Finishing up. 18

2.5.3 The unbounded depth case . 19

2.6 Conclusions and open problems . 19

3 Minimum SPP Formula 21

3.1 Description of the reduction . 21

3.2 Outline . 23

3.3 Results . 24

3.3.1 Complexity of Related Problems . 24

3.3.2 Weighted variables . 26

3.3.3 Main Result . 28

vi

3.4 Conclusions and open problems . 33

Bibliography 34

1

Chapter 1

Introduction

Circuit minimization problems are natural optimization problems contained in the second level of the

Polynomial-Time Hierarchy (PH). The general form of such a problem is: given a Boolean circuit,

find the smallest Boolean circuit that computes the same function. The input and output circuit may

be required to be circuits of a particular form, e.g., Boolean formulas, or bounded-depth circuits.

These problems are central problems in the field of logic synthesis, where fairly large instances are

routinely solved using heuristics [DGK94]. They are also the prime examples of natural problems

that should be complete for the classes of the second level of the PH. Indeed, versions of these

problems inspired the definition of the PH in the early 70s by Meyer and Stockmeyer [MS72, Sto76],

and Garey and Johnson use the formula variant to motivate the definition of the second level of the

PH [GJ79].

Completeness proofs for circuit minimization problems have been hard to find. The DNF version

of circuit minimization was only proven to be ΣP
2 -complete in 1998 by Umans [Uma98]; the other

variants have remained prominent open problems. The only non-trivial hardness result for the for-

mula variant – called Minimum Equivalent Expression – is a PNP
|| -hardness result of Hemaspaandra

and Wechsung in 1997 [HW97]. One reason reductions for these problems are difficult is that one

direction of the reduction entails proving a lower bound for the type of circuit under consideration.

This shouldn’t be a absolute barrier, though, for two reasons. First, we have lower-bound proof

techniques for Boolean formulas and bounded-depth circuits; nevertheless incorporating these into

a reduction seems tricky. Second, a reduction need not entail strong lower bounds and in princi-

ple even slightly non-trivial lower bounds could suffice. A similar difficulty for potential reductions

showing the (conjectured) NP-hardness of a related problem was noted by Cai and Kabanets [KC00],

although there, the use of weak lower bounds is not even an option, under a complexity assumption.

Proving ΣP
2 -completeness of the depth-3 variant was proposed [UVSV06] as a challenging first

step, one that might begin to utilize techniques for proving lower bounds for bounded depth circuits

(e.g., the Switching Lemma). In Chapter 2 we resolve, in one shot, the depth-3 case, as well as the

depth-k variants for all k ≥ 3. The same techniques show in addition that the unbounded depth

2

Minimum Equivalent Expression problem is ΣP
2 -complete under Turing reductions. We are able to

achieve our results by exploiting the second way around the apparent barrier of proving circuit lower

bounds: our reductions entail circuit lower bounds, but we get by with very weak ones, that with

some effort are incorporated naturally into the structure of the reduction.

More recently, three-level formula minimization in which the first level is an OR gate, the second

level is AND gates, and the third level is composed of XOR gates, has been introduced [LP99]. Such

a formula is referred to as a Sum of Pseudoproducts (SPP) in the literature.

Definition 1.0.1 (SPP Formulae). An SPP formula is the disjunction of the conjunction of parity

formulae. In other words, an SPP formula contains a single OR gate of unlimited fan-out, to which

the inputs are unlimited fan-out AND gates which in turn take unlimited fan-out XOR gates as input.

The size on an SPP formula is the number of times the input variables appear in it.

Rather than allow negations of input variables, we allow the XOR gates to take constants as

inputs. Adding a true input is equivalent to negating one of the input variables and does not

increase the formula size. Essentially, the number of true inputs determines whether an XOR gate

computes odd or even parity on the input variables.

Figure 1 contains an example of an SPP formula computing the high bit of a 2-bit adder. The

inputs are x1x0 and y1y0 and the nodes marked
⊕

are XOR gates. The sub-formula computed by

an AND gate is referred to as a pseudoproduct.

∨
∧ ∧

⊕ ⊕ ⊕ ⊕ ⊕
x0x1 y1 y0 x1 y1

Figure 1.1: An SPP formula for the high bit output of a 2-bit adder.

Definition 1.0.2 (Pseudoproduct). A pseudoproduct is the conjunction of XORs.

Note that when we refer to XORs above, we mean the function computed by an XOR gate rather

than the gate itself. Both meanings are used throughout Chapter 3.

SPP formula minimization has been a recent subject of study in the field of logic synthesis

[BCDV08, CB02, Cir03]. Some research has found inefficient but exact minimization algorithms,

while other research is directed toward finding more efficient heuristics. Little has been known about

the formal complexity of SPP minimization. Note that SPP formulae are a generalization of DNF

3

formulae. Recall that a DNF formula is simply the disjunction of several terms, each of which is the

conjunction of some of the input variables and their negations.

One reason that SPP formulae are useful in logic synthesis is that they allow for much smaller

representations of many Boolean functions than DNF formulae. The simplest such example is that

of the parity function. Since SPP formulae contain XOR gates of unlimited fan-out, parity only

requires a single XOR gate with a linear number of inputs. By contrast, a CNF or DNF for parity

requires exponential size. We formally define the SPP minimization problem as

Problem 1.0.1 (Minimum SPP Formula (MSF)). Given an SPP formula S and an integer k, is

there an SPP formula of size at most k which is equivalent to S?

Rather than attempt to find a minimum SPP formula, several researchers have further restricted

the possible solution space by restricting the fan-out of the XOR gates to a constant [BCDV08,

CB02, Cir03].

Definition 1.0.3 (k-SPP Formulae). An SPP formula in which the XOR gates have fan-out of at

most k is referred to as a k-SPP formula.

While a k-SPP formula may require larger size than an SPP formula, they are sufficiently powerful

to be exponentially smaller than the smallest equivalent DNF in some cases [Cir03].

Although k-SPP formulae are an active area of research [BCDV08], we do not resolve their

complexity here. However, this work is an important first step toward determining the complexity

of k-SPP, since so little is known theoretically about either SPP or k-SPP minimization.

Here, we show that the minimization of SPP formulae is hard for the second level of the PH

under Turing reductions. This result provides the theoretical backing for work on inefficient exact

minimization algorithms [Cir03] and heuristics [BCDV08]. It also closes a gap in the knowledge

of circuit minimization. ΣP
2 hardness is an important result to those working in logic synthesis,

as queries to problems such as the coNP-hard tautology problem are often used in the design of

algorithms and heuristics. ΣP
2 hardness demonstrates that polynomial time algorithms making use of

NP or coNP queries cannot exist unless the PH collapses. ΣP
2 hardness of MSF is especially important

since SPPs are well-suited for use in practical situations such as representation of arithmetic functions

[LP99, JSA97].

4

Chapter 2

Minimum Equivalent Expression

In this chapter, we prove that the Minimum Equivalent Expression problem is ΣP
2 -complete for both

constant and unlimited depth formulae.

2.1 Description of the reduction

In this section we give a high-level description of the reduction, emphasizing a few interesting features

before delving into the technical details.

The problem we reduce from is succinct set cover, which was defined and shown to be

ΣP
2 -complete in [Uma99b]:

Problem 2.1.1 (succinct set cover (SSC)). Given a DNF formula D on variables

v1, . . . , vm, x1, . . . , xn

and an integer k, is there a subset I ⊆ {1, 2, . . . n} with |I| ≤ k and D ∨
∨

i∈I xi ≡ 1?

This can be seen as a succinct version of Set Cover, in which the sets are implicitly specified by

the ones of the formulas D, x1, x2, . . . , xn, and D is mandatory in any set cover (e.g., because it

covers some point not covered by any of the other sets).

We assume that the formula D accepts the all-true assignment, as it only requires polynomial

time to check this and the SSC instance is trivially false otherwise.

Our reductions exploit the special structure of this “succinct” set cover instance. In particular,

all of the sets other than the one implicitly specified by D have an extremely simple form (they are

just halfspaces), and in our reduction to minimum equivalent expression the choice of whether

they are included or excluded from a cover will manifest itself relatively easily in the size of minimum

equivalent expression. However, D may be a complicated function, one whose minimum formula

size is not readily apparent. To circumvent this problem, we will use a Turing Reduction (actually

a non-adaptive, or truth-table, reduction) which first ascertains the minimum formula size of D, and

5

then asks one further query on a formula that incorporates D and other components, to determine

whether or not the original instance of succinct set cover is a positive instance. This provides

a somewhat rare example of a natural problem for which a Turing reduction seems crucial (in the

sense that we do not know of any simple modification or alternative methods that would give a

many-one reduction).

More specifically, the main idea of our reduction is to consider the following formula, derived

from an instance of succinct set cover:

D ∨ [z ∧ (x1 ∨ · · · ∨ xn)] (2.1)

where z is a new variable. Notice that when z is false, this formula is equivalent to just D, which

(intuitively) forces a minimum equivalent formula to devote part of its size to computing an “un-

polluted” copy of D. When z is true, the formula covers exactly the union of all of the “sets” in

the instance of succinct set cover. That problem asks whether the disjunction of k or fewer xi

literals suffice to accept everything not accepted by D. If the variables indexed by I ⊆ {1, 2, . . . , n}

suffice, then a very economical equivalent formula to the one above is

D ∨

[
z ∧

(∨
i∈I

xi

)]
.

By forcing a minimum equivalent formula to contain a copy of D, we can ensure that the most

efficient way to compute the above equivalent formula is indeed of this intended form. We can then

determine whether or not there is a cover of size k by asking whether (2.1) has an equivalent formula

of size at most k greater than the size of the D sub-formula and the z variable.

To make this actually work requires some modifications. For example, because the sets in the

original instance cover all points in the domain, D ∨ z is already a small equivalent formula which

does not depend at all on whether or not the instance of succinct set cover was a positive

instance. But, we can solve this problem by modifying D initially to not accept the assignment in

which every variable is set to true.

A more general technique that we use in several places in the reductions is “weighting” some

variables in order to control the form of candidate small equivalent expressions. This is accomplished

by replacing a single variable y with a conjunction of new variables, y1 ∧ · · · ∧ yw, where w is the

desired weight. We show that after this replacement, a minimum equivalent expression must be

at least as large as the “w-minimum” expression (in which the size of a formula is measured by

the number of occurrences of variables other than y plus w times the number of occurrences of the

variable y).

We use this technique, for example, to weight z so highly that there can be only one occurrence

6

of it; this then forms the conceptual pivot from which we argue that the subtrees of the formula

surrounding that occurrence of z must compute D, and separately, a disjunction of as many variables

as there are sets in a minimum cover of the original succinct set cover instance.

2.2 Outline.

In Section 2.3 we define general notation, and the variants of the problems we will be considering. In

Section 2.5 we give the reductions – first a reduction showing that we can demand that the top-gate

be an OR gate (or an AND gate) in Subsection 2.5.1, and then the main reductions in Subsection

2.5.2. We conclude in Section 2.6 with some open problems.

2.3 Preliminaries

Given a Boolean formula F , we use |F | to mean the size of the formula F , and F for the negation

of the formula F . Similarly, for a variable x, x is the negation of x.

Restrictions. Given a function f : {true, false}n → {true, false} and a function ρ : [n] →

{true, false, free}, we define the restriction of f to ρ, fρ to be the function which fixes the ith

input to ρ(i) if ρ(i) is not equal to free, and leaves it as an input otherwise. Similarly, if F is a

formula for f , we define Fρ to be the formula in which every instance of the ith input variable is

replaced with ρ(i) if ρ(i) 6= free, and is unchanged otherwise. Note that Fρ is a formula for fρ.

Weighted formulae. If the variables xi of some function f have associated weights w(xi), then

the w-weighted size of a formula for f is the sum of the weights of the variables occurring at the leaves

(in their multiplicity). The usual measure of formula size is the w-weighted size when w(xi) = 1 for

all xi. Note that, as usual, size counts the number of literals at the leaves, and not the (∨,∧,¬)

gates.

Given a weight function w, we can take a formula F and create a formula F ′ which has minimum

formula size that is at least the minimum w-weighted formula size of F . Formula F ′ is obtained

by substituting x
(1)
i ∧ x

(2)
i ∧ · · · ∧ x

(w(xi))
i for every occurrence of xi in F . Note that by moving

negations to the variable level, we are substituting x
(1)
i ∨ x

(2)
i ∨ · · · ∨ x

(w(x))
i for every occurrence of

xi. We call F ′ the w-expanded version of F . The following lemma demonstrates the usefulness of

this transformation:

Lemma 2.3.1. Let F be a formula and w a weight function for F . Let F ′ be the w-expanded version

of F . Then the minimum size of a formula equivalent to F ′ is at least the minimum w-weighted size

of a formula equivalent to F .

7

Proof. Consider a minimum formula F̂ ′ equivalent to F ′. For each xi, let 1 ≤ ji ≤ w(xi) be the

integer for which x
(ji)
i occurs least among the xi-leaves of F̂ ′. Consider the restriction ρ that for

each i sets x
(j)
i to true for j 6= ji. By our choice of ji, |F̂ ′| is at least the w-weighted size of F̂ ′

ρ. But

the formula F̂ ′
ρ clearly is equivalent to F , so its w-weighted size is an upper bound on the minimum

w-weighted size of a formula equivalent to F .

2.4 The problems

As mentioned in the introduction, we will reduce from the ΣP
2 -complete problem succinct set

cover. It will be convenient to work with a slightly modified version in which the goal is for the

succinctly specified sets to cover everything except the “all-true” assignment.

Problem 2.4.1 (modified succinct set cover (MSSC)). Given a DNF formula D on variables

v1, v2, . . . , vm, x1, x2, . . . , xn

and an integer k, is there a subset I ⊆ {1, 2, . . . n} with |I| ≤ k and for which

D ∨
∨
i∈I

xi ≡

(
m∨

i=1

vi ∨
n∨

i=1

xi

)
?

It’s easy to see that this variant of succinct set cover is ΣP
2 -complete by reducing from

succinct set cover:

Theorem 2.4.1. mssc is ΣP
2 -complete under Turing reductions.

Proof. We are given an instance of SSC: a DNF D on variables

v1, v2, . . . , vm, x1, x2, . . . , xn

and an integer k. We produce the instance

D′ = D ∧

(
m∨

i=1

vi ∨
n∨

i=1

xi

)

(multiplied out into DNF) paired with the same integer k. If there exists I ⊆ [n] of size at most k for

which D∨
∨

i∈I xi ≡ 1 then clearly D′∨
∨

i∈I xi accepts everything except the “all-true” assignment,

and vice-versa.

Remark 1. In both SSC and MSSC, the instances produced by the reduction have the property that

taking I = {1, 2, . . . , n} is a feasible solution.

8

The central problem we are concerned with in Chapter 2 is:

Problem 2.4.2 (minimum equivalent expression (MEE)). Given a Boolean (∧,∨,¬)-formula

F and an integer k, is there an equivalent (∧,∨,¬)-formula of size at most k?

We also consider the constant-depth versions. When discussing constant-depth formulas, as

usual, we allow arbitrary fan-in AND and OR gates and we use the convention that all NOT gates

occur at the variable level.

Problem 2.4.3 (minimum equivalent depth d expression (MEEd)). Given a depth d Boolean

formula F and an integer k, is there an equivalent depth d formula of size at most k?

While distributing the NOT gates to the variable level clearly does not affect formula size, it’s

not as clear that finding the minimum depth-d formula is equivalent to finding the minimum depth-d

formula with an OR gate at the root. The latter variant, defined below, will be easier to work with.

Problem 2.4.4 (minimum equivalent depth d expression with top OR gate (MEEd−OR)).

Given Boolean formula F and an integer k, is there an equivalent depth d formula with top OR gate,

of size at most k?

In Theorem 2.5.3 we reduce MEEd−OR to MEEd, so that Σp
2-hardness for the latter follows from

the Σp
2-hardness for the former.

2.5 Main results

In this section we prove:

Theorem 2.5.1. For every d ≥ 3, the problem MEEd is ΣP
2 -complete under polynomial time Turing

reductions.

Theorem 2.5.2. The problem MEE is ΣP
2 -complete under polynomial time Turing reductions.

These two theorems are proved via the reductions in Sections 2.5.1, 2.5.2, and 2.5.3. The first

allows us to restrict our attention to the MEEd−OR problem, rather than the general MEEd problem.

2.5.1 Top OR gate vs. unrestricted top gate

Theorem 2.5.3. For every d > 3, there is a polynomial-time reduction from MEEd−OR to MEEd.

Proof. Fix d > 3. If every depth-d formula F has a minimum equivalent depth-d formula F ′ with

an OR gate at the root, then the two problems are equivalent, and the identity reduction suffices.

9

Otherwise there exists a formula F ∗ such that F ∗ has a smaller equivalent depth-d formula

with an AND at the root than the smallest equivalent depth-d formula with an OR at the root.

Equivalently, F ∗ has a smaller equivalent depth-d formula with an OR at the root than the smallest

equivalent depth-d formula with an AND at the root. Let G be a minimum formula for F ∗.

Now, given a depth-d formula F and an integer k (which we may assume to be less than |F |),

we create |F |+ 1 copies of G on disjoint variable sets (also disjoint from the variable set of F). Call

these copies Gi. Our reduction produces the formula

F ′ = F ∨G1 ∨ · · · ∨G|F |+1 (2.2)

paired with the integer k′ = (|F |+ 1)|G|+ k.

If F has an equivalent depth-d formula with an OR at the root, of size at most k, then it is clear

that F ′ has an equivalent depth-d formula of size at most k′.

If F does not have an equivalent depth-d formula with an OR gate at the root, of size at most

k ≥ 0, then we note that it cannot be a constant function. We wish to show that in this case F ′ does

not have an equivalent depth-d formula of size at most k′. Suppose for the purpose of contradiction

that it did, and call the equivalent formula F̂ ′. We claim that F̂ ′ must have an OR gate at the

root. Note that G cannot be a constant function. Therefore, for each i there is a restriction ρi that

sets the variables of F so that F evaluates to 0, and sets the variables of Gj for j 6= i so that Gj

evaluates to 0. The resulting formula F̂ ′
ρi

is equivalent to Gi, and if F̂ ′ had an AND gate at the

root, this would be a depth-d formula for Gi with an AND gate at the root, which must have size

at least |G| + 1. This holds for each i, and the Gi are on disjoint variable sets, so the total size of

F̂ ′ must be at least (|F |+ 1)(|G|+ 1), which is greater than k′ (since we assumed that k ≤ |F |).

Thus, F̂ ′ has size at most k′ and an OR gate at the root. Since the Gi and F are not constant

functions, and they are all on disjoint sets of variables, we can apply the restriction argument above

to conclude that (|F | + 1)|G| leaves must be used to account for the various Gi, and then at most

k′ − (|F | + 1)|G| = k are available to compute F . Thus there must be an equivalent formula for

F with an OR gate at the root, of size at most k (and this formula can be obtained by restricting

the variables belonging to the Gi in F̂ ′ so that each Gi becomes 0). So we conclude that F has an

equivalent depth-d formula with an OR gate at the root of size at most k, a contradiction.

2.5.2 Main reduction

The following is a Turing Reduction from MSSC to MEEd−OR. We describe the steps of a Turing

Machine with access to an oracle for MEEd−OR:

10

• We are given an instance of MSSC: a DNF D on variables

v1, v2, . . . , vm, x1, x2, . . . , xn

and an integer k. Let w be the weighting function with w(xi) = 1 for all i and w(vi) = n + 1

for all i, and let D′ be the w-expanded version of D. Note that D′ has only depth 3, as we are

expanding a DNF formula.

• We make at most log |D′| calls to the oracle to find the size u of the smallest equivalent depth-d

formula with top OR gate for D′, using binary search.

• Define the formula E involving fresh variables yi and z as follows:

E = D ∨ [(x1 ∨ x2 ∨ · · · ∨ xn ∨ y1 ∨ · · · ∨ yu+n) ∧ z].

Let w′ be the weighting function with w′(xi) = 1 for all i, w′(vi) = n + 1 for all i, w′(yi) = 1

for all i and w′(z) = 2u + k + n + 1, and let F be the w′-expanded version of E. We will label

the “copies” of z used in the expanded version z1, z2, . . . , z2u+k+n+1. Note that F has only

depth 3.

• We ask the oracle if F has an equivalent depth-d formula with top OR gate, of size at most

4u + 2k + 2n + 1. We will show that the answer is “yes” iff the original MSSC instance was a

positive instance.

Remark 2. Note that since this reduction utilizes logarithmically many adaptive oracle calls, it can

be transformed using standard techniques into a non-adaptive reduction utilizing polynomially many

oracle calls.

The remainder of this section is devoted to proving the following theorem:

Theorem 2.5.4. Let F̂ be a minimum equivalent depth-d formula with top OR gate for F . Then

|F̂ | 6 4u + 2k + 2n + 1 iff there exists I ⊆ {1, 2, . . . , n} with |I| ≤ k and and for which

D ∨
∨
i∈I

xi ≡

(
m∨

i=1

vi ∨
n∨

i=1

xi

)
.

As a point of reference, Figure 2.1 shows the “intended” form of a minimum equivalent depth-d

formula for F . Of course for one direction of the reduction we will need to show that a small formula

must have this form, which is a somewhat involved argument.

In the forward (easy) direction, we claim that if the instance of MSSC is a positive instance,

then there is a depth-d formula equivalent to F , of the form pictured in Figure 2.1, and with size at

11∨

D̂
∧

Z X

Figure 2.1: The desired form of an equivalent formula for F . Here D̂ is a minimum depth-d formula
with top OR gate equivalent to D′, Z =

∧2u+k+n+1
i=1 zi, and X is of the form

∨
i∈I xi ∨

∨u+n
i=1 yi.

most 4u + 2k + 2n + 1. Let D̂ be a depth-d formula with top OR gate equivalent to D′ of size u,

and let I ⊆ {1, 2, . . . , n} be a set of size at most k for which

D ∨
∨
i∈I

xi ≡

(
m∨

i=1

vi ∨
n∨

i=1

xi

)
,

(such a set I exists because the MSSC instance is a positive instance). Then

D̂ ∨

[(
2u+k+n+1∨

i=1

zi

)
∧

(∨
i∈I

xi ∨
u+n∨
i=1

yi

)]

is a depth-d formula equivalent to F of size 4u+2k +2n+1. Furthermore, it is of the form pictured

in Figure 2.1.

In the other direction, we assume that the MSSC instance is a negative instance, and we wish to

show that there is no depth-d formula with top OR gate equivalent to F of size at most 4u+2k+2n+1.

Let F̂ be a minimum depth-d formula for F .

We will derive from F̂ a minimum depth-d formula for F that is of the form pictured in Figure

2.1. We prove this in the next three subsections. Note that if F̂ has size larger than 4u+2k+2n+1,

then we are done; therefore we will assume the contrary in what follows.

2.5.2.1 The z variable.

First, we show that there is some i for which zi occurs exactly once in F̂ and that it does not occur

negated.

Lemma 2.5.5. If a formula for F has size at most 4u + 2k + 2n + 1, then there is some i such that

zi occurs exactly once.

Proof. If the formula is of size at most 4u+2k+2n+1 and yet contains two or more copies of each zi,

then this is a contradiction as the number of occurrences of zi variables alone is 2(2u + k + n + 1) =

12

4u + 2k + 2n + 2 > 4u + 2k + 2n + 1.

Thus, some zi must occur at most once. Now, since we are assuming that D came from a negative

instance of MSSC, we know that D rejects some assignment to its variables other than the all-true

assignment. On the other hand E accepts this assignment when the z variable is true. This implies

that E depends on z and that F (the w′-expanded version of E) depends on each zi. So some zi

occurs exactly once.

Fix an i for which zi occurs exactly once. Now, let ρ be the restriction that restricts all zj for

j 6= i to true, and leaves all other variables free. From now on we will be working with F̂ρ, which

has only a single z variable.

Lemma 2.5.6. Let f be the function corresponding to F̂ρ. Further, let ρ0 restrict zi to false, leaving

all other variables free and ρ1 restrict zi to true, leaving all other variables free. If zi appears negated

in F̂ρ, then fρ1 ⇒ fρ0 .

Proof. Consider any restriction σ that assigns all variables except zi to 0/1 and leaves zi free. (F̂ρ)σ

takes in the single input zi. Since there are no negations other than at the variable level, (F̂ρ)σ is

monotone in zi. Thus, fσ(true) ⇒ fσ(false). Since this is true for all σ, fρ1 ⇒ fρ0 .

Now, if we substitute false for zi in F̂ρ, the function that this formula computes is equivalent

to D′, and if we substitute true, it accepts everything except the “all-true” assignment to the x, y,

and w-weighted v variables. Defining f, ρ0, ρ1 as in Lemma 2.5.6 (and again using the fact that D

comes from a negative instance of MSSC) we have that fρ1 6⇒ fρ0 . Lemma 2.5.6 then tells us that

zi occurs non-negated in the formula F̂ρ.

2.5.2.2 Properties of F̂ρ.

In the remainder of the proof, we will use ALLTRUE as shorthand for the all-true assignment to

the variables of F̂ρ – namely, the x variables, y variables, the w′-expanded v variables, and zi.

Similarly ALLTRUE refers to the function that accepts every assignment to those variables except

ALLTRUE. For future reference, we record a few useful properties of F̂ρ:

Lemma 2.5.7. The following properties regarding F̂ρ hold:

1. |F̂ρ| ≤ |F̂ | − (2u + k + n)

2. F̂ρ is a minimum formula

3. When zi is true, F̂ρ is equivalent to the formula ALLTRUE with zi set to true.

4. When zi is false, F̂ρ is equivalent to D′.

13

Proof. Property (1) follows from the observation in the proof of Lemma 2.5.5 that F depends on

each zj , so every zj must appear at least once in F̂ .

Property (2) holds because F̂ is a minimum formula. If F̂ρ was not a minimum formula, then we

could take a smaller formula equivalent to F̂ρ and replace zi with
∧2u+k+n+1

j=1 zj to obtain a smaller

formula for F̂ .

Property (3) follows because for formula E, when z is true, E accepts exactly those assignments

with at least one variable false. This property is preserved when the v variables are w′-expanded.

The resulting function is the same as the one obtained by w′-expanding z and then restricting via

ρ, after replacing z with zi.

Property (4) follows from the definition of F and ρ.

2.5.2.3 The X sub-formula.

In this section we show (Lemma 2.5.9) that a minimum formula accepting at least all of the assign-

ments to the v, x and y variables not accepted by D′ and not accepting the “all-ones” assignment is

of the form (∨
i∈I

xi ∨
u+n∨
i=1

yi

)
.

We will eventually use this to argue that zi’s sibling sub-formula in F̂ρ has the intended form, and

in a technical part of Section 2.5.2.4.

The following general lemma will be useful.

Lemma 2.5.8. Let t1, t2, . . . , tn be a set of variables, and S a subset of {0, 1}n. A minimum formula

accepting at least S and not the all-true assignment is of the form
∨

i∈I ti for some I ⊆ {1, 2, . . . , n}.

Proof. Let T be a formula accepting at least S and rejecting the all-true assignment. Suppose that

T depends on ` variables. Then |T | > `. Furthermore, in each assignment accepted by T , one of

these variables is set to false, as T does not accept all-true. Therefore, if T depends on variables ti

for i ∈ I, the formula T ′ =
∨

i∈I ti accepts at least everything that T accepts. Furthermore T ′ does

not accept all-true and |T ′| = ` 6 |T |.

Thus, given a minimum formula T that accepts at least S but not all-true, we can find another

minimum formula accepting at least S but not all-true, of the desired form.

Applying the lemma in our setting yields:

Lemma 2.5.9. Let S be the set of assignments to the y variables plus the variables of D′ (the

w-expanded v variables and the x variables), that are not accepted by D′. Then a minimum formula

accepting at least S but not the all-true assignment to these variables is of the form
∨

i∈I xi∨
∨u+n

i=1 yi

for some I ⊆ {1, 2, . . . , n}.

14

Proof. By Lemma 2.5.8, we know that a minimum formula for this will be a disjunction of negated

variables (from among the x, y and w-expanded v variables). Note that for each i, S includes the

assignment in which yi is false, all the other y variables are true, and all the other variables are true,

because D′ does not depend on yi and it does not accept the all-true assignment to its variables.

Therefore, the disjunction must accept this assignment. On the other hand, flipping yi to true in

this assignment results in the all-true assignment that the disjunction must not accept. Therefore

the disjunction depends on each yi, so it must contain all of the y variables.

Now, we simply need to see that none of the w-expanded v variables appear. If some v
(j)
i does

appear in the disjunction of negated variables, then it must be that D′ rejects some assignment in

which v
(j)
i is false and every other variable in the disjunction is true (otherwise v

(j)
i could be safely

omitted). But then by symmetry, D′ also rejects some assignment in which v
(j′)
i is false and every

variable in the disjunction is true, for every j′ 6= j such that v
(j′)
i is not in the disjunction. Thus for

all j′, v
(j′)
i must be in the disjunction if v

(j)
i is. So if a single v variable appears in the disjunction,

then at least n+1 v variables appear (recall that w(vi) = n+1 for all i). However, by Remark 1, we

know that the disjunction of the n negated x variables together with all of the negated y variables

suffices. This is a smaller disjunction than any disjunction involving v variables, which would need

to include n + 1 v variables (as argued above) together with all the y variables.

We conclude that a minimum formula accepting at least S but not the all-true assignment is of

the claimed form.

2.5.2.4 Position of the z variable.

Finally, we show (Lemma 2.5.13) that there is a minimum depth-d formula with top OR gate,

equivalent to F̂ρ, in which zi occurs directly under a second-level AND gate. We begin with two

general lemmas

Lemma 2.5.10. Let A be a sub-formula of formula G, and suppose formula B implies G. Then,

the formula obtained by replacing A with A ∨B in G is equivalent to G.

Proof. Because all of the negations have been pushed to the variable level, flipping the result of a

non-input gate from false to true can only change the output of the formula from false to true, and

not the reverse. Since we are replacing A with A ∨ B, this can only change the result of the top

gate of A from false to true. Furthermore, since B implies G, this can only occur when G is already

true, and thus it will not change the output.

Lemma 2.5.11. Let A be a sub-formula of formula G that implies G. Then, the formula G′

obtained by replacing A with false in G, and then taking the disjunction of this new formula with A

is equivalent to G.

15

Proof. In the case that A is true, then G must be true because A implies G. In this case G′ will

also be true, as A occurs directly beneath the top-level OR in G′. In the case that A is false, G′ is

equivalent to G with A replaced by false, so G′ has the same result as G in this case as well.

Note that the transformation in Lemma 2.5.11 does not increase the size of the formula, nor

its depth if G already has a top OR gate. We now describe how the above general lemmas will be

applied to F̂ρ:

Lemma 2.5.12. Suppose that F̂ρ has a sub-formula A ∧ I, as pictured in Figure 2.2. If I ∧

ALLTRUE implies F̂ρ, then there is an equivalent depth-d formula with top OR gate, F̂ ′
ρ, where

either |F̂ ′
ρ| < |F̂ρ| or |F̂ ′

ρ| = |F̂ρ| and A ∧ I occurs at the second level.

∧

A I

Figure 2.2: The sub-formula under consideration in Lemma 2.5.12

Proof. By assumption I ∧ ALLTRUE implies F̂ρ, and so A ∧ I ∧ ALLTRUE does as well. If

A ∧ I ∧ ALLTRUE is equivalent to A ∧ I, then A ∧ I implies F̂ρ. Then by Lemma 2.5.11, there is

an equivalent formula F̂ ′
ρ with |F̂ ′

ρ| = |F̂ρ| and A ∧ I occurring at the second level.

Otherwise A∧ I accepts ALLTRUE. Since A∧ I accepts ALLTRUE, A must accept ALLTRUE,

so A∨ALLTRUE ≡ 1. Thus, I ∧ (A∨ALLTRUE) is equivalent to I. Thus, by Lemma 2.5.10, we

can replace A ∧ I with I, resulting in a formula F̂ ′
ρ which is equivalent to F̂ρ and |F̂ ′

ρ| < |F̂ρ|.

Lemma 2.5.13. There is a depth-d formula with top OR gate, F̂ ′
ρ, that is equivalent to F̂ρ and of

no larger size, in which zi occurs exactly once, non-negated, and directly under a second-level AND

gate.

Proof. The proof is by case analysis. There are four cases depending on where zi occurs in F̂ρ:

under the top-level OR gate, under an AND gate below the second level, under an OR gate below

the third level, or under an OR gate at the third level.

Case 1: The variable zi cannot occur directly under the top OR gate, as setting zi to true would

result in acceptance, and thus the formula would accept ALLTRUE, violating Lemma 2.5.7

(3).

Case 2: Suppose that zi occurs under an AND gate below the second level. Then consider the

sub-formula containing zi, as pictured in Figure 2.3.

16∧

A zi

Figure 2.3: The portion of F̂ρ containing zi if zi is under a low-level AND gate

Since zi ∧ALLTRUE implies F̂ρ, by Lemma 2.5.12 (with I set to z), we know that either F̂ρ

is not minimal, contradicting Lemma 2.5.7 (2), or there is an equivalent depth-d formula with

top OR gate, F̂ ′
ρ, with |F̂ ′

ρ| = |F̂ρ| and in which zi occurs directly underneath a second-level

AND gate.

Case 3: Suppose that zi occurs under an OR gate below the third level. Then consider the sub-

formula containing zi, as pictured in Figure 2.4.

∧

A

zi B

∨

Figure 2.4: The portion of F̂ρ containing zi if zi is under a low-level OR gate

We will show that (zi ∨B) ∧ ALLTRUE implies F̂ρ. We already know that zi ∧ ALLTRUE

implies F̂ρ, so we only need to see that B∧ALLTRUE implies F̂ρ. Now, (zi∧B)∧ALLTRUE

implies F̂ρ because zi ∧ALLTRUE does. And, since zi only occurs once in F̂ρ, in disjunction

with B, (zi ∧ B) ∧ ALLTRUE must also imply F̂ρ, as flipping zi from true to false will not

change the result of any gate in the formula if B is already true. This is because setting B to

true will satisfy the OR gate that zi occurs under, and since zi only occurs once it cannot affect

the result of any other gate. Thus, B ∧ALLTRUE implies F̂ρ, as both (zi ∧B)∧ALLTRUE

and (zi ∧B) ∧ALLTRUE do.

Thus, since (zi ∨B)∧ALLTRUE implies F̂ρ, by Lemma 2.5.12, we know that either F̂ρ is not

minimal, contradicting Lemma 2.5.7 (2), or there is an equivalent depth-d formula with top

OR gate, with size |F̂ρ| and in which this sub-formula occurs directly beneath a second-level

AND gate, placing zi directly underneath a third-level OR gate. Now we proceed through

Case 4 below.

17

Case 4: If zi occurs directly under a third-level OR gate, then the formula has the form in Figure 2.5

∨

A
∧

B
∨

zi C

Figure 2.5: The form of Fi when zi is under a 3rd-level OR gate

Case 4a: Suppose that C does not accept ALLTRUE. Then we claim that C implies F̂ρ.

Consider an assignment accepted by zi ∧ C. Since C does not accept ALLTRUE, such

an assignment must have some variable false, and hence F̂ρ accepts it (by Lemma 2.5.7

(3)). However, flipping zi to false in this assignment cannot alter the output of C (since

it does not contain zi) and therefore the OR gate above C remains true, and no other

gate values above it change, since zi occurs only once in the formula. Thus F̂ρ accepts

this assignment as well. We conclude that zi∧C as well as zi∧C imply F̂ρ, and therefore

C implies F̂ρ.

Now, by Lemma 2.5.11, we can replace C with false and move C to the top-level OR

gate. This leaves zi alone under its OR gate, and so we can move it up one level so that

it resides under the second level AND gate.

Case 4b: Suppose that C does accept ALLTRUE. Then we claim that C cannot accept

anything else not accepted by D′. Suppose for the purpose of contradiction that it did,

and let τ be such an assignment to the variables of D′. By Lemma 2.5.7 (4), when

zi = false, F̂ρ does not accept τ , and by Lemma 2.5.7 (3), when zi = true, F̂ρ does accept

τ (since τ is not the “all-true” assignment). However, toggling zi in this assignment

cannot alter the output of F̂ρ, because zi occurs only once, and under assignment τ , the

sub-formula C already makes the OR above zi true. This is a contradiction. Thus we

know that C accepts at least everything not accepted by D′, but not ALLTRUE, and

then by Lemma 2.5.9, C has size at least u + n.

Referring again to Figure 2.5, we see that when restricting zi to true in F̂ρ, the formula

reduces to A ∨ B. By Lemma 2.5.7 (3), the resulting formula accepts everything except

18

ALLTRUE. Therefore A∨B depends on every variable other than zi, and so every variable

must appear at least once, and their combined size must be at least u + n from the y

variables alone.

Adding up the sizes of A, B, C and zi, we have that |F̂ρ| is at least (u+n)+(u+n)+1 =

2u + 2n + 1. Applying Lemma 2.5.7 (1), we find that

|F̂ | ≥ (2u + 2n + 1) + (2u + k + n) = 4u + 3n + k + 1.

Since k < n (the MSSC instance is trivially a positive instance if k > n) this quantity

is strictly greater than 4u + 2k + 2n + 1, contradicting our original assumption that

|F̂ | 6 4u + 2k + 2n + 1. We conclude that this sub-case cannot arise.

2.5.2.5 Finishing up.

Lemma 2.5.14. There is a minimum depth-d formula with top OR gate equivalent to F , of the

form pictured in Figure 2.6.

∨

A
∧

Z B

Figure 2.6: The required form of a minimum depth-d formula with top OR gate equivalent to F .

Proof. By Lemma 2.5.13, there is a minimum depth-d formula with top OR gate equivalent to F̂ρ

that is of the form in Figure 2.6, but with the Z sub-formula replaced by zi. Replacing zi with∧2u+k+n+1
j=1 zj , we obtain a depth-d formula for F , of the form pictured in Figure 2.6, of size at most

|F̂ρ| + 2u + k + n. By Lemma 2.5.7 (1), this quantity is a lower bound on the size of a minimum

depth-d formula with top OR gate equivalent to F , so it must be minimum.

Now we are finally able to argue that |F̂ | must be larger than 4u + 2k + 2n + 1. First, observe

that by Lemma 2.5.14, there is a depth-d formula equivalent to F of the form pictured in Figure 2.6

whose size is the same as the size of F̂ . In this formula, when Z is set to false, the function simplifies

to just A, and by the definition of F , this must be equivalent to D′, and hence it must have size

19

at least u. On the other hand, when Z is set to true, the formula must accept every assignment in

which at least one variable is set to false. This means that B must accept everything not accepted

by D′ except the “all-true” assignment. By Lemma 2.5.9, we know that we can assume B to be

a disjunction of negated variables, and that it must have size at least u + n + k + 1 (because the

original MSSC instance was a negative instance). Adding the sizes of A and B to the number of zi

variables in Z, we have a formula of size at least 4u + 2k + 2n + 2. We conclude that

|F̂ | > 4u + 2k + 2n + 2 > 4u + 2k + 2n + 1

as required.

This completes the proof of Theorem 2.5.4.

2.5.3 The unbounded depth case

The reduction for MEE is the same as the reduction in the previous section (2.5.2). We never used

the depth-d restriction in any of the arguments in that reduction; it was only mentioned in the

context of ensuring that various manipulations maintained depth-d, a constraint that is no longer

operative for the unbounded depth case.

It is still convenient in the reduction to think of formulas with alternating levels of unbounded-

fan-in AND and OR gates, and here we simply note that discussing the size of such formulas is the

same as discussing the size of standard, fan-in-2 (∧,∨,¬)-formulas.

Proposition 2.5.15. If F is a formula with unbounded-fan-in AND and OR gates of size s, then

there is an equivalent formula F ′ with fan-in-2 AND and OR gates of size s. Similarly if there

is a formula F with fan-in-2 AND and OR gates of size s, there is an equivalent formula F ′ with

unbounded-fan-in AND and OR gates of size s.

2.6 Conclusions and open problems

The most natural open problems remaining are to give many-one reductions for the problems in this

chapter (rather than Turing reductions), and to resolve the complexity of the circuit version of the

problem. Our techniques here rely heavily on the fact that we are dealing with formulas rather than

circuits.

Another important direction is to study the approximability of the problems in this chapter. For

the depth-2 case (DNF minimization) it is known that the problems are inapproximable to within

very large (Nε) factors [Uma99a]. Our reductions are quite fragile and do not seem to give any

hardness of approximation results for these problems.

20

Finally, we note that the complexity of the “ΠP
2 ” versions of all of these problems remain open.

These are problems of the form: given a Boolean circuit (of some specified form), is it a minimum

circuit (of the specified form). Even for depth two (DNFs), this problem is not known to be ΠP
2 -

complete, although it is conjectured to be complete for that class.

21

Chapter 3

Minimum SPP Formula

In this chapter, we explore results related to SPP formulae, including a proof that SPP formula

minimization is ΣP
2 -complete.

3.1 Description of the reduction

This section contains a high-level description of the reduction used to show that Problem 1.0.1

is ΣP
2 -complete under Turing reductions, in order to facilitate understanding of a more technical

description later. We also compare the reduction here to the one in Chapter 2.

As in Chapter 2, the problem we reduce from is Problem 2.4.1 Modified Succinct Set Cover

(MSSC).

In order to reduce MSSC to MSF, we attempt to split the SPP formula of the MSF instance

into one portion which computes D and another which accepts
∨

i xi. To accomplish this, we add

a variable z, the value of which determines whether the formula computes D on the rest of the

variables, or D ∨
∨

i xi. With this variable added, the formula should look like D ∨ (z ∧
∨

i xi).

Because SPP formulae only have one OR gate at the top level, the particular form is more similar

to D ∨
∨

i(z ∧ xi).

The difficult direction of the reduction is showing that if the MSSC instance is negative, so is

the MSF instance. In order to prevent a small equivalent SPP formula from existing if the MSSC is

negative, we attach different weights to the variables. Rather than simply counting each occurrence

of a variable as 1 toward the size of the formula, we wish to count each variable v as w(v) to add

flexibility to our reduction.

In order to increase the size contribution of each variable, we replace each occurrence of each

variable v with w(v) new variables, so they contribute w(v) toward the size at each occurrence of

v. This is achieved exactly by replacing each variable v with v1 ⊕ v2 ⊕ · · · ⊕ vw(v), and the fact that

this transformation behaves as if we had simply weighted a single variable v by w(w) is shown by

Lemma 2.3.1.

22

We weight the z variable in a less general way that is better suited for achieving the desired

form. We replace z by z1 ∧ · · · ∧ z`, where ` is an integer value particular to the instance of MSSC.

In order to avoid confusion, we do not refer to this as weighting in the more technical description of

the reduction, and simply state the reduction with variables z1, . . . , z`.

The reduction approach we use in this chapter is superficially similar to one contained in Chap-

ter 2, which proves that minimization of (∨,∧,¬) formulae of both fixed and unrestricted depth are

ΣP
2 -complete under Turing reductions. Consider the depth-3 version, which is most similar to SPP

minimization.

Problem 3.1.1 (minimum equivalent depth 3 expression (MEE3)). Given a depth 3 Boolean

(∨,∧,¬) formula F and an integer k, is there an equivalent depth 3 formula of size at most k?

Here, the depth ignores NOT gates. The reduction in Chapter 2 showing that MEE3 is ΣP
2 -

complete under Turing reductions used the same basic strategies. The original variables were given

different weights to avoid the formula being too small when the initial MSSC instance is negative.

Extra variables were added which split the formula into a portion computing D and a portion

computing D∨
∨

i xi, playing a similar role to the zi variables in this chapter, but with an altogether

different form. In the SPP reduction shown in this chapter, we create a formula with a form similar

to

D ∨
∨
i

(z ∧ xi).

By contrast, in Chapter 2 the formula resulting from the reduction is more similar to

D ∨

(
z ∧

∨
i

xi

)
.

The two above forms are different ways of expressing the same formula. The big difference,

however, is the number of occurrences of the z variable. In Chapter 2, the z variable is given such

a heavy weight that it must appear only once in a minimal formula. The entire proof depends

on this fact. This is not possible with an SPP formula, however, as the z would then appear in

only one pseudoproduct, and this pseudoproduct would thus be responsible for computing
∨

i xi.

Lemma 3.1.1 demonstrates why this prevents any such reduction from working.

Lemma 3.1.1. No pseudoproduct can compute ¬a ∨ ¬b.

Proof. Suppose by way of contradiction that some pseudoproduct P computed ¬a ∨ ¬b. Consider

the XORs contained in P . If P contains an XOR of only a single variable, we assume without

loss of generality it computes either a or ¬a. Clearly, if the XOR computes a, P does not accept

a = false,b = false, and thus cannot compute ¬a ∨ ¬b. Similarly, if P contains a pseudoproduct

computing ¬a, P does not accept a = true, b = false and again cannot compute ¬a ∨ ¬b.

23

By elimination, P ¬a ∨ ¬b can only contain an XOR of both a and b. Such an XOR cannot

accept both a = false, b = false and a = true, b = false, as these assignments differ in parity. Since

P computes ¬a ∨ ¬b, it must accept both of these assignments. Thus, P cannot contain only an

XOR of both a and b.

The only remaining option is that P contains no XORs, and is thus trivial. Since P computes

the non-trivial function ¬a ∨ ¬b, we have a contradiction, proving the lemma.

Lemma 3.1.1 is important because it demonstrates that a single pseudoproduct is not powerful

enough to accept formulae like ∨
i

(z ∧ ¬xi),

which can be restricted to ¬xi ∨ ¬xj by restricting z to true and all other variables except xi and

xj to false.

Thus, we require several copies of the z variable in any reduction from MSSC to MSF using the

same general approach as in Chapter 2. In a depth-3 Boolean formula like those under consideration

in the earlier reduction from MSSC to MEE3, the sub-formula containing the z variable is a DNF,

and is therefore not limited in computational capability like a pseudoproduct.

Since the z variable cannot occur only once, the relative weights must be completely different

from those used in the MEE reduction, in order to allow for an unknown number of z variables.

Rather than a single z variable carrying more weight than the rest of the formula combined, all the

z variables combined carry less weight than any other single variable. This is a huge change, and

just the existence of multiple copies of the z variables alone completely destroys many of the proof

techniques used in Chapter 2. We are able to get a handle on the structure of the pseudoproducts

containing the z variables by developing new proof techniques. One key structural lemma used in

obtaining our results is Lemma 3.1.2.

Lemma 3.1.2. If a pseudoproduct computes the conjunction of n variables z1, . . . , zn, the pseudo-

product contains at least n XORs.

The proof of Lemma 3.1.2 is contained in Section 3.3.3 and utilizes simple linear algebra.

3.2 Outline

Section 3.3 contains all of our results. Section 3.3.1 contains some background results that carry

over from complexity results for DNF formulae. Section 3.3.2 contains an explanation of weighting

necessary to the main reduction. Section 3.3.3 contains the proof that Problem 1.0.1 is ΣP
2 -complete,

as outlined in Section 3.1.

Finally, Section 3.4 contains a summary of the results as well as a discussion of related problems

that remain open.

24

3.3 Results

In this section, we present new classifications for the complexity of problems related to SPP formulae.

We begin in Section 3.3.1 with a few simple results, then continue in Section 3.3.3 with the proof of

the ΣP
2 -completeness of MSF under Turing reductions.

3.3.1 Complexity of Related Problems

In this section, we note some complexity results that remain unchanged from the corresponding

results for related DNF problems.

Problem 3.3.1 (SPP Equivalence). Given two SPP formula S, T , do both S and T compute the

same function?

Proposition 3.3.1. SPP Equivalence is coNP-complete.

While the proof is quite simple, this result is important to note, as not all types of logic formulae

are known to share this result. For example, the equivalence of two ordered binary decision diagrams

(OBDDs) is decidable in P [Bry86].

Proof. It is a well-known result that deciding whether two DNF formulae S, T compute the same

formula is coNP-complete. Since DNF formulae are a special case of SPP formulae, the result that

SPP Equivalence is coNP-complete immediately follows.

Problem 3.3.2 (DNF Irredundancy). Given a DNF formula T and an integer k, does there exist

an equivalent formula T ′ consisting of the disjunction of at most k terms from T?

The irredundancy problem is important because it is often used in heuristics for DNF minimiza-

tion problems, despite having been proven ΣP
2 hard to even approximate in [Uma99a]. We see here

that the corresponding problem for SPP formulae shares the same complexity classification.

Problem 3.3.3 (SPP Irredundancy). Given an SPP S and an integer k, is there an equivalent SPP

S′ composed of the disjunction of k pseudoproducts from S?

Theorem 3.3.2. SPP Irredundancy is ΣP
2 hard to approximate to within a factor of nε for some

ε > 0, where n is the input size.

Proof. As shown in [Uma99a], DNF Irredundancy is ΣP
2 -hard to approximate within nε for some

ε > 0. As in the proof of Proposition 3.3.1, we note that DNF formulae are a special case of SPP

formulae. In particular, the terms of a DNF are a special case of the pseudoproducts of an SPP, so

SPP Irredundancy is also ΣP
2 -hard to approximate within nε.

Prime implicants are also important to DNF minimization, as a minimum DNF is composed only

of prime implicants.

25

Definition 3.3.1 (Prime Implicant). A prime implicant of a DNF D is a term T which implies D

and does not imply any other term which implies D.

An implicant x1∧· · ·∧xn of D is prime iff there is no k such that x1∧· · ·∧xk−1∧xk+1∧· · ·∧xn is

also an implicant of D. Since prime implicants are necessary for DNF minimization, it is important

to be able to determine whether a term is a prime implicant.

Problem 3.3.4 (IS-PRIMI). Given a DNF D and a term T , is T a prime implicant of D?

IS-PRIMI was proven DP-complete independently in both [GHM08] and [UVSV06].

Prime pseudoproducts are a generalization of prime implicants to SPP formulae.

Definition 3.3.2 (Prime Pseudoproduct). A prime pseudoproduct of an SPP S is a pseudoproduct

P which implies S, but does not imply any other pseudoproduct which implies S.

Prime pseudoproducts characterize SPP with a minimum number of XOR gates rather than

minimum SPP formulae as defined in this paper [GHM08]. Still, they are important to the study of

SPP formulae, so we consider the complexity of determining whether a pseudoproduct is prime.

Problem 3.3.5 (SPP Prime Pseudoproduct (SPP-PP)). Given an SPP S and a pseudoproduct P ,

is P a prime pseudoproduct of S?

We show that SPP-PP is DP-hard using the same reduction used in [GHM08] to prove that

IS-PRIMI is DP-hard. The reduction is from SAT-UNSAT.

Problem 3.3.6 (SAT-UNSAT). Given CNF formulae α, β, is α satisfiable and β unsatisfiable?

Theorem 3.3.3. SPP-PP is DP-hard.

Proof. We use the same reduction used in [GHM08] to show IS-PRIMI is DP-hard. Given an instance

〈α, β〉 of SAT-UNSAT, we create the SPP-PP instance 〈¬α∨ (¬β ∧ y), y), where y is a new variable

which does not appear in α or β. Since this reduction gives a valid instance of IS-PRIMI, it also

gives a valid instance of SPP-PP. This follows because a DNF is a special case of an SPP and y

happens to be a pseudoproduct.

Now, we need only see that y is a prime pseudoproduct of f iff y is a prime implicant of f to see

that the reduction works for the SPP case as well. First, it is clear that whether y implies f does not

depend on whether we represent f by a DNF or an SPP. Lets now consider what pseudoproducts

are implied by y. Any such pseudoproduct must contain only XORs which are implied by y. Such

an XOR cannot contain any other variable, as y alone would not imply such an XOR.

Thus, a pseudoproduct implied by y contains only XORs which contain at most the single variable

y, so y only implies itself and the trivially true pseudoproduct, λ. Since these are both DNF terms

as well as pseudoproducts, y implies a DNF term implicant of f iff y implies a pseudoproduct

26

implicant of f . So by the definitions of prime pseudoproduct and prime implicant, y is a prime

pseudoproduct of f iff y is a prime implicant of f , regardless of the function under consideration.

Setting f = ¬α ∨ (¬β ∧ y), we see that SPP-PP is DP-hard as well as showing that IS-PRIMI is

DP-hard.

Note that we only achieve a hardness result here and not a completeness result. One key feature

of IS-PRIMI that is used to prove containment in DP is that in order to check that a1 ∧ · · · ∧ an is

prime, we need only verify that the n terms obtained by removing one of the ais do not imply f .

With pseudoproducts, it is unclear how to check primality in NP. Thus, we only have a lower-bound

complexity result.

In this section, we have seen that complexity results for equivalence and irredundancy of SPP

formulae can be inferred directly from the corresponding results for DNF formulae because DNF

formulae are a special case of SPP formulae. These results were simple because the problems only

refer to the formulae taken as inputs, preserving the DNF versions as special cases of the SPP

versions. In general, formula minimization problems differ in that the problem instance is compared

to all formulae of size less than k, necessitating a different reduction when type of formulae under

consideration is changed. So the result that DNF formula minimization is ΣP
2 -complete [Uma01]

does not immediately carry over to SPP formula minimization.

One might also hope that the proof of DNF formula minimization being ΣP
2 -complete would

directly carry over to a proof of SPP formula minimization being ΣP
2 -complete, as the proof for

IS-PRIMI being DP-hard carried directly over to a proof of SPP-PP being DP-hard. However, the

proof of DP-hardness for prime implicants had the convenient feature that the DNF term y is a

prime implicant iff it is a prime pseudoproduct. However, the proof of DNF minimization being

ΣP
2 -complete does not have the similar feature that the DNF produced is a minimum DNF iff it is

a minimum SPP. So a new reduction is necessary.

3.3.2 Weighted variables

Normally, we measure the size of an SPP formula by the number of occurrences of variables within

it. Each occurrence counts as 1 toward the total size. Another notion of size might be to assign a

positive integer weight w(v) to each variable v, and count each occurrence of the variable v as w(v)

toward the total size. We will show a transformation from positive integer weights to the normal

size measure in which each variable counts as 1, which preserves minimum formula size.

Since the SPP formulae in consideration have unlimited fan-out XOR gates, we can replace a

variable v of weight w(v) with the XOR of w(v) new variables, v1⊕ · · · ⊕ vw(v) in order to eliminate

the need for directly assigning weights to variables. This weighting is achieved by adding the new

vi variables to each XOR gate containing v, and removing v completely.

27

Given an SPP formula F with associated weight function w(v), we call F the weighted version

of the formula. Let F ′ be the formula obtained by replacing every variable v with the XOR of w(v)

new variables. We call F ′ the expanded version of the formula. Note that if F computes f and F ′

computes f ′,

f(x1 ⊕ · · · ⊕ xw(x), y1 ⊕ · · · ⊕ yw(y), . . .) ≡ f ′(x1, x2, . . . , xw(x), y1, y2, . . .).

We denote the weighted size of F with weights w(v) by |F |w, and we denote the size of F ′ by |F ′|.

As a quick example, consider the formula ¬x⊕ y. Letting w(x) = 2 and w(y) = 3, we arrive at

the expanded form shown in Figure 3.3.2. Recall that we represent ¬x⊕y by x⊕y⊕1 in this paper.

⊕
x1 x2 y1 y2 y3 1

Figure 3.1: The expanded form of ¬x⊕ y with weights w(x) = 2, w(y) = 3

The expansion described above differs from the expansion strategy used in the MEE reduction,

in which a conjunction of w(v) new variables was used rather than an XOR. Our strategy has the

advantages that it handles negation without requiring a possible increase in the depth of the formula

and can be easily applied to SPP formulae. Lemma 2.3.1 demonstrates that applying this simple

transformation is equivalent to positive integer weighting.

Problem 3.3.7 (Weighted MSF (W-MSF)). Given an SPP formula S, a list of weights w for each

variable in unary, and an integer k, is there a formula S′ equivalent to S for which |S′|w 6 k?

We refer to a formula which is minimum with respect to w as a w-minimum formula.

Lemma 3.3.4. Let f be a Boolean function and w be a positive integer weighting function for the

variables of f . If F is a w-minimum formula for f and F ′ is a minimum formula equivalent to the

expanded version of F , then |F |w = |F ′|.

Proof. Clearly, |F ′| 6 |F |w, as the expanded version of F has size exactly |F |w.

Now we will see that |F ′| > |F |w. For each variable v in F which has been replaced by variables

v1, v2, . . . , vw(v) in F ′, find the index i∗ such that vi∗ occurs the least often in F ′ of all the variables

v1, v2, . . . , vw(v). Let F ∗ be the restriction of F ′ for which vi = false ∀i 6= i∗, for each variable v.

Note that F ∗ is equivalent to F , as

false⊕ · · · ⊕ false⊕ vi∗ ⊕ false⊕ · · · ⊕ false = vi∗ .

We now compare F ∗ to F ′ one variable at a time. Suppose vi∗ occurs α times in F ′. Note that

28

vi∗ also occurs α times in F ∗. The variables v1, v2, . . . , vw(v) contribute at least w(v)α to |F ′|, since

i∗ was chosen such that vi∗ occurs least frequently of all the vi variables in F ′, and there are w(v)

such variables. Since vi∗ contributes exactly w(v)α to |F ∗|w, we see that |F ′| > |F ∗|w. Thus, since

F is a w-minimum formula equivalent to F ∗, we have |F ′| > |F ∗|w > |F |w.

Since |F ′| 6 |F |w and |F ′| > |F |w, we have |F ′| = |F |w.

Now, we apply Lemma 3.3.4 to show that W-MSF and MSF are poly-time equivalent.

Theorem 3.3.5. There exist polynomial-time reductions between W-MSF and MSF.

Proof. First, lets see a reduction from MSF to W-MSF. Take an instance 〈S, k〉 of MSF and produce

the instance 〈S, w, k〉 of W-MSF in which w(v) = 1 ∀v. Clearly, there exists an formula S′ equivalent

to S of size at most k iff there exists a formula S′ equivalent to S for which |S′|w 6 k, since |S′|w
is equal to the unweighted size when all weights are 1. This reduction only takes linear time, as we

need only write down the MSF instance and a constant weight function.

Now we reduce W-MSF to MSF. Since the weights are written in unary, they are all linear in

the instance size. Thus, we can convert 〈S, w, k〉 to 〈S′, k〉 by setting S′ to be the expanded version

of S. Since this only requires replacing each occurrence of each variable with a linear number of

new variables, we have a polynomial-time reduction. Furthermore, by Lemma 3.3.4, the w-minimum

formula equivalent to S is of size at most k iff the minimum formula equivalent to S′ is of size at

most k, proving the theorem.

Since these two problems are polynomial-time equivalent, we only need to prove that one of

them is ΣP
2 -complete under Turing reductions to see that they both are. We will show that MSF is

ΣP
2 -complete under Turing reductions via W-MSF.

3.3.3 Main Result

In this section, we show that Problem 1.0.1, the SPP minimization problem, is ΣP
2 -complete under

Turing reductions by reducing from MSSC to W-MSF. The following steps describe how a Turing

machine with access to an oracle for W-MSF can solve MSSC.

• We are given an instance 〈D, v1, v2, . . . , vm, x1, x2, . . . , xn, k〉 of MSSC.

• Set ` = 2k(k + 1)(|D|+ 1).

• Weight the vi variables in D by 2k2` and the xi variables by k`.

• Using binary search, find the size of the w-minimum SPP formula for D, denoted τ , using

O(log |D|w) oracle calls.

29

• Set S = D ∨ (Z ∧ ¬x1) ∨ (Z ∧ ¬x2) ∨ · · · ∨ (Z ∧ ¬xn) where Z = z1 ∧ z2 ∧ · · · ∧ z` and the zi

are new variables of weight 1 and the xi are weighted by k` as mentioned above.

• Finally, we make one last oracle call to determine whether there is a weighted SPP formula

for S of size at most τ + k(k + 1)`. Accept iff such an SPP exists.

Remark 3. Since this reduction only uses logarithmically many adaptive oracle calls, standard

techniques can be used to turn this into a non-adaptive reduction with polynomially many oracle

calls.

We begin with a proof of Lemma 3.1.2.

Proof (of Lemma 3.1.2). Suppose by way of contradiction that the conjunction of n variables can

be computed by a pseudoproduct P with n′ < n XOR gates. Associate with each variable zi the

vector w(i) ∈ Zn′

2 in which the jth position of w(i), w
(i)
j , is equal to 1 iff zi is contained in the jth

XOR.

Now we can match each assignment of truth values to the zi variables to the sum W (z) =∑
i ziw

(i). Note that the jth position of W (z), W (z)j , is equal to
∑

i ziw
(i)
j , or simply the parity of

the number of true variables contained in the jth XOR. In order for an XOR to be true, the parity

of the true variables it contains plus the parity of the constants it contains must be odd.

Thus, for P to evaluate to true, W (z)j should be equal to 1 iff the jth XOR contains an even

number of true constants. Let W ∗ be the vector for which W ∗
j = 1 iff the jth XOR contains an even

number of true constants. P evaluates to true on assignment z iff W (z) = W ∗.

Since P computes a satisfiable function, there is some assignment to the variables z1, . . . , zn such

that W (z) = W ∗. However, since w1, . . . , wn is a collection of n vectors over the vector space Zn′

2 of

dimension n′ < n, they are not linearly independant. Thus, there are at least 2 linear combinations

of w1, . . . , wn equal to any vector in the span of w1, . . . , wn, including W ∗. Therefore, P accepts

at least two assignments, which contradicts the fact that P computes z1 ∧ z2 ∧ · · · ∧ zn, which only

accepts one assignment.

Although Lemma 2.5.8 was only proven for (∨,∧,¬)-formula, it holds true for weighted SPP as

well using the same proof. Thus, we will be making use of Lemma 2.5.8 below.

One final necessary lemma will allow us to determine where the zi variables are located.

Lemma 3.3.6. Let S′ be an equivalent formula to the SPP formula S created by the Turing reduc-

tion described at the beginning of Section 3.3.3. Let U be the subset of pseudoproducts in S′ that

accept an assignment to the input variables not accepted by D. Let HP be the set of zi variables

in pseudoproduct P which occur in some XOR in P that contains only constants and zi variables.

Either |S′|w > τ + k(k + 1)` or there exists some index i∗ such that zi∗ ∈ HP ∀P ∈ U .

30

Proof. Suppose that there does not exist an index i∗ such that zi∗ ∈ HP ∀P ∈ U .

Consider a pseudoproduct P ∈ U . Let HP
C denote the complement of HP within the set of zi

variables. So HP
C is the set of zi variables that never appear in an XOR in P consisting of only zi

variables and constants. Since P ∈ U , there exists some assignment σ accepted by P but not by D.

Let P ′ be the restriction of P to σ on all variables which are not members of HP
C . Thus, P ′

computes some function on the variables in HP
C . Recall that S = D ∨

∨
i (z1 ∧ · · · ∧ z` ∧ xi). Since

σ is not accepted by D, S becomes
∧

zi∈HP
C zi under the restriction to σ on all variables outside

of HP
C . Thus, since P accepts σ and P ′ cannot accept any other assignment, P ′ computes exactly∧

zi∈HP
C zi. Thus, by Lemma 3.1.2, there are at least |HP

C | XORs in P ′. Note that this does not

include XORs which contain only constants. These can be safely ignored, as they must all reduce

to true since P ′ does not compute a trivial function.

Each of the |HP
C | non-trivial XORs in P ′ corresponds to an XOR in P that contains a variable

other than one of the zis. This follows from the definition of HP
C and the fact that each non-trivial

XOR in P ′ contains a member of HP
C . Since all variables other than the zi are weighted at least `,

|P |w > `|HP
C |. Furthermore, since no zi is contained in HP ∀P ∈ U ,

⋃
P∈U

HP
C = {z1, . . . , z`}.

So ∑
P∈U

|HP
C |` > `2,

which is important because |S′|w >
∑

P∈U |P | > |HP
C |`. Thus, we have

|S′|w > `2

= 2k(k + 1)(|D|+ 1)`

= 2k(k + 1)`|D|+ 2k(k + 1)`

> τ + 2k(k + 1)`

> τ + k(k + 1)`,

where we know 2k(k + 1)`|D| > τ since w(v) 6 2k2` < 2k(k + 1)`, so τ 6 |D|w < 2k(k + 1)`|D|.

Thus, either there is some index i∗ such that zi∗ ∈ HP ∀P ∈ U or |S′| > τ + k(k + 1)`.

The main result that W-MSF is ΣP
2 -complete under Turing reductions, and therefore so is MSF,

follows from Theorem 3.3.7.

Theorem 3.3.7. Let S be the SPP formula resulting from the Turing reduction at the beginning of

Section 3.3.3. The W-MSF instance 〈S, w, τ + k(k + 1)`〉 is positive iff the original MSSC instance

31

was positive as well.

Proof. First, we will show that a positive MSSC instance implies a positive W-MSF instance. Let

I ⊆ [n] such that |I| 6 k and D ∨
∨

i∈I xi ≡ D ∨
∨n

i=1 xi. Since the MSSC instance is positive,

such an I exists. Let D̂ be a w-minimum formula equivalent to D. Note |D̂|w = τ. We construct a

formula S′ equivalent to S as follows.

S′ = D̂ ∨

∨
i∈I

xi ∧
∧̀
j=1

zj

 ,

Note that |S′|w = |D̂|w +
∑

i∈I(w(xi)+ `) = τ + k(k`+ `) = τ + k(k +1)`. Thus, a positive instance

of MSSC implies a positive instance of W-MSF.

Now we prove that a negative instance of MSSC implies a negative instance of W-MSF. We

will show that if the MSSC instance is negative, so is the W-MSF instance by first restricting to

the portion of the formula computing D via Claim 3.3.7.1 to achieve a τ lower bound. We then

show that the portion of the formula removed by the restriction is of size greater than k(k + 1)` by

Claim 3.3.7.2.

Suppose that the instance of MSSC is negative. Assume by way of contradiction that the W-

MSF instance is positive. By this assumption, there exists some formula S′ which is equivalent to

S and for which |S′|w 6 τ + k(k + 1)`. Let U be the subset of pseudoproducts in S′ that accept

an assignment to the input variables not accepted by D. Let HP be defined as in Lemma 3.3.6

to be the set of zi variables that occur in some XOR in a pseudoproduct P containing only zi

variables and constants. By Lemma 3.3.6, there is some index i∗ such that zi∗ ∈ HP ∀P ∈ U , since

|S′|w 6 τ + k(k + 1)`.

Claim 3.3.7.1. Every member of U becomes false under the restriction zi = true ∀i 6= i∗ and

zi∗ = false.

Proof. Let P ∈ U . Since P ∈ U , P accepts some assignment σ not accepted by D. Since σ

is accepted by S′ but not by D, all zi are true in σ. This follows from S′ being equivalent to

S = D ∨
∨

i(z1 ∧ · · · ∧ z` ∧ xi). Consider the assignment σ′ in which all variables are set according

to σ, except for zi∗ , which is set to false, such that σ and σ′ differ only on the assignment to zi∗ .

Since zi∗ ∈ HP , some XOR gate X of P contains zi∗ , and only contains zi variables and constants.

Since P accepts σ, so must X. Since σ and σ′ differ only on zi∗ and X accepts σ, X cannot accept σ′,

as the differing value of zi∗ means that the parity computed by X will differ on the two inputs. Since

X rejects σ′ and only depends on the zi variables, X becomes false under the restriction zi = true

∀i 6= i∗ and zi∗ = false.

Because P contains an XOR gate which becomes false under the restriction zi = true ∀i 6= i∗

32

and zi∗ = false, P becomes false under this restriction as well. Since P was chosen arbitrarily and

i∗ does not depend on P , every pseudoproduct in U becomes false under this restriction.

Let S∗ be the restriction of S to zi = true ∀i 6= i∗ and zi∗ = false. By Claim 3.3.7.1, S∗ only

depends on pseudoproducts outside of U . Also, S∗ must be equivalent to D, since we have restricted

such that z1 ∧ · · · ∧ z` is false and S = D ∨
∨

i(z1 ∧ · · · ∧ z` ∧ xi). Thus, since S∗ ≡ D, |S∗|w > τ .

Claim 3.3.7.2. The total size of the pseudoproducts in U is greater than k(k + 1)`.

Proof. First, note that the pseudoproducts in U depend on each zi since S′ only accepts things

not accepted by D when all zi are true. This follows from the fact that S′ is equivalent to S =

D ∨
∨

i(z1 ∧ · · · ∧ z` ∧ xi). So this claim follows if we show that the variables other than the zi

contribute size at least k(k + 1)` to the total size of U .

If the pseudoproducts in U contain even a single vi variable, the size contribution is at least

2k2` > k(k + 1)` for all k > 1. So the claim is proven in this case.

Otherwise, the pseudoproducts in U contain only xi and zi variables. Now we will find the size

contribution of the xi variables contained in U . Let U ′ be the set of all members of U , restricted

to zi = true ∀i. The disjunction of the pseudoproducts in U ′ must accept everything not accepted

by D other than the all true assignment, since by the definition of U none of the pseudoproducts

outside of U accept anything not accepted by D, and S′ accepts everything but the all true under

the restriction zi = true.

By Lemma 2.5.8, a minimum formula accepting everything not accepted by D and rejecting the

all true assignment to the xi variables is of the form
∨

i∈I xi. Since the MSSC instance is negative,

|I| > k, there are at least k + 1 xi variables of weight k` each, and thus the total size of the

pseudoproducts in U ′ is at least (k +1)k`. Thus, the size contribution of xi variables in U is at least

k(k + 1)`, which completes the proof of the claim.

The total size of S′ can now be calculated. The total size of all the pseudoproducts outside of U

is at least τ . By Claim 3.3.7.2, the total size of the pseudoproducts in U is greater than k(k + 1)`.

Thus,

|S′|w > τ + k(k + 1)`,

contradicting |S′|w 6 τ + k(k + 1)`. So a negative instance of MSSC implies a negative instance of

W-MSF, completing the proof.

Thus, W-MSF is ΣP
2 -complete under Turing reductions, and therefore so is MSF.

33

3.4 Conclusions and open problems

In this paper, we have resolved several problems relating to the complexity of SPP formulae. We have

proven that formula equivalence remains coNP-complete and that irredundancy remains ΣP
2 -hard to

approximate to within nε for some ε > 0 when we generalize DNF formulae to SPP formulae. We

also saw that when we generalize IS-PRIMI to SPP-PP, the DP-hardness result remains. Since we do

not show SPP-PP ∈ DP, the complete characterization of SPP-PP remains an open problem. Most

importantly, we have resolved the complexity of the MSF problem, providing critical theoretical

background to an important area of research in the field of logic synthesis.

Approximability of SPP minimization has not been addressed here, and remains an interesting

open problem. The nature of the reduction given in this chapter precludes direct use toward an

inapproximability result. This is because the way in which the variables are weighted causes the

part of the formula computing D to vastly outweigh the part determining how many xi variables are

necessary. This makes it impossible to use the reduction to approximate the number of xi variables

necessary. If this could be reversed such that each xi variable carried greater weight in the problem

size than the portion computing D, it would lead to both approximability results and the removal

of the need for a Turing reduction.

The k-SPP minimization problem is also left open here. The complexity of k-SPP minimization

remains unresolved because the weighting scheme used in this chapter requires polynomial fan-out

of the XOR gates. Without polynomial fan-out in the XOR gates, it is difficult to create a weighting

scheme which does not cause exponential increase in the size of some SPP formulae.

Finally, we note that the full characterization of the complexity of SPP-PP remains unresolved,

as we have proven that SPP-PP is DP-hard but not that SPP-PP ∈ DP.

34

Bibliography

[BCDV08] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa. Logic minimization and testability

of 2-SPP networks. 2008. to appear in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Trans. Computers, 35(8):677–691, 1986.

[BU08] D. Buchfuhrer and C. Umans. The complexity of Boolean formula minimization. In

ICALP, pages 24–35, 2008. to appear.

[CB02] V. Ciriani and A. Bernasconi. 2-SPP: a practical trade-off between SP and SPP synthesis.

In 5th International Workshop on Boolean Problems (IWSBP2002), pages 133–140, 2002.

[Cir03] V. Ciriani. Synthesis of SPP three-level logic networks using affine spaces. IEEE Trans.

on CAD of Integrated Circuits and Systems, 22(10):1310–1323, 2003.

[DGK94] S. Devadas, A. Ghosh, and K. Keutzer. Logic synthesis. McGraw-Hill, Inc., New York,

NY, USA, 1994.

[GHM08] J. Goldsmith, M. Hagen, and M. Mundhenk. Complexity of DNF minimization and

isomorphism testing for monotone formulas. Information and Computation, 206(6):760–

775, June 2008. to appear.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.

[HW97] E. Hemaspaandra and G. Wechsung. The minimization problem for Boolean formulas.

In FOCS, pages 575–584, 1997.

[JSA97] J. Jacob, P. S. Sivakumar, and V. D. Agrawal. Adder and comparator synthesis with

exclusive-or transform of inputs. In VLSI Design, pages 514–515. IEEE Computer Soci-

ety, 1997.

[KC00] V. Kabanets and J.-Y. Cai. Circuit minimization problem. In STOC, pages 73–79, 2000.

35

[LP99] F. Luccio and L. Pagli. On a new Boolean function with applications. IEEE Trans.

Computers, 48(3):296–310, 1999.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with

squaring requires exponential space. In FOCS, pages 125–129. IEEE, 1972.

[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.

[Uma98] C. Umans. The minimum equivalent DNF problem and shortest implicants. In FOCS,

pages 556–563, 1998.

[Uma99a] C. Umans. Hardness of approximating Σp
2 minimization problems. In FOCS, pages

465–474, 1999.

[Uma99b] C. Umans. On the complexity and inapproximability of shortest implicant problems. In

J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, ICALP, volume 1644 of

Lecture Notes in Computer Science, pages 687–696. Springer, 1999.

[Uma01] C. Umans. The minimum equivalent DNF problem and shortest implicants. J. Comput.

Syst. Sci., 63(4):597–611, 2001.

[UVSV06] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli. Complexity of two-level logic

minimization. IEEE Trans. on CAD of Integrated Circuits and Systems, 25(7):1230–

1246, 2006.

