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Abstract

This thesis is a compilation of three essays that bridge the theoretical and empirical study of financial

markets. The subjects of study in the three main chapters are (i) equilibrium models of asset prices and

asset holdings and trade; (ii) limited computational capacity and its interaction with asset prices and trades.

In chapter 1 (joint with Peter Bossaerts) we show that statistical improvements can be made on a

traditional test of portfolio “efficiency.” Testing portfolio efficiency is used in the practice of investment

decisions as well as to test theoretical models of asset prices (CAPM and multifactor models). We propose

a parametric family of tests of the efficiency of a portfolio in a market with a risk-free asset. All tests in the

family compare the mean-variance ratio of the tested portfolio (benchmark) with that of a different portfolio

(reference). We show that the power of a test in our proposed family depends on the correlation between

the benchmark and the reference portfolio. This provides a way to improve the power of efficiency tests for

a given sample, by choosing the appropriate test in this family.

Chapter 2 (joint with Peter Bossaerts and William Zame), is a test of the theory of dynamically complete

markets. In this work we compare prices and portfolio choices in complete and incomplete experimental

financial markets. The incomplete-markets treatment differs from the complete-markets one in that we

close one market, and announce, halfway through trading, which of three states will not occur. We find

prices and allocations to be analogous across the two treatments, as predicted by theory. In particular,

subjects’ additional trading in the incomplete-markets treatment is such that the final allocations become

indistinguishable from the complete-markets treatment. The results show that participants form rational

expectations about retrade prices, which is a very strong finding.

Chapter 3 (joint work with Peter Bossaerts and Jernej Copic) moves away from existing theoretical

paradigms. It explores the implications of analyzing intellectual discovery as the solution of a nonincremental

problem, outside the reach of traditional models of learning with updating. The experiment sets up a situation

that is non-incremental and where Bayesian updating is not a sensible model. In this framework we find

that communication is possible, and that a primitive code is good enough to achieve intellectual discovery,

not discourage it.
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Abstract

We propose a parametric family of tests of the mean-variance efficiency of a portfolio in a market with a

risk-free asset. All tests in the family compare the mean-variance ratio of the tested portfolio (the benchmark

portfolio) with the same ratio for a different portfolio, called the reference portfolio. The Gibbons-Ross-

Shanken test belongs to this family, and the reference in this case is the ex-post tangency portfolio of the

market. We show that the power of a test in our proposed family depends on the correlation between the

benchmark and the reference portfolio. This correlation, and thus, the power of the test, can be manipulated

by changing the value of the parameter that spans the family. In particular, for a given sample, a power

maximizing test can be easily found in the family we propose. This power-maximizing test will generically

not be the Gibbons-Ross-Shanken test.
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1.1 Introduction

The mean and the variance of a portfolio are the most commonly used and reported measures of its goodness.

Mean-variance efficiency is a minimal criterion to sort portfolios along these two dimensions of performance,

and is therefore widely used and reported. On the other hand, the mean-variance efficiency of the market

portfolio is one of the main results of the CAPM model, adding to the reasons why the measurement of

mean-variance efficiency is relevant.1

If a portfolio is mean-variance efficient, the mean returns of all assets can be represented as coming from

two sources, one of them being the mean-variance efficient portfolio, and the other being an asset with fixed

returns. In other words, mean excess returns (excess over the return of an asset with fixed return) of all

assets are a linear transformation of the mean excess return of a mean-variance efficient portfolio. If the

distribution of returns of all assets is known, the above result can be readily used to establish what portfolios

are mean-variance efficient. In reality, the distribution of returns is unknown and must be recovered from a

sample of realizations. The statistical equivalent to verifying the linear transformation result is to establish

whether the Jensen alphas are statistically different from zero. This question spans a class of tests used to

establish mean-variance efficiency of an arbitrary portfolio, to test the CAPM if the market portfolio is used,

and to test other, non-equilibrium, asset pricing models, like the multi-factor models. This is why much

of what is claimed about the empirical success or failure of asset pricing models, as well as about portfolio

performance in general, depends on the statistical properties of this class of tests.

We propose a family of tests that lies in this class. It is based on the GRS test proposed in Gibbons,

Ross, and Shanken [1989], and comprises this test as a special case. Under the assumption that a risk-free

asset exists, the GRS test is nowadays the standard test of mean-variance efficiency, because of its simple

way of dealing with the twofold statistical problem of multiple hypothesis testing and serial correlation. It

has, however, been subjected to the criticism of having low statistical power.2 This is the issue we deal with.

On one hand, we point at the source of the power properties of the family that we propose (including the

GRS test), and the Gibbons test (see Gibbons [1982]).3 On the other hand, we reduce the problem of finding

a powerful test - within the family we propose - to that of changing a single parameter.

The idea behind the possibility of improving upon the power of the GRS test is very simple. Suppose a

statistician is faced with the task of finding out whether the means of two random variables, X and Y , are

equal. To do this, she is endowed with two tools. One is a finite sample taken from the true joint distribution

of X and Y . The other tool is the power of choosing the correlation of X and Y . It is clear that, given

such power, she will choose maximal correlation, since this minimizes the variance of the statistical inference

she can make from the sample. Statisticians rarely have this power. However, the econometrician that is

trying to assess the mean-variance efficiency of a portfolio implicitly has this power. The family of test

1Mean-variance efficiency of the market portfolio can also be derived as an “approximate” result in equilibrium pricing
models with assumptions on preferences or return distributions that differ from those in the CAPM.

2The power of a test is the probability of rejecting the null hypothesis when it is false.
3The Gibbons test is the equivalent of the GRS test in the absence of a risk-free asset. If used in the presence of a risk-free

asset, it is in principle a weaker test than the GRS. Nonetheless, the Gibbons test has in occasions rejected the null hypothesis
where the GRS has not. This fact lies at the heart of the claim that the GRS has low power.
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statistics that we propose is based on the comparison between two portfolios (like the comparison between

X and Y that the statistician had to make). The GRS test fixes this comparison to be between the sample

mean-variance efficient portfolio and the portfolio whose mean variance efficiency is being tested. We claim

that the latter need not be compared to the sample mean-variance efficient portfolio in order to asses its

efficiency. In fact, the family of tests we propose is given by a parameter identifying other candidates for

comparison. Picking a different candidate is equivalent to choosing a different covariance for the random

variables being compared. This is how statistical power can be increased.

Of course, the econometrician does not know the true covariance of portfolios, that can lead to improved

power. An estimate must be used instead. We use this estimate to find the power maximizing test within

the family we propose, for a sample of CRSP data on portfolio returns. We show that power improvements

over the GRS test can be very significant.

In the following section we introduce notation and define mean-variance efficiency. In section 3 we

propose a family of mean-variance efficiency tests and give its statistical properties. In section 4 we develop

the intuition that tests of mean-variance efficiency are based on the comparison between two portfolios, and

give the result that the power of the test depends on the true correlation between these portfolios. We

analyze the power of the proposed family of tests in section 5. In section 6 we give numerical examples of

applications of our proposed power improving tests. We conclude in section 7, suggesting extensions of this

work, and a possible answer to the puzzle mentioned in footnote 3.

1.2 Problem Statement

Throughout this paper we will use efficiency to refer to mean-variance efficiency of a portfolio. We proceed

to define this latter notion, after giving the necessary setup and notation.

Let {R̄, Ω} denote a market. For our purpose a market is fully defined by mean and covariance of asset

returns. Risky assets have random returns denoted R = (R1, . . . , RN ). The vector of mean returns of risky

assets is denoted R̄ =
(
R̄1, . . . , R̄N

)
, and Ω is the N ×N matrix of asset return covariances. We will mostly

consider markets where there is a risk-free asset, with fixed, known return RF . For clarity, we will use {R̄, Ω}

whenever referring to a market with no risk-free asset, and {R̄, Ω, RF } whenever referring to a market with

a risk-free asset.

A portfolio, p, is a combination of assets. Let wp = (wp1, . . . , wpN ) denote the relative holdings of each

risky asset that makes up portfolio p. Each weight is the fraction of total wealth invested in the corresponding

asset. The residual, (1−w′
p1), gives the relative holding of the risk-free security. The mean return of portfolio

p is R̄p = w′
pR̄ + (1 − w′

p1)RF , and its variance is σ2
p = w′

pΩwp. The covariance between portfolio p and all

risky assets is the vector (σp1, . . . , σpN ) = w′
pΩ, and the covariance of two portfolios p and q is σpq = w′

pΩwq.

The Sharpe ratio of portfolio p is defined to be

SRp =
R̄p − RF

σp

.
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The Sharpe ratio of a portfolio is its measure of efficiency. Given {R̄, Ω, RF }, a portfolio is efficient if it has

maximal Sharpe ratio. Alternatively, we say that portfolio e is efficient if we solves the following program:

min
w

w′Ωw (1.1)

s.t. R̄e = w′R̄ + (1 − w′1)RF

for a target mean return R̄e.

It is clear from (1.1) that there are many efficient portfolios, depending on the chosen target mean

return, R̄e. All efficient portfolios in {R̄, Ω, RF } have the same Sharpe ratio, which clearly means that they

are located on a line in mean-variance space. In other words, if program (1.1) is solved for all Re, the solution

is a linear relation between the mean and standard deviation of efficient portfolios, with slope equal to the

maximal Sharpe ratio. Specifically, the solutions to program (1.1) define the following efficient frontier for

market {R̄, Ω, RF }:

R̄e = RF +

(√
(R̄ − RF 1)′Ω−1(R̄ − RF 1)

)
σe,

and the maximal Sharpe ratio in market {R̄, Ω, RF }, is the slope in the above expression,

SR∗ = SRe =
R̄e − RF

σe

=

√(
R̄ − RF 1

)′
Ω−1

(
R̄ − RF 1

)
.

The efficient frontier in market {R̄, Ω, RF } is affine because of the presence of the risk-free asset. One can

linearly trade off mean return and standard deviation by changing the relative holding of the risk-free asset

with respect to a fixed portfolio of risky assets. This fixed portfolio of risky assets is the tangency portfolio

corresponding to RF , which will be denoted by t, and has weights wt = Ω−1(R̄−RF 1)

1′Ω−1(R̄−RF 1)
.

The tangency portfolio for market {R̄, Ω, RF }, is efficient in this market as well as in market {R̄, Ω},

where there is no risk-free asset. It lies at the tangency of the efficient frontier for market {R̄, Ω, RF } and

that of market {R̄, Ω}. The latter is not a line in mean-standard deviation space. It is a parabola that lies

within the efficient frontier for the market with a risk-free asset, since more combinations of assets can be

achieved in the larger market, {R̄, Ω, RF }. Figure 1.1 shows an example of efficient frontier for a market

without risk-free asset, the efficient frontier once a risk-free asset is added, and the tangency portfolio for

{R̄, Ω, RF }.

An important property of an efficient portfolio is that, for all assets in the market, the excess return

(difference of the asset’s return and the return of the risk-free asset) of an asset is a linear transformation of

the excess return of the efficient portfolio. This property lies at the heart of the family of tests that we will

propose, as well as the GRS test of Gibbons, Ross, and Shanken [1989]. Thus, for n ∈ {1, . . . , N} it holds

that

R̄n − RF =
σen

σ2
e

(R̄e − RF ). (1.2)

For the sake of completeness, we include one derivation of the above expression. Define a portfolio φ
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Figure 1.1. Efficient frontier for a market with a risk-free asset (straight line), and for a market without a
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with the following mean and variance of returns:

R̄φ = φR̄e + (1 − φ) R̄p,

σφ =
[
φ2σ2

e + (1 − φ)2 σ2
p + 2φ (1 − φ) σep

] 1
2

,

where p is an arbitrary portfolio. The Sharpe ratio of the efficient portfolio can be found as the derivative

of R̄φ with respect to σφ, evaluated at φ = 1. Thus,

∂R̄φ

∂σφ

∣∣∣∣
φ=1

= −

∂R̄φ

∂φ

∂σφ

∂φ

∣∣∣∣∣∣
φ=1

=
R̄e − RF

σe

.

Solving for the above equation gives the result in (1.2).

The question we deal with in this paper is whether a given portfolio, called the benchmark, is efficient

in the market {R̄+b, Ω+b, RF }, where R̄+b =
(
R̄1, . . . , R̄N , R̄b

)
is an (N + 1) × 1 vector of mean returns of

assets, where the N + 1th asset is portfolio b, and Ω+b is the variance-covariance matrix of the vector of

returns R+b. The question of the efficiency of the benchmark is clearly equivalent to asking whether it is

true that

R̄n − RF =
σbn

σ2
b

(
R̄b − RF

)
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for n ∈ {1, . . . , N}.

1.3 A Translation Family of Tests

Define Rγ = RF − γ, where γ is an arbitrary real number. Efficiency of portfolio b can be restated to be the

condition that

R̄n − Rγ =
σbn

σ2
b

(
R̄b − Rγ

)
+

(
1 −

σbn

σ2
b

)
γ (1.3)

hold for n ∈ {1, . . . , N}.

A regression-based empirical test of the efficiency of a benchmark portfolio, b, can be defined for every

γ, thus defining a parametric family of efficiency tests.

1.3.1 Regression and Joint Null Hypothesis Test

In market {R̄+b, Ω+b, RF }, let
[
RT RT

F

]
be a sample of size T taken from the true distribution of asset

returns, and let RT
γ = RT

F − γ1T , be the sample of RF translated by γ. Fix γ and define the following

projection of risky assets excess returns (in excess of Rγ) on the excess return of the benchmark portfolio:

Rnτ − Rγτ = αn (γ) + βγn(Rbτ − Rγτ ) + ǫnτ , (1.4)

E[ǫτ ] = 0, E[ǫτ (Rbτ − RFτ )] = E[ǫτ (Rbτ − Rγτ )] = 0,

n ∈ {1, . . . , N}, τ ∈ {1, . . . , T},

where τ identifies the sample point or time, and ǫτ = (ǫ1τ , . . . , ǫNτ ) is a vector of errors, assumed to be

independent across τ .

If b is (mean-variance) efficient, equation (1.3) holds for all assets. The null hypothesis is thus a multi-

variate hypothesis on the value of α (γ) = (α1 (γ) , . . . , αN (γ)) and βγ = (βγ1, . . . , βγN). By construction, in

the above projection, βγn = σbn

σ2
b

. Thus, the null hypothesis reduces to the hypothesis on the value of α (γ)

given below:

H0 : α (γ) = (1 − βγn) γ

∀n ∈ {1, . . . , N}.

Let α̂ (γ) and β̂γ be the least-squares estimators of α (γ) and βγ . Asymptotically, or under the additional

assumption that ǫτ are normally distributed, α̂ (γ) satisfies

α̂ (γ) ∼ N

(
α (γ) ,

1

T

[
1 +

µ̂2
bγ

σ̂2
b

]
Σ

)
,
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where

µ̂bγ =
1

T

T∑

τ=1

(Rbτ − Rγτ ) , and

σ̂2
b =

1

T

T∑

τ=1

(Rbτ − RFτ − µ̂b)
2.

For expositional ease we will assume normality of the white noise error terms,

ǫτ ∼ N(0, Σ),

where Σ is the N × N matrix of covariances of ǫnτ over n.

Given the least-squares regression estimates, α̂ (γ), there are several ways to test the joint null hypothesis,

αn (γ) = 0 for all n. We follow Gibbons, Ross, and Shanken [1989], and propose the following test:

Definition 1 (γ-GRS test). We define the γ-GRS test of the efficiency of a portfolio with the estimator

J (γ) = T

[
1 +

µ̂2
bγ

σ̂2
b

]−1

[α̂ (γ)]
′
Σ−1 [α̂ (γ)] ,

and the null hypothesis

H0 : α (γ) = (1− βγ) γ.

Under our projection assumptions, J (γ) has a non-central chi-square distribution with N degrees of

freedom and non-centrality parameter λ (γ). That is,

J (γ) ∼ χ2
N (λ (γ)) ,

where λ (γ) = T

[
1 +

µ̂2
bγ

σ̂2
b

]−1

α (γ)
′
Σ−1α (γ) .

(1.5)

When Σ is unknown, it can be replaced with a consistent estimator Σ̂. In that case, the finite-sample

distribution of J (γ) is F with N and (T − N − 1) degrees of freedom (see Gibbons, Ross, and Shanken

[1989]). In large samples J (γ) will have a non-central χ2 distribution, and the assumption of normality of

ǫτ can be dropped.

We will work with the finite-sample (non-central) χ2 distribution, but our analysis applies to the finite

sample F distribution and the large-sample χ2 distribution, mutatis mutandis. The statistical properties

hold for all values of γ.

1.3.2 GRS Test; γ = 0

The γ-GRS test for γ = 0 deserves special attention. It is the original GRS test developed in Gibbons, Ross,

and Shanken [1989]. When γ = 0 the projection presented in (1.4) becomes a projection of assets’ excess
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returns with respect to the risk-free return, on the excess return of the benchmark portfolio, b.

Rnτ − RFτ = αn (0) + β0n (Rbτ − RFτ ) + ǫnτ (1.6)

ǫτ = (ǫ1τ , . . . , ǫNτ) , E[ǫτ ] = 0, E[ǫτ (Rbτ − RFτ )] = 0,

n ∈ {1, . . . , N}, τ ∈ {1, . . . , T}.

The test of efficiency is given by

J (0) = T

[
1 +

µ̂2
b0

σ̂2
b

]−1

α̂′ (0)Σ−1α̂ (0)

H0 : α (0) = 0.

J (0) has a non-central chi-square distribution with non-centrality parameter defined in (1.5). In this

special case of γ = 0, the distribution of J (0) under the null hypothesis is a chi-square with N degrees of

freedom (the non-centrality parameter becomes zero).

The test estimator, J (0), has a well-known financial interpretation, which can be extended to J (γ), for

γ 6= 0. This interpretation, and an interpretation of the statistic’s non-centrality parameter in terms of asset

correlations, are the subject of the next section.

1.4 Interpretations of the γ-GRS Test

1.4.1 Sharpe Ratios

The GRS test has an insightful financial interpretation. The J (0) statistic can be split into two parts. The

term T
[
1 +

µ̂2
b0

σ̂2
b

]−1

takes care of scaling, accounting for the size of the sample and the exact location of

the benchmark portfolio. The term α̂ (0)
′
Σ−1α̂ (0) summarizes the estimated value of the intercept terms

(αn (0)’s), accounting for the correlations between different securities. Gibbons, Ross, and Shanken [1989]

show that

α̂ (0)
′
Σ−1α̂ (0) =

(
ŜR

∗)2

−
(
ŜR

b
)2

, (1.7)

where ŜR
∗

is the sample Sharpe ratio of the tangency portfolio in market {R̄+b, Ω+b, RF }. ŜR
b
is the sample

Sharpe ratio of the benchmark portfolio. ŜR
∗

and ŜR
b

are defined to be

(
ŜR

b
)2

=
µ̂2

b0

σ̂2
b

, and

(
ŜR

∗)2

= µ̂′
0Ω̂

−1
+b µ̂0,
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where µ̂0 and Ω̂+b are sample estimates of R̄+b and Ω+b. Thus,

µ̂0 =
1

T

T∑

τ=1

(Rτ − RFτ1) , and

Ω̂+b =



 σ̂2
b σ̂2

b β̂′
0

σ̂2
b β̂0 σ2

b β̂0β̂
′
0 + Σ



 .

J (γ), for γ 6= 0 can be analogously interpreted. Let {R̄+b, Ω+b, Rγ}, be a market with the same set

of risky assets as {R̄+b, Ω+b, RF }, but where the risk-free return is given by Rγ = RF − γ instead of RF .

The theoretical and sample values of the Sharpe ratio of the tangency and the benchmark portfolio can be

redefined for this market. The sample values are

(
ŜR

b
(γ)
)2

=
µ̂2

bγ

σ̂2
b

, and

(
ŜR

∗
(γ)
)2

= µ̂′
γΩ̂−1

+bγ µ̂γ ,

where

µ̂γ =
1

T

T∑

τ=1

(Rτ − Rγτ ) , and

Ω̂+bγ =



 σ̂2
b σ̂2

b β̂′
γ

σ̂2
b β̂γ σ2

b β̂γ β̂′
γ + Σ



 .

The financial interpretation of J (γ) is given by

α̂ (γ)
′
Σ−1α̂ (γ) =

(
ŜR

∗
(γ)
)2

−
(
ŜR

b
(γ)
)2

.

In mean-standard deviation space, Sharpe ratios are the slopes of straight lines connecting the risk-free

rate and the portfolios at hand. In the case of the GRS test, the question of efficiency of the benchmark

portfolio can be interpreted as the question of whether the slope of the line passing through (0, R̂F ) and point

(σ̂b, µ̂b0), can be considered statistically equal to the slope of the sample efficient frontier. When γ 6= 0, the

test statistic still compares the slopes of lines passing through the risk-free rate and either the tangency or

the benchmark portfolio. However, the risk-free rate is now R̂γ , the tangency portfolio is efficient in market

{µ̂γ , Ω̂+b,γ , R̂γ}, and the question is no longer whether these two slopes are equal. Instead, the question is

whether the difference between the two slopes can be deemed statistically equal to γ2 (1 − βγ)
′
Σ−1 (1− βγ).

The solid lines in figure 1.2 are the Sharpe ratios ŜR
∗

and ŜR
b
. The quantity α̂ (0)

′
Σ−1α̂ (0) is the difference

between the squared slopes of these two lines. The dashed lines are ŜR
∗
(γ) and ŜR

b
(γ).

From the above discussion it is clear that J (γ) is equal to J (0) in market {R̄+b, Ω+b, Rγ}, where the

risk-free rate RF is replaced with Rγ . In other words, in constructing J (γ) we invent a fictitious market
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Figure 1.2. The solid lines are ŜR
∗

and ŜR
b
. The dashed lines are ŜR

∗
(γ) and ŜR

b
(γ), for γ 6= 0.

with a fictitious risk-free rate, Rγ , and a fictitious tangency portfolio - lying on the efficient frontier for

{R̄+b, Ω+b, Rγ} - to which the benchmark portfolio is compared. If the null hypothesis were that α (γ) = 0,

this would be a test of efficiency of portfolio b in the market {R̄+b, Ω+b, Rγ}. That is why the null hypothesis is

appropriately modified to test efficiency of portfolio b in market {R̄+b, Ω+b, RF } using the tangency portfolio

for market {R̄+b, Ω+b, Rγ}.

It must also be noted that when we compare the slopes of the two dashed lines in figure 1.2, we are in

fact comparing the benchmark portfolio to a new reference portfolio tγ (the tangency portfolio in market

{R̄+b, Ω+b, Rγ}) that is not necessarily efficient in market {R̄+b, Ω+b, RF }. That is, the performance of

the benchmark b will no longer be compared to the tangency portfolio t. If the new reference portfolio is

not the best available portfolio, under the null that the benchmark portfolio is mean-variance optimal, the

benchmark may sometimes outperform the (suboptimal) reference portfolio. The adjusted critical region,

through adjusted null hypothesis, will reflect this.

1.4.2 Portfolio Correlations

To better understand what statistical differences there are between J (γ) for different values of γ, it is useful

to interpret the population value α′ (0)Σ−1α (0) in terms of the correlation between the benchmark and the

tangency portfolios.4

Let {R̄+b, Ω+b, RF } be the market from which the sample
[
RT RT

F

]
is taken. We will show that

α′
0Σ

−1α0 = (SR∗)2
(
1 − ρ2

tb

)
, (1.8)

4Of course, the same interpretation holds for other values of γ. For illustration purposes it is more useful to limit attention
to the interpretation of α′ (0) Σ−1α (0); thus, the case of γ = 0.
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where the absence of “hats” denotes population values, and ρtb is the correlation between the tangency

portfolio t and the benchmark portfolio b, i.e.,

ρtb =
σbt

σtσb

.

To show (1.8), we must first note that the result in the previous subsection (see equation (1.7)) can be

easily proven for population values. Thus,

α′
0Σ

−1α0 = (SR∗)
2 −

(
SRb

)2
. (1.9)

The tangency portfolio is efficient, and therefore,

R̄ − RF 1 =
Ω+bwt

σ2
t

(R̄t − RF ),

where
Ω+bwt

σ2
t

is the vector of covariances of all assets in market {R̄+b, Ω+b, RF }, with the tangency portfolio

in that market. In particular, it is true that

R̄b − RF =
σbt

σ2
t

(
R̄t − RF

)
. (1.10)

Use equations (1.9) and (1.10) above, plus the definition of the Sharpe ratio of a portfolio to derive (1.8)

as follows:

α′
0Σ

−1α0 = (SR∗)
2 −

(
SRb

)2

= (SR∗)2 −

[
σbt

σ2
t

(
R̄t − RF

)

σb

]2

= (SR∗)
2 −

[
σbt

σtσb

(
R̄t − RF

)

σt

]2

= (SR∗)
2 −

(
σbt

σtσb

)2

(SR∗)
2

= (SR∗)
2 (

1 − ρ2
bt

)
.

Under the null hypothesis that α (0) = 0, the distribution of the GRS test estimator is central chi-square.

However, equation (1.8) tells us that when the null hypothesis is not true, the non-centrality parameter of

the test statistic will depend on the covariance between the (population) return of the benchmark portfolio

and the tangency portfolio. This fact means that the power of the efficiency test depends on this correlation.

Specifically, the non-centrality parameter of the distribution of J (0) equals

λ = T

[
1 +

(µ̂b0 − RF )
2

σ̂2
b

]−1 [
(SR∗)2

(
1 − ρ2

tb

)]
. (1.11)
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For a fixed critical region given by a point xs, the area to the right under the relevant density is the

power of the test. This area will normally be larger for a larger value of λ. From equation (1.11), λ is larger

for a smaller correlation between b and the tangency portfolio.

Hence, to have a powerful test it is desirable to have a small correlation between the benchmark portfolio

and the tangency portfolio. For a fixed benchmark portfolio, we will want to move the tangency portfolio

to get better power. The use of a γ-GRS test is a way to take advantage of this possibility. By introducing

γ 6= 0, we “move” the relevant tangency portfolio, and may improve power by doing this. The possibility of

power improvement will be extensively dealt with in the next section.

1.5 Power of γ-GRS Tests

In this section we introduce new notation and definitions of power and size of the γ-GRS tests. These will be

used in an example to illustrate the intuition behind the possibility of designing tests that are more powerful

than the GRS test, and in our description of the power function at the end of the section.

Let λ (γ) denote the non-centrality parameter of the distribution of J (γ) when the null hypothesis is true

(α0 = 0). If the null hypothesis is false, so that α (0) = c 6= 0, we define

λ̃ (γ, c) = T

[
1 +

µ̂2
bγ

σ̂2
b

]−1

[c + (1− βγ) γ]′ Σ−1 [c + (1− βγ) γ] ,

which is the non-centrality parameter of the distribution of J (γ) when α (0) = c.

Let F (y, λ) denote the probability that a variable with a χ2
N (λ) distribution (non-central chi-square

distribution with N degrees of freedom and non-centrality parameter λ) be smaller than y. Let F−1 (s, λ)

denote the sth quantile of a χ2
N (λ) distribution.

Definition 2 (Critical Region). The critical region of a statistical test is the set of values of the test statistic

for which rejection of the null hypothesis is prescribed.

In the tests we consider here, the critical region is given by a cutoff point, xs, such that the null hypothesis

is rejected if J (γ) > xs.

Definition 3 (Size). The size of a test is the probability of rejecting the null hypothesis when it is true.

Given a cutoff point xs that defines a critical region [xs,∞), the size of the γ-GRS test is given by

1 − F (xs, λ (γ)) . (1.12)

It is common trade to fix the size of a test and find the critical region that will deliver this size. That is,

given a size, 1 − s, a cutoff point

xs (γ) = F−1 (s, λ (γ)) (1.13)
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can be found to define the critical region for the test. In equations (1.12) and (1.13), λ (γ) is given by

λ (γ) = T

[
1 +

µ̂2
bγ

σ̂2
b

]−1

γ2 (1− βγ)′ Σ−1 (1− βγ) ,

which is the value of the non-centrality parameter for the distribution of J (γ) under the null hypothesis.

The power of a test relates to the distribution of the test statistic under the alternative hypothesis. Since

the alternative hypothesis is typically an interval, not a point, power is given by a function over this interval.

We will return to this in a later subsection.

Definition 4 (Power). The power of a test is the probability of rejecting the null hypothesis when it is

false. Given a critical region [xs,∞), and given the true value of the Jensen α’s, α (0) > 0, in market

{R̄+b, Ω+b, Rγ}, the power of the γ-GRS test is given by

1 − F
(
xs, λ̃ (γ, α (γ))

)
.

The following example illustrates the way in which the power and the size of the γ-GRS test relate to

the value of γ.

1.5.1 Example: Power Changes with Value of γ

The example we give in this subsection shows a dramatic (unfavorable) change in the power of an efficiency

test, as a product of using a specific γ 6= 0, instead of the standard γ = 0 (GRS test). In this exercise, no

attempt is made to maximize power. The value of γ is chosen in the “clumsiest” possible way, to show how

badly things can go if γ is poorly picked.

Consider a situation where the benchmark portfolio b is not efficient, but lies on the efficient frontier for

the market with risky assets only, {R̄+b, Ω+b}. In this case, a γb can be found, such that the combinations of

risky assets and a fictitious risk-free asset with return Rγb = RF − γb, lie on the line tangent to the efficient

frontier for market {R̄+b, Ω+b} at b. Figure 1.3 illustrates this situation.

The null hypothesis (H0 : α (0) = 0) can be tested using J (γ) for any γ. We use two tests from this

family and compare their performance in terms of power. The tests we choose are J (0), and J
(
γb
)
. We

also pick the tests to have the same size 1 − s (in the figures we set 1 − s = 0.05). If the null had been true,

the distributions of J (RF ) and J
(
γb
)

would be given by the non-centrality parameters λ (0) (always equal

to zero), and λ
(
γb
)

respectively.

γ = 0 γ = γb

α (γ) 0
(
1− βγb

)
γb

λ (γ) 0 T
[
1 +

µ̂2
bγ

σ̂2
b

]−1 (
γb
)2

(1 − βγ)
′
Σ−1 (1− βγ)

However, the null is not true. In this case, we know that α0 = −γb
(
1− βγb

)
(since α

(
γb
)

= 0 because b

is an efficient portfolio in the fictitious market where RF is replaced with Rγb , {R̄+b, Ω+b, Rγb}). As a result,
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Figure 1.3. The benchmark portfolio b is not efficient, but lies on the efficient frontier for market {R̄+b, Ω+b}.
We can draw a tangent that has intercept Rγb .

under the true alternative hypothesis that α0 = −γb
(
1− βγb

)
, the parameter c (γ) (alternative hypothesis

value of α (γ)) and the non-centrality parameter are given in the following table:

γ = 0 γ = γb

c (γ) −γb
(
1− βγb

)
0

λ̃ (γ, c) T
[
1 +

µ̂2
b

σ̂2
b

]−1 (
−γb

)2 (
1− βγb

)′
Σ−1

(
1− βγb

)
0

The combination of the fixed size 1− s and the distribution under the false null hypothesis may produce

the situation depicted in figure 1.4.5

The cdf of J (0) under the (false) H0 coincides with the cdf of J
(
γb
)

for the (true) H1. Critical regions

for both tests are determined using the distribution under the (false) null hypothesis. These regions, for

size 0.05 are depicted in figure 1.4. The cutoff point for J (0) lies to the left of the cutoff point for J
(
γb
)
,

defining a probability of rejecting the null hypothesis, given that it is false, which is depicted in figure 1.5.

The cdf of J
(
γb
)

under the (false) H0 is almost identical to that of J (RF ) under H1.
6 In figure 1.5 we can

immediately see that the test using J (0) will be more powerful.

We will now attempt to use the potential depicted in this example to our advantage. The objective is to

5We say “may” because the non-central χ2 is not linear in the non-centrality parameter. The exact values of λ (RF ) and
λ

`

γb
´

, the degrees of freedom, and the size will jointly determine the ordering of cutoff points.
6To generate these plots we used CRSP data compiled by Fama and French [2004]. The specific series are monthly returns

to 12 industry portfolios, returns from one-month Treasury Bills, and a portfolio of indices. The benchmark b is chosen to fit
the example. Even though it seems that the cdf of J

`

γb
´

under H0 is identical to that of J (0) under H1, they are slightly
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and J (0) with size 0.05.
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design a test that is more powerful than the GRS test.

1.5.2 Power Function and Power Improvement

Fix a critical region given by the cutoff point xs. For each γ we can define the power function given the

critical region to be

p (c; xs, γ) = P (J (γ) > xs|α (0) = c) = 1 − F
(
xs, λ̃ (γ, c)

)
, (1.14)

where c is an arbitrary non-zero vector. That is, c is a value of α (0) that does not satisfy the null hypothesis.

The power of a test depends on the exact true value of the relevant parameter (α (0), in this case). Since

this value is unknown, power functions are defined for all possible values of the relevant parameter that

correspond to the alternative hypothesis.

Equation (1.14) gives the power for a fixed cutoff point, and different values of γ and c. Notice, though,

that the size of the test for a fixed cutoff point, is also changing with γ. It is more desirable to fix the size of

the test, allow the cutoff point to adjust appropriately (as a function of γ), and define power as a function

of size, γ, and the value c.

π (c; s, γ) = 1 − F
(
xs (γ) , λ̃ (γ, c)

)
,

where xs (γ) = F−1 (s, λ (γ)). Hence, the power function is affected by the distribution both under the null

and under the alternative hypotheses.

The naive approach to the problem of finding an optimal test in the γ-family of tests, is to attempt to

maximize the power function stated above. This function is differentiable and locally concave, so first order

conditions can be found (and second order conditions locally checked), and are stated below.

FOC:

0 =
∂F
[
F−1 (s, λ (γ)) , λ̃ (γ, c)

]

∂λ̃ (γ, c)

∂λ̃ (γ, c)

∂γ

+
∂F
[
F−1 (s, λ (γ)) , λ̃ (γ, c)

]

∂F−1 (s, λ (γ))

∂F−1 (s, λ (γ))

∂λ (γ)

∂λ (γ)

∂γ
.

Three points become immediately apparent from setting up the maximization problem:

1. The dependence on the alternative hypothesis, c, does not disappear at the maximum. That is, there

is no γ that will maximize power for all possible points violating the null hypothesis.7

different. In particular: λ
`

γb
´

= 4.95, while

λ̃
“

0,−γb (1 − β)
”

= 4.93.

This difference is introduced by the scaling factor T

"

1 +

“

µ̂
bγb

”

2

σ̂2
b

#

−1

.

7Notice that the notion of uniformly most powerful test in this case is different from the standard use of the term. This is
so because the possibility of affecting power through γ relies on an assumption about the correlation between the benchmark
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2. The first-order condition cannot be solved analytically, even for a fixed value of c. Numerical methods

must be use to find maxima.

3. The fact that there is no test that maximizes power for all values of c implies that typically the GRS

test will not maximize power. Moreover, the GRS need not maximize power at the in-sample value of

portfolio correlations (σ̂bt).

In the absence of a γ that maximizes power for all return distributions in the alternative hypothesis,

there are several options of differing validity. The approach we take in the remainder of the paper is to use

a sample estimate of the true value of c and numerically determine the power maximizing γ for this value.

There are several advantages of this approach, starting with its simplicity, and its asymptotic validity (plus

the fact that it does not affect asymptotic distributions of the relevant statistics). Finally, for the purpose

of our examples, this approach serves to illustrate that under the (implicit in all statistics) assumption

that the estimated values are close to true, the GRS can have very poor power. The main disadvantages

of this approach is that it uses sample information “twice,” and it limits all results to one point, with no

consideration of robustness. In the following section we use this approach to illustrate the potential power

gains from γ-GRS tests.

1.6 Numerical Examples

The purpose of this section is to demonstrate that power improvements can indeed be achieved by using

γ 6= 0. We use time series of CRSP monthly returns on 12 value-weighted industrial portfolios, taken from

Fama and French [2004]. The benchmark is also taken from the Fama and French database, and is a weighted

combination of the returns on NYSE, AMEX, and NASDAQ securities. We take the returns on 1-month

Treasury Bills to be the risk-free rate. All series run from July 1926 to December 2003 and are given in

percentage points.

We fix three levels of significance s and find the optimal test by replacing the unknown parameters with

estimates. The first step of this procedure is to run the regressions specified in (1.6). Sample values of β̂, Σ̂,

and α̂ (0) are taken from these regressions and inserted in the power function, which is subsequently used to

find the optimal value of γ. The least-squares regression coefficients and corresponding standard deviations

for each of the industrial portfolios are reported in table 1.1.

Table 1.2 reports the power maximizing γ for three levels of significance: 0.9, 0.95, and 0.99 when

estimation is made over the entire sample. The average risk-free rate over the sample period is reported for

comparison. The percentage increase in power of the test, when the optimal γ (denoted γ̄) is used instead of

the risk-free rate, is given in the last column. The reported risk-free rate is the average monthly percentage

return on T-bonds. Therefore, if we think of Rγ as a fictitious risk-free rate, the reported R̄γ will be monthly

percentage returns.

portfolio and tγ , which is an assumption about c, the true distribution of asset returns. In other words, it makes no sense to
expect there to be a uniformly most powerful test in this situation.
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Table 1.1. Regression (LSE) values of the parameters α0 and β

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

β̂n 0.77 1.17 1.19 0.85 0.98 1.29 0.66 0.81 0.96 0.86 1.13 1.14

σ̂β (0.01) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

α̂0n 0.19 0.12 −0.07 0.18 0.13 0.01 0.13 0.05 0.08 0.28 0.04 −0.18

σ̂α0
(0.08) (0.12) (0.07) (0.12) (0.09) (0.11) (0.1) (0.12) (0.09) (0.11) (0.09) (0.09)

Table 1.2. Overall maximal power values for sample 1926-2002. R̂γ is the fictitious risk-free rate that
corresponds to the power maximizing γ. The gain in power from using the power maximizing γ is also
reported.

s RF R̄γ 100 × π(α̂(0);s,γ̄)−π(α̂(0);s,0)
π(α̂(0);s,0)

0.99 0.31 0.05 3.75

0.95 0.31 0.02 1.3

0.90 0.31 0.005 0.64

Figure 1.6 illustrates estimated power as a function of γ for s = 0.99, for the entire sample. The vertical

line marks the location of RF (since the return on T bills varies over the sample, we take RF to be the

average return on T bills) and crosses the power curve at π (α̂0, RF , s). The maximal value of π (α̂ (0) ; s, γ)

is achieved for R̄γ = RF − γ̄ smaller than RF (R̄γ = 0.05).

Figure 1.7 shows the values of R̄γ and RF for 5-year periods starting June of each year between 1926 and

2002. The test has a significance s = 0.99, and hence its size is 1−s = 0.01. Figure 1.8 shows the percentage

power gains achieved by using Rγ̄ instead of RF over the same group of 5-year periods.

The percentage power gain over the considered five-year periods peaks for the period starting in 1936,

when it is 22.4%. This means that the probability of falsely accepting the mean-variance efficiency of the

benchmark is reduced by as much as 18%.

1.7 An Open Question and Extensions

1.7.1 An Open Question: The Gibbons Test

The Gibbons test of efficiency is an alternative to the GRS test, which has on occasion delivered rejections

of the null hypothesis when the GRS does not reject. This test assumes there is no risk-free rate, and is

expected to be lenient to deliver results that do not reject the null hypothesis. It is meant for markets where

there is no risk-free asset, or where this asset is unknown. When there is no risk-free rate, a result like that

of equation (1.3) can be stated.

R̄n − R̄zb =
σbn

σ2
b

(
R̄b − R̄zb

)
,
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Figure 1.6. Monthly CRSP data on 12-industry portfolios, 1926-2002. Given c = α̂0, and s = 0.99, we can
find power as a function of Rγ .
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Figure 1.7. Yearly five-year periods between 1926 and 2002. The average risk-free rate and power maximizing
Rγ for each period are plotted at the beginning of the period.
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Figure 1.8. Percentage increase in power achieved using maximizing Rγ instead of RF for yearly five-year
periods between 1926 and 2002. The percentage increase corresponding to each period is plotted at the
beginning of the period.

where zb denotes b’s zero-covariance portfolio, which is a portfolio for which σb,zb = 0. This zero-covariance

portfolio is unobservable, and R̄zb = δ becomes a parameter of the model. Gibbons proposes the following

econometric model to estimate δ:

Rnτ − δ = αn (δ) + β (Rbτ − δ) + ǫnτ

ǫτ = (ǫ1τ , . . . , ǫNτ ) ; ǫτ ∼ N (0, Σ)

n ∈ {1, . . . , N}, τ ∈ {1, . . . , T}.

The test of mean-variance efficiency of the benchmark portfolio then becomes a test of whether there

exists a δ such that

α (δ) = (α1 (δ) , . . . , αN (δ)) = 0.

Parameter δ can be estimated using maximum likelihood. Let δ∗ denote the maximum likelihood estimate.

A statistic similar to J (δ) is then computed. Denote it J∗ (δ). One difference with the regression for the

γ-GRS with γ = δ is that the fictitious risk free rate is fixed, while Rδ varies across sample points. This

affects the estimated variance of the assets and portfolios. If this effect is small (for example, if the risk-free

rate RF does not vary much in time), the following discussion sheds light on the differences between the

GRS and the Gibbons tests.

The main difference between the Gibbons test with intercept δ∗ and J (δ∗) is that in the former the
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acceptance region for size 1 − s is determined using a central χ2
N distribution instead of χ2

N (λ (δ∗)).8 As

a result, the Gibbons test uses the wrong critical region if indeed a risk-free rate exists. That is, its size

is wrong. At the same time, since it uses a central χ2
N distribution instead of the χ2

N (λ (δ∗)), given δ∗,

the power of the Gibbons test is larger than that of J (δ∗). The question remains of whether the criterion

of selection of δ∗ naturally leads to a correlation between the benchmark and the tangency portfolio in the

market with risk-free rate δ∗ that improves power. This is a relevant question we leave for future exploration.

1.7.2 Extensions

The main extension relates to the applicability of the power maximization procedure we propose and illustrate

in the numerical examples. Confidence intervals for the power maximizing γ must be found and can be found

through bootstrapping.

A second extension is to attempt maximization of power over subsets of the alternative hypothesis or

points that are defined more abstractly than the one we use now. One such point is the null hypothesis

itself. That is, one can ask the question of what γ will maximize power of the efficiency test when the truth

approaches the null hypothesis. This is the locally most powerful test approach. The option we chose in this

paper is to have a point-wise most powerful test, which is particularly useful for illustration of the power

properties of the GRS test. It may be more useful in practice to have more general results regarding the

direction of change in γ leading to power improvements.

8This is an abuse of notation. When we presented the family of tests J (γ), γ referred to the difference between the fictitious
and the true risk-free rate in the economy. Here, γ is replaced with δ∗, but δ∗ is the fictitious risk-free rate, not the difference
between the dummy and the real rate.
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Chapter 2

Dynamically Complete Experimental

Asset Markets
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Abstract

We compare prices and portfolio choices in complete and incomplete experimental financial markets. The

incomplete-markets treatment differs from the complete-markets one in that we shut down one market, and

that we announce, halfway through trading, which of three states will not occur. The information structure

in the incomplete markets is such that these markets satisfy the necessary condition to be dynamically com-

plete. If they are indeed dynamically complete – a property that depends on the preferences of experiment

participants, the individual holdings and asset prices in the incomplete-market treatment must be equivalent

to those in the complete-market treatment. This is our finding. The distribution of asset holdings is undis-

tinguishable among treatments, and state-price probability rankings coincide and are equilibrium rankings,

except for one case, where incomplete markets achieve close-to-equilibrium ranking more often than complete

markets.



25

2.1 Introduction

In this paper we investigate the experimental validity of the theory of dynamically complete asset markets.

The main conclusion of this theory is that under mild assumptions, complete markets for the trade of short-

lived securities, can be replicated with markets for long-lived securities, given a flow of information in time.

The relevance of this conclusion comes from two sources. The first is the well-known result that complete

competitive markets for aggregate-wealth risk, produce trades to efficient final outcomes. The second is the

fact that the space of possible aggregate wealth outcomes is potentially very large, thus requiring an absurd

number of securities to achieve the aforementioned efficiency. Dynamic completeness implies that efficiency

in an uncertain world can be achieved through trade and re-trade of a small number of long-lived assets.1

In our experiments we compare complete and incomplete markets for the trade of the same form of

aggregate risk. In the incomplete markets, securities are long-lived and information is refined in time, before

the liquidation of assets. For most indicators we consider, the two setups are undistinguishable. In particular,

the distribution of final individual holdings of wealth in each state of the world is undistinguishable. This is

an important finding, since it is easy to manipulate participants’ beliefs such that this will not be the case

(see Bossaerts et al. [2007]), and “beliefs” are in fact an important part of the formation of prices in the

dynamic, incomplete markets we implement experimentally.

Since the comparison of the two treatments is noisy at best, we go further, to pose the hypothesis of

equilibration. If the incomplete markets are indeed dynamically complete, and equilibrium is achieved, then

certain conditions must hold for prices and individual holdings, for a wide range of individual preferences.

Specifically, if agents are risk averse, state-price probabilities (the prices of Arrow-Debreu securities that are

implied by the prices of the tradable assets) must be ranked in inverse order of aggregate wealth. That is,

the price of consumption in a wealthy state of the world, must be lower than the price of consumption in

a poor state of the world. We find that state-price probabilities in the incomplete-market treatment, are

ranked in accordance to the above criterion. In the complete-market treatment, state-price probabilities are

mostly correctly ranked, but a systematic divergence from this hypothesis arises, which we discuss in the

paper.

In both treatments we consider, there are three states of the world. In the complete-market treatment

there are three securities with linearly independent distribution of dividends. There is one period for the trade

of these securities, after which the securities are liquidated. In the incomplete-market treatment, although

participants are endowed with identical holdings of the three securities traded in the complete market, they

are allowed to trade only two of them. This is an insufficient number for the market to be complete. However,

in this treatment there are two trading periods. One initial period happens with the original information

about the distribution of states of the world. The second period happens after an announcement is made

that correlates with the true realized state of the world, and thus, refines the information of the participants.

In fact, the announcement reduces the number of possible states of the world to two.

1How small, and how much smaller than the number of short-lived securities, depends on the nature of the flow of information
about aggregate risk in the market.
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The markets after announcement are always complete. However, whether the market before announce-

ment is such that the entire situation is dynamically complete, depends on the prices at which participants

trade in the second period. This means that whether this treatment is dynamically complete or not, depends

on the preferences of participants. A result by Kreps [1982] allows us to rule out the possibility that our

incomplete-market treatment is not dynamically complete, as a knife-edge situation. The theoretical predic-

tions we test here are also summarized in this work, Kreps [1982], for discrete-time markets and information,

as is the case in our experimental situation. The theory is developed for continuous-time information and

price processes, in Duffie and Huang [1985].

It is important to note that the precise knowledge of the information flow and the distribution of dividends,

are key to the tests we perform in this paper. These are privileges of the experimental paradigm. Two

important features were taken into account when designing the experiment we described in what follows.

The first is that the computation of state-price probabilities requires more information than is available in any

single experimental period. Aggregate uncertainty is manipulated to bypass this constraint and compute

state-price probabilities with the information of one period only. The second is that the assumption of

mean-variance preferences, which is used in setting up some of our hypotheses, may imply efficiency without

completeness (or dynamic completeness). Again, the experiment is designed such that the assumption of

mean-variance efficiency does not trivially imply the validity of the tests we use (the tests relate to efficiency)

and thus, render the exercise meaningless.

The following section introduces the theoretical background and notation used in the remainder of the

paper. It also contains the description of the experiment, both in a separate subsection, subsection 2.2.3,

and in examples used to illustrate the notation. Section 2.3 presents and discusses experimental results

that relate to prices and state-price probabilities. Section 2.4 presents and discusses results that relate to

individual asset holdings. Section 3.5 concludes.

2.2 Notation and Experimental Setup

In this section we give the setup necessary to describe the experiment and hypotheses that are the focus

of this paper. A general framework for the study of dynamic completeness in discrete-time multi-period

markets can be found in Kreps [1982]. We give a more specific description, where we include probabilities

for information sequences, since these are part of the experimental setup.

2.2.1 Notation

We consider asset markets for long-lived securities that liquidate in consumption period T , after T trading

periods, 0 to T − 1. Periods are indexed t ∈ {0, . . . , T}. There is a single consumption good (e.g., money),

which is also the numeraire for asset dividends and prices. An asset market is defined by a matrix and

probability distribution over asset liquidating dividends, a vector of total asset supply, a set of possible

information sequences, and a statement of what assets can be traded. We will restrict attention to dynamic
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markets with a simple linear information structure that we specify below. An asset market is thus defined

by

{R̃, R, w,M, π0, }, (2.1)

where R̃ is a S × K̃ matrix of risky asset dividends. There are K̃ risky assets paying dividends that depend

on the realization of a random variable called state of the world. There are S possible realizations of the

state of the world, denoted s ∈ {1, . . . , S}. The vector w = (w1, . . . , wK̃) identifies supply of each asset.

Let w̃ = (w̃1, . . . , w̃S) be the endowment or total supply of the unique consumption good in each state of

the world. Clearly, w̃ = R̃w. The matrix R of dividends of tradable assets, has dimension S × K, K ≤ K̃.

Without loss of generality, we assume that whenever K < K̃, securities {1, . . . , K} are tradable, while

securities {K + 1, . . . , K̃} cannot be traded.

M is a set of possible sequences that define how information evolves in time. Each sequence {Mt}T
t=1 ∈ M,

has an ex-ante probability of occurrence, π0

(
{Mt}T

t=1

)
. Sequences are mutually exclusive. The probability

distribution over final realizations of the state of the world is implicit in the structure of M. At every period

t > 0 Mt determines the “surviving” return matrix, Rt, from the previous period return matrix, Rt−1,

through the simple formula

Rt = MtRt−1.

Information at time t = 0 is always R0 = R, and at time t = T , uncertainty is resolved in a single

state of the world. That is, RT = rs, where rs is the sth row of matrix R, for some s ∈ {1, . . . , S}. Every

matrix Mt is composed of zeros and ones. Along a sequence in M, the number of rows and columns of Mt

is non-increasing in t, and MT always has only one row. Each column of a matrix Mt is either a column of

zeros or a basis vector ei, containing a 1 in the ith row, and zeros everywhere else. Mt contains zero-vectors

in column-positions corresponding to the states “eliminated” at time 1 along the information sequence being

considered. The remaining columns are e1, . . . , eSt
, entered in ascending index order (skipping the positions

where there is a vector of zeros).

The distribution π0 defines the ex-ante probabilities of occurrence of each sequence in M. Probabilities

can be updated in the obvious way, as time and information evolve. We will use {Mτ}t
τ=1 to denote the

statement, “up to time t information has followed the path given by {M1, . . . , Mt}.”

Example 1 (Experimental markets). In our experiment we consider two markets. In both cases there are

three states of the world with names “X”, “Y”, and “Z”, and three securities called A, Bond, and B. The

markets differ in the number of periods and the tradable securities.

Using the notation given above, the so-called complete market treatment has T = 1 and is described as

follows:

1. R̃ = R =




0.5 1 0

0 1 1

1 1 0.5


.
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2. w = (8, 4, 2) ⇒ w̃ = (6, 6, 12).2

3. M = {
[
1 0 0

]
,
[
0 1 0

]
,
[
0 0 1

]
}.

4. π0 =
(

1
3 , 1

3 , 1
3

)
.3

The incomplete-market treatment has T = 2 and is described as follows:

1. R̃ =




0.5 1 0

0 1 1

1 1 0.5


, R =




0.5 1

0 1

1 1


.

2. w = (8, 4, 2) ⇒ w̃ = (6, 6, 12).

3. M = {{M11, M21}, {M11, M22}, {M12, M23}, {M12, M24}}, where

M11 =



1 0 0

0 1 0



 , M12 =



0 1 0

0 0 1



 ,

and

M21 = M23 =
[
1 0

]
, M22 = M24 =

[
0 1

]
.

In words, the first sequence in M corresponds to “at t = 1 it is revealed that the state is not Z, and at

time t = 2 it is revealed that the state is X”. The other sequences have analogous meanings

4. π0 =
(

1
3 , 1

6 , 1
6 , 1

3

)
.

Let Ms ⊂ M be the set of all sequences such that RT = MT RT−1 = rs. The ex-ante (t = 0) probability of

occurrence of state of the world s is inferred from the probability over information-transformation sequences

as follows:

πs =
∑

{Mt}T
t=1

∈Ms

π0

(
{Mt}

T
t=1

)
.4 (2.2)

For t > 0, a pair (t, {Mτ}t
τ=1) is called a node. At t = 0 there is a unique initial node denoted 0. The

successors of node 0 are all the period-one nodes defined by sequences in M. That is,

Φ (0) = {(1, M1) |{M1, . . . , MT } ∈ M}.

For t > 0, the set of successors of a node,
(
t, {M̄τ}t

τ=1

)
is defined as follows:

Φ
(
t, {M̄τ}

t
τ=1

)
= {
(
t + 1, {Mτ}

t+1
τ=1

)
|{Mτ}

t
τ=1 = {M̄τ}

t
τ=1 and {Mτ}

T
τ=1 ∈ M}.

2The market portfolio differed across experimental sessions. Exact numbers are given in Table 2.3.
3During an experimental session, states of the world were drawn without replacement, causing variation in the probability

distribution. We explain this further in the next section. Probabilities in all periods remained close to uniform across states of
the world.

4It is evident from this statement that our notation is inconsistent with the general treatment of information sequences as
sequences of finer partitions of the state space. In that treatment, each terminal node must correspond to a separate state. In
our example, that would mean that there is an additional state, call it Y ′, in which the assets pay the same dividends as in
state Y .
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Example 2. In both treatments of our experiment, the probabilities of final states of the world are
(
πX , πY , πZ

)
=

(
1
3 , 1

3 , 1
3

)
.

In the incomplete market treatment, we have the following sets of successors:

Φ (0) = {(1, M11) , (1, M12)}

Φ (1, M11) = {(2, {M11, M21}) , (2, {M11, M22})}

Φ (1, M12) = {(2, {M12, M23}) , (2, {M12, M24})}.

The complete market treatment has only one set of successors, that of the matrix R, which is composed of

the three vectors rs.

Let {q (t, {Mτ}
t
τ=1)}

T−1
t=0 be a sequence of prices of assets defined for every node in market {R̃, R, w,M, π0, }.

q (t, {Mτ}t
τ=1) is a K × 1 vector of prices for each tradable asset. We can now define market completeness

and dynamic completeness.

We say that the asset market {R̃, R, w,M, π0} is complete if rank R = S.

We say that the asset market {R̃, R, w,M, π0} with asset prices {q (t, {Mτ}t
τ=1)}

T−1
t=0 is dynamically

complete if, for every sequence {Mt}T
t=1, the following statements are true:

1. rank RT−1 = ST−1, where RT−1 =
(
ΠT−1

t=1 Mt

)
R.

2. For t ∈ {0, . . . , T − 2}, the price vectors for every successor of (t, {Mτ}t
τ=1) are linearly independent.

Let

q
(
Φ
(
t, {Mτ}

t
τ=1

))
=




q (t + 1, {M1, . . . , Mt, Mt+1})

· · ·

q
(
t + 1, {M1, . . . , Mt, M

′
t+1}

)


 ,

be the matrix of price vectors for all successors of (t, {Mτ}t
τ=1). The requirement that these prices be

linearly independent is equivalently stated as

rank q
(
Φ
(
t, {Mτ}

t
τ=1

))
= |Φ

(
t, {Mτ}

t
τ=1

)
|.

An asset market, {R̃, R, w,M, π0, }, has an associated Arrow-Debreu market,

{IS , w̃,M, π0},

where IS denotes the S × S identity matrix, indicating that the tradable assets are units of contingent

consumption for each state of the world.5

Consumers embedded in a market structure {IS , w̃,M, π0} will be able to achieve efficient consumption

in equilibrium, in spite of the uncertainty about future supply of the consumption good. However, it may

5We omit the matrix of tradable assets in the description, because in the Arrow-Debreu markets all assets given in IS can
be traded.
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be the case that S is very large, thus implying a very large number of tradable securities to achieve efficient

outcomes. The main result of ? is that, given the information structure implied by M, efficient consumption

in equilibrium can be achieved in a dynamically complete asset market with K significantly smaller than S.

Let there be N consumers indexed by n ∈ {1, . . . , N}. Consumer n has preferences vn over consumption

at time T . Each consumer is endowed with w̃ns ≥ 0 units of the consumption good in state of the world

s. Consumers are embedded in an Arrow-Debreu market structure with w̃ =
∑N

n=1 w̃n (where w̃n =

(w̃n1, . . . , w̃nS)).

Definition 5. An allocation (x∗
1, . . . , x

∗
N ) ∈ ℜN×S and a vector of prices for contingent consumption,

(p∗1, . . . , p
∗
S) is an Arrow-Debreu equilibrium in market {IS , w̃,M, π0} if:

i) For every n, x∗
n is maximal for vn in agent n’s budget set.

ii) Contingent markets clear, that is
N∑

n=1

x∗
n = w̃.

Definition 6. Asset holdings (z∗1 (t, {Mτ}
t
τ=1) , . . . , z∗N (t, {Mτ}

t
τ=1)) and asset prices q∗ (t, {Mτ}

t
τ=1), con-

stitute a Radner equilibrium in market {R̃, R, w,M, π0, } if:

i) For every n, R̃z∗n
(
T − 1, {Mτ}

T−1
τ=1

)
is maximal for vn in agent n’s budget set, in every state of the

world, and under the condition that z∗nk (t, {Mτ}t
τ=1) = wnk for k > K (non-tradable assets), and all

n, t.

ii) At every node, asset markets clear,

N∑

n=1

z∗n
(
t, {Mτ}

t
τ=1

)
= w.

2.2.2 State-Price Probabilities

If the asset market {R̃, R, w,M, π0} with prices q∗ (t, {Mτ}t
τ=1), is dynamically complete, then the prices,

p∗, and contingent consumption, x∗
n, can be uniquely determined from q∗ (·) and z∗n (·), respectively.

Moreover, if market {R̃, R, w,M, π0} with prices q (t, {Mτ}t
τ=1) (not necessarily equilibrium prices), is

dynamically complete, then a unique vector of prices of Arrow-Debreu securities can be determined from the

prices q (t, {Mτ}t
τ=1). This vector satisfies

q0 (R, π0) = R′p, (2.3)

and is called the vector of state-price probabilities.

If, in addition, market {R̃, R, w,M, π0} is complete, p can be uniquely determined as the solution to

equation (2.3), since R is invertible.
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Prices of contingent consumption can be determined from asset prices at every node. We will call these

conditional state prices, and denote them p (t, {Mτ}t
τ=1). An equation analogous to equation (2.3) holds for

conditional state prices.

We have not yet been specific about the nature of consumers’ preferences, vn. The hypotheses that

direct our experimental findings are based on specific assumptions about vn. First we assume vn admits

an expected utility representation and that all consumers are risk averse (decreasing marginal utility over

final consumption). Under these assumptions, the ranking of prices in an Arrow-Debreu equilibrium is fully

determined by the ranking of endowments in different states of the world.

Theoretical Prediction 1: Given an Arrow-Debreu market {IS , w̃,M, π0} and risk averse expected

utility-maximizing consumers, the Arrow-Debreu equilibrium prices of consumption in every state of the

world, p∗ satisfy

w̃s > w̃s′ ⇒
p∗s′

πs′
>

p∗s
πs

, (2.4)

for all s, s′ ∈ {1, . . . , S}.

The above also holds for Arrow-Debreu equilibrium prices determined for nodes different from 0, or

conditional state prices. As mentioned before, if the asset market {R̃, R, w,M, π0} with equilibrium prices

q∗ (t, {Mτ}t
τ=1) is dynamically complete, state-price probabilities and conditional state-price probabilities

can be uniquely determined, and will satisfy the same ranking condition.

Theoretical Prediction 2: If {R̃, R, w,M, π0} with equilibrium prices q∗ (t, {Mτ}t
τ=1) is dynamically

complete and consumers are risk-averse, expected utility maximizers, the associated state-price probabilities

and conditional state-price probabilities, p∗ (t, {Mτ}t
τ=1) , t ∈ {0, . . . , T − 1} satisfy

w̃s > w̃s′ ⇒
p∗s′ (t, {Mτ}

t
τ=1)

πs′ (t, {Mτ}t
τ=1)

>
p∗s (T, {Mτ}

t
τ=1)

πs (t, {Mτ}t
τ=1)

, (2.5)

for every s, s′ ∈ {1, . . . , S} such that πs (·) > 0, πs′

(·) > 0, and where πs (t, {Mτ}t
τ=1) denotes the updated

probability of state s at node (t, {Mτ}t
τ=1).

Analogous results hold for asset holdings. We present them as theoretical predictions 3 and 4 below.

Theoretical Prediction 3: If {R̃, R, w,M, π0} with prices q∗ (t, {Mτ}t
τ=1) is dynamically complete,

then the Radner equilibrium holdings, z∗n (t, {Mτ}
t
τ=1) and the Arrow-Debreu equilibrium holdings of the

associated Arrow-Debreu market, satisfy:

R̃z∗n
(
T − 1, {Mτ}

T−1
τ=1

)
= x∗

n, ∀n. (2.6)

The next prediction requires a much tighter restriction of consumers’ preferences.6 Under the assumption

that consumers’ preference-maximizing choice of asset holdings equals the choice of an agent maximizing

mean-variance utility over asset holdings, in equilibrium all consumers will have relative holdings of assets

6It is not strictly correct to call this a restriction on preferences, since this restriction on representation of consumers’ choices
of asset holdings depends both on preferences and the probability distribution of states of the world (see Berk [1997] for a
thorough discussion of the subject).



32

equal to the market portfolio (if all assets can be traded). The market portfolio in the Arrow-Debreu market,

is given by w̃, while it is w in the asset market.

Theoretical Prediction 4: If consumers have preferences that can be represented with mean-variance

utility over asset holdings, then the Arrow-Debreu equilibrium holdings satisfy

x∗
ns

x∗
ns′

=
w̃s

w̃s′

, ∀s, s′ ∈ {1, . . . , S}.

If {R̃, R, w,M, π0} with prices {q∗ (t, {Mτ}
t
τ=1) is dynamically complete, then the Radner equilibrium hold-

ings, z∗n (t, {Mτ}t
τ=1), satisfy:

∑K̃
k=1 rskz∗nk

(
T − 1, {Mτ}

T−1
τ=1

)

∑K̃
k=1 rs′kz∗nk

(
T − 1, {Mτ}

T−1
τ=1

) =
w̃s

w̃s′

, ∀s, s′ ∈ {1, . . . , S}, (2.7)

where rsk is the dividend on asset k in state of the world s.

Example 3 (State-price probabilities ranking in experiment). The markets considered in the experiment

have total supply of consumption good, w̃ = (6, 6, 12). Given that all three states have equal probability of

occurrence , the Arrow-Debreu equilibrium prices should be ranked as follows:

p∗X = p∗Y > p∗Z ,

where we have replaced the numerical indices with letters denoting the states. Moreover,

3

2
p∗X (1, {M11}) = 3p∗Y (1, {M11}) , and 3p∗Y (1, {M12}) >

3

2
p∗Z (1, {M12}) .

The incomplete market treatment clearly does not implement a complete market, but prices may be such that

the market is dynamically complete. If it is, then the above rankings of state-price probabilities must hold

also in the incomplete market treatment.

2.2.3 Experimental Implementation of Asset Markets

In our experiments there are three securities, Asset A, Asset B, and Bonds, as well as cash. In the complete

market treatment, all three securities can be traded by participants, while in the incomplete market treat-

ment, only Asset A and Bonds can be traded. Securities can be sold short, while cash can be held only in

non-negative amounts. A bankruptcy rule explained below is used to prevent agents from committing to

trades that require negative cash holdings.

An experimental session lasts approximately 2 1
2 hours, of which approximately 30 minutes are dedicated to

a review of instructions, another 30 minutes are composed of three practice periods to familiarize participants

with the trading software, and the remaining time is split over 8 payoff-relevant periods. The complete market

treatment, which serves as control, is run in three of the payoff-relevant periods, lasting 6 minutes each. The
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State of the world

X Y Z

ASSET

A 0.5 0 1
B 0 1 0.5

Bond 1 1 1

Table 2.1. Dollar dividends of assets, in each state of the world.

If the state is: X Y Z

Then the
announcement is

“The state is not Z” “The state is not X” or “The state is not X”

with probability 1 “The state is not Z” with probability 1

with equal probabilities

Table 2.2. Distribution of the announcement conditional on the state of the world.

remaining periods last 8 minutes each, and are incomplete market -treatment periods.

At the beginning of a period, participants are endowed with holdings of the risky assets A and B, the

risk-free Bonds, and cash. During a complete market period, participants can trade these holdings in parallel

markets for all three assets, to achieve new positions. During an incomplete market period, participants can

only trade asset A and Bonds, in two parallel markets. In both treatments trading is done through an

electronic open book continuous market, or double auction, which is implemented with jMarkets software.

At the end of the period, dividends of the securities are realized, and participants’ earnings are added to

their cumulative experimental earnings.

Dividends of assets A and B are governed by the realization of the state of the world, which can be X,

Y, or Z. During an experimental session, states of the world for each period are drawn without replacement

from an urn that starts the session containing 6 balls marked X, 6 marked Y, and 6 marked Z. All accounting

is done in dollar units, including the values of dividends. Dividends in different states of the world were

given in Example 1, and are repeated in Table 2.1 below.

At the beginning of each period, a participant knows his own holdings, the probabilities of the states of

the world, and the payoff table (Table 2.1). At the beginning of an incomplete market period participants

also know that half-way through the period (after exactly 4 minutes) they will be given a piece of information

- which we will call the “announcement” - that correlates with the state of the world. The distribution of the

announcement conditional on the state of the world is also known (see Table 2.2), and the distribution of the

state of the world conditional on each possible announcement can be readily computed with the information

available to participants. Midway an incomplete market period, participants learn the realization of the

announcement. At the end of every period, participants learn the realization of the state of the world, their

period earnings, and their total earnings for the experimental session up to that point.

Figure 2.1 illustrates the incomplete market treatment, and gives conditional probabilities for states at

every node. Short-hand notation is used to denote the nodes for the experiment. Nodes (1, M11) and (1, M12)
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1

1
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1

1

Figure 2.1. Time-event tree for the incomplete market periods.

are called Z̄ and X̄ respectively, referring to the announcement of what state did not occur.

The restriction that participants have non-negative cash holdings is implemented through a bankruptcy

rule, automated and incorporated in the experimental software. Whenever a participant attempts to submit

an order to buy or sell an asset, her cash holdings after dividends are computed for all states of the world,

given her current asset holdings, and her outstanding orders (orders awaiting trade) that are likely to trade,

including the order she is trying to submit. If these hypothetical cash holdings turn out negative for some

state of the world, she is not allowed to submit the order.

More detailed information about the experimental setup and the software used to implement the markets,

can be found in the experiment instructions on the web, at http://clef.caltech.edu/exp/dc/index.html

Two features of the experimental design deserve further comment. The first, is that we create incomplete

markets by shutting down one market, not by having only two securities to start with. The second is that

the expected payoff of the two risky assets in our experimental markets are equal.

Shutting down a market instead of starting with only two assets has two relevant implications. On

one hand, it permits us to have identical market portfolios (not only equal state-holdings) in complete and

incomplete market periods. On the other hand, by having participants hold a risky asset that they cannot

trade, we can produce a situation where they cannot trade to the market before the announcement. They

must trade after the announcement is made in order to reproduce the payoffs to the market portfolio in every

state. We discuss this further in section ??.

The second feature, the fact that assets A and B have the same expected payoff, does not mean that they

should be equally priced. Asset A is twice as abundant as asset B, and has a lower price in the presence of
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risk aversion. This gives a clean test for the presence of risk aversion.

We report results taken from four experimental sessions, run in the Fall of 2005. Experimental sessions

are identified by their date (yymmdd). Experiment 051005 had 12 participants, experiment 051022 had

22 participants, and experiments 051122 and 051201 had 31 participants each. Earnings per session per

participant averaged approximately $45, with a standard error of $9. We give general statistics on trading

behavior and prices in the Appendix.

2.3 Result: State-price probability rankings

In this section we look at theoretical predictions 1 and 2 (see Subsection 2.2.2). We first give the methodology

used to compute state-price probabilities for the incomplete-market periods, given the limited information

available. The methodology for computing conditional state-price probabilities in the incomplete-market

periods and state-price probabilities in the complete-market periods is also briefly reviewed.

2.3.1 A Full Rank System to Compute State-Price Probabilities

If the experimental markets are dynamically complete, we know that the following holds:

q0 = R′p. (2.8)

Dynamic completeness and state-price probabilities are theoretical notions. Whether dynamic complete-

ness is true and what state price probabilities are implied depend on all interim prices – but interim prices

are not observed in an given period. One possibility to verify dynamic completeness and construct p from

the sequence of asset prices is to combine asset prices from different experimental periods, where different

information sequences are realized. The alternative, which we present here, is to treat the quest of computing

state-price probabilities from the experimental prices as a simple algebra problem.

If the market is dynamically complete, we know that equation (2.8) holds, but state-price probabilities

cannot be computed from this equation because it is an underdetermined system. In other words, since

there are three possible states of the world and two independent tradeable assets, R is not invertible, and p

is not uniquely defined by the above equation. However, it will be uniquely defined in the presence of one

more, independent conditions to define p. Our parameter specification is such that we have an additional

condition on p. Specifically, states X and Y have equal aggregate wealth. Therefore, in equilibrium, states

X and Y must have equal adjusted state-price probabilities (the adjusted state-price probability of state s

is the state-price probability of state s divided by the exogenous probability of occurrence of state s).
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In other words, take a third equation:

pX

πX
−

pY

πY
= 0 ⇔

[
1

πX − 1
πY 0

]




pX

pY

pZ


 = 0,

We use the above equation to construct a new system of equations,




q1 (0)

q2 (0)

0


 = Rp,

where

R =



R′
(2×3)

1
πX − 1

πY 0



 ,

q1 (0) is the price of asset A at time 0, and q2 (0) is the price of the Bond at time 0.

The matrix R of coefficients is invertible, and p can be computed, given that pX

πX = pY

πY . The results we

present below are computed using this method.

2.3.2 Other methodological remarks

The computation of state-price probabilities from asset prices in experimental periods with a complete market

is obvious. We use equation (2.8), where R is now that corresponding to complete market periods, and is

thus invertible. Solving for p is straightforward.

We proceed similarly with the computation of conditional state-price probabilities in the two conditioning

nodes (X̄, Z̄). In this case, the following equation is true:

q (1{M11}) = R′
11p

at node Z̄, and an analogous equation is true at X̄ . R11 and R12 are both invertible matrices, implying that

p (1, ·) can be uniquely solved for.

In the experimental markets, trade is not instantaneous, but happens over a period of time during which

the market is active. The time during which it is active before announcement is denoted t = 0, while t = 1

refers to the time when the market is open after the announcement. For each of these theoretical times there

are, in the experiment, many trading prices. In describing the theoretical framework and the experiment

(including the methodology), we have referred to asset prices as a single magnitude at every time. However,

there are many prices at every time. In computing the state-price probabilities that we report, we will take

an asset’s price at a given time to be either the final price in the experimental period or the average over all
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trading prices in the period. We are now ready to state the first results.

2.3.3 State-Price Probabilities for All States

Figures 2.2 and 2.3 show the adjusted state-price probabilities for each period, computed using average

prices - before and after announcement, for the incomplete market periods. An analogous set of figures,

where adjusted state-price probabilities are derived from end-of-period prices, is presented in figures 2.4 and

2.5.

State-price probabilities are adjusted, meaning that they are divided by each state’s probability of occur-

rence. This is done because the states of the world are not always equally likely, since during one experimental

session, states are drawn without replacement.

Given the total supply of assets A and B, and Bonds, and given the payoff matrix of the experiment, the

theoretical prediction is that states X and Y have the same adjusted state-price probability, and that this

value be higher than the adjusted state-price probability of state Z.7

In the figures, state Z is ranked lowest in all but two experimental periods. Thus, pZ < pX and pZ < pY ,

as predicted by theory. The relative ranking of states X and Y is assumed away in periods with incomplete

markets. In complete market periods the prediction that pX = pY does not hold. Typically, pY > pX .

2.3.4 Ranking of Conditional State-Price Probabilities

It is perfectly possible that correct ranking of state-price probabilities is obtained in spite of incorrect

ranking of conditional state-price probabilities. This can happen by coincidence - prices at t = 0 and at

t = 1 violate equilibrium theory predictions, but the algebra works in such a way as to produce correct state-

price probability ranking - or because participants correctly anticipate the incorrectly ranked conditional

state-price probabilities, but equilibrium prices at t = 0 are still such that the state-price probabilities are

correctly ranked.

Figures 2.6 to 2.9 show conditional state-price probabilities conditional on the announcement. They are

computed using average prices after announcement. If anything, conditional state-price probability ranking

is closer to the theoretical prediction than state-price probability ranking in complete market periods. In

periods where the announcement is Z̄,
pX(Z̄)
πX(Z̄)

is very close to
pY (Z̄)
πY (Z̄)

, as theoretically predicted. In periods

where the announcement is X̄,
pY (X̄)
πY (X̄)

is bigger than
pZ(X̄)
πZ(X̄)

, as predicted by theory.

2.4 Individual Asset Holdings

This section deals with theoretical predictions 3 and 4. In our experiments individuals do not hold the

market portfolio, regardless of whether we look at a complete or an incomplete market period. However, this

is not different from previous (complete market) asset pricing experiments. Moreover, Bossaerts, Plott, and

7This is only approximately the case in experimental sessions 051122 and 051201, where the wealth in state X is 6, it is5.8
in state Y , and 12.05 in state Z.
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Figure 2.2. Adjusted state-price probabilities computed using average prices in each experimental period.
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Figure 2.3. Adjusted state-price probabilities computed using average prices in each experimental period.
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Figure 2.4. Adjusted state-price probabilities computed using final prices for each experimental period.
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Figure 2.5. Adjusted state-price probabilities computed using final prices for each experimental period.
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Figure 2.6. State-price probabilities conditional on announcement, computed using average prices after
announcement.
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Figure 2.7. State-price probabilities conditional on announcement, computed using average prices after
announcement.
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Figure 2.8. State-price probabilities conditional on announcement, computed using final prices of the period
after announcement.
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Figure 2.9. State-price probabilities conditional on announcement, computed using final prices of the period
after announcement.
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Initial Endowments Market Portfolio in each session
Agent type # agents type
I II session I II Mkt. Portfolio

Asset A 14 2 051005 6 6 8A 4B 0Bonds $2

Asset B 0 8 051022 11 11 8A 4B 0Bonds $2

Bond 0 0 051122 16 15 8.2A 3.9B 0Bonds $1.9

Cash $1 $3 051201 16 15 8.2A 3.9B 0Bonds $1.9

Table 2.3. Market portfolio in each experimental session. This is given by the initial endowments of each
agent type, and the number of subject of each type.

State of the world
X Y Z

Type I
state-holdings 8 1 15

rel. state-holdings 0.333 0.042 0.625

Type II
state-holdings 4 11 9

rel. state-holdings 0.167 0.458 0.375

Market
state-holdings 6 6 12

rel. state-holdings 0.25 0.25 0.5

Table 2.4. State holdings implied by the initial endowments of type I and type II participants, as well as
state holdings implied by the market portfolio that obtains when there are equal numbers of participants of
each type. Relative state holdings are the fraction of state holdings in one state over the sum of holdings in
all states.

Zame [2005] shows that approximate CAPM equilibrium pricing (and even more so just correct state-price

probability ranking) can arise in a model where individuals do not hold the market portfolio, but the average

individual does.8

Figures 2.10 to 2.13 show the relative state-holdings of participants in our experiment. We call state

holding the value of a participant’s holdings in a given state (this is w̃n in our original notation). When

Z̄ is announced, we compute the relative state holdings for state X , w̃nX

w̃nX+w̃nY
. When X̄ is announced, we

compute the relative state holdings of state Z, w̃nZ

w̃nY +w̃nZ
. Time-zero state holdings can be computed with a

denominator that sums over all three states. We do not report these, since they make no sense, as shown in

example 4, but we will use the term in examples and tables that follow.

Before describing our findings, it is important that we illustrate what it means to trade to the market’s

state holdings in our setup. Table 2.3 reports the two types of initial endowments participants can hold in

our experiments, and the market portfolio that follows, given the number of participants of each type we have

in each experimental session. Table 2.4 shows the returns to endowments in each state (the state-holdings)

for both types of initial endowments and the market, when there are equal numbers of participants of each

type.

The following examples use the information in tables 2.3 and 2.4 to illustrate the exercise of “trading to

the market” in our experiment.

8Their result says that a sample market taken from a population where the deviation of individual demands from CAPM
demands has mean zero, will converge to CAPM pricing as the size of the market increases.
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Example 4 (Trading to the market before announcement). This example shows that a participant of type I

cannot trade to the market before announcement. Suppose a participant of type I tried to achieve the same

state holdings as the market before the announcement, and given that she cannot trade asset B (which is the

case in the incomplete market periods). The market has equal state-holdings in state X and state Y . Type I

can only achieve this if she trades to 0 units of asset A. To see this, notice that in state Y , asset A pays 0,

and type I has 0 units of asset B, which she cannot change. Hence, in state Y all her earnings come from

risk-free sources (cash and bonds). Thus, in order to have the same holdings in state X, her earnings in

state X must also come from risk-free sources only. This can only be achieved if she holds nothing of asset

A. This means that type I must hold only bonds and cash (since she starts with nothing of asset B), which

implies equal earnings in all three states. This yields the wrong relative state holdings for state Z.

Example 5 (Trade to the market when “not Z” is announced). The market gives equal state-holdings for

states X and Y . From example 4 we know that this means that type I must hold 0 units of asset A, no matter

how much she holds of bonds and cash. She starts with 14 units of asset A, which she must sell to achieve

the same relative state-holdings as the market.

To have the same relative state-holdings as the market when the announcement is “not Z”, agent type II

must hold 16 units of asset A (double the amount he holds of asset B, and 8 times his initial endowment of

A!). His holdings of bonds and cash are irrelevant.

When the announcement is “not Z”, in order to equal the market’s relative state holdings, both types

must fine-tune their holdings of asset A with respect to their holdings of asset B, which are fixed. The

following example shows that when the announcement is “not X”, the important relation is that of their

asset A holdings with respect to their risk-free asset holdings (cash plus bonds).

Example 6 (Trade to the market when “not X” is announced). The market holds twice as much in state

Z as in state Y . Type I holds 0 of asset B, so all that matters are the returns to asset A in states Y and

Z. Asset A yields 0 in state Y , and 1 – the same as the risk-free assets – in state Z. Knowing this, it is

straightforward that she must hold the same number of units of asset A as of risk-free assets. Thus, depending

on the price of asset A, type I must sell enough units of asset A to equal her holdings of cash and of asset A.

Type II holds 8 units of asset B, that give $8 in state Y , and $4 in state Z, which he cannot affect.

Knowing this, it is easy to verify that his number of units of asset A must equal his number of units of

risk-free assets plus 12. Depending on the price of asset A, he must buy asset A until this relation between

bond and cash holdings and holdings of asset A is achieved.

The above examples convey how remarkable it is that one participant of either type trade to the market.

We do not see many participants that do this, but we do see the average and median participant having the

same state-holdings as the market. Moreover, participant state-holdings in incomplete market periods are

indistinguishable from their holdings in complete market periods. These findings are in agreement with those

of prior asset pricing experiments, and are compatible with correct state-price ranking within the framework

of the CAPM+ǫ model.
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We display relative state-holdings for each announcement for all relevant periods, side by side in Figures

2.10 to 2.13. The figures support the findings mentioned above.

2.5 Conclusion

We have shown that state-price probability ranking according to theory obtains in experimental dynamically

complete markets. Moreover, the data support the claim that this ranking obtains because participants are

able to form the right expectations about future prices and the median participant trades towards the market

portfolio.

It is important to stress that we design our experiments such that the above results obtain in an envi-

ronment where participants can hold the market portfolio only if they re-trade after the announcement that

completes the markets. Careful design of the experiment allowed us to recover state-price probabilities from

this environment where the theory is put to a very hard test.

Correct state-price probability ranking in the presence of median and mean trade towards the market

portfolio is a result of the CAPM+ǫ model proposed in Bossaerts, Plott, and Zame [2005] for a complete

market environment. In view of our experimental results it is important to return to the theoretical framework

and develop the dynamical structure necessary to evaluate the model with our data for dynamically complete

markets.
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Figure 2.10. Relative state holdings for periods with announcement “not Z” and announcement “not X”.
The same relative state holdings are computed for complete market periods and reported in the same figure
for comparison. Periods left of the vertical line are complete market periods. The horizontal line represents
the relative state holding given by the market portfolio.
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Figure 2.11. Relative state holdings for periods with announcement “not Z” and announcement “not X”.
The same relative state holdings are computed for complete market periods and reported in the same figure
for comparison. Periods left of the vertical line are complete market periods. The horizontal line represents
the relative state holding given by the market portfolio.
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Figure 2.12. Relative state holdings for periods with announcement “not Z” and announcement “not X”.
The same relative state holdings are computed for complete market periods and reported in the same figure
for comparison. Periods left of the vertical line are complete market periods. The horizontal line represents
the relative state holding given by the market portfolio.
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Figure 2.13. Relative state holdings for periods with announcement “not Z” and announcement “not X”.
The same relative state holdings are computed for complete market periods and reported in the same figure
for comparison. Periods left of the vertical line are complete market periods. The horizontal line represents
the relative state holding given by the market portfolio.
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Chapter 3

Executing Complex Cognitive Tasks:

Prizes vs. Markets



54

Abstract

Execution of complex cognitive tasks is often analyzed as an exercise of information acquisition and belief

updating. We challenge this view in the context of a non-incremental task, namely, the knapsack problem.

First, we provide a theoretical argument why Bayesian updating makes little sense in this context. Second,

we provide experimental evidence against the Bayesian approach by comparing the quality of problem solving

under two treatments: prizes; markets. We find that Bayesian theory cannot make sense of the data: both

systems work equally well, while trading is abundant in the market setup and prices are informative but noisy.

The experimental data provide suggestions for a new theory of discovery of solutions in non-incremental tasks.
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3.1 Introduction

In the standard economic model, whatever is not known is treated as a random variable over which one holds

a prior belief. Learning and discovery are modeled as an application of Bayes’ law to construct a posterior.1

Though this may be close to how we think when we try to guess the number of coins in a large closed jar, it

is not very descriptive of how Picasso thought of “Guernica.” Here we explore this latter form of discovery.

We run experiments with this purpose, and also to demonstrate that consideration of the characteristics of

the discovery problem at hand, matters in economically relevant situations.

The creation of a piece of art like Guernica is not readily achieved in the laboratory. This is why we

resort to a cognitive task that captures the features of discovery that we care about - mainly, that it cannot

readily be translated into Bayesian learning. The cognitive task we consider is the knapsack problem. An

instance of the knapsack problem is given by a set of indivisible objects defined by a value and a weight

parameter. The objective is to find the combination of objects that produces the largest sum of their values,

given that the sum of their weights is within a given limit. The knapsack problem suits our objective because

it is non-incremental and hard (we will return to these ideas below). We show that, as an implication of

non-incrementality, the Bayesian paradigm does not provide a reasonable model of the search for a solution

in an instance of the knapsack problem.

Our experiment then serves two purposes. First, it demonstrates that it is relevant to Economics that

discovery may be non-incremental and, thus, existing models do not address the implications of this notion.

Second, it points out in what ways non-incrementality differs from traditional approaches, thus opening the

path for further experimental and theoretical exploration of the topic.

In our experiment we look at how institutions interact with the task of solving an instance of the knapsack

problem. We consider two institutions which we refer to as treatments; a prize and a market treatment. For

traditional, Bayesian problems, where discovery is treated as updating of information, the market treatment

provides very little incentive for discovery (see, e.g., Grossman and Stiglitz [1980]). On the other hand,

we calibrate the two treatments in such a way that the prize to one participant in the prize treatment

equals what we pay to the market as a whole in the market treatment, thus providing a large individual

incentive conducive to discovery. We find that markets do very well, according to whether somebody finds

the solution, and how many persons find it. We are also able to relate the performance of markets with the

trading behavior of participants and the pricing of securities.

The feature of the knapsack problem we care most about is non-incrementality. This means that many

instances cannot be divided into a small number of parts that can easily be computed, finding the solution

of the entire instance through computation of these parts. The knapsack problem is also hard; even though

many instances can be solved using heuristics, it is typically not possible to determine before the problem

has been solved, what heuristic will work for the instance at hand. Known exact solution algorithms that

1Examples include probabilistic learning in markets (Grossman [1977]); or how individuals learn their own productivity
(Jovanovic [1979]). A reduced form of this approach is common in the literature on Intellectual Discovery (see Arrow [62], and
Gallini and Scotchmer [2002] for a survey). Commentary and a brief review of the classical study of technological change is
given in Arrow [1994].
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will always work are laborious, and the time they take rapidly increases with the size of the instance. Both

features relate to the fact that no polynomial time algorithm has been found to solve every instance of the

knapsack problem.2 This feature is used in section 3.2.3 to show that Bayesian updating is not reasonable

in our setting. Loosely speaking, the argument is that in hard-enough instances of the knapsack problem,

failure to compute the solution stems partly from the size of the set of possible solutions. This implies that

if a subject were not able to compute the optimal solution, then he would also not be able to make any

useful updating of his beliefs over the set of possible solutions. Thus, instances of knapsack problems can

be constructed such that either there will be no uncertainty (if subjects can compute the solution fast) or

subjects will not be able to compute the solution, but the Bayesian paradigm is then also inadequate.

The fact that the knapsack problem is non-incremental affects the possibility of coordination and decen-

tralized computation in the markets we implement. In particular, assigning to different participants the task

of finding the value of one security leads to no gain at all in the ease of computation. This is so because

our securities correspond to objects in the knapsack problem, each paying a positive dividend only if the

corresponding object belongs to the value-maximizing knapsack. This splits up the instance in a very small

number of pieces, in which case non-incrementality implies that each piece must be hard to compute (this

depends on the instance, as we already remarked). In fact, for the instances we use, for all objects, the

problem of determining whether an object belongs to the optimal knapsack or not, is equivalent to finding

the optimal knapsack. Thus, even though the securities in the market provide a language that may serve to

coordinate decentralized computation of the solution, they do not correspond to tasks for decentralization.

It is important to note that distributed computation is not the only possible source of gains from interaction

among individuals confronted with a cognitive task. This is suggested by literature in Psychology. For

example Maciejovsky and Budescu [2005] reports an extensive experiment on learning in groups, where they

find that groups are able to correct individual biases (mistakes) even when groups are composed only of

individuals who display these biases when alone.3

Within the Bayesian, information aggregation framework, the securities in our market treatment are

expected to lead to poor communication and aggregation. This is so because they do not allow for the

expression of conditional beliefs like, for example, “conditional on object A being in the optimal knapsack,

object C has probability 0.3 of also being there.” Ledyard [2005] shows that this absence significantly

decreases the informational quality of the market posterior. In a similar setup, Plott and Sunder [1988]

shows that a complete set of contingent securities yields better information aggregation than a single security

with multiple payoff levels.4 We thus reiterate that our market treatment is not an attempt to implement

2There are other problems that satisfy these properties. We choose the knapsack problem because it is well suited for
implementing the market treatment. One example of a non-incremental problem is that of finding the “right” linear regression,
as pointed out in Aragones et al. [2005]. The findings in this work are also a good example of how intellectual discovery or
learning has incremental (running the regression) as well as non-incremental (deciding what regression to run) parts. For an
extensive discussion on the incremental and non-incremental features of research and science, see Kuhn [1962]

3The gains or losses from interaction have also been explored in Economics. Blinder and Morgan [2005] report that groups
make better decisions than individuals conditional on equal amounts of information, while Cox and Haynes [2006] finds that
groups fall victim to the winner’s curse in auctions more often than individuals.

4We say “similar” because the single security in Plott and Sunder [1988] is more akin to, for example, having only one
security paying the value of the optimal knapsack in our setup.
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the most efficient mechanism for information aggregation, but rather a tool to understand non-incremental

discovery within the frame of economic institutions.

This paper points out that the description of intellectual discovery is relevant to our understanding of

incentives to foster it. It also points out that cognition and computation may be the driving forces of trading

and pricing behavior in complex information aggregation setups (e.g., Ledyard [2005]). As noted before, we

also wish to better understand non-incremental discovery. To this end, we construct two ad hoc measures of

difficulty of an instance, design our instances to have a range of difficulties according to these measures, and

look for correlation between experimental results and the measures we propose. We find that the difficulty of

the approximation algorithm - within a narrow class - that exactly solves an instance, is a good predictor of

the number of individuals that solve the instance. In section 3.2.2 we explain the two measures we propose

and discuss why our results are surprising.

The remainder of the paper is organized as follows: In section 3.2 we extensively describe the knapsack

problem. In Subsection 3.2.3 we present an illuminating result about the knapsack problem being outside

the scope of Bayesian updating. Section 3.3 presents and discusses the experimental design, with its different

treatments. Section 3.4 presents the results. Results and future research are discussed in section 3.5, which

concludes.

3.2 The Knapsack Problem

The Knapsack Problem represents the model of intellectual discovery we wish to deal with. In this section

we will carefully define the knapsack problem and some of its properties.

An instance of the knapsack problem is defined by a set N , containing n objects (we will refer to n as the

size of the instance of the knapsack problem) with values v = (v1, . . . , vn), and weights w = (w1, . . . , wn);

and a weight limit c. In the knapsack problem, the objective is to find the subset of N that yields the

maximal sum of object values, given that the sum of weights does not exceed c. We will call this subset the

optimal knapsack. The above objective can be stated mathematically as:

max

n∑

j=1

vjθj

s.t.

n∑

j=1

wjθj ≤ c

θj ∈ {0, 1}.

An intuitive but incorrect approach to solving the knapsack problem is the greedy algorithm. According

to this algorithm, the object with highest value to weight ratio,
vj

wj
(the most efficient object) is added first,

followed by the object with the second highest value to weight ratio, and so on, until the weight limit is hit.

This procedure can yield an arbitrarily bad approximation to the true solution (measured in terms of the
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value of the knapsack).

There are no known simple algorithms that will solve every instance of the knapsack problem. On the

other hand, the related linear programming problem,

max

n∑

j=1

vjθj

s.t.
n∑

j=1

wjθj ≤ c

θj ∈ [0, 1],

has a straightforward solution, established by Dantzig [1957] that can always be found in linear time in

the size of the instance. The solution of the above linear program is found by first applying the greedy

algorithm. The first object that is left out according to the greedy algorithm, is then split so to fill the

remainder weight.5

The following example serves to fixate notation and illustrate the working of the greedy algorithm:

Example 7. Here is an instance of the knapsack problem:

v =




5

7

11

20




, w =




1

2

3

6




, c = 7.

There are four objects (n = 4), their values are in v, and their weights in w, the weight limit is c = 7.

Use of the greedy algorithm yields the following solution for the instance we consider here:

θ̂ = (1, 1, 1, 0) .

Knapsack θ̂ contains the first three objects, has a total weight of 6, and a total value of 23. However, θ̂ is not

the optimal knapsack, which illustrates that the greedy algorithm is not a correct solution method. Instead,

the optimal knapsack is given by

θ∗ = (1, 0, 0, 1) ,

containing objects 1 and 4, and with a total weight of 7, and a total value of 25.

3.2.1 NP-Completeness of the Knapsack Problem

A problem is said to be solvable in polynomial time if there exists an algorithm that solves every instance

in a running time that is bounded above by a polynomial function of the instance size, n. A problem Q is

5There are many references for more on the knapsack problem, its variants, bounds, and exact and approximate algorithms.
Two excellent guides are Kellerer et al. [2004] and Martello and Toth [1990].
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NP-complete (NPC) if it is NP and NP-hard. The former means that a proposed solution to Q can be

verified in polynomial time, and the latter means that every problem in the class NP can be transformed

into Q in polynomial time. No algorithm running in polynomial time in the instance size is known for any

problem in the NPC class. If such an algorithm were found for one problem in NPC, then this would

immediately establish that all problems in NPC belong to P , the set of problems that can be solved in

polynomial time.

To us it is most relevant that no polynomial-time algorithm is known for the knapsack problem. This

means that no fast (clever) algorithm can be used to solve every instance. In particular, if a participant in

our experiment solves one instance, this does not mean that he has learned to solve the problem and will

henceforth face no more difficulties.6 However, it does not mean that every instance of the knapsack problem

is difficult. First, if the instance is sufficiently small, the crudest exact solution algorithm will still solve it

in a fairly small number of computations (e.g., the largest instance used in our experiment has 12 objects,

which implies that the value of only 4096 knapsacks must be computed and compared to find the solution).

Second, and more important, certain instances can be exactly solved with fast approximate algorithms, e.g.

the greedy algorithm. This is the subject of the next subsection.

3.2.2 Measures of Difficulty of Instances

There is no straightforward measure of the difficulty of an instance of the knapsack problem. For example,

even though in the worst case an instance of size n + 1 may take twice as much time as one of size n, this

pattern need not be satisfied by two arbitrary instances of size n + 1 and n, respectively. We propose two

measures of difficulty, and revisit them when we present our choice of instances for the experiments we ran.

A first intuitive measure is a parameter of input size. It is the product of the base-two logarithm of the

knapsack capacity times the size of the instance. The base-two logarithm of the knapsack capacity is a proxy

for the binary representation of the instance parameters, which in turn represents the amount of storage

and information necessary in each step of computation. This is then multiplied by the size (the number of

objects) of the instance. In this measure, two instances with equal capacity and size are equally difficult.

We propose a second measure which captures less obvious characteristics of an instance.

This second measure relates to the question of heuristic solvability of an instance.7 A simple approx-

imation algorithm for the knapsack problem may solve an instance exactly. For a class of approximation

algorithms described below, we will consider an instance that can be exactly solved with an approximation

algorithm in this class to be easier than another instance that cannot be exactly solved with it.

The simplest approximation algorithm for the knapsack problem is the greedy procedure, which consists

of filling the knapsack in efficiency order - i.e., starting with the objects that have a higher vi

wi
ratio - until

6One implication of this is that the periods in our experiment are independent instances of discovery, in the sense that having
solved one instance does not guarantee a participant will solve every other instance. Still, participants’ skills may improve. For
example, a participant that starts by using the greedy algorithm, will quickly learn it is not a very good approach, or the clumsy
exact algorithm that explores every possible knapsack may be replaced with a more efficient branch-and-bound algorithm.

7We use the terms heuristic and approximation algorithm interchangeably.
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the weight limit is reached. This heuristic is part of a family of approximation algorithms known as the

Sahni approximation scheme (Sahni [1975]).8 The Sahni scheme is parameterized by a number k, referring

to the specific algorithm, which we will call a Sahni algorithm of size k.

A Sahni algorithm of size k looks at all subsets of N (the set of all objects that are considered to enter

the knapsack) of cardinality k or less. For each subset, it computes the residual weight in the knapsack

after subtracting the weight of the subset, and fills this residual with the remaining objects using the greedy

procedure (if no set of k objects fits in the knapsack, then the exact optimal solution is found by the

algorithm). The value of all knapsacks constructed in this way is compared, and the one with highest value

becomes the approximate solution given by the algorithm. Clearly, the greedy algorithm is a Sahni algorithm

of size 0. The Sahni algorithm of size 1 uses the greedy algorithm for every subset of size n − 1 (there are

n such subsets) to fill the capacity that remains after isolating one object. Though the complexity of the

greedy algorithm it runs is smaller, it has to run it n times. The complexity added is thus of order n. This

is the case for every increase from k to k + 1. Although a Sahni algorithm of size k is not as straightforward

as the greedy algorithm, it is still a very simple heuristic.

Definition 7. We say that an instance has Sahni-difficulty level k if it can be exactly solved with a Sahni

algorithm of size k, but not with a Sahni algorithm of size k− 1. The higher the k associated to an instance,

the harder the instance.

While specific instances can be solved using simple heuristics, it is impossible to determine a-priori what

simple heuristic to use. Given an instance, if one knew a priori what Sahni algorithm to use in order to find

the solution, then the Sahni-k would be a precise measure of difficulty. However, only after the instance has

been solved can one know what Sahni algorithm to use. Thus, there is no reason to believe that Sahni-k will

be a good predictor of whether a person can solve an instance or not.

In table 3.2 we return to the two measures of difficulty and apply them to the instances used in our

experimental sessions.

3.2.3 The Knapsack Problem: A Hard Problem

We wish to draw a parallel between non-incremental intellectual discovery and finding the solution to a hard

problem. The knapsack problem allows for instances that are hard according to our criterion because of the

following properties:

1. There is a parameter (in our case the size, n), such that an increase of this parameter by 1 unit can

in some instances increase the computational complexity of finding the exact solution by an order of

magnitude. This allows us to construct problems that are very hard.

2. It is not possible to establish a priori what approximation algorithm may solve the instance exactly or

8Approximation schemes have more desirable properties than approximation algorithms. In the case of the Sahni scheme,
different algorithms from the family can be chosen depending on the desired performance level.
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with a fixed precision. It is also not possible to split the problem in a small number of easy parts such

that solving each of these parts separately will give the right answer.

The above two properties make the problem non-incremental. Additionally, the knapsack problem satis-

fies the following property, which allows us to prove the main result of this section:

3. When n is increased by 1 unit, the complexity of computation of the value function of the instance at

each point in the solution space does not increase very much.

When it comes to identifying a hard problem, we just care that we can find an instance of the knapsack

problem which is hard enough for our purposes and which satisfies property 3. This contrasts the worst-case

analysis that was mentioned in section 3.2.1, and which is often used in computer science.

The reason we care about properties 1, 2, and 3 is that these properties allow us to make a clear-cut

distinction between our setup and rational-expectations models. In rough strokes, a problem that satisfies

properties 1, 2, and 3, will either be easy enough to be computable by agents, or it will be too hard to be

computable. In the latter case, it will also be too hard to update any prior belief over the solution set. Hence,

in our model, there is either no uncertainty, or agents cannot possibly update any prior over the solution

set, so that any model involving updating of beliefs cannot be the right one to model this situation. This

provides the basis for testing the hypothesis of whether we posed “hard enough instances” of the knapsack

problem to our subjects. We now make our argument precise.

Take the following simple Bayesian model to describe solving the knapsack problem as a situation with

uncertainty in which agents get new signals and are required to update their beliefs over how likely each

point in the solution set is to be the optimum. Call this model the Uncertainty Model.

Let Θ(n) be the set of possible solutions of an instance of the knapsack problem with n objects. Thus,

Θ(n) is in the case of the knapsack problem the set 2n. Each agent i ∈ I (I is some non-empty index

set) has a prior belief Bi over Θ(n) describing for each θ ∈ Θ(n) how likely it is that θ is the solution to

the specific instance of the problem. Assume that Bi(θ) > 0, ∀θ ∈ Θ(N). This is a sensible assumption

since the complexity of the problem is on one hand determined by the number of possible solutions, so that

points with 0 probability do not add any complexity.9 Now assume that i observes a realization of a random

variable σ ∈ {0, 1}, and there is an updating mapping Bi(θ | σ) : {0, 1} × Bi(θ) → [0, 1], specifying how the

probability of each state changes depending on the realization of σ. We assume that this updating does not

reduce the complexity of the problem by an order of magnitude. If this were not the case, and if we want to

think of σ as some accessible and simple device available to the agent, then he could just use n such devices

and figure out the precise solution in polynomial time. That such a scheme is not readily available to the

agent is therefore an assumption consistent with the problem being NP .

9This assumption is additionally justified as follows. For example, if all objects have a small wj and the weight limit is large,
one expects an individual to immediately rule out all knapsacks with only one object. One should think of this as a signal, as
this can only be established once an agent is presented with the instance; the updated distribution gives probability zero to all
knapsacks with only one object. This signal satisfies the assumption we make about signals. The assumption on prior belief
can also be replaced with the alternative assumption that the support of Bi (θ) be of cardinality larger than 2n−1, or in fact
with any cardinality that is exponential in n.
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Finally, we assume that the complexity of computation of the updated probability Bi(θ | σ) is of the same

order of magnitude as the computation of the value function V (.) of the instance of the problem at each θ.

This assumption is sensible precisely because of 1–3. Namely, suppose that we increase n by 1 unit to n′.

Then the set Θ(n′) increases in size by a factor of 2 relative to Θ(n), or an order of magnitude. However,

computing V (θ) either remains unchanged in complexity for θ ∈ Θ(n) ∩Θ(n′), or it at most increases by an

additive constant for θ ∈ Θ(n′) \ Θ(n).10 Formally, for each θ ∈ Θ(n) denote by ηi,B(θ, n, σ) the number of

operations needed to compute Bi(θ | σ), and denote by ηV (θ, n) the number of operations needed to compute

V (ω, n). To avoid any confusion with computer science, we state our assumption as follows:11

ηi,B(θ, n, σ)

ηV (θ, n)
≥ m > 0, ∀θ, ∀n ≤ n̄ < ∞.

Here, m is a positive constant, close to 1, and n̄ is some potentially very large constant. It is clear that we

can restrict ourselves to finite problems, as when n̄ is for instance 2 billion, the solution set of the knapsack

problem with so many objects is much larger than the number of atoms in the universe, and there is clearly

no sense in theorizing about problems that complex.

To make things more concrete and directly related to our problem, think of σ as a comparison of the values

of two different knapsacks. Such a σ is a very natural one, and it clearly satisfies the above assumptions.

Proposition 8. In the Uncertainty Model, assume that m ≥ 1. Then, if agent i is unable to compute

the solution to the instance of the knapsack problem, θ∗ ∈ Θ(n), then it is also for i impossible to compute

Bi(. | σ).

Proof. The proof is obvious: if i were able to compute Bi(θ | σ), for all θ ∈ Θ(n), then he could have just as

well computed V (θ) at each θ ∈ Θ(N) in the first place, and then keeping always track of just the maximal

θ he would find the precise solution θ∗ so that there could be no uncertainty.

We comment that m ≥ 1 is just a convenient device to make our statement particularly simple, and the

mapping Bi(. | σ) is abstract and might be very complex anyway. Even if m were equal to 1
n
,12 a similar

statement would apply: the only difference is that then, if the agent were unable to compute the solution

for a specific n, he surely would be unable to compute the posterior when n is increased by 1 unit.

10Computing the value of the knapsack is just adding up the values of all the objects, and adding all the weights to verify
that the weight limit is not surpassed. Clearly, if we have one new object there is at most one new weight and one new value to
add, so that computational complexity can at most increase by 2 operations. Moreover, even at most points θ ∈ Θ(n′) \ Θ(n)
computing the value does not increase in complexity at all.

11We could state our assumption in computer-science language as ηV (θ, n) = O
`

ηi,B(θ, n, σ)
´

, but such a statement is one
of asymptotic properties where n becomes large. Our statement describes the situation for finite n.

12This is the worst things could possibly go for us, as the complexity of computing Bi(. | σ; n) is at least a constant and
the complexity of computing V (θ, n) is at most of the order n. The constant in the numerator is 1 because all values of the
parameters in an instance have the same base-two log.
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3.3 Experimental Design

The instruction sets can be found by visiting the following web pages (which were part of the web site that

was used in the experiments):

http://clef.caltech.edu/exp/eTradeLab13a/instructions.html and

http://clef.caltech.edu/exp/knapsack.

The first webpage corresponds to the original experiment, of which we ran four sessions. We will refer to

this setup as setup ω. The second webpage corresponds to the version with equal time for both treatments

and a variation in the prize setup that is explained below. We will call this setup, setup ν.

3.3.1 Timing of an Experimental Session

In an experimental session, a group of participants are asked to solve several instances of the knapsack

problem, cast in terms of shipping problems. All instances have a unique solution. Each experimental session

is divided in ten periods, P = 1, ..., 10. Periods 1 and 2 are practice periods; the remaining ones (3 to 10)

are earnings periods. The explanation that follows applies to both setups - ω and ν - except when specified.

In setup ω, prizes, security prices, cash, and period earnings are expressed in a fictitious currency called

Franc (F ), with an exchange rate of F1 = $0.01. In setup ν, the dollar value of all parameters is preserved,

but expressed in dollars. In both setups, earnings from practice periods do not count towards total experiment

payoffs. Earnings from earnings periods are accumulated, converted to dollars at a preannounced exchange

rate, and a $5 sign-up reward is added. In each earnings period, participants are given an instance of the

knapsack problem and a specific payment rule. Under the Market treatment, participants are paid based

on their final holdings of securities whose dividends depend on the optimal solution, as well as their final

cash position. Under the Prize treatment, they are paid directly for solving the instance of the knapsack

problem. All odd-numbered earnings periods are Market periods; all even-numbered earnings periods are

Prize periods.

At the beginning of a period, participants receive a sheet of paper with a full description of an instance

of the knapsack problem and an area to mark their proposed solution to the problem. This sheet will be

referred to as Answer Sheet (see Shipping Problem Presentation in the Instructions Sets). Answer Sheets

are collected at the end of a Prize period; in a Market period, the sheets are collected 30 seconds before the

end. In other words, the Answer Sheets are handed in by participants, before security payoffs are revealed,

and hence, before the optimal solution, which is implicit in the security payoffs, becomes known.

An entire experimental session lasts approximately 2 1/2 hours, including one half hour for instructions.

In setup ω, each prize period lasts up to 7 minutes, and each market period lasts 15 minutes. In setup ν,

each period lasts 10 minutes, for both treatments.
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Table 3.1. Instances of the knapsack problem used in experimental sessions. Objects had common names,
not letters. The letters used in the table stand for: A = Anderson, B = Brown, C = Cole, D = Darwin,
E = Evans, F = Foster, G = Green, H = Hamilton, I = Ives, J = Jensen, K = Keaton, L = Lee.

Problem & Objects
capacity A B C D E F G H I J K L

I
p 500 350 505 505 640 435 465 50 220 170
w 750 406 564 595 803 489 641 177 330 252

c = 1900 θ∗ 0 0 1 1 0 1 0 0 0 1

II
p 300 350 400 450 47 20 8 70 5 5
w 205 252 352 447 114 50 28 251 19 20

c = 1044 θ∗ 1 0 1 1 0 0 0 0 1 1

III
p 15 14 3 3 10 9 28 28 31 25 24 1
w 129 144 77 77 66 60 184 184 229 184 219 72

c = 850 θ∗ 0 0 0 0 1 0 1 1 1 1 0 0

IV
p 37 72 106 32 45 71 23 44 85 62
w 50 820 700 46 220 530 107 180 435 360

c = 1500 θ∗ 1 0 0 1 1 0 1 1 1 1

V
p 2 3 4 5 6 9 8 7 6 5 8 9
w 3 4 6 3 5 13 6 9 2 4 7 7

c = 14 θ∗ 0 0 0 1 1 0 0 0 1 1 0 0

VI
p 107 35 120 206 88 34 28 110 88 101 74 53
w 599 196 670 1204 502 202 145 600 453 601 404 299

c = 3800 θ∗ 1 1 0 0 1 0 1 1 1 1 1 1

VII
p 201 84 113 303 227 251 129 147 86 127 144 167
w 192 80 106 288 212 240 121 140 82 120 137 160

c = 1300 θ∗ 1 0 1 1 1 0 0 1 1 1 0 1

VIII
p 31 141 46 30 74 105 119 160 59 71
w 21 97 32 21 52 75 86 116 43 54

c = 265 θ∗ 0 1 0 0 1 0 0 1 0 0

3.3.2 Knapsack Instances

Table 3.1 lists the instances of the knapsack that were used in the experiment. There are eight different

instances; four have n (number of items) equal to 10, and four have n equal to 12.

In each experimental session, two different instances of size n = 10 are assigned under the Market

treatment, and two different ones are assigned under the Prize treatment. The analogous statement is true

for instances of size 12. To ensure that all instances are solved under both setups, we run two types of

sessions. In experimental sessions of type a, instances I, V, VII, and VIII (see table 3.1) are solved under the

Market treatment; while instances II, III, IV, and VI are solved under the Prize treatment. In experimental

sessions of type b, this organization is reversed: an instance that is solved under the Market treatment in

type a is solved under the Prize treatment in type b, and vice versa.
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3.3.3 Market Treatment

In the Market treatment, participants are paid through securities. There are as many securities as there are

items in the knapsack instance. Each security corresponds to an item. At the end of the period, a security

pays $1 if the corresponding object is in the optimal knapsack; otherwise the security pays nothing.

Participants start with an initial endowment of 5 units of each security, and $4 cash (this is expressed

as F400 in setup ω). To provide liquidity, participants are endowed with more securities than the desired

average payoff; this is why a “loan repayment” is subtracted from total period earnings. In type a experiments

the loan repayment is $23.75; in type b experiments the loan repayment is $32.50. Because of the loan,

participants may lose money. Losses are subtracted from cumulative earnings. If cumulative earnings are

negative, the participant is paid only the sign-up reward of $5 plus earnings from prize periods.

In setup ω, trading is done through a continuous electronic open-book system called eTradeLab. Details

of this trading interface can be found in the instructions (see aforementioned webpage). The system tracks

all offers (bids, asks) and transactions, time stamped to the second.

In setup ν, an identical market mechanism is used for trading. However, the interface is different, and

orders are submitted by “clicking” on price labels, instead of manually entering a price and quantity. The

software for this setup is jMarkets, and is further described in the experiment instructions for setup ν.

While Answer Sheets are collected 30 seconds before the end of the period (i.e., before security payoffs

are revealed), participants are not paid depending on their marks on these sheets. Participant earnings for

Market periods come exclusively from trading and from the final payoffs of the securities.

3.3.4 Prize Treatment

The prize treatment in setup ω is substantially different from that in setup ν. We describe them separately,

under the names prize treatment ω and prize treatment ν, respectively.

3.3.4.1 Prize Treatment ω

At any moment during a Prize period, a participant can submit his/her Answer Sheet with the proposed

solution by raising his/her hand. The experimenter then checks the marks on the Answer Sheet and an-

nounces a winner if the solution is correct. The period ends when all participants have submitted their

Answer Sheets, or the time limit has been reached (recall that the time limit is 7 minutes), whichever occurs

first. Participants do not get a second chance: once an Answer Sheet is turned in, participants cannot change

it. The Prize is set at F6, 600, i.e., $66. Ties are resolved by dividing the Prize equally among the winners.

3.3.4.2 Prize Treatment ν

All participants are in constant live communication with the experimenter, through a chat program called

Skype. A username and password are assigned to each participant for the duration of the experiment. These

are secret, to ensure that participants communicate only with the experimenter. Participants have one
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Table 3.2. Difficulty of Knapsack Problem instances used in experiments. The difficulty is measured by the
proxy of input size (columns) and the Sahni difficulty level described in section 3.2.2.

Input Size Proxy (n log2 c)

40 - 50 80 - 90 100 - 120 120 - 130 140 - 150
0 IV

Sahni
difficulty level

1 V I
2 VIII III
3 II VI
6 VII

opportunity to submit their proposed solution to the instance at hand. The submission is made over the

chat program, using a code of ones and zeros, to indicate objects that are in and objects that are not in the

optimal knapsack according to their proposed solution. Participants have a time limit of 10 minutes to make

submissions. After these 10 minutes elapse, all answer sheets are picked up, after which the correct answer

is announced together with the time stamp of the winning submission. The winner is the first participant

to submit the correct solution. Unlike in setup ω, in prize treatment ν, the fact that there is a winner is not

revealed until the end of the period.

Note that in both setups the Prize is approximately the same as the aggregate payment in Market periods

(security dividends and cash, minus loans). Notice the difference between a Prize period and a Market period:

in a Prize period, only the winner(s) is (are) paid; in a Market period, everyone is paid, through securities

and cash.

3.3.5 Discussion of Experimental Design

3.3.5.1 Difficulty of Knapsack Problem Instances

The instances we consider have different levels of difficulty according to the two measures given in subsection

3.2.2. In table 3.2 below, the rows correspond to Sahni difficulty levels, k, while the columns correspond to

the described parameter of input size. In table 3.2, the northwest corner corresponds to lower complexity.

Complexity increases in the southeast direction.

3.3.5.2 All-or-Nothing Problem

One property of the knapsack problem is that a knapsack that is close to optimal - say, the feasible knapsack

with the second-highest value - need not look in any way similar to the optimal knapsack. The latter may

be composed of an entirely different set of objects. We want to preserve this property in our experimental

treatments. It is to this end that compensation is never tied to the value of the knapsack that a participant

proposes as the optimal knapsack.

It is obvious that compensation in the prize treatment is given only for the exact solution of the problem.

We wish to emphasize that this is also the case in the market treatment. Only securities corresponding to

objects that belong to the optimal knapsack pay positive dividends. For example, if the knapsack with the
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second-highest value has an entirely different composition from the optimal knapsack, a participant betting

on the objects composing the former will make negative earnings. In section 3.5 we further discuss the payoff

structure in our experiment.

3.3.5.3 Securities Do Not Split the Problem

As discussed in section 3.2.3, instances of the knapsack problem satisfy property 2, i.e., the solution cannot

be found by splitting the problem in a small number of easily-solvable parts. In particular, computing

whether an object belongs to the optimal knapsack or not is as hard as solving the instance.13 Therefore,

computation of the solution cannot be decentralized in an obvious fashion by each subject focusing on a

specific object.

One example of how the process of finding the solution to an instance can be distributed is by splitting

the set of all knapsacks in groups for comparison. Each person gets a fraction of all knapsacks to make

value comparisons. The most valuable feasible knapsack of each group is then compared to the winner of

other groups, and the most valuable feasible knapsack can thus be found.14 It is not clear how this form of

distribution can be encoded in the securities in the market treatment.

The securities in the market are the minimal set of securities necessary to express the solution of every

instance. They provide a binary code to represent the solution, and may serve as a language to transmit it.

However, the securities do not distribute or simplify the problem in any way.

3.4 Results

We report results from four ω experimental sessions and four ν sessions. Sessions are identified by the date

when they were run (yymmdd), the setup (ω or ν), and the experiment type (a or b). Our eight sessions

are: ω040809a, ω040929b, ω041202a, ω041215b, ν061112a, ν061116b, ν070411a, and ν070412b. All sessions

were run in the Social Sciences Experimental Laboratory at Caltech, with Caltech students (undergraduate,

graduate, and summer visiting students). Session ω040929b had seventeen participants, sessions ν061112a

and ν070411a had fourteen, session ν061116b had sixteen participants, and session ν070412b had eighteen

participants; all other sessions had fifteen participants. In sessions of setup ω, the seven-minute time limit

for Prize periods was never binding: participants always turned in their answer sheets early. Total earnings

before sign-up reward fluctuated between $0 and $163. Mean payment amounted to $31; the median payment

was $20.

Our results are taken from two sources. We have all the information on trades and prices that is collected

13There are exceptions, corresponding to cases where it is obvious if a certain object belongs or not to the optimal knapsack.
For example, if one object weighs more than the sum of all remaining objects and its value is below the maximum value of the
remaining objects, then this object clearly does not belong to the optimal knapsack. This cannot be extended to sets of more
than one object - if a pair weighs more than the sum of the remainder and has a lower value than the maximal object in the
remainder, this does not mean that both objects in the pair are not in the optimal knapsack. We make sure that none of the
instances we consider falls in the class where the above described exception applies.

14If such an assignment of groups of knapsacks to subjects were exogenously given by a social planner, then this would be
the team problem studied by Marschak and Radner [1972].
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during market periods, plus we have the answer sheets of all participants for both treatments. These answer

sheets are returned to the experimenter for no compensation. Participants are told at the beginning of

the earning periods that they must give the answer sheets back to the experimenter, but their answers

are completely irrelevant for payment, and participants understand this. Still, we are able to collect many

answer sheets that are carefully filled out.15 The number of answer sheets discarded because they are blank

or incomprehensible is small, and similar across treatments for setup ω. For setup ν, the number of discarded

answer sheets in the prize treatment is very small (approximately 2% of all answer sheets) while the number

of discarded sheets (mainly because they are left blank) in the market treatment is large (approximately

25% of all answer sheets).

Result Zero: Instances are Hard. Before we move on to analyze the performance of markets vis-

à-vis the prize treatment, we make the point that instances are hard enough, as defined in section 3.2.3.

Proposition 8 says that it is only sensible to use Bayesian updating and thus the standard information

aggregation paradigm, if instances are easy enough. If problems are easy enough, prices must immediately

collapse to one or zero, depending on whether the object belongs or not to the optimal knapsack.

Direct evidence that problems are hard enough is the fact that only a fraction of participants solve them

in both treatments. This is true for all instances (see table 3.3). Indirect evidence is the fact that prices

never collapse to zero or one.

We can thus pursue our objective of understanding intellectual discovery outside the Bayesian learning

framework. We present results from each setup in a separate section. The data for both setups demonstrate

that markets do generate the solution to the instances of the knapsack problem, that trade is abundant and

prices are informative. All results show a very strong correlation between the Sahni difficulty ranking of an

instance and the number of participants that solve it.

3.4.1 Market Performance

Every instance that is solved under the prize treatment is also solved under the market treatment.

Table 3.3 shows the fraction of participants that find the correct solution for every instance of the knapsack

problem. Setups ω and ν are displayed separately, and results are split according to the treatment. There

is a big variance across instances in the number of correct solutions and instances that are more frequently

solved under the market treatment are also more frequently solved under the prize treatment. Table 3.3

shows that all instances except instance V II are solved by a significant fraction of participants in both

treatments. Percentages are taken with respect to the total number of participants, without adjusting for

discarded answer sheets. The solution is always found in the market.

Figures 3.1 to 3.4 display the fraction of correct solutions and the number of choices of each object

(correctly or incorrectly chosen) taken from participants’ answer sheets. Results for setup ν are in figures

15Answer sheets are not always easy to comprehend, in which case we discard them. One example of behavior that leads us
to think that answer sheets are carefully filled out is that as we pick up the answers, they often take two or three extra seconds
to make sure they hand us the answer they desire. Another example is that answer sheets often have several iterated answers
that are scratched, with an arrow or marker pointing to the “surviving” answer.
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Table 3.3. Percentage of total number of participants that marked the correct answer to each instance on
their answer sheets.

Instance

I II III IV V VI VII VIII

Fraction Correct (%)

– Setup ω

Market 20.00 3.13 31.25 62.5 60.00 15.63 0.00 26.67

Prize 18.75 10.00 20.00 33.33 34.38 3.33 0.00 12.50

Fraction Correct (%)

– Setup ν

Market 32.14 14.71 11.76 26.47 32.14 5.88 3.57 21.43

Prize 17.65 28.57 46.43 57.14 38.24 10.71 0.00 17.65

3.5 to 3.8. This is simply a graphical representation of the results in 3.3. It is also interesting to notice in

these plots that whenever a large proportion of participants agrees about an object being in the optimal

knapsack, this object truly is. Participants are not misled in the markets.

How does the market do what it does? It could be the case that participants in the market treatment

just sat down and tried as hard as in the prize treatment to solve the instance, completely disregarding the

market. This is not the case, as attested by the following two results:

3.4.1.1 Market Result One: Trade and Bidding are Abundant.

Table 3.4 lists offer and trade statistics. Per-person and per-period averages are displayed, as well as per-

asset and per-period averages. Standard errors are in parentheses. Across all Market periods in all sessions,

a large number of offers and trades are recorded.

Table 3.5 splits statistics across IN and OUT securities. “IN” securities correspond to items that are in

the optimal knapsack; “OUT” securities correspond to items that are not in the optimal knapsack. Table

3.6 displays trading activity per instance. Each instance is solved under the Market treatment in two

experimental sessions, which we refer to as Sessions One and Two. Since the number of items, and hence,

securities, differs across instances, table 3.6 also reports per-security averages across both Sessions.

Differences in the number of trades and orders are evident across instances, and across securities (IN vs.

OUT securities). We can only speculate about the reason of these differences. That is the matter of section

3.5. It also catches the eye that the number of bids and asks is much larger in setup ν. This may be driven

by the use of the simpler trading interface of jMarkets.

3.4.1.2 Market Result Two: Prices are Noisy but Informative.

For all but one instance, the distribution of prices of IN securities first-order stochastically dominates the

distribution of prices of OUT securities. Transaction prices reveal information about the optimal solution,

but very noisily. The one instance where this dominance relation is not found, is instance V II, for which

nobody finds the solution. First-order stochastic dominance in this context means that the probability that

the price of an IN security is larger than the price of an OUT security is at least 0.5. Figure 3.9 shows the

empirical distribution functions for prices of IN and OUT securities in every instance in setup ω, while figure
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Figure 3.1. Answer-sheets data. Instances I and II.

Table 3.4. Summaries of trade and bidding activity. In setup ν all trades involve only one unit, so volume
equals number of trades.

Experiment
Setup ω Setup ν

040809a 040929b 041202a 041215b 061112a 061116b 070411a 070412b

Average per
person per
period

Asks
6.97 5.38 7.68 5.3 25 22.7 36.9 22.1
(5.1) (3.6) (4.4) (4) (22) (22) (27.8) (18)

Bids
6.28 5.15 6.07 5.03 20 20.6 19.1 13.5
(3.7) (2.9) (4.2) (3.7) (28.8) (26.9) (9.4) (10.9)

Trades
5.43 4.19 5.63 4.07 10.6 8 13.3 9.1
(3.8) (3.5) (3.2) (2.7) (8.3) (6.8) (7.3) (6.7)

Volume
11.07 8.79 12.6 12.88 - - - -
(8.5) (6.9) (7.8) (9.2) - - - -

Average per
asset per
period

Asks
8.71 7.62 9.6 6.62 31.7 33 47 36.1
(4.1) (3.6) (4.8) (3.9) (25) (18) (33) (27.2)

Bids
7.85 7.29 6.07 6.29 25.5 30 24.4 22.1
(5.3) (3.9) (4.2) (3.7) (13.1) (13.2) (17.2) (16)

Trades
6.79 5.94 7.04 5.08 13.5 11.6 17 14.9
(3.8) (4.0) (3.2) (3.8) (7) (7.6) (10.5) (10.6)

Volume
13.83 12.46 15.75 16.1 - - - -
(9.9) (9.0) (9.8) (11.9) - - - -

Totals

Asks 418 366 461 318 1397 1451 2068 1591
Bids 377 350 364 302 1123 1322 1072 975
Trades 326 285 338 244 594 512 746 655
Volume 664 598 756 773 - - - -
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Figure 3.2. Answer-sheets data. Instances III and IV.

Table 3.5. Volume of trade and number of bids and asks, for IN and OUT securities.

Experiment
Setup ω Setup ν

040809a 040929b 041202a 041215b 061112a 061116b 070411a 070412b

Trade
volume

IN 15.4 10.7 17.3 12.5 10.3 8.5 18 13.1
OUT 14.9 17.7 17.12 24.9 16 15.8 16 17.5

Asks
IN 7.9 6.0 9.5 5.3 13.4 22.3 25.8 23.2
OUT 10.7 11.7 11.2 10.1 45.7 46.2 63.1 54.9

Bids
IN 10.9 8.0 9.8 6.3 25 31.6 33 23.8
OUT 6.8 7.9 7.1 7.7 18 27.8 17.8 19.8
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Figure 3.3. Answer-sheets data. Instances V and VI.

Table 3.6. Number of trades for each instance of the knapsack problem.

Instance

I II III IV V VI VII VIII

Setup ω

Session One 84 82 81 57 88 65 74 80
Session Two 78 75 57 59 69 53 87 104

avge. per asset 8.1 7.85 5.75 5.8 6.54 4.92 6.71 9.2
n 10 10 12 10 12 12 12 10

Setup ν

Session One 135 138 140 142 171 87 114 174
Session Two 122 240 140 183 193 92 197 234

avge. per asset 12.8 18.9 11.7 16.3 15.2 7.5 12.9 20.4
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Figure 3.4. Answer-sheets data. Instances VII and VIII.
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Figure 3.5. Answer-sheets data. Instances I and II. Setup ν.
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Figure 3.6. Answer-sheets data. Instances III and IV. Setup ν.
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Figure 3.7. Answer-sheets data. Instances V and VI. Setup ν.



77

A B C D E F G H I J K L
0

0.5

1
Proportion of subjects that choose each object

 

 

Objects that are IN
Subjects that choose object

A B C D E F G H I J K L
0

0.5

1

correct

wrong

Proportion of subjects that choose the correct answer

Instance VII
Market

.

Instance VII
Prize

A B C D E F G H I J K L
0

0.5

1

A B C D E F G H I J K L
0

0.5

1

correct

wrong

Instance VIII
Market

correct

wrong

Instance VIII
Prize

Figure 3.8. Answer-sheets data. Instances VII and VIII. Setup ν.



78

0 100 200
0

0.2

0.4

0.6

0.8

1
Instance I

 

 

IN
OUT

0 50 100
0

0.2

0.4

0.6

0.8

1

Empirical CDF for prices of IN and OUT assets
Instance II

 

 

IN
OUT

0 100 200
0

0.2

0.4

0.6

0.8

1
Instance V

0 50 100
0

0.2

0.4

0.6

0.8

1
Instance III

0 100 200
0

0.2

0.4

0.6

0.8

1
Instance VII

0 50 100
0

0.2

0.4

0.6

0.8

1
Instance IV

0 100 200
0

0.2

0.4

0.6

0.8

1
Instance VIII

0 50 100
0

0.2

0.4

0.6

0.8

1
Instance VI

Figure 3.9. Empirical Cumulative Density Functions for prices of IN and OUT securities. Instances solved
under the Market setup in experiment type a have a different color scheme than those solved under the
Market setup in experiment type b. Setup ω

3.10 shows these distributions for setup ν.

There is clear evidence that participants do interact in the market. There is the potential for communi-

cation, and prices are an effective language since securities are differentiable based on their prices.

Finally, we report two more characteristics of our experimental markets which might carry some infor-

mation but are harder to interpret.

• Prices are low. In setup ω, the median price is $0.5, while the average price is $0.48. Average

and median prices of IN and OUT securities lie slightly above and below $0.5, respectively. Both the

median and the average become even lower when we add data from setup ν sessions.

• Excess supply of OUT securities. For every trade, we know whether it was the result of a buyer’s

submission of a market order (an order that takes an offer that is already waiting in the book and

transforms it into a trade), or of a seller’s submission of a market order. Among trades that are the

result of a buyer’s market order, a significantly higher number correspond to OUT securities than to

IN securities. Also, most trades of OUT securities are the result of a buyer’s market order. The reverse
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Figure 3.10. Empirical Cumulative Density Functions for prices of IN and OUT securities. Instances solved
under the Market setup in experiment type a have a different color scheme than those solved under the
Market setup in experiment type b. Setup ν.
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is not true for IN securities.

3.4.2 Sahni-k is a Good Measure of Difficulty

If we consider only setup ω, in both treatments, Sahni-k difficulty is a good predictor of the number of

correct answers for an instance. We propose and describe this measure in section 3.2.2. Here we summarize

the ranking of instances that follows from using this measure:

IV ≺ V ∼ I ≺ V III ∼ III ≺ II ∼ V I ≺ V II,

where ≺ indicates that an instance is “easier,” and ∼ indicates that two instances are not ranked, according

to the Sahni-k difficulty measure.

From table 3.3 we get the following ordering of instances in the market (setup ω):

ĨIV > ĨV > ĨIII > ĨV III > ĨI > ĨV I > ĨII > ĨV II ,

where Ĩs denotes the fraction of participants that solve instance s correctly. Instances in the prize treatment

rank very similarly,

ĨV > ĨIV > ĨIII > ĨI > ĨV III > ĨII > ĨV I > ĨV II .

In both cases the ranking agrees with the Sahni-k ranking for all instances except instance I, which is

“harder” in the experiment than predicted by our difficulty measure.

The clear correlation we just mentioned disappears in setup ν. It is only approximately true in this case.

In setup However, we argue that this is mainly caused by the fact that participants in one of the two sessions

of this setup outperformed participants in the other session for every instance. This heterogeneity between

groups changes the relative ranking of instances that were solved in the market in one session versus those

solved in the other session (analogously for instances solved in the prize). To see that this is indeed the

case, notice that the ranking within a session and treatment (e.g., the instances solved under the market

treatment in session ν061112a) displays the strong correlation with Sahni difficulty that was noted for setup

ω.

3.5 Conclusion

We create in the laboratory a situation that emulates intellectual discovery with the property that it cannot

be reasonably modeled as Bayesian learning. The results point out that this property may be relevant since

in a market for discovery we find that: the discovery is made, trading activity is abundant, and prices are

informative but noisy.

To exactly what extent these results are driven by the non-incrementality feature of the cognitive task

we use to represent discovery must still be determined. We set the ground for the formulation of hypotheses
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that can be tested with further experiments.

In particular, the market treatment may deliver the results it does for several different reasons, which

may actually interact. We mention three reasons that are worthy of and prone to further experimental

study. First, it may be that participants find a code to coordinate on decentralized computation of the

solution. Second, it may be that markets provide a “check,” where participants try to corroborate whether

the algorithm they are using for computation is right or wrong. Third, the markets do provide a way to

reduce the risk that comes from attempting to guess the solution on a hunch (heuristic). This may make

participants more willing to express their hunches, by means of which prices become informative. This reason

may interact with one or both of the previous reasons. It can be studied further by changing the payoff

in the market to incorporate the risk of being paid only if one is entirely correct (e.g., have securities pay

dividends only if someone finds the solution, or pay per optimal solution held in the final portfolio, not per

security).

We have given most thought to the pursuit of the first reason mentioned above. One check of the idea that

participants manage to distribute computation is to verify if markets do better in a setup where coordination

is easier, while the task is still computationally difficult. Another option is to move away from the cognitive

task and instead set up an environment where the selective acquisition of information by different participants

may benefit from coordination. In this purely informational framework, will coordination ensue even when

it is very difficult to encode (as is the case in our experiment)?

Another contribution of this paper is to bridge a connection between certain notions of computer science

and economic decisions where incentives matter. The description of non-incrementality of a problem in

terms of solution algorithms, and the predictive power of the Sahni difficulty measure indicate that there

is a bridge. In particular, it is our belief that the theory of intellectual discovery can gain much from the

models of individual cognition that are inferred from the study of algorithms.
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Appendix A

Prices and Trades in Dynamic

Completeness Experiment
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Experimental Session
Average TpM
taken over:

051005 051022 051122 051201

TpM TpM
#subjects

TpM TpM
#subjects

TpM TpM
#subjects

TpM TpM
#subjects

Complete mkts.
9.6 0.8 14.2 0.65 28.4 0.9 21.6 0.7

Incomplete mkts.

before announce 8 0.67 12.6 0.57 26.5 0.9 23 0.74

Incomplete mkts. after

announce 5.8 0.48 8.8 0.4 19.3 0.6 16 0.52

Table A.1. Average number of trades per minute (TpM) and number of trades per minute, per participant.

Experimental Session

Trades per subject in

periods:

051005 051022 051122 051201
Avge. Std. Dev. Avge. Std. Dev. Avge. Std. Dev. Avge. Std. Dev.

Complete mkts.
28.7 14.2 23.2 13.6 33 26.2 25 19.8

Incomplete mkts.

before announce 26.7 15.4 22.9 16.7 34.1 28.9 29.7 27.3

Incomplete mkts.

after announce 19.3 12.7 15.9 11.6 24.8 19.4 20.7 18

Table A.2. Average and Standard deviation of the number of trades that a participant is involved in during
an experimental session.

In this appendix we describe the details of the experimental sessions that we ran. We give statistics on

trade and price behavior that are informative, but not central to the point we make in the paper.

The average supply of assets (market portfolio) differed slightly across sessions. In our experimental

sessions, agents were of two possible types, depending on their initial holdings of assets. The number of

agents of each type determines the market portfolio. Table 2.3 describes the initial holdings of each type as

well as the ensuing market portfolio for each experimental session.

Tables A.1 and A.2 contain statistics on trading volume. Table A.1 contains per minute average trading

volume for each experimental session. Because different experiments have different numbers of participants,

the per minute values are divided by the number of participants and reported. The trading volume averages

are taken over complete market periods, incomplete market periods before announcement, and incomplete

market periods after announcement.

Table A.2 reports the average number of trades that each participant is involved in, as well as the

standard deviation across participants of this number (notice that each trade involves two participants,

hence the discrepancy between numbers in the two tables, since Table A.2 doubles the number of trades

from Table A.1). Standard deviation is computed for the experimental totals over complete market periods,

and incomplete market periods, both before and after announcement. Naturally, standard deviations in

single periods are significantly larger than standard deviations of the totals, which are reported here.

The evolution of trading prices of tradeable assets over time is summarized in Figures A.1 to A.4.
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Figure A.1. Price evolution in time for every period. Straight lines indicate expected values of security
dividends, given the contents of the urn and the announcement in each period. In complete market periods,
circles and a solid line correspond to asset A, while dots and a dashed line correspond to asset B.
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Figure A.2. Price evolution in time for every period. Straight lines indicate expected values of security
dividends, given the contents of the urn and the announcement in each period. In complete market periods,
circles and a solid line correspond to asset A, while dots and a dashed line correspond to asset B.
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Figure A.3. Price evolution in time for every period. Straight lines indicate expected values of security
dividends, given the contents of the urn and the announcement in each period. In complete market periods,
circles and a solid line correspond to asset A, while dots and a dashed line correspond to asset B.
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Figure A.4. Price evolution in time for every period. Straight lines indicate expected values of security
dividends, given the contents of the urn and the announcement in each period. In complete market periods,
circles and a solid line correspond to asset A, while dots and a dashed line correspond to asset B.
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