
Mirosopi Behavior of Internet Congestion Control
Thesis byXiaoliang (David) WeiIn Partial Ful�llment of the Requirementsfor the Degree ofDotor of Philosophy

California Institute of TehnologyPasadena, California2007(Defended Feb 15, 2007)

ii

© 2007Xiaoliang (David) WeiAll Rights Reserved

iii
Aknowledgements
I would like to thank my adviser, Prof. Steven Low, for his guidane and support. Ihave learned a lot on how to do rigorous theoreti researh in working with Steven.Espeially, I appreiate his support on my di�erent opinions in the projets, even theywere sometimes naive. Suh support has been keeping me enthusiasti in the work.His patiene and soial grae with whih he delivers his thoughts are very impressive.Under his guidane, I have learned muh more than sienti� knowledge.Speial thanks go to Prof. Pei Cao, my adviser in both Google and Stanford, forher inspiration and guidane in my experimental researh. From the ollaborationwith Prof. Cao, I have learned how to do experimental researh with onviningresults. I really feel luky to have got the hane to work with Pei and be exposed tothe many hallenging problems in large sale systems in the real world.My gratitude also extends to Prof. Mani Chandy, Prof. John Doyle and Prof.Jason Hikey for serving in my ommittee for both the andiday and the �nal exam.I bene�t a lot from our disussions on the researh progress.I thank my o�emates Dr. Anil Hirani and Jerome White. They shared so muhexperiene with me that I was luky to avoid many mistakes. Disussions with themalso provided me a muh larger view in the world beyond networking.I thank all my olleagues and friends who shared my pain and happiness in NetLab:Dr. Lahlan Andrew, Dr. Lijun Chen, Dr. Cheng Jin, Dr. Lun Li, Dr. MortadaMehyar, Dr. Kevin Ao Tang, Dr. Jiantao Wang and Dr. Bartek Wydrowski. Lahlangave me many extremely helpful suggestions on the early drafts of this thesis. Also, Ifeel extremely fortunate to have Christine Ortega and Betta Dawson as our seretaries.They have o�ered suh great help that all the paperwork and onferene trips beame

ivsimple.This thesis is based on the Latex lass and Lyx template shared by Dr. Ling Li.Without his help, this thesis ould not physially exist.Finally, I would like to thank my parents and my girlfriend Chang Liu. Theirsupport is the endless power that enourages me through the di�ulties.

v
Abstrat
The Internet researh ommunity has foused on the marosopi behavior of Trans-mission Control Protool (TCP) and overlooked its mirosopi behavior for years.This thesis studies the mirosopi behavior of TCP and its e�ets on performane.We go into the paket-level details of TCP ontrol algorithms and explore the be-havior in short time sales within one round-trip time. We �nd that the burstinesse�ets in suh small time sales have signi�ant impats on both delay-based TCPand loss-based TCP.For delay-based TCP algorithms, the miro-burst leads to muh faster queue on-vergene than what the traditional marosopi models predit. With suh fast queueonvergene, some delay-based ongestion ontrol algorithms are muh more stable inreality than in the analytial results from existing marosopi models. This observa-tion allows us to design more responsive yet stable algorithm whih would otherwisebe impossible.For loss-based TCP algorithms, the sub-RTT burstiness in TCP paket transmis-sion proess has signi�ant impats on the loss synhronization rate, an importantparameter whih a�ets the e�ieny, fairness and onvergene of loss-based TCPongestion ontrol algorithms.Our �ndings explain several long-standing ontroversial problems and have in-spired new algorithms that ahieve better TCP performane.

vi

vii
Contents
Aknowledgements iiiAbstrat v1 Introdution 11.1 Window-based implementation of TCP 21.1.1 Miro-burst . 51.1.2 Sub-RTT burstiness . 61.2 Fluid models . 71.3 Controversial problems . 111.3.1 Stability of TCP Vegas . 111.3.2 Fairness of homogeneous MIMD ongestion ontrol algorithms 111.3.3 E�et of TCP paing . 121.4 Sopes and limitations . 121.5 Summary of results . 131.6 Organization of this thesis . 142 Mirosopi E�ets on Delay-based Congestion Control Algorithms 152.1 Stability of a single TCP-Vegas �ow 162.1.1 Modeling ak-loking . 162.1.1.1 Assumptions . 162.1.1.2 A paket level model for ak-loking 172.1.2 Properties of ak-loking . 19

viii2.1.2.1 Relation between the number of pakets in �ight andthe window size . 202.1.2.2 Paing of aknowledgments 212.1.2.3 Upper bound of queue inrement 212.1.2.4 Lower bound of queue 212.1.3 Queue onvergene . 222.1.3.1 De�nition of Stable-Link state 222.1.3.2 The number of pakets in �ight and BDP 232.1.3.3 Persistene of Stable-Link state 232.1.3.4 Entrane of Stable-Link state 232.1.3.5 Paing of miro-burst 242.1.4 Properties of ongestion ontrol in RTT timesale 242.1.4.1 Timing of the deision pakets 252.1.4.2 Equivalene of the window size and the number ofpakets in �ight . 262.1.4.3 Link onvergene upon deision pakets 262.1.5 Stability of TCP Vegas . 272.1.6 Validation . 282.2 FAST algorithm and its stability . 302.2.1 FAST algorithm . 302.2.2 Model for homogeneous �ows 342.2.3 Stability of FAST in homogeneous network 362.2.3.1 Convergene of the sum of windows 372.2.3.2 Convergene of individual �ows 373 Mirosopi E�ets on Loss-based Congestion Control Algorithms 393.1 A model for loss synhronization rate 403.1.1 Burstiness in the paket loss proess 423.1.1.1 Measurement . 423.1.1.2 Possible Soures of sub-RTT Burstiness 47

ix3.1.2 Modeling loss synhronization rate 483.1.3 TCP Paing and RED . 513.1.4 Validation . 533.1.5 Asymptoti results . 543.2 Impliations on Performane of Loss-based TCP 573.2.1 Fairness onvergene . 573.2.1.1 De�nition of Fairness Convergene Time 573.2.1.2 Loss Synhronization Rate and Fairness Convergene 583.2.1.3 Fairness onvergene with bursty TCP and DropTailRouters . 603.2.2 Convergene of MIMD algorithms 623.2.3 Performane of TCP Paing 643.2.3.1 Aggregate Throughput 653.2.3.2 Fairness onvergene 683.2.4 Competition between paed TCP and bursty TCP 713.2.4.1 Aggregate Throughput 713.2.4.2 Fairness Convergene 723.3 Algorithms . 723.3.1 Persistent ECN algorithm . 753.3.2 Loss synhronization rate with di�erent algorithms 763.4 Performane in Simulation . 773.4.1 Fairness onvergene and �nishing time of parallel �ows 773.4.1.1 Case studies on short-term fairness 773.4.1.2 Summaries of short-term fairness 803.4.1.3 Results on data transfer lateny 803.4.2 Aggregate throughput with persistent ECN 833.4.3 Aggregate throughput with o-existing bursty TCP and paedTCP under persistent ECN 83

x4 Researh Tools 874.1 A testbed with emulation router and Linux hosts 874.1.1 Introdution to Dummynet . 874.1.2 Topology . 884.1.3 Measurement . 884.2 NS-2 TCP-Linux : an extensible TCP simulation module in NS-2 . . 894.2.1 An introdution to TCP implementation in NS-2 894.2.2 An introdution to Linux TCP 914.2.3 Design of NS-2 TCP-Linux 954.2.3.1 Interfae . 954.2.3.2 Code arhiteture . 964.2.3.3 Soreboard1: improving the auray by better lossreovery . 984.2.3.4 SNOOPy Queue Sheduler: Speed up the simulationwith a better sheduler 1004.2.4 Validation of NS-2 TCP-Linux 1024.2.4.1 Extensibility . 1034.2.4.2 Auray . 1044.2.4.3 Simulation performane 1074.2.4.4 An example: identifying a potential bug in LinuxHighSpeed TCP implementation 1084.2.5 Usages in researh . 1094.3 A paket level measurement tool in PlanetLab 1114.3.1 An introdution to PlanetLab 1124.3.2 Design of the measurement system 1124.3.2.1 Message formats . 1134.3.2.2 Design of measurement servers 1154.3.2.3 Design of measurement lients 1164.3.3 Deployment and data pre-proessing 117

xi5 Conlusions and Future works 1215.1 Paket Level Model for Delay-based Congestion Control Algorithm . 1225.2 Appliation of the model for loss synhronization rate 1225.3 Improvement of new algorithms . 1235.4 Extension to NS-2 TCP-Linux . 1246 Appendix 1256.1 Complete list of ontrol variables and funtions ported by NS-2 TCP-Linux . 1256.1.1 Control variables: . 1256.1.1.1 Loal variables for eah onnetion: 1256.1.1.2 Global variables: . 1266.1.2 Funtion interfaes: . 1266.1.2.1 Required funtions: 1266.1.2.2 Other optional funtion alls inlude: 1276.2 A randomized version of paing . 1296.3 Proofs of theorems . 1316.3.1 Theorem 2.1.2.1 . 1316.3.2 Theorem 2.1.2.2 . 1326.3.3 Theorem 2.1.2.3 . 1336.3.4 Theorem 2.1.2.4 . 1346.3.5 Theorem 2.1.3.2 . 1356.3.6 Theorem 2.1.3.3 . 1356.3.7 Theorem 2.1.3.4 . 1366.3.8 Theorem 2.1.3.5 . 1376.3.9 Corollary 2.1.4 . 1376.3.10 Theorem 2.1.4.1: . 1386.3.11 Theorem 2.1.4.2: . 1386.3.12 Theorem 2.1.4.3: . 1416.3.13 Theorem 2.1.5 . 143

xiiBibliography 147

xiii
List of Figures
1.1 Ak-loking e�et in TCP data transmission 31.2 Sub-RTT level burstiness . 82.1 A single TCP Vegas �ow using a path with a bottlenek apaity of800Mbps and a propagation delay of 200ms. The paket size in thesimulation is 1000 bytes per paket. 292.2 100 Homogeneous TCP Vegas �ows sharing a path with a bottlenekapaity of 800Mbps and a propagation delay of 200ms. The paket sizein the simulation is 1000 bytes per paket. 312.3 100 Homogeneous TCP Vegas �owssharing a path with a bottlenekapaity of 800Mbps and a propagation delay of 200ms. The paket sizein the simulation is 1000 bytes per paket. 322.4 100 Homogeneous TCP Vegas �owssharing a path with a bottlenekapaity of 800Mbps and a propagation delay of 200ms. The paket sizein the simulation is 1000 bytes per paket. 333.1 Loss intervals in NS-2 measurements.Note that all the CDF �gures in this hapter have X-axles in log-sale,and all the PDF �gures in this thesis have Y-axles in log-sale. 443.2 Loss intervals in Dummynet measurements. 453.3 Loss intervals in PlanetLab measurements. 46

xiv3.4 Congestion detetion within one RTT: a �ow uses its data paket pro-ess to sample the loss proess. The loss synhronization rate is theprobability that one of the wi pakets from �ow i (distributed over Kpakets) happens to be one of the L dropped pakets (distributed overM pakets). 483.5 Synhronization rate: omputational results from the model 513.6 Paket loss with window-based implementations 523.7 Paket loss with rate-based implementations 523.8 Sampling e�ets of TCP and paing (simulation results) 523.9 Synhronization rate with urrent TCP, TCP Paing and RED 553.10 Synhronization rates of two �ows with di�erent window sizes, amongN �ows (N=2 to 100), with bursty TCP or paed TCP (MatLab results). 563.11 Relation between fairness onvergene time F and synhronization rate
λ (MatLab results) . 593.12 Convergene time of di�erent TCPs in simulations with di�erent numberof �ows and di�erent bu�er sizes (in pakets). 613.13 Convergene of S-TCP: ongestion window trajetories of the fastest�ow and the slowest �ow . 633.14 MIMD fairness . 643.15 Synhronization throughput loss of di�erent ongestion ontrol algo-rithm (MatLab results) (BDP = 10440 pakets) 663.16 Normalized Throughput Gain of isolated bursty TCP or paed TCP insimulations . 673.17 Convergene time with TCP Paing in simulations 693.18 Summary of onvergene time of Reno, HS-TCP and S-TCP in simula-tions . 703.19 Normalized Throughput Gain with o-existing paing TCPs and burstyTCP in simulations . 733.20 Convergene time with o-existing paing TCPs and bursty TCPs insimulations . 74

xv3.21 Convergene time of Reno, HS-TCP and S-TCP with RED in simula-tions . 783.22 Convergene time of Reno, HS-TCP and S-TCP with Persistent ECNin simulations . 793.23 Summary of onvergene time of Reno, HS-TCP and S-TCP in simula-tions . 813.24 Data transfer lateny (normalized by theoreti lower-bound) with par-allel �ows sending a total of 64MB data Both X and Y axles are in logsale. 823.25 Normalized Throughput Gain with isolated paing TCPs or bursty TCPin simulations . 843.26 Normalized Throughput Gain with o-existing paing TCPs and burstyTCP in simulations . 854.1 Dummynet testbed . 884.2 A very simple implementation (Reno) of the ongestion ontrol interfae 944.3 Code struture of TCP-Linux . 964.4 State mahine of eah paket . 994.5 SACK queue data struture . 1004.6 Setup of NS-2 Simulation . 1034.7 Setup of Dummynet Experiments . 1034.8 Throughput under di�erent random loss rate (log-log sale) 1064.9 Simulation time of di�erent bottlenek bandwidth (log-log sale) 1084.10 Simulation time of di�erent number of �ows (log-log sale) 1094.11 Memory usage of di�erent number of �ows (x-axle in log sale) 1104.12 A potential bug in Linux implementation of HighSpeed TCP 1114.13 Setup of NS-2 simulations . 1124.14 State mahine of a measurement server in PlanetLab 1154.15 State mahine of a measurement lient in PlanetLab 117

xvi

xvii
List of Tables
3.1 Average loss synhronization rates of TCP with a DropTail router . . . 603.2 Average loss synhronization rates with di�erent improvements 774.1 Important variables in tp_sk . 954.2 Congestion window trajetory of di�erent ongestion ontrol algorithms 1044.3 Congestion window trajetory of Reno, Highspeed TCP and Vegas . . 1054.4 StartPaket format . 1144.5 StopPaket format . 1144.6 UDPPaket format . 1144.7 ReportPaket format . 1154.8 PlanetLab sites in measurement . 118

xviii

xix
List of Algorithms

1 Pseudo-ode of Ak-loking . 52 FAST algorithm . 353 Persistent ECN . 764 Randomized Paing . 129

xx

1
Chapter 1Introdution
Transmission Control Protool (TCP) is one of the most important protools in theInternet protool suites (often refereed as TCP/IP stak). It guarantees reliable andin-order data delivery from senders to reeivers and is estimated to arry 70% to95% of the Internet tra� in reent years. As the ritial omponent that ontrolsthe TCP data transmission rate, the TCP ongestion ontrol algorithm plays a veryimportant role in the performane of the Internet. There have been many studies onthe TCP ongestion ontrol algorithm in terms of e�ieny, stability, fairness, andsalability sine its introdution in the late 1980's. There have been dozens of newproposals in the design and implementations of TCP ongestion ontrol. Most ofthese studies are based on models that fous on the marosopi behavior of TCPongestion ontrol algorithms. These models apture average data transmission ratesin timesales of multiple round-trip times (RTT). They assume that the TCP datatransmission proess is a smooth and di�erentiable proess. This assumption is,however, in sharp ontrast to real TCP implementations, whih produe bursty tra�in various timesales.This thesis investigates the mirosopi behavior of TCP. In partiular, we studythe paket-level details of TCP behavior in timesales that are within an RTT. Ourstudy �nds that the mirosopi e�ets of window-based TCP implementation, (ak-loking e�ets), have huge impats on TCP's stability, fairness, and onvergene.Our �ndings larify several long-standing misoneptions in the network researhommunity. For example:

2
• Stability of TCP Vegas
• Fairness of the Multipliative-Inrement-Multipliative-Derement (MIMD) al-gorithms
• The performane of TCP Paing
• Friendliness between TCP and TCP PaingOur �ndings provide explanations to these questions, whih are seemingly unrelatedunder the existing marosopi models. Our study also suggests new algorithms thatimprove TCP performane in terms of responsiveness and fairness onvergene.1.1 Window-based implementation of TCPTransmission ontrol protool (TCP) is a window-based protool for reliable datatransmission [1℄. The sender sends a window of pakets to the reeiver and waitsfor aknowledgments from the reeiver. The data pakets are labeled with sequenenumbers.1 When the reeiver reeives a paket, it puts the paket into its bu�erand sends bak to the sender an aknowledgment paket, with one integer indiatingthe highest sequene number of onseutive pakets reeived by the reeiver. We saya data paket is aknowledged when the aknowledgment of this data paket or alater data paket arrives at the sender. If no paket is aknowledged within a ertaintime threshold2, the sender assumes the previously sent pakets are lost. The senderannot send more pakets until it reeives the aknowledgments of some previouslysent pakets or it assumes some previously sent pakets are lost.In this proess, the number of pakets that have been sent by the sender but notaknowledged is alled a �window�. When the window size is �xed, the transmissionof new data paket is triggered by the arrival of the aknowledgment of the previously1More aurately, eah otet (8 bit byte) is the basi unit of data in TCP and eah otet has aunique sequene number. To simplify the disussion, we take the paket as the basi unit of data inthis thesis.2The time threshold is alled RTO. RTO is always larger than an RTT and is usually equal toRTT plus four times of the variane in RTT [2℄.

3
3 Packet 1

21

Ac
kn
ow
le
dg
me
nt
 f
or

 P
ac
ke
t1

 Packet 2

 Packet 3

 A
ck
no
wl
ed
gm
en
t
2

 A
ck
no
wl
ed
gm
en
t
3

 Packet 4

 Packet 5

 Packet 6

W=1W=2 Window Size=3

1 2 3

654

4

RTT measured by Packet 1

Figure 1.1: Ak-loking e�et in TCP data transmissionsent pakets. This unique feature of TCP data transmission is alled �ak-loking�.This proess is illustrated in Figure 1.1.With ak-loking, the size of the window implies the average rate of the datatransmission. Sine there is always a window of pakets that are sent out but notaknowledged, and the aknowledgment of eah paket takes one round-trip from thesender to the reeiver and bak to the sender, only one window of pakets an besent in eah round-trip time (RTT). Hene, the average rate of the data transmissionproess is window sizeRTT .The TCP ongestion ontrol algorithm was introdued to ontrol the size of the�window� of eah TCP �ow so that the TCP paket transmission rates do not exeedthe network apaity.3 With the TCP ongestion ontrol algorithm, the �window� fora �ow (�ow i) is a funtion of time t. We denote it as wi (t), and it is ontrolled inRTT time sale by a ongestion ontrol algorithm aording to the paket delay, orloss information measured by the sender. There have been many proposals on howto design ongestion ontrol algorithms with delay or loss information.3This thesis fouses on the ongestion in network. The onept of window in this thesis alwaysmeans the ongestion window. In real TCP, there is also a onept of advertised window, whih isused to avoid end-host ongestion.

4Loss-based ongestion ontrol shemes use paket loss as a signal of network on-gestion. For eah RTT in whih a TCP soure i does not detet a paket loss, aloss-based ongestion ontrol algorithm assumes that the network is under-utilizedand gradually inreases wi to inrease the throughput of �ow i. For eah RTT inwhih the TCP soure detets one or more paket loss, the ongestion ontrol algo-rithm assumes that the network is ongested and drastially dereases wi to relievenetwork ongestion. To avoid under-utilizing the network, loss-based algorithms haveto periodially generate loss. Most of the existing ongestion ontrol algorithms areloss-based [3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄. Delay-based algorithms use the hangein RTT, measured by the delay between the paket transmission time from senderand the aknowledgment arrival time to sender, to infer the ongestion level. WhenRTT exeeds a threshold, a delay-based ongestion ontrol algorithm assumes thatthe network is ongested and redues wi; when RTT is below another threshold, thealgorithm assumes the network is under-utilized and inreases wi. Some examples ofdelay-based ongestion ontrol algorithms are [13, 14, 15, 16, 17℄. Both loss-basedongestion ontrol algorithms and delay-based ongestion ontrol algorithms ontrolthe average rate of a TCP �ow in time sale of RTT. This time sale is natural sinethe ongestion ontrol algorithm is a feed-bak ontrol mehanism with a feedbakdelay of one RTT.Within one RTT, the underlying paket transmission proess is ontrolled by theak-loking mehanism. Ak-loking maintains a variable alled �pakets-in-�ight�(p), whih is de�ned as the number of pakets that are sent, but not aknowledged.At any time t and for eah �ow i, ak-loking always tries to math pi (t) withthe window wi (t) spei�ed by the ongestion ontrol algorithm. The behavior of ak-loking an be desribed in Algorithm 1. When pi (t) is larger than wi (t), no paketis sent for the arrival of an aknowledgment. Whenever pi (t) is smaller than wi (t),ak-loking implementation sends wi (t) − pi (t) pakets in a burst at the line-rateof the sender's network interfae ard (NIC) to �ll the gap.4 This happens when an4Some implementations may even send this burst of pakets in the speed of CPU, whih is usuallymuh faster than NIC speed.

5Algorithm 1 Pseudo-ode of Ak-lokingWhen an aknowledgment that aknowledges k pakets is reeived by �ow i, or uponthe start of the �ow i:1. pi ← pi − k;2. wi ← F (wi)3. while (pi < wi)
• pi ← pi + 1

• send a paket;
F (wi) is the response funtion of a ongestion ontrol algorithm. Besides wi, theresponse funtion of a loss-based algorithm takes paket loss information as an input;the response funtion of a delay-based algorithm takes paket delay information asan input.aknowledgment arrives (pi is dereased) or the ongestion window wi (t) is inreasedby the ongestion ontrol algorithm. This burst of pakets introdues two levels ofburstiness: miro-burst and sub-RTT burstiness.1.1.1 Miro-burstWhenever wi (t)−pi (t) > 1, multiple pakets are sent into the network bak-to-bak.Suh a burst, alled miro-burst [18℄, has a peak rate higher than the bottlenekapaity and introdues an additional queueing delay to the router. If the bottlenekbu�er size is smaller than the size of the miro-burst, some pakets in the miro-burstare dropped. Otherwise, the miro-burst enters the bottlenek bu�er and generatesan additional queueing delay equal to the length of the burst.There are two situations wherein miro-burst is formed:The �rst is a sudden inrement of the ongestion window wi (t). In the start-upphase of a �ow, TCP uses slow-start [4℄ to probe the bottlenek's available bandwidth.Slow-start doubles the ongestion window every round-trip. This quik inrement inthe ongestion window leads to a gap between wi (t) and pi (t) and results in miro-burst.

6The seond is a sudden derement in the number of pakets in �ight pi (t). A-knowledgments are not reliably transmitted in the network; they an be delayedor dropped in their return paths, due to ongestion. When aknowledgments aredropped in the reverse path of the network, the TCP sender annot send any newpakets. One a later aknowledgment arrives, the sender reognizes that severalpakets have arrived at the reeiver (sine eah aknowledgment aknowledges all thein-sequene pakets that are reeived by the reeiver) and drastially drops pi (t).5The gap between wi (t) and pi (t) results in miro-bursts.Miro-burst is transient and an be mitigated by various methods, suh as paing[20, 21℄, burstiness ontrol [22℄, or other mehanisms [18℄. Sine the TCP an onlysend, at most, a window of pakets into the network, the size of a miro-burst, interm of number of pakets, will never exeed the window size. Hene, the e�et ofmiro-burst on paket loss an be eliminated by inreasing bu�er size. It has beensuggested that the bu�er size in the router should hold at least half of the maximumongestion window so that the the miro-burst triggered by slow-start, whih is halfof the ongestion window, an be fully absorbed by the router's bu�er without paketloss [4℄.1.1.2 Sub-RTT burstinessAfter being bu�ered in the bottlenek router, the bak-to-bak pakets within a miro-burst are proessed by the router at rate c (paket/seond), the router's apaity.After one round-trip, the aknowledgments of these data pakets return to the senderat rate c. The sender then sends the next window of pakets at rate c and waits forthe rest of the RTT until new aknowledgments ome bak. Hene, in sub-RTT timesales, the sending rate xi (t) an be approximated by an on-o� proess. In the onperiod, pakets are transmitted at rate c pakets per seond, whih is usually muhhigher than the average rate of wi

RTT
. We all this burstiness sub-RTT level burstiness.Sub-RTT level burstiness does not introdue exessive paket loss or additional5This situation is alled ak-ompression in [19℄.

7queueing delay (sine its peak rate is no greater than the bottlenek apaity c). How-ever, sub-RTT level burstiness a�ets the paket arrival pattern of individual �ows.The on-o� pattern has signi�ant impat on the fairness of loss-based ongestionontrol algorithms, as we will explain in Chapter 3.One sub-RTT level burstiness is formed, the burstiness is maintained by ak-loking and its e�et annot be eliminated by a large bu�er size or high multiplexinglevel. It has been shown that sub-RTT level burstiness persists in senarios witha single TCP �ow as well as in daily Internet tra� (from router trae) where thenumber of �ows is very large [23℄. Figure 1.2 illustrates suh an example. In thisexample, 16 TCP �ows share a 100Mbps bottlenek with a delay of 10ms and abu�er size of 250 pakets in NS-2 simulation. We reord the data paket proess ofeah �ow at the bottlenek link. The data presented in the �gure is olleted 1300RTTs after the �ows start, when the �ows have been in the ongestion avoidanephase for a long time. A green dot (t, i) , i = 1 · · ·16 in the �gure represents a paketfrom �ow i going through the bottlenek at time t. The green dots would evenlydistribute on a horizontal line if the data proess was smooth. This �gure intuitivelyshows that:1. Within eah RTT, almost all �ows have data paket proesses that are on-o�;2. This on-o� pattern within a RTT (sub-RTT burstiness) is maintained through-out the life of onnetions.Later on in this thesis, we use bursty TCP (or urrent TCP) to denote a normalTCP (with ak-loking) and di�erentiate it from other speial TCP implementationswhih eliminate ak-loking e�ets by mehanisms suh as TCP paing (or paedTCP)[20℄.1.2 Fluid modelsThe TCP researh ommunity has been developing several marosopi models tounderstand the TCP behavior.

8

1300 1305 1310 1315 1320 1325 1330

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

time (RTT)

flo
w

 #

Figure 1.2: Sub-RTT level burstiness

9A marosopi model for average TCP throughput was proposed in [24℄. Themarosopi model aptures the relation between paket loss rate and average TCPthroughput over a loss epoh. A series of work in late 1990s [25, 26℄ re�ned themarosopi model and established a �uid model to study the marosopi behaviorof TCP Reno. Fluid model assumes that the data transmission rate of a �ow i (xi (t))is di�erentiable and equal to the average throughput in a round trip (window sizeRTT).Based on the �uid models, the TCP ongestion ontrol problems were mapped to thetraditional ontrol problems [26, 27℄. This approah allows the researh ommunityto explore the dynami properties of TCP/AQM in a rigorous manner. Results basedon this mapping appear in urrent literature [27, 28, 29, 30℄.We give a brief introdution of this model in the ontext of homogeneous �ows.Given a network with N �ows {s1, s2, · · · , sN} and a single bottlenek link. De�nethe link's baklog at time t as b (t) and its apaity as c. The path has a propagationdelay of τ = τF + τB, where τF is the forward propagation delay and τB is thebakward propagation delay. The round trip time (RTT) of the path at time t isdenoted by D (t).Assume the sending rate of �ow i is determined by its window wi (t) and the roundtrip delay D (t) as
xi (t) =

wi (t)

D (t)
(1.1)where

D (t) = τ +
b (t)

c
(1.2)the aggregate input rate for the link is x (t) =

∑

i xi

(

t− τF
). Then, the baklogproess an be modeled by

ḃ (t) =

∑

i xi

(

t− τF
)

− c if b (t) > 0

max
{

0,
∑

i xi

(

t− τF
)

− c
} if b (t) = 0

(1.3)
The ongestion window wi (t) of soure i is determined by the ongestion ontrol

10funtion based on the feedbak with the assumption that wi (t) is di�erentiable:6
ẇi (t) = F

(

wi (t) , q
(

t− τB
i

)) (1.4)where
q (t) =

b (t)

c
(1.5)is the feedbak from the router. It an be either queueing delay or paket loss rate.7(1.1), (1.2), (1.3), (1.4) and (1.5) form an ordinary di�erential equation (ODE) sys-tem. Traditional ontrol theory an be applied to this system to analyze the dynamiproperties of TCP. This �uid model has greatly inspired the network ommunity andthe ontrol ommunity. Hundreds of papers have been published to analyze the sta-bility of di�erent TCP systems in di�erent senarios. Based on this model, the resultsalways show that there is a stability region for a TCP ongestion ontrol algorithm.The region depends on several parameters: the number of �ows (N), the round tripdelay (D), the bottlenek apaity (c), and some algorithm spei� parameters. Thesystems usually beome unstable when N is small, D is large, or c is large.However, we are autious of this approah as the �uid models only apture themarosopi behavior of TCP. The �uid models assume that the TCP data trans-mission proess xi (t) is smooth and di�erentiable. This is not true in reality. Asintrodued in Setion 1.1, burstiness is very ommon in real TCP systems. Miro-burst orresponds to a pulse funtion in xi (t) and sub-RTT burstiness orrespondsto a step funtion in xi (t). The stability of a system an be ompletely di�erent if apulse funtion or a step funtion is inluded. Furthermore, the preditions of the �uidmodels ontradit with experimental results in some senarios, as shown in Setion1.3. We have to go into the details of mirosopi TCP behavior and understandthese ontraditions.6Here the feedbak delay of q (t) is assumed to be the onstant τB

i
. This is not true sine thefeedbak will be further delayed by the queueing delay. However, all the models used in [27, 28, 29℄have the same assumption.7If the feedbak is paket loss rate, the linear relation between q (t) and b (t) only holds whenRandom Early Dropping (RED) [31℄ is applied.

111.3 Controversial problemsThere have been ontraditions between the predition of the �uid models and otherheuristi understandings and experimental results. We list some of them below.1.3.1 Stability of TCP VegasStability of delayed-based algorithms (e.g. TCP-Vegas) is a ontroversial topi. Withan approximate �uid model, it has been shown that TCP-Vegas has a small stabilityregion and an algorithm alled Stabilized Vegas was suggested to stabilize TCP-Vegasin [29℄. However, another analytial result based on an extended �uid model showedthat neither TCP-Vegas nor Stabilized Vegas is stable [30℄. Both results showed thatTCP-Vegas is stable only small apaity and small delay. They imply that TCP-Vegaswill be unstable with large enough apaity or large delay. The laims are supportedby NS-2 simulation in [29℄ and by ODE-based MatLab alulation in [30℄. However,in our NS-2 TCP-Linux simulation and real experiments, TCP-Vegas rarely osillates.Even when it osillates in NS-2 simulations, the osillation in the ongestion windowis always very small, whih an be the integer trunation e�et and other e�etsin NS-2 TCP-Vegas implementation. Therefore, it is not lear how to interpret thestability results in the �uid model analysis to the real performane of TCP-Vegas.1.3.2 Fairness of homogeneous MIMD ongestion ontrol al-gorithmsMultipliative-Inrement-Multipliative-Derement (MIMD) algorithms are a lass ofontrol algorithms whih inrease and derease the ongestion window multipliative.When MIMD algorithms do not observe ongestion, they inrease the ongestionwindow by a small perentage. When MIMD algorithms observe ongestion, theyderease the ongestion window by a large perentage. It has been proved with astati model that two MIMD �ows with di�erent window sizes annot onverge toa fairness point even when they share the same network path [32℄. However, the

12analysis based on the �uid model proves that Salable-TCP, an MIMD algorithm,an onverge to fairness [33℄ . In many experiments, it is observed that Salable-TCPannot onverge to fairness [34, 17℄, so, it is not lear if MIMD algorithms are fair ornot.1.3.3 E�et of TCP paingTCP paing is proposed in [20℄ for high speed long distane network. TCP paing usesa rate ontrol mehanism to replae ak-loking and eliminates both miro-burstsand sub-RTT burstiness as we desribed in Setion 1.1. Sine its introdution, therehas been a long debate on the e�et of TCP paing. Simulation results [20℄ show thatTCP paing an signi�antly improve the throughput of TCP �ows in networks withlarge apaity, long delay, and small bu�er. Simulations results [21℄ also show thatTCP paing does improve TCP performane in both e�ieny and fairness. It is alsoshown, however, that TCP paing might atually have lower average throughput inmany ases [35℄. Even worse, TCP paing loses to normal TCP when the two o-exist.On the other hand, the network industry, espeially the network interfae ard designindustry, has inreasingly adopted the TCP paing tehnology into their produts.Therefore, it is not lear what exatly are TCP paing's e�ets on performane.1.4 Sopes and limitationsWe explore the mirosopi behavior of TCP and �nd new answers to these questions.We fous on the performane of homogeneous TCP �ows. Similar to Setion 1.2, thesenario in our study has N homogeneous TCP �ows sharing a dumb-bell topologywith the following parameters:
• N : the number of �ows;
• τ : the propagation delay of the path;
• c: the apaity of the bottlenek (in pakets per seond);

13
• B: the bu�er size of the bottlenek;
• b (t): the bottlenek queue size;
• q (t): the queueing delay or loss rate of the path;
• D (t): the round trip time of the path;
• wi (t): the window size of �ow i at time t;
• xi(t): the paket transmission rate of �ow i at time t.This study is the �rst step to exploring the mirosopi behavior of TCP; further stud-ies that over more general ases with heterogeneous �ows and multiple bottleneksets are expeted in the future.1.5 Summary of resultsTo summarize, our investigations in mirosopi behavior of TCP ongestion ontrolhas found that the ak-loking has signi�ant impats on TCP performane.For delay-based ongestion ontrol algorithms, miro-burst makes the queue on-verge muh faster than the �uid model predits. This fast queue onvergene leadsto better stability of delay-based ongestion ontrol algorithms. With a paket-levelmodel, we an prove that a single TCP Vegas �ow is always stable with any delayand any apaity. This is in sharp ontrast to the predition of �uid models, whihimplies that TCP Vegas will be unstable with small number of �ows, long delay andlarge apaity. The new understandings also allow us to design more aggressive newalgorithms whih are both stable and responsive. Inspired by the fast queue onver-gene, we design a new delay-based ongestion ontrol algorithm, FAST, to ahieveresponsive onvergene and stable queueing delay. We show that homogeneous FAST�ows are stable with any delay and any apaity.For loss-based ongestion ontrol algorithms, the ombination of burstiness inpaket loss proess and sub-RTT burstiness in TCP data paket proess lowers loss

14synhronization rates among TCP �ows. Intuitively, this means that only a smallfration of the TCP �ows detet paket loss during a ongestion event and mostother TCP �ows do not detet the ongestion. A low synhronization rate has severalimpliations in the performane of TCP. First, with a low synhronization, the linkutilization TCP Reno �ows is higher sine fewer �ows slow down in eah ongestionevent. Hene, the aggregate rate of bursty TCP an be higher than the aggregate rateof paed TCP. Seond, a low synhronization rate implies poor short-term fairness.Hene, the paed TCP is fairer than bursty TCP. Third, when TCP and paed TCPo-exist, paed TCP �ows lose to TCP �ows sine the paed TCP �ows do not havesub-RTT burstiness in their data paket proesses and have higher probability todetet paket loss in eah ongestion event. Finally, with sub-RTT burstiness, a largenumber of TCP �ows with di�erent window sizes tend to have similar probabilityto detet a loss in ongestion event. This similarity validates the synhronizationassumptions in [32℄ and leads to the unfairness of MIMD algorithms. Based onthese understandings, we propose to use TCP paing to improve the fairness of TCP,espeially MIMD algorithms.We also propose a new link algorithm whih providesonsistent ECN signals to inrease the loss synhronization rate over all the burstyor paed �ows.1.6 Organization of this thesisChapter 2 details the e�ets of miro-burst on the stability of delay-based ongestionontrol algorithms. Chapter 3 explores the sub-RTT level burstiness and its e�etson loss-based ongestion ontrol algorithms. We explain the methodologies used inour researh in Chapter 4. We summarize our onlusions and plans for future workin Chapter 5.

15
Chapter 2Mirosopi E�ets on Delay-basedCongestion Control Algorithms
We fous on the e�ets of miro-bursts on delay-based algorithms. As explainedin Setion 1.1.2, sub-RTT burstiness does not introdue additional delay, and wehave not found any sub-RTT burstiness e�et on delay-based ongestion ontrol algo-rithms. Miro-bursts, however, have signi�ant e�ets on the stability of delay-basedongestion ontrol algorithms. We found that miro-bursts allow the queueing delayin the network system onverge in a very short time and help to stabilize the systemin the presene of feedbak delay.Stability of delay-based ongestion ontrol algorithms (e.g. TCP-Vegas [16℄) hasbeen a ontroversial topi in the past years. One approximate �uid model showsthat TCP-Vegas has a small stability region and suggests an algorithm, StabilizedVegas, to stabilize TCP-Vegas [29℄. However, an extended �uid model onsideringRTT variation shows that both TCP-Vegas and Stabilized Vegas are not stable [30℄.In both studies, �uid model analysis shows that TCP-Vegas is not stable with largeenough apaity and delay. However, in all of our simulations and experiments, TCP-Vegas rarely osillates. Even when it osillates in simulations, the osillation in theongestion window size is always smaller than ±2 pakets, whih an be well explainedby the integer quantization e�et in implementation. Hene, there is no onviningexperimental evidene to verify whether TCP Vegas is stable or not. On the otherhand, there is no theory to prove the stability of TCP Vegas either.

16This hapter provides a new answer that takes into onsideration of miro-burste�ets. With a paket level model, we prove that a single TCP-Vegas �ow is al-ways stable, regardless of the round trip delay and the bottlenek apaity. Thisresult, whih agrees with our observations in simulations and experiments, is in sharpontrast from the �uid model results.The proess of the proof reveals many properties of ak-loking and onvergeneof queue. The new understandings allow us to design new delay-based ongestionontrol algorithms that are muh more responsive yet stable, whih would be impos-sible aording to the analysis of the �uid models. In partiular, we design a newdelay-based ongestion ontrol algorithm, FAST, to ahieve muh faster onvergenethan TCP Vegas while maintaining good stability. We prove that FAST is stablewith homogeneous soures in a network with any apaity and any delay.2.1 Stability of a single TCP-Vegas �owWe propose a detailed paket-level model for a single TCP �ow ontrolled by a delay-based ongestion ontrol algorithm. This model reveals several interesting propertiesof ak-loking in a single bottlenek link. It leads to a stability proof of a singleTCP-Vegas �ow.2.1.1 Modeling ak-lokingWe model ak-loking at paket level. With the senario of a single �ow, we are ableto apture the timing of eah individual paket in the model and to understand thedetails of the ak-loking e�et.2.1.1.1 AssumptionsWe make the following three assumptions:1. The bottlenek router has a deterministi apaity of c and an in�nite bu�er;

172. The links on the path have no paket loss and produe onsistent round trippropagation delay of d se; this round trip propagation delay inludes therouter's paket proessing time 1
c
, and hene, d ≥ 1

c
;3. The soure an send a miro-burst of pakets instantaneously when the onges-tion window is larger than the number of pakets in �ight; after a miro-burstof pakets are sent, the number of pakets in �ight is equal to the ongestionwindow.The �rst two assumptions are very ommon in models for delay-based protools.These two assumptions also appear in �uid model analysis suh as [29℄. The thirdassumption is the key point of our paket level model. Our model allows a miro-burstto be sent instantaneously. In �uid model, the third assumption is replaed by the�uid assumption that the sending rate xi (t) is a di�erentiable proess.The window size of a �ow w (t) is a given proess in the model.2.1.1.2 A paket level model for ak-lokingWe label the pakets sent in the life of a onnetion with onsequent integer numbers.The paket numbers form a sequene {j |j ∈ Z and j ≥ 0}.For eah paket j:

s (j) is the sending time of the paket. By the de�nition of paket label j, we have
∀j : s (j) ≤ s (j + 1) (2.1)

p (j) is the number of pakets in �ight after paket j is sent. It is an integer number.By de�nition of paket label j, p (j) an inrease by at most one per paket:1
1 ≤ p (j) ≤ p (j − 1) + 1 (2.2)

a (j) is the arrival time of the aknowledgment of paket j. For simpliity, we all1Sine p (i) is de�ned on paket and more than one pakets an be sent at the same time, thisonstraint still allows the ongestion window to inrease by more than one at the same time.

18�the arrival of the aknowledgment of paket j� as �the arrival of paket j� in the restof this hapter. This refers to the time a (j).
b (j) is the baklog experiened by paket j; hene, b(j)

c
is the queueing delayexperiened by paket j.In this model, w (t) is a given proess that satis�es: w (t) ≥ 1.Initially, we have a (0) = 0, p (1) = 1, and b (1) = 0.Given the initial ondition and w (t) sequene, we an uniquely determine p (j),

s (j), b (j) and a (j) from the following four equations:
p (j) = max

0≤k≤p(j−1)
{p (j − 1)− k + 1 |p (j − 1)− k + 1 ≤ w (a (j − 1− p (j − 1) + k))}(2.3)

s (j) = a (j − p (j)) (2.4)
b (j) = max {b (j − 1) + 1− [s (j)− s (j − 1)] c, 0} (2.5)

a (j) = s (j) + d +
b (j)

c
(2.6)Note:

• (2.3) is based on the ak-loking algorithm desribed in Algorithm 1. k is thenumber of aknowledgments that the sender reeives between s (j − 1) and s (j).
a (j − 1− p (j − 1)) = s (j − 1) is the sending time of the (j − 1)-st paket.Hene, a (j − 1− p (j − 1) + k) is the arrival time of the k-th aknowledgmentafter s (j − 1) and w (a (j − 1 + k − p (j − 1))) is the window size at that time.
w (a (j − 1− p (j − 1) + k)) upper-bounds p (j) if paket j is to be sent at thistime. p (j − 1) − k is the number of pakets in �ight after the sender reeives
k aknowledgments. p (j) annot be higher than p (j − 1)− k + 1 sine sendingpaket j an only inrease the number of pakets in �ight by 1. A quik orollary

19from (2.3) is
p (j) = max

0≤k≤p(j−1)
{p (j − 1)− k + 1 |p (j − 1)− k + 1 ≤ w (s (j))} (2.7)sine s (j) = a (j − p (j)).

• (2.4) states that paket j should be sent at the arrival of the aknowledgment ofa paket that were sent one RTT ago. Sine p (j) pakets are sent in one RTT,
j − p (j) is the paket that is sent one RTT ago. A quik orollary of (2.4) is

p (j) = |{k : s (k) ≤ s (j) < a (k)}| (2.8)This onforms to the de�nition of p (j) whih is the number of pakets thatare sent but not aknowledged right after paket j is sent. Also note that when
p (j) = p (j − 1)+1, we have s (j − 1) = s (j). This orresponds to the ase withtwo pakets in the same miro-burst sent out instantaneously by Assumption3. The ombination of (2.3) and (2.4) guarantees that s (j − 1) ≤ s (j).
• (2.5) is a disrete version of the baklog proess in network alulus [36℄:

b (t) = max
s≤t

∫ t

s

[x (u)− c] du (2.9)During the time s (j − 1) to s (j) , at most [s (j)− s (j − 1)] c pakets are proessedby the bottlenek and leave the queue. One more paket enters the queue.
• (2.6) is based on the de�nition of round trip time, whih equals to the roundtrip propagation delay (d) plus the queueing delay (b(j)

c
).22.1.2 Properties of ak-lokingFrom the paket level model, we have three properties of ak-loking :2We assume that eah data paket will results in one aknowledgment. There is no aknowledg-ment ompression or delayed aknowledgment.

20
• Whenever a paket is sent, the number of pakets in �ight is always equal tothe window size after the whole miro-burst is sent.
• The aknowledgments are always paed out by the bottlenek, even the orre-sponding data pakets have entered the bottlenek in bursts.
• The queueing delay experiened by a paket is diretly bounded by the numberof pakets in �ight.These properties are important for us to understand the mirosopi behavior of TCP.2.1.2.1 Relation between the number of pakets in �ight and the windowsizeTheorem 2.1.2.1:At any time s (j) in whih a paket is sent into the network,

p (j) ≤ w (s (j)) (2.10)And there always exists a paket j∗ ::= j∗ (j) whih is sent at the same time (s (j) =

s (j∗)), and
p (j∗) = w (s (j∗)) (2.11)Furthermore, if w (s (j∗)) ≥ w (s (j∗ + 1)),

p (j∗ + 1) = w (s (j∗ + 1)) (2.12)(All proofs are in Appendix 6.3.)This theorem re�ets the assumption that the sending TCP sends all pakets ina miro-burst at the same time.First, (2.10) shows that ak-loking guarantees that the number of pakets in�ight is always no greater than the ongestion window size, at any time when apaket is sent;

21Seond, j∗ is the last paket in the miro-burst. (2.11) says that the ak-lokingalgorithm synhronizes the number of pakets in �ight with the window size at anytime some paket is sent;Third, (2.12) shows that the size of the miro-burst will be one paket if theongestion window does not inrease.2.1.2.2 Paing of aknowledgmentsTheorem 2.1.2.2:
∀j : a (j)− a (j − 1) ≥

1

c
(2.13)The equality holds if, and only if, s (j) ≤ s (j − 1) + b(j−1)+1

c
.This theorem implies that the aknowledgment pakets are always paed out bythe bottlenek router, no matter how fast the orresponding data pakets have arrivedat the bottlenek.Corollary 2.1.2.2:

j1 > j2 ⇔ a (j1) > a (j2) (2.14)2.1.2.3 Upper bound of queue inrementTheorem 2.1.2.3:For ∀1 ≤ j′ < j, If p (j′) ,p (j′ + 1) , · · ·p (j) are non-dereasing,
b (j) ≤ b (j′) + p (j)− p (j′)This theorem upper bounds the inrement of queue length. It says the inrementof queue length is no greater than the inrement of the number of pakets in �ight.2.1.2.4 Lower bound of queueTheorem 2.1.2.4:

22
d +

b (j)

c
≥

p (j)

c
(2.15)The equality holds if, and only if, ∀k that satis�es j − p (j) + 1 < k ≤ j : a (k)−

a (k − 1) = 1
c
.This theorem says that the delay experiened by a paket is always lower-boundedby the number of pakets in �ight.Notes:

• Sine p (j∗) = w (s (j∗)), Theorem 2.1.2.3 and 2.1.2.4 show that the ongestionwindow has a diret e�et on queueing delay. When the window size is large,the queueing delay experiened by the last pakets in the miro-burst will belower-bounded by w(s(j∗))
c

;
• If paket j is not the �rst paket in the miro-burst, it might experiene higherdelay than p(j)

c
due to the extra queueing delay introdued by miro-burst,unless the system is in some speial state. The next subsetion will detail thisstate.2.1.3 Queue onvergeneSine the window size w (t) diretly a�ets the queueing delay, the queue onvergesat a muh faster speed than that predited by �uid model. With a single �ow, thequeue onverges to a stable state in one RTT if the ongestion window remains largerthan bandwidth propagation delay produt in one round trip.2.1.3.1 De�nition of Stable-Link stateDe�nition 2.1.3.1:We say the system is in a stable-link state upon the arrival of paket j if thesystem satis�es

∀k that satis�es j − p (j) < k ≤ j : a (k)− a (k − 1) =
1

c

23The stable-link state is an indiation that all the bottlenek links on the path issaturated. It has several properties.First, in the stable-link state, the number of pakets in �ight is equal to bandwidthdelay produt (BDP);Seond, the stable-link state persists as long as the number of pakets in �ight islarger than or equal to bandwidth propagation delay produt ;Third, the single �ow system enters stable-link state when the number of paketsin �ight is higher than or equal to bandwidth propagation delay produt for at leastone RTT.2.1.3.2 The number of pakets in �ight and BDPTheorem 2.1.3.2:The system is in stable-link state upon the arrival of paket j ⇐⇒ p (j) = cd + b (j)(2.16)This is the equality ase of Theorem 2.1.2.4.Note that b (t) = w (t)− cd is the equilibrium state of the link in �uid models. In�uid models, it takes many round-trips for the links to onverge to this equilibriumstate. This theorem says that this equilibrium state holds at any time when a paketis sent, one the system is in stable-link state.2.1.3.3 Persistene of Stable-Link stateTheorem 2.1.3.3:If the system is in stable link state upon the arrival of paket j and p (j + 1) ≥ cd,then the system is in stable link state upon the arrival of paket j + 1.This theorem says that as long as the number of pakets in �ight is larger than orequal to bandwidth propagation delay produt, the stable-link state persists.2.1.3.4 Entrane of Stable-Link stateTheorem 2.1.3.4:

24If ∀k : j − p (j) < k ≤ j : p (k) > cd; the system enters stable-link state upon thearrival of j.3This theorem provides a su�ient ondition for a system to enter stable-link state.It says as long as the number of pakets in �ight is larger than bandwidth propagationdelay produt for one RTT, the system will be in stable-link state.This theorem implies that the queue dynami onverges within one round-triptime, whih is a sharp di�erene from the predition of �uid models.2.1.3.5 Paing of miro-burstTheorem 2.1.3.5:If ∀k : j − p (j) < k ≤ j : p (k − 1) ≥ p (k) and p (j) ≤ cd, the system has b (j) = 0.This theorem says that miro-burst an be smoothed by the bottlenek within oneRTT, if the number of pakets in �ight does not inrease.2.1.4 Properties of ongestion ontrol in RTT timesaleIn general, a delayed-based ongestion ontrol algorithm an be modeled as follows:the soure makes a deision on new value of the ongestion window at the arrival timeof some pakets, whose sequene numbers form a sub-sequene {τk |k ∈ Z and τk < τk+1}of the paket number sequene {j}. We all these pakets deision pakets. Initially,
τ0 = w (0).4Whenever a deision paket τk arrives (at time a (τk)), the ongestion windowontrol algorithm makes the window update deision based on the window size when
τk is sent (w (s (τk))) and baklog experiened by τk (b (τk)):53A more general version of this theorem whih replaes the ondition p (k) > cd by p (k) ≥ cdalso holds .4A omplete TCP ongestion ontrol algorithm usually inludes three phases: slow-start,ongestion-avoidane, and loss-reovery. In the ontext of delay-based ongestion ontrol algorithms,the model assumes an in�nite bottlenek bu�er size and hene no paket loss our. The loss-reoveryphase is not onsidered. The slow-start phase is an initial and transient phase for delay-based on-gestion ontrol algorithms. The system will stay in ongestion-avoidane phase after running for along enough time. Hene, we only model the ongestion avoidane phase in the study. The initialtime in this model an be regarded as the starting time of the ongestion-avoidane phase.5Here we use α = β, as in [29℄. The proof an be extended to the ases with α < β.

25
∆w (τk) = R (w (s (τk)) , b (τk)) (2.17)

R is alled the response funtion. It depends on the history of the window size andthe measured delaythe window size is then hanged to:
w (a (τk)) = w (s (τk)) + ∆w (τk) (2.18)and the next deision paket τk+1 is de�ned as : 6

τk+1 = τk + w (s (τk)) + max {∆w (τk) , 0} (2.19)For any time other than the arrival of a deision paket, the window size does nothange:
w (t) = w (a (τk)) if a (τk) < t < a (τk+1) (2.20)Hene, the ongestion ontrol algorithm hanges the window size on a timesale ofRTT. This ontrol timesale is general for all existing ongestion ontrol algorithms.Corollary 2.1.4:From (2.19),

τk+1 ≥ τk + w (s (τk+1))2.1.4.1 Timing of the deision paketsTheorem 2.1.4.1:
a (τk) ≤ s (τk+1) < a (τk+1)6This de�nition is based on those implementations whih use a speial paket to indiate the endof one RTT. Some implementations have a di�erent value of τk+1. For example, Linux with delayedak will have τk+1 = τk +2w (s (τk)). We ignore these variants but note that the proof holds as longas τk+1 ≥ τk + w (s (τk)) + max {0, ∆w (τk)}.

26This theorem says that in RTT-timesale window ontrol, a deision paket is sentout only when the last deision paket has arrived. By (2.20), we have:
w (s (τk)) = w (a (τk−1)) (2.21)2.1.4.2 Equivalene of the window size and the number of pakets in �ightTheorem 2.1.4.2:
∀τk : w (s (τk)) = p (τk)This theorem says that eah deision paket τk is the last paket sent in themiro-burst. And the window ontrol formula (2.17) an be rewritten as a funtionof p (τk):

∆w (τk) = R (p (τk) , b (τk)) (2.22)2.1.4.3 Link onvergene upon deision paketsTheorem 2.1.4.3:
b (τk) ≤ ∆w (τk) or the system is in the stable-link state upon the arrival of τk.This theorem says that either b (τk) ≤ ∆w (τk) or b (τk) = p (τk) − cd, aordingto the properties of the stable-link state.Aording to Theorem 2.1.4.2, we have:

b (τk) = w (s (τk))− cdor
b (τk) ≤ ∆w (τk)The theorem establishes a very di�erent understanding on the e�et of feedbakdelay in TCP system. In the traditional �uid models, the queueing delay has slowdynamis and onverges asymptotially to a new equilibrium when the ongestionwindow hanges. Due to this slow dynami, there is a di�erene between queueing

27delay observed by a soure and the queueing delay at the bottlenek. Hene, theongestion ontrol algorithm might osillate its ongestion window due to overatingupon the observed queueing delay. Even worse, the longer the propagation delay, theslower the queue onverges, and the easier the ongestion ontrol algorithm osillates.The feedbak delay plays an important role in this system.However, by apturing the miro-burst whih leads to fast queue dynami, The-orem 2.1.4.3 assures that as long as the queueing delay is higher than the hange ofthe ongestion window, the observed queueing delay equals the queueing delay at thebottlenek. Hene the proess of the fast queue onvergene proess within in oneround-trip is negligible and the queue size an be modeled by a stati funtion in theform of b = w − cd instead of a di�erential equation.This understanding holds for all delay-based ongestion ontrol algorithms. Wealso believe that it an be extended to loss-based ongestion ontrol algorithms.2.1.5 Stability of TCP VegasTCP Vegas ([16℄) is a partiular delay-based ongestion ontrol algorithm. Its re-sponse funtion is
R (w (s (τk)) , b (τk)) =

1 if w(s(τk))
d
− w(s(τk))

D(τk)
< α

−1 if w(s(τk))
d
− w(s(τk))

D(τk)
> α and w (a (τk)) > 1

0 Otherwise

where
D (τk) = d +

b (τk)

c
(2.23)With this response funtion, ∆w (τk) ≤ 1. Hene, the size of miro burst intro-dued by the hange of ongestion window will be always smaller than one paket.Intuitively, one the system enters into a state in whih b (t) > 1, the bottlenekqueue size an be modeled by a stati funtion and the stability of TCP Vegas doesnot depend on feedbak delay. Theorem 2.1.5 on�rms this intuition and shows that

28a single TCP Vegas �ow is always stable.Theorem 2.1.5:Given the ak-loking model desribed in (2.3)(2.4)(2.5)(2.6) and the TCP Vegasongestion ontrol algorithm desribed in (2.17)(2.23)(2.18)(2.19)(2.20), a single TCP�ow onverges to equilibrium regardless of apaity c, propagation delay d and initialstate. That is:If αd > 1, given any initial state, we have
∃J : ∀j > J : cd + αd− 1 < w (s (j)) < cd + αd + 1 and αd− 1 < b (j) < αd + 1Partiularly, if (cd + αd) ∈ Z, then ∀j > J : w (s (j)) = cd + αd and b (j) = αd.2.1.6 ValidationWe run simulations with TCP Vegas implementation from Linux kernel and validateour results. To eliminate the e�et of inaurate base RTT estimation, we hard odethe base RTT to be the propagation delay. With a single �ow, TCP Vegas is stablewith very long delay and high bottlenek apaity, as shown in Figure 2.1. Althoughthe �uid model analysis predits that the long delay and high apaity in the senarioleads to instability of TCP Vegas [29℄, the ongestion window of the single TCP Vegas�ow onverges to equilibrium and remains stable in the region of [19067, 19068] aspredited in Theory 2.1.5.We repeat simulations with multiple homogeneous TCP Vegas �ows and on�rmthat TCP Vegas is stable with di�erent delay. We �rst repeat the simulations by Choeand Low in [29℄, with the more realisti TCP Vegas implementation from Linux kernel.Figure 2.2 shows the average ongestion window trajetory for 100 TCP Vegas �owsand the queue trajetory. From the full traes, we an see that both the ongestionwindow and the queue onverge. In fat, we inspet the ongestion window of eahindividual �ow and on�rm that the ongestion window of eah individual �ow alsoonverges. In the enlarged versions, we inspet the osillation at the paket level.

29
Congestion Window Trajetory Queue Trajetory

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pk

t)

Average (over 60.00 sec)
Max (over 60.00 sec)
Min (over 60.00 sec)

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

time (sec)
Q

ue
ue

 L
en

gt
h

(p
kt

)

Average (over 60.00 sec)
Max (over 60.00 sec)
Min (over 60.00 sec)

Large queue due to Slow Start

Queue builds up steadily

Full trae Full trae
5940 5950 5960 5970 5980 5990 6000

1.9066

1.9067

1.9068

1.9069
x 10

4

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
en

la
rg

ed
)

(p
kt

)

Average (over 0.60 sec)
Max (over 0.60 sec)
Min (over 0.60 sec)

5940 5950 5960 5970 5980 5990 6000
15

16

17

18

19

time (sec)

Q
ue

ue
 L

en
gt

h
(e

nl
ar

ge
d)

 (
pk

t) Average (over 0.60 sec)
Max (over 0.60 sec)
Min (over 0.60 sec)

Enlarged EnlargedFigure 2.1: A single TCP Vegas �ow using a path with a bottlenek apaity of800Mbps and a propagation delay of 200ms. The paket size in the simulation is 1000bytes per paket.

30The osillation is between 114.6 and 115.6. This is beause the Linux uses an integervariable to store the ongestion window size. When cd is not an integer, the ongestionwindow has one paket of osillation. In the enlarged version of queue trajetory, weobserved that the queue length osillates between 1935 pakets and 2035 pakets.This 100 paket worth of osillations are due to the one paket worth of osillation ofeah ongestion window of eah of the 100 �ows.To further on�rm that our observed osillations are due to integer e�ets only,we run two other sets of simulations, in whih we double the round trip propagationdelay. Aording to the predition of �uid model, we expet a more severe osillation.However, the simulation results show that the queue length only osillates in the sameregion and the average ongestion window osillates within one pakets, as shown inFigure 2.3 and Figure 2.4.2.2 FAST algorithm and its stabilityThe paket level model for single soure TCP-Vegas gives many new understandingsof the queue dynamis. Intuitively, a hange in the ongestion window an resultin a very quik hange in the queue and ontrolling the ongestion window diretlyontrols the queue. This is di�erent from the intuition from the �uid model in whihontrolling window only indiretly ontrols the queue via the rate proess. This newunderstanding has inspired the design of a new algorithm, FAST.2.2.1 FAST algorithmFAST algorithm an be viewed as a high speed version of TCP Vegas. It has thesame equilibrium state as TCP-Vegas. However, it onverges muh faster, and hene,is able to fully utilize the bottlenek apaity. The design of the FAST algorithm hasbeen inspired by the onept of quik queue onvergene.The FAST algorithm an be summarized in the following equation where wi (t) isadjusted one every two round trips:

31
Congestion Window Trajetory Queue Trajetory

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pk

t)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

time (sec)

Q
ue

ue
 L

en
gt

h
(p

kt
)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

Full trae Full trae
2980 2985 2990 2995 3000

114

115

116

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
en

la
rg

ed
)

(p
kt

)

Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

2980 2985 2990 2995 3000
1920

1940

1960

1980

2000

2020

2040

2060

time (sec)

Q
ue

ue
 L

en
gt

h
(e

nl
ar

ge
d)

 (
pk

t) Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

Enlarged EnlargedFigure 2.2: 100 Homogeneous TCP Vegas �ows sharing a path with a bottlenekapaity of 800Mbps and a propagation delay of 200ms. The paket size in thesimulation is 1000 bytes per paket.

32
Congestion Window Trajetory Queue Trajetory

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pk

t)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

time (sec)

Q
ue

ue
 L

en
gt

h
(p

kt
)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

Full trae Full trae
2980 2985 2990 2995 3000

209

210

211

212

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
en

la
rg

ed
)

(p
kt

)

Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

2980 2985 2990 2995 3000
1920

1940

1960

1980

2000

2020

2040

2060

time (sec)

Q
ue

ue
 L

en
gt

h
(e

nl
ar

ge
d)

 (
pk

t) Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

Enlarged EnlargedFigure 2.3: 100 Homogeneous TCP Vegas �owssharing a path with a bottlenekapaity of 800Mbps and a propagation delay of 200ms. The paket size in thesimulation is 1000 bytes per paket.

33
Congestion Window Trajetory Queue Trajetory

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pk

t)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

time (sec)

Q
ue

ue
 L

en
gt

h
(p

kt
)

Average (over 30.00 sec)
Max (over 30.00 sec)
Min (over 30.00 sec)

Full trae Full trae
2980 2985 2990 2995 3000

400

401

402

403

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
en

la
rg

ed
)

(p
kt

)

Average (over 0.28 sec)
Max (over 0.28 sec)
Min (over 0.28 sec)

2980 2985 2990 2995 3000
1940

1960

1980

2000

2020

2040

2060

time (sec)

Q
ue

ue
 L

en
gt

h
(e

nl
ar

ge
d)

 (
pk

t) Average (over 0.30 sec)
Max (over 0.30 sec)
Min (over 0.30 sec)

Enlarged EnlargedFigure 2.4: 100 Homogeneous TCP Vegas �owssharing a path with a bottlenekapaity of 800Mbps and a propagation delay of 200ms. The paket size in thesimulation is 1000 bytes per paket.

34
∆wi = γ

[

wi (t−Di (t))

di + qi (t)
di + αi − wi (t)

] (2.24)where wi is the ongestion window of soure i;
di is the round-trip propagation delay of soure i;7
qi is the queueing delay observed by soure i at time t;
Di (t) = di + qi (t) equals the round-trip time;
γ is the parameter for onvergene speed, whih is reommended to be 1

2
;

αi is the parameter for fairness. It spei�es the number of pakets that eah souretries to maintain in the bottlenek queue.The details of the algorithm an be found in Algorithm 2.The algorithm assumes the throughput ahieved in the last round trip (wi(j)
Di(j)

) tobe the available bandwidth, and add αi pakets to the bandwidth propagation delayprodut.As extensively evaluated in [37, 17℄, FAST has ahieved muh better responsive-ness and maintained the same stability as TCP Vegas.We extend the paket level model to a disrete model for homogeneous �ows andanalyze its stability in this ontext.2.2.2 Model for homogeneous �owsAs observed in Theorem 2.1.3.4, the queue an quikly onverge to an equilibrium dueto miro-burst. We extend this observation to a more general assumption that thequeue onverges within one RTT so that the stability analysis of ongestion windowontrol algorithms an ignore the onvergene time of the queue and assume that thequeue onverges to an equilibrium instantly. This equilibrium an be desribed as
q (t) = max

{∑

i wi (t)− cd

c
, 0

} (2.25)7We use the minimum observed round-trip time as an approximation of di. The disussion onthe noise of measurement an be found in [37℄.

35
Algorithm 2 FAST algorithmFor eah soure i:1. Initialization:(a) counti = wi;(b) fastOni = 12. On the transmission of eah data paket j:(a) wi (j) = wi;(b) si (j) = T . (T is the system time.)3. On the arrival of eah aknowledgment (that aknowledges paket j):(a) If fastOni == 1:i. Calulate RTT Di (j) = T − si (j);ii. Calulate ∆wi = γ

[

wi(j)
Di(j)

di + αi − wi

]iii. If ∆wi ≥ 1: wi = wi + 1iv. If ∆wi ≤ −1: wi = wi − 1(b) counti = counti − 1() If counti ≤ 0: (One RTT is �nished)i. fastOni = 1− fastOniii. counti = wi

fastOni indiates whether wi (t) needs to be adjusted in the urrent RTT ;
counti is the ounter to detet the end of an RTT.

36Based on this assumption, we propose a disrete time model to analyze the stabilityof homogeneous FAST �ows. For the soures, we use a model that assumes that everysoure makes its deision on disrete time points τ1, τ2, · · · , we have:
wi (τk+1) = F (wi (τk) , q (τk)) (2.26)In the ase with homogeneous FAST �ows, τi orresponds to the number of RTTsthe �ows have been in the system. Based on (2.25) and (2.26), we an analyze theonvergene of a system.2.2.3 Stability of FAST in homogeneous networkWe prove that the ongestion window of eah soure exponentially onverges to theequilibrium regardless of apaity, delay and number of �ows. In the proof, we onlyonsider the situation when the link is fully utilized. If the link is not fully utilized,queueing delay equals zero. FAST algorithm will always inrease the ongestionwindow until the link is fully utilized. Let q (t) denote the queueing delay at thebottlenek router. We an prove that ∃T > 0, q (T) > 0 ⇒ ∀t ≥ T : q (t) > 0, if thenetwork on�guration does not hange.By (2.24), the window update funtion is

wi (t) = γ

(

wi (t− 1)

q (t− 1) + d
d + αi

)

+ (1− γ) wi (t− 1) (2.27)Sine the bottlenek is fully utilized, by (2.25), we have ∑i

wi(t)
q(t)+d

= c. Hene,
q (t) =

∑

i wi (t)

c
− d (2.28)De�ne W (t) to be the sum of windows over all the soures:

W (t) =
∑

i

wi (t) (2.29)

372.2.3.1 Convergene of the sum of windowsTheorem 2.2.3.1:By (2.27), (2.28) and (2.29), if γ ∈ (0, 1), W (t) is globally stable, and the equilibriumis α + cd.Proofs for all the theorems an be found in Appendix Setion of Wei[37℄.Theorem 2.2.3.1 shows that W (t) onverges to ∑i αi + cd exponentially.2.2.3.2 Convergene of individual �owsTheorem 2.2.3.2:
∀η > 0, ∃T0: ∀t > T0, ∣∣wi (t)−

αi

α
(α + cd)

∣

∣ < η.Theorem 2.2.3.2 shows that the window size of eah individual FAST �ow on-verges to the equilibrium αi

α
(α + cd).Hene, FAST is globally stable in the ase with a single bottlenek link and ho-mogeneous soures.

38

39
Chapter 3Mirosopi E�ets on Loss-basedCongestion Control Algorithms
Both miro-burst and sub-RTT burstiness a�et the performane of loss-based on-gestion ontrol algorithms. This hapter fouses on the e�et of sub-RTT burstiness,whih is not well understood.The e�et of miro-burst on loss-based ongestion ontrol algorithms has beenwell understood [21, 20, 18℄. When the bottlenek bu�er size is too small to absorball the pakets in a miro-burst, the bottlenek has to drop some of the pakets, evenwhen the average input rate is lower than its apaity. This situation happens inslow-start phase of a loss-based ongestion ontrol algorithm. During slow-start, theTCP soures generate miro-bursts of sizes up to half of the maximum window size. Ifthe bottlenek bu�er size is not large enough to hold these pakets, the TCP souresexit slow start prematurely and take a long time to reah equilibrium. As explained inSetion 1.1.1, miro-burst e�et is transient and an be eliminated by large bu�ers.For network with small bottlenek bu�ers, several algorithms have been proposedto eliminate the miro-bursts. Some examples are TCP Paing [20, 21℄, burstinessredution [18℄, and burstiness ontrol [22℄.The e�et of sub-RTT burstiness, however, is less lear. This hapter fouses onthe e�et of sub-RTT burstiness on loss-based ongestion ontrol algorithms. Ourstudy �nds that the sub-RTT burstiness has diret impat on loss synhronizationrate, an important parameter that a�ets the fairness onvergene, friendliness and

40link utilization of the loss-based ongestion ontrol algorithms. As explained in Se-tion 1.1.2, the e�et of sub-RTT burstiness is persistent and annot be eliminated bylarge bu�ers.We proposed a model to understand the relation of sub-RTT level burstiness andloss synhronization rate. The model takes a signal sampling perspetive. The keyidea is to view a loss-based ongestion ontrol's ongestion detetion as a samplingproess: a TCP �ow detets a ongestion signal through the loss of its own datapakets. Hene, the bursty pattern in the TCP data proess diretly a�ets theprobability that a TCP �ow detets a paket loss in a ongestion event. With sub-RTT level burstiness, it is very likely that some of the TCP �ows do not observe anypaket loss in a ongestion event. These �ows will be more aggressive than those�ows that detet the paket loss.This understanding explains several interesting problems, suh as the onvergeneof loss-based MIMD algorithms, friendliness between bursty TCP and paed TCP, et.It has also inspired the design of a new link algorithm whih signi�antly inreasesthe loss synhronization rate.3.1 A model for loss synhronization rateMost modern loss-based TCP algorithms reat to loss events, instead of individualpaket losses.1 A loss event observed by a TCP �ow is de�ned as a round trip timein whih at least one paket loss is deteted by the TCP soure. The TCP soureredues its ongestion window only one for eah observed loss event, even if thereare multiple paket losses in this round trip time. With this proess, it is the lossevent rate observed by a TCP �ow, instead of per-paket loss rate, that a�ets theperformane of a loss-based TCP. Loss synhronization rate is introdued to apturethe probability that a TCP �ow observes a loss event when ongestion happens inthe router.1These modern TCPs inlude TCP NewReno [6℄, FACK TCP [7℄, HighSpeed TCP [8℄, SalableTCP [33℄, BIC TCP [38℄, H-TCP [11℄, CUBIC [10℄and et. The only known TCPs that reat toindividual paket losses are TCP-Tahoe [4℄ and TCP-Reno [5℄.

41We fous our study in senarios with homogeneous �ows sharing the same pathwith a ommon RTT. In this ontext, we an de�ne a loss synhronization rate.We de�ne loss synhronization rate as the probability that a �ow detets at leastone loss signal in a loss event. A loss event is de�ned as an RTT in whih at leastone paket is dropped by the bottlenek router due to ongestion (bu�er over�ow).Di�erent �ows may have di�erent loss synhronization rates (λi). We use λ = 1
N

∑

λito denote the average loss synhronization rate among N �ows.The onept of loss synhronization rate was �rst introdued to model the aggre-gate throughput and instantaneous fairness (variane of instantaneous rate) in [39℄.Many TCP performane analysis have been based on the onept of loss synhroniza-tion rate. For example, Baelli and Hong point out that the short term fairness ofTCP �ows highly depends on the loss synhronization rate among all TCP �ows [39℄.Leith and Shorten experimentally demonstrate that loss-based high speed TCPs havevery di�erent fairness properties with di�erent synhronization rates [40℄.However, there is no lear understanding on the loss synhronization rate itself.Previous studies use di�erent assumptions to model λ. For example, λ is an outsideinput to the model in [40℄. On the other hand, λi is modeled as a funtion of windowsize wi in [39℄ with the assumption that all the pakets have the same per-paket lossprobability. This assumption is equivalent to the �uid assumption. It is importantto have a lear understand on the loss synhronization rate, given the many resultsbased on this onept.We model the loss synhronization rate with the onsideration of sub-RTT bursti-ness. Our model has two major assumptions:1. The data paket arrival proess (xi (t)) of eah TCP �ow i is bursty in sub-RTTtimesale and xi (t) an be modeled by an on-o� proess in eah RTT.2. The paket loss proess (l (t)) is bursty in sub-RTT timesale and l (t) an bemodeled by another on-o� proess in eah RTT.Sub-RTT burstiness in TCP paket arrival proesses is well doumented. One exam-ple of these observations is presented by Jiang and Dovrolis [23℄.

42General burstiness in the paket loss proesses is also well-doumented [31, 41, 42℄.However, in our assumption, we further laim that the loss proess is bursty in sub-RTT timesale. We support this assumption with evidene from our measurementsin NS-2 simulation, Dummynet emulation, and PlanetLab.Based on these two assumptions, we model the loss synhronization rate as thedetetion probability using one on-o� proess (TCP data pakets) to sample anotheron-o� proess (paket loss proess).Our model predits that the ombination of bursty TCP �ows and a drop-tailrouter (bursty loss proess) yields very low and uniform synhronization rates amongTCP �ows with di�erent ongestion window sizes and leads to poor fairness onver-gene. Our model also suggests that the use of paing at the TCP soures and/orthe use of random dropping algorithms in the link (e.g. RED [31℄) an inreasesynhronization rate.3.1.1 Burstiness in the paket loss proessWe studied sub-RTT level burstiness in the paket loss proesses in three di�erentenvironments: a simulation network (via NS-2 [43℄), an emulation network (via Dum-mynet [44℄), and the Internet (via PlanetLab [45℄).From all these three measurement soures, we found signi�ant burstiness in sub-RTT time sales.3.1.1.1 MeasurementWe measured the timing of eah paket loss in three di�erent environments: simula-tion network (NS-2), emulation network (Dummynet), and the Internet (PlanetLab).The NS-2 simulation simulates a single ideal bottlenek shared by heterogeneoussoures. The Dummynet system emulates a single bottlenek link shared by hetero-geneous soures.2 The PlanetLab experiments measure the realisti situations in theInternet. For eah loss trae, we alulated the time interval between two onseutive2The bottlenek link emulated by Dummynet proesses pakets in burst of 1ms.

43lost pakets, alled the loss interval, and analyzed the loss proesses by plotting theumulative distribution funtion (CDF) and the probability density funtion (PDF)of the loss intervals. We ompared the PDF of the paket loss proesses to the orre-sponding Poisson proesses with the same average event arrival rates. We observedthat the paket loss proesses are muh burstier than the Poisson proesses.The measurements from NS-2, Dummynet, and the Internet all suggest that thesub-RTT paket loss proess is very bursty.Results in NS-2 Simulation Figure 3.1 shows the CDF of the loss interval inNS-2 simulations. The RTTs of the �ows in simulation are random between 2ms to200ms. From the �gure, we observed that 80% of the paket losses luster withinshort time periods smaller than 1% of the RTT.We also plotted the PDF of the loss interval and ompared it with the PDF of aPoisson proess with the same arrival rate, as shown in Figure 3.1 (B) .Figure 3.1 (C) zooms in to a small time sale of 0 to 2 RTT and uses log-salein the Y-axle so that the Poisson proess has a straight line in its PDF. Comparedto the Poisson proess, the loss proess is muh burstier � more than 10 times thepaket losses ourred in the very small time interval.Results in Emulation Network Figure 3.2 is the CDF of the loss interval inDummynet emulations. The RTTs of the �ows are �xed to 4 lasses: 2ms, 10ms,50ms, and 200ms. The loss interval CDF shows a similar pattern to the NS-2 results,exept that the CDF starts from 0.1% of RTT due to the limited time resolution ofour measurements in the Dummynet router.Figure 3.2 (B) and (C) show the PDF of the loss interval. Again, the loss proessis muh burstier than the orresponding Poisson proess.Results in the Internet Figure 3.3 is the CDF with the Internet measurement.The Internet measurement shows less burstiness in loss proesses than we observedin simulation and emulation. This is due to the heterogeneity of the Internet, in terms

44

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Interval (RTT)

C
D

F

Measured(A) CDF

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(B) PDF (Bin size 0.1 RTT)

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(C) PDF Enlarged (Bin size 0.02 RTT)Figure 3.1: Loss intervals in NS-2 measurements.Note that all the CDF �gures in this hapter have X-axles in log-sale, and all thePDF �gures in this thesis have Y-axles in log-sale.

45

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Interval (RTT)

C
D

F

Measured(A) CDF

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(B) PDF (Bin size 0.1 RTT)

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(C) PDF Enlarged (Bin size 0.02 RTT)Figure 3.2: Loss intervals in Dummynet measurements.

46

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Interval (RTT)

C
D

F

Measured(A) CDF

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(B) PDF (Bin size 0.1 RTT)

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

(C) Loss intervals in PlanetLab measurements (Bin size 0.02 RTT)Figure 3.3: Loss intervals in PlanetLab measurements.

47of appliation types, tra� patterns, and queuing delay. In suh an extremely hetero-geneous environment, we observed that 60% of the paket losses luster within shorttime periods of 1 RTT, and 40% of the paket losses luster within time periods of 1%of RTT. This evidene is still very strong for sub-RTT burstiness in loss proesses.We plotted the PDF in Figure 3.3 (B)(C) and ompared the Internet loss proessagainst a Poisson proess with the same arrival rate. We observed similar burstinessas in NS-2 and Dummynet. In the smallest interval region (left side), the measuredloss proess is far burstier than the Poisson proess.3.1.1.2 Possible Soures of sub-RTT BurstinessAs shown by the results of the NS-2 simulations, Dummynet emulations and theInternet measurements, paket loss is highly bursty in sub-RTT timesale. There areseveral possible soures that lead to suh burstiness.DropTail routers are onsidered the major soure of paket loss burstiness [31℄. ADropTail router serves as a FIFO queue, aepting inoming pakets until the bu�eris full. Working with DropTail routers, loss-based ongestion ontrol algorithms keepinreasing the data rate when the router's bu�er is not full. When the router's bu�eris full and pakets are dropped, the aggregate data rate is higher than the router'sapaity and paket loss persists until the loss-based ongestion ontrol algorithmsdetet the loss of pakets and redue the data rate, usually one half of an RTTlater. In between the �rst paket loss and the redution of data rate, there is apeak of paket losses in the DropTail router. Some researhers propose introduingrandomness in the router. For example, Floyd and Jaobson proposed to randomlydrop the pakets earlier before the bu�er is over�owed [31℄. However, these proposalssu�er from di�ult parameter settings problems.Slow start of TCP �ows is another soure of paket loss burstiness. A TCP �owstarts with a very small rate in burst (sending two pakets bak-to-bak every roundtrip), and doubles its data rate if no loss is observed. This proess an quiklyinrease the queue size in the bottlenek bu�er in just a few round trips and produea large number of ontinuous paket losses in the router. Some new ongestion ontrol

48
burst period of Flow i

burst period of loss signal

randomly drop from M

incoming packets

Legend:

a dropped

packet

a packet

from flow i

iii iiii ii ii

S incoming packets during the RTT of loss event

i

a packet

(from any flow)

spanning over K incoming packets

Figure 3.4: Congestion detetion within one RTT: a �ow uses its data paket proessto sample the loss proess. The loss synhronization rate is the probability that oneof the wi pakets from �ow i (distributed over K pakets) happens to be one of the Ldropped pakets (distributed over M pakets).algorithms, suh as QuikStart [46℄ and RCP [47℄ have been proposed to avoid suhaggressive detetion. These algorithms require hanges in data paket formats, whihare expensive for the existing infrastruture.Hene, the soures of sub-RTT burstiness in paket loss proesses will exist in theforeseeable future.3.1.2 Modeling loss synhronization rateAssuming that the loss proess l (t) only depends on the aggregation of transmissionrates from all �ows and is independent of the paket transmission proess from anindividual �ow i in sub-RTT time sales, the signal sampling perspetive leads to asimple model for sub-RTT time sale behavior, as shown in Figure 3.4.The �gure illustrates all pakets going through the bottlenek router in the RTTof a ongestion event. S is the number of these pakets. These pakets inlude paketsthat are aepted by the bottlenek and pakets that are dropped by the bottlenek.All the pakets from an individual �ow (�ow i) are distributed in �ow i's burstperiod, whih spans over K inoming pakets. Eah of these K pakets has a proba-bility of wi

K
to be from �ow i and the total number of pakets from �ow i in this RTTis wi on average.3 Sine i an be any of the N �ows, we assume that the position of3For both paket transmission proess and loss proess, we use Poisson arrival assumption to

49the burst period of �ow i is randomly distributed in the RTT. That is, the startingposition of the burst period an be any of the S pakets. If the burst period startsat the end of S, wrap-around is allowed.We model the loss signal proess as another on-o� proess, with the burst periodspanning over M inoming pakets, dropping L pakets on average, with a droppingprobability of L
M
. If at least one of the wi pakets from �ow i happens to be oneof these L dropped pakets, �ow i detets the loss event and bak o� its ongestionwindow. Otherwise, �ow i is not aware of the loss event and ontinues to grow itsongestion window.From this perspetive, the synhronization rate of �ow i (λi) is the probabilitythat one of the wi pakets happens to be one of the L dropped pakets, as the positionof �ow i's burst period is randomly distributed in the RTT; that is λi = P (hiti) wherehiti is the event that �ow i detets the loss signal.Let the loss signal burst (M pakets) and paket transmission proess burst (Kpakets) interset over k inoming pakets (max {0, M + K − S} ≤ k ≤ min {M, K}).Conditioning on k, we have the probability of a paket from �ow i getting dropped,given k pakets are in the intersetion:

P (hiti|k) = 1−

(

1−
L

M

wi

K

)k (3.1)and sine the position of paket transmission proess burst (K) is randomly dis-
simplify the desriptions. With Poisson arrival, the number of data pakets is not always wi. Amore ompliated omputational model an be obtained with the assumption that the wi and Lpakets are uniformly distributed over K and M inoming paket slots. We use Poisson model inour omputations due to its simpliity and reasonable auray. However, we note that the modelis not aurate if wi or L is very small.

50tributed in the RTT with modulo S, we have
P (k) =

0 if k > k̄ or k < k

2
S

if k < k < k̄

max{M,K}−k̄+1
S

if k = k̄ and k < k̄

1− max{M,K}+k̄−2k−1
S

if k = k and k < k̄

1 if k = k = k̄

(3.2)
where k = max {0, M + K − S} is the lower-bound of k and k̄ = min {M, K} is theupper-bound of k.Hene,

λi = P (hiti) =
k̄
∑

k=k

P (hiti|k)P (k) (3.3)There is no simple lose form for the above formula. However, the formula reveal agood property of the loss synhronization rate: the dependeny of loss synhronizationrate on M and K are symmetri. Hene, hanging the M and K have similar e�etson loss synhronization rate.We used MatLab to ompute the values of λ based on (3.1), (3.2) and (3.3). Sinethe paket loss is due to ongestion, the DropTail router's bu�er must have been full.Hene, the number of pakets going through the router in this RTT is approximately
S = cd + B + L (pakets in �ight in the path + pakets in the bu�er + paketsthat are dropped by the bottlenek). With N Reno �ows in ongestion avoidanestate, at most N additional pakets are transmitted in this RTT in omparison to thelast RTT, in whih no loss happens. Hene, at most N pakets are dropped by theDropTail router. That is 1 ≤ L ≤ N .4Figure 3.5 shows the omputational results of the model, with parameters L =

N = 32, cd + B + L = 2000 and wi = 2000
32

. This is roughly equivalent to the senarioof 32 Reno �ows sharing a path of 200ms delay and a bottlenek with a apaity of100Mbps and a bu�er size of 400 pakets.4If the �ows are not ontrolled by Reno, the number of loss pakets may be larger. A generalAIMD algorithm with additive parameter of α [48℄ will have 1 ≤ L ≤ αN .

51

0
200

400
600

800
1000

0
200

400
600

800
1000
0

0.2

0.4

0.6

M: loss signal span

λ

K: packet
transmission
process span

B: Pacing

A: Current

C: RED

Figure 3.5: Synhronization rate: omputational results from the modelIn Figure 3.5, the synhronization rate hits its lowest point (A) when M and Kare small, orresponding to the ase in whih both loss signal and data proess arebursty in sub-RTT level. This is the urrent situation: we have TCP senders andDropTail routers, whih send and drop pakets in bursty patterns.3.1.3 TCP Paing and REDAs K inreases in Figure 3.5, the loss synhronization rate inreases. Its value hits ahigh point (B) when K = cd + B + L (upper-left point in Figure 3.5), orrespondingto the ase in whih the data pakets of eah �ow spread out over the whole RTT.This is the situations with improvements in TCP sender, suh as paing [20, 21, 49℄.Figures 3.6 and 3.7 intuitively illustrate the hange in synhronization rates frompoint A to point B in the loss sampling perspetive.Figure 3.8 presents details of the loss signal proess and the data paket proessesin a simulation, with TCP and with a paing improvement. In the simulation, weused a randomized version of paing algorithm to redue phase e�ets. The detailedalgorithm an be found in Appendix 6.2.A green dot (t, i) , i = 1 · · ·16 in the �gure represents a paket from �ow i going

52
burst period of one flow: K packets

burst period of loss signal

M incoming packets

Legend:

a dropped

packet

a packet

from flow i

ii iiiii ii

incoming packets during the RTT of loss event from all flows

i

a packet

(from any flow)Figure 3.6: Paket loss with window-based implementations
i

K packets evenly distributed

burst period of loss signal

M incoming packets

Legend:

a dropped

packet

a packet

from flow i

ii i iiiii

incoming packets during the RTT of loss event from all flows

i

a packet

(from any flow)Figure 3.7: Paket loss with rate-based implementations

1300 1305 1310 1315 1320 1325 1330

0

2

4

6

8

10

12

14

16

time (RTT)

flo
w

 #

1300 1305 1310 1315 1320 1325 1330

0

2

4

6

8

10

12

14

16

time (RTT)

flo
w

 #

(a) TCP (b) TCP improved by paingFigure 3.8: Sampling e�ets of TCP and paing (simulation results)

53through the bottlenek at time t; a blak star (t, i) , i = 1 · · · 16 represents a paketof �ow i dropped at time t; a blue ross (t, 0) at the bottom of the �gures representsa paket (of any �ow) dropped by the bottlenek. We olleted 30 RTTs of the dataafter the �ows ran for more than 1000 RTTs, so the �ows were in ongestion avoidanephase for a long time. In both ases, the bottlenek link was fully utilized and theaggregate throughputs in both ases were similar. Hene, when we ompare theseresults, we see that the e�et of sub-RTT level burstiness is still very signi�ant.In Figure 3.8(a), the pakets are sent by TCP. The transmission proesses of most�ows learly show a bursty on-o� pattern. When some pakets are lost in a burst,only a few �ows (30% in this ase), whose burst periods happen to over the lossburst, detet the ongestion signal.In Figure 3.8(b), the pakets are paed out equally so that they are evenly dis-tributed throughout the whole RTT. When some pakets are lost in a burst, most ofthe �ows (70% in this ase) experiene the loss and thus detet the ongestion signal.5Symmetrially, as M inreases, the loss synhronization rate inreases, too. Itsvalue hits a high point (C) when M = cd + B + L, orresponding to the ase inwhih paket losses are spread out over the whole RTT. This is the situation withlink algorithm improvements suh as Random Early Detetion (RED) [31℄. Oursimulation and trae analysis on�rm that RED inreases the loss synhronizationrate among Reno �ows to 0.5 to 0.6.3.1.4 ValidationWe measure the synhronization rate from our simulations and ompare the resultsto the omputation results based on equation (3.1), (3.2) and (3.3). The simulationshave a setup with a bottlenek of 100Mbps and a round trip propagation delay of200ms. The bottlenek bu�er size is 1680 pakets. Hene, cd+B+L ≈ 3340. We varythe number of �ows N from 2 to 32. In the omputation, we assume wi = cd+B+L
N5Consequently, the length of loss-epohs is shorter in Figure 3.8(a) sine less �ows redue theirongestion windows in a loss event. This is onsistent to the analysis in studies by Baelli, et al[39℄.

54and L = N . In the measurement, we take the �rst paket loss that is not part ofany previous loss events as the beginning of a new loss event and onsider all thesubsequent paket losses within one round-trip time as in the same loss event. Weaverage the loss synhronization rates of all �ows and present the average values.Figure 3.9 ompares the omputational results and the measurement from NS-2simulations. Figure 3.9 (A)~(C) orrespond to the three points in Figure 3.5.6 Thisshows that our model an qualitatively estimate the loss synhronization rates.3.1.5 Asymptoti resultsAlthough the general formula (3.1), (3.2) and (3.3) are ompliated, simple and in-teresting asymptoti results an be obtained for two speial ases (point A and pointB in Figure 3.5) with the additional assumption that the number of �ows is large.If TCP paket proess is bursty and N is large, wi

cd+B+L
is very small and L >> wisine L ∼ N . (3.1) and (3.2) an be simpli�ed into:

P (k) =

0 if k > wi

2
cd+B+L

if 0 < k < wi

L−wi+1
cd+B+L

if k = wi

1− L+wi−1
cd+B+L

if k = 0

and
λi =

2

cd + B + L
(wi − 1) +

L− wi + 1

cd + B + L

≈
L− 1

cd + B + L
(3.4)In this ase, �ows with di�erent ongestion windows see similar synhronizationrates sine λi is almost independent of wi.When paing is applied with DropTail routers, we have K ≈ cd + B + L and6In Figure 3.5(C), the theoreti loss synhronization rate with RED is almost �at. We note thatthere is inauray in the alulation of loss synhronization rate for the ase where N=2. In thisase, L=N=2 is very small and the Poisson assumption is inaurate, as explained in Footnote 3.

55

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

λ

current

Model
Measured

(A) Current TCP + DropTail

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

λ

pacing

Model
Measured

(B) TCP Paing + DropTail

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

λ

RED

Model
Measured

(C) Current TCP + REDFigure 3.9: Synhronization rate with urrent TCP, TCP Paing and RED

56

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

flow number

λ
Paced TCP: w

1
=2*fairshare

Paced TCP: w
2
=0.5*fairshare

Bursty TCP: w
1
=2*fairshare

Bursty TCP w
2
=0.5*fairshare

Figure 3.10: Synhronization rates of two �ows with di�erent window sizes, amongN �ows (N=2 to 100), with bursty TCP or paed TCP (MatLab results).
M ≈ L. Hene,

P (k) =

1 if k = L

0 else

and
λi =

(

1−

(

1−
wi

cd + B + L

)L
) (3.5)If N is large, wi

cd+B
will be very small and we have

λi ≈
wiL

cd + B + L
(3.6)That is, the �ows with larger ongestion windows see higher synhronization rates.Figure 3.10 shows the synhronization rates of two �ows (among N �ows) withdi�erent ongestion window sizes (w1 and w2). w1 = 2 cd+B

N
is double the fair sharewindow size and w2 = cd+B

2N
is half of the fair share window size. All other parameters,exept �ow number and window sizes of �ow 1 and �ow 2, are the same as in Figure3.5. With bursty TCPs, �ow 1 and �ow 2 have similar loss synhronization rates,and hene, see similar loss event rates, as the number of �ows inreases. With paedTCPs, �ow 1 always sees higher loss event rates than �ow 2. As we will show inSetion 3.2.2, this asymptoti result has very interesting impliation on the fairnessof MIMD (Multipliative-Inrement-Multipliative-Derement) algorithms.

573.2 Impliations on Performane of Loss-based TCPOur model points out three important impliations for loss-based TCP �ows with aDropTail router:1. The urrent implementation has a low synhronization rate due to the sub-RTTburstiness introdued by ak-loking ;2. Asymptotially, the loss synhronization rates of �ows with di�erent ongestionwindows tend to be the same, due to the sub-RTT burstiness introdued byak-loking ;3. TCP paing will see a higher synhronization rate sine its data paket arrivalproess is smooth and is able to detet loss more e�iently.These preditions have realisti impats in the system performane.3.2.1 Fairness onvergeneFairness onvergene is a metri that is of interest to the luster omputation industry.In luster omputation, the data transfer time sale is usually measured in seonds.In these senarios, rate �utuations in one or two RTT are aeptable, and hene,the traditional short-term fairness de�nition is not suitable in this ase. In this timesale, we are more interested in how fast the TCP �ows an share the bottlenek,both e�iently and fairly, in term of average rates over the onvergene period.3.2.1.1 De�nition of Fairness Convergene TimeTo quantify the fairness onvergene, we introdue the notion of fairness onvergenetime. Fairness onvergene time measures how fast the TCP �ows onverge to theirfair shares from start up. We give our formal de�nition of fairness onvergene timeas the time taken by the slowest �ow to reah the fairshare rate as
F = min

{

t
∣

∣

∣
∀τ > t, min

i
{x̄i (τ)} > 0.8x∗

i

} (3.7)

58where x∗
i = c

N
in our homogeneous setup is the fairshare rate for �ow i and x̄i(τ) isthe average throughput for �ow i during the �rst τ seonds, de�ned as

x̄i (τ) =
1

τ

∫ τ

0

xi (u) duin whih τ is the averaging interval.7This metri measures how long a user has to partiipate in the data transfer untilhe or she an enjoy a sense of fairness (by getting 80% of his/her fair share bandwidth).The metri has a small value only if all �ows quikly onverge to, and maintain, thedesired equilibrium in whih they share the bottlenek both e�iently and fairly.The metri has a large value if the bottlenek is not e�iently used (underutilized),or if the �ows are sharing the bottlenek unfairly, or if the �ows fail to maintain thedesired equilibrium in long run.The fairness onvergene time also provides an upper bound for the data transferlateny of parallel �ows in luster appliations. If eah of the parallel �ows needs totransfer a data hunk of D bits, the ompletion time of all �ows as a whole will be atmost F + D
0.8 c

N

, sine the de�nition guarantees that eah TCP �ow ahieves 80% ofthe fair share bandwidth on average at or after time F .3.2.1.2 Loss Synhronization Rate and Fairness ConvergeneBaelli and Hong point out that the short term fairness highly depends on the losssynhronization rate among all TCP �ows [39℄. With similar derivation, a lowerbound of fairness onvergene time for TCP Reno is
F ≥ max

0,
log 0.2− log

(

1− 1
(2−λ)

)

log
(

1− λ
2

)

λ (cd + B)

2N

(3.8)assuming that the synhronization rate is the same for all �ows.The detailed derivation of (3.8) an be found in Wei, et al [50℄. The lower bound7If τ is in�nitely large, x̄i (∞) is the asymptoti average rate, whih is proved to be x∗

i
in long-termfairness for most TCPs.

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700

800

900

1000

λ

co
nv

er
ge

 ti
m

e
to

 fa
irn

es
s

(R
T

T
)

Figure 3.11: Relation between fairness onvergene time F and synhronization rate
λ (MatLab results)for TCP-Reno in (3.8) an also be extended to general AIMD TCP algorithms [48℄,HS-TCP [8℄, and S-TCP [9℄. The derivation is based on the AIMD model used byBaelli and Hong in [39℄. Similar onlusions an be reahed with an extended modelproposed by Shorten, et al [51℄. Note that cd+B

N
is a TCP �ow's average window sizeupon a loss event, whih depends on the network ondition and user pattern whihare ontrolled by TCP. Loss synhronization rate λ is the parameter that we anontrol.To intuitively illustrate the relation between fairness onvergene time and losssynhronization rate, Figure 3.11 shows the omputational results of F as a funtionof λ, aording to (3.8) with cd+B

N
= 1000 pakets.Figure 3.11 learly shows that the loss synhronization rate has a signi�ant impaton the fairness onvergene. As we disussed in Setion 3.1, loss synhronization ratean be ontrolled by sub-RTT level TCP behavior in the soure and by the paketdropping behavior on the link. One an ontrol and inrease the loss synhronizationrate to ahieve better short-term fairness.

60Reno HS-TCP S-TCP0.2042152591 0.2496234482 0.2331014195Table 3.1: Average loss synhronization rates of TCP with a DropTail router3.2.1.3 Fairness onvergene with bursty TCP and DropTail RoutersUsing the de�nition of fairness onvergene time, we examined the fairness onver-gene time of TCP-Reno (Reno), HighSpeed-TCP (HS-TCP [8℄) and Salable-TCP(S-TCP [33℄).Aording to the analysis in Setion 3.1, bursty TCP have low loss synhronizationrates when they share a DropTail router. Hene, we expet that the fairness onver-gene time under TCP and DropTail routers/swithes is very long. Our simulationresults on�rmed our expetation, as shown in Figure 3.12.Figure 3.12 presents the fairness onvergene times with parallel Reno, HS-TCP, orS-TCP �ows sharing a 200ms path with a bottlenek apaity of 100Mbps. The resultsare from NS-2 simulations. All the onvergene time measurements are presentedin the unit of RTTs. Figure 3.12(a) shows that Reno takes more than 1500 RTTsto onverge to its fair share. More interestingly, suh slow onvergene is neitherimproved by inreasing bottlenek bu�er size, nor by inreasing the number of parallel�ows.Figures 3.12(b) and () further show that the fairness onvergene is not improvedby the reent new loss-based TCP proposals suh as HS-TCP and S-TCP.8In the simulation, we measured the loss synhronization rate. Table 3.1 shows themeasurements with Reno, HS-TCP and S-TCP �ows, averaged over all loss eventsin the simulations. The measurement results on�rm the orrelation between longfairness onvergene time and low loss synhronization rate.8With HS-TCP or S-TCP, the fairness onvergene is atually worse, due to their ongestionontrol dynamis. We only use Reno, HS-TCP and S-TCP as examples throughout this paper astheir ontrol strutures are leaner for understandings. Li, et al also show that many other highspeed TCP proposals experiene long onvergene time [34℄.As explained in Setion 4.2.5, the noise in our simulations in previous setions are heavy-tail on-o�tra� with a �xed sending rate in on period. Usually, the on period lasts for more than one RTT.Hene, the noise serves as some paed �ows that uts the bursty Salable-TCP into smaller burst.This helps Salable-TCP to onverge with the ases in our previous setions.

61

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)
buffer=420

buffer=840

buffer=1680(A) Reno

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420

buffer=840

buffer=1680(B) HighSpeed TCP

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420

buffer=840

buffer=1680(C) Salable TCPFigure 3.12: Convergene time of di�erent TCPs in simulations with di�erent numberof �ows and di�erent bu�er sizes (in pakets).

62The average loss synhronization rates of these TCP �ows are around 0.2 to 0.25.Suh low loss rates an substantially a�et the short-term fairness of TCP, as depitedin Figure 3.11. The low loss synhronization rate also shows that there are opportu-nities to improve TCP short-term fairness. If we an move the synhronization rate
λ from 0.2 loser to 1, we an signi�antly redue the onvergene time and improvethe TCP fairness experiened by the real appliations.3.2.2 Convergene of MIMD algorithmsMultipliative-Inrement-Multipliative-Derement (MIMD) algorithms are a lass ofontrol algorithms whih inrease and derease the ongestion window by ratio. WhenMIMD algorithm do not observe ongestion, they inrease the ongestion window bya small perentage. When MIMD algorithms observe ongestion, they derease theongestion window by a large perentage.Chiu and Jain prove, with a stati model, that two MIMD �ows with di�erentwindow sizes annot onverge to a fairness point [32℄. This stati model assumes thatall MIMD �ows observe the same ongestion event. This assumption is equivalent to
λi = λ in whih λ is a onstant independent of window size wi of the �ow.However, Kelly proves with the �uid model that Salable-TCP, an MIMD algo-rithm, an onverge to fairness [33℄ . The assumption is equivalent to λi ∝ wi.Our asymptoti results in Setion 3.1.5 explain the di�erent onlusions from[32, 9℄. As shown in equation (3.4) and illustrated in Figure 3.10, with bursty TCP,
λi is proportional to window size wi only when the number of �ows N are very small.As N inreases, λi among �ows with di�erent window sizes quikly onverges to avery similar value. Hene, the �uid model predition by Kelly [33℄ is more auratewhen N is very small, and the stati model in [32℄ is more aurate when N is large.This result has an interesting impliation in the fairness onvergene of SalableTCP [9℄, an MIMD algorithm. Two �ows usually annot onverge to fairness withbursty TCP, as pointed out by Leith and Shorten [40℄. This e�et is partiularlysigni�ant when there is no ross tra� to pae out the TCP bursts.

63

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

bursty Scalable−TCP flows

Fastest flows
Slowest flows

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

time (sec)

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

paced Scalable−TCP flows

Fastest flows
Slowest flows

(a) Bursty S-TCP (b) Paed S-TCPFigure 3.13: Convergene of S-TCP: ongestion window trajetories of the fastest�ow and the slowest �owOn the other hand, the asymptoti result in equation (3.6) suggests that thesynhronization rate is always proportional to the window size if paing is deployed.In this ase, Salable-TCP an onverge.Figure 3.13 shows the ongestion window trajetories of the fastest and slowest�ows in a ase study. In this ase, 8 Salable-TCP �ows share a 100Mbps bottleneklink, without noise tra�. Eah point of the ongestion window size is an averagevalue over 10 seonds. Clearly, Salable-TCP does not onverge in Figure 3.13(a),as reported by several literatures [52, 53℄. With paing, Salable-TCP onverges.Senarios with di�erent number of �ows show similar e�ets.Figure 3.14 is a summary of Salable TCP fairness with di�erent number of �ows.We run N Salable-TCP �ows for 600 seonds and alulate, in eah ase, the ratiobetween the throughput of the smallest �ow and the fair share throughput c
N
. Thelarger the ratio, the better fairness among the �ows. As predited by the model,bursty Salable TCP �ows are fair only when the number of �ows is small. As Ninreases, the fairness quikly degrades. With paing, Salable TCP's fairness is muhimproved.

64

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

T
hr

ou
gh

pu
t o

f m
in

 fl
ow

 (
%

 o
f f

ai
r

sh
ar

e)
MIMD fairness

Current
Pacing

Figure 3.14: MIMD fairness
3.2.3 Performane of TCP Paing
The performane of TCP paing has been a ontroversial topi sine the introdutionof TCP paing in late 1990s. On one hand, simulation results presented by Kulik, etal show that TCP paing an signi�antly improve the throughput of TCP �ows innetworks with large apaity, long delay and small bu�er [20℄. Simulations by Hongshow that TCP paing does improve TCP performane in both e�ieny and fairness[21℄. On the other hand, Aggarwal, et al show that TCP paing might atually havelower average throughput in many ases [35℄.Our model shows that TCP paing eliminate the sub-RTT burstiness and inreasesthe loss synhronization rate. As shown in [39℄, this inrement in the loss synhro-nization rate has two-sided e�ets on TCP performane. On one hand, the inreasedloss synhronization rate improves fairness; on the other hand, the inreased loss syn-hronization rate dereases the aggregate throughput of TCP Reno. These two-sidede�ets explain the di�erent onlusions in the past disussions.

653.2.3.1 Aggregate ThroughputA very important observation presented in other literature is that the aggregatethroughput of paed TCP may be lower than the bursty TCP even in isolated se-narios, due to synhronization e�ets[35℄. This is espeially true with large numbersof Reno �ows when working with small bu�ers.Baelli and Hong give an explanation with synhronization rate [39℄. A diretappliation of equation (7) in [39℄ shows that Reno's throughput in the worst ase(fully synhronized �ows sharing a bottlenek with an in�nitely small bu�er) is 75%of the apaity.9 Hene, the throughput loss due to synhronization an be up to25%.However, suh throughput degradation is largely alleviated by the new ongestionontrol algorithms. We an alulate an upper bound of throughput loss due tosynhronization with di�erent loss-based ongestion ontrol algorithms similar to thework by Baelli, et al [39℄.Assume that bu�er size B is in�nitely small and all N �ows are fully synhronized.In this worst ase, eah �ow's behavior is exatly the same, equivalent to a single TCP�ow using a bottlenek with a apaity of c
N
and a bu�er size of B

N
. Hene, we anestimate the aggregate throughput of N synhronized �ows by the throughput of asingle TCP �ow. Also, sine TCP osillates in every loss epoh with the same pattern,we only need to alulate the aggregate throughput loss in one loss epoh.HS-TCP an be approximated by a general AIMD around the equilibrium. Theongestion window at the end of a loss epoh is w̄ = cd+B

N
for the single �ow. Theongestion window in the beginning of the loss epoh is w =

[

1− β
(

cd+B
N

)]

cd+B
Nwhere β

(

cd+B
N

) is the multipliative derement parameter for a window size of cd+B
N

.Assuming the additive parameter α is a onstant in the loss epoh, the average ratein the loss epoh is approximately w̄+w

2d
=

(2−β(cd+B

N))
2

c+ B

d

N
. Assuming B → 0, theaverage rate in the loss epoh is 2−β(cd+B

N)
2

c
N
. Comparing to the full utilization of c

N
,the loss of aggregate throughput is 2−β(cd+B

N)
2

.9Let p = 1 in (7) of [39℄, we have E
(

X(i)
)

= C

2N
. This is the throughput after rate halving.Hene, the average throughput over the whole ongestion epoh is E(X

(i))+ C

N

2 = 3
4

C

N
.

66

0 2 4 6 8 10

x 10
4

0

5

10

15

20

25

30

window size (packets)

lo
ss

 o
f a

gg
re

ga
te

 th
ro

ug
hp

ut
 (

pe
rc

en
ta

ge
)

Reno
HS−TCP
S−TCP

Figure 3.15: Synhronization throughput loss of di�erent ongestion ontrol algorithm(MatLab results) (BDP = 10440 pakets)S-TCP is an MIMD algorithm. Similar to HS-TCP, the ongestion window at theend of a loss epoh is w̄ = cd+B
N

and the ongestion window at the beginning of the lossepoh is w = (1− βS) cd+B
N

where βS = 1
8
is the multipliative derement parameterin S-TCP. S-TCP multiplies its ongestion window by (1 + αS) every RTT where

αS = 0.01. Hene, the number of RTTs in the ongestion epoh is TS = − log(1−βS)
log(1+αS)

.The average throughput in one loss epoh is
∑Ts−1

i=0 w (1 + αS)i

Tsd
=

(1− βS) c

TsN

[

(1 + αs)
Ts − 1

αs

]

and the loss of aggregate throughput due to synhronization is a onstant whihequals 1−
(1−βS)[(1+αs)Ts−1]

αSTs
.Figure 3.15 is the alulation results for these ongestion ontrol algorithms, withdi�erent bu�er sizes, under a 1Gbps link with 120ms round trip propagation delayand the standard paket size (MTU=1500). We an see that all the new ongestionontrol algorithms have muh smaller throughput loss when the loss signals are syn-hronized. Our simulation results on�rmed the expetation. Figure 3.16 present thestatisti results of aggregate throughputs for paed TCP and bursty TCP. In the �g-ure, we present the Normalized Throughput Gain for eah experiment to illustrate the

67

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

reno

Burst+DropTail (avg=−0.020964)
Pacing+DropTail (avg=−0.030367)

(A) Reno

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

highspeed

Burst+DropTail (avg=−0.022836)
Pacing+DropTail (avg=−0.023746)

(B) HighSpeed TCP

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

scalable

Burst+DropTail (avg=−0.047853)
Pacing+DropTail (avg=−0.019625)

(C) Salable TCPFigure 3.16: Normalized Throughput Gain of isolated bursty TCP or paed TCP insimulations

68di�erene between ahieved throughput and fairshare throughput. The NormalizedThroughput Gain is de�ned as the di�erene between the ahieved throughput andthe fairshare throughput, normalized by the fairshare throughput:Normalized Throughput Gain =
Ahieved Throughput− Fairshare ThroughputFairshare ThroughputThe ahieved throughput is the measured throughput averaged over all the parti-ipant �ows. The fairshare throughput is the theoreti throughput that a �ow shouldbe able to reeive if all �ows share the bottlenek apaity equally. If the ahievedthroughput is the same as the fairshare, the Normalized Throughput Gain will be zero.If the ahieved throughput is lower than the fairshare, the Normalized ThroughputGain will be a negative number. From Figure 3.16 (a)-(), we observe that there isloss of throughput for Paed TCP Reno, due to the synhronization. However, theloss of throughput is signi�antly redued with HS-TCP and beomes unnotieablewith S-TCP, as we predited. 10

3.2.3.2 Fairness onvergeneAs TCP paing inreases loss synhronization rate, aording to equation (3.8) andFigure 3.11, it improves the fairness onvergene.We repeat the same simulations in Figure 3.12 with a paing extension (the de-tailed paing algorithm an be found in Appendix 6.2) and present the results inFigure 3.17.Comparing Figure 3.12 and Figure 3.17, the paed TCP �ows have muh fasteronvergene to fairness.We summarize the fairness onvergene time over all NS-2 simulations in Figure3.18 . Overall, paing redue the fairness onvergene time by 2.4 times.10In Figure 3.16 (), a few ases with bursty Salable TCP have average throughputs muh smallerthan fair share. This an be explained beause they do not onverge to fairness at all.

69

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420
buffer=840
buffer=1680

(A) Reno
2 4 8 16 32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

highspeed−droptail

buffer=420
buffer=840
buffer=1680

(B) HighSpeed TCP
2 4 8 16 32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

scalable−droptail

buffer=420
buffer=840
buffer=1680

(C) Salable TCPFigure 3.17: Convergene time with TCP Paing in simulations

70

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

reno

No improvement (avg=2412.127143)
Pacing (avg=972.750000)

(A) Reno

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

highspeed

No improvement (avg=2318.424286)
Pacing (avg=804.517143)

(B) HighSpeed TCP

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

scalable

No improvement (avg=4377.905714)
Pacing (avg=1116.192857)

(C) Salable TCPFigure 3.18: Summary of onvergene time of Reno, HS-TCP and S-TCP in simula-tions

713.2.4 Competition between paed TCP and bursty TCPAggarwal, et al also report that paed TCP tends to lose to bursty TCP in terms ofaverage throughput, in o-existing ases [35℄.The behavior of o-existing paed TCPs and bursty TCPs is very ompliatedsine the bursty TCPs' data proesses are ut into smaller bursts by the paed TCPs'data proesses, and the paed TCPs' data proesses are �squeezed� into small burstsby the bursty TCPs' data proesses.Qualitatively, we an expet that the loss synhronization rates of the burstyTCP will be inreased and the loss synhronization rates of the paed TCP will bedereased, though in terms of absolute values, paed TCP �ows still see higher losssynhronization rates than bursty TCP �ows. This leads to the two e�ets:1. The aggregate throughput ahieved by the paed TCP �ows will be smaller thanthe bursty TCP �ows, due to the fat that paed TCPs have higher probabilityto detet a paket loss event and redue their ongestion windows.2. The fairness onvergene of the bursty TCP will be improved and the onver-gene of the paed TCP will be degraded, ompared to isolated ases.3.2.4.1 Aggregate ThroughputA paed TCP evenly distributes its data pakets in one RTT and is more likely todetet a paket loss in a ongestion event than the bursty TCP, whih lusters itsdata pakets within a short period. This makes the paed TCP �ows lose to burstyTCP �ows in o-existing senarios. Fundamentally, this is aused by the burstinessof loss signal proess, and annot be orreted unless there are additional link-levelmehanisms.In general, if two lasses of �ows with di�erent synhronization rates o-exist, thelass with the higher synhronization rate will have smaller aggregate throughput.However, also from the model, we an see that paed TCP loses to bursty TCP onlywhen the loss signal is bursty in sub-RTT level. In the next setion, we propose a

72link algorithm, persistent ECN, whih an ensure that both paed TCP and burstyTCP will detet the same loss signal and get similar throughput.Figure 3.19 presents the statisti results of aggregate throughputs, with the samenetwork senarios as in Figure 3.16. Instead of running the simulations with isolatedpaed �ows or isolated bursty �ows , we mixed them in one simulation, with halfof the �ows paed and the other half bursty. In suh o-existing ases, most of thebursty TCP Reno �ows get more than their fairshare bandwidth (with a positiveNormalized Throughput Gain) and most of the paed TCP Reno �ows get less thantheir fairshare bandwidth.3.2.4.2 Fairness ConvergeneWe repeated the same simulations in Figure 3.18, but with half of the �ows usingpaed TCP and the other half using bursty TCP in eah senario. The results arepresented in Figure 3.20 . The results are onsistent with our expetations on fairnessonvergene time. Paed TCP in mixed environments has a larger onvergene timethan in isolated environments; bursty TCP in mixed environments has a smalleronvergene time than in the isolated environments.3.3 AlgorithmsOur model shows that we an ontrol the loss synhronization rate by ontrolling thepattern of data proess and the pattern of loss proess. This understand suggeststhat the use of TCP paing or RED an inrease the loss synhronization rates andimprove the fairness of loss-based ongestion ontrol algorithms.However, both paing and RED have drawbaks. For TCP paing, as we disussedin Setion 3.2.4, �ows with TCP paing loses to �ows without TCP paing when theyompete for bottlenek bandwidth. For RED, it is di�ult to tune the parameters toahieve both stability and e�ieny.Figure 3.5 also shows that the highest ahievable synhronization rate is still farless than 1 (0.65 in this partiular ase) with TCP paing or RED. This is beause

73

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

reno

Burst+DropTail (avg=0.028878)
Pacing+DropTail (avg=−0.081280)

(A) Reno

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

highspeed

Burst+DropTail (avg=0.019715)
Pacing+DropTail (avg=−0.064434)

(B) HighSpeed TCP

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

scalable

Burst+DropTail (avg=−0.102783)
Pacing+DropTail (avg=0.053527)

(C) Salable TCPFigure 3.19: Normalized Throughput Gain with o-existing paing TCPs and burstyTCP in simulations

74

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

reno

No improvement (avg=622.431429)
Pacing (avg=1989.961429)

(A) Reno

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

highspeed

No improvement (avg=857.717143)
Pacing (avg=1899.747143)

(B) HighSpeed TCP

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

scalable

No improvement (avg=1810.040000)
Pacing (avg=1514.885714)

(C) Salable TCPFigure 3.20: Convergene time with o-existing paing TCPs and bursty TCPs insimulations

75the number of ongestion signals (a.k.a. number of lost pakets) in eah loss eventis too small to let eah �ow observe at least one signal. To further inrease the losssynhronization rate, we need to maintain the ongestion signal persistently for awhole RTT so that every �ow is able to detet the ongestion signal.3.3.1 Persistent ECN algorithmThe above observations lead to a new algorithm: Persistent ECN. The goal of thisalgorithm is to provide a persistent ongestion signal to the soures in eah ongestionevent and ahieve a very high loss synhronization rate (lose to 1). There are twohallenges to ahieve this goal.The �rst hallenge is how to provide persistent ongestion signal. Dropping pak-ets persistently for the whole RTT of loss event an ahieve suh a goal. However,if pakets in one RTT are all dropped, TCP senders will be fored to timeout andthe link utilization will be signi�antly low. We used ECN to provide a persistentongestion signal. As TCP senders treat all ECN signals reeived in one RTT as thesame ongestion signal, the senders only redue their ongestion windows one foreah loss event.The seond hallenge is how to detet the end of a ongestion event. We used theredution of queue length in the router as an indiation of the end of a ongestionevent. If the queue length is redued signi�antly, we assume that the TCP sendershave responded to the ongestion event and the ongestion event ends.The detailed algorithm is desribed in Algorithm 3. The algorithm keeps twothresholds for the queue length, upper-watermark and lower-watermark. Lower-watermark is half of the value of upper-watermark. The algorithm monitors thequeue length and enters marking state when the queue length is above the upper-watermark. In marking state, the algorithm marks the ongestion bit in every paket.The algorithm exits marking state when the queue length dereases below the lower-watermark. Sine the lower-watermark is half of the upper-watermark, the algorithmexits marking state only when the queue length has been dereased, as a result of the

76Algorithm 3 Persistent ECNA link (router) keeps two state variables:Marking swith: o ∈ {0, 1}, where o = 0 (initially) means the link is not ongestedand o = 1 means a ongestion event has happened reently;Queue length: q (t).The link also has two onstant parameters: upper water mark Q̄ and lower watermark Q. By default, Q = 1
2
Q̄ and Q̄ = B, where B is the bu�er size.For eah paket p that arrives at the link:1. if q (t) ≥ Q̄: o← 12. if o = 1: mark the paket with ongestion signalFor eah paket p that leaves the link:1. if q (t) ≤ Q: o← 0senders' response to the ongestion signal. This algorithm an be viewed as an exten-sion to the DropTail algorithm, as DropTail is a speial ase with upper-watermarkand lower-watermark both equal to the bu�er size. We implement this algorithm inNS-2 by modifying the DropTail queue. In the implementation, the upper-watermarkis equal to the full bu�er size. As this algorithm introdues a more deterministibehavior into the network, we use it with randomized paing algorithm to eliminatephase e�ets.3.3.2 Loss synhronization rate with di�erent algorithmsWe ran simulations with the same senarios in Table 3.1 under a randomized paingalgorithm, the adaptive RED algorithm, and Persistent ECN algorithm. Table 3.2shows the measured loss synhronization rates with these improvements in simula-tions. For readers' onveniene, we also present the same results from Table 3.1 (with-out improvement) for omparison. With paing and RED, TCP-Reno an ahieve aloss synhronization rate of 0.5 to 0.6, more than two times the loss synhronizationrate without these improvements. Paing also helps HS-TCP and S-TCP to ahievea loss synhronization rate of 0.5. The loss synhronization rates of S-TCP and HS-

77Reno HS-TCP S-TCPNo improvement 0.2042152591 0.2496234482 0.2331014195Paing 0.5011622009 0.5011320266 0.5665284797RED 0.6022723651 0.3971728460 0.3032633715Persistent ECN 0.9663141265 0.8071350395 0.8064983921Table 3.2: Average loss synhronization rates with di�erent improvementsTCP with RED are also inreased, but by a smaller margin. The detailed reasonsfor this di�erene are under investigation. Currently, we suspet this is due to thedi�erent dynamis when S-TCP and HS-TCP interat with RED. With PersistentECN, the loss synhronization rate is as high as 0.8 to 0.9. As predited in Setion3.2.1.2, suh high synhronization rates an lead to a very fast fairness onvergene.3.4 Performane in SimulationSine Setion 3.2.1.2 predits that a high loss synhronization rate an improve TCPfairness onvergene, and Setion 3.1 shows that loss synhronization rates an beinreased by paing, RED and Persistent ECN algorithms, we now apply these algo-rithms to parallel �ow appliations and evaluate fairness onvergene time with theseimprovement solutions.3.4.1 Fairness onvergene and �nishing time of parallel �owsA total of 350 simulation senarios were run. Eah senario ran for at least 100 lossepohs and was repeated for at least 10 times with di�erent random seeds. In theindividual ase analysis, we presented both average values and standard deviations.In the general evaluations of all senarios, we presented CDF as summaries.3.4.1.1 Case studies on short-term fairnessWe repeated the same simulations in Figure 3.12 (bursty TCP) and Figure 3.17(paed TCP) with RED and Persistent ECN. The results are shown in Figure 3.21and Figure 3.22, respetively. Comparing Figure 3.12 to Figure 3.17, 3.21 and

78

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420
buffer=840
buffer=1680

(A) Reno
2 4 8 16 32

0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420
buffer=840
buffer=1680

(B) HighSpeed TCP
2 4 8 16 32

0

500

1000

1500

2000

2500

3000

3500

4000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

buffer=420
buffer=840
buffer=1680

(C) Salable TCPFigure 3.21: Convergene time of Reno, HS-TCP and S-TCP with RED in simulations

79

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

number of flows
C

on
ve

rg
en

ce
 ti

m
e

(R
T

T
)

buffer=420
buffer=840
buffer=1680

(A) Reno

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

highspeed−ecn

buffer=420
buffer=840
buffer=1680

(B) HighSpeed TCP

2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of flows

C
on

ve
rg

en
ce

 ti
m

e
(R

T
T

)

scalable−ecn

buffer=420
buffer=840
buffer=1680

(C) Salable TCPFigure 3.22: Convergene time of Reno, HS-TCP and S-TCP with Persistent ECN insimulations

803.22, one an see that both paing and RED improve the TCP fairness onvergene.Additionally, paing has better onvergene with HS-TCP and S-TCP, while REDhas lower synhronization rates with these two TCP algorithms. With PersistentECN, the onvergene time is further signi�antly redued. These results agree withthe observations of loss synhronization rates in Table 3.2. With the same TCPalgorithm, the higher the loss synhronization rate, the faster the onvergene.3.4.1.2 Summaries of short-term fairnessTo have a global image of the parallel �ow performane with di�erent improvementalgorithms, we summarized all the 350 senarios with di�erent improvements intoCDF graphs. Figure 3.23 presents the CDF summary of the onvergene time of theoriginal TCP performanes and three improvements. Note that the X-axle is in logsale. A onstant gap represents a onstant ratio of di�erene.On average, paing redues the Reno onvergene time by 2.4 times, RED re-dues the Reno onvergene time by 1.25 times and Persistent ECN redues the Renoonvergene time by 30 times. It is interesting to note that about 40% of the REDsenarios annot onverge in 1000 RTTs. In most of these ases, we found that REDould not fully utilize the bottlenek apaity. We suspet that the under-utilizationis due to window osillations with RED. We still need to investigate the details inthese ases.Similar observations an be found in (b) and () with HS-TCP and S-TCP.3.4.1.3 Results on data transfer latenyWe ran simulations with parallel FTP �ows that transferred a �xed amount of data.The senario is very similar to the appliations of Grid-FTP[54℄, GFS[55℄ and et.The simulated appliation sends a total of 64MB of data in the same topology shownin Figure 4.13, with a di�erent numbers of �ows, di�erent RTTs and di�erent bu�ersizes. We measured the ompletion time of the whole data transfer. In the 100Mbpsnetwork, the theoreti lower-bound of ompletion time of a 64MB transfer is 5.39seonds. The bound is tight if the network is fully utilized in all time. We ompared

81

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

reno

No improvement (avg=2412.127143)
Pacing (avg=972.750000)
RED (avg=1926.250667)
Persistent ECN (avg=40.959952)(A) Reno

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

highspeed

No improvement (avg=2318.424286)
Pacing (avg=804.517143)
RED (avg=2111.119048)
Persistent ECN (avg=579.007598)(B) HighSpeed TCP

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence time (RTT)

C
D

F

scalable

No improvement (avg=4377.905714)
Pacing (avg=1116.192857)
RED (avg=1462.632524)
Persistent ECN (avg=583.350429)(C) Salable TCPFigure 3.23: Summary of onvergene time of Reno, HS-TCP and S-TCP in simula-tions

82

2 4 8 16 32
10

0

10
1

number of flows

A
pp

lic
at

io
n

la
te

nc
y

(s
ec

on
ds

)
RTT=2ms
RTT=10ms
RTT=50ms
RTT=200ms

2 4 8 16 32
10

0

10
1

number of flows

A
pp

lic
at

io
n

la
te

nc
y

(s
ec

on
ds

)

RTT=2ms
RTT=10ms
RTT=50ms
RTT=200ms

(a) No improvement (b) Persistent ECNFigure 3.24: Data transfer lateny (normalized by theoreti lower-bound) with parallel�ows sending a total of 64MB data Both X and Y axles are in log sale.Note that the error bar with 4 �ows in (a) is too large and annot be displayed in the�gure
the ompletion time of TCP and the ompletion time of Persistent ECN, as in Figure3.24. Due to spae limit, only results on Reno TCP are presented. The results arenormalized by theoreti lower-bound.In the region of small latenies (2ms and 10ms), even though TCP's fairnessonvergene is long in the unit of RTT, the real time spent in the onvergene is notlong sine the RTT is small. So, TCP still works well. When the lateny is large,TCP's performane beomes unpreditable. With 200ms, TCP spend up to 10 timesof the theoreti ompletion time.On the other hand, Persistent ECN sales well with lateny. The worst-observedlateny is within 2 times of the theoreti one. This worst ase happens with largedelay (200ms) and a small number of �ows (2 �ows). In this ase, slow-start takes along time even though Persistent ECN solves the fairness problem.These results show that Persistent ECN is a promising mehanism to improvefairness onvergene of TCP �ows and shorten appliation lateny.

833.4.2 Aggregate throughput with persistent ECNAs disussed in Setion 3.2.3, high synhronization rates might lead to low through-puts with TCP Reno when the bu�er size in the bottlenek router is not as large asthe bandwidth delay produt (BDP), even though the throughput loss is bounded.With persistent ECN, we observe the same e�et.Figure 3.25 present the statisti results of aggregate throughputs for paed TCPand bursty TCP, with persistent ECN. Indeed, omparing to Figure 3.16, the aggre-gate throughput of Reno �ows is even lower with persistent ECN. The CDF exhibitsthree steps. These steps orrespond to the three di�erent bu�er sizes we used in thesimulations (1/4 BDP, 1/2 BDP and BDP worth of bu�er size). In most of the ases,the loss of average throughput is within 15%. 11With the new ongestion ontrol algorithms, the synhronization e�et on aggre-gate throughput will be muh less signi�ant. On the other hand, as we have shownin the previous setions, the synhronization rate's e�et on fairness is muh moresigni�ant. Hene, we argue that the balane of the trade-o� should move towardinreasing synhronization rate.3.4.3 Aggregate throughput with o-existing bursty TCP andpaed TCP under persistent ECNSetion 3.2.4 shows that the paed TCP �ows lose to bursty TCP �ows with a Drop-Tail router, in terms of aggregate throughput.However, with persistent ECN, suh unfriendliness disappears. This is beausethat the persistent ECN algorithm eliminates the sub-RTT burstiness in loss signal.When the loss signal is persistent throughout the ongestion event, both paed TCPand bursty TCP will see the same loss signal and get similar throughput.Figure 3.26 presents the statisti results of aggregate throughputs under persistentECN, with the same simulation senarios as in Figure 3.19.11For the few bursty Salable Cases where the average throughput is far smaller than fair share,that is beause they do not onverge to fairness at all.

84

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

reno

Burst+DropTail (avg=−0.020964)
Pacing+DropTail (avg=−0.030367)
Burst+ECN (avg=−0.059046)
Pacing+ECN (avg=−0.051298)

(A) Reno

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

highspeed

Burst+DropTail (avg=−0.022836)
Pacing+DropTail (avg=−0.023746)
Burst+ECN (avg=−0.040417)
Pacing+ECN (avg=−0.030404)

(B) HighSpeed TCP

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

scalable

Burst+DropTail (avg=−0.047853)
Pacing+DropTail (avg=−0.019625)
Burst+ECN (avg=−0.053190)
Pacing+ECN (avg=−0.019214)

(C) Salable TCPFigure 3.25: Normalized Throughput Gain with isolated paing TCPs or bursty TCPin simulations

85

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

reno

Burst+DropTail (avg=0.028878)
Pacing+DropTail (avg=−0.081280)
Burst+ECN (avg=−0.065023)
Pacing+ECN (avg=−0.042113)(A) Reno

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

highspeed

Burst+DropTail (avg=0.019715)
Pacing+DropTail (avg=−0.064434)
Burst+ECN (avg=−0.067901)
Pacing+ECN (avg=0.001016)(B) HighSpeed TCP

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Throughput Gain

C
D

F

scalable

Burst+DropTail (avg=−0.102783)
Pacing+DropTail (avg=0.053527)
Burst+ECN (avg=−0.190713)
Pacing+ECN (avg=0.147077)(C) Salable TCPFigure 3.26: Normalized Throughput Gain with o-existing paing TCPs and burstyTCP in simulations

86With persistent ECN, paed TCPs have higher aggregate throughput than burstyTCPs in all ases; due to two reasons: �rst, paed TCPs and bursty TCPs see thesame ongestion loss signals; seond, bursty TCPs may generate additional burstyloss in sub-RTT timesale.Hene, the persistent ECN algorithm an also be used as a link algorithm thatenourages the deployment of TCP paing.

87
Chapter 4Researh Tools
Our researh fouses on the mirosopi behavior of TCP. This fous required exper-imental tools more realisti and more aurate than those that existed. Hene, wedeveloped two new tools for our researh: one is a simulation module able to importthe Linux soure ode and run real TCP ongestion ontrol implementations on thenetwork simulator NS-2 [43℄. The other is a loss measurement system that runs onPlanetLab [45℄ and measures loss pattern in the Internet. In addition, we also use anin-house testbed with a Dummynet emulation router [44℄ and Linux hosts to validateour simulation and measurement results.4.1 A testbed with emulation router and Linux hostsWe use an in-house testbed with an emulation router and Linux hosts to validate ourresults in simulations and measurements.4.1.1 Introdution to DummynetDummynet is an emulation tool built in the FreeBSD system [44℄. It an emulate arouter, with pipes of di�erent bu�er size, di�erent propagation delay, and di�erentbandwidth. The testbed in our study is based on Dummynet of FreeBSD 5.2. Wemodi�ed the maximum bu�er size to 3000 and system lok resolution to 1 ms in theFreeBSD kernel to enhane its performane as a router emulator.

88
Dummynet

FreeBSD

Dual Xeon 2.4GHz

SuperMicro

SysKonnect9843SX*2

Receiver

Linux 2.4.18-3

Dual Xeon 2.4GHz

SuperMicro

SysKonnect9843SX

Sender

Linux 2.4.18-3

Dual Xeon 2.4GHz

SuperMicro

SysKonnect9843SXFigure 4.1: Dummynet testbed4.1.2 TopologyThe Dummynet testbed inludes three mahines: one sender, one reeiver and oneDummynet router that emulates a WAN, as shown in Figure 4.1. The mahines areequipped with Intel E1000 Gigabit Ethernet ards. The bottlenek bu�er size ofthe Dummynet router is set to be 2000 pakets. The default apaity is set to be100Mbps. The Dummynet router proesses pakets with a time resolution of 1ms.Hene, the per-paket proessing delay has a random �utuation of 1ms. Four pipeswith di�erent delays (2ms, 10ms, 50ms, and 200ms) and zero random loss rate are setup on the Dummynet router for di�erent destination ports. We use TCP �ows fromthe single sender to di�erent ports in the single reeiver to emulate multiple �owstraveling di�erent paths with di�erent delay and sharing the same bottlenek. TheLinux sender and reeiver are on�gured with send bu�er size and reeive bu�er sizeequal to two times of bandwidth-delay-produt to ensure that the send bu�er andreeive bu�er are not the bottlenek. Iperf is used to generate TCP tra�.4.1.3 MeasurementTo ollet the timing of eah paket loss, we instrument the Dummynet router toreord the time when eah paket is dropped. The timestamp resolution of the Dum-mynet reords is 1ms. At the Linux mahines, we periodially reord the ongestionwindow and slow-start threshold of eah onnetion from /pro/net/tp �le. In the/pro/net/tp �le, eah line desribes the information of one TCP onnetion. Theongestion window size is the seond last (16-th) olumn in eah line. The slow start

89threshold is the last (17-th) olumn in eah line. A slow start threshold equal to -1means the slow start threshold has not been hanged and has an in�nitely large value.The reord frequeny is 0.5 seond.4.2 NS-2 TCP-Linux : an extensible TCP simula-tion module in NS-2To provide realisti TCP performane results, we developed a new module for TCPsimulation in NS-2, alled NS-2 TCP-Linux. NS-2 TCP-Linux is a new NS-2 TCPimplementation whih embeds the soure odes of TCP ongestion ontrol modulesin the Linux kernel. In omparison to the existing NS-2 TCP implementations, NS-2 TCP-Linux predits the TCP performane more aurately with similar, or evenfaster, simulation speed and better extensibility to emerging new TCP ongestionontrol algorithms in the future. NS-2 TCP-Linux was the major tool used in ourresearh. In addition to helping us in performane analysis, NS-2 TCP-Linux hasalso helped the Linux kernel ommunity to debug and test new ongestion ontrolalgorithms.4.2.1 An introdution to TCP implementation in NS-2NS-2 is an open-soure paket level network simulator widely used in network per-formane analysis [43℄. It provides fairly aurate results for simple devies (e.g.DropTail link). The NS-2 simulations are fully ontrollable and repeatable. TheTCP modules in NS-2 were originated from soure odes of BSD kernel. Over theyears, NS-2 TCP modules have ontributed tremendously to the understanding andanalysis of TCP behaviors, and led to the development of several new ongestionontrol algorithms. The TCP implementation in NS-2 urrently inlude TCP-Reno[5℄, NewReno [6℄, Sak [56℄, Fak [7℄, HighSpeed TCP [8℄, et. However, as the majoroperating systems evolved gradually over the years, the TCP modules in NS2 have de-viated signi�antly from mainstream operating systems suh as FreeBSD and Linux.

90The use of NS-2 has beome less popular in the ongestion ontrol ommunity, dueto di�ulties in the following three aspets:
• Extensibility: As NS-2's ode struture deviates from mainstream operatingsystems, it beomes harder and harder to implement the NS-2 orrespondent of aLinux algorithm. For new algorithm designers, it is a huge burden to implementthe same ongestion ontrol algorithm in both NS-2 and a real system suh asLinux.
• Validity of NS-2 results: As more improvements are implemented in Linux,the performane predited by NS-2 simulation deviates more from the Linuxperformane and FreeBSD performane. As reported in reent literature as[57℄, the di�erene in performane an be signi�ant in some senarios.
• Simulation speeds: NS-2 users often su�er from long simulation time when theysimulate senarios with high-speed long-distane networks. In some examples,the simulator might take up to 20 hours to �nish a 200-seond simulation [58℄.This is partiularly troublesome to network simulations sine many runs of thea senario with di�erent random seeds are usually required to eliminate artifatsof deterministi behaviors, suh as phase e�ets.Indeed, there is a trend that designers of new ongestion ontrol algorithms are lessinlined to use NS-2 to evaluate their algorithms. For example, the TCP ongestionontrol ommunity has sparked many new ongestion ontrol algorithms for high-speed long-distane networks, but many of them [52, 10, 11℄ are �rst implemented inLinux and evaluated in emulation testbeds suh as the Dummynet testbed desribedin Setion 4.1. This new approah allows new algorithms to be evaluated in a realoperating system and easily deployed with Linux releases. However, due to limitationsof the emulation router, these evaluations are usually limited to very simple topologiesand very small sale in terms of numbers of �ows, delays, and bottlenek apaities.This approah is also riskier as the new algorithms an be deployed without thoroughtests in ompliated senarios. For example, reent researh [59, 60℄ points out some

91interesting observations on TCP behaviors that only exist in senarios with multiplebottlenek links, whih are hard to reprodue by Dummynet testbeds with dumb-bell topologies. Hene, we believe that NS-2 is a ritial omponent in the spetrumof tools to evaluate protool performane with its �exibility in topology and sale.NS-2 TCP-Linux is designed to serve this purpose by improving the urrent NS-2implementations.Corresponding to the di�ulties, NS-2 TCP-Linux has three design goals:
• Enhane extensibility by allowing users to import ongestion ontrol algorithmsdiretly from Linux soure odes;
• Provide simulation results that are lose to the performane of Linux;
• Maintain the simulation speed at least as fast as the urrent TCP modules.To improve the auray of the simulation result, we redesigned the loss reoverymodule (SoreBoard). We also improved the sheduler to speed up the simulation. 1Our e�orts and results show that these three goals an be ahieved at the sametime, when the NS-2 TCP module is arefully redesigned.4.2.2 An introdution to Linux TCPBoth NS-2 TCP and Linux TCP [61, 62, 63℄ implementations follow the relevantRFCs. However, there are a few major di�erenes between the existing NS-2 imple-mentation and Linux implementation. Some of them are listed below:1. SACK [56℄ proessing: urrent NS-2 TCP (Sak1 and Fak) times out when aretransmitted paket is lost again. Linux SACK proessing may still reover ifa retransmitted paket is lost;2. Rate halving [64℄: Linux has a ompliated rate halving proess whih graduallyredues the ongestion window to half of the slow start threshold, and then1Note that these two improvements an be used in a more general ontext. Soreboard1 an beused in other TCP implementations and the improved sheduler an be used in any NS2 simulation.

92returns to the slow start threshold after reovery; NS-2 has a simpli�ed rate-halving algorithm;3. Delayed Ak: the Linux reeiver disables delayed ak in the �rst few pakets toavoid delaying slow start;24. Dupliated SACK (D-Sak [65℄): urrent NS-2 TCP does not use D-SACKinformation to infer the degree of paket reordering in the path; Linux has aproess to detet D-SACK and adjust dupliated ACK threshold.All these di�erent issues in implementation lead to di�erenes in throughput preditedby NS-2 and throughput ahieved by Linux. More importantly, the ode strutureof NS-2 is very di�erent from the ode struture in Linux. It is a burden to portan algorithm between Linux and NS-2. From version 2.6.13, the Linux kernel hasintrodued the onept of ongestion ontrol modules [61℄. A ommon interfae isde�ned for ongestion ontrol algorithms, and algorithm designers an implementtheir own ongestion ontrol algorithms as Linux modules easily.With this interfae, all the state variables for a TCP onnetion are stored in astruture alled tp_sk. The interfae also de�nes a ongestion window operationstruture alled isk_a_ops, for third party to write new ongestion ontrol algo-rithm as a kernel module in Linux. The isk_a_ops struture is a set of funtionpointers. The struture has three required funtion all pointers:
• ong_avoid funtion: This funtion is alled when an ak is reeived. Theimplementation of this funtion is expeted to hange the ongestion windowin this funtion during the normal situation (without loss reovery). In TCPReno, this means slow start and ongestion avoidane.
• ssthresh funtion: This funtion is alled when a loss event ours. It is expetedto return the slow start threshold after a loss event. The returned value shallbe half of snd_wnd in TCP Reno.2This is not RFC-onforming but follows Nagle's advie.

93
• min_wnd funtion: This funtion is alled when a fast retransmission ours,after ssthresh funtion. It is expeted to return the value of the ongestionwindow after a loss event. In Reno, the returned value shall be snd_ssthresh.Linux kernel performs tasks of aknowledgment proessing, SACK proessing, lossdetetion and retransmission. It alls the ongestion ontrol module when the on-gestion window or the slow start threshold needs to be hanged (e.g. upon the arrivalof a new aknowledgment or a loss is deteted). In these ases, Linux kernel alls theorresponding funtion pointers in isk_a_ops struture. The address of tp_sk ispassed to the ongestion ontrol module as a parameter so that the ongestion ontrolmodule has its �exibility to read or hange other TCP states as well.A ongestion ontrol module are required to implement the above three funtionsand ontrol the ongestion window and the slow start threshold. A very simplealgorithm (TCP Reno) is shown in Figure 4.2 as an example of an implementationfor this interfae.More sophistiate ongestion ontrol shemes require more operations suh asobtaining high resolution RTT samples [66℄. These advaned funtions are introduedin Appendix 6.1.Until the version of 2.6.16-3 appeared, Linux inorporated nine ongestion ontrolalgorithms in the o�ial release version. At least three new implementations areantiipated in the ommunity. We believe that NS-2 will bene�t from a new TCPmodule whih onforms to the Linux ongestion ontrol module interfae. The bene�tsare two-fold: First, the researh ommunity an use NS-2 to analyze Linux algorithmswithout implementing the NS-2 version of a Linux algorithm. This leads to improvedprodutivity and auray. Seond, NS-2 is a tool the Linux ommunity an use todebug and test their new ongestion ontrol algorithms. This leads to more reliableand better-understood implementations. Hene, we designed TCP-Linux in the spiritof bridging the gap between the implementation ommunity developing the Linuxsystem and the analysis ommunity using the NS-2 as a tool.

94
/* This function increases

 * congestion window for

 * each acknowledgment

 */

void nr_cong_avoid

 (struct tcp_sk *tp, ...)

{

 if (tp->snd_cwnd <

 tp->snd_ssthresh)

 {

//slow start

 tp->snd_cwnd++;

 } else {

//congestion avoidance

 if (tp->snd_cwnd_cnt <

 tp->snd_cwnd)

 {

// not enough for 1 pkt,

// we increase the fraction.

 tp->snd_cwnd_cnt++;

 } else {

// we can increase cwnd

// by 1 pkt now.

 tp->snd_cwnd++;

 tp->snd_cwnd_cnt = 0;

 }

 }

}

/* Create a constant record

* for this congestion control

* algorithm for the interface */

struct tcp_congestion_ops

 simple_reno = {

.name = "simple_reno",

.ssthresh = nr_ssthresh,

.cong_avoid = nr_cong_avoid,

.min_cwnd = nr_min_cwnd

};

/* This function returns the

 * slow-start threshold after

 * a loss.

 */

u32 nr_ssthresh(struct tcp_sk *tp)

{

 return max(tp->snd_cwnd/2 ,2);

}

/* This function returns the

 * congestion window after a

 * loss -- it is called AFTER

 * the function ssthresh (above)

 */

u32 nr_min_cwnd(struct tcp_sk *tp)

{

 return tp->snd_ssthresh ;

}

Figure 4.2: A very simple implementation (Reno) of the ongestion ontrol interfae

95Name Meanings Equivalene in NS-2TCPAgentsnd_ssthresh the slow start threshold ssthresh_snd_wnd integer part of the ongestionwindow ⌊wnd_⌋snd_wnd_nt fration of the ongestionwindow ⌊wnd_ ∗ wnd_⌋%⌊wnd_⌋isk_a_priv a 512-bit array to holdper-�ow states for a ongestionontrol algorithm n/aisk_a_ops a pointer to the ongestionontrol algorithm interfae n/aTable 4.1: Important variables in tp_sk4.2.3 Design of NS-2 TCP-LinuxThe design of NS-2 TCP-Linux shares the same ongestion ontrol interfae withLinux. It allows users to easily port the soure ode from a ongestion ontrol imple-mentation from Linux to NS-2.4.2.3.1 InterfaeNS-2 TCP-Linux follows the same interfae of ongestion ontrol module in Linux2.6. It uses the same ongestion ontrol module struture as Linux 2.6 (struttp_ongestion_ops) . 3However, the simulation module only supports a subset of �elds in the tp_skstruture and synhronizes these �elds with the variables in NS-2 TCP; the mostimportant �elds and their orresponding variables in NS-2 are listed in Table 4.1.Appendix 6.1 provides details of all Linux parameters supported by NS-2 TCP-Linux.By sharing the same interfae as ongestion ontrol module in Linux 2.6, NS-2TCP-Linux is able to use the soure ode of ongestion ontrol modules from Linuxkernel with minor hanges, ensuring the extensibility of NS-2 TCP-Linux.3The meaning of min_wnd funtion in TCP-Linux is, however, slightly di�erent from Linux.Linux has a ompliated rate-halving proess and min_wnd is used as the lower bound of theongestion window in a rate-halving proess after a loss event. In NS-2, TCP-Linux has a simpli�edversion of rate-halving, and the ongestion window an be set to min_wnd diretly.

96
NS-2 Code

Linux Source Codes

LinuxTcpAgent

A class for TCP-Linux

TcpAgent

The original NS-2 TCP

ScoreBoard1

SACK processing

ns-linux-util.h / .cc

Interface between NS-2 and Linux

ns-linux-c.h

Shortcuts for irrelevant Linux system calls

tcp_cong.c

Reno

tcp_highspeed.c

HighSpeed TCP

tcp_vegas.c

TCP-Vegas

tcp_bic.c

BIC-TCP

Class Inherit

References

Legend

Figure 4.3: Code struture of TCP-LinuxThe boxes in the shaded areas are omponents from existing soure odes in NS-2 orin Linux kernel. The four white boxes outside the shaded areas four omponents inTCP-Linux implementation.4.2.3.2 Code arhitetureTCP-Linux implements a simpli�ed version of the Linux kernel paket proessingtasks and onforms to the ongestion ontrol module interfae. The ode struturehas four major omponents, as presented in Figure 4.3:
• LinuxTCPAgent: The NS-2 module for TCP-Linux (tp-linux.h and .)
• Soreboard1: The soreboard design (soreboard1.h and .) whih managesloss detetion and paket retransmission
• The interfae between C++ odes in NS-2 and C odes in Linux (ns-linux-util.hand .)
• Shortuts for Linux system alls (ns-linux-.h and .)

97The interfae between C++ and C is a set of data struture delarations. Theshortuts for Linux system alls is a set of maros that rede�ne many Linux systemalls not relevant to ongestion ontrol. These two omponents serve as a highly sim-pli�ed environment for the embedded Linux soure odes. A simpli�ed TCP ontrolblok (tp_sok struture in Linux) serves as the data struture for ommuniationbetween Linux ongestion ontrol modules and LinuxTCPAgent in NS-2.With the interfae and shortuts, users of TCP-Linux an easily inlude newongestion ontrol algorithms from the Linux soure odes [67℄.LinuxTCPAgent is the main NS-2 omponent of TCP-Linux. It has two majorfuntions:1. Simulate Linux aknowledgment paket proessing;2. Provide user interfae, trae and measurement support for NS-2.Di�erent from other TCP modules in NS-2, LinuxTCPAgent loosely follows the de-sign of the Linux aknowledgment proessing proess (tp_ak funtion in Linux),inluding RTT sampling routine, SACK proessing routine, fast retransmission rou-tine and transmission timeout routine. We made the following simpli�ations to tailorthe Linux implementation to NS-2:
• Eliminate the di�erene between fast path and slow path: NS-2 simulation doesnot proess atual data pakets. There is no di�erene in fast path and slowpath in NS-2. However, the Linux ongestion ontrol module interfae allowsa ongestion ontrol algorithm to use fast path and slow path as a hint forongestion level; we use a very simple algorithm to simulate this hint.
• The rate halving proess is greatly simpli�ed: In Linux, the ongestion windowis not redued immediately when the sender observes a paket loss. Instead,the ongestion window is redued by half a paket every round trip time duringthe FastRetransmission state, until it hits the minimum ongestion windowthreshold (usually, the threshold equals the slow start threshold or half of the

98slow start threshold). If the sender reovers from FastRetransmission statebefore the ongestion window hits the minimum threshold, the sender has to�rst omplete the window redution and then return to normal state. In NS-2TCP-Linux, the implementation does rate halving more expliitly. The senderhalves the ongestion window immediately after a loss. However, it keeps trakof the number of pakets in �ight, and allows at most one paket to be sentout for eah ak, as long as the number of pakets in �ight keeps reduing. Wedid not notie any major di�erene in the results when omparing the resultsof TCP-Linux simulation and Linux experiments.
• The loss reovery does not have an �undo� funtion: In Linux, when a falseretransmission is deteted (e.g. due to D-SACK), Linux an undo the onges-tion window redution due to the false retransmission. This funtion is notimplemented in TCP-Linux. There might be an impat to the simulation re-sults when the senario inludes a network devie whih reorders data pakets.We do not have senarios with paket reordering devie. For general purposeusages, we need to investigate this impat further .The LinuxTCPAgent updates the NS-2 traed variables at the end of eah ak pro-essing routine and support ongestion ontrol algorithm seletion as a ommand lineoption, making it very easy to use NS-2 TCP-Linux. For any existing TCP simulationsripts, users only need to add one ommand to use NS-2 TCP-Linux [67℄.4.2.3.3 Soreboard1: improving the auray by better loss reoverySoreboard1 is a new soreboard implementation that ombines the advantage ofSoreboard-RQ in NS2 and the Linux SACK proessing routine (saktag_write_queue).Similar to Linux SACK proessing, eah paket in the retransmission queue is in oneof the four possible states: InFlight, Lost, Retrans or SACKed. The state transitiondiagram is shown in Figure 4.4.A paket that is sent for the �rst time, but not aknowledged and not onsideredlost, is in InFlight state. It enters SACKed state if it is seletively aknowledged

99
In

Flight

SACKed

Lost

Retrans

SACKed

Ti
me
ou
t

or
 F
AC
K

Retransmit

Timeout

or FACK

SA
CK
ed

Figure 4.4: State mahine of eah paketby a SACK, or enters Lost state if a retransmission timeout ours, or the furthestSACKed paket is more than 3 pakets ahead of it.A paket in Lost state will be retransmitted and enter Retrans state.When a paket is retransmitted, it is assigned with a sequene number snd_nxt(similar to Soreboard in NS-2 Fak) whih reords the paket sequene number ofthe next data paket that is going to be sent. Additionally, it is also assigned witha retrx_id whih reords the number of pakets that is retransmitted in this lossreovery phase, as shown in the �rst two nodes in Figure 4.5. The (snd_nxt, retrx_id)pair helps detet if a retransmitted paket is lost. The retransmitted paket an beonsidered lost if: 41. Another paket is seletively or aumulatively aknowledged (SACKed or ACKed),and the aknowledged paket's sequene number is higher than snd_nxt+3; or2. Another retransmitted paket is seletively or aumulatively aknowledged,and the aknowledged paket's retrx_id is higher than retrx_id+3.With the de�nition of per-paket state, Soreboard1 an keep an expliit ounter forthe number of pakets in �ight (whih equals to the sum of number of pakets in4Stritly speaking, the Linux implementation also inludes the third ase: when a paket is a-knowledged, and its transmission timestamp is higher than an unaknowledged paket's transmissiontimestamp plus RTO, the unaknowledged paket is onsidered to be lost. This is alled head time-out. This ase is not inluded in the urrent implementation of TCP-Linux and it might a�et theLinux performane when the pakets in �ight is smaller than 3.

100InFlight state and the number of pakets in Retrans state).To improve the speed of SACK proessing, Soreboard1 inorporates the one-pass traversing sheme from Soreboard-RQ. Soreboard1 organizes all the paketsin a linked list, as shown in Figure 4.5. Eah node of the linked list an be either
Retrans

seq: 1

retrx id:1

snd_nxt:20

Retrans

seq: 2

retrx id:2

snd_nxt:20

next blocknext block

Lost

first seq: 3

last seq: 5

next block

SACKed

first seq: 6

last seq: 8

next block

In Flight

first seq: 9

last seq: 10

next block

SACKed

first seq:11

last seq: 11

next blockFigure 4.5: SACK queue data struturea single paket in retransmitted state, or a blok of pakets in other states. Thislinked list allows SoreBoard1 to traverse the retransmission queue only one everyaknowledgment, regardless of the number of SACK bloks in the aknowledgment.The retransmission queue update proess is a simpli�ed version of tp_lean_rtx_queueand tp_saktag_write_queue in Linux, without D-SACK proessing and timestampproessing.4.2.3.4 SNOOPy Queue Sheduler: Speed up the simulation with a bettershedulerThe urrent NS-2 (Version 2.29) sheduler uses a alendar queue [68℄ to store simu-lation events. A alendar queue is similar to a hash table with dynami buket sizeand uses the time of the event as the key. Intuitively, a buket in a alendar queueorresponds to a "day" in a real alendar. Eah buket has a linked list to storemultiple events, just like multiple notes an be written in eah day on a real alendar.

101The whole buket array orresponds to a "year". Events in the same "day" but indi�erent "years" share the same buket in inreasing order. When a new event isinserted, the event's destination buket an be alulated in O(1) by the hash key,and the event is inserted into the in-order position of the destination buket via alinear searh along the linked list. To de-queue the next event, the alendar queuetraverses the buket array to �nd the buket with the earliest event. The size of thearray may be doubled if the number of events grows larger, or halved if the numberof events grows smaller, to keep the average length of all the linked lists within aonstant range. On average, the alender queue an insert an event and de-queue anevent in O(1).The e�ieny of the alendar queue depends on the width of eah buket. Ifthe width of a buket is too large (�a long day�), many events may be put into onebuket and the alendar queue degrades into a single linked list whih requires a linearsearh when a new event is inserted. If the width of a buket is too small (�a shortyear�), most of the events in the bukets are of di�erent years and repeated linearsearhes over the buket array are neessary to de-queue the next event. DynamiCalendar Queue [69℄ suggests that the buket size should be dynamially set to theaverage interval in the fullest buket. The NS-2 alendar queue takes the suggestionin setting the buket width.5However, this suggestion on buket width works perfetly only if the events areevenly distributed in the alendar queue. If events that span over many �years"happen to be in the fullest buket, while most of the events in the whole alendarqueue are lustered within several "seonds", NS-2 will set the buket width to bevery large, on the order of "year". In this ase, most of the events (lustered withinseonds) will go into a few bukets. The alendar queue hene degrades into a fewlinked lists and long linear searhes our in event insertions.Unfortunately, suh uneven event distribution is very ommon in NS-2 simulation.Users usually set an �end time� before the simulation start. This end time orresponds5Di�erent from [69℄, NS-2 does not adapt the buket width until the number of events is toolarge or too small. This di�erene further degrades performane when the buket width is set to anine�ient value.

102to an event far in the future in the alendar queue. If this �end time� event happensto be in the fullest buket when NS-2 sets its buket width, the simulation speedslows down signi�antly.To orret this problem, we added an average interval estimation into the alendarqueue sheduler. We used the average interval of eah pair of de-queued events,averaged over a whole queue size of de-queued events, as an estimation of the buketwidth. If the event departure interval is similar over time, this width results in theO(1) in both de-queue and en-queue operation.To address the possible hange of event departure patterns, we also implementedSNOOPy Calendar Queue [70℄, whih dynamially adjusts the buket width by bal-aning the linear searh ost in the event insertion operations and the event de-queueing operation.With these two improvements, the sheduler performed onsistently in terms ofsimulation speed.4.2.4 Validation of NS-2 TCP-LinuxWe examined simulation results with TCP-Linux aording to our three goals: ex-tensibility, auray and performane. To validate the auray of the simulationresults of TCP-Linux, we ompare them with Linux results from Dummynet testbed.To evaluate the performane, we ompare the simulation time and memory usageof TCP-Linux and TCP-Sak1, the best TCP implementation in NS-2.6 We alsopresent a real example of how TCP-Linux an help the Linux ommunity debug andtest ongestion ontrol implementations.The setup of our NS-2 senario is shown in Figure 4.6. There is one FTP �owrunning from the sender to the reeiver for 900 seonds. We reorded the ongestionwindow every 0.5 seond.The setup of our Dummynet experiment is shown in Figure 4.7. In the experi-6We also tried other existing implementation in NS-2. Reno and NewReno have muh moretimeout than Sak1, leading to even poorer auray. Fak and Sak-RH run muh more slowly dueto the ine�ient implementation in Soreboard.

103
SR

100Mbps, 64ms oneway

220pkt buffer

1Gbps

0ms

1Gbps

0ms

TcpSink/

Sack1/

DelAck

Tcp/

LinuxFigure 4.6: Setup of NS-2 Simulationments, the appliation is Iperf with a large enough bu�er. We read the /pro/net/tp�le every 0.5 seond to get the ongestion window value of the Iperf �ow and omparethe ongestion window trajetories with the simulation results.
FreeBSD 5.2.1

Dummynet

100Mbps, 64ms, 220pkt buffer

Linux

2.6.16.3

Sender

Linux

2.6.16.1

Receiver 100Mbps, 64ms, 220pkt buffer

Hardware:

SuperMicro 1U servers with 2G memory and PCI Express bus

CPU: Intel Xeon 2.80Hz * 2 (with hyperthreading)

NIC: Intel e1000 Copper GE cards * 2Figure 4.7: Setup of Dummynet Experiments4.2.4.1 ExtensibilityWe inorporated all the nine di�erent ongestion ontrol algorithms in Linux 2.6.16-3into NS-2 TCP-Linux. Six of them are not in the urrent NS-2 release (2.29). Table4.2shows the results with these six di�erent ongestion ontrol algorithms. To makethe �gures readable, we re-saled the time axles in the �gures to inlude only sixongestion epohs in eah �gure.From Table 4.2, we an see that the ongestion window trajetories preditedby NS-2 TCP-Linux are very similar to the results from Dummynet testbed. Thetwo ases whih have the most signi�ant di�erenes are TCP-Hybla, and TCP-Cubi. TCP-Hybla measures the round trip delay to set its additive inrement (AI)

104
0 5 10 15 20

0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

scalable

TCP−Linux in NS2
Linux

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

bictcp

TCP−Linux in NS2
Linux

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

cubic

TCP−Linux in NS2
Linux

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

htcp

TCP−Linux in NS2
Linux

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

westwood

TCP−Linux in NS2
Linux

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

hybla

TCP−Linux in NS2
LinuxTable 4.2: Congestion window trajetory of di�erent ongestion ontrol algorithmsparameters. Due to noise, the Linux host measures higher delay in the Dummynettestbed than in the NS-2 simulation. The higher delay leads to higher AI parameterand shorter length of ongestion epoh in the Linux result. Also, TCP-Hybla setsa large ongestion window in the start-up phase of a �ow. The high ongestionwindow leads to paket loss, but Linux quikly gets a timeout and TCP-Linux preditsmultiple fast-reoveries before timeout. This results in the di�erene of the ongestionwindow sizes at the start-up phase (though the rates predited by NS-2 TCP-Linuxare very similar to the Linux results). For TCP-Cubi, there are some di�erene inboth the ongestion widow trajetory and the length of ongestion epoh. We havenot understood this ase yet. Further investigation is neessary.74.2.4.2 AurayTo ompare the auray of NS-2 TCP-Linux and existing TCP implementationsin NS-2, we ompared the results by Dummynet testbed, the simulation results byTCP-Linux, and the simulation results by NS-2 TCP-Sak1 or NS-2 TCP-Vegas, asshown in Table 4.3 .In general, simulation results with TCP-Linux were muh loser to the Linux7As reported by the group that designs TCP-Cubi, the di�erene in TCP-Cubi was due to abug in the Linux soure ode and a bug in NS-2 TCP-Linux at the time we ran these experiments.

105
0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

reno

TCP−Linux in NS2
Linux
TCP−Sack1 in NS2

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

highspeed

TCP−Linux in NS2
Linux
TCP−Sack1 in NS2

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

time (sec)

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(p
ac

ke
t)

vegas

TCP−Linux in NS2
Linux
TCP−Vegas in NS2Table 4.3: Congestion window trajetory of Reno, Highspeed TCP and Vegasresults, espeially for Reno and Vegas. In the ase of Reno, the huge di�erenebetween TCP-Sak1 and Linux is mainly due to the appropriate byte ounting [71℄in Linux Reno. The Vegas ase is even more interesting. Both TCP-Linux and Linuxresults have smaller ongestion windows than the TCP-Vegas results. After arefulinvestigation, the ombination of delayed ACK and integer operation is found to bethe soure of the problem. With delayed ACK, two pakets are sent into the networkin a miro-burst. The seond data paket is bu�ered until the �rst paket is proessedby the bottlenek router. Hene, the seond paket is delayed for one paket worthof time even without ongestion. Unfortunately, the Vegas sender an only get theaknowledgment of the seond paket, due to delayed ACK. This seond paket's RTTinludes most of the queueing delay introdued by the �rst paket in the miro-burst.8Suh a queueing delay is equivalent to almost one paket in the queue. With integeroperation in Linux implementation, Vegas sees one paket in the queue. Sine Vegassets its α parameter to be 1, it stops inreasing its ongestion window when it seesthis one paket worth of delay and results in low throughput. However, TCP/Vegasin NS-2 uses high-resolution �oat numbers to alulate the available and expetedbandwidths and onverts the results to integers only at the last step of omparison,avoiding this problem.9We also ran simulations with di�erent per-paket loss rates in the bottlenek andompared the throughput with the Linux throughput in Dummynet experiments.8There is still a small gap between the two pakets in a burst. The gap depends on the edge linkapaity, whih is 10 times of the bottlenek link in our simulations and experiments.9This problem has been aepted by the Linux networking group and the default value for α hasbeen hanged to 2 in the new releases of Linux.

106Figure 4.8 shows the throughput of a single TCP Reno �ow (ran for 600 seond)under di�erent per-paket loss rates. Eah experiment or simulation is repeated 10times and we present the average and error-bar in the �gure.

−6 −5 −4 −3 −2 −1

10
2

10
3

10
4

10−based logarithm of per packet loss rate

th
ro

ug
hp

ut
 (

K
bp

s)

throughput vs random packet loss rate

TCP−Linux
Linux
TCP−Sack

Figure 4.8: Throughput under di�erent random loss rate (log-log sale)As shown in Figure 4.8, the results with TCP-Sak1 in NS-2 have a onstantgap from the Linux performane. This gap, in log sale, implies a onstant ratio inthroughputs. This is mainly due to two problems. First, TCP-Sak1 uses Soreboard-RQ to proess SACK. This module annot detet the loss of retransmitted pakets,and fores the TCP �ow to time out when a retransmitted paket is lost. This leadsto poor performane when paket loss is heavy. Seond, Linux has inorporatedappropriate byte ounting [71℄, but TCP/Sak1 has not implemented this feature,leading to slower growth in the ongestion window when paket loss is light.The simulation results of TCP-Linux are very similar to the experiment results ofLinux, exept in the ase when the per paket loss rate is 10%. In this ase, the Linux

107reeiver almost disabled delayed aknowledgment, whih leads to better performanethan the simulation, where the delayed aknowledgment funtion in TCPSink in NS-2is not adaptive.4.2.4.3 Simulation performaneWe run simulations with Reno and HighSpeed TCP with di�erent numbers of �ows(from 2 to 128), di�erent round trip propagation delays (from 4ms to 256ms) anddi�erent apaities (from 1Mbps to 1Gbps) to test the speed and memory usage.We also ompared the simulation performane of TCP-Linux with the performaneof TCP-Sak1 in NS-2. Eah ase simulates the senario for 200 seonds. All thesimulations were run on a 1U server, with two Intel Xeon 2.66GHz CPUs, a ahe sizeof 512KB, though only one of the CPUs an be used for eah simulation. We makesure that only one simulation was run at a time, without any other appliation. Wepresent here two of our dozens of �gures. Figure 4.9 shows the simulation times ofHighSpeed TCP with di�erent bottlenek apaities. Figure 4.10 shows the simulationtimes of HighSpeed TCP with di�erent numbers of �ows.Both �gures show that the speed of TCP-Linux is very similar to the speed ofTCP-Sak1 module in most senarios. However, TCP-Sak1 does not perform onsis-tently well and might have a muh longer simulation time when the apaity is high,or the number of �ows is large. NS-2 TCP-Linux has a very onsistent simulationspeed with its improved event sheduler.10To measure the memory usage of the simulation, we measured the simulator'smemory usage in the middle point of the simulation period. The memory usage ofTCP-Linux was almost the same as TCP-Sak1 in most senarios. The only di�erenewe observed was the ase with Reno and with two �ows, as shown in Figure 4.11 . Inthis ase, TCP-Linux used about 1MByte more than TCP-Sak1.Based on these simulation results, we believe that TCP-Linux an be a goodalternative, or even a replaement, for the existing NS-2 TCP modules, given its10We also ran NS-2 TCP-Sak1 with our improved sheduler. With the improved sheduler,TCP-Sak1 performed exatly the same as TCP-Linux.

108

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

bandwidth (Mbps)

tim
e

(s
ec

)
simulation time for highspeed, (RTT=64ms, # of flow=128)

TCP−Linux
TCP−Sack1

Figure 4.9: Simulation time of di�erent bottlenek bandwidth (log-log sale)similar performane in terms of speed and memory usage, and its advantages interms of adaptability and auray.
4.2.4.4 An example: identifying a potential bug in Linux HighSpeed TCPimplementationFigure 4.12 shows an example of how TCP-Linux an help the Linux ommunitytest and debug the implementation of new ongestion ontrol algorithms.This �gureillustrates a potential bug in HighSpeed TCP implementation in Linux 2.6.16-3. Inthe rare situation when snd_wnd_nt_==snd_wnd_, snd_wnd_ is inreased byone, before snd_wnd_nt_ is dereased by snd_wnd_. This leads to a value of-1 for snd_wnd_nt_. Sine snd_wnd_nt_ is an unsigned variable, the negative

109

10
1

10
2

10
2

10
3

10
4

10
5

Number of flows

tim
e

(s
ec

)

simulation time for highspeed, (RTT=64ms, Bandwidth=1000Mbps)

TCP−Linux
TCP−Sack1

Figure 4.10: Simulation time of di�erent number of �ows (log-log sale)value auses over�ow, results in an in�nitely large snd_wnd_nt_.11Motivated by this example, we strongly believe that TCP-Linux an help theimplementation ommunity debug, test, and understand the new ongestion ontrolalgorithms and lose the gap between the implementation and analysis ommunities.4.2.5 Usages in researhIn our researh, NS-2 TCP-Linux is used to simulate di�erent TCP variants (TCP-Reno, HighSpeed TCP and Salable TCP) and study their performane under di�er-ent paket loss patterns.We used a dumb-bell topology with a set of senders and a set of reeivers sharinga bottlenek, as shown in Figure 4.13.11The Linux networking group has aepted this bug report and the bug hass been orreted inthe newer Linux releases.

110

10
1

10
2

26

28

30

32

34

36

38

40

42

44

46

Number of flows

to
ta

l m
em

or
y

(M
B

)

simulation memory for reno, (RTT=64ms, Bandwidth=1000Mbps)

TCP−Linux
TCP−Sack1

Figure 4.11: Memory usage of di�erent number of �ows (x-axle in log sale)The bottlenek is a 100Mbps link. We ran simulations with di�erent RTT (2ms to200ms in di�erent senarios) and di�erent bu�er sizes (1/8 bandwidth-delay-produtto 2 bandwidth-delay-produt in di�erent senarios). Di�erent link algorithms, Drop-Tail, RED and Persistent ECN, are run in the simulations. For senarios with RED,the RED parameters are set to be self-adaptive. The bottlenek is shared by a setof parallel TCP �ows and 50 UDP noise �ows, generating exponential on-o� tra�with the aggregate rate of 10% of the bottlenek apaity. The number of �ows variesfrom 2 to 32 �ows in di�erent senarios.The TCP implementations in NS-2 TCP-Linux ome with SACK [56℄, FACK [7℄and rate halving [64℄. Reno implementation also inludes ABC [71℄.In eah simulation, we repeat the senario for at least 10 times with di�erentrandom seeds and present both the average values and the error-bars.

111

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

time (sec)

co
ng

es
tio

n
w

in
do

w
 (

pa
ck

et
)

A potential bug in Linux implementation of High Speed TCP

After the fix
Before the fix

Figure 4.12: A potential bug in Linux implementation of HighSpeed TCP4.3 A paket level measurement tool in PlanetLabTo measure the Internet behavior, we have designed a distributed measurement sys-tem to periodially measure loss and delay pattern between sites in PlanetLab.Thismeasurement system is di�erent from existing loss measurement tehniques.The most frequently used tehnique for loss measurement is to analyze traes ofTCP �ows and detet paket retransmissions in TCP. Eah paket retransmission anbe treated as the inferene of a lost paket in the network. This approah is widelyused beause it has the advantage of requiring measurement at one end only [41℄.However, there are a few disadvantages. First, a paket retransmission only infers apossible paket loss. Whether there is really a paket loss in the network depends onthe auray of the TCP retransmission algorithm. If TCP times out prematurely,this approah overestimates the paket loss rate. Seond, and more importantly, thisapproah measures the paket loss rate observed by TCP �ows. As we will see in

112
SR

c=100Mbps

1ms~100ms oneway delay

1/8 ~ 2 BDP of buffer

TcpSink

/Sack1

Tcp/

Linux

TcpSink

/Sack1

Tcp/

Linux

UDP UDP

UDPUDP

1
G
b
p
s

0
m
s

1
G
b
p
s

0
m
s

1
G
b
p
s

0
m
s

1
G
b
p
s

0
m
s

 Noise: 50 flows, avg rate: 10% of c

 Two way exponential on-off traffic

 TCP: 2~32 flows

 Reno, Highspeed or ScalableFigure 4.13: Setup of NS-2 simulationsChapter 4, the paket loss rate observed by TCP �ows is not neessarily the same asthe paket loss rate in the path, due to TCP burstiness.In our tool, we used UDP pakets to probe the network and measure the lossinformation at the other end. We designed our tool in a way that the UDP pakettransmission pattern is tunable. We used di�erent transmission patterns to simulatebursty paket sequenes (e.g. generated by TCP) or smooth paket sequenes (e.g.generated by TFRC [72℄, paed TCP) .4.3.1 An introdution to PlanetLabPlanetLab [45℄ is an open platform for developing, deploying and aessing planetary-sale servie. It is an overlay network with more than 600 nodes geographiallydistributed around the world. PlanetLab users an run servies on a set of nodeswith full ontrol on the end hosts, making it possible to measure paket loss at twoend hosts.4.3.2 Design of the measurement systemThe system has a server and a lient at eah site in the experiments. There is alsoa light-weight entral monitor running on one site (in our experiments, the entralmonitor is run on WAN-in-Lab at Calteh). The entral monitor periodially performs

113maintenane tasks of the experiments. These tasks inlude: installing and upgradingsoftware at eah remote site, monitoring the health of eah remote site, and olletingmeasurement data from all the sites into a entralized database. Eah remote siteruns a server, whih aepts new measurement requests and UDP paket sequenes.Eah remote site periodially starts a lient, whih randomly piks a site and initiatesnew measurement request. The lient is the sender of UDP paket sequenes and thereorder of the experiment results.In eah measurement, server and lient use a TCP onnetion to exhange ontrolmessages and measurement results. After a simple handshake, the lient sends UDPpakets to the server in a spei� pattern. The server measures loss information andperiodially returns statistis to the lient via TCP. The server keeps a window of128 pakets so that paket reordering within 128 pakets an be deteted. Thesereordered pakets will not be onsidered lost pakets.124.3.2.1 Message formatsThere are four di�erent pakets in the system. We arefully designed the paketformats so that we ould �lter unreliable results that were probably due to abnormalnetwork behavior, for example, paket orruption. Eah paket starts with an 8-byteidenti�er, �lled with 8 English haraters. This identi�er indiates the paket type.The servers and lients verify the identi�er and the validity of the ontents. For UDPpakets, the servers and lients also use heksum to detet possible paket orruption.StartPaket StartPaket is the �rst paket the server sends to the lient to on�rmthe aeptane of the measurement request. Before sending this paket, the serverassigns a unique measurement request ID and the StartPaket arries this request IDbak to the lient. This request ID will be in all UDP pakets sent from the lient tothe server. Table 4.4 illustrates the format of StartPaket.12This is muh more robust than the normal TCP, whih an only detet paket reordering within3 pakets.

114STARTUDP <request id>8 bytes 8 bytes Table 4.4: StartPaket formatSTOP_UDP <error ode>8 bytes 8 bytes Table 4.5: StopPaket formatStopPaket StopPaket is the paket that the server or the lient sends to indiatethe termination of the experiments. Whenever an error is deteted, either server orlient will send a stop paket, with an error ode to inform the other side of thereason of the termination. A error ode of zero indiates normal termination. Table4.5 illustrates the format of StopPaket.UDPPaket UDPPakets are the pakets sent from the lient to the server, whihmeasures the delay and loss in the forward path. As illustrated in Table 4.6, eahUDP paket arries a request ID for the measurement, a unique sequene number,the timestamp of sending event, and variable length of random bytes that �lls thepaket to a spei� length. A UDPPaket also omes with a heksum that oversthe whole paket.ReportPaket A ReportPaket is the paket sent from the server to the lient toreport the statistis of paket loss and measure round-trip time (RTT). As illustratedin Table 4.7, a ReportPaket arries the timestamp of the UDPPaket upon whosearrival the ReportPaket is sent. When the lient reeives this ReportPaket, it anestimate the round-trip time by the di�erene of the reeiving time and the value inUDP_TEST <request id> <seq #>8 bytes 8 bytes 8 bytes<timestamp> <heksum> <random bytes>16 bytes 8 bytes variableTable 4.6: UDPPaket format

115L_REPORT <timestamp> <ak seq #>8 bytes 16 bytes 8 bytes<# of loss in this report> <loss seq numbers>8 bytes 8*<# of loss> bytesTable 4.7: ReportPaket format
LISTEN RUNNING

Incoming Request

Send StartPacket

Normal

STOP Recv StopPacket

Report Statistics

Abnormal

STOP

Er
ro
r
/
Ti
me
ou
t

E
r
r
o
r

S
e
n
d

3

S
T
O
P

p
a
c
k
e
t
s
Connection

Timeout: 10 sec

Report

Erro
r

Received Pkt > threhsold

Send Report

Report threshold:

10

Succe
ss

Clear
 Stat

istic
s

Figure 4.14: State mahine of a measurement server in PlanetLab<timestamp> �eld.13A ReportPaket also arries the highest sequene number of the UDPPaket itreeives. This serves as a positive aknowledgment. Finally, a ReportPaket arriesthe number of observed loss pakets, followed by the list of sequene numbers of theselost pakets. The lient will reord these lost pakets and their sending times toestimate the loss pattern in the path.4.3.2.2 Design of measurement serversThe server listens to a stati port and aepts, at most, 10 inoming measurementrequests. The design of the server is shown in the state mahine in Figure 4.14. Foreah request, the server assigns a unique ID and returns the ID in a StartPaket. The13As ReportPakets are transported by TCP, the RTT alulation is not very aurate if theReportPaket is lost. We only use this RTT information to get a rough estimation of the RTT andwe use the minimum observed RTT as our estimate. This estimation ignores the queueing delay inthe path and underestimates the RTT. Hene, it underestimates the sub-RTT burstiness.

116server then enters the RUNNING state. In the RUNNING state, it listens to the portfor any UDP pakets that math the ID for the request. When the server reeivesmore than 10 pakets, or it detets more than 128 paket loss, it sends a report paketto the lient via TCP onnetion. The server stays in the RUNNING state until itreeives a StopPaket from the lient. When the server reeives a StopPaket, it sendsthe last report and waits for a normal TCP exit. At any time if there is abnormalbehavior, the server enters the AbnormalStop state, sends a StopPaket to the lient,and loses the onnetion.Abnormal behavior is de�ned as one of the following symptoms:
• A read or write error in TCP soket;
• A orrupted UDP paket;
• The measurement has been idle for more than 10 seonds.For these abnormal behaviors, the lient will reeive a StopPaket with an errormessage, and the result in this measurement will be disarded.4.3.2.3 Design of measurement lientsThe design of the lient is shown in Figure 4.15.It sends a measurement request to a server whih is randomly hosen from a list,and waits for the StartPaket. One the StartPaket arrives, it enters the Operationstate, in whih it sends UDP pakets in a spei� pattern. Upon the reeipt ofa ReportPaket, it alulates the RTT estimation and reords the delay and lossinformation into a �le. When the measurement period is over, the lient exits theOperation state by issuing a StopPaket with error ode zero and waits for the lastreport. The lient stops upon timeout or the arrival of the report.Eah site runs the lient randomly every 30 minutes. Eah measurement periodlasts 5 minutes. The lient sends UDP at a rate less than 1 paket per ms. Eah UDPpaket is no greater than 400 bytes .14 Hene, the average throughput over the mea-14The maximum paket size of 400 bytes is to guarantee that the paket will not be fragmentedby a router with a small MTU of 500.

117
CLOSE

Operation

Start

Send Request

Normal

STOP

Recv StopPacket

ST
OP
_T
im
eO
ut

Du
mp
 D
at
a

Abnormal

STOP

Er
ro
r

Ready Recv StartPacket

Recv wrong packets

Send StopPacket

Report

r
e
c
v

R
e
p
o
r
t
P
a
c
k
e
t

R
e
c
o
r
d

l
o
s
s

i
n
f
o

Experiment Timeout

Send StopPacket

Send UDP

recv ReportPacket

Record loss info

STOP_Timeout: 5secFigure 4.15: State mahine of a measurement lient in PlanetLabsurement period is no greater than 3.2Mbps (with 400 bytes per paket). The averagethroughput is only 384Kbps with 48-byte pakets. We usually ran experiments withpaket sizes of 48 bytes or 400 bytes and ompared the results to make sure that ourmeasurement tra� did not injet additional ongestion. Before eah measurement,we ran ping and traeroute to reord the RTT and the routing paths. The RTTreported by ping will be used to ompare the delay measurement and validate theresults. The routing path information an be used to detet route hanges and pathintersetions. Currently, we only use it to alulate hop ount of a path.4.3.3 Deployment and data pre-proessingWe deploy this measurement system in 26 sites in the PlanetLab . In eah measure-ment, the lient in a site randomly piks a server. Hene, 650 diretional paths aremeasured. As listed in Table 4.8, our sites are geographially loated on di�erentontinents. Among them, 6 are in California, 11 are in other parts of United States,3 are in Canada and the rest are in Asia, Europe, and South Ameria. The RTTs ofthese paths have a range from 2ms to more than 200ms.15Our system uses a entral monitor to maintain the sites in the experiments. The15The highest measured RTT is more than 300ms, depending on the time of the day.

118
Node Loationplanetlab2.s.ula.edu Los Angeles, CAplanetlab2.postel.org Marina Del Rey, CAplanet2.s.usb.edu Santa Barbara, CAplanetlab11.millennium.berkeley.edu Berkeley, CAplanetlab1.nym.internet2.planet-lab.org Marina del Rey,CAplanetlab2.ksy.internet2.planet-lab.org Marina del Rey,CAplanetlab3.s.uoregon.edu Eugene, ORplanetlab1.s.ub.a Vanouver, Canadakupl1.itt.ku.edu Lawrene, KSplanetlab2.s.uiu.edu Urbana, ILplanetlab2.tamu.edu College Station, TXplanet..gt.atl.ga.us Atlanta, GAplanetlab2.u.edu Cininnati, Ohioplanetlab-2.ees.wru.edu Cleveland, OHplanetlab1.s.duke.edu Durham, NCplanetlab-10.s.prineton.edu Prineton, NJplanetlab1.s.ornell.edu Ithaa, NYplanetlab2.isi.jhu.edu Baltimore, MDrt3.planetlab.umontreal.a Montereal, Canadaplanet2.toronto.anet4.nodes.planet-lab.org Toronto, Canadaplanet1.s.huji.a.il Jerusalem, Israelthu1.6planetlab.edu.n Beijing, Chinalzu1.6planetlab.edu.n Lanzhou, Chinaplanetlab2.iis.sinia.edu.tw Taipei, Chinaplanetlab1.esnet.z Czeh Republiplanetlab1.lar.usp.br BrazilTable 4.8: PlanetLab sites in measurement

119monitor ensures that the lient and server at eah site run normally. It performs taskssuh as upgrade, data olletion, and leanup.From Otober 2006 to Deember 2006, we periodially initiated onstant bit rate(CBR) �ows between two randomly seleted sites. For eah experiment, two runsof measurements were onduted: one with a paket size of 48 bytes and the otherwith a paket size of 400 bytes. We ompared these two results and validated themeasurement only if the two traes exhibited similar loss patterns. Hene, the e�et oftra� load from our own measurement CBR �ows was negligible in our measurementresults. Eah run lasted for 5 minutes. In analysis, we normalized the loss intervalby the RTT of the path.

120

121
Chapter 5Conlusions and Future works
This thesis studies the mirosopi behavior of TCP ongestion ontrol. We �nd thatthe burstiness at the mirosopi level has huge impats on the stability, e�ieny,fairness, and onvergene of ongestion ontrol algorithms.We ategorize burstiness into two types: miro-burst and sub-RTT burstiness.Miro-burst leads to quik onvergene of queueing delay. This e�et makes delay-based ongestion ontrol algorithms muh more stable than the �uid model predits.In partiular, homogeneous TCP-Vegas �ows or FAST �ows are globally stable regard-less of apaity and delay. This new predition agrees with the experimental resultsand are in sharp ontrast to the �uid model predition. With this observation, wean design new algorithms that ahieve both responsiveness and stability.Sub-RTT level burstiness leads to on-o� patterns in the data paket transmissionproess. With DropTail routers produing bursty loss proesses in sub-RTT timesale,sub-RTT level burstiness diretly a�ets the loss synhronization rate, the probabilitythat one �ow sees a paket loss during a ongestion event. Loss synhronizationrate a�ets the e�ieny, fairness, and onvergene of loss-based ongestion ontrolalgorithms. With all these understandings, we an explain ontroversial problemssuh as MIMD fairness, ompetition between paed TCP and bursty TCP, and slowonvergene of TCP.We developed two new tools in the researh proess. The NS-2 TCP-Linux isa simulation module that runs Linux soure odes diretly. It is extensible for newongestion ontrol implementations, runs faster, and produes more aurate results.

122Sine its introdution, NS-2 TCP-Linux has helped the Linux ommunity identifyseveral implementation defets and parameter tuning problems. We expet that thistool will be a bridge between the Internet engineering ommunity and researh om-munity. The PlanetLab-based Internet loss measurement system uses UDP pakets tomeasure paket loss rates along di�erent paths, with di�erent paket arrival patternsand di�erent paket sizes. Di�erent from the traditional TCP-based loss monitortools, the measurement results from this system are not a�eted by the bursty sam-pling proess of TCP.The work in this thesis is the beginning, rather than the onlusion, of many newquestions. Future work is moving in several diretions:5.1 Paket Level Model for Delay-based CongestionControl AlgorithmThe paket level model used in this thesis has new preditions sharply di�erent thanresults from the ommonly-used models. These new preditions agree with the ex-perimental results. However, the paket level model is only aurate in a single �owsenario and an only be extended to multiple homogeneous �ows. We are still insearh of a good way to extend the model to ases with heterogeneous �ows. Onepossible diretion is to use a two-level on-o� proesses, instead of one-level on-o�proess, to model the paket level dynamis.5.2 Appliation of the model for loss synhronizationrateWe have applied our understanding to explain several interesting and long-standingproblems. There are many other problems whih we believe our �ndings an resolve.These problems inlude:
• Friendliness between TFRC and TCP. TFRC laims to be friendly to TCP, but

123however, experimental results show that TFRC is too friendly and usually losesto TCP, although the design of TFRC follows the TCP response funtion asaurately as possible at the marosopi level. We expet that the main reasonfor the loss of TFRC is due to the di�erene at the mirosopi level. Spei�ally,the data paket transmission pattern of TFRC is similar to the pattern of paedTCP, whih leads to a higher loss synhronization rate than the one observedby TCP sharing the same bottlenek. This di�erent synhronization rate leadsto lower throughput for TFRC, when ompeting to TCP.
• E�ets and extensions of RED. Aording to our model, RED is supposed tohelp the fairness onvergene of MIMD protools. We will study this e�et totest our preditions. We also expet to use our researh to help the parametertunings in RED.
• Loss measurement methodology. Most existing loss measurement tools useTCP-based probing �ows. This approah is easy to deploy (ontrol is onlyrequired on one side) but prone to the e�et of burstiness in TCP. We needto study further the impliation of the loss measurement results from theseTCP-based tools and ompare the auray against our UDP-based tools.

5.3 Improvement of new algorithmsThe Persistent ECN algorithm is deterministi and subjet to phase e�ets. We planto investigate the performane of the algorithm under a variety of appliation loadsand patterns, and investigate the possibility of randomizing the algorithm. The futurealgorithm we expet will be a hybrid of persistent ECN and RED, whih will providea persistent random signal in a ongestion event.

1245.4 Extension to NS-2 TCP-LinuxThe urrent status of this NS-2 module has its limitation. It might not be able tosimulate the Linux performane well in the ase where the paket reordering in thepath is severe, or paket loss rate is extremely high. In future work, we plan toinlude D-SACK [65℄ proessing and the ongestion window redution undo funtionfrom Linux. We are also onsidering developing a Delayed Ak module for NS-2 thatperforms similar to Linux. Finally, we need to inorporate the ECN and F-RTOfuntions in Linux to NS-2.Furthermore, TCP-Linux provides a very good platform for testing di�erent TCPongestion ontrol protools with the �exible senarios in NS-2. This an be a goodfoundation towards a benhmark suite implementation for TCP ongestion ontrolalgorithms. We do plan to enhane our benhmark suites and summarize a set ofNS-2 senarios for the benhmark.Finally, we plan to extend our simulation framework to inlude a more detailedmodel for distributed appliations. Currently, we only use parallel �ows as the ap-pliation. We plan to simulate more ompliated senarios suh as a omplete graphtopology in MapRedue [73℄.

125
Chapter 6Appendix
6.1 Complete list of ontrol variables and funtionsported by NS-2 TCP-Linux6.1.1 Control variables:6.1.1.1 Loal variables for eah onnetion:snd_nxt: The next sequene that the �ow is going to send.snd_una: The next sequene that the �ow is waiting for aknowledgmentmss_ahe: The size of a paketsrtt: 8 times of the smooth RTTrx_opt.rv_tser: The timestamp ehoed by the aknowledgmentrx_opt.saw_tstamp: Whether there is a timestamp in the aknowledgmentsnd_ssthresh: the slow start thresholdsnd_wnd: the ongestion windowsnd_wnd_nt: the ongestion window ounter, sine ongesition window is inunit of paket, when the ongestion window inrement is smaller than one, snd_wnd_ntis inreased instead. Whenever snd_wnd_nt is larger or equal to snd_wnd, thesnd_wnd_nt shall be dereased by snd_wnd and snd_wnd shall be inreased by1. snd_wnd_lamp: the upperbound of the ongestion window

126snd_wnd_stamp: the last time that the ongestion window is hangedbytes_aked: the number of bytes that are aknowledged in this aknowledgmentisk_a_state: the state of ongestion ontrol: Normal (OPEN), Loss Reovery,or time out.isk_priv: a sixteen 32bit integer array for private data of ongestion ontrolalgorithm6.1.1.2 Global variables:Besides the tp_sk struture, there are several global variables whih are importantfor ongestion ontrol algorithms:tp_time_stamp: the urrent time in mssys_tl_ab: whether and how the ongestion ontrol algorithm shall do Appro-priate byte Counting.tp_max_burst: the maximum bak-to-bak burst that a TCP �ow an send intothe network.6.1.2 Funtion interfaes:6.1.2.1 Required funtions:
• ong_avoid funtion: This funtion is alled when an ak is reeived. Theimplementation of this funtion is epeted to hange the ongestion windowin this funtion during normal situation (without loss reovery). In Reno, thismeans slow start and ongestion avoidane.
• ssthresh funtion: This funtion is alled when a loss event happens. It isexpeted to return the slow start threshold after a loss event. The returnedvalue shall be half of snd_wnd in Reno.
• min_wnd funtion: This funtion is alled when a fast retransmission happens,after ssthresh funtion. It is expeted to return the value of the ongestionwindow after a loss event. In Reno, the returned value shall be snd_ssthresh.

1276.1.2.2 Other optional funtion alls inlude:RTT sample funtion (rtt_sample): alled when a RTT sample is deteted, a on-gestion ontrol algorithm shall implement this funtion if it has speial requirementon RTT sampling;State hange funtion (set_state): alled when the ongestion ontrol state ishanged (among Open (normal state) state, Loss Reovery state, and Loss (timeout)state).Congestion event funtion (wnd_event): alled when there is a speial eventthat might be interesting for a ongestion ontrol algorithm. The possible onges-tion events inlude: TX_START, CWND_RESTART, COMPLETE_CWR, FRTO,LOSS, FAST_ACK and SLOW_ACK.The ongestion window after loss (undo_wnd): alled when the �ow exists lossreovery.Paket Aked funtion (pkts_aked): alled when a paket is aknowledged.Initialization funtion (init): alled when the ongestion ontrol algorithm isloaded. Any private data in isk_priv shall be intialized here;Destroy funtion (release): alled when the ongestion ontrol algorithm is re-moved, private data shall be deleted here.

128

129Algorithm 4 Randomized PaingFor eah �ow i, given wi (t) from ongestion ontrol algorithm; t is the urrent systemtime.
w

′

i(t) = max {wi (t) + α, min {2wi (t) , ssthresh(t)}} is the predited value of the on-gestion window in the next RTT.
vi(k) is the time when the k-th paket of �ow i is supposed to be sent aording topaing algorithm, vi(0)← 0.For eah paket to be transmitted (allowed by the ongestion window and reeiverwindow onstraints):1. vi(k)← vi(k − 1) + RTT

w
′

i
(t)2. s← vi(k) + random [− RTT

2w
′

i
(t)

, RTT

2w
′

i
(t)

]3. send k-th paket at time min {s, t}6.2 A randomized version of paingThere have been many proposals of di�erent paing algorithms [20, 21℄. The paingalgorithm suggested in these literatures is a deterministi algorithm whih stritlypae out pakets evenly in an RTT. We observed that this approah is very likely tointrodue phase e�et in our simulations.Our algorithm randomizes the paed TCP by perturbing the paed paket trans-mission time with a zero-sum uniform random o�set. The advantage of a randomizedpaing algorithm over a deterministi paing algorithm is that it an eliminate phasee�et. In this sense, it is similar to the randomized TCP algorithm proposed byChandrayana, et al [49℄. In ontrast to this researh, we randomize a paing algo-rithm instead of a bursty TCP to make the paket distribution more spread-out.Algorithm 4 desribes the detailed steps.1 For eah �ow i, the ongestion ontrolalgorithm spei�es a sending window wi (t) and the paing algorithm predits thewindow in the next round-trip w
′

i. The paing algorithm replaes the ak-lokingand ontrols the exat time that a paket is transmitted in sub-RTT time sales. The1This algorithm desription is simpli�ed with an assumption that the network is always thebottlenek. Modi�ation is neessary in real deployment where some �ows may be appliation-limited.

130algorithm keeps a virtual sending time vi, whih is the sending time of eah paket ifa standard paing were enfored. The atual paket transmission time is uniformlydistributed over the interval of [vi −
RTT

2w
′

i

, vi + RTT

2w
′

i

], so there is always one paket inevery RTT/w interval while the phase e�et is eliminated by randomizing the orderof pakets from di�erent �ows. If the loss signal is persistent for RTT/w or longer,the randomized paing an ensure that all �ows detet the same loss event with highprobability.

1316.3 Proofs of theorems6.3.1 Theorem 2.1.2.1For any time s (j) in whih a paket is sent into the network,
p (j) ≤ w (s (j))And there always exists a paket j∗ whih is sent at the same time (s (j) = s (j∗)),and

p (j∗) = w (s (j∗))Furthermore, if w (s (j∗)) ≥ w (s (j∗ + 1)), p (j∗ + 1) = w (s (j∗ + 1)).Proof:First, we prove that p (j) ≤ w (s (j)) for any paket j.Assume k∗ is the parameter that ahieve p (j) = p (j − 1)− k∗ +1 and p (j − 1)−

k∗ + 1 ≤ w (a (j − 1− p (j − 1) + k∗)). We have:
j − p (j) = j − 1− p (j − 1) + k∗We have s (j) = a (j − p (j)) = a (j − 1− p (j − 1) + k∗) and w (s (j)) = w (a (j − 1− p (j − 1) + .Hene, p (j) ≤ w (s (j)).Seond, we prove that p (j) = w (s (j)) for all jsuh that p (j) ≥ p (j + 1).If p (j) ≥ p (j + 1), we have: p (j)+1 > w (s (j)). (Otherwise, p (j)+1 ≤ w (s (j))leads to p (j + 1) = p (j) + 1.)We have p (j) ≥ w (s (j)) sine p (j) an w (s (j)) are both integers. Beause

p (j) ≤ w (s (j)), we have p (j) = w (s (j)).Finally, we prove that there is always a paket j∗ whih satis�es s (j∗) = s (j) and
p (j∗) = w (s (j)).If p (j) ≥ p (j + 1), j = j∗.Otherwise, assume j∗ does not exist.

132Then for ∀j′ > j, we have p (j′) < p (j′ + 1), s (j) = s (j′) = s (j′ + 1) and
p (j′ + 1) = w (s (j)).Hene, p (j′) is unbounded and w (s (j)) is unbounded.This annot happen sine w (s (j)) is a �nite number. Hene, suh j∗ always exist.Aording to (2.7),

p (j∗ + 1) = max
0≤k≤p(j∗)

{p (j∗)− k + 1|p (j∗)− k + 1 ≤ w (s (j∗ + 1))}Let k∗ = w (s (j∗))− w (s (j∗ + 1)) + 1, we have
p (j∗)− k∗ + 1 = w (s (j∗))− [w (s (j∗))− w (s (j∗ + 1)) + 1] + 1

= w (s (j∗ + 1))Hene, p (j∗ + 1) ≥ w (s (j∗ + 1)).We have p (j∗ + 1) = w (s (j∗) + 1).6.3.2 Theorem 2.1.2.2
∀j : a (j)− a (j − 1) ≥

1

cThe equality holds if, and only if, s (j) ≤ s (j − 1) + b(J−1)+1
c

.Proof:
a (j)− a (j − 1) =

[

s (j) + d +
b (j)

c

]

−

[

s (j − 1) + d +
b (j − 1)

c

]

= s (j)− s (j − 1) +
b (j)

c
−

b (j − 1)

c

= s (j)− s (j − 1) +
max {b (j − 1) + 1− [s (j)− s (j − 1)] c, 0}

c
−

b (j − 1)

c

≥ s (j)− s (j − 1) +
b (j − 1) + 1− [s (j)− s (j − 1)] c

c
−

b (j − 1)

c

=
1

cThe �rst step is by (2.6) ; the third step is by (2.5); and the �fth step is by (2.1).

133The equality in the forth step holds if, and only if, b (j − 1)+1−[s (j)− s (j − 1)] c ≥

0, whih is equivalent to s (j) ≤ s (j − 1) + b(j−1)+1
c

.Hene, the theorem is proved.6.3.3 Theorem 2.1.2.3For ∀1 ≤ j′ < j, If p (j′) ,p (j′ + 1) , · · ·p (j) are non-dereasing,
b (j) ≤ b (j′) + p (j)− p (j′)Proof:Sine p (j′) · · · p (j) are non-dereasing, we have ∀j′ ≤ k < j :.

s (k + 1)− s (k) = a (k + 1− p (k + 1))− a (k − p (k))

≥
[k + 1− p (k + 1)]− [k − p (k)]

c

=
1− [p (k + 1)− p (k)]

cHene,
b (k) + 1− [s (k + 1)− s (k)] c ≤ b (k) + p (k + 1)− p (k) (6.1)Sine p (k + 1) ≥ p (k), we have

0 ≤ b (k) + p (k + 1)− p (k) (6.2)Combine (6.1) and (6.2) into (2.5) , we have
b (k + 1) ≤ b (k) + p (k + 1)− p (k) (6.3)

134Summing up (6.3) for j′ ≤ k < j, we have:
j−1
∑

k=j′

b (k + 1)− b (k) ≤

j−1
∑

k=j′

p (k + 1)− p (k)That is
b (j)− b (j′) ≤ p (j)− p (j′)The theorem is proved.6.3.4 Theorem 2.1.2.4

d +
b (j)

c
≥

p (j)

cThe equality holds if, and only if, ∀k that satis�es j − p (j) + 1 ≤ k ≤ j : a (k)−

a (k − 1) = 1
c
.Proof:

a (j) = s (j) + d +
b (j)

c

= a (j − p (j)) + d +
b (j)

cThe �rst step is by (2.6) and the seond step is by (2.4).Hene,
b (j)

c
+ d = a (j)− a (j − p (j))

=

j
∑

k=j−p(j)+1

[a (k)− a (k − 1)]

≥

j
∑

k=j−p(j)+1

1

c

=
p (j)

cThe third step is by (2.13) of Theorem 2.1.2.2.

135Hene, the inequality holds.The equality in the third step holds if, and only if, ∀k that satis�es j−p (j)+1 ≤

k ≤ j : a (k)− a (k − 1) = 1
c
.6.3.5 Theorem 2.1.3.2The system is in stable-link state upon the arrival of paket j ⇐⇒ p (j) = cd + b (j)Proof:This is a the speial ase of Theorem 2.1.2.4 when ∀k that satis�es j − p (j) < k ≤

j : a (k)− a (k − 1) = 1
c
.6.3.6 Theorem 2.1.3.3If the system is in stable link state upon the arrival of paket j and p (j + 1) ≥ cd,then the system is in stable link state upon the arrival of paket j + 1.Proof:Sine the system is in stable-link state upon the arrival of paket j, we have

∀k that satis�es j − p (j) < k ≤ j : a (k)− a (k − 1) =
1

c
(6.4)by De�nition 2.1.3.1.By (2.2), p (j + 1) ≤ p (j) + 1. That is j + 1− p (j + 1) ≥ j − p (j).For any k that satis�es j + 1− p (j + 1) < k < j + 1, k satis�es j − p (j) < k ≤ j.By (6.4), a (k)− a (k − 1) = 1

c
.

136For paket j +1, sine p (j + 1) ≥ cd, we have p (j + 1) ≥ p (j)− b (j) by Theorem2.1.3.2. Hene,
s (j + 1)− s (j) = a (j + 1− p (j + 1))− a (j − p (j))

=

j+1−p(j+1)
∑

k=j−p(j)+1

a (k)− a (k − 1)

≤

j+1−cd
∑

k=j−p(j)+1

a (k)− a (k − 1)

=

j+1−cd
∑

k=j−p(j)+1

1

c

=
p (j)− cd + 1

c

=
b (j) + 1

cThe �rst step is from (2.4); the third step is from Thereom 2.1.2.2 and the fatthat p (j + 1) ≥ cd; the forth step is from the de�nition of stable-link state and thefat that j − p (j) < j − p (j) + 1 ≤ j + 1 − cd ≤ j; the sixth step is from Thereom2.1.3.2.Sine s (j + 1)− s (j) ≤ b(j)+1
c

, Thereom 2.1.2.2 shows a (j + 1)− a (j) = 1
c
.Hene, ∀k : j + 1 − p (j + 1) < k ≤ j + 1, we have a (k) − a (k − 1) = 1

c
. Thesystem is in stable state upon the arrival of paket j + 1.The theorem is proved.6.3.7 Theorem 2.1.3.4If ∀k : j − p (j) < k ≤ j : p (k) > cd; the system enters stable-link state upon thearrival of j.Proof:By Theorem 2.1.2.4, p (k) > cd⇒ b (k) > 0.Hene, b (k − 1) + 1− [s (k)− s (k − 1)] c > 0.

137By Theorem 2.1.2.2, a (k)− a (k − 1) = 1
c
.We have ∀k : j − p (j) < k ≤ j : a (k) − a (k − 1) = 1

c
. By De�nition 2.1.3, thesystem is in stable-link state upon the arrival of paket j.6.3.8 Theorem 2.1.3.5If ∀k : j − p (j) < k ≤ j : p (k − 1) ≥ p (k) and p (j) ≤ cd, the system has b (j) = 0.Proof:Assume b (j) > 0.Sine p (k − 1) ≥ p (k), we have s (k)− s (k − 1) ≥ 1

c
and b (k) ≤ b (k − 1).Hene, b (k) ≥ b (j) > 0 for ∀k : j − p (j) < k ≤ j.That is: a (k)− a (k − 1) = 1

c
.By De�nition 2.1.3, the system is in stable-link state upon the arrival of paket j.By Theorem 2.1.3.2, we have p (j) = cd + b (j) > cd.This ontradits the ondition that cd ≥ p (j).Hene, the assumption annot be true.6.3.9 Corollary 2.1.4

τk+1 ≥ τk + w (s (τk+1))Proof:Aording to (2.19), we have
τk+1 − τk = w (s (τk)) + max {∆w (τk) , 0}

= max {w (s (τk)) + ∆w (τk) , w (s (τk))}

= max {w (s (τk+1)) , w (s (τk))}The third equation is based on (2.18).Hene, τk+1 ≥ τk + w (s (τk+1)).

1386.3.10 Theorem 2.1.4.1:
a (τk) ≤ s (τk+1) < a (τk+1)Proof:

s (τk+1) < a (τk+1) omes diretly from the ak-loking model (2.6) as d > 0.We prove a (τk) ≤ s (τk+1) by ontradition.Assume a (τk) > s (τk+1).We have:
a (τk) > s (τk+1)

= a (τk+1 − p (τk+1))The equality omes from (2.4).Aording to Corollary 2.1.2.2,
τk > τk+1 − p (τk+1)That is:

τk+1 − τk < p (τk+1)

≤ w (s (τk+1))The seond inequality omes from Theorem 2.1.2.1.Aording to Corollary (2.1.4), τk+1 − τk ≥ w (s (τk+1)).We reah a ontradition.Hene, a (τk) ≤ s (τk+1).The theorem is proved.6.3.11 Theorem 2.1.4.2:
∀τk : w (s (τk)) = p (τk)

139Proof:Let the last paket that is sent before a (τk−1) to be j′. That is:
j′ = max {j : s (j) < a (τk−1)}We have w (s (j′)) = p (j′) Sine j′ ≥ j, ∀j : s (j) = s (j′).Beause s (τk−1) < a (τk−1) ≤ s (τk), we have τk−1 ≤ j′ < τk. Hene, w (s (j′)) =

w (s (τk−1)).We prove the theorem with two ases.When ∆w (τk−1) ≤ 0:For all j suh that j′ ≤ j ≤ τk − 1, we have w (s (j)) ≥ w (s (j + 1)) beause
a (τk−2) ≤ s (τk−1) ≤ j ≤ s (τk) < a (τk).Sine p (j′) = w (s (j′)), we have p (j) = w (s (j)) for all j : j′ < j ≤ τk, aordingto Theorem 2.1.2.1.Hene, p (τk) = w (s (τk)).When ∆w (τk−1) > 0:We show that paket j′ + 1 is sent at the time of a (τk−1). By de�nition of j′, wehave s (j′ + 1) ≥ a (τk−1). Hene,

w (s (j′ + 1)) = w (a (τk−1))

= w (s (τk−1)) + ∆w (τk−1)

= w (s (j′)) + ∆w (τk−1)We have p (j′ + 1) = max0≤k≤p(j′) {p (j′)− k + 1|p (j′)− k + 1 ≤ w (a (j′ + 1− p (j′) + k))}.Let k = τk−1 − j′ + p (j′), we have:
k ≤ p (j′)beause
τk−1 ≤ j′

140and
k ≥ 0beause

a (τk−1) > s (j′)⇒ τk−1 > j′ − p (j′)

⇒ τk−1 − j′ + p (j′) > 0We also have
p (j′)− [τk−1 − j′ + p (j′)] + 1 ≤ j′ − τk−1 + 1

< p (j′)

= w (s (j′))

= w (s (τk−1))

< w (a (τk−1))

= w (a (j′ − p (j′) + τk−1 − j′ + p (j′)))Hene,
p (j′ + 1) ≥ p (j′)− [τk−1 − j′ + p (j′)] + 1

= j′ − τk−1 + 1and
s (j′ + 1) = a (j′ + 1− p (j′ + 1))

≤ a (j′ + 1− j′ + τk−1 − 1)

= a (τk−1)

141Hene, s (j′ + 1) ≤ a (τk−1). But de�nition of j′, we have s (j′ + 1) ≥ a (τk−1).Hene, s (j′ + 1) = a (τk−1).Beause there is a paket j′ + 1 sent at the time a (τk−1), aording to Theorem2.1.2.1, there exists a paket j∗ in whih s (j∗) = s (j′ + 1) and p (j∗) = w (s (j∗)) =

w (a (τk−1)). Hene, s (j∗) = a (j∗ − p (j∗)) = a (τk−1).That is
j∗ = τk−1 + p (j∗)

= τk−1 + w (s (j∗))

= τk−1 + w (a (τk−1))

= τkHene, τk = j∗ and p (τk) = w (τk).6.3.12 Theorem 2.1.4.3:
b (τk) ≤ ∆w (τk) or the system is in stable-link state upon the arrival of τk.Proof:Let j′ = min {j : s (j) ≥ a (τk−1)} to be the �rst paket that is sent after the arrivalof last deision paket.By de�nition of j′, we have s (j′ − 1) < a (τk−1) ≤ s (j′).Hene, p (j′) ≤ p (j′ − 1) (Otherwise, s (j′ − 1) = s (j′).)Sine s (j′) ≥ a (τk−1), a (j′ − p (j′)) ≥ a (τk−1) and j′ ≥ τk−1 + p (j′).Aording to (2.20), for all j suh that τk−1 ≤ j′ − p (j′) ≤ j < j′, w (j) =

w (s (τk−1)).Sine p (τk−1) = w (s (τk−1)), aording to Theorem (2.1.2.1), we have p (j) =

w (s (j)) for all j suh that τk−1 ≤ j < j′.Hene, for all j suh that j′ − p (j′) ≤ j < j′, we have
p (j) = w (s (τk−1))

142and beause p (j′) ≤ p (j′ − 1), we have: ∀j : j′− p (j′) < j ≤ j′, p (j) ≤ p (j − 1).If p (j′) > cd, we have p (j) > cd for all j : j′ − p (j′) < j ≤ j′. In this ase, thesystem is in link stable state upon the arrival of paket j′.If p (j′) ≤ cd, we have b (j′) = 0 aording to Theorem 2.1.3.5.Now we divide the problem into three situations.Case 1: ∆w (τk−1) ≤ 0.
p (j′) = w (s (j′)) = w (a (τk−1)) aording to Theorem 2.1.2.1.Hene, the p (j) sequene is non-inreasing from j′ to τk, as the sequene from

j′ − p (j′) to j′. Hene, we have b (τk) = 0 or the system is in link stable state uponthe arrival of paket τk.Case 2: ∆w (τk−1) > 0 and p (j′) ≤ cd.By p (j′) ≤ cd, we have b (j′) = 0.By ∆w (τk−1) > 0, we have p (j′) = p (j′ − 1) = w (s (τk−1))And sine ∆w (τk−1) > 0, the p (j) sequene is non-dereasing from j′ to τk.Aording to Theorem 2.1.2.3, we have
b (τk) ≤ b (j′) + p (τk)− p (j′)

≤ w (s (τk))− w (s (τk−1))

= ∆w (τk−1)Hene, b (τk) ≤ ∆w (τk−1).Case 3: ∆w (τk−1) > 0 and p (j′) > cd.By ∆w (τk−1) > 0, we have p (j) sequene is non-dereasing from j′ to τk. Hene,
p (τk) ≥ p (j′) > cd.Hene, the p (j) > cd for all j suh that j′ − p (j′) < j ≤ τk. Hene, the system isin link stable state upon the arrival of paket τk aording to Theorem 2.1.3.4.

1436.3.13 Theorem 2.1.5Given the ak-loking model desribed in (2.3)(2.4)(2.5)(2.6) and the TCP Vegasongestion ontrol algorithm desribed in (2.17)(2.23)(2.18)(2.19)(2.20), a single TCP�ow onverges to equilibirum regardless of apaity c, propagation delay d and initialstate.If αd > 1, given any initial state, we have
∃J : ∀j > J : cd + αd− 1 < w (s (j)) < cd + αd + 1 and αd− 1 < b (j) < αd + 1Proof:First, we prove that ∃K1 : ∀k > K1 : w (a (τk)) > cd + αd− 1.Given any intial state w (s (τk)), if w (s (τk)) ≤ cd + αd − 1, we have: p (τk) =

w (s (τk)) ≤ cd + αd− 1.Aording to Theorem 2.1.4.3, we have that either b (τk) ≤ ∆ (τk−1) ≤ 1 or thesystem is in link stable state upon the arrival of τk.For the �rst ase, sine b (τk) ≤ 1, we have p (τk) ≤ cd+ b (τk) by Theorem 2.1.2.4.We have
p (τk)

d
−

p (τk)

D (τk)
=

p (τk)

d
−

p (τk)

d + b(τk)
c

=
b (τk) p (τk)

d (cd + b (τk))

≤
b (τk) (cd + b (τk))

d (cd + b (τk))

≤
b (τk)

d

≤
1

d

<
1

αIn this ase, ∆w (τk) = 1.For the seond ase, sine the system is in link stable state, we have p (τk) =

144
cd + b (τk). We have

p (τk)

d
−

p (τk)

D (τk)
=

p (τk)

d
−

p (τk)

d + b(τk)
c

=
b (τk) [cd + b (τk)]

d (cd + b (τk))

=
b (τk)

d

=
p (τk)− cd

d

≤
cd + αd− 1− cd

d

<
1

αHene, ∆w (τk) = 1 as long as w (s (τk)) ≤ cd+αd− 1. Sine cd+αd− 1 is �nite,there exists an K1 whih satis�es w (s (τK1
)) > cd + αd− 1.Seond we prove that ∀k ≥ K1, w (s (τk)) > cd + αd− 1.Assume the window size will be smaller than or equal to cd + αd − 1 for some

k ≥ K1. Let the smallest of suh k to be k′. That is:w (s (τk′)) ≤ cd + αd − 1 and
∀k : K1 ≤ k < k′ : w (s (τk)) > cd + αd− 1.By this assumption, we have: ∆w (τk′−1) = −1 and w (s (τk′−1)) ≤ cd + αd.But sine cd + αd− 1 < w (s (τk′−1)) ≤ cd + αd, we have: p (τk′−1) = cd + b (τk′−1)and

p (τk′−1)

d
−

p (τk′−1)

D (τk′−1)
=

p (τk′−1)

d
−

p (τk′−1)

d +
b(τ

k′−1)
c

=
b (τk′−1) p (τk′−1)

d (cd + b (τk′−1))

=
b (τk′−1)

d

=
p (τk′−1)− cd

d

≤
cd + αd− cd

d

≤
1

α

145Hene, ∆w (τk′−1) ≥ 0. This ontradits our assumption that ∆w (τk′−1) = −1.Hene, k′ does not exist.Seond, we an prove that ∃K2 > K1 : ∀k > K2 : w (a (τk)) < cd + αd + 1. Theproof is very similar to the �rst step and is ignored here.2Finally, let K = max {K1, K2}, we have ∀k > K : cd + αd − 1 < w (a (τk)) <

cd + αd + 1.Let J = τK , aording to Theorem 2.20, we have
∀j > J : cd + αd− 1 < w (s (j)) < cd + αd + 1

2In fat, it is easier beause the link-stable state is always satis�ed for all k : k > K1

146

147
Bibliography
[1℄ Jon Postel, �Rf 793 - transmission ontrol protool,� Sep 1981.[2℄ Phil Karn and Craig Partridge, �Improving round-trip time estimates in reliabletransport protools,� ACM Transations on Computer Systems, vol. 9, no. 4,pp. 364�373, 1991.[3℄ R. Jain, �A timeout-based ongestion ontrol sheme for window �ow-ontrollednetworks,� IEEE J. Seleted Areas in Commun., vol. 4, no. 7, Ot 1986.[4℄ V. Jaobson, �Congestion Avoidane and Control,� ACM SIGCOMM '88, pp.314�329, Aug. 1988.[5℄ M. Allman, V. Paxson, and W. Stevens, �RFC 2581: TCP Congestion Control,�April 1999.[6℄ S. Floyd and T. Henderson, �RFC 2582: The New Reno Modi�ation to TCP'sFast Reovery Algorithm,� April 1999.[7℄ Matthew Mathis and Jamshid Mahdavi, �Forward aknowledgement: re�ningTCP ongestion ontrol,� in Conferene proeedings on Appliations, tehnolo-gies, arhitetures, and protools for omputer ommuniations. 1996, pp. 281�291, ACM Press.[8℄ S. Floyd, �Highspeed tp for large ongestion windows,� 2002.[9℄ T. Kelly, �Salable TCP: Improving Performane in HighSpeed Wide Area Net-works,� 2003.

148[10℄ Lisong Xu, Khaled Harfoush, and Injong Rhee, �Binary Inrease CongestionControl for Fast Long-Distane Networks,� in INFOCOM, 2004.[11℄ Douglas Leith and Robert N. Shorten, �H-TCP: TCP for high-speed and long-distane networks,� in Proeedings of PFLDnet 2004, 2004.[12℄ Carlo Caini and Rosario Firrinieli, �TCP Hybla: a TCP enhanement for het-erogeneous networks,� INTERNATIONAL JOURNAL OF SATELLITE COM-MUNICATIONS AND NETWORKING, vol. 22, pp. 547�566, 2004.[13℄ R. Jain, �A delay based approah for ongestion avoidane in interonnetedheterogeneous omputer networks,� Computer Communiations Review, ACMSIGCOMM, pp. 56�71, 1989.[14℄ Z. Wang and J. Crowroft, �A new ongestion ontrol sheme: Slow start andsearh (tri-S),� ACM Computer Communiation Review, SIGCOMM, vol. 21,no. 1, pp. 32�43, 1991.[15℄ Z. Wang and J. Crowroft, �Eliminating periodi paket losses in the 4.3-TahoeBSD TCP ongestion ontrol algorithm,� ACM Computer Communiations Re-view, April 1992.[16℄ Lawrene S. Brakmo and Larry L. Peterson, �TCP Vegas: End to End Con-gestion Avoidane on a Global Internet,� IEEE Journal on Seleted Areas inCommuniations, vol. 13, no. 8, pp. 1465�1480, 1995.[17℄ David X Wei, Cheng Jin, Steven H Low, and Sanjay Hedge, �FAST TCP:Motivation, Arhiteture, Algorithms, Performane,� IEEE/ACM Transationson Networking, to appear, 2007.[18℄ Mark Allman and Ethan Blanton, �Notes on burst mitigation for transportprotools,� SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 53�60, 2005.[19℄ Lixia Zhang, Sott Shenker, and David D. Clark, �Observations on the Dynamisof a Congestion Control Algorithm: The E�ets of Two-Way Tra�,� in Proeed-

149ings of the ACM SIGCOMM 1991 Conferene on CommuniationsArhiteturesand Protools, 1991, pp. 133�147.[20℄ J. Kulik, R. Coutler, D. Rokwell, and C. Partridge, �A simulation study of paedTCP,� Teh. Rep. BBN Tehnial Memorandum No. 1218, BBN Tehnologies,1999.[21℄ D. Hong, �FTCP Fluid Congestion Control,� 2000.[22℄ David Wei, Sanjay Hedge, and Steven Low, �A burstiness ontrol for TCP,� inProeedings of PFLDNet 2005, 2005.[23℄ Hao Jiang and Constantinos Dovrolis, �Why is the internet tra� bursty inshort time sales?,� in SIGMETRICS '05: Proeedings of the 2005 ACM SIG-METRICS international onferene on Measurement and modeling of omputersystems, New York, NY, USA, 2005, pp. 241�252, ACM Press.[24℄ Matthew Mathis, Je�rey Semke, and Jamshid Mahdavi, �The marosopi be-havior of the TCP ongestion avoidane algorithm,� SIGCOMM Comput. Com-mun. Rev., vol. 27, no. 3, pp. 67�82, 1997.[25℄ Jitendra Padhye, Vitor Firoiu, Don Towsley, and Jim Kurose, �Modeling TCPthroughput: a simple model and its empirial validation,� in Proeedings of theACM SIGCOMM '98 onferene on Appliations, tehnologies, arhitetures, andprotools for omputer ommuniation. 1998, pp. 303�314, ACM Press.[26℄ Vishal Misra, Wei-Bo Gong, and Don Towsley, �Fluid-based analysis of a networkof aqm routers supporting tp �ows with an appliation to red,� in Proeedingsof the onferene on Appliations, Tehnologies, Arhitetures, and Protools forComputer Communiation. 2000, pp. 151�160, ACM Press.[27℄ C. V. Hollot, Vishal Misra, Donald F. Towsley, and Weibo Gong, �A ontroltheoreti analysis of RED,� in INFOCOM, 2001, pp. 1510�1519.

150[28℄ Steven H. Low, Fernando Paganini, Jiantao Wang, Sahin Adlakha, and John C.Doyle, �Dynamis of tp/red and a salable ontrol,� in Proeedings of IEEEInfoom, Marh 2002.[29℄ Hyojeong Choe and Steven Low, �Stabilized Vegas,� in Proeedings of IEEEInfoom, Marh 2003.[30℄ Shao Liu, Tamer Basar, and R. Srikant, �Pitfalls in the �uid modeling of rtt vari-ations in window-based ongestion ontrol,� in Proeedings of IEEE INFOCOM,Miami, FL, Marh 2005, 2005.[31℄ S. Floyd and V. Jaobson, �Random early detetion gateways for ongestionavoidane,� IEEE/ACM Transations on Networking, vol. 1, no. 4, pp. 397�413,1993.[32℄ D. Chiu and R. Jain, �Analysis of the inrease and derease algorithms forongestion avoidane in omputer networks,� Computer Networks, vol. 17, pp.1�14, 1989.[33℄ T. Kelly, �Salable TCP: Improving Performane in HighSpeed Wide Area Net-works,� 2003.[34℄ Yee-Ting Li, Douglas Leith, and Robert N. Shorten, �Experi-mental Evaluation of TCP Protools for High-Speed Networks,�http://hamilton.ie/net/eval/HI2005.htm.[35℄ A. Aggarwal, S. Savage, and T. Anderson, �Understanding the performane ofTCP paing,� in Proeedings on INFOCOM 2000, 2000, pp. 1157�1165.[36℄ R.L. Cruz, �A alulus for network delay. I. Network elements in isolation,� IEEETransations on Information Theory, vol. 37, pp. 114�131, Jan 1991.[37℄ David X. Wei, �Congestion ontrol algorithms for high speed long distane tponnetions,� Teh. Rep., California Institute of Tehnology, Jun 2004.

151[38℄ Injong Rhee and Lisong Xu, �CUBIC: A New TCP-Friendly High-Speed TCPVariant,� in Proeedings of PFLDNet 2005, 2005.[39℄ F. Baelli and D. Hong, �AIMD, fairness and fratal saling of TCP tra�,� inProeedings on IEEE Infoom 2002, 2002.[40℄ Doug J Leith and R. Shorten, �Impat of Drop Synhronisation on TCP Fairnessin High Bandwidth-Delay Produt Networks,� in PFLDNet, 2006.[41℄ Vern Paxson, �End-to-end Internet paket dynamis,� in Proeedings of theACM SIGCOMM '97 onferene on Appliations, Tehnologies, Arhitetures,and Protools for Computer Communiation, Cannes, Frane, September 1997,vol. 27,4 of Computer Communiation Review, pp. 139�154, ACM Press.[42℄ M. Borella, D. Swider, S. Uludag, and G. Brewster, �Internet Paket Loss:Measurement and Impliations for End-to-End QoS,� 1998.[43℄ �The Network Simulator - NS-2,� URL: http://www.isi.edu/nsnam/ns/index.html.[44℄ L. Rizzo, �Dummynet: a simple approah to the evaluation of network protools,�ACM Computer Communiation Review, vol. 27, no. 1, pp. 31�41, 1997.[45℄ �PlanetLab: An open platform for developing, deploying, and aessingplanetary-sale servies,� URL:http://www.planet-lab.org.[46℄ Sally Floyd, Mark Allman, Amit Jain, and Pasi Sarolahti, �Internet draft: Quik-start for tp and ip,� Ot 2006.[47℄ Nandita Dukkipati and Nik MKeown, �Why �ow-ompletion time is the rightmetri for ongestion ontrol,� SIGCOMM Comput. Commun. Rev., vol. 36, no.1, pp. 59�62, 2006.[48℄ Y. Yang and S. Lam, �General aimd ongestion ontrol,� 2000.[49℄ Kartikeya Chandrayana, Sthanunathan Ramakrishnan, Biplab K. Sikdar, andShivkumar Kalyanaraman, �On randomizing the sending times in tp and other

152window based algorithms.,� Computer Networks, vol. 50, no. 3, pp. 422�447,2006.[50℄ David X. Wei, Pei Cao, and Steven H. Low, �Fairness Convergene of Loss-basedTCP,� URL: http://www.s.alteh.edu/~weixl/paing/syn.pdf.[51℄ Robert Shorten, Fabian Wirth, and Douglas Leith, �A positive systems modelof TCP-like ongestion ontrol: asymptoti results,� IEEE/ACM Trans. Netw.,vol. 14, no. 3, pp. 616�629, 2006.[52℄ Cheng Jin, David X. Wei, and Steven H. Low, �TCP FAST: motivation, arhi-teture, algorithms, performane,� in Infoom 2004, Mar 2004.[53℄ R. Shorten, D. Leith, J. Foy, and R. Kildu�, �Analysis and design ofongestion ontrol in synhronised ommuniation networks,� in Proeed-ings on 12th Yale Workshop on Adaptive and Learning Systems, may 2003,http://ww.hamilton.ie/doug_leith.htm.[54℄ �GridFTP,� URL: http://www.globus.org/toolkit/dos/4.0/data/gridftp/.[55℄ Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung, �The google �le sys-tem,� in SOSP '03: Proeedings of the nineteenth ACM symposium on Operatingsystems priniples, New York, NY, USA, 2003, pp. 29�43, ACM Press.[56℄ M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, �RFC 2018: TCP SeletiveAknowledgement Options,� Ot 1996.[57℄ S. Jansen and A. MGregor, �Simulation with Real World Network Staks,� inProeedings of Winter Simulation Conferene, De 2005, pp. 2454� 2463.[58℄ �Speeding up NS-2 sheduler,� URL: http://www.s.alteh.edu/~weixl/ns2.html.[59℄ A. Tang, J. Wang, and S. Low, �Counter-intuitive behaviors in networks underend-to-end ontrol,� IEEE/ACM Transations on Networking (TON), vol. 14,no. 2, 2006.

153[60℄ A. Tang, J. Wang, S. Low, , and M. Chiang, �Network equilibrium of hetero-geneous ongestion ontrol protools,� in Proeedings of IEEE Infoom, Marh2005.[61℄ �Linux Kernel Douments: TCP protool,� linux-2.6.16.13/Doumentation/networking/tp.txt.[62℄ Stephen Hemminger, �Network Emulation with NetEm,� in Proeedings of LinuxConferene AU, April 2005.[63℄ P. Sarolahti and A. Kuznetsov, �Congestion Control in Linux TCP,� USENIXAnnual Tehnial Conferene, pp. 49�62, 2002.[64℄ Matt Mathis, Je� Semke, J. Mahdavi, and Kevin Lahey, �Rate Halving Algo-rithm for TCP Congestion Control,� Jun 1999.[65℄ S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, �RFC 2883: An Extensionto the Seletive Aknowledgement (SACK) Option for TCP,� Jul 2000.[66℄ �A mini-tutorial for NS-2 TCP-Linux,� URL:http://www.s.alteh.edu/~weixl/ns2.html.[67℄ �A Linux TCP implementation for NS-2,� URL:http://www.s.alteh.edu/~weixl/ns2.html.[68℄ Randy Brown, �Calendar Queues: A Fast O(1) Priority Queue Implementationfor the Simulation Event Set Problem,� Communiations of the ACM, vol. 31,no. 10, pp. 1220�1227, 1988.[69℄ JongSuk Ahn and SeungHyun Oh, �Dynami Calendar Queue,� Thirty-Seond,vol. 00, pp. 20, 1999.[70℄ Kah Leong Tan and Li-Jin Thng, �SNOOPy Calendar Queue,� in Proeedings ofthe 32nd Winter Simulation Conferene, Orlando, Florida, 2000, pp. 487�495.

154[71℄ M. Allman, �RFC 3465 - TCP Congestion Control with Appropriate Byte Count-ing (ABC),� Feb 2003.[72℄ S. Floyd, M. Handley, and J. Padhye, �A omparison of equation-based and aimdongestion ontrol,� 2000.[73℄ Je�rey Dean and Sanjay Ghemawat, �MapRedue: Simpli�ed Data Proessingon Large Clusters,� in OSDI'04: Sixth Symposium on Operating System Designand Implementation, Deember 2004.

