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Abstract 
 

Ultra-high-Q (UHQ) silica microspheres have found research applications in diverse 

fields ranging from telecommunications to nonlinear optics to biological and chemical 

sensing.  However, despite having quality factors greater than 108, the silica microsphere 

has not moved to an industrial setting because of several major drawbacks. The most 

hindering is the manual fabrication technique used that makes tight process control 

difficult and integration with other optical or electrical components impossible. Despite 

the strong desire to fabricate an integrated UHQ microresonator on a planar substrate, the 

highest quality factor achieved for any micro-fabricated planar micro-cavity (at the time 

of my first publication) was over 4 orders of magnitude lower than for silica 

microspheres. In this thesis, a process for creating planar micro-cavities with Q factors in 

excess of 400 million on silicon wafers is demonstrated. The advantage of these planar 

ultra-high-Q (UHQ) microtoroid resonators is that they successfully overcome the 

previously mentioned drawbacks of silica microsphere resonators while maintaining 

nearly identical, if not better, performance characteristics. Additionally, due to the planar 

nature of these new devices, functionality has been integrated in-situ while maintaining 

coupling control, and low-threshold lasing.  
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Chapter 1 – Introduction 

 

1.1 Why Are Integrated Ultra-High-Q Microresonators Necessary? 

 

Re-circulation of light within small dielectric volumes enables the storage of optical 

power near specific resonant frequencies and is important in a wide range of fields such 

as cavity quantum electrodynamics[1, 2], photonics[3, 4], nonlinear optics[5-7], and 

sensing[8, 9]. The performance of these structures is strongly dependent upon the surface 

quality. With a nearly atomic-scale surface finish, dielectric micro-cavities formed by 

surface tension are superior to all other micro-resonant structures by many orders of 

magnitude when comparing photon lifetime (cavity Q). Droplets and solid spheres or 

spheroids[10-13] (formed from droplets) are so far the only known examples of surface-

tension, induced micro-cavities (STIM); in particular, silica based microsphere resonators 

have attained Q values in excess of 9 billion. Despite their unique properties and 

successful application in diverse fields, their physical characteristics are not easily 

controlled during fabrication nor does the fabrication process lend itself to batch 

methods. Dielectric resonators created as planar disk structures by micro-lithography are 

preferable to sphere or droplet structures when consistency of Q and integration is 

necessary. Wafer-based processing[14] of resonators offers a way to both miniaturize and 

achieve process parallelism and control – all of which are of increased interest in 

experimental work. Moreover, only through planar fabrication of these devices can 

additional functionality be integrated into or along-side these devices.  
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1.2 Why Is Ultra-High-Q On-A-Chip Necessary?  

 

The best Q factor achieved for any micro-fabricated planar micro-cavity (at the time of 

publication of our work) was over 4 orders of magnitude lower[15] than for STIMs. Here, 

we demonstrate a process for creating planar micro-cavities with Q factors in excess of 

400 million on silicon wafers. In addition to providing an ultra-high-Q cavity that avoids 

the objectionable properties of droplets and spheres, this process introduces wafer-scale 

control and parallelism to fabrication of ultra-high-Q (UHQ) micro-cavities.  

 

This was achieved by successfully combining the beneficial aspects of two distinct 

microresonator classes, the ultra-low material loss of silica and the minimal scattering 

loss of microspheres while maintaining the ability to produce the devices in an integrated 

manner. Aside from the numerous advantages now available to laboratory based 

experiments, by successfully merging the beneficial aspects of these two distinct classes 

of resonators, it is now possible for the first time to think of moving UHQ optical 

resonators into real-world applications. More importantly, the number of potential 

applications for UHQ devices will increase now that it is possible to envision fully 

integrated systems-on-a-chip.  Lastly, as will be discussed later in this thesis, additional 

functionality will be pursued in order to integrate active frequency and positioning in-situ 

via a MEMS based system.  
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1.3 Roadmap to This Thesis 

 

The flow of this thesis is as follows. In Chapter 2 the development, fabrication and 

characterization of the microtoroid resonator is explained. This chapter also covers the Q 

measurement of silica microdisk resonators and concludes with a discussion about one 

non-linear optics application, stimulated Raman lasing, that was observed in the UHQ 

microtoroid resonators. In Chapter 3, the integration of resonant frequency tuning into the 

microtoroid and the fabrication outline is discussed; both tuning rate and the frequency 

response are also reported. Chapter 4 covers recent developments that have been made 

towards the integration of MEMS based on chip micropositioning using the microdisk 

resonators. Chapters 5 and 6 respectively cover work performed on fabricating polymer 

replica microtoroids and erbium-doped sol-gel coated microlasers on-a-chip. The thesis is 

concluded in Chapter 7 with a brief summary and outlook towards future developments. 
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Chapter 2 - Planar Microtoroid Resonators 
 

2.1 Fabrication 

  

The devices were fabricated using a silicon wafer with a 2-micron layer of thermally 

grown silicon dioxide (SiO2). The silicon\silica material system was specifically chosen 

for two reasons.  The primary reason was the low optical absorption of silica in the 

visible and near-infra-red (IR) wavelengths. Secondly, thermally grown silica is of much 

higher quality than oxides deposited using lower temperature chemical vapor deposition 

processes; namely there fewer hydroxide molecules (which strongly absorb in the 1550-

nm band)[16]. The fabrication process flow of the microtoroid resonators (Figure 2-1) is 

simply composed of four steps: photolithography, pattern transfer into the silicon dioxide 

layer, selective gas etch of the exposed silicon, and selective reflow of the patterned 

silica.  

 

The process details are as follows. First, photolithography is performed to create disk-

shaped photo-resist (PR) pads (160 microns in diameter) on a <100> prime grade silicon 

substrate with 2-microns of thermally grown oxide. The wafers are first thoroughly 

degreased using acetone, isopropyl alcohol (IPA), and deionized (DI) water, and next 

blow dried with nitrogen, and then baked for two minutes at 130°C in order to dehydrate 

the surface. After the wafers are allowed to cool for two minutes, they are placed into a 

chamber with liquid hexamethyldisilizane (HMDS) for two minutes, which allows a layer 

of only a few molecules to condense on the surface of the substrate. The HMDS is used 
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as an adhesion promoter between the subsequent PR coating and the silicon wafer 

surface. The wafer is then removed from the HMDS coating chamber and placed directly 

on the PR spin coater. The wafer is partially coated with Shipley 1813 PR, and spun at 

2000 rpm for 1 minute, and then baked at 90°C in order to harden the PR by evaporating 

off the solvent. Next, using a MJB-3 Karl-Suss mask aligner, the wafers were exposed to 

UV light through a light-field mask that contains an array of circles (150-micron diameter 

circles were the first to be made). The wafer is then immersed in MIF-319 developer for 

approximately 30 seconds, rinsed with DI water, and blow dried with nitrogen. Following 

the development procedure an additional bake at 115°C for 1 minute is used in order to 

further harden the PR and reflow the edges in the process. This reflow step successfully 

smoothes out micron scale roughness along the edge of the PR pads, further improving 

the overall resolution of the lithographic process. The circular PR disks now act as an 

etch mask during immersion in buffered HF acid solution at room temperature. Once the 

exposed silica is etched, acetone is used to remove residual PR and organic 

contamination. The remaining SiO2 disks now act as etch masks during exposure to XeF2 

gas at 3 Torr.  XeF2 was specifically chosen for the purpose of isotropic selective removal 

of silicon[17, 18].  

 

2.1.1 Bulk Silicon Etchants 

 

It should be noted that other liquid silicon etchants were first used before XeF2 was 

finally selected. Initially both KOH[19] and EDP[20] were used to undercut the silica 

disks. Both of these etchants are anisotropic and therefore non-circular shaped pillars 
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resulted when <100> oriented silicon wafers were used. KOH also had the additional 

drawback of rapidly etching silica at the rate of 50 nanometers per hour, therefore it was 

not used. Although EDP was initially exclusively used in the preparation of the 

microtoroid resonators, it quickly became apparent that an isotropic etchant was 

necessary. The non-circular shaped pillars resulted in non-circular microtoroid after the 

laser induced reflow process and as a result limited the Q factors to the low millions, 

Figure 2-2. While this was a significant improvement over previous work, by simply 

changing to an isotropic etchant, it was theorized that the quality factor could be 

improved even further.  Based on the results of the anisotropic etchants, two isotropic 

silicon etching techniques were evaluated, HNA (liquid etchant) and XeF2 (gas). HNA 

could not be used because it etches silica[21] and, as a result, XeF2 was investigated. 

XeF2 etching is performed via a pulsed process in which solid XeF2 crystals are allowed 

to sublime to a pressure of 3 Torr inside an evacuated chamber (Figure 2-3). Once the 

pressure inside the chamber reaches 3 Torr, the XeF2 gas is allowed to enter a chamber 

containing the samples to be etched. Each etch pulse removes approximately 1-2 microns 

of silicon both vertically and laterally. The gas is allowed to etch the silicon samples for 

approximately 2-minutes at which point the chamber containing the samples is evacuated 

again. This process is repeated until the pre-determined amount of silicon is etched. Once 

etching is finished, the edges of the SiO2 disks are equally undercut leaving circular 

silicon pillars supporting larger SiO2 disks. As the optical trajectories of interest reside at 

the periphery of the silica disk, the removal of the higher index silicon below a portion of 

the periphery is required to inhibit power leakage into the substrate.  
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2.1.2 Laser Activated Reflow 

 

The process flow as described thus far leaves lithographic blemishes, visible in an optical 

microscope, at the disk periphery. These blemishes are what have limited the quality 

factors of previous planar resonator structures.  Therefore an additional processing step 

was pursued to achieve the surface finish characteristic of STIM structures (rms 

roughness of several nanometers or less)[13].  

 

A processing step is introduced to selectively heat and reflow the undercut SiO2 disks 

without affecting the underlying silicon support pillar. An undercut SiO2 disk is surface-

normal-irradiated using a CO2 laser (10.6-micron wavelength), similar to techniques 

proposed for integrated circuit planarization[22] (Figure 2-4). The beam intensity profile 

follows an approximate Gaussian distribution and is focused to a circular spot 

approximately 200 microns in diameter. The resulting beam intensity can be varied by 

electronic control of the laser power, but is typically 100 MW/m2 during reflow. Due to 

the strong temperature dependence of the silica optical extinction coefficient near 10.6 

microns[23] as well as the thermal isolation of the undercut SiO2 disk, melting of the disk 

occurs along the periphery, and not over the silicon pillar. In addition to having a far 

weaker optical absorption at 10.6 microns, silicon is 100 times more thermally 

conductive than silica[23, 24]. The silicon pillar therefore remains significantly cooler 

and physically unaffected throughout the silica reflow process, serving as a heat sink to 

the selectively absorbed optical power in the silica layer. As the disk diameter shrinks, 

the effective cross-section available to absorb laser power decreases and shrinkage is 
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observed to terminate when a toroid-like silica structure has formed. Beyond this point, 

continued laser treatment at the same intensity results in no observable change of the 

structure. The process is therefore self-quenching with the final diameter of the molten 

disk rim controlled by lithography and chemical etch steps. It should be noted that it is 

possible to interrupt the reflow prior to quenching thereby producing a toroid with a 

diameter intermediate to the initial disk diameter and terminal diameter.  

 

To summarize this process step, surface tension both smoothes the surface and collapses 

the silica disk to a toroid shape with self-limiting dimensions defined by the support pillar 

and the initial thickness of the silica layer.  Micrographs showing disks both before and 

after the laser-activated selective reflow process are shown in Figure 2-5. In these 

micrographs, the overall disk diameter was reduced to 120-microns as silica was 

consumed to form a 7-micron thick toroid-shaped perimeter. 

 

2.2 Characterization of the Microtoroid 

The mode structure and quality factor of the toroidal cavities were characterized in the 

optical telecommunication band (1500-nm wavelength band). Tapered optical fibers 

connected to a single-mode, tunable, external-cavity laser were used to efficiently excite 

whispering gallery modes of the resonators. Tapered waveguides were positioned on a 

20-nm resolution stage and could be moved freely over the silicon sample to individually 

couple to each of the toroid-shaped microresonators.  Dual microscopes were used to 

simultaneously image disk resonators and fiber tapers from the side and the top. Proper 

alignment required the taper axis to reside in the equatorial plane of the toroidal cavity 

with minimal tilt angle. Briefly, optical tapered fibers are fabricated by stretching a 
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standard optical fiber (SMF-28) while simultaneously heating it using a hydrogen 

flame[25].   By observing the adiabatic condition, the tapered fibers exhibit low fiber-to-

fiber insertion loss (typically <10%). Taper waist diameters are typically several microns, 

adjusted to properly phase-match to the resonator. Critical coupling[26] (the resonant 

transfer of all optical waveguide power into the resonator) was achieved by appropriately 

adjusting the taper-resonator gap.  Non-resonant loss was observed to be low (<5%). 

 

Figure 2-6 shows the transmission spectra through a taper in close proximity (on the 

order of hundreds of nanometers) to a 94-micron-diameter toroidal microresonator. The 

observed free spectral range corresponds to the equatorial mode number (l-index). 

Inspection of the data shows that the resonator supports very few radial and azimuthal 

(m-index or transverse) modes. This is in contrast to spheres, which support (2l+1) 

azimuthal modes. The quality factor or Q of the resonators was measured in two ways. 

First, the full-width half-maximum of the Lorentzian-shaped resonance in the 

undercoupled regime was directly measured by scanning a single-mode laser (short-term 

linewidth about 300 kHz) through a resonance. Low input power levels (typically less 

than 5 microwatts) were used to avoid thermally-induced distortion of the line shape due 

to resonant-field buildup within the cavity. Repeated measurements on samples 

fabricated with various radii (80-120 micron) and torii thickness (5-10 micron) yielded Q 

values in excess of 100 million (108). This is a record value for a planar device and 

constitutes an improvement by nearly 4 orders of magnitude over all previous planar 

microresonators fabricated by wafer-scale processing (the highest values[15, 27] reported 

at the time of the publication in Nature were far less, ~ 4102× ).  
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As an independent and more precise measurement of quality factor, the photon lifetime 

was directly measured by cavity ringdown. This was done by repeatedly scanning the 

laser into resonance with a mode that was critically coupled to the taper. As the laser 

scanned into resonance, power transfer increased until maximal “charging” of the 

resonant mode was attained. At this moment, the laser input was gated “off” by use of a 

high-speed, external modulator and cavity ringdown is observed as the resonant power 

discharges. Because the resonator is by necessity loaded during this measurement, the 

observed ringdown time yields the cavity lifetime at the critical point, τcrit, and the loaded 

Q-factor (not the intrinsic quality factor, Q0). Data from a typical ringdown measurement 

is shown in Figure 2-7.  At time t=0 in the figure, a signal is applied to “gate” the laser 

off. When the laser input is fully off, the detected power is due entirely to the cavity 

discharge field. The solid line represents an exponential fit as expected for decay of a 

single cavity mode. The inset shows a logarithmic plot to infer the cavity lifetime. The 

loaded lifetime in this structure was 43 ns.  As a further check on this time constant, after 

gating of the pump laser, the waveguide power has dropped to 80% of its predicted 

maximal value based on extrapolation of data to t=0. This value is in agreement with the 

gating delay of the ringdown setup (∆t≅ 8 ns). In particular, using the observed mode-

lifetime of τcrit=43 ns yields exp(-∆t/ τcrit)=0.83. 

 

As noted, to infer the intrinsic cavity Q it is necessary to correct for loading by the taper 

waveguide.  In addition it is necessary to take into account excitation of the counter-

propagating mode due to scattering centers intrinsic to the resonator (described by a 

dimensionless intermode coupling parameter Γ). The techniques used to measure this 

parameter in ultra-high-Q taper-coupled resonators are described elsewhere[28]. For the 

mode of Fig. 2-7 the intermode coupling was measured to be approximately 1, giving rise 

to a weak counter-propagating wave excitation (17% of the cavity buildup field is stored 
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in the counter-propagating mode at critical coupling). In the presence of intermode 

coupling the relationship between the critically-coupled lifetime and the intrinsic 

(unloaded) cavity quality factor, is given by, 

)11(0
2

0 Γ++=≡ critQ ωτωτ  

This yields an intrinsic cavity Q of 81025.1 ×  inferred from cavity ringdown. This value 

agrees with the measurements of the frequency line shape described above.  
 

 

2.3 Characterization of the Microdisk 

 

In order to fully characterize the improvement in Q factor that results from the laser 

induced reflow, the quality factors of the microdisk were measured prior to the treatment 

(Figure 2-8). Using the previously mentioned coupling techniques, the Q factors of WG 

resonances were inferred by linewidth measurements, using a 300-KHz external-cavity 

diode laser to excite the resonances in the 1550-nm band. Q factors above 1 million were 

consistently observed, the highest observed value being 6102.3 × (Figure 2-9 and 2-10). 

We attribute the high Q factor, despite the lithographic roughness, to the wedge-shaped 

feature noted earlier. The wedge is believed to induce modal isolation from the disk edge, 

where the etch blemishes are most pronounced. 
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2.4 Raman Lasing 

 

Nonlinear processes in silica microtoroids were also observed when the toroid 

microcavities were pumped at high power levels. One optical nonlinear effect that was 

investigated using these devices was stimulated Raman scattering.  By use of an erbium-

doped fiber amplifier to boost the external-cavity pump wave to power levels of 25 mW, 

a highly nonlinear emission spectrum is produced with a 53-µm-diameter microtoroid 

(Figure 2-11). The spectrum consists of frequency redshifted stimulated Raman modes as 

well as blueshifted modes that are due to Raman-assisted four-wave mixing. It is 

important to note that all the participating modes in this nonlinear process are single 

azimuthal modes, spaced by the free spectral range of the cavity (10 nm). The generated 

radiation spans nearly 35 THz, and the highest fiber-coupled power of individually 

oscillating modes is nearly 2.5 mW (see the inset of Fig. 2-11). This was the first 

demonstration of a chip-based Raman laser.  The microlasers exhibit ultralow threshold, 

high efficiency, and single-mode emission. Also, they are coupled with high ideality by 

use of tapered optical fibers. The lasers are fabricated with standard silicon processing 

techniques, allowing integration of Raman microlasers with complementary optical, 

mechanical, or electrical functionality. 

 

2.5 Conclusion 

 

In summary ultra-high-Q planar cavities on a chip have been fabricated for the first time.  

Toroid-shaped microcavities were formed using a combination of lithography, dry 
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etching, and a novel selective reflow process. Self-limited collapse of a molten silica disk 

enables the dimensional control typical of wafer-scale processing while providing the 

surface finish (and hence cavity Q) typical of a spherical resonator. Q values obtained by 

this process are typically 4 orders of magnitude higher than previous wafer-based 

resonators. The planar nature of the toroid microcavity and the large transparency 

window of silica suggest that these devices will find a wide range of applications in 

photonics as well as in fundamental studies. As an indication of the possibilities for these 

structures, in the course of this work nonlinear optical effects have been observed with 

characteristics comparable to recent studies on spherical ultra-high-Q cavities: in 

particular Raman lasing thresholds as low as 75 microwatts of pump power were 

demonstrated.  

 

As standard processing techniques are used, the addition of optical functionality by 

techniques such as doped coatings is possible and will be discussed later in this thesis. 

Likewise, electrical functionality is also introduced to integrate control functions such as 

dynamic tuning and micropositioning with the ultra-high-Q microcavities. More 

generally, this work provides a new functional element that is synergistic with recent 

demonstrations of basic experimental physics on a chip. For example, by combining the 

present results with techniques recently demonstrated to integrate atomic traps on a 

chip[29] it would be possible to achieve chip-scale integration of cQED experiments and 

related devices. Finally, there is great interest in improving the sensitivity of biological 

and chemical sensors.  Proposals for high-sensitivity sensors based upon optical 

resonators have already benefited from the ability to attain ultra-high-Q on a chip. 
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Figure 2-1: Four step fabrication flow of the microtoroid 
resonators.  A: Photolithographically define photoresist disks.  
B: Using buffered HF-acid, etch the silica and remove the 
photoresist leaving circular silica disk. C: Undercut the disks using 
XeF2 to istropically etch the silicon. D: Perform laser activated 
reflow using a CO2 in order to form the microtoroid resonators. 
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Figure 2-2: A scanning electron micrograph of a microtoroid 
resonator undercut using EDP as the silicon etchant: note the non-
circular shaped pillar and irregular toroid.  
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Figure 2-3: A schematic diagram of the xenon difluoride etch 
system (top). A picture of the actual system in the Vahala lab 
cleanroom (bottom). 
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Figure 2-4: CO2 laser system for the microtoroid reflow process. 
The sample is imaged simultaneously while the laser activated 
reflow process takes place.  
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Figure 2-5: A scanning electron-micrograph of the microtoroid 
resonator. Inset: A scanning electron-micrograph of the microdisk 
resonator (prior to the reflow process). 
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Figure 2-6: Transmission spectra of a toroidal resonator. The free 
spectral range (defined as the wavelength spacing between modes 
with successive angular mode number) is 5.65-nm, which 
corresponds to a torus approximately 94-µm in diameter. The inset 
shows what we believe to be the two lowest-order radial modes 
(based on modeling of a microdisk resonator). Additional 
subsidiary peaks are attributed to other radial or azimuthal modes. 
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Figure 2-7: Ringdown measurement of a 90-micron-diameter 
toroid microcavity at the critical-coupling point. The measured 
lifetime of τcrit=43 ns corresponds to an intrinsic quality factor of 
Q= 81025.1 × . 
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Figure 2-8: SEM micrograph of a 120-µm-diameter microdisk 
resonator (2-µm thick oxide disk). The inset shows an optical 
micrograph of a resonator coupled to a tapered optical fiber. 
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Figure 2-9: Transmission (normalized with respect to the launched 
fiber power) and reflection properties versus taper-disk gap 
distance. The inset shows the transmission versus frequency near 
the critical point. The off-resonant loss was less than 5%. 
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Figure 2-10: Mode spectrum of a 114-µm-diameter resonator for 
TE and TM polarizations. The circles and diamonds represent the 
first- and second-order radial modes, based on modeling. 
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Figure 2-11: Broadband frequency generation in a microtoroid. 
Raman laser pumped far above threshold at 1550-nm wavelength. 
Inset, 2.5 mW of output power from a single Raman emission 
wavelength near 1680 nm. The modes are spaced with the free 
spectral range of the cavity. 
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Figure 2-12: Raman emission spectrum of a toroid microcavity  
showing single-mode oscillation. The pump is located at 1550 nm, 
and the Raman emission is shifted 12.5 THz into the 1650-nm 
band. Inset, bidirectional Raman emission as a function of pump 
power for a 58-mm-diameter toroid microcavity Q= 8106. ×  at the 
critical point. The threshold is 250 µW, and the bidirectional 
conversion efficiency is ~45%.
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Chapter 3 - Electrical Thermooptic Tuning of Microtoroid 
Resonators 
 

3.1 Introduction 

 

The ability to tune resonant frequency in optical microcavities is an essential feature for 

many applications. Integration of electrical-based tuning as part of the fabrication process 

has been a key advantage of planar microresonant devices.  Until recently, the 

combination of these features has not been available in devices that operate in the ultra-

high-Q regime where device quality factors (Q) can exceed 100 million. In this chapter 

an electrically tunable resonator on-a-chip with ultra-high quality factors is demonstrated. 

Futhermore, the devices have demonstrated tuning rates in excess of 85 GHz/V2 and are 

capable of tuning more than 300 GHz.   

 

Ultrahigh-Q (UHQ) optical microresonators represent a distinct class of 

microcavities[30] with applications ranging from optical communications and 

biosensing[8] to fundamental studies of nonlinear optical effects[6] and cavity quantum 

electrodynamics (CQED)[2].  Although wafer-scale tuning control has been available for 

devices operating in the Q regime below 100,000, such methods have not been available 

in the UHQ regime, where Q can exceed 100 million. Nonetheless, there remains keen 

interest in finding more practical ways to implement tuning control in this regime[31, 

32].  In this chapter electrical control of resonant frequency in an ultra-high-Q 

microtoroid by thermooptic tuning is demonstrated. The significance of this result is that 

this represents an example of a UHQ microresonator with “integrated” electrical tuning.  
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By including only two additional processing steps (lithography and metallization) into the 

prior fabrication process for the UHQ microtoroids, electrical control is implemented. 

The end result is a highly reproducible process through which chip-based electrically 

tunable microtoroids with Q factors in excess of 100 million are fabricated. Furthermore, 

since the devices themselves are produced on a silicon substrate and significant tuning 

range at sub-volt levels is demonstrated, the integration of CMOS control circuitry with 

the devices is also possible. In addition to characterizing the static tuning characteristics 

of these devices, dynamic response was determined with the use of a helium ambient 

atmosphere to isolate the specific source of the tuning time constant. 

 

3.2 Fabrication 

 

The fabrication process is similar to the microtoroid process flow with the addition of 

another mask and lithography step as well as the deposition of a metal layer. The process 

flow is described here in detail and proceeds as follows (see Figure 3-1). First, (Shipley) 

S1813 photoresist is spin coated onto a highly p-doped (.001-.006 Ω-cm) silicon wafer 

with a 2-µm thick thermal oxide. The resist is exposed to the first mask, that is used to 

define the oxide disks as well as an electrical contact hole. The mask used is similar to 

the one used for the microtoroids with the addition of a concentrically located hole, 

which will serve as the ohmic contact after metallization. Following UV exposure, the 

wafer is immersed in MF-319 (Shipley) developer. Once fully developed, the wafer is 

rinsed with DI water and blow dried. It should be noted that care must be taken to ensure 

that the backside of the wafer remains free of PR in order to ensure that the oxide is 



 28

completely removed during later processing steps. The unexposed photoresist (PR) is 

used as an etch mask during immersion in buffered HF, which etches the silicon oxide. 

These two steps define oxide disks of 100-µm diameter with a 25-µm wide contact hole 

concentrically located on the disk.  All oxide on the backside of the wafer is also 

removed. The remaining PR is rinsed away using acetone, IPA, and water and then blow 

dried.  

 

Photolithography is performed again using the same processes mentioned above. The 

mask used in this step is used to define the metal lift-off mask; as a result nearly all of the 

PR remains except for the central contact area of each silica disk that is exposed. One-

thousand angstroms of aluminum are thermally evaporated on both sides of the wafer in 

sequential deposition steps. The wafer is then immersed in acetone overnight releasing 

the excess aluminum and leaving aluminum contacts in the center of the oxide disks as 

well as on the backside of the wafer. Ohmic contacts are formed by annealing the wafer 

in a tube furnace at 500°C in a nitrogen ambient. The remaining oxide disks act as etch 

masks during exposure to xenon difluoride (XeF2) gas at 3-torr. Xenon difluoride 

isotropically etches the silicon substrate leaving the perimeter of the silica disk isolated 

from the higher index silicon (Figure 3-1C,3-2). To eliminate lithographic blemishes 

along the perimeter of the oxide, each microdisk is orthogonally exposed to a CO2 laser 

beam resulting in surface tension induced reflow and formation of the microtoroid[33]. 

During this process the central region of the pillar is unaffected, and therefore the 

aluminum contact remains pristine. The resulting device possesses a surface finish with 

near atomic roughness in addition to integrated metal contacts (Figure 3-1D, 3-3).  
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3.3 Characterization 

 

The tuning range and frequency response of the tunable microtroid resonators were 

measured in the optical telecommunication band (1550-nm). To create a low resistivity 

electrical path, the substrate (now containing an array of microtoroids on one side) was 

placed on a metal, electrically-grounded platform mounted to a three-axis stage with a 

100-nm step resolution. The stage allowed the substrate to move freely so that the taper 

waveguide could couple to a single microtoroid. Two microscopes were used to 

simultaneously image the microtoroid from both the top and side. Optical power was 

coupled to the microtoroid using a tapered fiber waveguide[25]. The tapered fiber was 

formed by stretching a standard optical fiber (SMF-125) while heating it with a hydrogen 

flame. As the adiabatic condition is maintained during the stretching process, the 

resulting tapered fiber exhibits losses typically less than 5%. Further details regarding 

tapered fiber fabrication and properties are provided elsewhere[26, 34]. It should be noted 

that during characterization of both tuning range and frequency response the microtoroid 

and fiber taper waveguide were in contact to prevent any thermally-induced loading 

variations.  

 

With the taper and microtoroid in contact, the aluminum pad in the center of the 

microtoroid is electrically contacted using a tungsten probe tip (Figure 3-4, 3-5), and 

voltage is applied while the silicon substrate is grounded. The typical electrical resistance 

of the devices was consistently less than 10-Ω. The induced ohmic heating and rise in 

temperature that occurred in the silicon pillar was thermally conducted to the silica 
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microtoroid, subsequently increasing the temperature of the silica in the path of the 

optical whispering gallery mode. This temperature increase resulted in a frequency shift 

of the resonant frequencies.  

 

The tuning rate and tuning range were determined by scanning a single-frequency, 

external-cavity laser (coupled to the tapered fiber waveguide) across a frequency span of 

approximately 50 GHz and in the spectral vicinity of a high-Q resonance. Transmission 

power through the taper was monitored on an oscilloscope during scanning to measure 

tuning. With the laser continuously scanning, voltage was incrementally applied to the 

microtoroid resonator.  Figure 3-6 shows an example of a typical tuning curve for a 

microtoroid resonator with a resistance of 7-Ω and tuning rate of 85 GHz/V2. The tuning 

is plotted against V2 in order to stress the dependence of tuning on applied electrical 

power (V2/R). 

 

The frequency response characteristics were measured by first tuning the laser near a 

resonance, and simultaneously a function generator was used to apply a small-signal 

sinusoidal modulation voltage. A lock-in analyzer was set up to detect the modulation 

induced in the optical power transmission and was referenced to the modulation 

frequency of the function generator. The frequency response of the tunable microtoroid 

resonators in both air and helium was measured and is plotted in Figure 3-7. The 

measured frequency response contains features consistent with the existence of a single, 

low-frequency pole.  
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There are several possible cooling mechanisms that could account for this single, low 

frequency pole.  The authors postulate that the primary cooling mechanism is thermal 

conduction to the ambient. Therefore this cooling mechanism should exhibit a 

dependence on the coefficient of thermal conduction of ambient atmosphere around the 

resonator.  To confirm this hypothesis, the frequency response was measured while 

helium gas was introduced into the testing chamber. As can be seen in Figure 3-7 the 

corner frequency doubled in the presence of helium, a result of helium being five-times 

more thermally conductive than air. 

 

3.4 Conclusion 

 

In summary we have demonstrated the ability to electrically tune ultra-high-Q 

microresonators on-a-chip. Furthermore, tuning ranges as large as 300 Ghz have been 

observed. The corner frequency of the tuning process was measured to be 330 Hz in air 

and is attributed to thermal dissipation to the ambient.  Moreover an understanding of the 

cooling processes associated with the corner frequency was demonstrated by introducing 

helium into the air ambient and by observing the resulting increase in corner frequency. 

While not suitable for high-speed applications, such a device has several important 

applications. The ability to tune nearly one full free spectral range makes the tunable 

microtoroids ideal for use as a tunable optical filter or as a tunable laser source[35-38] 

based on the UHQ properties.  Tuning is also an essential feature in application of UHQ 

devices to cQED[2]. Additionally, the ability to detect small changes in its ambient 

surroundings can lead to applications in both biosensing and gas detection.  Finally, 
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tunable microtoroid resonators would be well suited for the realization of CROW 

devices[39]. 
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Figure 3-1: Four-step fabrication process flow of the tunable 
microtoroid resonators. A: Standard photolithography is performed 
in order to define the oxide disk and contact hole. B: Metal lift-off 
is performed in order to define the ohmic contact. C: XeF2 is used 
to undercut the silica disk. D: CO2 laser radiation is used to reflow 
the silica and create the microtoroid.  
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Figure 3-2: Scanning electron-micrograph of the tunable 
microdisk prior to laser-activated reflow. 
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Figure 3-3: Scanning electron-micrograph of the tunable 
microtoroid. 
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Figure 3-4: A side-view optical micrograph of the tunable 
microtoroid resonator during testing. Both the tungsten contact 
probe and the fiber taper waveguide can clearly be seen.  
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Figure 3-5: A top view optical micrograph of the tunable 
microtoroid resonator during testing. The aluminum ohmic contact 
and the fiber taper waveguide can clearly be seen. 
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Figure 3-6: Resonant frequency shift versus voltage2. The 
quadratic coefficient is 85.56 GHz/V2.  
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Figure 3-7: The frequency response of the tunable microtoroid 
resonators in both air and helium ambient atmospheres. Inset: A 
rendered depiction of the tunable microtoroid device coupled to a 
tapered optical fiber while being contacted by a metal probe. 
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Chapter 4 - Microtoroid Resonator with Integrated MEMS 
Positioner 
 

4.1 Introduction 

 

With the successful demonstration of both UHQ on-a-chip as well as integrated tuning, 

an integrated positioning system is the last major hurdle to achieving a fully integrated 

microresonator system. Currently large electromechanical X-Y-Z stages with nanometer 

resolution are used to control coupling between the taper and microtoroid. The 

envisioned device is one in which an active MEMS based control system would 

dynamically control the position of a tunable microtoroid resonator to a static tapered 

optical fiber. The motivation behind this work is twofold. The first is to achieve a 

“turnkey” UHQ device that avoids the difficulties and costs typically associated with 

experiments in the UHQ domain. The second is a key application perfectly suited for 

such a device, namely a single-pole optical filter in which the filter bandwidth and 

frequency could be dynamically controlled.  

 

Although the device described in this chapter has evolved over the course of more than a 

year, it should be noted that this work is still actively being pursued and most likely will 

yield its most significant results well after this thesis is submitted. The reason associated 

with the long development time has to do with optimizing the various complex inter-

related mechanical, electrical, and optical device parameters. In addition to the 

difficulties associated with finalizing the device characteristics in all three individual 

domains previously mentioned, major problems were encountered due to process yield 
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issues. Put simply, with so many individual parameters to optimize in such a device, it is 

necessary to have a sufficient quantity in order to properly test and verify.  

 

In this chapter, a detailed fabrication process flow will be outlined for thermally tunable 

high-Q microresonators with an integrated MEMS based electro-thermal micro-

positioning system. Briefly, the device is a tunable silica microdisk resonator attached to 

a nickel beam. When a DC voltage is applied to the two terminals of the device, the 

resulting current heats and lengthens the nickel arm. The electrically controlled thermal 

expansion allows dynamic in-situ control of the taper-microresonator gap. Another set of 

terminals exist in order to only heat the microresonator and thermooptically tune in a 

similar manner as demonstrated in Chapter 3. This chapter is concluded with a 

description of the characterization of the entire system, performance of the device, and an 

outlook for the future. 

 

4.2 Fabrication 

 

The devices are fabricated on top of <100> oriented silicon wafers that are 100 mm in 

diameter and only 200-microns thick. The wafer dimensions were specifically selected 

for two reasons. First, they are an ideal size for the mask aligner used in the Vahala Lab, 

a MJB-3 with an 80-mm diameter exposure. Second, later in the process it will be 

necessary to etch through the entire wafer using XeF2, and a thin wafer is necessary if 

long etch times are to be avoided.  A two-micron thick layer of silicon-oxide was also 
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grown on the wafers, this thickness was again selected due to the fact that it has been 

successfully used for making devices in the past.  

 

The wafers were first degreased with an acetone, IPA, DI rinse, blow dried using 

nitrogen, and then baked at 160ºC for 2 minutes. After baking they were placed in a 

chamber with liquid HMDS for 2 minutes in order to improve the adhesion between the 

PR and the silica surface of the wafer. The wafer was then placed on the PR spin-coater 

and Shipley S1813 PR was poured in approximately the center half of the wafer and set 

to spin at 1500 RPM for one minute (resulting in a 2-micron thick PR layer). Once the 

spin-coating process was completed, the wafer was placed on a hot-plate set at 90ºC for 

one minute. The wafer was then placed in the mask aligner (MJB-3) and exposed to the 

first mask, similar to that in Figure 4.1.  

 

In this mask step, three critical features are defined, the disk resonator, a pad of insulating 

silica, and two marks by which mask 2 (Fig. 4.1) will be aligned. The disk resonator in 

this particular device was 300 microns in diameter and extended beyond the edge of the 

insulating silica pad by more than a millimeter (please note that Fig. 4.1 is not drawn to 

scale). The two circles used as alignment marks are essentially two holes etched into the 

oxide. The last critical feature defined in this mask is the large silica pad upon which all 

the subsequent electrical contacts will be electroplated. By electroplating directly on top 

of the silica, it allows the entire device to be electrically isolated from the rest of the 

wafer, thereby preventing accidental short circuits.  
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The wafer is exposed in the mask aligner for 30 seconds and then removed and placed in 

a dish containing MF-319 developer made by Shipley (Fig.4-2A). The exposed regions of 

the PR are developed away after one minute of submersion in the solution. Once the 

developing process is complete, the wafers are rinsed in DI water, blow dried using 

nitrogen, and baked a last time at 115ºC for two minutes. This baking step is important 

for two reasons: it evaporates any remaining solvent in the PR, further hardening it and 

making more it resilient in the buffered HF etchant. It also slightly reflows the PR, 

smoothing out some of the roughness visible in the periphery. When the baking is 

complete, the wafer is removed from the hotplate and allowed to cool for one minute, and 

is then placed in a Teflon beaker containing buffered HF etchant. The buffered HF etches 

the silica at a rate of approximately 1000 angstroms per minute; as a result the wafer must 

remain in the solution for 20 minutes until the exposed regions of silica are completely 

removed (Fig.4-2B). The wafer is then removed from the buffered HF solution, rinsed 

with DI water, and blow dried. Next, the remaining PR is removed from the surface of 

the wafer using a rinse of acetone, IPA, DI water and finally blow dried (Fig.4-2C). The 

wafers at this point are left in a nitrogen purged desiccator for 24 hours in order to 

dehydrate the surface. Baking the wafers in air at even a modest temperature of 100ºC 

will result in the growth of a thin native oxide, which will result in rough silicon etching 

later in the process. 

 

After removal from the desiccator, the wafer is again placed on the PR spin coater, and 

AZ 4620 (Clarient) is poured in the center half of the wafer.  The spin coater is set to a 

relatively slow speed of 750 RPM, and the wafer is spun for 1-minute. While the wafer is 
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spinning, a cleanroom wipe is used to remove the PR forming a bead along the outer edge 

of the wafer. The PR used in this step is used to form thick layers (up to 24 microns) and 

thus has a low viscosity, when combined with a slow spin speed it results in a thick edge 

bead unless manually removed. Edge bead is of particular concern in this process because 

it makes subsequent mask aligning difficult if not impossible due to the inability to come 

into direct contact with the wafer surface. When the spin coating is complete, the wafer is 

placed on a hot plate, and the PR is baked at 90ºC for 1 minute and then removed to cool 

for another minute. This mask step is used to define the PR sacrificial layer[40, 41], and 

the spin coating process creates a PR layer that is12 microns thick. A sacrificial layer is 

necessary in the overall process for the same reason that the silicon was removed from 

the periphery of the microtoroid resonators in Chapter 2. Later in the process, 

electroplated nickel will be deposited that will support the disk, and therefore the nickel 

must come into direct contact with the disk. However, the only region where the nickel 

can contact the disk without concern for deleteriously effecting Q factor is in the central 

region of the disk. Therefore, mask 2 in this process (Figure 4.1) will simply leave behind 

a square pad of PR. Aside from that it contains two alignment marks (circles at the 

bottom) that match two circles on the first mask as well as a central hole through which 

the electroplated nickel will make contact with the disk. Once this sacrificial layer of PR 

is removed, the nickel arms are suspended above the edges of the microdisk, only directly 

contacting it in the center, well away from the whispering gallery modes (Fig. 4-10).  

 

Then, in order to define the sacrificial layer, the wafer is again placed in the mask aligner 

with mask 2 and carefully aligned to the previous pattern. Once successfully aligned, the 
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wafer is brought into contact and exposed for 9 minutes. The wafer is removed from the 

mask aligner and placed in a beaker containing AZ 400K developer for approximately 3 

minutes while the exposed regions of the PR are rinsed away (Fig.4-3A). As soon as the 

development is complete, the wafer is immediately rinsed with DI water and blow dried 

using nitrogen. The PR is baked one last time at 130ºC, driving any remaining solvent out 

and slightly reflowing the pattern. Reflow of the PR is needed in this step (much like 

mask 1) for a different reason. While edge smoothness is not of critical importance, the 

profile of the top surface of the PR pad must be rounded in order to ensure that metal is 

evenly evaporated during the next metallization step. By reflowing the PR, the steep 

edges of the PR holes become smooth and rounded.  

 

Before any electroplating can be performed, a metal seed layer must be deposited. This 

layer will then be covered by a final patterned PR layer that will be used as an 

electroforming mask, forming the nickel based MEMS system (Fig.4-3B). The metal seed 

layer is composed of 200 angstroms of chrome immediately followed by another 400 

angstroms of gold, both of which are deposited via thermal evaporation at a rate of 

approximately 20 angstroms per second. It should be noted that the post-development 

bake for the sacrificial PR layer is critical to ensure that bubbles do not form in the PR 

under the metal, thus making subsequent lithography impossible. 

 

The last photolithography step will be used to define the electroforming mask used 

during the nickel electroplating[42-44]. The thickness of the nickel that can controllably 

be electroplated into the mold is dictated by the thickness of the PR. Therefore, the same 



 46

type of PR used during mask 2 is utilized once again in order to form a 12 micron thick 

electroforming mold into which the metal will be electroplated. The same procedure as 

used during mask 2 is performed in order to spin coat, expose, and develop in order to 

pattern the third and final PR layer (Fig.4-4A).  Once the development is complete, the 

entire wafer is placed in an oven at 80ºC for 5 minutes allowing the PR electroforming 

mold to harden. The wafer is now ready for the nickel electroplating process[45].  

 

Electroplating was performed inside a beaker containing an anode, cathode, and aqueous-

metal solution, and was connected to the power supply and current meter (Figure 4.6). In 

the simplified example shown in Figure 4.5, the sacrificial anode is made of nickel, the 

cathode is the wafer that is coated in gold, and the aqueous-metal solution consists of 

nickel (Ni2+), hydrogen (H+), and sulfate ions (SO4
2-). Once voltage is applied, positive 

ions in the solution are attracted to the negatively biased cathode and nickel ions that 

reach the cathode, gain electrons, and are deposited or plated onto the surface of the 

cathode forming the electrodeposit. Nickel is also simultaneously being electrochemically 

etched from the nickel anode to replenish ions for the aqueous solution and electrons for 

the power supply. Hydrogen ions that also gain electrons from the cathode form bubbles 

of hydrogen gas[46, 47]. Formation of hydrogen gas is not desirable because it lowers the 

plating efficiency (i.e., only a fraction of the total current is used to form the 

electrodeposit), and the bubbles can obstruct the deposition of the intended 

electrodeposit. The electroplating bath used for device fabrication, Nickel "S" Sulfamate 

electroplating solution, is an industrial ready-to-use solution made by Technic Inc. All 

plating parameters, such as the plating current, were optimized for the sole purpose of 
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depositing a stress-free nickel layer. This was important in order to ensure that the 

micropositioning arms were as flat and horizontal as possible. Based on the 

recommended plating conditions provided by Technic, a current of 10 mA/cm2  was used 

during the plating process. However, the plating was actually performed in a two-step 

process. When the wafer was first immersed into the plating solution, the current was set 

to 200 mA/cm2 for 30 seconds in order to “strike” the nickel into the gold seed layer. This 

process allows for nickel ions to bury themselves within the first few atomic layers of the 

gold seed layer thereby dramatically improving the adhesion between the nickel and the 

seed layer. After the 30 seconds elapsed, the current density was reduced back to 10 

mA/cm2 over the course of one minute to ensure a stress free nickel deposition.  

 

4.3 Device Release 

 

In order to fully release the MEMS arms and prepare the device for characterization, a 

series of etch steps must be carefully followed. First, the PR mask used as the 

electroforming mold must be removed, this is done by soaking the wafer in acetone for 

approximately 30 seconds then rinsing with IPA and DI water and blow drying with 

nitrogen(Fig. 4.4B). The next step is to remove the gold and chrome seed layers; great 

care must be taken in selecting proper etchants in order to avoid unintended etching of 

the nickel structures. Based on recommendations from Transene Inc. (Danvers, PA) it 

was suggested that GE-8148 be used to remove the gold and CRE-473 for the chrome 

adhesion layer. The wafer was first soaked in the gold etchant for approximately one 

minute then rinsed clean using DI water and blow dried. Next, the wafer is placed in the 
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chrome etchant for an additional four minutes then rinsed and dried again. The second to 

the last step is to remove the sacrificial PR with another soak in acetone, followed by a 

rinse in IPA and DI water. The wafer is then blow dried and finally placed in the xenon 

difluoride etching system in order to undercut and fully release the nickel 

micropositioning arm (Fig. 4.4B).  

 

4.4 Device Control and Characterization 

 

Testing of the devices required measurement of a variety of different parameters that 

included mechanical, electrical, and optical. Before the devices were mounted for testing, 

wires were soldered to the electrical contacts on the chip in order to run the current 

needed for tuning and positioning. When the four wires necessary were soldered in place, 

the entire chip was placed on an X-Y-Z micrometer stage in order to bring it within close 

proximity of the taper waveguide. This had to be done for two reasons. First, the device 

does not currently have Z-positioning control on-chip, therefore it can not control the 

vertical distance between the microresonator and the taper. Second, the on-chip lateral 

control or X-positioning is limited to only a few microns and is meant to control coupling 

between the taper and microresonator with nanometer resolution. Once the device was 

properly positioned, current was run through the positioning arms while the laser scanned 

for resonances. 

 

Although the micropositioning system functioned, there are slight issues that made it 

difficult if not impossible to measure coupling as a function of applied voltage, the details 
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of which will be explained later. However, the frequency response of the device was 

successfully measured to be approximately 10 Hz (Fig. 4-11). This was done by running 

current through the serpentine tuning arms that directly heated the microresonator (Fig. 4-

7).  

 

The highest Q factor measured for the devices was approximately 1 X 104, relatively low 

when compared to results described in Chap. 2 for microdisk resonators. The low Q 

factors are the result of two factors. First, the masks used in the MEMS fabrication 

process are printed using a laser plotter with a maximum resolution of only 20,000 DPI, 

in reality the smallest feature sizes are approximately 10-microns. Therefore, the 

microdisk resonators in the MEMS devices suffer from lithographic blemishes nearly a 

factor of ten greater then the microdisk resonators in Chap. 2 which were fabricated using 

a mask written with an electron beam.  Second, the only means by which the sacrificial 

layer of PR can be removed is by acetone rinse. However a much better method to ensure 

that this layer is completely removed is using an oxygen plasma to ash off any remaining 

PR. Therefore, if an improved mask were used to define the oxide disks and if the 

sacrificial PR were more vigorously and thoroughly removed, Q factors as high as 3-

million could be expected from future devices.  

 

Finally, in the process of attempting to measure coupling versus applied voltage to 

determine the effectiveness of the micropositioning system it was determined that two 

effects were taking place making this measurement impossible. The nickel 

micropositioning arm is actuated by applying a voltage that in turn ohmically heats the 
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arm and as a result it expands[48, 49]. Therefore by varying the amplitude of the input 

voltage, it is possible to control the horizontal displacement of the arm. However, this 

type of thermal actuation has two major drawbacks when used in an optical device that 

employs silica. Inevitably heat from the nickel micropositioning arm will affect the silica 

disk and tune the resonances much like the device demonstrated in Chap. 3. As a result, 

the resonances of the microdisk shift as a function of displacement. Secondly, due to 

slight imperfections in the mechanical structure of the device, the thermally induced 

deflection is not perfectly horizontal. During testing it became apparent that the 

microdisk had a slight vertical deflection on the order of a few microns when current was 

applied. These two effects when coupled to one another made it impossible to measure 

coupling between the microdisk resonator and the tapered fiber waveguide as a function 

of applied voltage. 

 

4.5 Conclusion and Outlook 

 

Despite the inability to control coupling while simultaneously monitoring an optical 

resonance, the overall device remains a successful proof of concept. Namely, the 

fabrication procedures were successfully demonstrated, and a much better understanding 

of the necessary device mechanics and geometry was determined.  Needless to say, 

however, major improvements will be incorporated in the next generation of devices that 

are to be fabricated shortly after the completion of this thesis. Aside from improving 

particular processing steps, major changes in the design of the positioning system will 

also be implemented. Rather than continuing with the thermal expansion of the nickel 
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arms to drive the positioning, comb-drives that utilize electrostatic forces[40] will instead 

be used. The primary benefit of the electrostatic drive mechanism is the lack of heat 

producing electric current[41, 46]. This will allow the device to position the 

microresonator without inadvertently tuning the microresonator due to stray heat. Lastly, 

it will further improve the resolution and range of the positioning system. 
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Figure 4-1: The first two masks used in the fabrication of the 
MEMS devices. Mask 1 is used to define and isolate the electrical 
contact area as well as define the silica disk and alignment mark. 
Mask 2 is used to define the sacrificial PR layer upon which the 
nickel is later electroplated. 
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Figure 4-2: These are the three process steps associated with the 
first mask. A: The oxide wafer is degreased. B: PR is spin coated 
and patterned. C: The silica is patterned and the PR removed. 
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Figure 4-3: These are the two process steps associated with the 
second mask. A: The thick PR layer is spin coated and patterned; 
this layer will act as a sacrificial layer during later processing. B: A 
thin layer of chrome and gold are evaporated across the entire 
wafer; the metal will be used as the seed layer during 
electroplating. 
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Figure 4-4: These are the three process steps associated with the 
third mask. A: The final PR layer is spin coated and patterned; this 
layer is used as a mold during the nickel electroplating process. B: 
The PR mold is carefully removed using acetone and DI water. C: 
The exposed regions of the chrome/gold seed layer are removed, 
the sacrificial PR layer is rinsed away, and the entire chip is etched 
using XeF2 in order to release the micropositioning arm.   
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Figure 4-5: A schematic representation of the nickel electroplating 
setup. 
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Figure 4-6: The nickel electroplating setup currently used in the 
Vahala cleanroom. 
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Figure 4-7: A compound optical micrograph taken from the top 
view of the MEMS device. The serpentine arms are used as a 
heating element to tune the disk as well as a mechanical stabilizer 
ensuring that movement is horizontally restricted. The center fork 
is used to move the disk, to which the disk is attached by a single 
beam. 
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Figure 4-8: Close up top view of the microdisk and MEMS 
positioning arm. 
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Figure 4-9: Scanning electron-micrograph of the MEMS 
positioning system.  
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Figure 4-10: Close up of the microdisk; note the stress induced 
warping of the device.  
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Figure 4-11: Frequency tuning response of the microdisk. The 
tuning is the result of ohmic heating from the serpentine whiskers 
attached to the microdisk.  
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Chapter 5 - Replica Molded Polymer Microtoroid 
Resonators 
 

5.1 Introduction 

 

Resonant microcavities have a variety of applications in fields such as nonlinear optics[6, 

7] biosensing[8], and telecommunications[30]. However, the fabrication protocols 

for these devices, as is typical in all device microfabrication, are material specific. In this 

chapter, the ultra-high-Q whispering-gallery type microresonators[33] described in Chap. 

2 are utilized as masters in a novel application of micromolding.  In addition to being a 

fast and effective method of producing high-Q polymer microresonators, the process is 

capable of producing resonators that are material loss limited. As such, it has a secondary 

application for rapid evaluation of optical loss in previously untested polymers. To 

illustrate this application, both polydimethylsiloxane (PDMS) and Vicast (a polymer 

heretofore known only in household and consumer applications) are evaluated at several 

wavelength bands. In addition to producing record Q factors for polymer-based 

microresonators, Vicast is found to facilitate resonator storage in the mold until time of 

application. 

 

5.2 Fabrication 

 

The replica molding process consists of 3 major steps as shown in Figure 5-1. First an 

array of ultra-high-Q silica microtoroid masters is prepared according to the procedure 

described elsewhere[50]. A polydimethylsiloxane (PDMS) mold is then made of the 
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microtoroid array, and finally, PDMS or Vicast replicas are cast from the mold. The 

molding process is similar to that used in previous microfluidic[51-53] and photonic 

device work[25, 54]. Because the present structures feature a relatively large overhang 

(Figure 5-2) and contain both a silica and silicon surface, the negative-mold polymer 

must be both mechanically flexible and not adhere to either the silica or silicon.  PDMS 

(RTV 184, Dow Corning 10:1), a silicone elastomer, was found to satisfy these 

requirements.  

 

To prevent adhesion between the PDMS and the silica master toroids, the microtoroid 

master arrays are silanized with trichloromethylsilane (TCMS). After silanization, PDMS 

is poured onto the microtoroid master and de-aired at 200 mTorr for 30 minutes. Once the 

de-airing process is complete, the mold is cured for 60 minutes at 80ºC. To remove 

residue water or HCl from the PDMS surface and to complete the curing process, the 

mold is baked for 12 hours after release from the microtoroid master.  

 

Replica resonators were cast using two different polymers, PDMS and Vicast (AOC, 

100:1). Optical devices, such as waveguides, have been molded from PDMS previously.  

However, Vicast has never been used for optical device fabrication nor have its optical 

properties been characterized. While both polymers are optically transparent, the 

mechanical properties are significantly different. However, the flexibility of the PDMS 

mold allows for the rigid Vicast microtoroids to be cast. 
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In casting PDMS-based microtoroids, the mold is first treated with oxygen plasma for 

20minutes to facilitate removal of the polymer microtoroid replica from the PDMS mold.  

After de-airing, the liquid PDMS is cured for one hour at 80ºC and released from the 

mold (Figure 5-3). The casting procedure for Vicast microtoroids omits the oxygen 

plasma treatment. However, Vicast must be cured for 12 hours at 75ºC and remain in the 

mold for an additional 48 hours at room temperature before release (Figure 5-4).  

 

It should be noted that each step of the PDMS and Vicast polymer replica fabrication 

process is non-destructive. Microtoroid masters and the PDMS negative molds were used 

repeatedly and no degradation in quality (as inferred by measurement of resonator Q 

factor) was observed in the final polymer replicas.  In addition, Vicast microtoroids have 

been stored for several weeks in-the-mold without adhering to the mold and exhibit Q 

factors comparable to Vicast microtoroids immediately released from their molds. Since 

high-Q microresonators can be sensitive to long term environmental exposure, this 

feature is an important means by which the “shelf-life” of disposable microresonators can 

be increased.  

 

5.3 Characterization 

 

Measurement of the resonator quality factor and analysis of the modal structure was 

performed at three wavelength bands (980 nm, 1300 nm, and 1500 nm). For testing 

purposes, a single-frequency, tunable external-cavity laser was coupled to a single-mode 

optical fiber containing a short, tapered section. The tapered section was used to couple 
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power into the “whispering gallery modes” of the PDMS and Vicast microtoroids. 

Tapered fibers are made by heating a standard, telecommunication, optical fiber with an 

oxyhydric torch while stretching the fiber[26]. They function as high-efficiency probes of 

microresonators and are described in more detail elsewhere[34, 55]. During testing, the 

polymer microtoroids were placed on a high-resolution translation stage (100-nm step 

resolution) and were monitored by two cameras (top and side view) simultaneously. With 

the taper waveguide in close proximity to the polymer microtoroid, optical laser power 

was launched and transmission spectra monitored. Figure 5-5 is a typical transmission 

spectrum.  Since the refractive index of both PDMS and Vicast are similar to that of silica 

(PDMS:1.46 and Vicast:1.53 near 1300), both the modal structure and free-spectral-range 

of the polymer microtoroids are comparable to that of their silica master counterparts. 

Furthermore, the modal structure is dominated by principal transmission minima believed 

to be the fundamental transverse mode of the replica microtoroids.  

 

The intrinsic Q factor for this mode was determined by scanning the laser (linewidth of 

300 kHz) and measuring the transmission and the loaded linewidth (full-width-half-

maximum) for several, waveguide-resonator, coupling conditions in the under-coupled 

regime14. The intrinsic modal linewidth (and intrinsic Q) was then computed using a 

simple coupling model. In order to minimize the effect of thermal distortion on the mode 

structure the optical input power was kept below 1-microwatt using an optical attenuator 

and the laser scan frequency was optimized so as to ensure that neither scan direction 

(increasing frequency vs. decreasing frequency) nor scan frequency had any observable 

impact on linewidth. The measured intrinsic Q factor (average of computed values 
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described above) for both Vicast and for PDMS in all wavelength bands tested is given in 

Figures 5-6, 5-7, and 5-8. Points in the plot are located at wavelengths corresponding to 

specific modes measured while the curves provide a guide to the eye. The data is specific 

to one device, but is representative of measurements on many distinct polymer 

resonators.  Maximum quality factors of 6105×  were measured for Vicast and 6102×  for 

PDMS. Comparing these results to all other chip-based, microresonator Q values, the 

maximum Q factor measured for the Vicast microtoroids is bettered only by the silica 

microtoroid master and is nearly a factor of 40 greater than all prior polymer-based 

devices (highest Q previously reported in ref. [56]).  

 

The material-limited maximum Q factors for PDMS are also presented in Figures 5-6, 5-

7, and 5-8 and were inferred using available absorption spectra[57, 58]. Both the 

magnitude and the spectral dependence of the measured, intrinsic Q factors are consistent 

with the inferred curves for PDMS, indicating that cavity Q is dominated by material loss 

and not surface scattering. The PDMS and Vicast material loss was also measured at 

1319 nm and 1550 nm using a Metricon system, a prism coupling measurement using 

planar waveguides.  The Metricon PDMS absorption values were compared with the 

published PDMS absorption spectra and indicate that the measured loss was bulk 

absorption (not waveguide scattering) limited. The Metricon derived data point for Vicast 

gave a material-limited Q factor of 61071.2 ×  at 1319 nm and 61011.3 ×  at 1550 nm, 

which are consistent with the measured intrinsic Q factors. Since the master microtoroids 

exhibit Q factors in excess of 100 million, the highest measured Q factor (5 million) 

provides a lower bound on the replication-process-induced Q degradation.  
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5.4 Conclusion 

 

In summary, we have demonstrated both rigid and flexible replica-molded 

microresonators using ultra-high-Q microtoroid masters. Their Q factors are material-loss 

limited and typically in excess of 1 million. Q values in this regime and the ability to 

functionalize polymers[59, 60] for analyte-specific detection make these devices well 

suited for application as biosensor transducers and also for photonic devices requiring 

low insertion loss[61]. The micro-molding process lends itself to rapid, large-scale 

reproduction of dense arrays of devices, and optically active dopants[62] can be added 

directly to the host material. Additionally, by using Vicast as the replica polymer, we 

have shown that storage in-the-mold is possible and is a potential method to extend the 

shelf-life of the device. In applications requiring pristine optical interfaces such as 

biosensing, this feature and the inherently “disposable” nature of devices produced by 

replica molding are attractive features. Certain polymers, such as PMMA[63], are known 

to exhibit even lower material losses at shorter wavelengths. Using such polymers, 

replicated devices with Q factors in excess of 100 million, i.e., comparable to their 

masters, could be molded and used to probe nonlinear optical and thermo-optic tuning 

effects. 



 69

 

Figure 5-1:  Replica molding process flow:  a) ultra-high-Q 
microtoroid master array is fabricated and silanated with TCMS to 
aid in the release of the master from the mold; b) master is coated 
with PDMS to form PDMS mold, which is subsequently exposed 
to an oxygen plasma and filled with PDMS/Vicast to form c) 
PDMS/Vicast replica polymer microtoroid array. d) Optical 
micrograph of a PDMS microtoroid. 
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Figure 5-2: Cross-section of the PDMS mold, note the outline of 
the pillar as well as the toroid ring. 
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Figure 5-3: Scanning electron-micrograph of the first polymer 
microtoroid replica fabricated from PDMS.  
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Figure 5-4: Side view of a Vicast microtroid replica shown while 
coupled to a tapered optical fiber. 
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Figure 5-5: Transmission spectrum for a 45-micron diameter 
Vicast polymer microtoroid.  The Free Spectral Range (FSR) of 
the polymer high Q microtoroid is in agreement with the 
theoretical prediction of 11.5 nm. 
 



 74

 

Figure 5-6: Intrinsic Q for PDMS (red circles) and for Vicast 
(purple squares) replicated microresonators measured in 980 nm 
band; the theoretical Q in PDMS (blue triangles) is also plotted. 
Data points are connected by curves as a guide to the eye. 
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Figure 5-7: Intrinsic Q for PDMS (red circles) and for Vicast 
(purple squares) replicated microresonators measured in 1300 nm 
band, the theoretical Q in PDMS (blue triangles) is also plotted. 
Data points are connected by curves as a guide to the eye. 
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Figure 5-8: Intrinsic Q for PDMS (red circles) and for Vicast 
(purple squares) replicated microresonators measured in 1550 nm 
band, the theoretical Q in PDMS (blue triangles) is also plotted. 
Data points are connected by curves as a guide to the eye. 
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Chapter 6 - Surface Functionalization of Microtoroid 
Resonators with Erbium-Doped Sol-Gel 
 

6.1 Introduction 

 

In this chapter the surface functionalization of microtoroid devices using erbium-doped 

sol-gel films will be discussed. In addition to being integrable with other optical or 

electric components, they are directly coupled to optical fiber using fiber tapers. Sol-gel 

films were previously applied in order to surface functionalize silica microsphere 

resonators. Erbium-doped microlasers are especially interesting because their emission 

band falls in the important 1.5 µm window used for optical communications. While 

microsphere resonators are useful experimental tools in the laboratory they are not 

compatible with other optical or electronic chip based devices. Their properties are also 

difficult to control during fabrication. However, microtoroid based microlasers on a chip 

can be fabricated in parallel and their characteristic dimensions easily controlled using 

wafer-scale processing methods.  

 

6.2 Fabrication 

 

The details of the microtoroid fabrication process were described in Chapter 2, and the 

sol-gel starting solution was prepared as described in ref. [64]. Once the solution was 

prepared, it was aged for 10 hours at room temperature, and the silica microtoroids were 

then immersed in the solution for 3-5 hours. The substrate containing numerous 

microtoroids was heated in an oven at 160°C for another 10 hours in order to thoroughly 
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dehydrate the sol-gel. Microtoroids were then re-irradiated with a CO2 laser (10.6 micron 

wavelength) in order to reflow and densify the sol-gel films. As described in Chapter 2, 

CO2-laser emission is selectively absorbed by the silica layers. The combination of this 

effect and the relatively high thermal conductivity of silicon (100 times more thermally 

conductive than silica) results in the selective reflow and densification of sol-gel along 

the toroid periphery. 

 

More importantly, sol-gel deposited in the central area of the microtoroid was unaffected 

by this process step. Moreover, the etch rate of sol-gel films in buffered HF acid is a 

function of densification temperature[65]. As a result, sol-gel deposited everywhere 

except the densified perimeter of the microtoroid was subsequently selectively removed 

(Figure 6-1). Microtoroids ranging in diameter from 60 to 85 µm were fabricated and the 

Er3+ concentration in the sol-gel layer was estimated to be around 1019 cm-3.  An 

important feature of gain functionalization of the surface is that it puts optical gain only 

where it is needed, i.e., where the best overlap is possible with the fundamental 

whispering gallery modes. Figure 3-1 illustrates both a sol-gel functionalized microtoroid 

and the taper coupling configuration used to both provide optical pumping and to extract 

laser optical power.  
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6.3 Characterization 

 

The microlasers were optically pumped using a tunable, single-frequency, external-cavity 

laser operating in the 980 nm band and having a short-term linewidth less than 300 kHz. 

During testing, the sample chip was mounted upon a three-axis translator for position 

control. Two cameras were used to monitor the microtoroid samples and the taper, 

providing both horizontal and vertical views. The angle of the microtoroid relative to the 

taper was adjusted using the rotator to align the taper with the equatorial plane of the 

toroid. An optical spectrum analyzer (OSA) with resolution of 0.5 nm was used to 

measure the laser emission. A typical laser spectrum is presented in Figure 3-2. Single 

line emission within the resolution of the OSA was usually observed; however as pump 

powers increased, it was possible to induce oscillation in other longitudinal modes. To 

further resolve the single line observed in the OSA scan of Figure 3-2, a high finesse 

(~5000) Fabry–Perot etalon having a resolution of a few megahertz was also used to 

analyze the laser spectrum. A single-frequency, tunable, external-cavity laser emitting in 

the 1500 nm band with a known short term linewidth of 300 kHz was measured as a 

reference. Both spectra are presented in Figure 3-3. The measured laser output power 

plotted versus the absorbed pump power is shown in Figure 3-4. The threshold pump 

power in this data was 34 µW by extrapolation of the linear lasing region. The differential 

quantum efficiency was measured to be as high as 11% for single-mode, unidirectional 

operation. It should be noted that the power measurements were taken while microtoroids 

were in contact with the taper. While this allows for very stable coupling, it prevents the 
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optimization of the pump and emission coupling efficiencies. As a result, it is possible to 

further reduce the threshold in a more optimally coupled structure. 

  

6.4 Conclusion 

 

In summary, an erbium-doped microtoroid laser on a chip by use of a sol-gel surface 

functionalization technique has been demonstrated for the first time. Single-line laser 

emission and threshold pump powers as low as 34 µW were observed. Lastly, future 

devices will integrate additional functionality such as dynamic coupling and resonant 

control as described in Chapter 4 in order to create compact, low threshold laser sources 

in on-a-chip.  
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Figure 6-1: Illustration showing a microchip laser consisting of an 
erbium-doped sol-gel thin film applied to a microtoroid. Also 
shown is a fiber taper used for both pump coupling and laser 
emission extraction. 
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Figure 6-2: Emission spectrum of a microtoroid laser with 
approximate diameter of 80 µm. 
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Figure 6-3: (a) Laser emission spectrum from Er-doped sol-gel 
thin-film coated microtoroid laser. (b) Reference laser emission 
spectrum from a 1550 nm single-mode laser with short-term 
linewidth of 300 kHz. Both spectra were measured using a high 
finesse scanning Fabry–Perot spectrometer. 
 



 84

 

 

Figure 6-4: Measured laser output power plotted versus absorbed 
pump power for a microtoroid laser with a diameter of 80 µm. 



 85

Chapter 7 - Outlook 
 

Based on the work described thus far in this thesis, it can be safely assumed that planar 

microtoroid resonators will continue to evolve additional functionality and thereby 

further applications. The primary motivation behind the continued development of the 

microtoroid devices lies firmly in the realm of providing the research community a “turn-

key” device that can be plugged directly into their experiment so they may have 

immediate access to the UHQ domain. This would provide a truly enabling experimental 

tool previously limited to a handful of research groups worldwide that possessed the 

proper equipment. Moreover, there continues to be a migration in the scientific 

community towards integrating experiments onto a single chip, such as in the cases of 

Bose-Einstein condensate experiments[29] and more recently entire nuclear-magnetic-

resonance (NMR) systems integrated on a single chip[66]. This movement has already 

started for biologists as they pursue more complex “labs on-a-chip”, and there have 

already been recent demonstrations of the applications of high-Q microresonators in 

protein detection[8, 67] and DNA mutation detection[68].  As more experiments become 

integrated onto a single chip, the range of potential applications for UHQ planar 

microtoroids will continue to rise.  
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