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Abstract

We consider a model of incompressible trailing vortices consisting of an array of

counter-rotating structures in a doubly periodic domain, infinite in the vertical direc-

tion. The two-dimensional vortex array of Mallier and Maslowe is combined with an

axial velocity profile chosen proportional to the initial axial vorticity to provide an

initial condition for the vortex wake. This base flow is a weak solution of the three

component steady Euler equations in two dimensions thus allowing its linear stability

properties to be investigated. These are used to interpret several stages in the de-

velopment of vortex structure observed in fully three-dimensional DNS at Reynolds

numbers Γ/(2πν) = O(1000). For sufficiently high axial velocity, its effect can be

seen, in that each vortex in the linear array first develops helical structures before

undergoing a period of relaminarization. At later times the more slowly growing

co-operative elliptical instabilities become apparent; however, the helical structure

persists and the observed vortical structures remain coherent for longer periods than

in the absence of axial velocity. Using the stretched vortex subgrid model, large-eddy

simulation runs are performed at higher Reynolds numbers and a mixing transition

identified at about Re = 1− 2× 104. Similar phenomena are observed in these sim-

ulations as are seen in the DNS. Next the spatial nature of the true aircraft wake is

compared to the temporal approximation commonly employed to simplify the compu-

tational complexity of the problem. A model is formulated to acount for the average

axial pressure gradients that develops in the spatial wake but is absent from the tem-

poral simulation. The model enables jet- and wake-like axial flows to be distinguished

and the subtle differences in the ensuing turbulent states investigated. Finally, the

model is used to investigate co-rotating vortex merger, the new thrust term providing

a mechanism to enhance the axial flow further destabilizing the base flow.
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Chapter 1

Introduction

The wake shed by lifting bodies, such as an aircraft wing, rolls up and forms a pair of

counter-rotating vortices that can persist back to the original location of the airfoil

start-up process (e.g.41). In practice, viscous and turbulent diffusion as well as atmo-

spheric turbulence and vortex related instabilities result in decaying strength of wing

tip vortices; however, they have been observed to persist tens of miles downstream of

large aircraft64. These vortices pose a significant risk to following aircraft particularly

during take-off and landing where insufficient time may have passed for their decay64.

An understanding of the underlying physical processes within a turbulent vortex is

therefore of pressing practical importance. Studies of coherent structures have shown

that many turbulent flows comprise such thin organized vortical structures of various

sizes interwined with each other. These observations, coupled with a knowledge of the

dynamics of vortical structures and the instabilities arising from their interaction, can

aid in the understanding and development of simplified models of the full turbulent

flow field.

Kelvin31 studied the stability of this flow and showed it to be marginally stable

with respect to sinusoidal displacement disturbances; these bending waves simply

rotate around the vortex. If the azimuthal component of an imposed external strain

rate field balances this self-induced rotation, disturbances will grow exponentially due

to the radial component of the strain rate field. When this strain rate is generated by

a counter-rotating vortex pair, Crow14 showed that the configuration is unstable to
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Figure 1.1: Visualization of the wake behind a Boeing 727.

perturbations which are symmetric with respect to the plane separating the vortex;

the resulting instability being associated with the lowest Kelvin mode, corresponding

to a simple displacement of the entire vortex core. Widnall et al.76 identified short

wavelength bending instabilities by considering a weakly strained Rankine vortex as

a model of the vortex pair. The physical mechanism behind these instability modes is

a resonant interaction between the strain rate and Kelvin waves with azimuthal wave

numbers m = ±1 at the same axial frequency. Waves with m of higher order than

1 are axial waves (they do not deflect the vortex axis). Instability modes occurring

via an analogous resonant growth of m=0 and m = ±2 waves have been identified54.

All of these pair instabilities fall within a more general class of elliptic instabilities

that are a result of two dimensional flows with elliptic streamlines being unstable to

three-dimensional disturbances52,3.

A more realistic vortex has a continuous distribution of vorticity with no clearly

defined core. Hoffmann and Joubert23 argued that a turbulent vortex is characterized

by a central core region of solid-body rotation surrounded by a region in which the
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Reynolds stress dominates and the circulation varies logarithmically with radius. At

larger radii, Govindaraju and Saffman22 showed that if the vortex grows at a rate

faster than that due to molecular diffusion alone, an overshoot in circulation must

develop, followed by a long tail of small negative gradient. Utilizing an inviscid theory

for the roll-up of a vortex sheet, Moore and Saffman48 analyzed the internal structure

of a laminar trailing vortex, showing that an axial velocity must be present whose

magnitude and direction depend upon the wing tip loading. The effect that jet- and

wake-like axial velocity profiles have on the development of a turbulent line vortex

was studied experimentally by Phillips and Graham51. They found that imposing an

axisymmetric jet or a wake resulted in greater turbulence intensities and Reynolds

shear stresses within the vortex, the former having the stronger effect.

The Lamb-Oseen vortex (LOV henceforth), defined by a vorticity distribution that

decreases exponentially with the square of the radius, represents the flow field that

results from a decaying line vortex and is often chosen as a physically realistic base

flow for analyzing trailing vortices. In cylindrical coordinates, the LOV is defined by

an azimuthal velocity u∗θ that varies with radius r∗ as

u∗θ(r
∗) =

Γ∗

2πr∗

(
1− e(r

∗/δ∗)2
)
, (1.1)

where Γ∗ is the vortex circulation, and δ∗ some length scale (2
√
νt for the self similarly

decaying line vortex). Here and henceforth the ‘*’ superscript indicates dimensional

quantities. A convenient Reynolds number is then defined as Re = Γ∗/2πν∗. This

flow is Rayleigh stable. A strain rate field produced by an axial velocity proportional

to the vorticity is sufficient to render the flow linearly unstable36 for small values of

the swirl parameter (denoted by q) defined in terms of the relative strength of the

swirling velocity to the axial flow

u∗x(r) = u∗d e
−(r∗/δ∗)2 , q =

Γ∗

2πδ∗u∗d
. (1.2)

Direct numerical simulation (DNS) and Large-eddy simulation (LES)66,67,25 of the
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resulting flow, termed the Batchelor vortex (BV henceforth), have shown that while

the base flow is linearly unstable, non-linear interactions drive the flow to a stable

configuration through a weakening of the axial flow. As q increases, disturbances in

the core of the vortex are damped and the rotation of the core ultimately results in

a relaminarization. Such simulations typically employ the temporal approximation

which aims to represent the spatial evolution of the flow by the transient development

of a finite length segment of the domain. Imposing periodicity in the axial direction

then results in a realizable simulation. In most implementations this eliminates, from

the axial momentum equation, the influence of any mean pressure gradients that may

develop in the vortex core. Consequently this decoupling of the pressure gradient

prevents the distinction between a jet and a wake. Another shortcoming of simulating

an isolated BV is that it neglects the straining influence of the counter-rotating pair

and hence the ensuing cooperative instabilities discussed previously.

We consider the interaction of an array of counter-rotating structures as a model

for the trailing vortex pair consequent of a lifting body such as an airfoil. In Chapter

4, we detail the formulation and validation of a specialized code for performing simu-

lations on a domain with two periodic directions, unbounded in the third. In Chapter

5, we define a family of initial conditions that satisfy the 2D-3C Euler equations on

this domain, allowing its linear stability properties to be studied. Here and subse-

quently we use 2D-3C to denote a flow with three velocity components that depend

on two spatial dimensions, as distinguished from 3D-3C in which the flow depends on

all three spatial dimensions. The linear stability of this base flow is investigated in

Chapter 6 and used to interpret in Chapters 7 and 8 the structures that result from

full 3D-3C viscous DNS and LES of the evolution of the array. The study of trailing

vortices is completed in Chapter 9 by considering the effect of axial pressure gradients

that occur in the true spatial development of the wake but which are absent when the

temporal approximation is made to simplify the numerics. A model for incorporating

the effect is determined and its influence on isolated as well as co-rotating vortices is

studied. We now present an introduction to Large Eddy Simulation, before detailing

the specifics of the Stretched Spiral Vortex Subgrid-stress model in Chapter 3.
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Chapter 2

Large Eddy Simulation

To motivate Large Eddy Simulation (LES)61 and the role it plays in modeling tur-

bulent phenomena, consider the energy spectrum schematic shown in Figure 2.1. A

Direct Numerical Simulation (DNS), by definition, has to capture all scales of motion

right down to the smallest scales. An estimate for what this entails can be made by

considering the ratio of the largest eddies in the flow of size l, to the smallest motions

that are dissipated at the Kolmogorov scale η = (ν3/ε)1/4 (cf. Ref.73). Here, ν is

the viscosity and ε the dissipation which we assume72 to occur at the same rate at

which energy is supplied from the large scales: ε ∝ u3/l. The number of grid points

in one dimension is thus of the order l/η ∝ Re3/4. For a 3D simulation the time step

depends on the mesh width, and hence the total computational cost scales with Re3.

At present such simulations are too computationally intensive for all but the most

simple of flows. On the other hand the Reynolds Averaged Navier Stokes technique

(RANS)57, is widely used in industrial applications where only some averaged effect of

the flow is of interest. Both RANS and its unsteady counterpart, URANS6,17, capture

only a very small fraction of the total energy and rely on phenomenologically-based

arguments to model the averaged effect of the remaining motions. Neither of these

approaches converge to the DNS as the mesh is refined since the turbulence models

have no knowledge of the grid size. The Partially Averaged Navier Stokes (PANS)

formulation is a technique that is currently being developed21 to bridge this gap

by introducing a spatially-varying blending parameter governing the portion of the
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(U)RANS turbulence model that is used; as the parameter approaches zero, a DNS

is attempted.

LES, as its name suggests, captures the large energy carrying motions in the flow,

while modeling only the small scales; the hope being that these are less flow dependent

and allow a general model to be constructed. There are several schools of thought

on LES53, depending on whether it is viewed as a physical model58 or a numerical

procedure5. In the first of these, the subgrid model is constructed in such a way

that DNS is approached as the mesh is refined towards the Kolmogorov length scale,

whereas the latter carefully chooses a numerical method such that the numerical error

behaves as the model.

Spalart65 conducted a survey of these techniques for turbulence modeling and

compared their feasibility by considering the simulation of an entire aircraft. He

concluded that while RANS and URANS were already deemed achievable for this

problem, LES would remain too computationally intensive for another 45 years, DNS

lagging by a further 35 years.

Figure 2.1: Idealized energy spectrum showing schematically what portion several common

numerical simulation approaches attempt to capture. In green are the years, estimated by

Spalart65, in which he estimates the simulation of an entire aircraft to be feasible.
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The starting point for LES is the resolved scale Navier-Stokes equations∗ (N-S

henceforth). In the current work, we consider the case of incompressible, constant

density flow and thus
∂Ũi

∂xi

= 0, (2.1)

∂Ũi

∂t
+

∂

∂xj

(ŨiŨj) = −1

ρ

∂P̃

∂xi

+
∂τij
∂xj

+ ν
∂2Ũi

∂xj∂xj

, (2.2)

where Ũi and P̃ are the filtered scale velocity and pressure fields respectively, and τij

is the subgrid-stress (SGS) tensor which represents the effect of the subgrid scales on

the resolved flow. These can be derived formally by applying a filter to the full N-S

equations37 and hence

τij = ŨiŨj − ŨiUj. (2.3)

Figure 2.2 shows schematically what the DNS and LES evolution of some flow field

might look like. The LES captures the large scale motions while modeling the small

scales. It is important to note that the filtering operation cannot be performed

explicitly in actual LES, and so while the red line represents what a DNS flow field

might resemble, the resolved flow (shown schematically in green) is the result of the

numerical integration of 2.2 using a given numerical method on a grid whose smallest

scale is much larger than the smallest turbulence scale. Hence, even if the initial

condition for a large-eddy simulation is the filtered DNS field, the link between the

two at any point later in time can only be statistical53.

There are many LES models; however, they can broadly be classified as belonging

to one of three groups. The first group uses phenomenological arguments to determine

the subgrid contribution. The Smagorinsky model63 belongs to this group, and uses

the local grid size and the resolved rate of strain tensor to determine an eddy viscosity.

τij −
1

3
δijτkk = −2(C∆)2|S̃|S̃ij. (2.4)

∗Here we use the index notation (U1, U2, U3) for the velocity components and (x1, x2, x3) for

coordinates in space. We will use (U, V,W ) and (x, y, z) interchangeably if it simplifies notation.
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(a) (b)

Figure 2.2: Turbulent flow velocity component schematic. (a) Physical space: fine scale

motions not resolved, their influence is modeled. (b) Spectral space: resolved range, k < kc

(cutoff wavenumber kc), subgrid range k > kc.

In its dynamic counterpart, an explicit filter along with the Germano Identity is used

to determine the Smagorinsky constant C19,20. The second group of models, which

contains the approximate deconvolution algorithm37, attempts to explicitly invert the

LES filter. Finally, structure based models, as their name suggests, assume some form

for the subgrid structure and compute subgrid contributions based on their properties.

It is to this group that the Stretched Spiral Vortex (SSV) SGS model47 belongs.

The motivation for structure-based modeling comes from experimental and com-

putational evidence that turbulent flow fields comprise coherent structures62,1,27. The

simplifying approximation of ’box turbulence’ allows numerical simulations to resolve

the highest possible Reynolds number. These intense vorticity structures with one

dimension significantly longer than the others (worms) have been found to have a

strong tendency to point in the direction of the most extensional eigenvector of the

rate of strain tensor1. Figure 2.3 shows a portion of the flow field from the largest ever

such DNS computed to date. Performed by Kaneda et al.29 on the Earth Simulator

supercomputer, it uses 40963 grid points and took 43 hours at 16.4 T-flops to compute

one eddy turn-over time. Flow visualization is through an isosurface of vorticity at

a magnitude significantly higher than the RMS value, showing the tube like vortex
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Figure 2.3: DNS of 3d Isotropic turbulence performed by Kaneda et al.29 on the earth

simulator super computer. Visualization is through isosurfaces of vorticity at 3 times the

RMS value.

structures that exist at the fine scales. It is postulated that such highly vortical small

scale structures convect the lower vorticity structures into spirals, hence motivating

the stretched spiral vortex model.

Figure 2.4 shows that in the SSV model the subgrid at each collocation point

is assumed to comprise a single straight, nearly axisymmetric vortex aligned with

some orientation determined dynamically by local properties of the resolved flow

(these can be viewed as being similar to the tubular vortices seen in DNS). The

Lundgren stretched spiral vortex42 is chosen to describe the subgrid structure since

it is an approximate solution to the Navier Stokes equations exhibiting the attractive

property of a -5/3 inertial range. In its initial form, Misra and Pullin47 utilized this

idea and estimated model parameters by first assuming a local balance between the

total dissipation on one side, and the sum of the resolved-scale dissipation and the

subgrid dissipation on the other. The Kolmogorov prefactor was either held constant

for the simulation, or else a continuity condition between the resolved and subgrid
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energy spectra used to obtain a global system of equations that could be solved,

allowing the SGS tensor to be computed from the resolved scale quantities without

specifying a Kolmogorov constant. Later, Voelkl and Pullin75 formulated a localized

approach, estimating the model parameters using the relationship between the 2D

structure functions and the one dimensional energy spectrum tensor to match the

resolved field to the subgrid contribution. It should be noted that in the current

form, we do not assume explicitly a form of the energy spectrum in computing the

subgrid contributions; rather, we use model structures that exhibit the desired form.

This allows for anisotropy in the subgrid and for modeling of quantities other than

the stress, e.g., passive scalar transport. A detailed derivation of the model is given

in Chapter 3; however, at this point we must stress that the model is not of the eddy

viscosity type, and no explicit filtering is used.

Figure 2.4: A typical cell representing the fine scales, showing a single straight, nearly

axisymmetric vortex embedded at some orientation.

The SSV SGS model has enjoyed considerable success, particularly for unbounded

flows, such as decaying isotropic turbulence47 and compressible isotropic turbulence

35, but also for the logarithmic and core region of channel flow74 (DNS resolution being

required in the viscous sublayer). This research focuses on extending the application

of the model to another unbounded flow, the trailing vortex.
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Chapter 3

Review of the Stretched-Vortex Subgrid

Model

Experimental studies of turbulent flow fields suggest that the fine scale structure

consists of vortex tubes. This motivates the development of models for turbulence

quantities that assume that the small scale vorticity can be described by ensembles

of coherent laminar vortex structures. Assuming these elements are straight and

nearly axisymmetric, and ignoring finite length effects as well as axial flow, Pullin and

Saffman55 derived the resulting two point velocity correlation tensor for homogeneous

anisotropic turbulence. If the unresolved scales in a LES are assumed to be discrete

realizations of such a flow, the subgrid stress tensor can be modeled as

τij = 2

∫ ∞

kc

E(k)dk〈EpiZpqEqj〉, (3.1)

where kc is the low wavelength cutoff, E(k) the subgrid energy spectrum, Eij the

transformation from vortex fixed coordinates, and Zij a diagonal matrix with di-

agonal elements (1
2
, 1

2
, 0). The angle brackets in (3.1) denote the expectation of a

function averaged over all possible orientations of the vortex structures. Misra and

Pullin47 used a probability density function (PDF) governing the orientation over the

Euler angles α and β (assuming independence of the spin angle) given by a linear
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combination of the product of delta functions

P̂ (α, β) = 4π
∑

e

λeδ(β − βe)δ(cosα− cosαe),

where λ is a weighting governing the likelihood that the structure is aligned with the

Euler angles αc and βe. Naturally,

1

4π

∫ 2π

0

∫ π

0

P̂ (α, β) sin(α)dαdβ =
∑

e

λe = 1. (3.2)

Defining the unit vector describing alignment with αe, βe by ee, whose components

are

ee
1 = sin(αe) cos(βe), ee

2 = sin(αe) sin(βe), ee
3 = sin(αe), (3.3)

Equation 3.1 can be written as

τij =
∑

e

λe

∫ ∞

kc

E(k, αe, βe)(δij − ee
ie

e
j)dk. (3.4)

To estimate this, Misra and Pullin47 assume a Kolmogorov form of E(k) with a sharp

viscous cut-off

E(k) = K0ε
2/3k−5/3, kc < k < Jη−1 = 0, k > Jη−1, (3.5)

where K0 is the Kolmogorov prefactor, η = (ν3/ε)1/4 is the local Kolmogorov length

associated with the local subgrid realization of homogeneous anisotropic turbulence,

and J a cutoff parameter.

In deriving the physical-space version of the Stretched-Vortex model, Pullin and

Voelkl74 use the relationship between the energy spectrum in Fourier space and the

second order structure functions in physical space. Here we follow their analysis in

outlining the principal features of the SSV SGS model while retaining the possibility

of multiple alignment. The starting point is the trace of the one-dimensional spectrum
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tensor Θ,

Θii =
1

2π2

∫ π

0

∫ 2π

0

∫ ∞

|k3/ sin α|
E(k, α, β)

(
k2 − k2

3

sin2 α

)− 1
2

P̂ (α, β)dαdβdk.

After substitution of the PDF, the integration over the Euler angles can be carried

out giving

Θii =
2

π

∑
e

∫ ∞

|k3/ sin αe|
E(k, αe, βe)

(
k2 − k2

3

sin2 αe

)− 1
2 λe

sinαe

dk.

Performing a one-dimensional Fourier transform, an expression for the trace of the

velocity correlation tensor for a separation (0,0,r) is obtained

Rii(0, 0, r) =
2

π

∫ ∞

k3=−∞

∑
e

∫ ∞

k=|k3/ sin αe|
E(k, αe, βe)

(
k2 − k2

3

sin2 αe

)− 1
2 λe

sinαe

dkeik3rdk3,

or, changing the order of integration

Rii(0, 0, r) =
2

π

∑
e

λe

sinαe

∫ ∞

k=0

E(k, αe, βe)

∫ k3=k sin αe

k3=−k sin αe

(
k2 − k2

3

sin2 αe

)− 1
2

eik3rdk3dk.

By using the substitution s = k3/k sinαe, the expression can be simplified

Rii(0, 0, r) =
2

π

∫ ∞

k=0

∑
e

λeE(k, αe, βe)

∫ 1

s=−1

(
1− s2

)−1/2
eiksr sin αedsdk,

and the inner integration carried out analytically with the aid of the zeroth-order

Bessel function of the first kind (J0), giving

Rii(0, 0, r) = 2

∫ ∞

k=0

∑
e

λeE(k, αe, βe)J0(rk sinαe)dk.

Now Rij = UiÛj where Ui and Ûi are velocity components at points with coordinates

x and x̂ = x + re3, respectively and where the overline represents a volume average.
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Hence

Rii = U2
1 +U2

2 +U2
3−

1

2

[
(Û1 − U1)2 + (Û2 − U2)2 + (Û2 − U2)2

]
= 2

∫ ∞

0

E(k)dk − 1

2
|Û − U |2.

This can be related to the structure function by

Rii = 2

∫ ∞

0

∑
e

λeE(k, αe, βe)dk − 1

2
|Û − U |2,

where Û = U(x + ri3). Hence

F2(r;x) = 4

∫ ∞

k=0

∑
e

λeE(k, αe, βe) [1− J0(rk sinαe)] dk.

For application to LES the structure function of the true velocity field is split into

a resolved-scale contribution, F̂2(r;x) = |Û − U |2 and a subgrid component F2,sgs,

where

F2(r;x) = F̂2(r;x) + F2,sgs(r;x).

From this an expression for the resolved scale structure function is obtained

F̂2(r;x) = 4
∑

e

λe

∫ kc

k=0

E(k, αe, βe) [1− J0(rk sinαe)] dk.

While this expression involves integrating the unknown energy spectrum over the

resolved scales, it is important to note that the term involving the Bessel function

1− J0(x) tends to x2 as x goes to zero, and hence the dominant contribution comes

from larger wavenumbers. This, along with the assumption that the grid scale cut-off

in LES is in the inertial range of the energy spectrum, away from the viscous cut-

off suggests that a Kolmogorov form of E(k) should be adequate for the purpose of

evaluating the integral. Hence upon substitution of E(k) = κ0ε
2/3k−5/3 into the above

equation and subsequent manipulation, an equation for the unknown group κ0ε
2/3 in
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terms of resolved scale quantities is obtained.

κ0ε
2/3 =

F̂2(r;x)

4
∑

e λe

∫ kc

k=0
k−5/3 [1− J0(rk sinαe)] dk

.

In order to evaluate the resolved-scale structure function and hence obtain an estimate

of subgrid parameters at each grid point a circular average over a radius r is used as

shown in Figure 3.1. A circular average was chosen in previous work74 as it is equally

Figure 3.1: Sketch of the geometry used in the circular average of the structure function

relation for the stretched-vortex model. Taken from75.

applicable to free and wall-bounded flows whereas a spherical average is unsuitable

for the latter. Defining the circular averaged structure function by F̂�
2 , and using the

change of variable s = k∆, ∆ being the length scale of the cut-off (kc = π/∆), the
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expression becomes

κ0ε
2/3 =

πF̂�
2 (r;x)

2∆2/3
∑

e λe

∫ 2π

φ=0

∫ π

s=0
s−5/3

[
1− J0(s(r/∆)

√
1− sin2 ψe cos2 φ)

]
dsdφ

.

Here we have used the geometric relation cosαe = sinψe cosφ, where ψe is the angle

between ee and the normal to the plane in which the average is taken. In practice, the

structure function is approximated using neighboring grid points in physical space,

Kolmogorov’s inertial range form being used to account for non-uniform grids (cf.

75,39).

F̃�
2 =

1

4

∑
k=1,2

[ ∥∥∥Ũ(x)− Ũ(x + ∆x+
k ı̂k)

∥∥∥2
(

r

∆x+
k

)2/3

+
∥∥∥Ũ(x)− Ũ(x−∆x−k ı̂k)

∥∥∥2
(

r

∆x−k

)2/3
]
, (3.6)

where ∆+
k and ∆−

k are the grid spacing in the positive and negative k-direction and

r is the separation length for the structure function.

Finally, the subgrid energy is computed by assuming that the energy spectrum of

the subgrid elements takes the form of Lundgren’s stretched spiral vortex42

Eα,β(k) = κ0ε
2/3k−5/3e−2νk2/3|sα,β |.

The subgrid stress tensor is then assembled from 3.4, the total subgrid kinetic energy

being Ksgs = 1/2τii. For post-priori model assessment, the dissipation is computed

from

ε = 2νŜijŜij + εsgs, εsgs = −Ŝijτij = −KŜij(δij − ev
i e

v
j ).
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Chapter 4

Numerical Method

Accurate simulations of an isolated vortex require that the numerical scheme be

applied on a domain that extends to infinity in the cross plane. For this reason, a

radially stretched cylindrical coordinate system is a natural choice since the boundary

condition at infinity need only be applied in one direction. The downside to such a

technique is that the coordinate singularity at the origin can decrease the accuracy

or computational efficiency of the otherwise spectrally accurate method. Leonard

and Wray38 dealt with this problem in their pipe flow code by choosing radial basis

functions that allow the pole condition at the origin to be satisfied exactly by all

azimuthal modes. Matsushima and Marcus44 developed a similar set of orthogonal

polynomial eigenfunctions of a singular Sturm-Liouville equation to expand analytic

functions on the unit disk. Later, they replaced the polynomial set by Rational

Legendre Functions mapped onto the interval 0 ≤ r < ∞45. Such basis functions

satisfy the pole condition at the origin and remain bounded as r → ∞, making

them an ‘appropriate choice for the computation of vortex dynamics in an unbounded

domain’45. Using this technique, the authors45 performed a transient simulation of the

interaction of two vortex filaments. Their computation exhibits the long wavelength

Crow instability as well as a faster growing short wavelength instability; however,

vorticity far away from the origin had to be removed periodically to continue the

computation stably. Not surprisingly, this resulted in an unphysical loss of circulation

and axial momentum. Qin56 used B-splines as basis functions in the radial direction
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for their simulations of a strained vortex. These functions have the advantage that

only a few modes have non-zero support at the origin; however, the resulting scheme

is not spectrally accurate.

The alternative to performing computations in a cylindrical coordinate system is

to employ a Cartesian grid. The benefit gained by avoiding the problems associated

with a coordinate singularity is offset by the need to deal with two unbounded physi-

cal dimensions if image effects are to be eliminated. A further consequence of placing

a Cartesian grid over a naturally cylindrical phenomenon is the higher number of

wasted grid points outside the core region. Despite these short-comings, Sreedhar

and Ragab66,67 were able to perform LES and DNS of vortices with and without ax-

ial velocity defects using a 6th order compact finite difference scheme in both cross

plane directions. By stretching the grid in these directions, they imposed symmetry

boundary conditions at a distance from the origin of 30 core radii. Further, they ar-

gued that the resulting image flows have a negligible effect. Cain et al.10 developed a

technique for applying discrete Fourier Series to infinite domains by using a mapping

designed to minimize truncation errors. They tested the technique on a vortex ar-

ray, applying periodic boundary conditions at a theoretically infinite distance, hence

eliminating the effect of image flows. Additional stretching in the second dimension

was applied by Buell8, although the nature of his free-shear problems (i.e. the need

to model inflow) was such that a finite-difference technique was used in that direc-

tion. In his compressible simulations of an isolated vortex, Qin56 applied the Cain’s10

mapping in both cross plane directions. Unfortunately, severe restrictions are placed

on the stretching parameters2 if the inversion of an ill-conditioned system is to be

avoided during the solution of the Poisson equation inherent to the incompressible

formulation.

For reasons of simplicity and computational accuracy, we pursue a numerical tech-

nique suited to the simulation of an infinite vortex array similar to that of Cain et al.

10. The strain rate field imposed by counter rotating image flows is justifiable since

a single wing tip vortex shed from a lifting body is not completely isolated from the

effects of its counter rotating neighbor as well as other albeit weaker vortex systems
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that form from the rear stabilizer and from flap tips. We now discuss the formula-

tion of the numerical method and return to the repercussions associated with image

vortices in Chapter 5.

4.1 The Pseudospectral Method

Consider the simplified geometry of a periodic box. Let û and P̂ be the Fourier

coefficients of the velocity field u(x, t) and pressure P (x, t) defined on uniformly

spaced grid points. The velocity u(x, t) can therefore be expanded as

u(x, t) =
∑
k

û(k, t)eik.x,

If the even number Nj is the resolution in the jth direction then the wave number

kj = 2πm
Lj

, with m =
−Nj

2
,
−Nj

2
+ 1, ...,

Nj

2
− 1. Since an even number of grid points

is used, the wave number corresponding to |m| = N/2 is represented by only a single

waveform and is typically set to 0. Applying this transformation to the Navier-Stokes

equations casts them in their wave-space form

∂ûi

∂t
+ f̂NL

i = − kiP̂ + νk2ûi, (4.1)

kiûi = 0, (4.2)

where k2 = k.k, and f̂NL
i is the transformed representation of the non-linear term.

The spectral method proceeds by projecting the transformed Navier Stokes equations

(4.1) onto the wave space ki and imposing the incompressibility constraint (4.2) to

obtain the pressure compatibility equation (4.3).

P̂ =
kj f̂

NL
j

k2
. (4.3)
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This projection makes the scheme very computationally efficient as it eliminates the

pressure, allowing the governing equations to be rewritten as

∂ûi

∂t
+ f̂NL+P

i + νk2ûi = 0, (4.4)

where

f̂NL+P
i ≡ (δij −

kikj

k2
)f̂NL

i .

Hence, an Integrating factor permits the equations to be written in the form

∂

∂t
(eνk2tûi) = − eνk2tf̂NL+P

i , (4.5)

from which the evolution in time of ûi can be computed using a suitable time-marching

scheme. Finally for reasons of computational efficiency, the non-linear term is com-

puted in physical space and hence the method is referred to as pseudospectral.

4.2 Dealiasing

Computation of the non-linear term in physical space leads to aliasing errors. These

result when the highest modes of the non-linear product cannot be resolved on the

discrete mesh points and are folded back into the resolved modes. This can be seen

by considering, in one dimension, the non-linear product w(x) formed by multiplying

two functions u(x) and v(x), which in Fourier space are represented by the discrete

coefficients uk and vk

w̌k =
1

N

N−1∑
j=0

ujvje
−ikxj , k = −N

2
, . . . ,

N

2
− 1. (4.6)

Substituting the definitions uj =
∑N/2−1

m=−N/2 ǔme
imxj and vj =

∑N/2−1
n=−N/2 ǔne

inxj for

j = 0, 1, . . . , N − 1 into the expression for the product and using the orthogonality
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relation

1

N

N−1∑
j=0

ei(n+m−k)xj =

1 if (n+m− k) = Np, p = 0,±1,±2, . . .

0 otherwise,

(4.7)

the product can be written as

w̌k =
∑

m+n=k

ǔmv̌n +
∑

m+n=k±N

ǔmv̌n, (4.8)

where the first term is the discrete representation of the product and the second

term the aliasing error. Clearly the error is dominated by the highest wave mode

contribution. Hence, while such errors should be small for a DNS, the highest wave

modes in an LES contain significant amounts of energy (the smallest scales are well

above the dissipative range) and could have adverse effects on the simulation. To

overcome this problem, current simulations use the 2/3 rule dealising technique. In

this scheme, only 2/3 of the N modes are used for resolving the flow variables, the

remaining modes being set to 0. To see how this affects the aliasing error term,

consider the worst case of the highest resolved mode, k = −2/3N/2 = −N/3. The

second term in 4.8 could only contribute for m + n = −N/3 + N = 2N/3 which

can only be true if at least one of the factors is a mode outside the resolved range

m,n ≥ N/3. Hence the aliasing error only affects modes outside the resolved scales

(which are re-set to zero after the transform). In three-dimensions, the 2/3 rule

is imposed in each direction, and the coefficients are further subjected to spherical

truncation (cf. Ref.11).

4.3 Cain’s Mapping

Motivated by the need for accurate differentiation and integration schemes for do-

mains where the boundary conditions are imposed far from the region of physical

interest, Cain et al.10 devised a mapping which yields alias free operators with trun-
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cation error that is generally small. A brief discussion of this scheme is now presented.

Consider any function f(x, y, z, t) in physical space which is transformed in the z di-

rection to the computational coordinate η through the mapping z = h(η). The

derivatives in the two coordinate systems being related by the chain rule:

∂f

∂z
=

∂f

∂η

dη

dz
=

1

h′
df

dη
.

The function in computational space can be expressed in terms of a discrete Fourier

series involving the (Nx − 1) × (Ny − 1) × (Nη − 1) equi-spaced computational

nodes as well. Any derivative in physical space can then be obtained by multiplying

these terms in the representation of the function in computational space by the terms

in the Fourier series representation of the metric 1/h′(η). In general Nη terms are

required and the resulting physical space derivative contains N + Nη − 1 waveforms

describing the behavior in the z direction. Truncating the results to Nη terms pro-

duces potentially large errors. Cain et al. were able to greatly reduce these truncation

errors by restricting the mapping functions to those which contain only a few Fourier

modes with small wave numbers. Of particular interest to the current work is the

mapping z = h(η) = − b cot(η), 0 ≤ z <∞ and the associated metric

1

h′(η)
=

1

b

(
1 − eiη + e−iη

2

)
.

Using this mapping, the physical space derivative is written

∂f(x, y, z, t)

∂z
=

∑ (
iknη f̂nη −

iknη−1

2
f̂nη−1 −

iknη+1

2
f̂nη+1

)
eiknxxi+ikny yj+iknη zk ,

where

knη =


2πnη

Nη
if 0 ≤ nη ≤ Nη,

0 otherwise.
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4.4 A Spectral Collocation Method

Spectral collocation methods11 are based on the physical space form of the Navier-

Stokes equations evaluated at discrete collocation points. Upon integration over one

time step δt one obtains, in semi-discrete form

un+1
i − un

i = −
∫ tn+1

tn

∂P

∂xi

dt+ ν

∫ tn+1

tn

L(ui)dt+

∫ tn+1

tn

NL(ui)dt, (4.9)

where, L(ui) represents the linear term, and NL(ui) the non-linear term written in

skew-symmetric form to reduce aliasing effects. For efficiency reasons, the non-linear

term is evaluated using an explicit scheme of order Je while for stability reasons, the

non-linear term via an implicit scheme of order Ji. If the pressure is treated in a fully

implicit manner, solution of the semi discrete system can be split into 3 substeps

ûi − un
i

δt
=

Je−1∑
q=0

βqNL(un−q
i ), (4.10)

ˆ̂ui − ûi

δt
= −∂P

n+1

∂xi

, (4.11)

un+1
i − ˆ̂ui

δt
= ν

ji−1∑
q=0

γqL(un+1−q
i ). (4.12)

By taking the divergence of the pressure equation 4.11 and enforcing continuity on

the updated velocity field, a Poisson equation for the pressure is obtained

∂2P n+1

∂x2
i

=
1

δt

∂ûi

∂xi

. (4.13)

When this equation is solved in wave space, the strictly diagonal structure results

in a decoupled system allowing explicit calculation of the pressure. This step is

analogous to the removal of the pressure altogether in the pseudospectral method by

the projection of the Navier-Stokes equations onto the wave space ki.



24

4.4.1 Time Integration

Rather than using standard Adams-type explicit schemes for time integration, a stiffly

stable scheme is used30. This scheme is based on backwards differentiation of the

time derivative and results in a larger stability region. Incorporating this scheme, the

overall splitting method takes the form30

γ0ûi −
∑J−1

k=0 αku
n−k
i

δt
=

Je−1∑
q=0

βqNL(un−q
i ),

ˆ̂ui − ûi

δt
= − ∂P n+1

∂xi

,

γ0u
n+1 − ˆ̂ui

δt
= νL(un+1

i ).

The coefficients α, β and γ are presented in Appendix B.

4.4.2 Poisson/Helmholtz Equations

Stretching the infinite physical domain onto a uniformly spaced finite computational

grid introduces a coupling between wave modes, which generally prevents the explicit

inversion of the Poisson equation essential to the efficiency of the pseudospectral

method. The Cain’s mapping presented in Section 4.3 limits this coupling to just one

wave mode above and below for first derivatives and two wave modes above and below

for second derivatives. The two periodic directions decouple and hence, inversion of

the pressure-Poisson equation (4.11) in the computational wave space reduces to

the solution of a Helmholtz equation. The final step in the split method involves

advancing the viscous terms, and due to the necessity of an implicit treatment, results

also in the solution of a Helmholtz equation. Due to the minimal coupling in the

stretched coordinate direction, inversion of the pressure-Poisson equation (4.11) and

the viscous Helmholtz equation in the computational wave space amounts to solution

of a penta-diagonal system and hence much of the speed benefits associated with the

pseudospectral method are retained.
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Consideration of the boundary conditions that must be imposed on the system is

a non trivial matter. Cain et al.10 imposed zero pressure and velocity at infinity in

their simulations by setting the 0 frequency mode in the stretched direction (kη = 0)

to zero magnitude. This only works for functions that exhibit ‘odd’ behavior in

this direction as they average to zero. In addition, it results in small but never the

less non-zero derivatives at infinity and a resulting violation of the divergence free

constraint. Buell8 placed constraints on the system that force the two highest modes

to have zero magnitude as well as satisfying the condition at infinity. We choose to

cautiously ignore the truncation error associated with the mapping since for a well

resolved simulation the resulting error should be small; for large eddy simulations this

may not be the case and is investigated later. The correct boundary condition can

be derived by considering the Fourier representation of a general flow variable φ.

φ(x, y, η) =
∑
kx

∑
ky

∑
kη

φ̂kxkykηe
ikxxeikyyeikηη.

The point η = 0 maps to z = ∞ and hence the correct boundary condition is derived

as a sum over all non-zero stretched modes.

φ̂kxky0 = −
∑
kη 6=0

φ̂kxkykη . (4.14)

4.4.3 Parallel Implementation

Coupling between wave-numbers is introduced predominantly during the non-linear

step since the use of Fourier basis functions in two directions decouples the system into

a series of Helmholtz equations during the pressure and viscous steps. The stretching

function introduces some coupling in the unbounded direction, however, by paralleliz-

ing in one of the strictly periodic physical directions, the majority of communication

can be restricted to the calculation of the non-linear term and more specifically the

associated Fourier Transform. The FFTW package18 is used for computing these

transforms since it is computationally efficient and parallel. While it only allows par-
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allelization in one dimension, the increase in speed possible from allocating processors

across the second direction is small for the modestly sized computational grids used

in the current work.

Since the physical space representation of all flow variables is strictly real valued,

the complex multi-dimensional Fourier series enjoys a Hermitian symmetry.

φ̂(i, j, k) = φ̂(Ni − i, Nj − j,Nη − η)∗.

Storage of complex arrays takes advantage of this by only storing Nη/2 + 1 complex

values. Strictly speaking, Nη/2 values are only needed; however, array structure is

simplified in the FFTW package by storing the additional modes which are in fact

redundant due to the symmetry

φ̂(i, j, Nη/2+1) = φ̂(Ni − i, Nj − j,Nη/2− 1)∗.

This symmetry and hence some inter-processor communication is needed when im-

posing the boundary condition at infinity.

4.5 Test Cases

The simulation code described previously was written specifically for the present work

and it is thus necessary to test it rigorously. This phase is typically broken down into

two phases, namely verification and validation. The first of these ensures that the

code converges to the solution of the original PDE, while the latter involves checking

that the governing equations are indeed a good approximation of reality. Verification

is typically done by comparison with Direct Numerical Simulation or known analytical

solutions. Validation with experimental results for the present code is difficult due

to its highly specialized nature arising from the importance of boundary conditions

in the incompressible framework. We begin then by verifying correct implementation

and consider code validation later, when we examine the simulation of the interaction

of trailing vortices.
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4.5.1 Strained Vortex

The presence of periodicity, while simplifying the numerics, introduces the issue of im-

age flows. For example, in a two-dimensional domain described in cylindrical coordi-

nates and unbounded in the radial direction, a distribution of vorticity with ω ∝ e−r2

will simply diffuse away in a self-similar manner. If, as in the present computational

domain, periodicity is imposed in 1 of these unbounded directions, the resulting im-

ages have the effect of subjecting the vortex to a straining effect. The equilibrium

configuration that results from the imposition of a non-axisymmetric strain rate field

has been studied59,9. While these studies were able to explicitly impose strain rate

fields of various strengths, ours is the implicit result of the boundary conditions;

however, qualitative comparison is possible. A more detailed description of the re-

sulting strain rate magnitude is presented in Appendix A; for now we just note that

the eigenvectors are at 45 degrees to the direction of periodicity. Figure 4.1 shows

contours of vorticity for an (initial distribution∝ e−r2
) after one transit time defined

as tT = 2πr0/v0, r0 and v0 being the location of and magnitude of maximum initial

tangential velocity at two Reynolds number Re = Γ
2π

= 30, 100. Re can be viewed

as a measure of the strength of inertial effects relative to those induced by the im-

plicit strain rate field and viscous diffusion. At the lower Re, the vortex is stretched

appreciably in the direction of the maximum strain rate, a balance between rotation

and this strain rate determining the final angle of the major axis. As Re is increased,

Buntine and Pullin9 (BP henceforth) found that the vortex becomes stronger, and

the directional effects of the strain rate are overcome to the extent where the resulting

equilibrium resembles the results for a Burgers vortex in an axisymmetric strain rate

field.

By decreasing the ratio of the vortex core size to the length of the periodic domain,

the influence of the image flow strain rate can be reduced to the extent where the

diffusing vortex can be approximated by the self-similarly decaying line vortex

ω(r, t) =
Γ

4πνt
e−r2/4νt. (4.15)
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Figure 4.1: Contours of vorticity for an initially Gaussian distribution, one transit time

later. Top picture is Re = 30, bottom is Re = 100.

Figure (4.2) shows a comparison of vorticity profiles through the core of the vortex at

two time instances for the Re = 1000 simulation and the corresponding axisymmetric

solution. Although the peak velocities match very well however, there is a slight

discrepancy in the tails which can be attributed to the presence of image flows. This

provides a good indication that the viscous terms are being implemented properly.

To check the pressure solver, the comparison is explored further by considering in

Figure (4.3) the pressure drop in the core of the vortex.

4.5.2 Co-rotating vortex merger

We now move on to the more complicated problem of co-rotating vortex merger in a

bid to examine the implementation of the non-linear terms. The benchmark for this

test case is the computational work of BP who studied the influence of an imposed

strain rate field on vortex phenomena. Their strain rate field was of the form

us = β(t)x1î + [β(t)− γ(t)]x2ĵ + γ(t)x3k̂, (4.16)
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Figure 4.2: Vorticity evolution. Comparison between computation and the theoretical

diffusing vortex, Re = 1000.

where β(t) and γ(t) are strain rates. When β = 1/2γ, the strain rate field is ax-

isymmetric, and, providing the velocity vanishes at infinity, the resulting vorticity

distribution, ωs(x1, x2, t), can be related to that in the absence of a strain rate field,

ω(ξ, η, τ), by

ω(ξ, η, τ) = ωs(x1, x2, t)e
−A(t), (4.17)

where

ξ = x1e
1/2A(t), η = x2e

1/2A(t), τ =

∫ t

0

eA(t′)dt′,

and

A(t) =

∫ t

0

γ(t′)dt′.

The initial condition for the simulation comprises two axisymmetric vorticity dis-

tributions of equal circulation Γ/2 offset from the origin by a distance x2i.

ω(x1, x2, 0) =
Γ

2π

(
e−(x2−x2i)

2−x2
3 + e−(x2+x2i)

2−x2
3

)
. (4.18)

For comparative purposes x2i = 2 was chosen; however, the later stages of merger
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Figure 4.3: Pressure evolution over time for the diffusing vortex. Re = 1000.

are not strongly dependent on x2i, provided x2i > 19. Simulations were performed

at Re = Γ/2π = 160 and 640, the transformation defined in 4.17 being used with

β = 2, to compute ωs for comparison with BP. Results are compared qualitatively,

noting once again that a non-axisymmetric strain rate field does exist in the present

simulations due to the presence of image vortices (the period of the y domain is

presently 16π to minimize this effect). A comparison is shown with the previous work

in Figures 4.4-4.5 and 4.6-4.7 for Re = 160 and 640 respectively . The early stage

of vortex merger is essentially that of two point vortices whereby the two simply

rotate around each other. During this process however the cores spiral towards each

other, the rotation rate increasing to preserve angular momentum. As the cores merge

together into a large vorticity region, the leading edges are stretched considerably in

the azimuthal direction, creating large gradients of vorticity. These high gradients

are diffused out by viscosity on a very short timescale. At later, times the merger

process becomes complete, leaving a single approximately axisymmetric vortex. The

effect of Re is clearly seen in that the strong gradient regions as well as the vortex

arms lengthen into thinner spiral bands before the relatively weaker viscosity diffuses

them. Very good agreement between the two studies is found, slight discrepancies,
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particularly within the cores at later time, being attributed to the additional straining

effect of the image flows in the present simulation.

4.5.3 Axial Velocity in 2D-3C Flows

Continuing with the merger of like signed vortices, we now consider the evolution

of the axial velocity. If no axial gradients exist (i.e. 2D-3C), the axial momentum

equation behaves analogous to the transport of a passive scalar, and identical to that

governing the evolution of the vorticity,

∂u1

∂t
+ uj

∂u1

∂xj

=
1

Re

∂2u1

∂x2
j

. (4.19)

Hence, given the same initial conditions, the axial velocity will evolve identical to the

vorticity. While this gives further indication that the code is operating as expected,

results are presented for the more physically interesting evolution of initial axial

velocities differing from the underlying vorticity. We first consider the case in which

the profiles are identical except the superposed axial velocity on one vortex is of

opposite sign

u1(x1, x2, 0) ∝ e−(x2−x2i)
2−x2

3 − e−(x2+x2i)
2−x2

3 . (4.20)

Figure (4.8) shows that initially, the axial velocity winds up similarly to the vorticity,

however, due to the opposing sense of the axial velocity, cancellation occurs and

a constant state will ultimately prevail. Next, we repeat the simulation for initial

distributions of axial velocity once again proportional to the vorticity but rotated 90

degrees about the origin,

u1(x1, x2, 0) ∝ e−x2
2−(x3−x3i)

2 ± e−x2
2−(x3−x3i)

2

. (4.21)

Figure (4.9) shows a comparison between the case where the velocity distributions

have equal sense and that where they are of opposite sense. During both simulations,

the two distributions appear to merge, however, whereas the former develops a core

region similar to the vorticity, the opposing distributions in the latter cause cancel-
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Figure 4.4: Merger of two like signed vortices in an axisymmetric strain rate field. Com-

parison between the present work(left) and Buntine and Pullin9 (right) at Re = 160. The

minimum contour is at |ωs| = 1.0 and the intervals are |∆ωs| = 9.0. Times are (from top

to bottom) t=0, 0.05, 0.1, 0.15, 0.2.
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Figure 4.5: Merger of two like signed vortices in an axisymmetric strain rate field. Com-

parison between the present work(left) and Buntine and Pullin9 (right) at Re = 160. The

minimum contour is at |ωs| = 1.0 and the intervals are |∆ωs| = 9.0. Times are (from top

to bottom) t=0.25, 0.3, 0.35, 0.4, 0.45.
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Figure 4.6: Merger of two like signed vortices in an axisymmetric strain rate field. Com-

parison between the present work(left) and Buntine and Pullin9 (right) at Re = 640. The

minimum contour is at |ωs| = 3.0 and the intervals are |∆ωs| = 30.0. Times are (from top

to bottom) t=0, 0.01, 0.03, 0.04, 0.05.
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Figure 4.7: Merger of two like signed vortices in an axisymmetric strain rate field. Com-

parison between the present work(left) and Buntine and Pullin9 (right) at Re = 640. The

minimum contour is at |ωs| = 3.0 and the intervals are |∆ωs| = 30.0. Times are (from top

to bottom) t=0.06, 0.07, 0.08, 0.09, 0.10.
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lation in the core. While no comparison can be made with proven data for these test

cases, the results make physical sense.

The test cases presented so far highlight the difficulty associated with imposing

boundary conditions in incompressible simulations. In the next section, we develop an

initial condition for trailing vortices that is an exact solution to the Euler equations on

our computational domain. Using this, we will be able to conduct a more quantitative

code validation.

Figure 4.8: Passive scalar transport during the merger of two like signed vortices at

Re = 640. The initial distribution of the passive scalar is identical to that of vorticity in

magnitude however they are of opposite sign.

Figure 4.9: Passive scalar transport during the merger of two like signed vortices at

Re = 640. The initial distribution of the passive scalar is identical to but 90 degrees out of

phase with the vorticity. Same sign (top) and opposite sign (bottom).
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Chapter 5

Simulating Trailing Vortices

Presently, we consider a model for trailing vortices based on an initial condition

comprising an array of counter rotating vortices that is an exact solution to the

incompressible Euler Equations in 2D. Whereas the BV represents an isolated vortex,

the array provides a means of modeling the straining influence of the counter-rotating

neighbor present in a true aircraft wake. In Section 5.1, we define the flow geometry

and formulate the governing equations for analyzing this flow. An axial velocity that

is modeled on vortex roll-up and chosen proportional to the initial axial vorticity is

superimposed with a corresponding swirl parameter q chosen analogous to the BV.

In Chapter 6, we study the linear stability of the resulting flow for various q. These

results are used to interpret the non-linear interactions that result from DNS and

LES in Chapters 7 and 8.

5.1 Flow Geometry and Formulation

In dimensionless co-ordinates to be defined subsequently, the incompressible Navier-

Stokes equations (N-S) are

∂uj

∂xj

= 0,

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂P

∂xi

+
1

Re

∂2ui

∂x2
j

, (5.1)
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and the convection-diffusion equation for a passive scalar c is

∂c

∂t
+ uj

∂c

∂xj

=
1

ReSc

∂2c

∂x2
j

, (5.2)

where Re and Sc = ν/D are the Reynolds and Schmidt numbers respectively, D being

the scalar diffusivity. Equations (5.1) and (5.2) are applied in Cartesian coordinates

on a physical domain that is periodic in the x1 and x2 directions and extends to

infinity in x3. In what follows, we will consider an array of vortices nominally aligned

with the x1 direction whose centers are initially on the x2 axis.

5.1.1 Initial Condition; x∗
2-x

∗
3 plane

In the present formulation, the vortex axis is chosen along one of the strictly periodic

directions (x1 direction); however, the presence of a second periodic direction (x2) in

the plane of the vortex results in an array of image flows. An initial condition can be

derived from the Mallier& Maslowe43 (M&M) vortex, an exact solution of the inviscid

Euler equations which is the counter-rotating analogue of the Stuart vortex array70.

Making quantities non-dimensional by choice of a length scale L∗/2π, where L∗ is the

x∗2-period of the array and velocity scale Γ∗/L∗, where Γ∗ is the circulation of each

member of the array, then the streamfunction for the M&M vortex can be expressed

as

ψ(x2, x3) =
1

2
log

(
cosh(Cx3) − C cos(x2)

cosh(Cx3) + C cos(x2)

)
, (5.3)

where C ∈ [−1; 1] is the concentration parameter. When C = 0, ψ = 0, while for

C → ±1 the streamlines become more circular until the counter-rotating point-vortex

array is recovered at C = ±1. The Reynolds number in (5.1-5.2) is then Re = Γ∗/2πν∗

and the dimensionless vortex circulation is Γ = 2π. The dimensionless vorticity ωi is

ω1(x2, x3) = −∆2ψ =
(1− C2)

4
sinh(4ψ), ω2 = ω3 = 0, (5.4)
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while the velocity components are

u2(x2, x3) =
C2 sinh(Cx3) cos(x2)

cosh2(Cx3) − C2 cos2(x2)
,

u3(x2, x3) = − C cosh(Cx3) sin(x2)

cosh2(Cx3) − C2 cos2(x2)
.

(5.5)

Figure 5.1(a) shows the vorticity distribution for the M&M vortex array with

C=0.9. In order to characterize the vortex separation in this array, one must first

define a length scale indicative of the vortex size. Studies of the LOV typically choose

the radius at which the azimuthal velocity takes its maximum value (rc/δ ≈ 1.12091)

66,67, the distance at which boundaries or other vortices are present being described

in terms of this core size. For the M & M vortex however, the streamlines are only

cylindrical in the limit C → ±1; the straining influence of the array introduces

ellipticity. We consider the plane defined by x3 = 0 and define the core size as the

distance rc from the core of each vortex x2c = nπ (n integer) to the location x2max at

which u3 takes its maximum value. Thus

u3max ≡ u3(x2max) = ± 1

2
√

1− C2
,

rc = |x2max − x2c | = ± 1

2
cos−1

(
3C2 − 2

C2

)
.

(5.6)

For C = 0.9 (Figure 5.1(b)) rc ≈ 0.506. Increasing C decreases rc and hence in-

creases the separation size, while providing an initial condition that always satisfies

the unsteady Euler equations. For the present work, all simulations are performed

with C = 0.9 which corresponds to a separation distance ≈ 6.2 rc.

5.1.2 Axial Velocity

As mentioned earlier, the Lamb-Oseen vortex is stable to linear perturbations unless

an axial velocity of the form u∗ = u∗de
−(r∗/δ∗)2 is added. The resulting vortex, termed
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Figure 5.1: (a) (left) Contours of ω1 and (b) (right) distribution of u3 along x3 = 0 for

one period of the M&M vortex array with C=0.9.
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Figure 5.2: Velocity profile through center of vortex array showing definition of the core

radius. Left c=0.9 gives rc=0.506 and right c=0.95 has rc=0.33491.

the Batchelor or q vortex is characterized by the swirl parameter q defined as

q =
Γ

2πδ∗U∗
d

.

Once again, the resulting vortex is only an exact solution to the Euler equations on

a radially infinite domain. Using (1.1), (1.2) can be rewritten in terms of the ratio of

the swirling velocity u∗θmax
to the maximum axial velocity u∗d

q ≈ 1.56
u∗θmax

u∗d
. (5.7)

We retain this definition of q, replacing u∗θmax
with u3max and u∗d with its non-dimensional

equivalent. An exact solution to the 2D-3C Euler equations can be constructed with

any axial velocity distribution that is a function only of ψ. Presently we choose

u1(x2, x3) =
1.56u3max

q0

∣∣∣∣ω1(x2, x3)

ω1(0, 0)

∣∣∣∣ . (5.8)

Where the subscript in q0 distinguishes the chosen initial swirl parameter from its

transiently varying counterpart (equation 5.7). The velocity field defined by (5.5) and

(5.8) is only a weak solution of the steady 2D-3C Euler equations as the absolute value
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function introduces a discontinuity in the axial velocity derivative at x2 = π
2

+ nπ,

for integer n. The presence of viscosity in the full NS simulation will act to smooth

out this discontinuity, however, even in the absence of viscosity, the jump in the

velocity derivative turns out to be less than 1% of the value at the vortex core when

a separation parameter C=0.9 is used.

x 2

u
 

-1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 2

u
y

-1 0 1 2 3 4
-5
-4
-3
-2
-1
0
1
2
3
4
5

Figure 5.3: Profile of axial velocity and ∂u
∂y through the core of the vortex array for c=0.9,

q=1.0.

5.1.3 Vortex-Induced Strain Rate

For an array of point vortices, the strain rate at the center of each vortex is that

induced by the array at the vortex position if it were not present. With the separation

distance between counter-rotating pairs denoted by a, the strain rate can be shown

to be γ = πΓ/12a2. For two isolated point vortices, the strain rate is lower with

γ = Γ/2πa2. Moore and Saffman49 calculated that an exterior imposed strain rate

distorts the Rankine vortex into an ellipse. When the resulting self-induced strain

rate is included40 for the counter-rotating pair, this results in a total strain rate at

the center of the vortex

γ = Γ/πa2. (5.9)
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For the M & M initial condition with no axial flow, the equivalent strain rate at

(x1, x2) = (0, 0)

γ = πCΓ/4a2. (5.10)

Detailed derivations of these results are given in Appendix A. They will be useful

later for enabling comparison with isolated vortex pair experiments; however, for now

it is interesting to note that for the value C = 0.9, the strain rate resulting from the

M&M vortex array is approximately twice that felt for the isolated pair.

5.1.4 Further Code Verification

The above mentioned initial condition can be used as an albeit crude test for the

code by comparing its evolution over one transit time at various Reynolds numbers.

In the limit of infinite Reynolds number, the vortices should just rotate and remain

identical to the initial condition. The top two plots in Figure 5.4 show the energy

vs time at three Reynolds numbers and a comparison between the energy decay rate

and the dissipation at the lowest Reynolds number; since it can be shown that on the

domain of interest the latter two should be identical for a fully resolved simulation,

this can be taken as evidence that the code is performing as expected. The lower two

plots show the final flow state at the highest Reynolds number and the maximum

difference between the initial and final flow states respectively. As expected the

difference decreases with Reynolds number, with the ReΓ = 106 case being a good

approximation to the infinite Reynolds number limit.

In addition to the two-dimensional restriction, the preceding results do not en-

sure correct implementation of the non-linear terms since they only test the relative

magnitudes of the non-linear terms as can be seen from the two-dimensional inviscid

vorticity equation,
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
= 0.

The absolute magnitude of these terms were tested by comparing term by term with

the two-dimensional analytic solution before moving on to more comprehensive three-
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Figure 5.4: Code validation results of simulations of the Mallier and Maslowe vortex array

with superimposed axial velocity. Energy evolution at 3 different ReΓ (top left), energy

decay rate compared to dissipation (top right), the flow field after one transit time at

ReΓ = 106 (bottom left), and the maximum difference between the flow field after one

transit time and the initial condition.

dimensional simulations.

Julien et al.28 studied the temporally developing three-dimensional stability of the

M&M vortex array and investigated the growth rates for a range of unstable modes.

They found a peak at low wave numbers corresponding to the periodic analogy to the

long wavelength Crow instability associated with a counter-rotating vortex pair14, as

well as a range of unstable modes at higher wave numbers, associated with the elliptic

instability of the strained base flow. For C=0.9 the most unstable axial wave number

resulting in the Crow type instability mechanism is 0.4 and that perturbations grow

in a plane inclined at φ = 47 degrees to the z axis. To replicate this, a simulation
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was performed on a domain comprising one axial wavelength (wave number k) with

the base M&M vorticity distributions perturbed with amplitude A according to

ωx(x, y, z) = ωm&m(y′, z′),

where

y′ = y − A cos(φ) cos(kx),

z′ = z − A sin(φ) cos(kx).

In order to preserve a divergence free initial vorticity distribution, the remaining

components are specified as

ωy = − A k cos(φ) sin(kx) ωm&m(y′, z′),

ωz = − A k sin(φ) sin(kx) ωm&m(y′, z′).

Simulations were performed at grid resolutions of 32x96x64, 48x128x128 and

72x256x256 for ReΓ = 100 over a period of between 4 and 6 vortex transit times.

It is believed that the highest resolution simulation captures all scales of the resulting

motion.

Flow visualization through an isosurface of vorticity in Figure 5.5 shows the de-

velopment of the periodic analogy to the Crow instability. Figure 5.6 shows that

grid convergence is obtained in the decay of both energy and enstrophy and that the

perturbation energy decay rate is in good agreement with linear theory. Grid con-

vergence is once again demonstrated in Figure 5.7 whereby contours of vorticity after

four transit times are plotted on top of each other at three locations. Finally, Fourier

coefficients were compared directly to ensure that grid convergence was obtained.
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Figure 5.5: Flow visualization of the periodic Crow instability using 1 vorticity isosurface.
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rate for the three-dimensional simulation compared with the linear analysis of Julien et al.
28.
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Chapter 6

Stability of the M & M Vortex Array

Julien et al.28 (JC henceforth) studied the linear stability of the M&M vortex without

axial flow, finding periodic array analogies to the long and short-wavelength modes

that Crow14 and Widnall et al.76, respectively found for the two vortex system. They

found that, while the long wavelength Crow instability is almost independent of Re,

viscous action damps the shorter-wavelength modes. Stability analysis of the BV36

shows that the presence of axial flow introduces helical mode instabilities for suffi-

ciently low q. To study the effect of axial flow on the stability of the vortex array, we

utilize the NS equations linearized with respect to perturbations in velocity u′i and

pressure P ′ about the base flow ui defined by (5.5) and (5.8).

∂u′j
∂xj

= 0,

∂u′i
∂t

+ u′j
∂ui

∂xj

+ uj
∂u′i
∂xj

= − ∂P ′

∂xi

+
1

Re

∂2u′i
∂x2

j

.

(6.1)

The perturbation field can be written in the form

[u′i, P
′](x1, x2, x3, t) =

∑
k1

[ûi
′, P̂ ′](k1, x2, x3, t)e

ik1x1 . (6.2)

Since the base flow is uniform in the x1 direction, (6.2) causes (6.1) to de-couple in

axial wave space, allowing the stability problem to be solved independently at each k1

simultaneously. Despite this simplification, however, the non-uniform nature of the
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base flow in the x2 − x3 plane makes a full modal analysis difficult to perform. For

this reason, we follow a similar numerical procedure to JC which finds only the most

unstable wave-mode at each axial wavelength. Equation (6.1) was integrated as an

initial-value problem using the same parallelization, mapping and splitting methods

used for the non-linear code. The instability modes are separated into two families,

namely the sinuous mode (anti-symmetric) defined by

[u′1, u
′
2, u

′
3](x2, x3, t) = [−u1,−u2, u3](x1, x2 + π,−x3, t), (6.3)

and the varicose mode (symmetric) by

[u′1, u
′
2, u

′
3](x2, x3, t) = [u1, u2,−u3](x1, x2 + π,−x3, t). (6.4)

The initial condition for the divergence free perturbation velocity field comprises white

noise exhibiting each of these symmetry properties, modulated by an exponential

decay in x3.

At each time step the kinetic energy at each axial wavelength k1 is computed

and the perturbation energy E determined by integrating over the x2-x3 plane. The

integration is carried on in time sufficiently long for the most unstable eigenmode to

dominate, as evidenced by convergence of the growth rate defined as28

σ = lim
t→∞

1

2

d lnE

dt
. (6.5)

Figure 6.1 shows the maximum growth rates that result in the absence of axial flow

at Re = Γ/2πν = 20, 000. For sinuous modes two regimes are identified, separated

by a region of negligibly small growth rate. The first of these occurs for k1 < 1 and

corresponds to the periodic analogy to the long-wavelength Crow instability mode

(CM) with a peak at k1 ≈ 0.4. The second, for k1 > 2, is associated with the short-

wavelength Widnall-like instability modes (WM) and shows two distinct peaks. In

contrast, the case of the varicose mode differs from the sinuous in that the imposed

symmetries don’t allow the Crow instability to develop. The corresponding growth
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Figure 6.1: Growth rate of the anti-symmetric modes (top) with no axial velocity (q0 =

∞), showing the Crow Instability regime at small wavenumbers and the short-wavelength

Widnall like modes at high wavenumbers. The symmetric modes (bottom) are similar at

high wavenumbers, but are not susceptible to the Crow modes.
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rates in this region are very low. At toward shorter wavelengths, they approach those

for the previous case; moderate growth rates being observed in the region considered

stable to sinuous modes.

The effect of Reynolds number is investigated in Figure 6.2 showing the maximum

growth rates for sinuous modes at discrete axial wave numbers for q = ∞, which

corresponds to no axial flow. Simulations at Re = 20, 000 and 5,000 are shown from

k1

σ
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0.1

0.15

0.2
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Re 10,000
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Re 800

Figure 6.2: Growth rate of the anti-symmetric modes with no axial velocity (q0 = ∞),

showing once again the two regimes. The Crow instability at long wavelengths and the

more viscous dependent Widnall instabilities at shorter wavelengths. Filled symbols are

taken from the work of Julien et al.28, at Re = Γ/2πν of 800 and 10,000. Open symbols

are computed from the present study at Re = 5,000 and 20,000.

the present study with data points at 800 and 10,000 being taken from the work

of JC. Our results can be seen to support the findings of JC that the peak CM
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appears to be viscosity independent, while the WM becomes increasingly effected at

higher wavenumber. Additionally, the good agreement at the higher Reynolds number

provides further evidence that the (linearized) code is performing as expected.

We can therefore hypothesize that since viscosity effects are confined to high wave

numbers, Re will influence this family of instabilities in the same manner. Hence,

we conclude that, since little difference is found between the three highest Reynolds

numbers, the Re = 20, 000 case is a good approximation to the limit Re→∞. This

Re is also of interest as it is near that estimated for the mixing transition to occur16.

Figure 6.3 shows the stability properties when an axial flow, q0 6= ∞, is added to

the base flow. It can be seen that the resulting vortex array exhibits larger growth

K1
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100

q0 = 0.4
q0 = 1.0
q0 = 1.5
q0 = ∞

Figure 6.3: Growth rate vs axial wavenumber for the anti-symmetric modes of the M&M

vortex with C=0.9 for different values of q0.
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rates due to the additional instability mechanism resulting from the axial flow. As

the magnitude of the axial velocity is increased (corresponding to a decrease in q0)

the maximum growth rates increase significantly. Of particular note for the sinuous

mode is the point k1 ≈ 0.4, σ ≈ 0.1, which is in the vicinity of the peak growth

rate of the Crow Instability. Of the four cases considered, only for the highest axial

velocity does the most unstable mode cease to be associated with the Crow instability.

Conversely, at higher wave numbers the largest growth rates increase with decreasing

q and are presumably the periodic analog of the helical instability modes observed

for the BV. Finally, it should be noted that the axial velocity related modes exhibit

high growth in the region 1 < k1 < 2 where insignificant growth of the sinuous modes

was observed in the absence of axial flow.

We note finally that the most unstable linear eigen-mode associated with each

axial wavelength could be determined from the numerical procedure. One of the

main purposes of this stability study, however, was to determine the axial domain

size necessary to capture in a Direct Numerical Simulation, the most unstable long

wavelength mode. We now move on to the DNS, and defer a discussion of these mode

shapes until the more general analysis of the non-linear evolution of the base state.
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Chapter 7

3D-3C Direct Numerical Simulation

7.1 Diagnostics

The study of the vortex array is now extended beyond the linear analysis, by consid-

ering the evolution of the 3D-3C Navier Stokes equations. To aid in the analysis of

the DNS and LES presented subsequently, we develop diagnostics for analyzing the

flow. We begin by defining by 〈φ〉 the integral of the quantity φ over the domain

〈φ〉 =

∫ Lx1

0

∫ 2π

0

∫ ∞

−∞
φ(x1, x2, x3)dx1dx2dx3. (7.1)

For all φ considered presently, this integral exists. Taking the dot product of (5.1)

with ui, and integrating over the domain using x1, x2 periodicity as well as quiescent

flow at infinity, a conservation equation for the volume averaged kinetic energy 〈E〉

is obtained
d

dt

〈
1

2
u2

i

〉
= − 2

Re
〈SijSij〉, (7.2)

where Sij is the rate of strain tensor and the term on the right represents the viscous

dissipation 〈εν〉 which can be written

< εν > =
1

Re

〈(
∂ui

∂xj

)2
〉
. (7.3)
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The enstrophy defined as ω2 is a measure of the turbulence intensity and can be

shown to be equal to

ωiωi =

(
∂uk

∂xj

)2

− ∂uk

∂xj

∂uj

∂xk

. (7.4)

Applying (7.1) to (7.4) it can be seen that the volume averaged enstrophy is pro-

portional to the dissipation and hence also, a measure of the turbulence intensity.

< wiwi > = <

(
∂uk

∂xj

)2

> = Re < εν > . (7.5)

This is useful when considering LES, where only the resolved-scale enstrophy integral

can be calculated. Both resolved and subgrid dissipation integrals can be combined,

however, providing a means to estimate the total enstrophy or alternatively be in-

terpreted directly as a measure of the turbulence intensity of the flow. Finally, as a

measure of the intensity of each vortex, we define by Γ̄ the circulation around one

positively signed vortex in the array, averaged in the axial direction

Γ̄ =
1

Lx1

∫ Lx1

0

∫ π/2

−π/2

∫ ∞

−∞
ω(x1, x2, x3)dx3dx2dx1. (7.6)

Two techniques are used for flow visualization, the first of which is based on the

local velocity field around a critical point12, which to linear order is governed by the

velocity gradient tensor ∂ui/∂xj. For an incompressible flow, the eigenvalues λ of

∂ui/∂xj are calculated from

λ3 +Qλ+R = 0, (7.7)

where

Q = − 1

2
[SijSji + ΩijΩji] , (7.8)

and

R = − 1

3
[SijSjkSki + 3ΩijΩjkSki] , (7.9)

are the second and third invariants of ∂ui/∂xj, Sij and Ωij being the symmetric and

antisymmetric parts of the velocity gradient tensor respectively. Q > 0 implies a

pointwise dominance of rotation over strain magnitude and hence provides a means
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to identify vortical structures12,24. The present base flow has strong background ro-

tation in vortices, and hence is characterized by mostly positive values of Q. For this

reason iso-surfaces at discrete Q > 0 are chosen to provide visualization of the re-

sulting structures. Further, this strong base rotation is the reason more sophisticated

techniques incorporating pressure minima (due to our base flow the pressure should

be lower than ambient everywhere), which have been successfully used for detecting

structures in box turbulence26,33, were not needed. The second means of visualizing

the flow is through the passive scalar concentration c. The initial condition for c takes

the same form as the vorticity in (5.4), and is intended to be representative of the

diffusion of smoke or die injected down the core of each vortex. We choose Sc = 1 so

that no extra resolution requirements are imposed on the DNS.

7.2 Direct Numerical Simulation Results

A Direct Numerical Simulation (DNS) of the M&M vortex both with and without

axial flow was performed at Re ≡ Γ∗/2πν = 1000. The axial extent of the domain

is set to contain a single wavelength of the most unstable Crow mode. Each vortex

in the array (i.e. the half domain) is resolved with 64 × 64 × 128 points, the initial

core being described by 24 points in the diameter. The base flow is perturbed with

divergence-free random noise exponentially decaying with x3, and the NS equations

integrated in time. The time step is chosen such that the initial CFL number is

0.1. The various flow regimes resulting throughout the development of both the

q0 = ∞ and q0 = 1 initial conditions are analyzed by considering the evolution of the

integrated quantities 〈E〉, 〈ε〉 and Γ̄ in Figures 7.1(a-b) as well as through snapshots

of the flow at several stages in Figure 7.2. Visualization is through an isosurface of

Q = 1 shaded by local dissipation ε.

7.2.1 Early development

Consistent with the linear stability study, Figure 7.2(b) shows that the destabilizing

effect of axial flow causes the initial perturbations to grow at a faster rate than in
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Figure 7.1: Evolution of volume integrated quantities for the DNS of the Re = Γ/2πν =

1000 M&M vortex with C = 0.9 for q0 = 1 (solid lines) and q0 = ∞ (dashed lines). (a)

dissipation and circulation (b) normalized energy.
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its absence; helical structures with wavenumber kx ≈ 2 accompanied by regions of

increased dissipation are observed to develop on each vortex in the array. The lin-

ear stability study found a local maximum in the growth-rate vs axial wave number

curve (Figure 6.3) at around this wavelength; Viscosity most likely damps the higher

growth rate, shorter wavelength modes in the viscous DNS. In Figure 7.1(a) it can be

seen that globally, this growth of the initial perturbations leads to a slight increase

in the volume averaged dissipation and a corresponding faster decay of kinetic en-

ergy. As expected, the averaged circulation is unaffected by the axial velocity since

its destabilizing effect acts on each vortex independently and does not lead to en-

hanced inter-vortex vorticity convection. During this initial phase, the evolution of

each vortex is qualitatively similar to that of an isolated vortex, and is best described

in cylindrical components. Figure 7.3 shows that, similarly to the isolated case, the

maximum axial velocity shows a sharp decrease initially while the azimuthal compo-

nent maintains a constant gradual decay. Presumably, the mechanism is the same as

for the Batchelor vortex studied by Jacquin and Pantano25, whereby the energy of the

axial flow is extracted by turbulence within the core. The perturbations generated

are transported outward toward regions of local stability where they don’t modify the

mainly tangential flow; thus the axial velocity reduces while the angular momentum

is maintained. Consequently, q increases and in keeping with the linear analysis the

vortex evolves through regimes of progressively weaker instability rates. Ultimately,

the core stabilizes with respect to the helical modes and the vortex relaminarizes be-

fore the co-operative modes have shown appreciable growth. These phases can clearly

be seen in Figure 7.4, which shows contours of vorticity on slices through one vortex

in the array.

The early stage was investigated further by performing a DNS at Re = 3, 000 up

to time t=20. Using a mesh comprising 128 x 128 x 256 grid points, the simulation

represents the highest Reynolds number possible with the available computational re-

sources. Figure 7.5 show axial and azimuthal vorticity contours on slices through one

vortex in the array. As expected significantly more small scale motions are generated

in the core of the vortex as compared to the lower Reynolds number study. Small
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Figure 7.2: Flow visualization comparison through an isosurface with Q = 1 on which

contours of dissipation are plotted for the Re = Γ/2πν = 1, 000 DNS of the C=0.9 M&M

vortex with q0 = ∞ left and q0 = 1 right. Evolution is from top to bottom and shown at

non-dimensional times (a) 0 (b) 12 (c) 20 (d) 32 (e) 40 (f) 45.
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Figure 7.3: Evolution of the maximum axial and azimuthal velocity components as well

as the swirl parameter for Re = Γ/2πν = 1000.

patches of opposite signed vorticity can also be seen embedded in the vortex. These

small scale motions are once again seen to branch out from the core into more stable

regions where they are damped. By time t=20, the small scale motions have de-

creased significantly and the axial vorticity contours in the core of the vortex appear

to be returning to a cylindrical state. While complete relaminarization by this time

was observed in the lower Reynolds number case, the turbulence intensities are still

quite high for this simulation. It can be hypothesized that complete relaminarization

would eventually occur if this was an isolated vortex, however, the presence of counter

rotating pairs create co-operative instabilities, the non-linear effect of which is now

considered in detail for the Re = 1000 simulation.
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t=0

t=12

t=20

Figure 7.4: Contours of axial vorticity (left) and azimuthal vorticity (right) colored by

axial velocity at time 12 and 20 on slices through one vortex as shown in the top figure.

Re = Γ/2πν = 1000.
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t=0

t=12

t=20

Figure 7.5: Contours of axial vorticity (left) and azimuthal vorticity (right) colored by

axial velocity at time 12 and 20 on slices through one vortex as shown in the top figure.

Re = Γ/2πν = 3000.
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7.2.2 Cooperative instabilities

At slightly later times, Figure 7.2(d) shows that small amplitude kinks begin to

become apparent in both the q0 = ∞ and q0 = 1 cases. These are a result of the

more slowly growing higher-order Kelvin modes predicted by linear stability. As these

modes grow, the periodic analogue of the long-wavelength Crow instability appears,

bending the vortices such that sections move alternately toward and away from each

neighbor. By Figure 7.2(e), which corresponds to t= 40, a striking difference between

the two flows has become apparent. In the absence of axial velocity, the WM has

distorted each vortex to the extent that separate tubular structures can be seen

surrounding a highly dissipative core region. The next snapshot captured in Figure

7.2(f) shows that analogously to the vortex pair experiments of Leweke et al40 (LW

henceforth), the fluid in these structures is drawn closer to the neighboring vortices

where it is quickly wrapped around by the mean circulation; the effect being magnified

in regions where the CM pulls pairs of vortices closer together, increasing the local

strain rate and hence the WM growth rate. Ultimately this exchange of fluid between

counter-rotating pairs results in a rapid decrease in circulation and explosive growth

in dissipation. In contrast, the helical structure that results from the axial velocity

is observed to persist and while the WM is still present, the flow appears to be more

resistant to the aforementioned phenomenon. This is seen from the volume averaged

quantities in Figure 7.1 where the onset of both the sharp decrease in circulation and

growth in dissipation is delayed.

At later times the dissipation peaks in both cases before undergoing a rapid reduc-

tion in accordance with the significant cancellation of opposite signed vorticity. This

maxima is significantly higher for the q0 = ∞ case, providing further evidence of the

increased mixing that occurs in the absence of axial flow. As pointed out by LW, the

final state is different from the organized array of vortex rings that would result from

the reconnection of the primary structures if only the CM were present. The presence

of the WM increases mixing and hence the redistribution of energy from the large

scale structures to the small scales where it is dissipated. In the case of the vortex
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pair, Figure 23(d) of LW shows that the flow evolves to a state of periodic regions of

small scale motion separated by thin vortical structures. The authors suggest that

this is a result of a pressure gradient between regions where the primary vortex is

intact and where it has broken up due to the CM bringing the pair closer together

resulting in the pressure relaxing towards the ambient as discussed by Saffman60;

the axial velocity that results transports fluid away from the latter region leaving

“skeletons of the initial vortex pair”. For the periodic case one would expect similar

behavior, over a shorter wavelength however as the CM pulls each vortex alternately

closer to both neighbors. Plots of passive scalar concentration in Figures 7.6 and 7.7

show this phenomenon beginning to occur where regions of higher concentration can

be seen at the points of zero amplitude displacement of the CM. Visual comparison

with the experiments at later times was not possible as the high Schmidt number of

dye could not be simulated due to computational resolution constraints; at Sc = 1,

higher diffusion makes visualization difficult.

7.2.3 Circulation

LW compute the circulation evolution around sections of one vortex in planes where

the pairs are brought closer together and where they are separated. The important

time scale for this phenomenon is the reciprocal of the strain rate felt at the center

of each vortex due to all neighbors since this determines the growth rate of the WM

instabilities. As discussed in Section 5.1.3 this strain rate takes the value given by

(5.9) and (5.10) for the case of the vortex pair, and the M&M vortex array respectively.

Figure 7.8 shows Γ̄ for q0 = ∞ with the experimental points of LW compared to our

results, each plotted against γt and with abscissa shifted such that the onset of the

circulation decay occurs at about the same time. Good agreement is observed for the

initial period of decay where the rate is approximately the same in both experimental

planes. At later times, the circulation flattens off when the skeleton vortices appear

where the CM brings the pair closer together, and continues to decrease in regions

identified as consisting of small scale motion. The decay rate of Γ̄ decreases at this
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(a)

(b)

Figure 7.6: Contours of passive scalar for the Re = Γ/2πν = 1000, q0 = ∞ M&M vortex

at time 45 on slices through the core of the vortex in the xy plane (a) and the yz plane (b).
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(a)

(b)

Figure 7.7: Contours of passive scalar for the Re = Γ/2πν = 1000, q0 = 1 M&M vortex

at time 45 on slices through the core of the vortex in the xy plane (a) and the yz plane (b).
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Figure 7.8: Circulation comparison with the experiments of Leweke et al40 (Figure 26),

with abscissa rescaled to the present non-dimensionalization and shifted to make the onset

of decay coincide. Solid circles represent data in a plane where the vortices are brought

closer together and open symbols where they are separated. The dashed line is the averaged

circulation for the Re = Γ/2πν = 1000, q0 = ∞ case.
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time which is consistent when viewed as an average of these two phenomena. By this

late time, the enstrophy level has returned almost to initial levels and the energy has

decreased by a factor of five.

7.2.4 Alignment Statistics

We now consider the statistics of alignment between the eigenvectors of Sij and ωi, the

former being denoted by (ê1i , ê
2
i , ê

3
i ) ordered according to the corresponding eigenvalues

(λ1, λ2, λ3), with λ3 > λ2 > λ1 and λ1 + λ2 + λ3 = 0. We determine the probability

density function (PDF) of alignment between a vector and a symmetric tensor in

a three-dimensional coordinate system71. Local coordinates are used, defined by

the orthogonal eigenvectors of Sij, ωi being described through its polar angle θ and

azimuthal angle φ relative to ê3i and ê2i respectively. There is no distinction between

angles in the range (0, π/2) and (π/2, π). Joint PDF’s of φ and cos(θ) are computed.

Finally, since the present study is conducted on a domain of infinite physical extent,

on which the volume coverage of turbulent flow is zero, the PDF’s are presented

thresholded on dissipation exceeding 10% of its maximum.

Results obtained at six time instances (corresponding to those in the visualization

in Figure 7.2) are shown in Figure 7.9 for the case q0 = 1. While the q0 = ∞ initial

condition corresponds to a delta function PDF at φ = 0, cos(θ) = 0, the presence

of axial velocity leads to a more widely distributed band of alignment as shown in

Figure 7.9(a). As the flow develops through the previously mentioned stages, Figures

7.9(b-e) show that the preferred alignment shifts toward smaller values of φ and

cos(θ). By time t=45, it can be seen from Figure 7.9(f), that the flow has evolved

to a state in which the vorticity vector aligns itself preferentially with the eigen

direction corresponding to the intermediate eigenvalue of the rate of strain tensor.

This tendency is similar to that observed in previous studies of isotropic turbulence

32,71.
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Figure 7.9: Joint PDF of the alignment between the vorticity vector and the eigenvectors

of Sij for q0 = 1 at (a) t=0, (b) t=12, (c) t=20, (d) t=32, (e) t=45 and (f) t=50. 20 x 20

Bins of equal widths in each direction are used to compute the PDF’s.
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7.2.5 Effect of Resolution and Domain Size

Since the computational realization of the flow exhibits no true homogeneous direc-

tions, meaningful spectra are difficult to interpret; the domain comprises only one

axial wavelength of the most unstable Crow mode and only one period of the vor-

tex array.∗ Two-dimensional spectra in the k1 − k2 plane at z=0, are shown at two

time instants in Figure 7.10. It can be seen that the energy falls off several orders of

magnitude by the highest wave-numbers. More smooth spectra could be computed

by simulating many axial wavelengths, or alternatively by performing an ensemble

average over simulations with different initial perturbations. Such a computationally

intensive task is beyond the scope of this work, and so a different means of testing

the resolution is pursued.

We consider (7.2) which is satisfied exactly if the DNS is fully resolved. Figures

7.11 (a) & (b) show a comparison between the terms in this equation and the resulting

relative error as the simulation progresses. For most of the simulation, the error is

very small; however, at later times it increases to the order of 1%. This is most likely

due to the CM pulling the vortices in the x3 direction into regions where the grid is

coarser. While this indicates that the simulation is not fully resolved at late times,

the error is small, especially when one considers that dissipation takes place at the

small scales. To test this, simulations were performed using twice as many modes

in x3 while maintaining the same core resolution. This has the effect of increasing

the resolution at larger x3 values and resulted in an error reduction of an order of

magnitude at times when the long wavelength modes distort the vortices into these

regions. For both cases, with and without axial flow, no discernible differences were

seen in the observed phenomena during the time period of interest.

Another effect that must be considered is the influence of the axial domain size,

since this imposes a periodicity onto the solution, restricting the spectrum of per-

missible instability modes. While this is a fundamental problem with the temporal

∗only for an infinite number of axial wavelengths and/or periods of the array would the domain

exhibit truly homogeneous direction(s).
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Figure 7.10: k1 − k2 spectra in the plane z=0. (a) q0=1, t=12. (b) q0=0, t=45.
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Figure 7.11: Resolution measurements for the Re = Γ/2πν = 1000 M&M vortex with

C = 0.9 for q0 = 1 and q0 = ∞ (a) rate of change of kinetic energy compared to dissipation.

(b) relative error between the two.
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approach, simulations on a domain twice as long axially showed very similar results.

This simulation still does not capture all the long wavelength modes; however, it is

felt that the main role that this instability plays is in bringing parts of vortex pairs

sufficiently close for disintegration of the vortex to initiate via the short wavelength

modes.
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Chapter 8

Large-Eddy Simulation

The physical space formulation of the Stretched-Vortex Subgrid Scale model47 dis-

cussed in Chapter 3 is used to enable Large-Eddy Simulation (LES) to be performed

at what theoretically could be arbitrarily high Reynolds numbers. The probability

density function (PDF) that governs the alignment of the subgrid structures through

ev
i , is chosen to distribute proportionally between the direction of the vorticity vector

eω
i and that of the most extensional eigenvector of the rate of strain tensor ê3i .

P (ev
i ) = µ℘(ev

i |ê3i ) + (1− µ)℘(ev
i |eω

i ), (8.1)

where ℘(ev
i |ei) is the delta function probability density that ev

i is aligned with vector

ei. Presently, we use the model ansatz

µ =
λ3

λ3 +
√
ωiωi

. (8.2)

This alignment model allows back scatter and has performed excellently on simula-

tions of isotropic turbulence and Channel flow74. Physically, this is motivated by

a compromise between µ = 1, which represents correlation of the small scale vor-

ticity with the overall intermediate principal rate of strain (this includes the strong

local strain rate provided by the subgrid vorticity), and µ = 0 corresponding to to

alignment of the subgrid vortex with ω suggested by the idea of small scales gen-

erated through the instability of larger structures. For analysis purposes, the total



75

dissipation integral for LES runs is computed as

< ε > = < εν > + < εsgs >, (8.3)

and interpreted as a measure of the turbulence intensity in accordance with (7.5).

8.1 Flow Evolution Summary

Initially, simulations were performed at Re = 20, 000 as it is thought to be the limit

where the mixing transition has occurred and fully-developed turbulence is obtained

16. Once again, the axial extent of the domain is set to contain unit wavelength of

the most unstable Crow mode. Each vortex in the array (1/2 domain) is resolved

by 64 × 64 × 256, however, the initial core is still described by 24 points in the

diameter, the extra resolution in the infinite direction included to reduce truncation

errors associated with the grid stretching function; since the subgrid contains energy

now.

Figure 8.1 shows a comparison of the evolution of < ε > and Figure 8.2, energy

and Γ̄, for q = ∞ and q = 1 Flow visualization through isosurfaces of Q = 5 shaded

with dissipation are shown at several snapshots in Figure 8.3. As in the DNS,

the presence of axial flow initially causes each vortex to develop helical instability

modes leading to increased levels of turbulence. This time, however, the increase in

dissipation is greater and despite the weakening of the instability mechanism, it fails

to drop to its original level before the cooperative instabilities take over. As observed

in the DNS, the effect of axial velocity is to prolong the onset of vortex breakdown,

but at larger Re the delay is longer, presumably due to the greater intensity of the

helical structure within each vortex.
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Figure 8.1: Evolution of dissipation for Re = Γ/2πν = 20, 000 with q0 = 1 (solid lines)

and q0 = ∞ (dashed lines).
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Figure 8.2: Evolution of (a) energy and (b) circulation for Re = Γ/2πν = 20, 000 with

q0 = 1 (solid lines) and q0 = ∞ (dashed lines).
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Figure 8.3: Flow visualization comparison through an isosurface with Q = 5 on which

contours of dissipation are plotted for the Re = Γ/2πν = 20, 000 LES of the C=0.9 M&M

vortex with q0 = ∞ left and q0 = 1 right. Evolution is from top to bottom and shown at

non-dimensional times (a) 0 (b) 6 (c) 11 (d) 20 (e) 26 (f) 32.
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8.2 SGS model performance

The performance of the subgrid model is shown in Figure 8.4 through the dissipation

ratio εratio defined as the proportion of the total dissipation that comes from the

subgrid

εratio =
〈εsgs〉

〈εν〉+ 〈εsgs〉
. (8.4)

It can be seen that, as expected, the model is most active during the WM enhanced

mixing stage where the circulation decay occurs and in the case of axial velocity, the

period of initial helical growth. At its peak, the model contributes approximately
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Figure 8.4: Evolution of εratio for Re = Γ/2πν = 20, 000 with q0 = 1 (solid lines) and

q0 = ∞ (dashed lines).

70% of the total dissipation in both cases. It is interesting to note that this is

roughly the same as for the channel flow simulations of Voelkl et al.74 at Reτ = 1017

which corresponds to a large scale Reynolds number (based on center line velocity)

of around 20,000. While the macroscopic details of the two flows are quite different,
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the small scale details appear to be similar. Toward the end of the simulation, when

the circulation decay is complete, the subgrid contribution diminishes indicating that

the flow is becoming more resolved.

To gain further insight into the performance of the model, we consider the align-

ment statistics between the eigenvectors of Sij and the eigenvectors of the subgrid

stress tensor. Tao et al.71 computed such alignment PDF’s from their experiments

of fully developed turbulent flow in a duct, by filtering their data to obtain resolved

and subgrid scales. While it is unreasonable to expect the present subgrid model to

reproduce these PDF’s exactly, it is pleasing to note that the average angle between

the most extensive stress and the most extensional strain rate is ≈ 39◦, which is close

to the preferred alignment angle of 34◦ found by the experimental study.

8.3 Early development

Figure 8.5 shows, for q = 1, the evolution of < ε > / < ε0 > during this period for

Reynolds numbers in the range 1000 to 20,000. It can be seen that as Re is increased

so too does both the dissipation growth rate, and the peak dissipation level obtained.

After this maximum, the dissipation decreases at a rate that is approximately inde-

pendent of Reynolds number. At later times, the cooperative instabilities dominate

as seen in the DNS; the CM pulls vortex pairs together where enhanced transport via

the short-wavelength instabilities leads to the eventual disintegration of the vortex.

The linear analysis suggests that the long wavelength modes and hence the timescale

for initiation of this phenomena are independent of Reynolds number. We conclude

that complete relaminarization of the vortex is not observed at the higher Reynolds

number, as in the isolated vortex simulations of Sreedhar & Ragab67, because that in-

sufficient time passes for the smaller viscosity to damp out the turbulent fluctuations

prior to the dominance of cooperative instabilities.

As with the DNS, the early evolution of each vortex is considered as independent

from every other in the array and it is thus meaningful to speak in terms of cylin-

drical components. Further, radial distributions are obtained by averaging over the
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Figure 8.5: Effect of Re on the early development of the vortex array with q0 = 1.

Dissipation is plotted at Reynolds numbers 1000, 2000, 3000, 4000, 8536, 20,000 (lower

curve to upper curve). The first 3 were obtained from DNS and the latter 3 from LES.

azimuthal direction. The results are interpreted cautiously, however, since only for

infinite vortex separation is this direction truly homogeneous. The distribution of

circulation computed in this manner is shown in Figure 8.6. It can be seen that in

accordance with the universal inner region of Hoffman and Joubert23 for turbulent

vortices, a region of solid body rotation develops in the core of the vortex, followed

by a transition to a region where the circulation varies logarithmically. Phillips50

considered the logarithmic region as only the limiting form for r = rc and formulated

a similarity solution for the approximate form of the circulation as a function of radii

for the turbulent trailing vortex. Good agreement is found with the current work

to a radii of approximately 3rc, beyond which the influence of the counter rotating
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Figure 8.6: Circulation profile for Re = Γ/2πν = 20, 000 at t = 10 (symbols) showing

good agreement with the similarity solution of Phillips50(solid line). Also shown are the

inner and logarithmic regions predicted by Hoffman and Joubert23.

pair becomes substantial. Plots of the cylindrically averaged velocity and εratio are

shown in figure 8.7 for Re = 20, 000. As expected, the axial velocity maintains its

initial bell shaped profile although its magnitude in the core decreases as it feeds

turbulence generation in that region. Outside the core, however, the axial velocity

remains relatively unchanged during the process. In sharp contrast to this, the model

dissipation changes only slightly near the center, but becomes more active with time

at larger radii, as turbulent fluctuations generated in the core propagate outwards.

It is interesting that the model contribution does not die off at small radii, where

the turbulent vortex is thought to be a region of laminar solid body rotation. While

this appears to be true in an averaged sense, as seen from the circulation profile in
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Figure 8.7: Radial distributions of (a) the θ averaged axial velocity and (b) εratio at several

instances in time for q0 = 1, Re = Γ/2πν = 20, 000.
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Figure 8.6, it appears that, in agreement with previous simulations67, the inner re-

gion is characterized by high local fluctuations. This is also in keeping with linear

theory, which predicts zero growth rate of small amplitude disturbances only at the

very center25.

8.4 Mixing Transition

Konrad and Roshko34(cf. Breidenthal7), observed in their shear layer experiments

that above a particular value of the local Reynolds number, the amount of small

scale mixing is substantially increased. Dimotakis16 generalized this idea to other

flows, proposing that above a critical Reynolds number, the flow transitions to a

more well-mixed fully developed turbulent state. This mixing-transition takes place

beyond the usual transition from laminar to unsteady flow that can often be under-

stood in terms of hydrodynamic stability arguments. In shear layers for example it is

observable as a well-identified transition in the flow; however, it is less conspicuous in

other flows such as Jets which are three-dimensional even at low Reynolds numbers

16. A mixing-transition in such flows is qualitatively identifiable, however, through a

Reynolds number independence of quantitative measures such as the scalar variance

and viscous dissipation. Motivated by results from experiments and DNS of homo-

geneous turbulence in a spatially periodic cube68,69, we now consider the effect of Re

on < ε > as one means of identifying a mixing-transition during the early evolution

of the vortex array.

Presently, velocity and length scales, v∗ and L∗, are chosen as the (time depen-

dent) maximum azimuthal velocity component and the radial location at which it

occurs. Figure 8.8 shows the dissipation non-dimensionalized in this way vs. Re at

several stages of the turbulent development initiated by the helical instability mecha-

nism. The energy dissipation rate appears to be independent of viscosity at high Re.

Further, for Re ≥ 1 − 2 × 104, it asymptotes to a value of approximately 0.1; some-

what higher at t = 10. While this constant is generally recognized as a function of

the flow geometry, the mixing transition concept suggests that the Reynolds number
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above which it is reached is not. By considering experimental and numerical simula-

tion data on a wide variety of flows, Dimotakis16 concludes that a mixing-transition

occurs above a large scale Reynolds number of between 1− 2× 104. To support this

hypothesis, the Reynolds number dependence on the vortex structure of the flow field

is studied by considering isosurfaces of Q (close ups of Figures 7.2 and 8.3). Figure

8.9(a-e) shows that while considerable difference is observed between Re = 1000 and

20, 000, the structure remains almost unchanged when the Reynolds number is raised

by an order of magnitude; two time instances have been shown for the lower viscosity

cases to visualize the helical structure developing into smaller scale motions. This

suggests that the mixing-transition in the present flow occurs by Re = 2 × 104 and

more profoundly that the flow field at this value is representative of what would be

obtained at all higher Reynolds numbers.
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(a)

(b) (c)

(d) (e)

Figure 8.9: Enlarged views of a section of one vortex in the array showing the effect of Re

on the flow structure through an isosurface of Q. (a) Re = Γ/2πν = 1000, Q = 1, t = 12.

(b) & (c) Q = 5, t = 6, Re = 20, 000 and Re = 200, 000 respectively. (d) & (e) Q = 5,

t = 10, Re = 20, 000 and Re = 200, 000 respectively.
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Chapter 9

Axial Pressure Gradients

The presence of the engine structure, the fuselage and the horizontal stabilizer, as well

as flap tips during the take-off phase of real aircraft create additional co- and counter-

rotating vortex systems that complicate the idealized picture of an airfoil wake. It is

generally believed64 that all the vortices on one side of the symmetry plane merge,

resulting in a pair of counter-rotating vortices; however, experimental evidence has

shown that under some loading conditions several discrete vortex systems can remain

many chords downstream15,64. Figure 9.1 shows an experimental study performed by

de Bruin et al.15 on a Fokker airliner model in which multiple vortices can clearly

be seen. The interaction between such co-rotating systems has been the focus of

much work, although the vortices are typically treated as inherently two-dimensional.

Bertenyi4 studied experimentally the three-dimensional interactions that occur during

co-rotating vortex merger and found that merger occurred sooner than was predicted

for the corresponding two-dimensional case. It is with this motivation that we consider

in greater detail the processes that occur during the formation of the trailing vortex

pair.

In the previous chapters, the effect of axial velocity within the core of each vortex

was shown to play an important role and, if strong enough, could cause instabilities

that grow on a timescale much shorter than that for the co-operative instabilities

that eventually bring opposite signed pairs together. In the absence of viscosity, a

jet-like profile (away from the wing) results from the pressure in the cores of the rolled
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up vortex being lower than the ambient pressure ahead of the plane; referred to as

the Bernoulli effect64. Moore and Saffman48 showed analytically that the presence of

Figure 9.1: Experimental study performed by de Bruin et al.15 on a Fokker airliner model

showing additional vortex systems.

viscosity acts to make this flow more wake like, and for light loading configurations

(Γ/U∞b � 1, where their theory is valid), a deficit in good agreement with experi-

mental data results; the magnitude of the deficit was an order of magnitude less than

the freestream. The wake-like profile is a result of the boundary layers that develop

over the wing as well as the upstream thrust produced by the axial relaxation of the

core pressure caused by radial diffusion of vorticity.

As the loading is increased, the influence of the Bernoulli effect becomes more
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important. This can be seen in the experimental study of Chow et al.13 that focused

on a relatively high Reynolds number study of a low aspect ratio airfoil at a high

angle of attack. The maximum azimuthal velocity of the resulting tip vortex was

approximately equal to the free stream velocity and an axial velocity excess (jet) of

similar size was observed. The acceleration of the jet-like velocity was accompanied by

a measured drop in static pressure over the chord of the wing and almost constant total

pressure, consistent with the Bernoulli effect. During the subsequent roll-up of the

wake, the static pressure remained relatively constant and the axial velocity weakened

slightly, indicating that viscous effects were roughly balanced by the Bernoulli effect

in this region. While the swirl parameter for the resulting vortex is approximately 2,

which renders the isolated configuration stable, it is conceivable that higher loading

could produce an unstable configuration.

Experimental vs. Numerical configurations

Experimental studies that investigate the nature of the turbulent vortex, as well as its

interaction with co- or counter-rotating pairs, generally take one of two approaches.

Analogous to the true aircraft wake, the first approach uses a lifting body to generate

vortices, whose spatial development is tracked in the test section once a statistically

steady state is reached13. The second approach, shown in Figure 9.2, is to generate

spatially homogeneous vortices shed from a vortex generator as in the experiments

of Leweke and Williamson40. The transient evolution of the pair is tracked and com-

pared to the spatially developing wake by replacing t with x/U∞. The key difference

between the two is that while three-dimensionality results in the latter from the ensu-

ing instabilities, the base flow is two-dimensional in nature; obviously no mean axial

flow results in this case. A more subtle yet related effect is in the axial pressure

gradient that develops in the spatially developing wake due to intensification of the

vortex during roll-up, and subsequent relaxation as it diffuses; these are transient

phenomena in the later experiment and provide no forcing in the axial momentum

equation.

From a computational perspective, it is difficult to simulate the full spatial evolu-
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Figure 9.2: Illustration of a device used to generate a counter rotating pair that is essen-

tially 2 dimensional. Figure adapted from LW40.

tion of the vortex and so simulations of the first experimental setup typically employ

the temporal approximation as shown schematically in Figure 9.3. This typically has

the effect of constraining the base flow to be two-dimensional and hence results in a

simulation that is more closely related to the second experimental setup. Sreedhar

and Ragab66,67 studied the effect of axial flow on a model of an isolated tip vortex us-

ing this formulation. They showed that for unstable values of the swirl parameter the

vortex becomes turbulent before relaminarizing once the axial velocity had decreased

sufficiently. While these simulations were in agreement with the spatial experimental

study of Phillips and Graham51, the loss of the spatial nature of the flow made it

impossible to distinguish between jet- and wake-like axial flow and hence reproduce

the subtle differences detected in the experiment.
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Figure 9.3: Schematic illustration of the temporal approximation. Axial periodicity is

enforced on a small domain with a spatial length scale long enough to capture the turbulent

motions. Evolution in time of the periodic vortex on this domain is likened to the spatial

evolution of the real wake.

In the following section, a model is formulated to incorporate into the temporal

simulation, the effect of axial pressure gradients that develop in the spatially develop-

ing vortex. It is hoped that by including the Bernoulli effect and retaining information

about the flow’s spatial nature, we will be able to create a better model of the true

three-dimensional wake than is obtained by simply studying three-dimensional dis-

turbances on inherently two-dimensional structures. This allows the distinction to be

made between jet- and wake-like axial flow and provides a mechanism to prolong the

core turbulence. Subsequently, we investigate how the Bernoulli effect influences the

merger of co-rotating pairs and, in particular, the axial velocity that results.

9.1 Modeling Axial Pressure Gradients

In the true spatial evolution of a wing tip vortex, an axial pressure gradient develops

in the core as the swirling velocity diffuses radially due to both viscous and turbulent

diffusion. This pressure gradient produces an axial forcing, as can be seen from the
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axial momentum equation

∂u1

∂t
+ uj

∂u1

∂xj

= − ∂p

∂x1

+
1

Re

∂2u1

∂x2
j

. (9.1)

When the temporal approximation is used to replace the infinite axial extent of the

physical domain with transient evolution of a finite periodic domain, this phenomenon

is also confined to a transient nature, since periodicity prevents any average axial

gradients in the velocity components from developing.

∫ 2π

0

∂ui

∂x1

dx1 = ui(2π)− ui(0) ≡ 0. (9.2)

Since axial velocity appears to play a critical role in the transition to turbulence of

a wing tip vortex64, we propose a model for the x-average pressure gradient that

provides a driving force in the real flow but is absent from the axial momentum

equation in the simulation. Such a model is possible in the periodic framework, since

only the pressure gradient enters the formulation and not the pressure itself. Hence

we can write
∂p

∂x1

=
∂p

∂x1

(x2, x3, t) +
∂p′

∂x1

(x1, x2, x3, t) , (9.3)

where the first term represents the average pressure gradient that we intend to model

and the second term fluctuating pressure gradients with zero mean, p′(x1 = L) =

p′(x1 = 0).

It is important to note that the first term must be imposed externally, equivalent

to a body force, in a manner similar to as is done in channel flow simulations75, i.e.,

it is not a result of the base flow since all velocity components are axially periodic.

We model this term by using the Taylor approximation to replace the mean axial

gradient by a temporal derivative included as a source term in the axial momentum

equation.
∂p

∂x1

=
1

L

∫ L

0

∂p

∂x1

dx1 −→
1

LU∞

∫ L

0

∂p

∂t
dx1. (9.4)
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Hence the axial momentum equation with modeled term reads

∂u1

∂t
+ uj

∂u1

∂xj

= − 1

LU∞

∫ L

0

∂p

∂t
dx1 −

∂p′

∂x1

+
1

Re

∂2u1

∂x2
j

. (9.5)

Once again, it should be noted that such a model is not necessary for simulating the

experiments of LW since their vortex generator creates a transiently evolving vortex

of finite extent similar to what is actually simulated in the code. Before (9.4) can be

applied, an assumption must be made about the velocity of the lifting surface, U∞.

Assuming lifting line theory and an elliptically loaded airfoil, the lift coefficient CL

can be shown46 to be

CL =
πArΓ0

2bU∞
, (9.6)

where Ar is the aspect ratio of the wing of span b with circulation about the central

section of the wing Γ0. Shifting focus now to the trailing vortex pair which is fully

rolled up by ≈ O(10) chord lengths, it can be argued from lifting line theory that

each has a circulation Γ0. Further, if these vortices are approximated by Rankine

vortices (Γ0 = 2πrcVc) it can be shown46 that

2rc

b
≈ 0.171. (9.7)

Combining these results

U∞ =
0.171π2

2

Ar

CL

Vc. (9.8)

For typical values of Ar and CL (8 and 0.7 respectively), U∞ ≈ 10Vc, which is similar

to the observed values of maximum axial velocity in the experiments of Phillips and

Graham51. Equations (9.4) and (9.8) in conjunction with an appropriate numerical

differencing approximation for the first derivative operator form a tractable model

that can be applied to the NS code; the presence of a point at infinity fixes the

absolute value of the pressure and hence allows the temporal pressure derivative in

(9.4) to be defined in the incompressible framework. It is the retention of physics of

the spatial nature of the true flow through this modeled forcing that allows a jet-like
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axial profile to be distinguished from a wake. Imposing the modeled pressure body

force as described fixes the positive axial direction as pointing away from the wing;

the pressure drop in the core of an isolated vortex, diffusing spatially, causes a force

towards the airfoil. A wake-like flow is defined as one in which the axial velocity is in

the same direction as this force, while a jet has opposite sense. Finally, the preceding

analysis shows that while a typical aircraft flies at around Mach 0.9, this study of the

wake is performed in a reference frame where the important velocity scale is an order

of magnitude less than the plane speed, and hence the assumption of incompressibility

is valid.

9.2 Effect on Isolated Vortices

The effect of superimposing jets and wakes on an isolated turbulent vortex was studied

by Phillips and Graham51. In an attempt to model these experiments, LES were

performed at their Reynolds number of 8,536 using the model for axial pressure

gradients. The time scale for co-operative instabilities to influence the M&M initial

condition is large compared to that for the axial flow phenomena being investigated

and hence the early development of each vortex is considered as if it were isolated. The

modeled pressure gradient provides not only a means for distinguishing between the

two flows but also a mechanism for altering the rate at which the axial velocity decays

and hence the period over which the core of each vortex is unstable to disturbances.

Figure 9.4 shows the evolution of < ε > for both jet and wake scenarios with q = 1.

While the pressure gradient acts to keep the instability mechanism active longer for

the wake-like flow, the dissipation levels are lower than for a jet. If one views the

early flow development as characterized by a transfer of energy from the axial flow to

turbulent fluctuations in the core, then it is reasonable to assume that the pressure

forcing enhances or retards the rate of transfer for jets or wakes respectively. To

investigate the differences in the turbulent structure of the vortex for each scenario,

the cylindrically-averaged mean flow is first computed and then radial profiles of the

fluctuating components of velocity determined. Figure 9.5 shows the resulting profiles
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Figure 9.4: Comparison of the evolution of the dissipation, between q = 1 jet- (solid lines)

and wake-like (dashed lines) axial profiles for the LES of the Re = 8, 536 M&M vortex with

C = 0.9.

at two different instants in time corresponding to q ≈ 1.8. It can be seen that, in

agreement with the experiments51, the turbulence quantities attain higher values,

extending over greater radii, for jet-like flows than for wake-like flows. It should be

noted that a smaller region of the core is considered for the radial and azimuthal

components since the flow can only be approximated as cylindrical at small radii.

While the presence of pressure gradients acts to preserve the wake-like velocity

profile, hence prolonging the period of helical instability, the axial velocity still de-

creases and the vortex evolves towards a relaminarized state. Before this state is

reached, however, the cooperative instabilities take over, leading to eventual break-

down as discussed in Chapters 7 and 8. While it can be hypothesized that the stronger
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Figure 9.5: Radial distributions of the θ averaged fluctuating components of (a) axial

velocity, (b) radial velocity and (c) azimuthal velocity at t=10.8 (squares) and t=15.8

(circles) for the q = 1, Re = 8, 536 M&M initial condition. Solid lines are for a jet like axial

flow and dashed lines for wakes.
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axial velocities resulting for the jet would delay the eventual vortex breakdown (as

seen earlier), the meaning of the pressure model becomes unclear once axial homo-

geneity is lost. Finally, the experiments of Phillips and Graham were conducted at

relatively low airfoil loading; the unmodified flow had a wake-like profile in-keeping

with Moore and Saffman. Equation 9.8 suggests that these effects would be magnified

as the loading is increased. Such a configuration is likely to occur during take off and

landing. This phase is of particular interest due to the presence of additional vortex

systems resulting from the flap tips, the consequences of which are presented in the

following section.

9.3 Effect on Co-rotating vortex merger

The merger of co-rotating vortices presents an interesting problem to investigate fur-

ther, the role that axial pressure gradients play in spatially evolving wakes. Bertenyi4

studied this problem experimentally and observed vortex merger significantly sooner

than was predicted by two-dimensional simulations. The rotation rate at which the

vortices orbit one another increased, causing them to move closer together; the dif-

ferences were therefore attributed to three-dimensional phenomena. During the take

off and landing phase of aircraft, where this problem is of interest, the wing loading

is much higher and the swirling velocities in the wake are of the same order as the

plane speed. This coupled with the the pressure change during vortex merger leads to

a much larger ’modeled’ contribution than occurred in the light loading single vortex

experiments.

We perform three-dimensional simulations using an initial condition comprising

two axisymmetric vorticity distributions, like-signed, and separated by approximately

three core radii, similar to as discussed in Section 4.5. On top of this is superposed an

axial flow on each vortex with a stable swirl number of q = 1.6. Image flows associated

with the boundary conditions imposed at about six core radii have a non-negligible

affect on the flow; however, in line with the previous chapters, these instability mech-

anisms occur on a much longer time scale than are of interest currently. Figure 9.6
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shows the evolution of the pressure minima for Re = 1000. Initially, the pressure re-

t
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Figure 9.6: Evolution of pressure minima for the temporal merger of co-rotating vortices,

Re = 1000.

laxes as each vortex diffuses; however, merger begins and the pressure drops suddenly

as the pair merge into a single larger vortex. Once the cores have merged by about

t=20, diffusion once again causes the pressure to relax towards the ambient.

This rapid drop in pressure as the cores merge produces a thrust force that acts to

increase the magnitude of the axial jetting. To investigate this effect, the simulation

is repeated using the pressure gradient model with U∞ = Uθmax . Figure 9.7 shows a

comparison between the two simulations through vorticity contours taken on a slice

in the plane of the vortex. In conjunction with Figure 9.9, which shows the evolution

of the swirl number, it can be seen that without the modeled pressure gradient the

vortices merge in essentially a two-dimensional manner, the axial velocity behaving



99

effectively as a passive scalar. In contrast however, the pressure forcing accelerates the

axial flow, resulting in a corresponding decrease in the swirl number into the unstable

regime. The generation of small scale motions through this instability mechanism en-

sue and cause the vortex to become turbulent. Once again, the instability mechanism

weakens and the vortex relaminarizes as a single vortex at later times.

These simulations identify a mechanism for enhancing the axial flow within trailing

vortices to the extent that the vortex can become unstable, resulting in the observed

helical instability structure. It is hypothesized that the eventual cooperative instabil-

ities that result from neighboring pairs will be similar to those seen in the previous

chapter, whereby the helical structure persists and the onset of the circulation de-

cay is prolonged. This emphasizes the important differences that can result between

the spatial evolution and standard temporal approximation. Unfortunately, it seems

unlikely that this mechanism alone can explain the faster merger times seen in the

experiments, since the axial thrusting does not appear to affect the relative rotation

rate between the two vortices. Perhaps this mechanism, coupled with the spatial

spiraling of the vortices about one another, could cause the observed result. It is

unclear, however, how this effect can be included in the temporal simulation.
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Figure 9.7: Visualization of co-rotating vortex merger through contours of vorticity on a

slice in the plane of the vortex. The initial condition is shown (top) with the visualization

plane defined. The flow state at t=5 and t=10 is shown both with (right) and without (left)

the pressure gradient model activated. Re = 1000.
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Figure 9.8: Contours of vorticity on the visualization plane defined in Figure 9.7. The

flow state is shown at four times corresponding to t=15, 20, 40 and 80 (top to bottom) both

with (right) and without (left) the pressure gradient model activated. Re = 1000.
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Figure 9.9: Evolution of the maximum swirl and axial velocity component, as well as

the swirl parameter q, during the merger of co-rotating vortices both with (bottom) and

without (top) the model for axial pressure gradients. Re = 1000.
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Chapter 10

Concluding Remarks

This study has focused primarily on a model for the trailing vortex wake comprising

an array of counter rotating structures with a superposed axial velocity representa-

tive of the roll-up process. The particular form of the initial condition chosen is an

exact solution of the 2D-3C steady Euler equations on a domain of infinite extent

perpendicular to the plane of the array, thus enabling the linear stability properties

to be investigated. We find that, in addition to the slowly growing co-operative ellip-

tic instabilities, the presence of sufficient axial flow leads to modes with significantly

higher growth rates. DNS show these modes to be helical in nature and they appear

confined to each structure independent of the array. In agreement with theoretical

predictions and previous DNS of a model of an isolated trailing vortex, the turbulence

generated as a result of these modes decays. This leads eventually to relaminarization

owing to a reduction in the axial flow and hence the underlying instability mecha-

nism. At later times the co-operative instabilities take over. The periodic analogue of

the Crow instability pulls portions of each pair together where vortex breakdown is

initiated via mixing caused by the short-wavelength Widnall modes. Despite causing

higher initially linear growth rates, the presence of axial flow results in structures

that appear to resist this break-down phenomenon for longer periods than for vor-

tices without axial flow. Analysis of the PDF’s of alignment between the vorticity and

the eigenvalues of the rate of strain tensor show an evolution from an initially orga-

nized state towards a final state in which preferential alignment with the intermediate
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eigenvector is observed. This is similar to what is seen in isotropic turbulence and is

further evidence that vortex-disintegration has occurred rather than the reconnection

expected in the absence of the Widnall modes.

These trends were investigated at higher Reynolds numbers by LES using the

stretched vortex subgrid model. The presence of large scale rotation and an infi-

nite domain provided a challenging flow regime to test the physical-space version

of the model beyond the benchmark test cases of box turbulence and channel flow.

Once again, two fundamentally different flow regions are identified; however, while the

turbulence in each vortex, generated by the fast axial velocity related instabilities, de-

creases significantly, relaminarization is not observed. Presumably, significant growth

of the co-operative modes occurs before the lower viscosity has damped out the weak-

ening helical modes. This configuration results in delaying the disintegration of the

vortex longer than at lower Reynolds numbers. By comparing the dissipation, non-

dimensionalized by the vortex core radius and velocity at different Reynolds numbers,

a mixing transition was identified at Re = 1−2×104. This indicates that beyond this

threshold the flow is less influenced by Reynolds number; an idea supported by flow

visualization. Future work as computational resources improve would be to compute

a DNS at Re=20,000, hence providing the basis for a comprehensive understanding

of the behavior of the true aircraft wake at higher Reynolds numbers.

Finally, we considered the differences between studying three-dimensional insta-

bilities on two-dimensional vortices, as is typically done numerically, and the real

three-dimensional spatial evolution of the airfoil wake. One difference between the

two is that imposing axial periodicity discretizes the spectrum of supportable axial

instability modes. The current simulations however, appear relatively insensitive to

this as long as the most unstable Crow mode is captured; the role of the long modes

appears to be predominantly associated with pulling neighboring vortices together

where mixing occurs via the short wavelength instability. While only a couple of

such long modes can be captured, many small wavelength modes exist to describe

the non-linear interactions at this scale. A more subtle difference is in the axial

pressure gradient that develops as the spatial vortex diffuses radially. A model for
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this phenomenon was formulated, and hence aspects of the spatial nature of the real

flow incorporated into the simulation. This made it possible to distinguish between

wake-like and jet-like axial flow and also provide a mechanism to enhance the period

of turbulence within the vortex core. For light loading configurations it was found,

in agreement with Phillips and Graham51, that a jet resulted in higher turbulence

intensities. Pressure gradients were not strong enough to sustain turbulence, and

relaminarization of the isolated vortex can be predicted in further agreement with

the experiments.

For light loading conditions, a wake-like axial velocity profile with magnitude be-

low that required to render the isolated vortex unstable is typical. During the take-off

and landing phase however, the higher loading results in swirling velocities of similar

magnitude to the plane velocity. The associated drop in pressure can cause strong

jet-like axial flow to be present. While experiments at high angles of attack show that

the axial velocity is still too low to cause the isolated instabilities, it is possible that

merger of the co-rotating systems resulting from flap tips can cause a further drop in a

pressure and hence increased axial flow. Such a case was considered and highlights the

short-comings of the unmodified temporal approximation whereby the axial velocity

behaves essentially as a passive scalar mixed by the two-dimensional base flow. In-

corporating the model for axial pressure gradients causes the axial flow to strengthen

during the merger process and three-dimensional instabilities to develop. The char-

acteristic weakening of the instability mechanism occurs at later times, causing the

merged vortex to relaminarize. While the model allows some aspects of the spatial

nature of the wake to be realized in the temporal framework, it appears that the

spatial spiraling of the vortices about each other must be taken into account for ac-

curate ‘time-to-merger’ predictions to be made. For such a prediction the constraints

imposed by the temporal approach seem inescapable and the full spatial evolution

needs be simulated.

The main findings of this research can then be summarized as:

• Superposition of a sufficiently strong axial flow on the M & M vortex array

causes instability modes that develop independently on each vortex in the ar-
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ray, the associated growth rates being much stronger than for the cooperative

instabilities.

• The modes associated with these instabilities are helical in nature, and extract

energy from the axial flow.

• The axial flow decreases, weakening the instability mechanism to the point

where relaminarization can be observed before the cooperative modes take over.

• At higher Reynolds numbers (presumably also for smaller values of the separa-

tion parameter C), the cooperative instabilities take over before relaminarization

occurs.

• A mixing transition for this initial phase is observed at around Re = 20, 000.

• The helical nature of the initial instability persists and retards mixing via the

short wavelength cooperative modes.

• The effect of axial pressure gradients consequent of a spatially decaying line vor-

tex can be modeled in the framework of the temporal approximation, allowing

jet- and wake-like axial flows to be distinguished. Higher turbulence intensities

result from the former in accordance with previous experimental work51.

• Axial pressure gradients provide a mechanism for enhancing the axial-flow re-

lated instabilities to the point where a pair of co-rotating vortices, each initially

stable with respect to this mechanism, merge in a three-dimensional manner.



107

Appendix A

Point Vortex Induced Strain

A derivation of the strain at the center of a point vortex, induced from either a

single counter rotating point vortex or an array of counter rotating point vortices is

presented to examine the effect of image flow arising from imposing periodic boundary

conditions. The complex potential for flow in the plane of a line vortex of negative

orientation at the point (x,y)=(a,0) is given by

Fpt(z) = i
Γ

2π
log(z − a), (A.1)

from which the complex velocity is computed as

Wpt(z) = u− iv =
dF

dz
= i

Γ

2πz
. (A.2)

To determine the strain induced at the center of a counter rotating neighbor located

at the origin, consider the rate of strain tensor Sij given in matrix form as

 0 Γ
2a2π

Γ
2a2π

0


This has orthogonal eigenvectors at ±45 degrees to the x axis with corresponding

eigenvalues ∓ Γ
2a2π

. Now consider an array of co-rotating line vortices of x period 2a,
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having complex potential

Fco(z) = −i Γ

2π
log

(
sin

(πz
2a

))
(A.3)

We form the counter rotating array by superposing an opposite sign array offset by

distance a.

Fcr(z) = −i Γ

2π
log

(
sin

(πz
2a

))
+ i

Γ

2π
log

(
sin

(
π(z − a)

2a

))
(A.4)

To determine, the strain induced by the array at the center of the vortex located at

the origin, the point vortex complex potential (of positive sense) is subtracted and

the complex velocity evaluated as

Wcr(z) = i
Γ

2πz
− i

Γ

4a
cot

(πz
2a

)
+ i

Γ

4a
cot

(
π(z − a)

2a

)
. (A.5)

This is expanded about the origin and the leading order computed as

Wcr(z) = −i Γπz
12a2

+O[z2], (A.6)

with the associated rate of strain tensor 0 Γπ
12a2

Γπz
12a2 0


Once again the eigenvectors are at ±45degrees to the x axis, however, this time the

magnitude of the strain is about 65% higher with eigenvalues ∓ Γπz
12a2 .

Switching now to the M&M vortex array, Sij can be evaluated at the origin from

the dimensional version of 5.5 with period 2a giving 0 ΓπC
4a2

ΓπC
4a2 0

 ,

with the same eigenvectors as before, and eigenvalues∓ΓπC
4a2 . This however, is the total
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strain, included that associated with the vortex at located at the origin. An isolated

point vortex has no self induced strain, however, Moore and Saffman49 calculated

that an exterior imposed strain distorts the Rankine vortex into an ellipse, resulting

in a total strain at the origin for the pair of

Γ

πa2
. (A.7)

Finally, the ratio of the M&M strain to the vortex pair total strain is calculated as

cπ2

4
. (A.8)
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Appendix B

Coefficients for Time Integration

The coefficients α, β and γ of the stiffly stable integration scheme used for the time

integration of N-S as presented in section 4.4.1 are given in the table below. These

can be derived formally using Taylor series expansions as discussed in Karniadakis et

al.30

Table B.1: Coefficients for stiffly-stable schemes

Coefficient 1st order 2nd order 3rd order

γ0 1 3/2 11/6

α0 1 2 3

α1 0 -1/2 -3/2

α2 0 0 1/3

β0 1 2 3

β1 0 -1 -3

β2 0 0 1
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