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Abstract

Capturing the detailed motion and behavior of biological organisms plays an important role in a

wide variety of research disciplines. Many studies in biomechanics, neuroethology, and developmental

biology rely on analysis of video sequences to understand the underlying behavior. However, the

efficient and rapid quantification of these complex behavioral traits imposes a major bottleneck on

the elucidation of many interesting scientific questions. The goal of this thesis is to develop a suite of

model-based visual tracking algorithms that will apply across a variety of model organisms used in

biology. These automated tracking algorithms operate in a high-throughput, high-resolution manner

needed for a productive synthesis with modern genetic approaches. To this end, I demonstrate

automated estimation of the detailed body posture of nematodes, zebrafish, and fruit flies from

calibrated video.

The current algorithm utilizes a generative geometric model to capture the organism’s shape

and appearance. To accurately predict the organism’s motion between video frames, I incorporate a

motion model that matches tracked motion patterns to patterns in a training set. This technique is

invariant with respect to the organism’s velocity and can easily incorporate training data from com-

pletely different motion patterns. The prediction of the motion model is refined using measurements

from the image. In addition to high-contrast feature points, I introduce a region, segmentation

model based on level sets that are formally integrated into the observation framework of an Iterated

Kalman Filter (IKF). The prior knowledge provided by the geometric and motion models improves

tracking accuracy in the presence of partial occlusions and misleading visual cues.

The method is used to track the position and shape of multiple nematodes during mating be-

havior, zebrafish of different ages during escape response, and fruit flies during take off maneuvers.
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These applications demonstrate the modular design of this model-based visual tracking system,

where the user can specify which components are appropriate to a given experiment. In contrast to

other approaches, which are customized to a particular organism or experimental setup, my approach

provides a foundation that requires little re-engineering whenever the experimental parameters are

changed.



vii

Contents

Acknowledgements iii

Abstract v

List of Figures x

List of Tables xxii

1 Introduction 1

1.1 Automated Visual Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Planar Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 3D Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Techniques for Model-Based Visual Tracking 9

2.1 Generative Model-Based Image Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 IKF Update as a Gauss-Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Sigma Point Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Incorporating Nonlinear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Level Set Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 The Chan-Vese Model within an IKF Framework . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Scaled Motion Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



viii

3 Constructing Generative Models of Organisms for Visual Tracking 27

3.1 The Frenet Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The Worm Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The Fish Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The Fly Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Automated Visual Tracking of Zebrafish Swimming 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Initial Detection of Zebrafish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Kinematic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Automated Visual Tracking for C. elegans Mating Behavior Analysis 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Model Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Region Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.2 Contour Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Kinematic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 3D Visual Tracking of Drosophila Flight Maneuvers 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Quaternion Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



ix

6.3 Geometric Model and Its Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Scaled Motion Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Foreground Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Model Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 Drosophila Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8.1 Voluntary Take Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8.2 Escape Take Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusions 110

Bibliography 114

A Camera Calibration 125

B B-Spline Curves 131



x

List of Figures

1.1 Automated tracking results for genetic model organisms. The estimated location of

the model is overlaid on the original camera image in order to show the fidelity of

the tracking. (A) Nematodes during mating behavior, (B) zebrafish executing escape

response, and (C) fruit flies during flight initiation are demonstrated in this thesis. (A)

and (B) are planar tracking from a single camera, while the 3D motion in (C) is shown

from one of three calibrated camera views. . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Constrained Filter — the iteration over i is based on the iterated Kalman filter approach

presented in Section 2.2. The ”Update” is an unconstrained minimization routine, thus

the constraints are applied to its output. Each block in the filter contains nonlinear

equations, and the Sigma point transform (Section 2.3) is applied to each one in order

to accurately propagate the state mean and covariance through time. . . . . . . . . . 16

3.1 C. elegans generative model. αj are control points that control the shape of Θ(u). The

centerline is constructed by integrating the tangent vector T and the worm’s width

profle; R(u) is added in the normal direction to create the complete model H(p).

Nu = 25 and Nv = 3 define the discretization of the continuous surface. . . . . . . . . 32



xi

3.2 Illustration of the modeling approach used for zebrafish: (A) Geometric mesh H(p)

(green) with local tangent (T) and normal (N) vectors used to construct the mesh.

The parameter ~T and the function Θ(u) define the position and shape of the model

and are estimated during tracking; (B) Head region of length γL is designated as rigid (I

set γ = 0.2 for all experiments), while tail region bends according to linear combination

of eight B-spline bases Φkj (u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Method for constructing zebrafish model used in this analysis. The tangent vector

associated with the function Θ(u) is integrated to create the fish centerline. This

centerline is combined with the fish’s width profile R(u) to create the complete model

H(p). R(u) remains fixed during tracking, and the bending of the model is modulated

by changing the values of αj , which control the shape of Θ(u). . . . . . . . . . . . . . 35

3.4 Method for constructing the body (i.e., thorax/abdomen) of the fruit fly model used in

this analysis. The centerline C(u) is a 3D B-spline curve with 5 control points (only 3

of them are visible in the axes). The curve of the centerline lies completely in the x-z

plane. The width profile, R(u), is revolved around C(u) using a elliptical cross section

where the lateral direction is 20% wider than the dorsal/ventral direction. . . . . . . . 37

3.5 (a) Width profile of the fly head model. (b) Complete head model of the fly constructed

identically to Figure 3.4, except (a) is used as the profile curve and the centerline is

just the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 (a) Outline profile of the fly wing model constructed from from a closed planar B-spline

curve with 20 control points. (b) Complete wing model of the fly constructed by scaling

and translating the profile curve in (a), with Nu = 30 and Nv = 4 . . . . . . . . . . . 39



xii

3.7 Geometric model of Drosophila used in our algorithm. Lb and Lh represent the length

of the fly’s body and head, respectively. Tbw is the translation vector that transforms

the body-centered reference frame to the wing joint reference frame. The coordinate

frame orientation follows the convention common to aeronautics where rotations about

the x, y, and z axes are known as roll, pitch, and yaw, respectively. Downward pointing

z axis is chosen so that positive pitch angles correspond to pitching upwards. . . . . . 40

4.1 Illustration of motion model of the fish. We assume that the total motion between

frames k−1 and k can be decomposed into undulatory motion and axial displacement.

Note that figure displacements are exaggerated for illustration purposes. Actual motion

between frames is much smaller due to high frame rate of camera. . . . . . . . . . . . 43

4.2 (Left) The shape parameters ~α encode the global orientation of the fish. (Right) In

order to create a shape representation that is invariant with respect to the global

orientation, I assume that the solution from the previous time step is a fish with its

head aligned with the positive x-axis (i.e., the bend angle is zero). The prediction

is performed in the invariant representation ᾱ according to the method described in
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Chapter 1

Introduction

Over the last few decades, many technological advances have permitted the automated quantification

of an organism’s genotype1. For instance, sequencing and assaying robots were a great benefit to

the human genome project. However, techniques to automatically quantify the phenotype2 remain

in their infancy. One reason for the lag in techniques to quantify phenotype is the significant

technical challenge involved [4]. The phenotype encompasses a wide array of characteristics from

static morphological features to dynamic behavior. To address these complicated challenges, the

new field of Phenomics [44] was born to (1) formally define the phenotypic features important to

a particular characterization and (2) develop new computational techniques to measure, model,

analyze, and/or classify the phenotypic features. Success in each area is coupled to progress in the

other. For instance, new automated techniques are needed to measure large numbers of features

in an organism, and subsequent analysis will elucidate those features important to the phenotype

characterization. Similarly, defining the phenotypic features properly will guide the development of

novel measurement techniques by focusing information extraction on particular traits. Recognizing

that quantitative, automated phenotype analysis presents the major bottleneck in current biological

science, several projects have emerged devoted specifically to humans and mice [10, 38].

Success in the area of Phenomics will have huge impacts in all areas of biological science and

medicine. Let us examine a particular success to appreciate the development of such techniques.

The small nematode Caenorhabditis elegans (C. elegans) is a widely used model organism in the

1The genetic makeup of an organism
2An organism’s total physical appearance and constitution. It is produced by the interaction of the genotype and

the environment.
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study of genetics and developmental biology. Automated visual tracking of the nematode motion in a

petri dish permitted researchers to efficiently screen large numbers of nematodes to measure changes

in locomotion due to genetic mutations and/or changing experimental conditions. The resulting

automated phenotyping of these organisms from the collected measurements has facilitated the

discovery of neural pathways involved in nicotine response and alcohol intoxication [35, 26]. Besides

increasing general scientific knowledge, discovery of these pathways in model organisms can lead to

drug discovery for ongoing human ailments [58]. Although some success stories can be identified,

significant work is needed to bring these technologies to the same level of sophistication that is

currently provided by modern genetic techniques that are available to cell and molecular biologists

[1, 44].

Frame 525Frame 1 Frame 470 Frame 1120A

B

C

Figure 1.1: Automated tracking results for genetic model organisms. The estimated location of
the model is overlaid on the original camera image in order to show the fidelity of the tracking.
(A) Nematodes during mating behavior, (B) zebrafish executing escape response, and (C) fruit flies
during flight initiation are demonstrated in this thesis. (A) and (B) are planar tracking from a single
camera, while the 3D motion in (C) is shown from one of three calibrated camera views.

The goal of this thesis is to contribute to the general area of Phenomics by developing automated

visual tracking methods for analyzing the behavior of biological model organisms. To this end, I

focus on detailed body posture estimation of nematodes, zebrafish, and fruit flies from calibrated

video (Figure 1.1). These three genetic model organisms constitute a significant portion of all bio-

logical research and were targeted to have the greatest impact on scientific discovery. They benefit
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from an expanding array of genetic and molecular tools, making it possible to ask even more detailed

questions through genotype quantification. I also focus on visual analysis because cameras represent

a rich and exciting sensor that many researchers rely upon due to its non-invasive nature. Thus

my techniques assume the behavioral trait is manifest as a change in body motion, orientation, or

shape. Other types of sensors are necessary for behaviors that are not measured by images (e.g.,

audio processing of birdsong in zebra finches) [4, 109]. Finally, I focus on detailed posture estima-

tion of these biological organisms. This involves video recording and measuring at a high enough

resolution to capture detailed motions. For instance, quantifying the escape response behavior in

zebrafish involves measuring the position of a complex time-varying surface (i.e., its body). A sig-

nificant amount of previous work has been done to automatically track animals at low resolutions

where their level of abstraction is a planar blob. These results have spawned the development of

some commercially available software packages (e.g., EthoVisionTM, BIOBSERVETM), and lead to

successful behavioral quantification of nematodes [27], zebrafish [5, 9], fruit flies, and rodents (see

[4, 109] and the references therein). However, there are numerous unresolved scientific questions

where this coarse level of measurement is insufficient. The expanding array of genetic and molecular

tools permit scientists to manipulate the physiology of specific cells and circuits within the brain

[6, 65]. With this fine level of genetic manipulation, an even finer assay is required to identify and

quantify the behavioral effect. Thus, my goal is to leverage recent advances in computer vision

to create a new generation of instruments that can operate with both the high throughput and

resolution required for a productive synthesis with modern genetic approaches.

1.1 Automated Visual Tracking

This section reviews some of the related work in the computer vision field. Related work published in

the biology field typically focuses on applications to a particular organism, so I will discuss this work

in subsequent chapters when the particular organism is addressed. The problem of tracking moving

objects continues to be an active area of research within computer vision, and advances in image

segmentation and probabilistic inference continue to permit greater advances. The visual tracking
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literature is large and vast, so this review is by no means exhaustive. The intended applications of

tracking nematodes, zebrafish, and fruit flies overlaps with several different areas within the tracking

literature, so my goal is to present some of the work within each of these subfields.

1.1.1 Planar Tracking

Tracking moving objects with changing shape continues to be an active area of research. One of the

most predominant methods for tracking an object is to calculate the boundary of the object in the

image. Geometric active contours formulated in the level-set framework has emerged as a general and

robust method [78, 90] for calculating this boundary contour. A primary advantage of this approach

is that its implicit representation of the contour permits changes in topology within the image. In

addition, this framework can utilize different energy functionals based on edge detection [64, 79] or

region-based statistics [18, 118, 120] to drive the contour evolution. The level-set framework also

facilitates the incorporation of prior knowledge or object models through the use of shape priors. This

allows for successful tracking when the images contain background clutter, noise, and/or occlusions.

A nice review of these recent advances has been written by Cremers [21]

Previous level-set based trackers that use a dynamic state space framework include [19, 25, 53,

76, 82]. The advantage of the state space model is that it uses the temporal coherence of level sets

to guide the tracking process. Instead of using the solution from the previous frame as the initial

guess for the current frame, the state space model includes a model of the moving object’s dynamics.

Within the framework of Bayesian inference, this corresponds to a prior probability distribution on

state of the system.

My model-based approach incorporates a quite general notion of a finitely parametrized genera-

tive model, as opposed to some prior works which use more limited model classes. In [19], Cremers

uses a finite parameterization of shape deformations that consist of a linear combination of eigen-

modes learned from principal component analysis (PCA) of training shapes. The training set is

used to learn a second-order Markov Chain dynamic model. Using the image segmentation model of

Chan and Vese [18], the author is able accurately track the periodic silhouette of a walking human
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in extremely noisy images.

In [83], Rathi also uses an energy functional based on the Chan-Vese Model, and performs state

estimation using a particle filter. Their state representation consists of a set of affine parameters

and the contour itself. Prior knowledge about the object is incorporated into the update step of

the particle filter, instead of being explicitly modeled in the state, as is done in our approach. In

[25], Dambreville represents shape deformations using PCA, utilizes the Chan and Vese Model, and

performs state estimation using an unscented Kalman filter (UKF). Although they explicitly incor-

porate the shape deformations into the state, their observation model relies on having an invertible

function that transforms the current observed contour (embedded in signed distance function (SDF))

into the shape parameters.

This prior work in level-set based object tracking is not directly applicable to animal pose estima-

tion because the underlying model representation does not describe meaningful kinematic parame-

ters. While contour subspace models, such as PCA [19, 25, 105], kernel densities [20, 24], and locally

linear embedding [88] are appropriate for many types of applications, they parameterize the shape

deformations in a manner that is not physical. Instead, with the application of animal tracking

in mind, I construct generative geometrical models whose finite parameterizations are adapted to

the given problem. By specifying the degrees of freedom and deformations of the model, the state

estimation process performs inference on physical quantities that are of interest to experimental

goals. In Chapter 2, I show that the segmentation model of Chan and Vese can be formally formu-

lated within the framework of an iterated Kalman filter. Using statistical linearization to solve the

Kalman update equation, I present a novel observation model that converges to the optimal state

estimate and incorporates the arbitrary user-defined generative model.

There also exists a significant amount of work on tracking multiple objects from a single camera.

The well-known BraMBLe tracker by Isard introduces a novel multi-blob likelihood function to

handle severe occlusions [51]. Branson extended the BraMBLe to include a contour model and

applied the algorithm to tracking multiple mice from a side view [11]. Tweed used a subordinated

sampling algorithm with occlusion reasoning to track multiple flying birds in wildlife footage [106].
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Khan introduced a Rao-Blackwellized filter to match appearance templates for tracking a honeybee

inside a hive with numerous other identical looking objects [62]. In a separate paper, he presented

an algorithm for tracking multiple ants (upwards of 20) walking around in an arena [60]. Special

care was taken to sample the high dimensional state space efficiently, and deal with split and merged

measurements [61]. In other approaches, researchers have relied on the statistical fusion of various

image cues such as color histograms, edges, and texture in order to design very general algorithms

to track arbitrary rectangular regions in various types of video [80, 117].

The advantage of these algorithms is their ability to handle complex visual data and accurately

track even in the presence of full occlusions. The trade off, however, is a much coarser model

representation (i.e., rectangular box or blob). This is not sufficient to measure many of the kinematic

parameters needed in modern biological studies. Instead, I design novel geometric generative models

that are used to track zebrafish and multiple nematodes in Chapters 4 and 5. The algorithm estimates

the detailed posture of these animals during behaviors of biological interest and measures important

kinematic variables that were previously inaccessible except through laborious manual digitization.

I utilize edges and region-based image statistics based on level-set segmentation to achieve accurate

tracking during partial occlusions due to background clutter and other organisms.

1.1.2 3D Tracking

The overwhelming majority of papers discussing 3D model-based tracking have focused on the prob-

lem of markerless human motion capture. Thomas Moeslund et al. have compiled 2 extensive

surveys that discuss in depth the advances in this field over the last 20+ years [72, 73]. The most

widely used approach to addressing this problem is the direct use of an explicit human model where

the kinematics, shape, and/or appearance are directly parameterized. Using what Moeslund calls

an "analysis-by-synthesis" approach, this methodology optimizes the similarity between the model

projections and the observed images. In some approaches, authors optimize this similarity by min-

imizing the distance between the model’s projected boundary and image boundaries [29, 57, 100].

Here, the occluding contour of the model must be calculated since parts of the 3D model will undergo
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self-occlusions when seen from a particular viewpoint. Others have utilized optical flow measure-

ments to optimize the position of their human model [12, 102]. Carranza et al. perform a pixel-wise

error metric calculation on a graphics processing unit (GPU) to maximize the overlap between the

model and image silhouettes [17]. Instead of optimizing the overlap of projected silhouettes, Mikic

et al. use the silhouettes to reconstruct voxel images and maximize the volumetric overlap with

their model in 3D space [71]. Rosenhahn et al. recently introduced an exciting approach that uses

level-set segmentation to bias the contour extraction towards the model projection, and the contour

extraction to update the model pose parameters [86, 85]. In this approach, the projection rays are

reconstructed from the image contour, and the distance between the model and rays is minimized in

3D space. All of these approaches utilize a gradient-descent or Kalman filter based estimator to solve

for the local optimal solution. In [30, 59], the authors utilize a stochastic sampling based filter that

is typically able to converge to a global optimal. They both introduce techniques to properly sample

within the high-dimensional state of a fully articulated human model. While all of the previous

studies assume the use of multiple cameras, Sminchisescu et al. have worked on several approaches

to perform 3D pose estimation from a single camera [96, 97]. This is an extremely ill-conditioned

problem because of the many depth ambiguities and unobservable degrees of freedom present in a

monocular view, so carefully designed algorithms must be explored.

In Chapter 6, I present an algorithm to accurately estimate the 3D body and wing kinematics

of fruit flies from multiple cameras. Like many previous techniques for human motion capture, I

design an explicit model of the fly and follow an "analysis-by-synthesis" approach that minimizes

the distance between the model and its corresponding projection rays according to [86]. However,

I address several challenges unique to flies that are not present in human tracking. For instance,

the rotational angle around the fly’s longitudinal axis is nearly unobservable due to the body’s

cylindrical shape. Humans have cylindrical shaped limbs, but rotation about the axis of symmetry is

negligible for nearly all biomechanical motions. In contrast, flies undergo significant rotations about

this symmetric axis during various flight maneuvers. In order to compensate for this rotational

ambiguity, I design a constraint function based on the gross symmetry of flapping flight to provide
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a cue for the body’s rotational angle about this axis of symmetry. This constraint is correctly

incorporated into a Kalman filter based estimator so the state probability density maintains the

proper statistics.

I also extend the prior motion model of Rosenhahn [85] to include quaternion representation

of rotations. This motion model provides accurate predictions of pose, given pose estimates from

previous time steps. Flies exhibit complex wing rotations during flapping flight that requires a

global parameterization of SO(3). Although a local parameterization using joint angles is sufficient

for human motion, this same parameterization would undergo singularities for wing motion and

result in incorrect prediction. This motion model representation is also velocity invariant, so it can

provide accurate prediction for video captured at different frame rates and/or animals moving at

different velocities. Also, it is not restricted to specific stereotyped motions (e.g., walking, running)

and can easily switch between motion types within the same video sequence. I also use this motion

model to predict the body undulations of swimming zebrafish in Chapter 4. Finally, in Chapter 7, I

summarize the contributions made in this thesis and provide direction for extensions to the current

algorithms.
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Chapter 2

Techniques for Model-Based Visual
Tracking

This chapter reviews the methodology used for visual tracking of model organisms, including prior

theories that are needed to develop the approach. After summarizing the tracking approach, I then

review a result of Bell and Cathey [7], who showed that the update equation of an iterated Kalman

filter (IKF) is identical to the Gauss-Newton method for nonlinear least squares minimization. In

my approach, it is convenient to see the Kalman filter as minimizing a particular error function.

Next, I introduce the concept of statistical linearization (a.k.a weighted statistical linear regression)

and the family of sigma point Kalman filters that use this approach to achieve greater accuracy

than traditional extended Kalman filters. Then, an improved technique for incorporating nonlinear

constraints into the Kalman filter framework is presented. This technique is important for animal

tracking because the state represents the pose of the organism and constraining the state estimate

against anatomically infeasible poses will improve the tracking performance in the presence of mis-

leading image measurements. Next, I review the popular Chan and Vese model for level set image

segmentation and formally integrate this technique into an IKF framework. Finally, I introduce a

technique due to Rosenhahn [85] that provides a convenient way to incorporate a priori knowledge

about the organism’s motion into the dynamic prediction step of the Kalman filter. It allows the

training data to be rescaled to different velocities and to consist of completely different motion

patterns.
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2.1 Generative Model-Based Image Tracking

In this work, models for vision-based animal tracking are constructed using a generative modeling

approach [99, 98]. A generative model is constructed by applying a continuous transformation to

a shape, known as a generator. Mathematically, the generator is represented by the parametric

function G(q) : Rl → Rm, and the continuous transformation by T (x ; r) : Rm × Rk → Rn,

where x ∈ Rm is a point in space to be transformed, and r ∈ Rk is a parameter that defines the

transformation. The resulting generative model is

H(p) = T (G(q) ; r) : Rl+k → Rn (2.1)

where H is the surface defined by the model and p =
[
q

r

]
is the parameterization of the organism’s

shape, q, and its position, r, which can be defined, for example, by the angles of its joints. Because

they are expressed as a composition of parametric functions, generative models exhibit closure (i.e.,

a generative model can be used as the generator of another generative model).

The state of the organism consists of the parameters that describe pose (i.e., the translation of

a body fixed frame with respect to a reference frame) and shape (e.g., angles associated with the

orientation of appendages), although other parameters can be included. The visual tracking problem

involves sequentially estimating the state, p, via measurements, z, in a discrete time dynamic state

space model

pk = f(pk−1, ξk−1) (2.2)

zk = h(pk, ωk) (2.3)

where ξk and ωk are noise processes, and the subscript k denotes the value of a variable at the

kth time step. Equation (2.2) describes the underlying dynamic process that governs the organism’s

motion, while (2.3) describes the measurement process. I assume that the function f(p, ξ) is available

to describe the organism’s motion between frames, and the measurements consist of different visual
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cues from 2-dimensional images. The state space model provides a generic framework for model-

based tracking. The functions f(p, ξ) and h(p, ω) can be modified appropriately depending on the

experimental parameters of the video. Examples of generative models are given in Chapter 3.

2.2 IKF Update as a Gauss-Newton Method

As shown in [7], a single iteration of the update equation in an iterated Kalman filter (IKF) is

equivalent to a single Gauss-Newton iteration of a nonlinear least squares problem. To establish

this equivalence, assume that the state estimate p̂ ∈ Rn and observation z ∈ Rm come from the

multivariate normal distributions

p̂ ∼ N (p,P), z ∼ N (h(p),R). (2.4)

From Bayes rule, the maximum a posteriori (MAP) estimate of p is found by maximizing P(p|z) '

P(z|p)P(p) with respect to z, where

P(z|p) =
exp

(
− 1

2 (z − h(p))TR−1(z − h(p))
)

√
(2π)m|R|

(2.5)

P(p) =
exp

(
− 1

2 (p̂− p)TP−1(p̂− p)
)

√
(2π)n|P|

(2.6)

where h(p) is the observation function of (2.3). Maximizing the posterior distribution is equivalent

to minimizing the negative log of the function P(z|p)P(p),

E(p) =
1
2

[
(z − h(p))TR−1(z − h(p)) + (p̂− p)TP−1(p̂− p)

]
(2.7)
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after dropping a constant. By defining the following augmented state and its associated observation

function and covariance,

Z =

z
p̂

 , g(p) =

h(p)

p

 , Q =

R 0

0 P

 ,

Equation (2.7) can be written as

E(p) =
1
2

[
(Z − g(p))TQ−1(Z − g(p))

]
. (2.8)

Letting STS = Q−1 and defining

f(p) = S(Z − g(p)) , (2.9)

then minimization of (2.8) is equivalent to a nonlinear least squares problem with an error functional

of the form:

E(p) = 1
2‖f(p)‖2. (2.10)

The Gauss-Newton method for minimizing (2.10) defines a sequence over i of approximations pi

pi+1 = pi − (f ′(pi)T f ′(pi))−1f ′(pi)T f(pi) (2.11)

that converges to a local minimum of (2.10) for problems where ||f(p)|| is locally convex at the

solution. Since f ′(pi) = −SGi where

Gi =



∂h1
∂p1

· · · ∂h1
∂pn

...
. . .

...

∂hm
∂p1

· · · ∂hm
∂pn

1 · · · 0

...
. . .

...

0 · · · 1



, Gi ∈ Rm+n×n (2.12)
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is the Jacobian matrix of g(pi), then (2.11) becomes:

pi+1 = (GTi Q
−1Gi)−1GTi Q

−1(Z − g(pi) +Gipi). (2.13)

After some matrix algebra and utilizing the matrix inversion lemma, (2.13) reduces to

pi+1 = p̂k +Ki

(
z − h(pi)−Hi(p̂k − pi)

)
, (2.14)

which is the IKF update equation for the kth time step. Hi is the Jacobian matrix of h(pi) and

Ki = PHT
i (HiPHT

i +R)−1 is the Kalman gain. At the first iteration (i = 0), pi = p̂k, and after

convergence, the updated state is set to the current value, p̂k = pi+1. Thus, the update equation of

an iterated Kalman filter is equivalent to a nonlinear least squares problem of the form (2.10) and

(2.9).

2.3 Sigma Point Kalman Filters

In (2.14), there are several terms which involve the Jacobian matrix Hi. These terms introduce lin-

earization errors by calculating the derivative at the state mean without taking into account the un-

derlying uncertainty associated with the random variable. Recently, a number of related algorithms

have been proposed that demonstrate significant improvement over the traditional extended Kalman

filters (EKF) when applied to nonlinear motion and measurement models [52, 77, 56, 111, 92]. The

authors in [111] collectively called these techniques sigma point Kalman filters (SPKF) due to their

common use of statistical linearization [42]. This technique takes a weighted average of a set of

regression points drawn from the prior distribution of the random variable. These regression points

are selected to lie on the principle component axes of the input covariance. In this work, I utilize

the weighting parameters described in [77], known as the central difference Kalman filter (CDKF),

to estimate the mean and covariance of our regression points.

The CDKF is constructed as follows: Consider a nonlinear function y = g(x) that is evaluated
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at r points (Xi,Yi) with Yi = g(Xi). Let

X0 = x̂ w0 =
h2 − L
h2

(2.15)

Xi = x̂+
(√

h2Px

)
i

i = 1, . . . , L wi =
1

2h2
i = 1, . . . , 2L (2.16)

Xi = x̂−
(√

h2Px

)
i

i = L+ 1, . . . , 2L (2.17)

where L is the dimension of the state space and h is the half-step size of the central divided difference

derivative estimate. Estimates of the mean and covariance are calculated from the Sigma points X

and the transformed Sigma points Z using

ŷ = E[y] =
2L∑
i=0

wiYi (2.18)

Pyy = E[(y − ŷ)(y − ŷ)T ] =
2L∑
i=0

wi(Yi − ŷ)(Yi − ŷ)T (2.19)

Pxy = E[(x− x̂)(y − ŷ)T ] =
2L∑
i=0

wi(Xi − x̂)(Yi − ŷ)T . (2.20)

Based on a survey of the literature, the unscented Kalman filter (UKF) appears to be more widely

used than the CDKF. The authors in [111] note that, in practice, they have not observed any

difference in performance between the two filters, although both are clearly better than the EKF.

I choose the CDKF because the authors in [77] show that it has a theoretically higher accuracy

covariance estimate than the UKF and is parameterized by a single scalar which has an optimal value

for Gaussian noise distributions (the UKF has 3 parameters). In addition, I utilize the technique

introduced by the authors in [92] who add iteration (see Section 2.2) to the Sigma point approach. In

that way, (2.14) can be modified such that the Kalman gain and other linearized terms are estimated

using (2.18) – (2.20),

pi+1 = p̂k +Ki

(
z − h(pi)−Hi(p̂k − pi)

)
= p̂k + Ppz

(
Pzz +R

)−1
(
z − h(pi)− PTpzP−1

pp (p̂k − pi)
)

(2.21)
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and the covariance is updated according to

Ppp,k+1 = Ppp,k +KHiPpp,k

= Ppp,k + Ppz
(
Pzz +R

)−1PTpz. (2.22)

One of the most expensive calculations in the SPKF approach is the matrix square root operation

in (2.16) – (2.17) used to construct the Sigma point set. To address this burden, a square-root form

of the SPKF is implemented that propogates and updates the square root of the state covariance

directly in Cholesky factored form, Sp, where Ppp = SpS
T
p [110]. This technique also leads to better

numerical stability because it ensures that the covariance is always positive definite. In general,

the order complexity of the square root SPKF is O(L3), which is identical to the complexity of

the EKF. However, each component of the iterated filter has a slightly different complexity. The

prediction step is O(L3), however, the state and covariance update steps are O(LM2), where M is

the measurement dimension (Figure 2.1). Because M � L in most tracking applications (i.e., many

measurements are used to estimate a few parameters), the update step is typically the computational

bottleneck in Kalman filter estimation.

Although the SPKF provides greater estimation accuracy than the EKF in the presence of

nonlinear process and measurement equations, it assumes that the state variables follow normal

distributions. This assumption is often violated in many visual tracking scenarios that contain

multiple objects or occlusions. In this situation, sequential Monte Carlo (SMC) techniques (i.e.,

particle filters) [34] provide solutions for state estimation when the posterior distribution is multi-

modal. Although particle filters are able to solve very general estimation problems, there exist many

problems within visual tracking when the normal assumption holds, in which case Kalman filters

provide accurate solutions and computational efficiency. This thesis demonstrates that the normal

assumption holds for estimating the location of biological organisms within a constrained laboratory

that contains few environmental occlusions, hence Kalman filtering is adopted. Further discussion

will be provided in Chapter 7 about potential improvements to the nonlinear estimation techniques
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Initialize Predict Update Constrain

k = k + 1

i = i + 1

Figure 2.1: Constrained Filter — the iteration over i is based on the iterated Kalman filter ap-
proach presented in Section 2.2. The ”Update” is an unconstrained minimization routine, thus the
constraints are applied to its output. Each block in the filter contains nonlinear equations, and the
Sigma point transform (Section 2.3) is applied to each one in order to accurately propagate the state
mean and covariance through time.

applied in this study.

2.4 Incorporating Nonlinear Constraints

Many techniques for incorporating nonlinear constraints into the Kalman filter framework have

been developed [28, 94, 116]. These methods typically utilize a pseudo-observation approach (i.e.,

the constraint is an observation with zero variance) or an operator to project the estimate onto

the constraint surface (a more detailed review is provided in [55]). However, in these approaches,

the estimate is not guaranteed to satisfy the constraint, and they often lead to singular covariance

matrices. Recently, Julier and LaViola introduced a two-step approach utilizing the Sigma Point

transform that first constrains the probability distribution and then constrains the conditional mean

of the distribution [55]. A brief overview of their technique is provided here. An equality constraint

between state variables can be written in the form

c(pk) = 0 (2.23)

and presumes the existence of a projection function w(pk) such that

c
(
w(pk)

)
= 0 ∀pk ∈ Rn. (2.24)

Assume the unconstrained estimate with mean p̂∗k and covariance P∗k has already been calculated (I

eliminate the covariance subscript associated with the random variable for readability). First, the
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projection operator is applied to every point in the distribution. This additional information reduces

the uncertainty of the distribution and causes the covariance to decrease [55]. Let p†k = w(p∗k) be

the constrained state, so that the mean and covariance of the constrained estimate are given by

p̂†k = E
[
w(p∗k)

]
(2.25)

P†k = E
[
(p†k − p̂

†
k)(p†k − p̂

†
k)T
]
. (2.26)

Unless the constraints are linear, the expectation of a constrained distribution will not lie on the

constraint surface itself (see [55] for a proof), so p̂†k will not obey the constraint. Therefore, the

projection operation is applied again to the mean of the constrained estimate. In addition, the

covariance is increased to account for the fact that the minimum mean squared estimate is adjusted

to a different value

p̂k = w(p̂†k) (2.27)

Pk = P†k + (p̂†k − p̂k)(p̂†k − p̂k)T . (2.28)

In this example, the expectations in (2.25) and (2.26) are calculated using the Sigma Point transform

presented in Section 2.3. This step in the algorithm is O(L3), like the prediction step.

2.5 Level Set Segmentation

The use of geometric active contours, formulated in the level-set framework, has emerged as one of the

most general and robust methods for image segmentation [90, 78]. One of the primary advantages of

this approach is its ability, due to its implicit representation, to handle changes in contour topology.

In order to determine the boundary that divides the image into foreground and background regions

(i.e, the image boundary that divides the tracked animal’s body from the background), a contour

Γ is embedded into the zero level set of a signed distance function (SDF) φ : Ω → R on the image
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domain Ω ⊂ R2:

Γ = {x = (x, y) ∈ Ω | φ(x) = 0} (2.29)

φ(x) =


min
xI∈Γ

(‖x− xI‖) x ∈ Ω1 (inside)

−min
xI∈Γ

(‖x− xI‖) x ∈ Ω2 (outside).

(2.30)

The value of φ(x) is ± the distance between x and the closest point on the boundary, Γ. By

minimizing an energy functional, Γ is deformed implicitly by evolving the function φ. Many different

image-based energy functionals have been proposed, based on edge detection [64, 79] or region-based

statistics [18, 118, 120], to drive the contour evolution. They typically impose three different criteria

to extract the contour: (1) the pixels within each region (i.e., inside or outside) should be similar,

(2) the pixels between regions should be dissimilar, and (3) the contour dividing the regions should

be minimal. These criteria are all incorporated into the model

E(p1, p2, φ) = −
∫

Ω

H(φ) log p1(I(x)) + (1−H(φ)) log p2(I(x)) dx + ν

∫
Ω

|∇H(φ)| dx (2.31)

where minimizing the first and second terms maximizes the posterior probability given by the den-

sities p1 and p2, which measure the fit of an intensity value I(x) to the corresponding region. H(·)

is a regularized Heaviside function and ν > 0 is a scalar weighting parameter for the the third term,

which penalizes the contour length. Although there are many ways to model the probabilities densi-

ties p1 and p2 (see [86] for a detailed overview), one approach is to assume they are normal densities

with fixed standard deviation. This special case of (2.31) was introduced by Chan and Vese and has

become one of the most widely used image functionals [18]. It has the form:

Ecv(c1, c2, φ) =
∫

Ω

H(φ)λ1(I − c1)2 + (1−H(φ))λ2(I − c2)2 dx dy + ν

∫
Ω

|∇H(φ)| dx dy, (2.32)

where c1 and c2 are the means of the normal densities and λi = 1
2σ2
i
i = 1, 2 are proportional to the

variance. The means are defined as c1(φ) =
R
Ω I(x,y)H(φ)dx dyR

Ω H(φ)dx dy
and c2(φ) =

R
Ω I(x,y)(1−H(φ))dx dyR

Ω(1−H(φ))dx dy
and
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are updated as the contour evolves to calculate the average grayscale intensity inside and outside

the contour. In the Chan-Vese model, the maximum posterior probability is achieved by maximizing

the grayscale homogeneity of the image I inside and outside the contour. Typically, λ1 = λ2 = 1

so that both regions are penalized equally (i.e., both regions assumed to have the same variance). I

adopt the Chan-Vese model for my tracking algorithm because the high-contrast images produced

in laboratory environments typically consist of a dark animal on a lighter background, or vice-versa.

When prior knowledge about the object being tracked is available, this information can be

incorporated into the level set framework in two possible ways. The first approach introduces

the shape prior at the variational level by adding to the energy functional an additional term that

draws the contour closer to a prior shape,

E(c1, c2, φ, χ) = Ecv + λ

∫
Ω

(φ− φ0(χ))2 dx (2.33)

where χ are the model parameters of the shape prior that encode shape and pose information and

λ is a scalar weighting term. A discussion on techniques that properly incorporate the dissimilarity

measure of the shape prior is presented in [22]. The second approach explicitly parameterizes the

signed distance function φ by the model parameters. This approach is utilized by Tsai et. al. to

accurately segment MRI scans of the left ventricle and prostate gland [104, 105]. They redefine the

Chan and Vese model as

Ecv(χ) =
∫

Ω

H(φ(χ))(I − c1(φ(χ)))2 + (1−H(φ(χ)))(I − c2(φ(χ)))2 dx dy (2.34)

and perform gradient descent directly on the shape and pose parameters, χ. The “length” term is

omitted because the underlying parameterization of φ prevents the contour from growing arbitrarily.

I also define φ as a function of the shape and pose parameters, however, instead of using principal

component analysis to model the shape deformations as is done in [105], I use a generative model

(2.1) to encode all of the appropriate variables. In the next section, I demonstrate how this explicit

parameterization approach is used to incorporate the level set image functional into the observation
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function of the dynamic state space model (2.3).

2.6 The Chan-Vese Model within an IKF Framework

Returning to the level set framework of Section 2.5, I assume that the segmenting contour Γ and

associated signed distance function φ are parameterized by a state vector p. Following [104], I also

eliminate the “length” term in the Chan and Vese model. Then (2.32) becomes

Ecv(c1, c2, p) =
∫

Ω

H(φ(p))(I − c1)2 + (1−H(φ(p)))(I − c2)2 dx dy. (2.35)

To show how the Chan-Vese segmentation model can formally fit into an IKF framework, I define

the observation function of the state space model (2.3) as:

h(p) =


c1 φ(p) ≥ 0

c2 φ(p) < 0

. (2.36)

Note that the c1, c2 are functions of φ, which in turn is a function of p, and so h(p) is differentiable,

except at φ(p) = 0. In the variational framework of (2.35), this non-differentiability is due to the

Heaviside function, so a “smoothed” or regularized Heaviside is used instead (e.g., error function or

hyperbolic tangent). In the Kalman filter framework, the use of statistical linearization (Section

2.3) differentiates h(p) using a set of regression points, thus avoiding the non-differentiability at

φ(p) = 0. For implementation on images with a finite number of pixels, (2.35) is converted to a

discrete representation:

Ecv(c1, c2, p) =
∑
i

∑
j

(I(xi, yj)− h(xi, yj ; p))2 (2.37)

= ‖(I − h(p))‖2, (2.38)
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where I(xi, yj) is the image intensity at the pixel with coordinates (xi, yj). Note that the Chan-

Vese model tries to minimize the difference in pixel intensity between the observed image and a

binary-valued image, defined by the observation function h of (2.36), across the image domain Ω.

Assuming that the covariance of the measurement variable z (in (2.3)) takes the value R = I, the

identity matrix1, and rewriting the squared Mahalanobis distance as

‖y − p‖2Σ := (y − p)TΣ−1(y − p) (2.39)

the error function (2.7) can be rewritten as a MAP estimate:

E(p) =
1
2

[
‖z − h(p)‖2R + ‖p̂− p‖2P

]
(2.40)

=
1
2

[
‖I − h(p)‖2I + ‖p̂− p‖2P

]
(2.41)

=
1
2

[
Ecv + ‖p̂− p‖2P

]
. (2.42)

That is, the error function takes the nonlinear least squares form of (2.8) and (2.9), whose iterative

minimization is equivalent to the IKF update equation. Thus, I have shown that the Chan and Vese

segmentation model can be implemented as the observation term of an iterated Kalman filter when

one defines the observation function according to (2.36). The second term in (2.42), ‖p̂ − p‖2P , is

equivalent to a “shape prior” or “knowledge-driven” term. It draws the current state towards the

prediction and weights it according to the statistical certainty, while the first term segments based

solely on image intensity.

2.6.1 Discussion

The region-based tracking approach presented here has several advantages. First, instead of having to

search for features in the image to associate with corresponding model locations, this tracker utilizes

the distribution of intensity values across the entire image to search for the solution. Second, by

1From our derivation of the Chan-Vese model in Section 2.5, this is equivalent to weighting the inside and outside
regions equally.
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utilizing the statistical linearization methods, I eliminate the need to directly calculate the Jacobian

matrices associated with our process and observation equations. Finally, it should extend to 3D

tracking using multiple camera views with the appropriate combined observation model, although

the formulation presented here is only set up for planar tracking. In practice, this approach is used

in conjunction with a feature-based contour tracking method to benefit from the strengths of each

(Section 5.4).

Finally, I note that by proper definition of an observation function, other image-based energy

functionals can also be formally integrated into an IKF framework. For instance, the Binary Mean

Model proposed by Yezzi et. al. [118] is equivalent to an observation equation of the form

hBM (p) = c1(p)− c2(p) (2.43)

and setting the Kalman gain Ki = −Ki so that the difference between c1 and c2 is maximized

instead of minimized. Also, the multiphase version of the Chan-Vese model [113] can be integrated

using a similar approach. Here, m signed distance functions φ are used to calculate 2m regions in

the image. In the case of m = 2, the observation function has the form

h(p) =



c1 φ1(p) ≥ 0 & φ2(p) ≥ 0

c2 φ1(p) ≥ 0 & φ2(p) < 0

c3 φ1(p) < 0 & φ2(p) ≥ 0

c4 φ1(p) < 0 & φ2(p) < 0

. (2.44)

Although this extends for an arbitrary number of signed distance functions (m > 2), it forces the

model to segment 2m regions. Brox and Weickert present an alternative multiphase approach which

does not require the number of regions to be a factor of two [13]. Thus, the framework I propose

here is quite general beyond the binary Chan-Vese model.
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2.7 Scaled Motion Dynamics

Like many tracking systems, I employ a priori knowledge of the animal’s dynamics, which in the

Kalman filter tracking framework effectively restricts the search space of possible pose configurations

and achieves robustness to self-occlusions and misleading visual cues. Many techniques to incorporate

a prior model of the motion rely upon dimensionality reduction. The idea here is that typical motion

patterns (e.g., flapping fly wings) can be represented as a simple trajectory in a low-dimensional

subspace. Since all the limb movements are coupled, the motion is modeled by the mapping between

the original, high-dimensional space (i.e., joint angles) and the low-dimensional subspace. Successful

applications of this technique exist within the human motion tracking literature, where the motion

model is calculated using PCA [93] and Gaussian processes [108]. In [95], it was suggested to

learn a Gaussian mixture of motion patterns directly in the nonlinear subspace. However, the

disadvantage of dimensionality reduction is the subspace representation is not invariant with respect

to velocity. Thus, to have a motion model that provides accurate predictions when images are

captured at different frame rates, the training data must include the same pattern, but taken at

different velocities. In addition, dimensionality reduction works well for a single motion pattern, but

in the case of multiple different motion patterns, a mixture of regressors is needed, which is difficult

to estimate [54]. An alternative to this is presented by Rosenhahn et al. who model the motion

patterns in the original high-dimensional space [85]. This offers a convenient way to incorporate

training data that can be rescaled to different velocities and consist of completely different motion

patterns.

Here, I provide a review of the technique proposed by Rosenhahn [85] that was applied to human

motion tracking. Assume a model represented by a kinematic chain. The consecutive evaluation of

exponential functions and twists ξi with known joint locations will apply a rigid body transformation

of an end effector point Xi

X ′i = exp(θξ̂)
(

exp(θ1ξ̂1) . . . exp(θnξ̂n)
)
Xi (2.45)
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where Xi is in homogeneous coordinates, θξ̂ =
[
ω̂ v
0 0

]
is the matrix representation of a twist ξ ∈

se(3) = {(v, ω) | v ∈ R3, ω̂ ∈ so(3)} (see [74] for more details). An additional rigid body motion is

applied after the joint angles to transform the model in space with respect to a fixed reference frame.

The pose of the kinematic chain is denoted by the (6 + n) dimensional vector p = (ξ, θ1, . . . , θn) =

(ξ,Θ) consisting of the 6 degree of freedom for the rigid body motion ξ and the joint angle vector

Θ.

Now, assume a set of temporally ordered training samples is available

{p̃i := (ξ̃i, θ̃1,i, . . . , θ̃n,i) := (ξ̃i, Θ̃i)|i = 0 . . . N} (2.46)

with body transformations relative to the fixed observing frame given by the twist ξ̃i and joint angle

vectors Θ̃i. I denote this list of training samples as P = 〈p̃i . . . p̃N 〉, and the sublist in P of length m

ending at time i by 〈p̃i−m+1 . . . p̃i〉. Assuming that m frames of a video sequence have already been

tracked (I use m = 5), the goal is to predict the pose at the next time step pk+1 = (ξk+1,Θk+1) given

the list of previously computed states 〈pk−m+1 . . . pk〉. To realize this estimate, the sublist in P that

best matches the previous poses 〈pk−m+1 . . . pk〉 is determined. For the matching to be invariant with

respect to the velocity of the tracked organism, the comparison is performed at different scalings s of

P. The different scalings of the training data, denoted Ps, are calculated using linear interpolation

and resampling. The resulting scaled lists are given by Ps = {p̃si := (ξ̃si , θ̃
s
1,i, . . . , θ̃

s
n,i)|i = 0 . . . sN}.

Rosenhahn et al. scan the interval s = [0.5 . . . 2] with stepsize 0.1 for their human video, although

other choices are possible. The best matching sublist in the training data is now calculated by

argmin
s,j

m−1∑
v=0

(√√√√ n∑
t=1

(θt,k−v − θ̃st,j−v)2

)
. (2.47)

Only the joint angles are taken into account since their motion will be invariant with respect to the

global orientation of the model. With the optimal scale and position in the prior set, the relative joint

motion between the optimal location in the prior set and the subsequent orientation is calculated.
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Then, this relative motion is applied to the current state

Θk+1 = Θk + (Θ̃s
j+1 − Θ̃s

j). (2.48)

Similarly, the predicted body motion ξk+1 is calculated from relative motion between the twists at the

optimal scale and position ξ̃sj , ξ̃sj+1. This calculation is carried out using an adjoint transformation,

and I refer the reader to [85] for more details. Thus, this motion model predicts the pose in the next

frame by matching tracked motion patterns to patterns in a training set. This matching is performed

at different scalings to make it invariant with respect to time. Also, one can easily combine training

data from very different motion patterns in order to track video sequences consisting of two or more

such patterns.

2.8 Summary

In this chapter I reviewed the result of Bell and Cathey [7], who showed equivalence between the

update equation of an iterated Kalman filter (IKF) and the Gauss-Newton method for nonlinear least

squares minimization. In addition, the technique of statistical linearization was presented, which

offers an improved method for solving the IKF. Statistical linearization was also used to incorporate

nonlinear equality constraints into the Kalman filter framework. After reviewing the level set method

for image segmentation, I introduced a formulation to incorporate the Chan-Vese image functional

into the IKF framework. After providing brief extensions to this formulation, I introduce the motion

model of Rosenhahn which models the parameters in their original high-dimensional state. This type

of motion model is used in Sections 4.2 and 6.4 to predict the motions of swimming zebrafish and

flying Drosophila, respectively.
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Chapter 3

Constructing Generative Models of
Organisms for Visual Tracking

In [98], Snyder presents a range of generative surfaces and transformations that can be used to

construct a wide array of objects from spoons to teddy bears. In this thesis, I make extensive use of

a particular generative surface known as a Frenet Tube. This surface consists of a tube constructed

around a parameterized curve in space using the local Frenet frame. In the following sections, I

present a brief mathematical description of a Frenet tube and illustrate how this surface can be used

to construct physically accurate models of nematodes, zebrafish, and fruit flies.

3.1 The Frenet Tube

A parameterized, differentiable curve is a map γ : I → R3 of an open interval I = (a, b) of the

real line R into R3. The tangent vector to the curve is denoted γ′(u) =
(
x′(u), y′(u), z′(u)

)
∈ R3.

I assume the curve to be regular, meaning that γ′(u) 6= 0 ∀ u ∈ I. The unit tangent vector is

denoted T(u) = γ′(u)
‖γ′(u)‖ . Without loss of generality, I also assume that the curve γ is parameterized

by arc length such that ‖γ′(u)‖ = 1. This restriction is not necessary, but simplifies derivation of

the local Frenet frame. The second derivative of the curve, γ′′(u) is a vector that is normal to the

tangent vector. This is shown by differentiating the dot product of the tangent vector:

∂

∂u

(
γ′(u) · γ′(u)

)
=

∂

∂u

(
1
)

(3.1)
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γ′′(u) · γ′(u) + γ′(u) · γ′′(u) = 0 (3.2)

γ′′(u) · γ′(u) = 0. (3.3)

Thus, γ′′(u) is perpendicular to the tangent vector. The magnitude of the second derivative is

defined as the curvature, ‖γ′′(u)‖ = κ(u), so that the vector normal to the tangent can be written

as γ′′(u) = κ(u)N(u), where N(u) denotes the unit normal vector. The plane defined by the unit

tangent and normal vector, T(u),N(u) is called the osculating plane at u. The vector normal to

this plane is called the binormal vector B(u) = T(u) ×N(u), which is calculated from the vector

cross product of the tangent and normal vectors.

The vectors T(u),N(u),B(u) define a local orthonormal basis at each point (x(u), y(u), z(u))

along the curve γ(u). This basis is called the Frenet frame. The parameterized surface, H(u, v), of

a tube of radius r and length L around the curve γ(u) can be constructed using the Frenet frame by

H(u, v) = γ(u) + r
(

cos(v)N(u) + sin(v)B(u)
)
, u ∈ [0, L], v ∈ [0, 2π]. (3.4)

Within the generative modeling framework (Section 2.1), the curve γ(u) is the generator of the

model, while expanding it in the N,B plane is the transformation that creates the parameterized

surface. A more general form of (3.4) is given when the the radius of the tube is allowed to vary

smoothly along the length of the curve according to the function R(u),

H(u, v) = γ(u) +R(u)
(

cos(v)N(u) + sin(v)B(u)
)
, u ∈ [0, L], v ∈ [0, 2π]. (3.5)

In addition to tubes, a Frenet ribbon is another parameterized surface that is constructed in a similar

manner by only expanding the curve in the direction of the normal vector. This surface is given by

H(u, v) = γ(u) +R(u)
(
vN(u)

)
, u ∈ [0, L], v ∈ [−1, 1]. (3.6)

When implemented within a model-based visual tracking system, the continuous parametric surfaces
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defined in (3.5) and (3.6) must be evaluated on a discrete parametrized mesh. Using (3.6) as an

example, the construction of the mesh involves sampling u and v at a fixed number of samples in

their respective domains

H(ui, vj) = γ(ui) +R(ui)
(
vjN(ui)

)
(3.7)

ui ∈ [0, L], i = 1, . . . , Nu vj ∈ [−1, 1], j = 1, . . . , Nv. (3.8)

Now, assume that the curve γ(u) is additionally parameterized by a parameter p that controls its

shape, γ(u; p). If fixed values are chosen for the number of samples in the discrete parameter space

(e.g., Nu = 30, Nv = 3), then the surface can be redefined as a function of only the shape parameters

p

H(p) = γ(ui; p) +R(ui)
(
vjN(ui)

)
, u ∈ [0, L], v ∈ [−1, 1]. (3.9)

This will now define the continuous parametric surface as a discrete mesh whose shape is changed

according to p. The parametric surface can also be rendered to the image plane by projecting points

along the surface according to a known calibrated camera model (see Appendix A for details on cam-

era calibration). Let Xij =
[
H(ui,vj)

1

]
denote a point on the parametrized surface in homogeneous

coordinates, then its projection into the camera reference frame is given by

λ


uij

vij

1

 = PXij (3.10)

where P ∈ R3×4 is the camera projection matrix and uij , vij are the pixel coordinates of the point
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Xij . The binary image IH of the projected model points is given by

IH(u, v) =


1 (u, v) = (uij , vij) ∀i, j

0 otherwise

(3.11)

= Render
(
H(u, v)

)
. (3.12)

In the case of a discrete parameterized surface, as assumed above, one has to “fill in the gaps” in the

projected image to obtain a continuous representation of the projected silhouette. This is achieved

in hardware using a graphics rendering program such as OpenGL or in MatlabTM using the roipoly

function.

In the following sections, I use this framework of a Frenet tube/ribbon to construct parameterized

models of nematodes, zebrafish, and fruit flies. Given this framework, the parameterized surface will

be completely defined once the curve γ(u) and radius profile R(u) have been defined. The tubes and

ribbons are able to accurately reconstruct the shape of the organisms to facilitate detailed visual

tracking.

3.2 The Worm Model

The motion of C. elegans on a typical microscope slide is largely planar, so I restrict the modeling

of the worm to two dimensions and assume orthographic projection in the camera model. To a good

approximation, C. elegans maintains a constant length and width during locomotion. Although a

worm may undergo elongations and contractions during mating behavior, the magnitude of these

effects is small enough to ignore. Therefore, the centerline of each worm is modeled as a planar,

inextensible curve. The body posture can be effectively described by the bend angle of the worm

as a function of distance along its length. This function, Θ(u), becomes the generator of the model
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and is finitely parameterized using a linear combination of known basis functions, Φkj (u):

Θ(u) =
NΘ∑
j=1

αjΦkj (u). (3.13)

Although other choices are possible, the current implementation uses a second order (k = 2) periodic

B-spline basis with NΘ = 8 (See Appendix B for details on B-splines). The organism’s centerline is

constructed by integrating the unit tangent vector T to the centerline curve, and the width is created

by expanding the surface in the direction of the normal vector N. This transformation creates the

parameterized generative model H(p):

T(u) =

cos(Θ(u))

sin(Θ(u))

 , N(u) =

− sin(Θ(u))

cos(Θ(u))

 (3.14)

H(p) = β
(∫ u

0

T(û)dû+ v R(u)N(u)
)

+ ~T u ∈ [−L2 ,
L
2 ], v ∈ [−1, 1] (3.15)

where β is a constant scaling term with units pixels
mm , ~T is a global translation vector to the worm’s

center of mass, p =
[
αj ~T

]T
, L is the organism’s length, and R(u) is a continuous function for

the organism’s width as a function of distance along its length. Currently, R(u) is defined as a

fourth order open B-spline using 20 control points and is calculated offline using a semi-automatic

initialization routine (Section 5.3). For the experiments involving actual video, the scaling term β

is calculated from a test image using a stage micrometer. An overview of this modeling approach

is illustrated in Figure 3.1. Thus, the worm model is a planar Frenet ribbon whose midline bends

according to αj and is translated in the plane according to ~T .

This approach to modeling C. elegans offers several advantages. Since each B-spline basis function

is only defined over a subset of the u domain (see Appendix B), the control points, αj , have local

control over the shape. This property is analogous to the worm’s anatomy, where groups of muscles

contract over local body regions. In addition, the parametrization of the centerline offers a natural
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Figure 3.1: C. elegans generative model. αj are control points that control the shape of Θ(u). The
centerline is constructed by integrating the tangent vector T and the worm’s width profle; R(u) is
added in the normal direction to create the complete model H(p). Nu = 25 and Nv = 3 define the
discretization of the continuous surface.

means to constrain the worm’s length. The model can allow for elongations and contractions via a

rate of length function, K(u): ~x(u) =
∫ u

0
K(û)T(Θ(û))dû. In addition, the integral in (3.15) must

be calculated efficiently because evaluation of the model location will occur many times within any

iterative algorithm. I use Romberg integration [81] to achieve over an order of magnitude decrease

in computation time over the standard Simpson quadrature.

Another subtle feature about this model is that the global orientation of the worm is encoded

into the shape parameters αj . This is a non-intuitive representation because typically, one would

imagine the shape of the worm to be invariant with respect to a body fixed frame. In this way, the

generative model would be defined as

H(p) = β
(

R(θ)
∫ u

0

[
cos(Θ(û))
sin(Θ(û))

]
dû+ v R(u)N(u)︸ ︷︷ ︸

worm shape

)
+ ~T (3.16)

where R(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,
(

R(θ), ~T
)
defines a rigid body transformation in R2, and the new

state is given by p =
[
αj θ ~T

]T
. However, this is a poor parameterization for estimation because

of the redundancy between the parameters αj and θ. This redundancy causes a many to one mapping

between the state and the organism’s pose and will likely result in poor estimates of θ. Therefore, my

choice to directly model the organism’s bend angle function in a global coordinate system provides a
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compact parameter space for estimation and eliminates the need for a separate rigid body rotation.

An invariant representation, αj , of the worm’s shape can be constructed by directly modeling the

curvature function as a B-spline

κ(u) =
Nκ∑
j=1

αjΦkj (u). (3.17)

However, this function would have to be integrated twice to construct the centerline, resulting in

greater computation.

The choice of k = 2 for the order of the B-spline basis implies that the worm’s centerline

consists of piecewise continuous circular arcs with local discontinuities in the curvature (in Figure

3.1, Θ(u) is piecewise linear, thus the curvature is discontinuous). This design parameter was

chosen to behave as a psuedo-constraint, by forcing the model to have constant curvature over each

subregion of the centerline. Originally, I had chosen k = 4 such that the curvature basis functions

were parabolas, but I found that the unconstrained Kalman filter estimation would drive the worm

model into anatomically infeasible local minima because the endpoints of the worm model could

take on arbitrary curvature values. The discontinuities in curvature of the model’s centerline did

not adversely affect tracking, rather they improved it. To account for the fact that the actual worm

has continuous curvature, I would post-process the estimates to smooth out these discontinuities for

any kinematic measurement of the worm. However, given the techniques for incorporating nonlinear

constraints into the Kalman filter framework of Section 2.4, I can now use a model with k = 4 and

incorporate constraints based on the anatomy of the worm so that misleading visual cues do not

cause the algorithm to solve for an infeasible configuration.

3.3 The Fish Model

When fish, such as the zebrafish Danio rerio studied in this thesis, swim in shallow water, their

motions are largely planar. Thus, a planar Frenet ribbon that is nearly identical to the worm

model described in the previous section can be used to model the visual geometry of the swimming
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creature. Unlike the worm model that is able to bend over the entire length of its body, the fish

model assumes that fish have a stiff head. This assumption prevented the tracker from creating

unrealistic bending deformations in the head region, and is based on the experimental results of

Müller [75], whose data shows that the head region of freely swimming zebrafish undergoes negligible

bending (zero local curvature). This curvature assumption corresponds to the bend angle function,

Θ(u), remaining constant in the head region, which I define as the anterior 20% of the fish’s body

length, although other choices are possible. This constraint on curvature in the head region was

implemented by defining the origin of u to occur at a distance of 0.2L behind the snout, such that

the head region is described by positive u values (0 ≤ u ≤ 0.2L) and the tail region by negative u

values (−0.8L ≤ u ≤ 0) (Figure 3.2B). This approach simplifies the formulation of the bend angle

function, Θ(u):

Θ(u) =


∑NΘ
j=1 αjΦ

k
j (u) u ≤ 0

∑NΘ
j=1 αjΦ

k
j (0) u > 0.

(3.18)

Figure 3.2 illustrates these concepts — the definition of u as well as how the B-spline basis functions

describe the body wave. The spline bases have local maxima in the tail region, but become constant

in the head region.

The complete fish model is then calculated according to Equation (3.15) using (3.18) as the

bend angle function. The parameter domain is redefined as u ∈ [−(1 − γ)L, γL], Nu = 30, with

γ = 0.2 and v ∈ [−1, 1], Nv = 3. The width function R(u) is defined identically as a fourth-order

open B-spline function using 20 basis functions, and its value is calculated from a chosen frame of

the video recording (see Section 4.3) and held fixed during tracking. This process is illustrated by

Figure 3.3. I denote the complete fish model as H(p) where p =
[
αj ~T

]T
are the fish parameters

which include the bend angle amplitudes ~α defined earlier and, ~T , the global translation vector of

the entire fish.

Creating deformable models based on medial profiles has been used in segmentation problems

in medical imaging [47] and for tracking multiple C. elegans from microscopy images [37, 87]. Be-

cause zebrafish are laterally symmetric about their body axis, the medial profile representation offers
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control the shape of Θ(u).
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several advantages for the tracking framework. Each B-spline basis function is defined only over a

subregion of the fish body. Therefore, the local bend amplitudes, αj , have local control over the

degree of bending in the body. This property is analogous to the fish anatomy, where contractions

of individual muscles affect the bending over subregions of the fish’s body. In summary, this pa-

rameterization of the centerline has few degrees of freedom, requires no training data, and offers a

natural and anatomically sound way to constrain the fish’s length and designate certain regions as

stiff.

3.4 The Fly Model

The model of the fruit fly consists of three different body parts that are constructed using parametric

surfaces: the thorax/abdomen (which I henceforth refer to as "body"), head, and wing. The body

of the fly is a Frenet tube with an elliptical cross-section that is constructed according to:

H(u, v) = C(u) +R(u)
(

1.2 cos(v)B(u) + sin(v)N(u)
)
, u ∈ [−Lb2 ,

Lb
2 ], v ∈ [0, 2π]. (3.19)

The centerline C(u) is modeled as a 3D B-spline curve with 5 control points, and the width profile

R(u) is defined as a fourth order open B-spline using 20 control points. The fly is assumed to have a

cross section that is 20% wider in the lateral direction than the dorsal/ventral direction and length

equal to Lb. The construction of this parametric surface is illustrated in Figure 3.4. Although the

illustration here has a curved centerline, in the actual experiments I assume that the centerline C(u)

is a straight line aligned with the x- axis (see Figure 3.7). This simplifying assumption provided

accurate model fitting for the image resolution of the video. Although the model is able to capture

more detailed body deformations according to 3.19, it was not necessary for the experiments carried

out in Chapter 6. The head of the fly is constructed identically to the body, except a different

centerline and width profile are used (Figure 3.5). The head model is placed at the anterior portion
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of the body model using the local Frenet frame of the abdomen’s centerline:

X ′head =

Rbh C(Lb2 )

03×1 1

Xhead (3.20)

where X ′head and Xhead are points on the head model with respect to the body and local fixed frame,

respectively in homogeneous coordinates. The rotation matrix is given by Rbh =
[
T(Lb2 ) −B(Lb2 ) N(Lb2 )

]
(i.e., the local Frenet frame at the end of the centerline curve). Additional parameters can be in-

troduced to model the relative motion between the head and the body, but for this study, I assume

that the head remains fixed at the end of the body.
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Figure 3.5: (a) Width profile of the fly head model. (b) Complete head model of the fly constructed
identically to Figure 3.4, except (a) is used as the profile curve and the centerline is just the x-axis

The wing of the fly is assumed to have negligible thickness, thus is modeled as a planar surface.

The outline of the wing, γ(u) is constructed from a closed fourth order B-spline curve with 20

control points. The origin of the closed curve is located at its centroid, so the parametric surface is

constructed by scaling the curve down to its origin

H(u, v) = v γ(u) + tw u ∈ [0, 1], v ∈ [1, 0]. (3.21)

The origin of the wing’s reference coordinate system is moved from its centroid to the joint location

at tw because this is a more intuitive location for the origin when constructing a kinematic chain

(Section 2.7). An illustration of the model is provided in Figure 3.6. The wings are transformed
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into the body fixed frame according to

X ′wing =

 I Tbw

03×1 1

Xwing (3.22)

where X ′wing and Xwing are points in the wing model with respect to the body and local fixed frame,

respectively and I is the identity matrix. The translation Tbw from the body fixed frame to wing

fixed frame is given by

Tbw =


0.2021

±0.1055

−0.1477

Lbh (3.23)

where ± denotes the right and left wings, respectively, and Lbh = Lb + Lh is the combined length

of the body and head models. The complete fly geometric model is shown in Figure 3.7 with all of

the parts fully assembled in the reference configuration. The parameterization of the model’s pose

is discussed in Section 6.3.
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Figure 3.6: (a) Outline profile of the fly wing model constructed from from a closed planar B-
spline curve with 20 control points. (b) Complete wing model of the fly constructed by scaling and
translating the profile curve in (a), with Nu = 30 and Nv = 4
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Figure 3.7: Geometric model of Drosophila used in our algorithm. Lb and Lh represent the length
of the fly’s body and head, respectively. Tbw is the translation vector that transforms the body-
centered reference frame to the wing joint reference frame. The coordinate frame orientation follows
the convention common to aeronautics where rotations about the x, y, and z axes are known as
roll, pitch, and yaw, respectively. Downward pointing z axis is chosen so that positive pitch angles
correspond to pitching upwards.
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Chapter 4

Automated Visual Tracking of
Zebrafish Swimming

The results of this chapter were accomplished in collaboration with the David Lentink, Sander Kra-

nenbarg, Ulrike Müller, and Johan L. van Leeuwen of the Experimental Zoology Group of Wagenin-

gen University. Ansa Wasim recorded the movie sequences that were used in my analysis (Figure

4.7), and Henk Schipper captured the photographs used in the center of volume calculations (Figure

4.13d). B. Walderich, H. M. Maischein and J. Odenthal of the Hubrecht laboratory permitted use

of the stocksteif mutant for demonstrating the ability of the tracker system. The stocksteif mutation

in zebrafish is characterized by an overossification of the notochord. The axial skeleton of these

mutants is a stiff, bony rod, contrasting the flexible series of articulating vertebrae in their wildtype

siblings. In order to analyze the influence of vertebra development on the swimming capabilities of

zebrafish, we quantified changes in swimming performance during all stages of development.

4.1 Introduction

The zebrafish is a key genetic model organism that has long served as a convenient model to study

the various aspects of fish swimming [41, 103]. Automated tracking and analysis systems have been

previously developed for zebrafish [5, 9]. However, these systems track the fish only as a point and

cannot quantify body wave kinematics of swimming. Other studies of zebrafish swimming have

manually tracked the fish to quantify the body posture, a method that is both time-consuming and
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potentially prone to subjective errors [14, 69, 75]. Tytell and Lauder used a semi-automated method

to estimate the fish midline by manually indentifying the snout and tail and automatically estimat-

ing the midline from the extracted silhouette [107]. Other authors have relied on “skeletonizing”

algorithms that dissolve a binary image representing the animal’s silhouette down to its midline

[23, 43, 70]. Although this approach is automated, it will not estimate the correct midline if other

objects are present in the binary image because it cannot distinguish between pixels that belong to

the animal’s silhouette and those that belong to a different object. As a result, these algorithms will

not correctly estimate the fish’s body posture when there is environmental clutter such as other fish,

plants, or a hair used to initiate behavioral responses, as was done in the experiments of Section 4.5.

Automated kinematic analysis of multiple zebrafish larvae was recently demonstrated. However,

this particular analysis technique utilizes an image filter that is customized for the appearance of

zebrafish larvae of a specific age [15]. This technique does not extend nicely for zebrafish of different

ages, other fish species, or when environmental clutter is present.

Here, we present a complete method for accurately and efficiently quantifying the body posture

of zebrafish and other organisms with symmetric medial profiles. This approach directly models

the shape of the animal and utilizes locations of high contrast in the image to estimate its posture.

The posture estimate is calculated using techniques that remain robust to clutter. The detailed

swimming motion is estimated based on dorsal images of the fish recorded at sufficiently high frame

rate [48], which enables a quantitative evaluation of the animal’s kinematics and dynamics (provided

the mass distribution of the animal is known). The next section develops a detailed geometric model

for the zebrafish. Subsequently, I describe the appropriate motion and measurement models that

use information from the previous and current frame to estimate the fish’s current position and

posture. Finally, the capabilities of the tracking approach are demonstrated on zebrafish performing

an escape response at three stages during their development (from larvae to juvenile).
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4.2 Motion Model

The motion model of the fish predicts the fish parameters at the current time step based on the

parameters calculated at the previous time step. This is a computational approach to implementing

f(p, ξ), the dynamic motion model of the state space framework (Section 2.1). By predicting the

motion, it provides a better initial estimate of the fish parameters before they are updated using

the measurement model. It is assumed that the fish’s movement is a combination of undulatory

motion along its body and a displacement of the whole body in the direction of the centerline axis

tangent vector at the head location (see Figure 4.1). The undulatory motion of steady swimming in

fish consists of a traveling wave of increasing amplitude from head to tail, while the fast “C-start”

behavior of fish resembles a standing wave.

´

pk¡1

pk

Undulatory Motion + Axial DisplacementUndulatory Motion

Figure 4.1: Illustration of motion model of the fish. We assume that the total motion between
frames k − 1 and k can be decomposed into undulatory motion and axial displacement. Note that
figure displacements are exaggerated for illustration purposes. Actual motion between frames is
much smaller due to high frame rate of camera.

Given the model of the zebrafish geometry presented in Section 3.3, these motions are expressed by

the change in local bend amplitudes, ~α, from the previous time steps to the current one. To predict

the time evolution of ~α, I utilize the method of matching scaled motion patterns described in Section

2.7. However, this technique requires that the motion parameters are invariant with respect to the

global orientation of the organism (e.g., the knee joint angle of a human running is invariant with

respect to that person’s global running direction). ~α does not currently satisfy this requirement

because it encodes the global orientation of the fish. To rectify this, I construct a spatially invariant

representation, ᾱ, that assumes the solution in the previous time step was a fish with its head aligned

with the positive x-axis (see Figures 4.2 and 4.3). Let Λ(u) ∈ RNu×NΘ be a matrix of B-spline bases

evaluated at Nu sampled grid points in u. The invariant shape parameters are calculated by first
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Figure 4.2: (Left) The shape parameters ~α encode the global orientation of the fish. (Right) In order
to create a shape representation that is invariant with respect to the global orientation, I assume
that the solution from the previous time step is a fish with its head aligned with the positive x-axis
(i.e., the bend angle is zero). The prediction is performed in the invariant representation ᾱ according
to the method described in Section 2.7, and then transformed back.

subtracting the head bend angle at the previous time step from the bend angle function at the

current time step, and then projecting this new bend angle function back onto the B-spline bases:

ᾱk = Λ−1(u)
(

Λ(u)~αk︸ ︷︷ ︸
bend angle function at time k

− Λ(0)~αk−1︸ ︷︷ ︸
head bend angle at time k−1

)
. (4.1)

The matching of the motion pattern with the prior training set is done with respect to ᾱ by calcu-

lating the optimal scale and location in the prior training set (Section 2.7, Figure 4.3a) according

to

argmin
s,j

m−1∑
v=0

(
||ᾱk−v − α̃sj−v||

)
, (4.2)

and the relative change in the shape parameters at the optimal location in the prior data is used to

predict the shape parameters at the next time step

ᾱk+1 = ᾱk + (α̃sj+1 − α̃sj). (4.3)

Finally, the predicted shape parameters are transformed back to the body’s original orientation,

~αk+1 = Λ−1(u)
(

Λ(u)ᾱk+1 + Λ(0)~αk−1

)
. (4.4)
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The matrix inverse, Λ−1(u) =
(
ΛT (u)Λ(u)

)−1ΛT (u) is chosen as the Moore-Penrose psuedo-inverse,

which minimizes the norm in the bend angle functions. However, the residual errors introduced by

these calculations is negligible.

To model the axial displacement, I assume that the fish has constant velocity, η1, between frames

that is corrupted by acceleration noise, η2. Thus, the state vector and process noise vector for a

single organism are:

p =
[
~α ~T η1

]T
~α ∈ RNΘ , ~T ∈ R2, η1 ∈ R ξ =

[
∆~α ∆~T η2

]T
. (4.5)

The complete motion model calculates the predicted state vector after the organism has undergone a

total axial displacement of η = η1∆t+η2
∆t2

2 in the direction of the head’s centerline tangent vector,

where ∆t is the inverse of the camera frame rate (Figure 4.1). These dynamic equations take the

form:

pk+1 = f(pk, ξk)
~αk+1

~Tk+1

η1,k+1

 =


Λ−1(u)

(
Λ(u)ᾱk+1 + Λ(0)~αk−1

)
~Tk +

∫ η
0

[
cos(Φ(û)~αk+1)
sin(Φ(û)~αk+1)

]
dû

η1,k

+


∆~αk

∆~Tk

η2,k∆t

 (4.6)

where Φ(u) ∈ R1×NΘ is a row vector of B-spline bases. The predicted shape parameters are calcu-

lated using the method decribed above, and the predicted translation is calculated by integrating

the tangent vector defined by the predicted shape parameters,
[

cos(Φ(u)~αk+1)
sin(Φ(u)~αk+1)

]
, over the axial dis-

placement, η.

4.3 Initial Detection of Zebrafish

Any tracking algorithm relies on an initial estimate of the object location. To achieve this, I have

developed a semi-automated initialization routine that operates on a chosen movie frame (typically
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Figure 4.3: (a) and (c) Spatially invariant representation of shape parameters, ᾱ, used to predict the
undulatory motion (only 4 out of 8 parameters from the middle region of the fish body are shown).
In (a), a query of shape parameters is matched with frame 75 in the prior database. The relative
change in ᾱ to frame 76 is used to calculate the predicted shape.
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the first) and extracts three important pieces of information for tracking: 1) an estimate of the

background image, 2) the initial fish state p0, and 3) the width function, R(u). The background

image is estimated by selecting a region around the fish and erasing it using the built-in MatlabTM

function roifill, which smoothly interpolates inward from the pixel values on the boundary of the user-

defined region. Next, the background image is used to segment the movie frame, and the MatlabTM

function bwboundaries calculates the fish boundary from the resulting binary image. The user is then

requested to click on the snout and tail locations of the fish, which allows us to divide the boundary

into the left and right discrete boundaries of the fish denoted BL(i) and BR(i), respectively.
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Figure 4.4: Illustration of the initialization process used in the fish tracker: (A) The initial fish
centerline (white), C(u), is estimated from the left (blue) and right (red) fish outlines. (B) This is
used to estimate the width profile from the raw pixel data, BR and BL. The modeling approach
assumes a symmetric fish. Figure is zoomed into the head region because R(u) and pixel data are
indistinguishable in the tail region.

The initial centerline of the fish will be the curve that is equidistant from the left and right

boundaries. To determine this centerline, we use a modification of the integral area distance used in

[87] which iterates and converges to the fish centerline. The method works by first finding the closest

point in BL to each point in BR and vice versa. Then, I calculate the median locations between

each set of corresponding points in BL and BR. These median locations are assigned as the new

left and right boundaries and this process is repeated until the boundaries converge onto the true

discrete centerline C(i). This is described by the following psuedo-code:

while ‖BjL −B
j
R‖ > ε
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CL(i) =
(
BjL(i) + λBjR(i)

(
BjL(i)

))
/2

CL(i) =
(
BjL(i) + λBjR(i)

(
BjL(i)

))
/2

Bj+1
L = CL

Bj+1
R = CR

j = j + 1

end

The initial left and right boundaries B0
L and B0

R are calculated in the semi-automated fashion

described earlier and λ is the nearest neighbor function, where λA(B) is the element in A that is

closest to B. The estimated centerline curve C(u) is determined by fitting a B-spline through the

points calculated from C(i), and is illustrated in Figure 4.4 along with the original left and right

boundaries it was derived from. The bend angle function Θ(u) is calculated from C(u), and initial

bending amplitudes are calculated by projecting the bend angle function onto the basis functions

from (3.18) and illustrated in Figure 3.2. Once the centerline of the fish has been calculated,

the optimal radius function is found by minimizing the squared normal displacement between the

extracted image boundary BL,R and the model boundaryML,R dictated by the radius function while

constraining the width profile to positive values. Let R(u) = ΛR(u)S where S ∈ R20×1 is a vector of

control points and ΛR is the matrix of B-spline bases, and H(ui, vj) = C(ui) + ΛR(ui)S
(
vj N(ui)

)
is the Frenet ribbon of the fish model. I solve

min
S

Nv∑
j=1

Nu∑
i=1

(
NT (ui)

(
H(ui, vj)− λBL,BR(H(ui, vj))

))2

(4.7)

subject to ΛR(ui)S ≥ 0 (4.8)

where Nv = 2, so that only the points on the boundary of the model are chosen, while the number

of samples chosen along the length of the fish is chosen large enough to accurately estimate S, (e.g.,

Nu = 100). The result of this minimization is shown in Figure 4.4 and demonstrates that the width

profile of the fish can be accurately reconstructed.
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4.4 Observation Model

The present tracker system assumes that the location of the fish boundary can be measured. Thus,

the measurement model consists of the boundary points, qi =
( xi
yi

)
, along with their outward normal

vectors, ni =
( nxi
nyi

)
along the fish’s outline. In order to fit the geometric model to the image at each

frame, the appropriate image measurements must be matched to the corresponding locations in the

model. To achieve this match, the image is segmented using background subtraction, which produces

a binary image that is used to search for edges. Next, a one-dimensional edge-detector filter is applied

in the direction normal to the boundary at each of the boundary points in the fish model (see [8]

for details or the contour model in Figure 5.4 for an illustration). The distance between the model

boundary point, qi, and the corresponding detected edge point, ri, is projected onto ni so that the

error minimized by the SPKF is the normal displacement between the edge points and model points

E(p) =
1
2
‖nT (r− q)‖2 (4.9)

=
1
2

[
(nT r− nTq)T (nT r− nTq)

]
(4.10)

=
1
2

[
(z − h(p))T (z − h(p))

]
(4.11)

where the bold letters indicate the concatenation of all the sampled boundary points (e.g., q =
[ q1
·
·
qi

]
)

and (4.11) is identical to the measurement term of the Kalman filter update equation discussed in

Section 2.2, modulo a covariance matrix. This process is illustrated in Figure 4.5 where the initial

estimate, edge points, and final solution are overlaid on an actual image. By using the SPKF, the

error in (4.11), along with an additional term corresponding to the predicted estimate, are minimized

to obtain an updated estimate of the fish’s state. At age 28 days, the zebrafish has fully developed

pectoral and caudal fins. These fins can cause incorrect tracking because the lighting conditions can

make them appear as solid as the fish’s body. However, by modifying the fish model to not take

edge measurements in the pectoral and caudal regions, the body posture of the juvenile fish is still

accurately estimated (Figure 4.6).
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- detected edge points

Figure 4.5: Measurement model for matching zebrafish images. Left: initial estimate of the model
location (white-dashed line) with matching edge feature points, (black filled white circles). Red
lines denote the 1D search regions for edge points. Note the tail is initially not matched to the
boundary. Right: Final estimate of the model after 4 iterations. Although some error is present
between the outline of the model and the actual fish, the centerline is accurately estimated based
on visual inspection. Errors in the outline are due to small out of plane motions of the fish.

no edge 
measurements

Figure 4.6: At age 28 days, the fish has fully developed pectoral and caudal fins, which can cause
incorrect model fitting if they are mistakenly classified as part of the boundary. To address this,
the juvenile fish model is modified to not incorporate edge measurements in the pectoral and caudal
regions.
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4.5 Tracking Results

Zebrafish (Danio rerio) eggs were collected after mating one stocksteif heterozygous female with

one stocksteif heterozygous male. The batch of eggs contained both stocksteif mutant and wildtype

embryos, but the mutant phenotype does not become apparent until five days post fertilization.

The embryos were reared at the optimal rearing temperature of 28 ◦C. After hatching, the embryos

were fed Paramecium (5 and 6 days post fertilization) and Artemia (from day 7 onwards). A fast

startle response was recorded at 5, 15, and 28 days post fertilization for both wildtype and stocksteif

mutant animals using a high-speed video camera (Photron, APX RS, 1500 frames/s, 1024 × 1024

pixels, exposure time 1/8000 s) fitted with a 105 mm Nikon lens. The startle responses were elicited

by touching the animals with a horse hair. I analyzed recorded sequences from the initiation of

the escape response to the moment when the fish either leaves the field of view or ceases active

swimming. The sequences therefore include stage 1 and 2 of an escape response, and usually several

tail beats that are part of stage 3 [115].

Here, I present automated tracking results for wildtype and stocksteif mutant zebrafish at 5, 15,

and 28 days post fertilization. Figure 4.7 shows the raw centerlines of the zebrafish estimated by the

tracker at fixed time intervals and demonstrates the quality of the proposed method. The method

successfully tracks fast escape responses of fish larvae (Figure 4.7A,D) despite occasional partial

occlusions (in this case, the hair used to induce the escape response (Figure 4.7E)). Furthermore,

tracking takes an average computation time of 5.5 ± 1.7 sec
frame on a 3.0GHz Intel R©Xeon processor,

which enables the quick analysis of large datasets.

To calculate an upper bound on the accuracy of the tracking approach, I created a synthetic

movie sequence by rendering our model along a known trajectory. I then tracked this synthetic

sequence and measured the average error between the known and estimated centerlines over time

(Figure 4.8). The algorithm is able to localize the synthetic data within 0.5% of the body length on

average; errors in estimating the real movie sequences will be slightly larger because they contain

additional noise sources not present in the synthetic one.
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5dpf = (54.7 pixpermm), 
15dpf = (54.4082 pixpermm), 
28dpf =  (54.8620 pixpermm)

using the plotscale = .75, the ratio of the width of the .pdf to the width of the image is 16/17.
(gotten from original ,pdf with (8/8.5))

the .pdf width is w 
so in order to figure out the length scale of the images calculate 
(16/17)*(w) / (1024/pixpermm) = in/mm or (mm (actual) / mm (in image))   

1 mmD 1 mmF

1 mmA 1 mmB 1 mmC

1 mmE

Figure 4.7: Tracking results for zebrafish at (A,D) 5 days, (B,E) 15 days, and (C,F) 28 days post
fertilization. The first row are wildtype and the second row are stocksteif mutants. The raw cen-
terlines estimated by the tracker are plotted at 1.3 ms intervals for age 5 and 15 days and 2.7 ms
intervals for age 28 days. Magenta and yellow trajectories indicate the paths of the tail and snout,
respectively. Note in (C,F) that the caudal fin is not modeled in our current approach, so its motion
is disregarded.
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Figure 4.8: Error estimates from tracking synthetic images generated with our model (A). This
provides an upper bound on the accuracy that we can achieve with the current implementation. (B)
Given noiseless images, we can localize the centerline of the fish to within 0.5% of its body length
on average. Actual errors on real data will be slightly larger than this.

4.6 Kinematic Data

From these centerlines, I wish to extract important kinematic parameters to gain insight into devel-

opmental influences on the propulsion mechanisms of swimming fish, and, vice versa, the mechanical

influences on the development of the fish. One of these parameters is body axis curvature, which

provides information about the muscle strains the fish undergoes. To measure curvature, I apply

spatial smoothing to the extracted centerlines and then apply temporal smoothing directly to the

curvature values. Spatial smoothing is performed by fitting a quartic (k=5) B-spline curve to the

extracted centerlines (I constrain the fitted curve to have zero curvature at the endpoints). The

fitted planar B-spline curve has the form γ(u) = Λ(u)X and is calculated by solving

min
X

Nu∑
i=1

1
2

∥∥∥Λ(ui)X −H(ui, 0; pk)
∥∥∥2

(4.12)

subject to κ(ui) = 0, i = 1, Nu (4.13)
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where H(ui, 0; pk) are the centerline points from the estimated model at time k, Λ(u) ∈ RNu×m

denotes the matrix of B-spline bases evaluated at Nu sampled grid points in u, and X ∈ Rm×2

denotes the matrix of control points. Similar to the width profile calculation of Section 4.3, the

number of samples chosen along the length of the fish, Nu is chosen to be large enough (Nu = 100)

such that X is accurately estimated. The curvature, κ(u), is calculated directly from the B-spline

bases. Let T(u) and N(u) denote the unit tangent and normal vectors to the curve γ(u), then

T′(u) = κ(u) ·N(u) from the geometry of planar curves. Then the curvature is calculated as

γ′(u) = Λ′(u)X (4.14)

∂

∂u

(
‖γ′(u)‖T(u)

)
=

∂

∂u

(
Λ′(u)X

)
(4.15)

‖γ′(u)‖ κ(u) N(u) = Λ′′(u)X (4.16)

κ(u) =

〈
Λ′′(u)X , N(u)

〉
‖γ′(u)‖

. (4.17)

The fish’s curvature is calculated from the smoothed centerlines instead of deriving it from the raw

centerline of the geometric model because the model contains a discontinuity in the curvature at the

location where it becomes stiff. The units of curvature are mm−1, so I multiply the values by the

body length of the fish to produce a non-dimensional value known as the specific curvature, used for

all subsequent measurements.

Temporal smoothing is performed by applying a low-pass filter to the curvature values across

time at fixed locations (51 uniformly spaced points) along the fish’s body. The cutoff frequency

for the filter is chosen based on visual inspection of the magnitude response of the curvature’s

Fourier transform at each of the body locations. Figure 4.9 plots the error between the filtered

and unfiltered centerlines and curvature values for both wildtype and stocksteif zebrafish. With

average errors around 0.1% of body length and 0.1 for the centerline and curvature, respectively,

the filtering process does not compromise the accuracy achieved by the automated tracker. The

resulting curvature profiles after filtering are shown in Figure 4.10. Comparing stocksteif with wild

type at age 15 and 28 days (Fig. 4.10B,E, Fig. 4.10C,F) it can be seen that the peak curvature
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values of stocksteif are smaller than those of wildtype.
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Figure 4.9: Average error between the filtered and unfiltered data as a function of body axis position.
The error for the centerline location (A,C) and curvature (B,D) are normalized to body length and
measured at 51 uniformly spaced locations along the fish body. This provides an average deviation
over time between the filtered and unfiltered data at particular locations along the fish. Small error
values are achieved for both wildtype and stocksteif fish, illustrating that the post-processing filtering
technique retains most of the original information.

To analyze the performance of the fish, additional kinematic parameters were measured. The an-

gular acceleration is the second temporal derivative of the fish bend angle function, (i.e., ∂2

∂t2 Θ(u, t)).

In Figure 4.11, similar peak angular accelerations are observed between wildtype and stocksteif at

age 5 days, when the mutant phenotype has just become manifest. However, as the fish age, large

discrepancies appear in the angular accelerations. At age 28 days, the peak angular accelerations of

the wildtype are two orders of magnitude larger than that of the stocksteif. This trend is also present

in the tail beat frequency of the fish. To develop an objective method for estimating the tail beat

frequency of the fish, the Fourier transform of the curvature values during continuous swimming was

calculated at equally spaced locations along the fish’s body. The time period of continuous swimming

was manually determined by inspecting the curvature profiles for regions where wavespeed remained

relatively constant (see Fig. 4.10). Figure 4.12 plots the magnitude of the frequency response along
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Figure 4.10: Specific curvature profiles for wildtype and mutant zebrafish at 5, 15, and 28 days post
fertilization. Black tick marks indicate the regions of approximate continuous swimming that are
used in the frequency analysis of Figure 4.12. Dotted white lines indicate approximate linear fit of
zero curvature contour used to calculate wave speed.
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the body axis of the fish. For all fish, the body axis position at approximately 90% posterior to

the snout has the largest frequency response. The tail beat frequency, f , is calculated in the fol-

lowing manner. Let F [·] denote the Fourier transform of a function, and κ(u, t) the curvature as

a function of position along body axis and time. Then Ki(ω) =
∣∣∣F [κ(u, t)|u=ui ]

∣∣∣ is the magnitude

of the Fourier transform of the curvature function at the ith location along the fish’s body, and

ωimax = argmax
ω

Ki(ω) is the frequency that maximizes the magnitude response at the ith location.

The tail beat frequency, f , is calculated as

f =
∑Nu
i Ki(ωimax) · ωimax∑Nu

i Ki(ωimax)
(4.18)

using Nu locations sampled along the fish’s body. This is an average frequency over the length of the

body that is weighted by the magnitude response. This approach does not rely on determining the

tail’s lateral displacement from a mean path of motion [75], and is therefore invariant to the spatial

trajectory of the fish. Again, similar tail beat frequencies are observed at age 5 days. However, the

15 and 28 day old stocksteif have smaller tail beat frequencies than the wildtype. The curvature

wave speed is estimated by performing a linear fit to the points of zero curvature during continuous

swimming (see Fig. 4.10), and then calculate the resulting wavelength given the tail beat frequency

provided by the Fourier analysis using (4.18). A summary of these values is provided in Table 4.1.

Typical measures of escape swimming performance include displacement, speed, and acceleration

of the fish center of mass (COM) when stretched straight [33, 114]. To estimate the location of the

COM, I reconstructed the fish volume from dorsal and lateral photographs assuming an elliptic

cross-section [70] (see Figures 4.13a–4.13c). The center of volume (COV) and center of area from

the dorsal view (COA) were calculated. The COV will correspond to the COM assuming the fish

has uniform density. COV calculations were only performed on wildtype zebrafish for comparison

with published literature on escape responses. However, COV calculations do not lend themselves

to high-throughput analysis because separate photographs of each individual fish must be acquired

to account for the variation in morphometry for fish at a given age (very large variation exists for
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Figure 4.11: Angular acceleration of wildtype and stocksteif zebrafish at 5, 15, and 28 days post
fertilization. The largest accelerations are present near the tail tip where the body’s moment of
inertia is smallest. The largest accelerations occur during the initial tail beats when the fish is
starting from rest. There is a significant difference in magnitude between the wildtype and stocksteif
accelerations at age 15 and 28 days, however, similar values are achieved at age 5 days.
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Figure 4.12: The magnitude of the curvature’s Fourier transform during continuous swimming.
The characteristic swimming frequency for each fish is calculated by taking a weighted average
of the maximum frequency responses along the length of the fish. At age 5 days, the fish have
similar swimming frequencies. However, at age 15 and 28 days, the stocksteif have slower swimming
frequencies than the wildtype. In addition, the 28 days stocksteif primarily has undulations in the
posterior 40% of its body due to its stiffer vertebrae.

59



Age (days) L (mm) f (s−1) c (s−1) (R2, # of points) λ
5 wt 3.4 73 115.0 (0.98, 51) 1.15

83.2 (0.98, 52)
55.2 (0.99, 60)

5 stkf 3.4 74 87.5 (0.99, 55) 1.21
87.5 (0.99, 55)
92.9 (0.98, 53)

15 wt 5.0 71 80.1 (0.99, 56) 1.13
79.3 (0.96, 57)
81.1 (0.98, 54)

15 stkf 5.4 36 42.9 (0.99, 59) 1.18
42.1 (0.98, 56)

28 wt 9.7 24 28.8 (0.98, 62) 1.12
24.6 (0.99, 58)

28 stkf 9.4 12 15.7 (0.95, 85) 1.22
13.6 (0.98, 91)

Table 4.1: Summary of kinematic parameters for wildtype (wt) and stocksteif (stkf) zebrafish at
different ages. L, bodylength; f , swimming frequency; c, wave speed (R2, number of points); λ,
average wavelength. Each wave speed calculation represents a different linear fit performed in the
region designated as continuous swimming in Figure 4.10.

the stocksteif at a specific age). Instead, I propose to use the COA as a location for comparison

between wildtype and stocksteif because it is easily measured from the video sequence and has similar

speed and acceleration profiles to the COV (see Figure 4.14). Figure 4.13d demonstrates that the

COA location has a maximum deviation of 5–6% of bodylength from the COV at age 5 days and

the deviation decreases as the fish ages, thus, COA serves as a good proxy for the COV. Figure

4.14 illustrates the results of these measurements. Speed and acceleration are calculated using the

MSE spline method of Walker [114], which fits a quintic spline to the displacement data based on the

expected error of a given camera resolution and frame rate. The stocksteif consistently exhibits lower

peak acceleration and speed compared with wildtype at each age. These preliminary measurements

indicate consistent discrepancies between the wildtype and stocksteif due to the stiffer vertebral

column present in the mutant.

4.7 Discussion

I presented a method for estimating the body posture of zebrafish within laboratory environments

using flexible geometric models and nonlinear estimation. Given the generalized mathematical frame-
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Figure 4.13: (a)–(c) Example of center of volume (COV) and center of area (COA) calculation for
zebrafish at age 5, 15, and 28 days. Volume assumes an elliptical cross-section of the fish. COV will
coincide with the COM if a uniform density is assumed. (d) Location of COV and COA measured
posterior from the snout of the fish. For ages 5, 15, and 28 days, we measured data from 3, 5, and 4
fish, respectively. Horizontal bars indicate the mean value. As the fish get older, the COV and COA
become closer to the same location. COA serves as a good proxy for COV and is easier to calculate
in a high-throughput manner.
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Figure 4.14: Displacement, speed, and acceleration plots for the fish measured at the center of
area (COA) of the dorsal view. Zero time indicates the onset of stimulus, and the MSE quintic
spline method of [114] is used to calculate speed and acceleration from the positions estimated by
the model. Profiles measured at wildtype center of volume (COV) is determined using the method
described by Figures 4.13a–4.13c

work used to model the fish’s appearance, this method should track any fish species with a sym-

metric medial profile and that swims by undulating the body (see Figure 4.15 for an application

to lampreys). The discrete time dynamic state space model also provides a general framework for

performing statistical inference that is robust to outliers and enables tracking during partial occlu-

sions. This is a strong improvement over previously developed methods which are either manual

[14, 69, 75], require a perfectly segmented image with no environmental clutter [23, 43, 70], or are

customized for fish of a specific size and appearance [15].

The assumption of planar motion is a limitation in the proposed method, which arises directly

from the recorded material—top-view monocular video. For behaviors that contain large out of

plane motions, the geometric model will not accurately represent the appearance of the fish. For

such behaviors, a 3D version of the model-based tracker would be required; the principle is sound,

but should be extended (see Chapter 6 for the extension to 3D tracking of Drosophila). The tracker

may also fail if a significant portion of the fish becomes completely occluded by environmental clutter

(e.g., the entire head). Nevertheless, this shortcoming could be improved by extending the algorithm

to use a more advanced nonlinear estimator, a more advanced motion model, or a direct model of the

occlusions. However, in laboratory settings, where many environmental parameters are controlled,

this technique represents an accurate and fully automatic approach to quantify behavior and will
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Figure 4.15: Tracking results for lamprey filmed at 25 fps. The raw centerlines estimated by the
tracker are plotted at 120 ms intervals. Magenta and yellow trajectories indicate the paths of the
tail and snout, respectively. The zebrafish model was used with a different width profile R(u)
calculated according to Section 4.3. This demonstrates that the algorithm is applicable across
different organisms.

facilitate studies requiring the analysis of many and long image sequences.

In addition to traditional swimming performance indicators, I explored two new ways of analyz-

ing the kinematics data; by plotting the angular acceleration as a function of time and the frequency

response along the body. I also used more objective mathematical definitions and corresponding

algorithms to quantify standard variables such as tail beat frequency, wave speed, and length. The

center of area (COA) of the fish dorsal view was proposed as a valid location for comparison be-

tween wildtype and stocksteif fish because its ease of measurement lends itself to high-throughput

analysis. This preliminary comparison between wildtype and stocksteif swimming performance in-

dicators already suggest significant differences. Hence, this preliminary data analysis of swimming

fish illustrates the capabilities of the automatic fish tracker and bodes well for gaining a complete

understanding of how stiffness of the vertebral column affects swimming performance.
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Chapter 5

Automated Visual Tracking for C.
elegans Mating Behavior Analysis

The work carried out in this chapter was done in collaboration with Allyson Whittaker and Paul

Sternberg of the Sternberg Laboratory at the California Institute of Technology. The video sequences

used in Section 5.5 were recorded by either Christopher J. Cronin or Allyson Whittaker, and both

Christopher and Allyson provided extensive help and feedback during the analysis of these sequences.

5.1 Introduction

The small nematode Caenorhabditis elegans (C. elegans) is a widely used model organism in the

study of genetics and developmental biology. Since the exact position and cell lineage of all of its

959 cells and 302 neurons is known, C. elegans offers a convenient platform to understand how

different behaviors are modulated by the nervous system, sensory input, and genetic modifications.

However, to study the relationship between behavior and genes in C. elegans, for example, requires

the screening of an enormous number of individual C. elegans specimens to establish the gene-

behavior relationship. Each screen consists of a visual observation of the specimen’s movements over

a time period, and the extraction of key movement and behavior parameters from the observations.

The number and complexity of the observations that are needed to support current research into

the gene-behavior linkage argues for highly automated screening systems. In this particular study,

I focus on applying my visual tracking algorithm to the mating behavior of male C. elegans (Figure
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5.1), which represents arguably the most complex behavior the organism exhibits.

Figure 5.1: Illustration of basic steps involved in male mating behavior (Taken from [66]). Various
mutants exhibit deficiencies in different steps of the behavior. For instance, some fail to respond
after making contact, while others fail to turn at the end of the hermaphrodite. To understand how
genes control the neuronal and sensory function of the worms during mating, the detailed kinematics
of the organisms must be captured during interactions. However, mating presents the challenge of
tracking two worms that severely occlude each other through long periods of time.

Several automated tracking and analysis systems have been previously developed for C. elegans.

These tracking systems can be roughly divided into two categories. The first class of systems track

multiple worms at a low magnification, and they are able to capture the animals’ gross motion

characteristics, such as velocity and frequency of reversals [27]. Systems in the second category

track single worms at a higher magnification and utilize a motorized stage to keep the worm in the

camera field of view [23], [43]. These systems can quantify the detailed posture of the individual

worms, and subsequently perform phenotype classification. However, limitations in the underlying

implementations of these systems prevent them from tracking detailed worm posture for multiple
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organisms that may occlude each other.

Recently, several automated systems have been developed for tracking multiple C. elegans ne-

matodes [87, 37, 36, 50]. In [87] and [50], the authors both use a region-based approach that tries

to maximize the overlap between their worm model and worm pixels. However, they do not take

advantage of contour information to refine the pose estimation and achieve greater accuracy. In [37],

I proposed an edge-based tracker that achieved high accuracy, however, manual intervention was

required when the head and tail of the worms remained occluded for more than a few frames. In

[36] I proposed an extension of the algorithm that incorporated a region model based on level sets

in addition to the edge-based cues.

This chapter presents my method for tracking multiple C. elegans specimens during mating.

The tracking algorithm combines detailed geometric models with nonlinear estimation techniques to

quantify the shape and motion of the worms. Sections 3.2 and 5.2 respectively describe the geometric

modeling approach and the motion model used in the dynamic state space framework, while Section

5.4 reviews the details of the observation model. Finally, Section 5.5 presents tracking results and

data analysis for several challenging video sequences.

5.2 Motion Model

The motion model assumes that the organism undergoes axial progression along its length with a

constant wave velocity, η1, corrupted by acceleration noise, η2. Thus, the state vector and process

noise vector for a single nematode are identical to the zebrafish (Section 4.2):

p =
[
~α ~T η1

]T
ξ =

[
∆~α ∆~T η2

]T
(5.1)

The equations of motion calculate the predicted state vector after the nematode has undergone a

total axial displacement of η = η1∆t + η2
∆t2

2 , where ∆t is the inverse of the camera frame rate
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(Figure 5.2). These equations take the form:

pk = f(pk−1, ξk−1)
~αk

~Tk

η1,k

 =


Λ(u)−1Λ(u+ η)~αk−1

~Tk−1 +
∫ η

0

[
cos(Φ(û)~αk−1)
sin(Φ(û)~αk−1)

]
dû

η1k−1

+


∆~αk−1

∆~Tk−1

η2,k−1∆t

 . (5.2)

This equation is similar to the prediction model of zebrafish (Equation (4.6)), except the predicted

shape parameters are calculated differently. The interpolated bend angle function, Θ(u + η) =

Λ(u + η)~αk−1 is calculated by projecting the previous shape parameters, ~αk−1, onto the B-spline

basis in the domain of displacement, Λ(u+ η). Then, the new shape parameters, ~αk, are calculated

by projecting back onto the original basis, Λ(u). Likewise, the predicted translation is calculated by

integrating the tangent vector over the axial displacement, η.

pk¡1

pk

´

Figure 5.2: Motion model of C. elegans. The model is based on the assumption that the worm
undergoes axial displacement η along its length between frames.

C. elegans nematodes exhibit a wide array of body deformations during their different behavioral

modes. Although their typical form of motion during foraging behavior is a traveling sinusoidal wave,

other behaviors, such as mating, exhibit highly erratic and irregular motions. For this reason, I do

not adopt the motion model used in zebrafish for nematodes. Since fish exhibit stereotyped body

undulations to propel themselves in water, matching this motion pattern to a database provides

accurate prediction (Section 4.2). However, such stereotyped motions are not present in nematode

mating behavior, so a representative database in unlikely to exist. Instead, this current approach

offers a simpler prediction model given the small inter-frame motion in the video sequences.
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Instead of extrapolating the bend angle function to calculate the predicted shape parameters,

the centerline itself can be extrapolated to calculate the predicted shape parameters. Let

~xk−1(u) =
∫ u

0

[
cos(Φ(û)~αk−1)
sin(Φ(û)~αk−1)

]
dû (5.3)

denote the centerline of the model as calculated in the previous time step. A spline is fit to these

points such that

~xk−1(u) =
N~x∑
j=1

ajΦj(u). (5.4)

This spline is used to extrapolate to the worm’s centerline, ~xk =
∑N~x
j=1 ajΦj(u + η). Let T(u) be

the local tangent vector of the extrapolated curve ~xk. The tangent vectors are use to estimate the

local bend angles, and the bend angle is projected back onto the B-spline basis to get the predicted

shape parameters:

Θk(u) = atan2(Ty,Tx) (5.5)

~αk = Λ(u)−1Θk(u). (5.6)

Both methods provide adequate prediction when the interframe displacement is not too large, how-

ever, the second method is more accurate when η is larger. In the implementation, the basis functions

Φj(u) used to extrapolate the centerline are piecewise cubic polynomials.

5.3 Model Initialization

I assume that all worms of a particular sex have the same width profile, R(u). This function is

estimated from high-resolution images of a male and a hermaphrodite example specimen (see Figure

5.3a), where a semi-automated routine extracts the boundary and estimates R(u) (see Section 4.3

for details). Thus any worm in the video sequences is assumed to have a scaled version of the width
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(a) High-resolution images of the hermaphrodite (left) and male (right)
C. elegans used to estimate the width profile of the worms

(b) Extracted boundaries (red,blue)
and estimated centerline (green) of
the worm
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Figure 5.3: (a)–(c) Estimation of width profile in worm model. A separate calculation is performed
for both males and hermaphrodites. Details of calculation are provided in Section 4.3. (d) I manually
estimate the initial state (i.e., pose) of the worm model by clicking centerline points in the image.
An automated routine was not explored since the worms are always in contact for most of our video
sequences.
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profiles estimated from these images. To estimate the initial state p0 of the model, I utilize a manual

approach where the user clicks on points along the centerline in the image (see Figure 5.3d) and the

shape parameters are estimated according to (5.6). Because the mating worms were often in contact

throughout the entire video sequence, I could not implement a fully automated initialization routine

as in [87], which assumes the worms are not touching at the initialization frame.

5.4 Observation Model

The observation model I designed for tracking multiple C. elegans consists of two components, a

region model and a contour model. The region model was designed to improve tracking performance

in situations like Figure 5.4 where, despite strong edges, it is difficult to localize the worm in the

axial direction during the partial occlusions common to mating behavior. The region model tries to

maximize the overlap between the geometric models and worm pixels. To complement the region-

based approach, a contour model that uses local edge feature points, similar to the one presented in

Section 4.4, is also utilized. Here I explain the details of each approach, while Figure 5.4 provides

an illustration of the complete observation model.

Frame 54

Figure 5.4: Despite the presence of strong edges, it is difficult to localize the worm in the axial
direction during partial occlusions present in mating.

5.4.1 Region Model

Although the Chan and Vese model (Section 2.5) can be applied directly to grayscale images, I

apply it to binary images that are calculated using a simple background subtraction model (Figure
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Figure 5.5: Overview of observation model used in multi-worm tracking. The worm models are
rendered to a binary image using the desired camera model. The extracted boundaries are used
to create a distance map φ(p) that implicitly defines the contour. The Chan-Vese functional is
incorporated into the error metric and minimized using a SPKF. The output of the region model is
used as an initial estimate that is refined using local edge feature points. Feature points are detected
by performing 1D search along the normal to the model contour. The distance between the points
is also minimized using the SPKF.
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=
Figure 5.6: Because the background of the petri dish remains largely static, accurate segmentation
of the observed data images Ik is achieved using background subtraction.

5.6). Because microscope lighting effects may cause regions of the worm to be nearly camouflaged

in the background, I determine the pixels belonging to the worm by background subtraction instead

of relying on the image functional to partition the image based on the distribution of grayscale

intensities. This approach is primarily used to provide improved tracking of multiple organisms, as

I do not currently constrain the shape priors to prevent intersection of different worms because this

occurs frequently in the intended applications.

The binary image serves as the data observation at the kth frame, zk = Ik. An overview of the

worm observation model is illustrated in Figure 5.7. The rendered image of each organism model

defined by (3.15) is joined to create the total image IH(p) =
⋃K
i=1 Render(H(pi)). The boundaries

of this image are extracted using the built in MatlabTM function bwboundaries. Once the boundary

locations ∂Ω have been found, the values of c1 and c2 can be calculated directly. I first determine

the domains:

ΩI =
{

(xi, yi) | IH(p)(xi, yi) = 1, (xi, yi) /∈ ∂Ω
}

(5.7)

ΩO =
{

(xi, yi) | IH(p)(xi, yi) = 0
}
, (5.8)

which determine the sets of pixels inside and outside the worm boundary, respectively. The obser-

vation model h(p) is then calculated as follows:

h(p) =


c1 =

PN
i Ik(xi,yi)

N (xi, yi) ∈ ΩI
⋃
∂Ω

c2 =
PM
i Ik(xi,yi)

M (xi, yi) ∈ ΩO.

(5.9)

I assume that the image pixels are corrupted by additive noise with unit variance, ωk ∼ N (0, I).
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Using this model, the observation dimension is equal to the number of pixels in the image. To

decrease the computational cost associated with inverting the observation covariance in the Kalman

filter update step, I make two modifications. First, Ik is trimmed to the smallest window that

contains the closed boundaries that belong to the worms. I also subsample the images Ik and IF (p)

using a standard Gaussian pyramid with unit variance. The observation update is then performed

at a level 2 of the pyramid where level 0 is the original resolution (see Fig. 5.7a).

5.4.2 Contour Model

The contour observation model is illustrated in Figure 5.7b and is identical to that used for zebrafish

tracking (Section 4.4). It consists of the model boundary points, qi =
( xi
yi

)
, along with their outward

normal vectors, ni =
( nxi
nyi

)
To find corresponding edge-feature points, the approach of Blake [8] is

utilized by applying a 1D edge detector filter to Ik in the normal direction at each of the boundary

points in the model. The nearest neighbor detected edge points, ri, are also projected onto ni so

that the error minimized by the KF has the form nT(q− r). I also make two additions to this

contour model. A closed B-Spline curve is fit to the boundaries of Ik and locations of high negative

curvature are calculated. These feature points likely correspond to head and tail locations and are

matched with the model if they pass a Mahalanobis test 1 (i.e., ‖qi−ri‖Σi ≤ γ, from Eq. (2.39)) and

have a similar normal vector orientation. Here, Σi =
[
σ2
x σ2

xy

σ2
xy σ2

y

]
is the covariance matrix associated

with the model point qi. Also, due to their cylindrical shape, the worms never share a visible

boundary while they interact (i.e., their centerlines are almost never coincident and parallel in any

region). This constraint is incorporated by rejecting any detected edge points for one worm where

the measurement lines cross over the model location of other worms. This idea is also modeled in

[87] using a “worm overlap energy” and is a simpler notion of the exclusion principle presented in

[68].

1For normally distributed measurements, the Mahalanobis distance is chi-squared distributed with number of
degrees of freedom equal to the dimension of measurement vector—2 in this case. The probability that the distance is
less than the parameter γ can, therefore, be obtained from χ2 distribution tables. For example, γ = 5.99 corresponds
to a 95% probability that the feature ri is associated with the model point qi.
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Figure 5.7: Observation models, h(pk, ωk) used in the proposed tracker: (a) Illustration of the
observation model for region-based tracking. Initial condition (red) and final solution (green) are
plotted over the subsampled data image, Ik. Contours represent the zero level set of φ(pk). The
contour has to be evolved little because the motion model provides a good initial estimate and the
motion between frames is small; (b) Observation model for contour-based tracking. Edge features
are detected along 1D measurement lines. Model locations are labeled as occluded (yellow stars) if
no match is detected. High curvature points (red squares) are matched with head/tail locations.

5.5 Tracking Results

The tracking algorithm is demonstrated on 4 worm sequences. All videos are acquired using a

stereographic microscope outfitted with a 30 Hz camera at 720x480 or 640x480 resolution. For each

sequence, the model pose parameters are manually initialized by clicking points along the centerline

of each organism to match the configuration at the first frame (Section 5.3). The algorithm is written

in MATLABTM, uses the state estimation toolbox of [112], and operates in a batch off-line mode.

In the multiple worm sequences, the hermaphrodite (larger worm) is partially paralyzed to keep

the mating behavior within the camera’s field of view. Research into the genetic basis of mating

behavior mainly involves studying the male motion. The male worm has 41 distinct muscles that

are used in mating and not present in hermaphrodites [66]. Mating consists of two behavior modes

that are dominated by motion: backing and turning. Quantifying the body posture of the male

during backing and turning is an important metric for understanding the genetic and neuronal basis

of mating. For instance, certain mutants either cannot turn, or hesitate a lot before turning. Figure

5.7 shows four sequences where the tracking algorithm is able to successfully track both worms while
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the male backs and turns. The first row illustrates the failed tracking result when just the contour

observation model is utilized. Because the male model is only using the lower edge information to

localize itself, the tracker cannot detect when it crawls underneath the hermaphrodite. However,

the partial occlusion is successfully handled by incorporating the region-based module.

5.6 Kinematic Data

The data presented in this section is meant to illustrate the range of information provided by the

worm tracking algorithm and demonstrate important kinematic parameters that were previously

inaccessible using manual methods. It is not meant to answer any particular biological question.

However, it does provide a foundation for future algorithms designed for automated behavior recog-

nition.

Fig. 5.8 illustrates the specific curvature profile (curvature normalized by body length) of a

wildtype and tph1 mutant male worm. This mutant has a defect in the gene used to produce

the enzyme tryptophan hydroxylase, the key catalyst in producing serotonin, which regulates male

mating behavior. The estimated centerlines of the worm are smoothed and the curvature is calculated

according to Section 4.6. This particular measurement provides insight into the turning mechanisms

of the male. A successful turn is indicated by the anterior propogation of ventral bending as seen

in the wildtype. In the unsuccessful turns of the mutant, the ventral bending does not propogate

anteriorly. This representation provides information about how the male is configuring his body,

but not about its location relative to the hermaphrodite.

To visualize this information, consider Figure 5.9. We define Ψ as the relative angle between the

male tale and the hermaphrodite body and ū as the normalized distance along the hermaphrodite

where the male tail is located (ū = 0 is middle of worm and ū = 1 is tip). This convention was

chosen because the male will often turn around both ends of the hermaphrodite, so the natural

place to put the origin is in the middle of the worm. When the male is backing, Ψ is a small angle

(Ψ ≤ π
2 ), but once he begins to turn, Ψ increases significantly.

Figure 5.10 provides preliminary data using this representation. The trajectories in the polar plot
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Frame 1 Frame 55 Frame 70

(a) Using only edge information, tracking of the male worm fails when it is partially occluded.

Frame 1 Frame 55 Frame 70

Frame 336 Frame 403 Frame 460

(c) Tracking using region and edge based cues successfully handles the partial occlusion.

Frame 11 Frame 61 Frame 140 Frame 215

(d) This mutant hesitates but successfully completes a turn.
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Frame 1 Frame 78 Frame 269

Frame 308 Frame 338 Frame 470

(f) The implicit representation of φ handles the changing topology of the image contour in the second and fourth still
frames when the male worm curls its body.

Frame 1 Frame 90 Frame 243

Frame 470 Frame 794 Frame 1120

(h) Tracking mutant male that performs backing along hermaphrodite but hesitates and fails to complete a turn.

Figure 5.7: Tracking results of four different C. elegans mating sequences. Model estimate of male
and hermaphrodite appear in white and cyan, respectively.
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indicate the relative orientation between the male’s tail and the hermaphrodite body. The wildtype

trajectories demonstrate consistent behavior where the male keeps contact with the hermaphrodite

(ū ≤ 1) and relative angle goes from Ψ ≤ π
2 to π ≤ Ψ ≤ 3π

2 , meaning his tail went from one side of the

hermaphrodite to the other. In contrast, the mutant trajectories are highly variable. For instance,

one worm moves off the end of the hermaphrodite and loses contact (ū > 1) indicating a "missed

turn", while another curls around the end of the hermaphrodite, but fails to continue backing and

"over-curls" on itself (Ψ > 3π
2 ). The "stuttering" turn illustrates when the male remains moving

back and forth near the end of the end of the hermaphrodite, but does not initiate a turn to the other

side. The "good", "sloppy", and "missed" turns were described by Loer using qualitative human

observation [67]. The data in Figure 5.10 provide quantitative metrics that enable the distinguishing

behaviors to be more precisely classified than is possible by human observation.

5.7 Discussion

The algorithm presented in this chapter presents a good foundation for tracking multiple C. elegans.

However, there are several shortcomings that should be addressed in future work. First, the algorithm

tends to loose track of the male when he turns over top or underneath of the hermaphrodite. This

partial occlusion is unlike that seen in Figure 5.8c because after the male reaches the opposite side

of the hermaphrodite, he curls his tail tightly against her body leaving little visual information

(i.e., pixels) that the turn has occurred (Figure 5.11). This 3D motion from a monocular view

clearly causes the posterior distribution to become multi modal (i.e., there are multiple hypotheses

about where the worm could be located. As a result, our SPKF solver, which assumes a unimodal

state distribution, fails to track. Sequential Monte Carlo methods or multiple hypothesis tracking

techniques would probably solve this problem. Another possibility to improve this problem is the

design of a much stronger motion model (i.e., prior) that better predicts the motion of the worm

during mating. The one described in Section 5.2 works well for backing and foraging behavior,

but because deformations are not predicted, it does not work well for turning. The motion of C.

elegans is highly erratic, however, so care must be taken to incorporate the appropriate amount of
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¹u 10 ¹u 10

Figure 5.9: Illustration of male turning angles. The relative angle between the male tail and the
hermaphrodite body is small during backing (left) but increases greatly during turning (right). The
variable ū measures the relative location of male’s tail along the hermaphrodite body.
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Figure 5.10: Polar plot of (ū,Ψ) for 6 wildtype males (top) and 6 tph1 mutant males (bottom). I
have arbitrarily indicated a "good" region of turning, where the successful turns of the wildtype
worms occur.
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(a) (b)

Figure 5.11: Failure mode of current multi-worm tracking algorithm. The turning behavior of wild-
type male worms involves a tight turn where he flips his tail to the other side of the hermaphrodite
(right). This maneuver typically involves 3D motion (e.g., the male crawls under the hermaphrodite
causing it to rise out of the plane (middle)). This 3D motion within a monocular video clearly causes
the state distribution to become multi-modal. Hence, the Kalman-filter based local optimizer loses
track. (b) The true configuration of the worms

uncertainty.

In addition, my focus on mating behavior caused this analysis to ignore tracking more than two

worms simultaneously. The model representation used 11 parameters per worm, thus tracking 10

worms would involve estimating 110 parameters simultaneously, requiring a greater computational

burden. A more compact representation of the state space could mollify this problem. Despite these

shortcomings, our algorithm demonstrates promising results that can be expanded with further

refinements. In addition, with the use of a microscope with stereo cameras, depth information can

be measured from the images. By modeling the worms as 3D, the out of plane motion present in C.

elegans mating can be estimated directly.
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Chapter 6

3D Visual Tracking of Drosophila
Flight Maneuvers

The experiments carried out in this chapter were done in collaboration with Gwyneth Card, Will

Dickson, and Michael Dickinson of the Dickinson Laboratory at the California Institute of Technol-

ogy. Will Dickson provided the digitized surface points of a Drosophila body and wings that were

used to construct the generative model. In particular, Gwyneth Card recorded all video illustrated

in Section 6.8 and made her customized manual tracking software and body kinematic data from

[16] readily available.

6.1 Introduction

The fruit fly is one of the most important model organisms used in modern biology. It offers an

ever-increasing and widely accessible set of methods for altering genes and controlling their temporal

and spatial expression. For example, these methods now make it possible to manipulate the activity

of neurons in intact flies using pulses of light [65]. Although their nervous system contains only

300,000 neurons, flies display an array of complex behaviors. One group of behaviors that represents

an exciting area of research is the flight maneuvers. The sensory-motor response time of Drosophila is

on the order of a few milliseconds, making it one of nature’s fastest solutions to the problem of flight

control. In order to characterize Drosophila’s sensory-motor control system and to understand how

different behaviors are modulated by the nervous system, sensory input, and genetic modifications,
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scientists utilize high-speed cameras to record the complex behaviors. Previous studies in insect

flight maneuvers have required laborious manual methods to capture the body and wing kinematics

[3, 16, 39, 40] from these high-speed videos. The time-consuming nature of this approach prohibits

further experiments to characterize other flight behaviors. Thus, an automated tracking technique

that estimates the complete body posture of the fly is necessary to produce the number of complex

observations needed for current research.

To address this concern, I develop an automated model-based tracking technique to capture

the 3D body and wing motion of Drosophila. Previously, many studies in Drosophila flight control

measured the relative wing motion during tethered flight by shining an infrared light upon the fly

and measuring the resulting shadow with a photodiode receptor [31, 45]. Here, the 3D wing motion

is reduced to a 1D voltage signal on the photodiode. Recently, Graetzel et al. developed a real-time

computer vision system to measure the wing motion of a tethered fly [46]. Here, a single camera

view is used to track the angular position of the wing’s leading and trailing edge in the projected

camera view. In [119], Zanker measured the full 3D motion of flies during tethered flight using

stroboscopic video and mirrors to capture multiple views. However, the 3D reconstruction relied

on manual digitization of six keypoints on the wing in each camera view. Later, Fry developed

customized software to manually fit 3D wing models to free-flight Drosophila in multiple camera

views [39]. This technique was expanded to analyze hovering and take off behaviors in fruit flies

and honey bees [3, 16, 40]. The proposed algorithm extends the work of [39] by developing visual

tracking techniques to automatically fit a known 3D fly model to images captured from multiple

calibrated camera views.

In the computer vision literature, many encouraging techniques can be found for estimating

the 3D rigid motion of a human from multiple calibrated camera views (see Section 1.1.2 for a

detailed review) [73]. Typically, a 3D human model containing kinematic chains is given, and the

goal is to estimate the body posture and joint angles using image measurements (e.g., silhouettes,

appearance textures, optical flow). Although my approach to tracking Drosophila flight maneuvers

builds upon several key ideas from the human motion tracking literature, there are several challenges
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peculiar to Drosophila that require special attention. For instance, I incorporate the motion model

of Rosenhahn (Section 2.7) to accurately predict the pose of the fly, given its pose from the previous

time steps. However, this motion model must be extended to include a quaternion representation

of rotations. Drosophila exhibit complex wing rotations during flapping flight that requires a global

parameterization of SO(3). Although a local parameterization using joint angles is sufficient for

Rosenhahn to predict human motions, this same parameterization would undergo singularities for

wing motion and result in incorrect prediction.

Another challenge specific to Drosophila is that the near-cylindrical shape of the its body makes

it difficult to estimate the roll angle about the body axis (i.e., the head to tail axis exhibits strong

rotational symmetry). Estimating unobservable states has been addressed in the human tracking

literature (e.g., depth ambiguities and rotations about axes of symmetry in limbs) primarily within

the context of monocular video [96, 97]. However, given our intended application of precise motion

tracking and use of multiple cameras, these techniques are outside the scope of our problem. Recently,

the authors in [63] demonstrated the ability to track rotations of spherical objects and solids of

revolution by integrating the displacement of texture features into the update procedure of their

CAD model. Unfortunately, our video of Drosophila is void of any robust features except the

silhouette (see Figure 6.1 for an example). The extremely high frame rate (6000 fps) needed to

capture the wing kinematics prevents foreground lighting in many experimental setups, making

their texture feature method inapplicable. Also, high-intensity lights generate excessive heat that

can damage the fly and/or alter its behavior. Instead, I rely on the gross symmetric motion of the

wing beats to provide a cue for the location of the body’s dorsal edge. This biomechanical constraint

allows us to estimate the fly’s roll angle given the location of its wings.

The quaternion representation and unobservability of the body roll angle requires me to impose

nonlinear equality constraints upon the state variables (i.e., model pose parameters) within the

estimation algorithm. I adopt a Sigma Point Kalman filter based estimator [111, 92] that provides

accurate solutions and computational efficiency. Although this is a local minimization scheme, our

accurate foreground segmentation, multiple camera views, and prior motion model based on [85]
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Figure 6.1: Zoomed images of Drosophila synchronously captured from 3 camera views within lab-
oratory environment. The high-speed video offers no strong visual features except the silhouette.
Even with three camera views, the complex wing beat motion is difficult to capture due to low
observability of the wings at certain postures (left, middle) and motion out of the camera’s focal
field (right).

allows us to keep the prediction close to the true solution so that the unimodal distribution of the

state variables remains a valid assumption. Many techniques for incorporating nonlinear constraints

into the Kalman filter framework have been described in the literature [28, 94, 116]. They typically

utilize a pseudo-observation approach (i.e., the constraint is an observation with zero variance)

or a projection operator to project the estimate onto the constraint surface. However, in these

approaches, the estimate is not guaranteed to satisfy the constraint, and these methods often lead

to singular covariance matrices. Recently, the authors in [55] introduce a two-step approach utilizing

the Sigma Point transform that first constrains the probability distribution and then constrains the

conditional mean of the distribution (Section 2.4). We adopt this approach to accurately incorporate

the nonlinear constraints imposed by the quaternion representation and unobservable roll angle.

Thus our algorithm is constructed to address the challenges of a particular tracking problem.

The geometric generative model used to represent the fly is embedded with the degrees of freedom

relevant to our particular application so that the state estimation procedure performs inference on

physical quantities relevant to experimental goals. Section 6.2 reviews the quaternion representation

of spatial rotations, and Section 6.3 explains the construction of an accurate fly model and the

initialization of the model parameters from a video frame. Section 6.4 describes an extension to the

motion model of Rosenhahn. Sections 6.5 and 6.6 discuss the foreground segmentation and model

fitting techniques. Section 6.8 demonstrates results obtained by applying this method on several
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video sequences involving jumping, tumbling, and flight stabilization, in addition to performance

validation against manually tracked data.

6.2 Quaternion Rotations

Unit quaternions provide a global parameterization of SO(3) which do not suffer from singularities

and are accurate for integrating incremental changes in orientation over time. They are quantities

of the form:

Q = q0 + q1i + q2j + q3k; ‖Q‖ =
√
q2
0 + q2

1 + q2
2 + q2

3 = 1 (6.1)

where q0 and q = (q1, q2, q3) are termed the scalar and vector parts, respectively, and the quaternion

basis elements satisfy

i · i = j · j = k · k = i · j · k = −1

i · j = −j · i = k j · k = −k · j = i k · i = −i · k = j.

The conjugate of a quaternion Q = (q0,q) is given by Q∗ = (q0,−q), and the inverse is denoted

Q−1 = Q∗

‖Q‖ . A vector X = (x, y, z) ∈ R3 is identified with the 4D quaternion vector space as a

vector quaternion,

x = xi + yj + zk. (6.2)

In the quaternion algebra, rigid body rotations of the vector x are given by the equation

x′ = Q · x ·Q∗ (6.3)

where · denotes quaternion multiplication. This quaternion product can be conveniently applied

using a matrix form. Denoting the quaternion as the 4-tuple Q =
[
q1 q2 q3 q0

]T
∈ R4, the
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product of two quaternions Q and P is equivalently given by the matrix product

Q · P = [Q+]P where [Q+] =



q0 −q3 q2 q1

q3 q0 −q1 q2

−q2 q1 q0 q3

−q1 −q2 −q3 q0


(6.4)

or (6.5)

Q · P = [P−]Q where [P−] =



p0 p3 −p2 p1

−p3 p0 p1 p2

p2 −p1 p0 p3

−p1 −p2 −p3 p0


. (6.6)

Therefore, the rotational transformation in (6.3) can be written as

x′ = Q · x ·Q∗ (6.7)

x′ = [Q+][Q−]∗x (6.8)X ′
0

 =

RQ 0

0T 1


X

0

 (6.9)

X ′ = RQX, (6.10)

which has the familiar form of a rotation matrix applied to spatial points after ignoring the 0 values

in the 4th dimension.

6.3 Geometric Model and Its Initialization

In [32], Dickson et al. construct a polygonal model of the fruit fly from multiple calibrated images

of the body and wing. This polygonal model consists of a triangle mesh (Figure 6.2a) that is

integrated into a physics engine to simulate the dynamics of flapping flight. I use this polygonal
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model to construct a parameterized generative model of the fly that contains 3 primitive shapes:

the body, head, and wing (see Section 3.4 for details).

The coordinate transformation M ∈ SE(3) that defines the position of a body-fixed reference

frame relative to a world-fixed frame is given by M =
(RQ T

0T 1

)
. A kinematic chain of an articulated

body is represented as the consecutive application of coordinate transforms. In our particular appli-

cation, the wing joint of the fly is modeled as a spherical joint at a known location, so the kinematic

chain has the form

X ′j =

RQbody T

0T 1


RQwing Tbw

0T 1

Xj (6.11)

X ′j = M(p)Xj (6.12)

where Xj is a 4D vector in homogeneous coordinates that defines the model coordinates in the local

frame. The state of the fly model is p =
[
T Qb Qlw Qrw

]T
, where the superscripts refer to

the body, left wing, and right wing, respectively. Although, the wing joint is modeled as rotations

about a fixed joint, that actual location of the joint moves. This could be modeled by extending

the the state to p =
[
T Qb Qlw Qrw ∆lw ∆rw

]T
where ∆lw,rwdenotes a displacement of the

left/right wing joint locations from their nominal location. The coordinate transformation would be

redefined as

M(p) =

RQbody T

0T 1


RQwing Tbw + ∆

0T 1

 (6.13)

and the displacement would be constrained to be less than a specified value, ‖∆‖ ≤ ε.

To initialize the geometric fly model, a customized software package is used to estimate the initial

state of the fly, p0 [16]. This software allows the user to click on six locations on the fly’s body in two

out of three camera views to localize its 3D position. The six locations include the head, tail, and

joint/tip locations of both wings. A frame model is adjusted about its rotational axis until it matches
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(a) (b)

Figure 6.2: (a) Triangle mesh of Drosophila calculated from multiple calibrated images (courtesy W.
Dickson [32]). (b) Generative model constructed according to Section 3.4 based on the data points
provided by (a)

X

Y

Z

F (Qb,T)

Figure 6.3: Geometric generative model of Drosophila. Coordinate frame orientation follows con-
vention common to aeronautics where rotations about the x, y, and z axes are known as roll, pitch,
and yaw, respectively. Downward pointing z axis is chosen so that positive pitch angles correspond
to pitching upwards.
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Figure 6.4: (a) Customized software for manual digitization of Drosophila body kinematics from [16].
Points are clicked at the head, tail, wing joint, and wing tip in multiple camera views to manually
fit a geometric model to the images. Manually estimated pose is used as an initial guess for the
automated algorithm. (b) At the initial frame, the profile of the body is refined, while holding the
pose parameters fixed, to more closely match the actual shape of the Drosophila by minimizing the
error described in Section 6.6.

the images based on visual inspection (see Figure 6.4a). Next, the body transformation, (Qb, T ),

associated with the manual initialization are refined using the registration procedure described in

Section 6.6 applied to the body only segmented images, Ibody, shown in Figure 6.6e. Finally, the

shape profile of the body is adjusted, while holding the pose, (Qb, T ), fixed to further match the

body only segmented images. The entire width profile is modeled as the combination of two B-spline

curves representing the head and body, respectively. The control points of the B-spline curves are

adjusted to best match the images, similar to the width profile calculation for zebrafish in Section

4.3. Figure 6.4b illustrates the results of this shape refinement for a particular Drosophila that

provides a more accurate representation of the appearance.

6.4 Scaled Motion Dynamics

Here, I extend the motion model of Rosenhahn presented in Section 2.7 to incorporate a quaternion

representation of rotations. The set of temporally ordered training samples is given by

{p̃i := (T̃i, Q̃bi , Q̃
lw
i , Q̃

rw
i ) := (T̃i, Q̃bi , Q̃i)|i = 0 . . . N} (6.14)
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with body transformations relative to the fixed observing frame given by the translation T̃i, rotation

(represented in quaternion form) Q̃bi , and joint angle vectors Q̃i (details on collecting the training

samples are given in Section 6.8). We denote this list of temporally ordered training samples as

P = 〈p̃i . . . p̃N 〉, and the sublist in P of length m ending at time i by 〈p̃i−m+1 . . . p̃i〉. In order to

predict the state pk+1 at the next time step, the training list searched to find the location in the list

that best matches the sublist of previous tracked states, 〈pk−m+1 . . . pk〉. For the matching to be

invariant with respect to the velocity of the tracked fly, the matching is performed at different scalings

s of P. The different scalings of the training data, denoted Ps, are calculated using two different

techniques. The scaled body translations are obtained using linear interpolation and resampling.

However, linear interpolation in the 4D space of unit quaternions ignores the 3D spherical subspace

where quaternions exist and would result in interpolated values with non-uniform velocity that are

not elements of SO(3). To remain on the correct constraint surface and produce valid rotations,

the technique of spherical linear interpolation (Slerp) is employed [91]. To interpolate between two

rotations given by Q1 and Q2 on the interval u ∈ [0, 1], calculate

Slerp(Q1, Q2;u) =
sin(1− u)Ω

sin Ω
Q1 +

sinuΩ
sin Ω

Q2 (6.15)

where cos Ω = QT1 Q2. The resulting scaled lists are given by Ps = {p̃si := (T̃ si , Q̃
b,s
i , Q̃s

i )|i =

0 . . . sN}. For the Drosophila flight initiation videos that we analyzed, we scan the interval s =

[0.5, 1] with stepsize 0.1 as the scaling factors because the Drosophila were typically observed to

undergo equivalent or faster wing motion than our database, which was captured at 6000 fps. The

best matching sublist of the training data is then calculated by

argmin
s,j

m−1∑
v=0

(
‖Qk−v − Q̃s

j−v‖
)
. (6.16)

Only the quaternion representation of the wing joint angles are taken into account since their motion

will be invariant with respect to the global orientation of the fly. An illustration of this technique

is given in Figure 6.5. In order to calculate the predicted wing configuration, the relative rotation
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Figure 6.5: (A) Rotational motion of Drosophila left wing motion during take off (120 out of 380
samples shown). Motion is parameterized by quaternions which vary smoothly with time. The
query of m = 5 previously calculated poses is matched with position 106 of the prior database. The
relative motion to position 107 is used to calculate the prediction. (B) The same motion as (A)
but parameterized by joint angles about constant twists. Because there is no 3-dimensional, global
parameterization of SO(3), the wing motion parameters undergo discontinuities as the wing passes
through a singularity, resulting in inaccurate prediction of the motion.

between the optimal location in the prior set, j, and its subsequent orientation, j + 1 is calculated.

Then, this relative motion is applied to the current state to generate the prediction of the state

variables at the next time frame

∂Q̃lw,sj+1 = Q̃lw,sj+1 · (Q̃
lw,s
j )−1 (6.17)

Qlwk+1 = ∂Q̃lw,sj+1 ·Q
lw
k . (6.18)

An identical calculation to (6.17) is also performed for the right wing and the body orientation. The

predicted body translation is given by

Tk+1 = Tk + (T̃ sj+1 − T̃ sj ) (6.19)

so the entire predicted state consists of pk+1 =
[
Tk+1 Qbk+1 Qlwk+1 Qrwk+1

]
. I must note, however,

that this prediction assumes a correlation between the joint angle velocity and the body’s spatial

velocity. In [85], Rosenhahn wisely notes that this assumption is not valid for humans because a

larger person runs faster than a smaller person with the same changes in joint angles. Their use of the

twist representation for the global body transformation allows them rescale the body motion using
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the velocity of the previously calculated state, and not that determined from the prior database. For

Drosophila, the assumption of correlation between joint velocity and body velocity is valid because

there is less variation in body size across the populations used in experimental studies. Nevertheless,

in order to track blowflies or other members of the order Diptera that are larger than Drosophila, the

body motion can still be scaled conveniently using the quaternion representation. Let θ̃ = 2 cos−1 qb0

denote the body velocity of the predicted motion calculated from the scalar part of Qbk+1, and θ is

the average value of the last m frames calculated from 〈pk−m+1 . . . pk〉. First, we calculate the twist,

ξ =
(
v
ω

)
, associated with the predicted body motion

ω =
1

sin eθ
2

qbk+1 (6.20)

v =
(
(I − ebωeθ)ω̂ + ωωT θ̃

)−1
Tk+1 (6.21)

where ω̂ denotes the skew-symmetric matrix associated with the vector ω and ebωθ = I + ω̂ sin θ +

ω̂2(1 − cos θ) by Rodrigues’ formula. The rescaled body transformation (T̄k+1, Q̄
b
k+1) is now given

by

Q̄bk+1 =

ω sin θ
2

cos θ2

 (6.22)

T̄k+1 =
(
(I − ebωθ)ω̂ + ωωT θ

)
v. (6.23)

In this way, the kind of motion the body undergoes is determined by the prior data, but the velocity

is determined by the previous frames.

6.5 Foreground Segmentation

The Drosophila are filmed in a laboratory environment that provides nearly constant background

illumination during flight manuevers. Hence, we adopt background subtraction to segment the pixels

belonging to the fly. In addition, the appearance of Drosophila is very consistent during the video
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sequences. Figure 6.6a is a histogram of fly pixel intensity values at over 200 frames from 3 different

camera views. This characteristic bimodal shape is due to the opaque nature of the body cuticle,

which consistently appears darker than the other body parts (i.e., wings and legs). We utilize this

appearance consistency to further segment fly pixels into body and appendage groups. At each

frame and for each camera, we fit a 1D Gaussian mixture model with 2 members to the segmented

fly pixels using the EM algorithm. We then determine the threshold value located at the local

minima between the modes of the two Gaussians densities to segment the body and appendages

(See Figure 6.6d). For our purposes, the segmentation results in two binary images Ibody and Ifull

(see Figure 6.6e). This second degree of segmentation is utilized in our model fitting such that body

locations in the geometric model are only matched to pixels categorized as body.

6.6 Model Registration

To register the 3D fly model with image measurements, we minimize the distance between a set

of corresponding 3D points from the model and 3D lines from the image. We assume a set of M

calibrated pin-hole cameras

λij


uij

vij

1

 = Ki

[
Ri Ci

]X ′j
1

 i = 1 . . .M (6.24)

with known intrinsic parametersKi and extrinsic parameters (Ri, Ci) (see Appendix A). X ′j denotes

the jth 3D point in our fly model with respect to the fixed frame, and (uij , v
i
j) are the pixel coordinates

of this point in camera i. In order to create correspondences between the model and image silhouette

features in a given camera view, the model is first projected using (6.24) to produce the set of 2D

points corresponding to 3D points on the model surface. A binary image, IH(p), is produced and the

boundaries locations, xij are extracted. Next, a closed B-spline curve is fit to the discrete boundary

{xij} to calculate the normal vector nij at each boundary location. For each point xij , a search
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(a) Histogram of fly pixels calculated from background sub-
traction in over 200 frames across 3 different camera views.
The characteristic bimodal shape is due to the opaque na-
ture of the fly’s body cuticle (lower intensity peak) versus
the more translucent appendages (higher intensity peak).

(b) Typical image of Drosophila take
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(c) Histogram of fly pixels from (d) with estimated 2 member
Gaussian mixture model. Local minima between the modes
of the two Gaussians is chosen as the threshold to classify
body and appendage pixels

(d) Image segmented into body
(green) and appendage (yellow) pix-
els

(e) Binary images used for silhouette feature detection (see section 6.6);
Ibody (left), Ifull (right)

Figure 6.6: Segmentation procedure for Drosophila video
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in the data binary image (Ibody or Ifull) is performed along the normal nij to locate edges. The

image intensity values are convolved with a derivative kernel and a corresponding edge position

eij is assigned to the closest location above a preset threshold (see Figure 6.7a for an illustration).

Since the 3D coordinates of the projected points xij are known, one obtains a set of correspondences

between edge locations eij and 3D model locations X ′j . These correspondences are recomputed at

every iteration of the Kalman filter update, similar to the widely used iterated closest point (ICP)

algorithms (see [89] for a review and fast implementation).

(a) (b)

Figure 6.7: (a) Correspondence between projected model points xij and detected edge locations
eij shown in black and cyan, respectively. (b) The projection rays corresponding to edge points
eij are reconstructed and the distance between the 3D model and corresponding projection ray is
minimized. Projection rays are only shown for 1 of 3 camera views for illustration purposes.

Next, the projection rays corresponding to the 2D edge locations are reconstructed so that the

Euclidean distance between the model points and corresponding rays can be minimized. To achieve

this, the projection rays are represented in Plüker coordinates to permit an easy calculation of

the distance between a point and a line. Let Lij = (nij ,m
i
j) denote the Plüker coordinates of the

projection ray connecting edge point eij with camera center Ci, where nij is the unit vector that

points along the line and mi
j = x× nij is the moment for a given point x along the line. Given the

97



camera calibration, these coordinates are calculated as

nij = RTi K
−1
i

eij
1

 (6.25)

nij =
nij
‖nij‖

(6.26)

mi
j = Ci × nij . (6.27)

n

C

x1

x2

x

L

Figure 6.8: Calculating the distance, ‖x2‖ = ‖x × n − m‖, from a point to a line represented in
Plüker coordinates

A point x is incident with the line L if x × n −m = 0. To calculate the distance between a point

x /∈ L and line L = (n,m) with m = C × n, let x = x1 + x2 such that x2⊥n (see Figure 6.6 for an

illustration). Then

‖x× n−m‖ = ‖x1 × n+ x2 × n−m‖ (6.28)

= ‖x2 × n‖ (6.29)

‖x2‖, (6.30)

thus ‖x× n−m‖ is an error vector that measures the distance between x and L. Hence, the state
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is updated by collecting all of the correspondences across all camera views and minimizing the error

min
∑
i,j

‖(M(p)Xj)3×1 × nij −mi
j‖2. (6.31)

This approach for 3D pose estimation is also utilized by [86]. By concatenating the error vectors,

we can rewrite this error function in the form standard to the Kalman filter, ‖z − h(p)‖2 where

h(p) = (M(p)X)3×1 × n and z = m. One advantage of minimizing point-to-line distances in 3D

is computational savings because evaluating h(p) only involves transforming 3D model points. If

the error function minimized a point-to-point distance in the image plane, then h(p) involves the

projection of the 3D model and the calculation of its occluding contour for each function evaluation.

6.7 Drosophila Constraints

The Drosophila tracking algorithm must incorporate two constraints. The first insures that the

quaternions maintain unit length, and the second constrains the body roll angle to remain sym-

metric between the wings. This constraint is motivated by the muscle anatomy in the fly’s thorax,

which actuates each wing simultaneously through deformations in the exoskeleton (Figure 6.9). The

quaternion constraint has the form w1(pk) = Qk/‖Qk‖ = 1. Estimating the roll angle of the fly’s

body is difficult because its cylindrical shape exhibits strong rotational symmetry. In order to com-

pensate for this fact and provide accurate estimation of the body’s orientation, the roll angle of

the body is assumed to be symmetric with respect to the the wings. This technique is illustrated

in Figure 6.10. The approach is to rotate the body about its x axis so that the z axis bisects the

angle formed by the wing vectors in the body’s transverse plane. The following section provides

equations for the left wing only; an analogous calculation is carried out for the right wing. Let

RQb =
[
Xb Yb Zb

]
and RQbRQlw =

[
Xlw Ylw Zlw

]
denote the coordinate axes of the body

and left wing relative to the fixed frame at the current time step (the subscript k is omitted for

brevity). I define VL = Ylw and VR = −Yrw as the wing vectors that point from the wing tip

towards the wing joint.
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Figure 6.9: Mechanics of the wing hinge based
on static analysis of dead tissue. The main mo-
tion is thought to operate as follows: longitudi-
nal flight muscles run between the anterior and
posterior ends of the thorax (A). When these
muscles contract at the start of the down-stroke,
the inward movement of the posterior thoras wall
causes the roof (scutum) to bow upward, while
the lateral thorax walls above the wings (paras-
cutal shelves) move outward (B). Throughout the
downstroke, a rigid projection within the lateral
wall (the pleural wing process) is thought to act
as a lower wing fulcrum. At the end of the
downstroke. the scutum lifts up, stretching, and
thereby activating, the dorsoventral flight muscles
which power the upstroke. Also during the latter
part of the down-stroke, the lateral thorax walls
are deformed, which is thought to store energy in
the elastic exoskeleton (C). This strain energy is
released as elastic recoil at the start of the up-
stroke. (Image courtesy Wai Pang Chan, Univer-
sity of Washington, Dept. of Biology)

Yb

Zb

Yb

Zb

bVL
bVR

®

Right Wing

Left Wing

BA
bVR

®

bisector
Zb

Figure 6.10: Because the roll angle of the body is unobservable from silhouette data in the images,
a symmetry constraint within the transverse plane of the body must be incorporated. (A) Uncon-
strained estimate of the fly’s pose; (top) projection of the model vectors into the transverse plane,
(bottom) 3D pose with transverse plane illustrated in gray. This body configuration is highly un-
likely given the biomechanics of Drosophila. (B) Constrained estimate after rotating body by angle
α and updating joint angle vectors
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The vectors Yb and Zb define an orthonormal basis in the transverse planar subspace of the fly’s

body. This is the planar subspace were the symmetry constraint is imposed. Let

V̂L = 〈VL,Zb〉Zb + 〈VL,Yb〉Yb (6.32)

= V xL i + V yL j (6.33)

denote the projection of the left wing vector into the transverse plane. Next, V̂R is mirrored about

the body’s z axis and the angle between them is calculated as

2α = cos−1

(〈(
1 0
0 −1

)
V̂R, V̂L

〉)
. (6.34)

Since α is always positive, we change signs if |V xL | > |V xR |, which denotes a counter-clockwise rotation

(Figure 6.10 is a clockwise rotation, α > 0). The constrained body transformation is calculated by

applying the coordinate transformation that encodes the roll update to the unconstrained transfor-

mation

RQb† T †

0T 1

 = e
bξα
RQb∗ T ∗

0T 1

 where ξ =

−Xb × T

Xb

 (6.35)

Since our model is a kinematic chain, this roll transformation also rotated the wings to an incorrect

position. Let X∗i ∈ R3 denote the ith wing point in our model at the unconstrained estimate. The

constrained value of the wing joint angles is calculated as

Q† = argmin
Q

∑
i

(
X∗i −M(Q)Xi

)2

(6.36)

where M is defined in section 6.3 (i.e., I minimize the distance between the wings points at the

unconstrained state and the constrained state, holding the body transformation fixed and modifying

the wing joint angles). This calculation that imposes the roll angle symmetry constraint, denoted

w2(pk), is applied after the quaternion projection such that the complete projection function is
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given by p†k = w(pk) = w2

(
w1(pk)

)
. This nonlinear constraint is incorporated into the Kalman

filter framework using the Sigma Point transform (See Section 2.4 for details).

6.8 Experiments

I tested the algorithm on video sequences of 3 day old female Drosophila filmed at 6,000 fps with

a shutter speed of 50 µs. The video was recorded from 3 high-speed cameras (Photron Ultima

APX, San Diego, CA) that captured orthogonal views at a resolution of 512 x 512. Flies entered

the recording volume by crawling up a glass pipette, and the cameras were focused on the pipette

tip to maximize the resolution at the start of take off. Once airborne, after ascending a few body

lengths, the flies typically became out of focus in one or more cameras. The sequences are divided

in two groups; voluntary take off (flies permitted to remain on pipette undisturbed until they flew

away) and escape take off (flies are startled with a looming obstacle on a collision course towards it).

For each video sequence, I manually initialized the geometric model to the first frame according to

Section 6.3. The database of training samples used for prediction according to Section 6.4 consists of

380 samples from a voluntary take off and 111 samples from an escape take off. Initially the training

samples are captured manually, then they are replaced with the estimated values of our tracking

algorithm after successfully tracking the sequence. These results demonstrate the strength of the

algorithm in tracking complex flight maneuvers of Drosophila, even in the presence of misleading

visual information.

6.8.1 Voluntary Take Off

The video initially tracked and used as the “voluntary” part of our training database as shown in

Figure 6.11. The estimated location of the model is plotted at particular time intervals to show the

gross trajectory of the fly from one of the three camera views. This figure illustrates a steady and

controlled takeoff where the fly turns sharply to the right after becoming airborne. However, there is

large variability in the trajectories followed by Drosophila during voluntary take off. In Figures 6.12a

and 6.12b, the fly undergoes large roll angle rotations at the initial stages of take off before uprighting
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Frame 440

Figure 6.11: Tracking results of Drosophila using the proposed algorithm. Estimated location of
model is plotted every 50 frames (i.e., 8.3 ms) from 1 of 3 camera views. The estimated states from
this sequence are used in the training set for subsequent videos. Red line indicates dorsal edge.

itself to regain a level orientation. The initial thrust provided by the legs may not be applied directly

to its center of mass, thus inducing some initial roll motion. The constraints described in Section

6.7 provide sufficient information to accurately track the correct roll displacement of the fly during

these unsteady take offs. The direction of takeoff is also highly variable, where sometimes, the fly

directs itself downward instead of upwards, perhaps to explore a region of the environment it finds

interesting (Figure 6.12d).

To determine the accuracy of the proposed method, I compared body pose estimates in six videos

with those reported in [16] that were captured manually using the customized software described in

Section 6.3. For the manually tracked data, a reduced body model was fit to the images typically

every 5 frames and a spline was used to smoothly interpolate the location of the body model at inter-

mediate frames. This approach served to partially decrease the labor-intensive nature of manually

digitizing points and to remove some of the variance attributed to human fitting by providing tem-

poral smoothness. Figure 6.13 demonstrates that our automated method is able to achieve estimates

that are comparable with human visual inspection. In reality, there are no “ground truth” estimates

for the Drosophila data sets presented here. Whereas human motion tracking systems are typically
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Frame 525

(a)

Frame 460

(b)

Frame 200

(c)

Frame 1025

(d)

Figure 6.12: Tracking results of various other voluntary sequences. Estimated location of model is
plotted at various intervals to illustrate the gross trajectory of the fly from 1 of 3 camera views.
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able to measure their performance against a marker-based system, the tiny size of Drosophila only

permits visual measurements subject to human interpretation.

Thus, the errors reported are differences between the automated tracking algorithm and manual

human tracking. In some cases, it may be possible for the algorithm to achieve greater accuracy

than human. The algorithm is typically able to estimate the location of body center of mass within

5% of the body length, an absolute distance that is on the order of 0.1 mm. Body orientation is also

estimated well. As expected, the roll angle exhibits the largest deviations and variance due to the

greater uncertainty associated with rotations about a highly symmetric axis. Figure 6.13B is the

time trace of the body orientation and translation for the video sequence with the largest error in roll

angle. Within this video sequence, I visually inspected two locations (C & D) where the roll angle

exhibited large errors after the fly had begun take off. Based on subsequent visual inspection, it

appears that the human estimates were more accurate in C, while the automated estimates provide

slightly improved accuracy in D. Both display the reduced body frame model used for manual

fitting. The long axis indicates the head and tail locations, and the raised “T” junction indicates the

approximate wing joint locations and provides the visual cue used to determine roll angle. Overall,

these results indicate that the algorithm will be useful in practical application because it achieves

estimates comparable to human interpretation, while significantly decreasing the labor involved in

measuring such important kinematic data.

6.8.2 Escape Take Off

I also tested Drosophila video with more complex motion exhibited by the organism during an

escape response. Here, the fly primarily uses its legs to provide the initial thrust needed to escape

the looming threat, while the wings are initially kept tucked towards the rear. This behavior provides

the extremely fast initial accelerations needed to escape, but also generally results in more unstable

motion where the fly tumbles and flips around (Figure 6.14a). In addition, these fast maneuvers can

cause significant wing deformations that are not captured by our current rigid model (see Figure

6.15a). However, given the multiple camera views and scaled motion priors, the algorithm is able to
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Figure 6.13: Performance metrics for the proposed algorithm. Only body pose is compared because
human-tracked wing motion is unavailable. (A) RMS deviations between the human estimates and
our tracker for body orientation and translation. Each bar represents a separate video sequence,
and error bars indicates one standard deviation. Strong performance is achieved compared with
manual human estimates, however, the roll angle demonstrates the greatest deviation and variance,
as expected due to the symmetric nature of the fly’s body. (B) The video sequence with largest roll
error and variance is explored. The time steps indicated by (C) and (D) show the largest deviations
in roll angle once the fly has taken off. From visual inspection, the human estimate in (C) appears
more accurate than the algorithm’s estimate, while in (D), the algorithm appears to provide a better
estimate and more accurate roll angle.
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continue tracking and provide good estimation once the wing assumes a less deformed configuration

(Figure 6.15b). The primary failure mode of the current algorithm is shown in Figure 6.8.2, where

the right wing of the fly is flipped. The frame is taken from an upstroke of the wing path, so the

right wing should be undergoing supination like the left wing. Instead, the leading edge is facing

downwards as if during a downstroke. This failure only seems to occur during the escape maneuvers

when complicated body motions self occlude one of the wings in one or more camera views. Despite

the strong motion prior, this causes the state posterior distribution to become multi modal. In

addition, the incorrect orientation of the right wing could be caused by the inaccuracies in the

body orientation estimate, which is primarily due to inaccuracies in the body shape (length, width,

deforming centerline axis, etc.).

Frame 560

(a)

Frame 220

(b)

Figure 6.14: Tracking results of escape response sequences. Estimated location of model is plotted
at various intervals to illustrate the gross trajectory of the fly from 1 of 3 camera views. The fly
exhibits more fast and complicated motion to avoid collision with a looming target.

6.9 Discussion

A practical model-based visual tracking algorithm that estimates the 3D motion of Drosophila from

multiple camera angles was presented. The algorithm uses a local optimizer and relied on prior
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(a) (b)

Figure 6.15: (a) During escape maneuvers, the fly’s wing can undergo large deformations that are
not captured by our current rigid body model (right). In other camera views, this deformation is
not apparent (left). (b) Despite this large error, the algorithm does not lose track and is able to
continue successful estimation.

Figure 6.16: The primary failure mode of the tracking algorithm. (Left) The fly is facing towards the
camera during an upstroke of the wing motion. The left wing (top) is in the proper configuration,
but the right wing (bottom) is flipped in the wrong orientation (pronation instead of supination).
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knowledge about the motion to keep the estimates close to the true solution. By simply matching

motion patterns in a training set, the approach provided accurate prediction in video sequences

containing multiple types of behaviors (voluntary vs. escape take off). In addition, a statistically

sound method of incorporating state constraints within the Kalman filter framework was applied.

The use of unit quaternions to model the complex wing motions, and the unobservability of the body’s

roll angle forced the incorporation of state constraints. Reparamterizing the model to eliminate the

need for constraints is not possible in this intended application. Promising results were achieved that

have comparable accuracy to manual-based human digitization. This approach enables biologists

to analyze much larger datasets than possible at present. As a result, the tracking scheme will

accelerate insight into the flight behavior and sensory-motor control system of many species of flies.

109



Chapter 7

Conclusions

Without question, automated phenotyping and behavior analysis will continue to be an important

area of research in the years to come. It represents the limiting step in many fields of biological

research because of the vast amounts of data that must be analyzed. This thesis has advanced

the state of the art in automated behavior analysis by developing visual tracking techniques for

nematodes, zebrafish, and fruit flies. These visual tracking algorithms function at a high spatial

resolution and measure detailed kinematic variables needed to support current biological studies.

In Chapter 4, I developed the first system to automatically track planar fish motion from a top

view. This algorithm is currently being utilized to determine the effects of vertebrae stiffness on

swimming performance during ontogeny. Chapter 5 presents a method for estimating the motion

of worms during complex mating behavior, while Chapter 6 demonstrates the 3D tracking of fruit

flies during complex flight maneuvers. Although these results demonstrate promising achievements,

there are two key areas where future work is needed: (1) increased sophistication and robustness of

the tracking algorithms and (2) application of the algorithms to important biological questions so

as to validate and refine them as methods.

Improvements can be made in various components of the tracking algorithm to greatly improve

its utility for use in behavioral genetics. Some of these improvements are specific to a particular

organism. For instance, the current geometric fly model can be refined to more accurately represent

the organism’s shape. While the current model assumes rigid body motion of a fixed body with

rotating wings, the actual fly exhibits wing bending, non-stationary wing joints, body bending,
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Figure 7.1: Summary of the results of this thesis. I develop a general framework for model-based
animal tracking using a discrete time dynamic state space model (DSSM). A geometric model is
designed and parameterized by a finite set of parameters, p. After initializing the model to the
current image sequence, the pose of the model in the current image frame is predicted based on its
location in the previous frames. This predicted pose is updated using measurements from the image
(e.g., edge locations). This process is repeated until the entire image sequence is tracked, yielding
time varying kinematic parameters of the organism’s movement. This approach gives the tracking
algorithm a modular design where different geometric, motion, and measurement models can be
“plugged in” whenever the experimental parameters are changed (e.g., organism, lighting, etc.).

and head motion during various behaviors. Extending the model to accurately represent the body

and wing deformations present in the actual fly will require additional mathematical modeling, and

techniques to estimate these “deformation” parameters in addition to the rigid body motion. For

the worms and fish, a quantitative analysis should be performed to determine the minimal number

of bending modes necessary to capture the motion. Utilizing the most compact set of parameters to

model the motion will increase the robustness and efficiency of the algorithms.

Other improvements are general and apply to all visual motion tracking algorithms. For instance,

I primarily utilize the organism’s silhouette produced in high-contrast images to update its location.

However, the silhouette alone may not provide sufficient information to determine the correct posture

when strong occlusions are present. Instead, a more advanced observation model/image likelihood

measure that includes image texture and/or optical flow (i.e., image velocity field) will be important

to make tracking robust across different experimental conditions. In addition, recent advances in
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graphics processing unit (GPU) computing could potentially increase the high throughput nature of

the algorithms. All of these methods will continue to be developed with the goal of not only applying

them to the three organisms discussed here, but also to other organisms whose time-varying visual

features can provide useful information. This will continue to support the development of useful and

practical technology for automated behavior capture and screening across different species.

In addition, other nonlinear estimation techniques should be explored. For all three organisms,

I utilized a Sigma Point Kalman filter (SPKF) to estimate the state variables of the animal model.

However, the SPKF assumes that the state variables follow a normal distribution. As explained

in Section 2.2, this is analogous to solving for the local optimal solution and choosing the single

“best” hypothesis at each time frame. The normal distribution assumption of is often violated

in various tracking scenarios, so many researchers have resorted to sequential Monte Carlo (SMC)

techniques [34] to estimate the state variables. These techniques directly model the state probability

distribution as a weighted collection of discrete samples (typically a few thousand). Because of this

general model, the state probability distribution can become multi-modal, which has the effect of

propagating multiple hypotheses at each time frame. Although exciting results were achieved with

the SPKF, when SMC methods will provide improved performance remains an open question. The

two primary design parameters in an animal motion tracking system are accuracy and speed. Thus,

in-depth analysis is needed to determine when the increased robustness of SMC will provide greater

accuracy than the SPKF, given that it is more computationally expensive.

Finally, the modular design of the algorithm must be maintained so that it can be widely appli-

cable across different organisms and experimental setups (Figure 7). The system must function as a

toolbox, where the researcher can choose which tools are appropriate to a given experiment. This is

the real advantage in my approach that will permit rapid advancement in scientific knowledge with

little re-engineering whenever the experimental parameters are changed (e.g., organism, lighting,

etc.). This will provide a better “impedance match” between the molecular tools and behavioral

assays currently available. With the current collaborations established with researchers studying

nematodes, zebrafish, and fruit flies, I anticipate a very broad impact to biological science given the
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wide use of these genetic model organisms.
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Appendix A

Camera Calibration

Object

f

z

x

y

C

F

R; t

u; ku

v; kv

Pinhole Camera Image Screen

X

W

Figure A.1: Illustration of pin-hole camera model used in calibration

The most common way to model perspective projections is using the pinhole camera model,

illustrated in Figure A. Here, F is a fixed reference frame, C is the optical center of the camera and

origin of the camera reference frame, f is the focal length of the camera, ku, kv are the scaling pa-

rameters in the (u, v) directions in the image plane, and (u0, v0) is the location of the principal point

in the image plane. We can think of recording images in a camera as projecting their 3D coordinates

into 2D locations in the image plane. A simple way to model this transformation is by the Direct

Linear Transform (DLT) method [2], which relies upon the colinearity of the points X = (x, y, z),

C = (x0, y0, z0), and W = (u, v). Let A =
[
x− x0 y − y0 z − z0

]T
be the vector that points

from the camera center to the object. Also, note that in the camera coordinate frame, the vector
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B that points from the camera center to the projected point W is B =
[
u− u0 v − v0 −f

]T
.

Thus we see that from the colinearity condition, these vectors are scaled versions of each other,

B = cA, c 6= 0. However, to directly relate the coordinates, we must describe them in a common

reference frame. Thus, we end up with the relation


u− u0

v − v0

−f

 = c


r11 r12 r13

r21 r22 r23

r31 r32 r33




x− x0

y − y0

z − z0

 (A.1)

AC = RCFAF (A.2)

where RCF transforms the fixed reference frame into the camera reference frame and AC ,AF are

the vector A in the corresponding reference frames. (A.1) is equivalent to

u− u0 = −kuf
r11(x− x0) + r12(y − y0) + r13(z − z0)
r31(x− x0) + r32(y − y0) + r33(z − z0)

(A.3)

u− u0 = −kvf
r21(x− x0) + r22(y − y0) + r23(z − z0)
r31(x− x0) + r32(y − y0) + r33(z − z0)

(A.4)

after substituting for c, and ku, kv are scaling parameters that convert the real-world length units

into pixels. These equations constitute the DLT calculation and are re-written as

u =
L1x+ L2y + L3z + L4

L9x+ L10y + L11z + 1
, v =

L5x+ L6y + L7z + L8

L9x+ L10y + L11z + 1
(A.5)

where

(A.6)

[fu, fv] ≡ [kuf, kvf ] (A.7)

D ≡ −(r31x0 + r32y0 + r33z0) (A.8)
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L1 =
u0r31 − fur11

D
(A.9)

L2 =
u0r32 − fur12

D
(A.10)

L3 =
u0r33 − fur13

D
(A.11)

L4 =
x0(fur11 − u0r31) + y0(fur12 − u0r32) + z0(fur13 − u0r33)

D
(A.12)

L5 =
v0r31 − fvr21

D
(A.13)

L6 =
v0r32 − fvr22

D
(A.14)

L7 =
v0r33 − fvr23

D
(A.15)

L8 =
x0(fvr21 − v0r31) + y0(fvr22 − v0r32) + z0(fvr23 − v0r33)

D
(A.16)

L9 =
r31

D
(A.17)

L10 =
r32

D
(A.18)

L11 =
r33

D
(A.19)

Given a set of N points with their known 3D and 2D locations (N ≥ 6), the 11 DLT parameters

can be calculated in a least squares sense by first rearranging (A.5) into linear system:

u
v

 =

x y z 1 0 0 0 0 −ux −uy −uz

0 0 0 0 x y z 1 −vx −vy −vz



L1

...

L11

 (A.20)

w = aL (A.21)

and then concatenating the set of N points into an overdetermined system:


w1

...

wN

 =


a1

...

aN

L (A.22)

W = AL (A.23)
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where

L = (ATA)−1ATW. (A.24)

One problem that arises with the method above is that the 11 DLT parameters actually consist of

only 10 independent unknowns (x0, y0, z0, u0, v0, fu, fv, and 3 angles for the rotation matrix RCF ).

Thus, one of the parameters is redundant and is coupled to the others in a nonlinear fashion. To

address this problem, I use a modified approach introduced by Hatze [49] that refines the least

squares estimate from (A.24) to take this coupling into account. I choose to define L1 in terms of

the other 10 parameters, although other choices are possible (see [49] for details):

L1 =
−(L11L2 − L10L3)(L11L6 − L10L7) + (L10L2 + L11L3)L5L9 − (L2L6 + L3L7)L2

9

(L2
10 + L2

11)L5 − (L10L6 + L11L7)L9
(A.25)

L1 = g(L2:11). (A.26)

The modified DLT parameters are then calculated by minimizing the reprojection error of (A.23)

by:

L̂2:11 = argmin
L2:11

‖AL−W‖ where, L =
[
g(L2:11) · · · L11

]T
. (A.27)

These modified DLT parameters ensure that the projection transformation retains orthogonal coor-

dinate frames.

A more common representation for calibrated pin-hole cameras in the robotics and computer

vision community is


U

V

S

 = K

[
R t

]X
1

 (A.28)
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= P

X
1

 P ∈ R3×4 (A.29)

with intrinsic parameters K and extrinsic parameters (R, t). X = (x, y, z) is given with respect to

a fixed reference frame, and the homogeneous pixel coordinates of this point in the camera are given

by u = U
S and v = V

S ). Here,

K =


−fku 0 u0

0 −fkv v0

0 0 1

 , (A.30)

(R, t) is a rigid body transformation from the fixed reference frame to the camera reference frame,

and C = −RT t is the location of the camera center in the fixed frame. In the case of an orthographic

camera model, the projection matrix has the simple form

P =


1 0 0 0

0 1 0 0

0 0 0 0

 . (A.31)

The DLT parameters calculated can be converted into the standard intrinsic/extrinsic form by

C =


L1 L2 L3

L5 L6 L7

L9 L10 L11



−1 
−L4

−L8

−1

 (A.32)

u0 =
L1L9 + L2L10 + L3L11

L2
9 + L2

10 + L2
11

(A.33)

v0 =
L5L9 + L6L10 + L7L11

L2
9 + L2

10 + L2
11

(A.34)

which provides the camera center and principal point location. Next, the scaling parameters are
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calculated and used to solve for the rotation matrix:

f2
u =

(u0L9 − L1)2 + (u0L10 − L2)2 + (u0L11 − L3)2

L2
9 + L2

10 + L2
11

(A.35)

f2
v =

(v0L9 − L5)2 + (v0L10 − L6)2 + (v0L11 − L7)2

L2
9 + L2

10 + L2
11

(A.36)

R =
1√

L2
9 + L2

10 + L2
11


u0L9−L1

fu
u0L10−L2

fu
u0L11−L3

fu

v0L9−L5
fv

v0L10−L6
fv

v0L11−L7
fv

L9 L10 L11

 (A.37)

The determinant of R must be checked to make sure it is 1, corresponding to a right-handed rotation.

If the det(R) = −1, then R = −R will convert it from a left-handed to right-handed rotation.

Although the DLT formulation is uncommon in most modern techniques, it does provide a simple

and practical technique for laboratory calibration. It was used by Card in the experimental study of

Drosophila take off [16], so it was relevant to my fly tracking algorithm. Other notable calibration

techniques are due to Svoboda [101] and Bouguet (http://www.vision.caltech.edu/bouguetj/

calib_doc/), which include a lens distortion model not included in our technique.
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Appendix B

B-Spline Curves

Let P (u) be the position vector along a curve as a function of the parameter u. The corresponding

B-spline curve is given by

P (u) =
n+1∑
i=1

BiΦki (u) 2 ≤ k ≤ n+ 1 (B.1)

where Bi are the position vectors of the n+1 control polygon vertices, and Φki are the B-spline basis

functions. The basis functions are defined by the Cox-de Boor recursion formula

Φ1
i (u) =


1 if xi ≤ u < xi+1

0 otherwise

(B.2)

and

Φki (u) =
(u− xi)Φk−1

i (u)
xi+k−1 − xi

+
(xi+k − u)Φk−1

i+1 (u)
xi+k − xi+1

. (B.3)

The values xi are elements of a knot vector satisfying the relation xi ≤ xi+1, and the basis functions

have the following properties

n+1∑
i=1

Φki (u) ≡ 1 Φki (u) ≥ 0 ∀u. (B.4)
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Figure B.1: (a) Open uniform B-spline basis functions with k = 4, n + 1 = 6, and knot vector
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. The repeated values at the beginning and end

of the knot vector cause the first and last basis functions to become more dominant. (b) Periodic
uniform B-spline basis functions with k = 4, n + 1 = 6, and knot vector [X] =
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]
. In this case, each basis function is just a translation of the other.

Thus, the curve P (u) is a polynomial spline function of order k and degree k − 1 on each interval

xi ≤ u < xi+1. In addition, P (u) and its derivatives of order 1, 2, . . . , k − 2 are all continuous over

the entire curve. For example, a fourth order B-spline is a piecewise cubic curve, and its first and

second derivatives are continuous.

I utilize B-spline curves extensively in the geometric generative models used to model the shape

of an organism. For instance, a B-spline is used to model the body profile of the zebrafish, nematode,

and fruit fly. Several characteristics of the B-spline formulation make them an ideal choice for most

modeling applications. First, the B-spline basis is nonglobal. That is, each control vertex Bi is

associated with a unique basis function Φki , so it only affects the shape of the curve over the range of

parameter values where Φki 6= 0. In addition, the order of the basis functions, and hence the degree

of the resulting curve, can be modified without changing the number of control vertices. For the

body profiles, I typically use an open B-spline basis (Figure B.1a) because the first and last points

on the curve are coincident with the first and last control point vertices. For a body profile, these

first and last locations will typically be zero or another small value in order to create a closed surface

(see Figure B). However, for other spline curves where it is not important to specify the end values,

I use the periodic basis (Figure B.1b).
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Figure B.2: Illustration of fly thorax profile constructed with B-splines, k = 4 and n + 1 = 20.
The control points, Bi are shown as red dots. Here an open B-spline basis (Figure B.1a) is used
because the first and last values of the function are equal to zero. This function is revolved around
a centerline body axis to create a closed 3D body surface.

When implemented on a computer, the continuous B-spline functions are evaluated on a discrete

grid. In this case, (B.1) can be rewritten in a convenient matrix form



P1(u1)

P2(u2)

...

Pj(uj)


=



Φk1(u1) Φk2(u1) · · · Φkn+1(u1)

Φk1(u2)
. . . Φkn+1(u2)

...
. . .

...

Φk1(uj) · · · · · · Φkn+1(uj)





B1

B2

...

Bn+1


(B.5)

P = Λ(u)B (B.6)

where u is sampled j times in a specified interval. Here, P ∈ Rj×N , Λ(u) ∈ Rj×n+1, and B ∈

Rn+1×N , so (B.5) can be used to represent an N dimensional curve depending on the dimensionality

of the control points B. For my applications to generative modeling, typically N = 1, although I use

3D B-spline curves in the body model of fruit flies (Section 3.4). This same matrix representation

can also be used to “fit” a B-spline function to a set of known data points. Given a set data points

D =
[
D1
·
·

Dm

]
∈ Rm×N , an m × p matrix of B-spline bases, Λm×p(u), is calculated with parameter

uj , j = 1, . . . ,m. The domain of u, (i.e., u ∈ [umin umax]) and the number of control points p

are specified beforehand. Then, the control points that define this B-spline are estimated by the
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Moore-Penrose pseudo inverse

B =
(

ΛTm×p(u)Λm×p(u)
)−1

ΛTm×p(u) D. (B.7)

This overview is based on the book by Rogers [84], so I refer the reader to this reference for more

details.
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