
Infinite Ensemble Learning with Support Vector

Machines

Thesis by

Hsuan-Tien Lin

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2005

(Submitted May 18, 2005)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Theses and Dissertations

https://core.ac.uk/display/11811092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

c© 2005

Hsuan-Tien Lin

All Rights Reserved

iii

Acknowledgements

I am very grateful to my advisor, Professor Yaser S. Abu-Mostafa, for his help, sup-

port, and guidance throughout my research and studies. It has been a privilege to

work in the free and easy atmosphere that he provides for the Learning Systems

Group.

I have enjoyed numerous discussions with Ling Li and Amrit Pratap, my fellow

members of the group. I thank them for their valuable input and feedback. I am

particularly indebted to Ling, who not only collaborates with me in some parts of

this work, but also gives me lots of valuable suggestions in research and in life. I also

appreciate Lucinda Acosta for her help in obtaining necessary resources for research.

I thank Kai-Min Chung for providing useful comments on an early publication of

this work. I also want to address a special gratitude to Professor Chih-Jen Lin, who

brought me into the fascinating area of Support Vector Machine five years ago.

Most importantly, I thank my family and friends for their endless love and support.

I am thankful to my parents, who have always encouraged me and have believed in me.

In addition, I want to convey my personal thanks to Yung-Han Yang, my girlfriend,

who has shared every moment with me during days of our lives in the U.S.

This work is supported primarily by the Engineering Research Centers Program

of the National Science Foundation under award EEC-9402726.

iv

Abstract

Ensemble learning algorithms achieve better out-of-sample performance by averaging

over the predictions of some base learners. Theoretically, the ensemble could include

an infinite number of base learners. However, the construction of an infinite ensemble

is a challenging task. Thus, traditional ensemble learning algorithms usually have to

rely on a finite approximation or a sparse representation of the infinite ensemble. It is

not clear whether the performance could be further improved by a learning algorithm

that actually outputs an infinite ensemble.

In this thesis, we exploit the Support Vector Machine (SVM) to develop such

learning algorithm. SVM is capable of handling infinite number of features through

the use of kernels, and has a close connection to ensemble learning. These properties

allow us to formulate an infinite ensemble learning framework by embedding the base

learners into an SVM kernel. With the framework, we could derive several new kernels

for SVM, and give novel interpretations to some existing kernels from an ensemble

point-of-view.

We would construct several useful and concrete instances of the framework. Exper-

imental results show that SVM could perform well even with kernels that embed very

simple base learners. In addition, the framework provides a platform to fairly compare

SVM with traditional ensemble learning algorithms. It is observed that SVM could

usually achieve better performance than traditional ensemble learning algorithms,

which provides us further understanding of both SVM and ensemble learning.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 The Learning Problem . 1

1.1.1 Formulation . 1

1.1.2 Capacity of the Learning Model 3

1.2 Ensemble Learning . 6

1.2.1 Formulation . 6

1.2.2 Why Ensemble Learning? . 7

1.3 Infinite Ensemble Learning . 9

1.3.1 Why Infinite Ensemble Learning? 9

1.3.2 Dealing with Infinity . 10

1.4 Overview . 12

2 Connection between SVM and Ensemble Learning 13

2.1 Support Vector Machine . 13

2.1.1 Basic SVM Formulation . 14

2.1.2 Nonlinear Soft-Margin SVM Formulation 16

2.2 Ensemble Learning and Large-Margin Concept 20

2.2.1 Adaptive Boosting . 20

2.2.2 Linear Programming Boosting 22

2.3 Connecting SVM to Ensemble Learning 24

vi

3 SVM-based Framework for Infinite Ensemble Learning 29

3.1 Embedding Learning Model into the Kernel 29

3.2 Assuming Negation Completeness . 32

3.3 Properties of the Framework . 34

3.3.1 Embedding Multiple Learning Models 34

3.3.2 Averaging Ambiguous Hypotheses 35

4 Concrete Instances of the Framework 38

4.1 Stump Kernel . 38

4.1.1 Formulation . 38

4.1.2 Power of the Stump Ensemble 40

4.1.3 Stump Kernel and Radial Basis Function 43

4.1.4 Averaging Ambiguous Stumps 44

4.2 Perceptron Kernel . 45

4.2.1 Formulation . 45

4.2.2 Properties of the Perceptron Kernel 48

4.3 Kernels that Embed Combined Hypotheses 50

4.3.1 Logic Kernels . 50

4.3.2 Multiplication of Logic Kernels 51

4.3.3 Laplacian Kernel and Exponential Kernel 55

4.3.4 Discussion on RBF Kernels 58

5 Experiments 60

5.1 Setup . 60

5.2 Comparison of Ensemble Learning Algorithms 62

5.2.1 Experimental Results . 62

5.2.2 Regularization and Sparsity 63

5.3 Comparison of RBF Kernels . 65

6 Conclusion 67

vii

List of Figures

1.1 Illustration of the learning scenario . 3

1.2 Overfitting and underfitting . 5

2.1 Illustration of the margin, where yi = 2 · I[circle is empty]− 1 15

2.2 The power of the feature mapping in (2.1) 17

2.3 LPBoost can only choose one between h1 and h2 24

4.1 Illustration of the decision stump s+1,2,α(x) 39

4.2 The XOR training set. 43

4.3 Illustration of the perceptron p+1,θ,α(x) 46

4.4 Illustration of AND combination . 52

4.5 Combining s−1,1,2(x) and s+1,2,1(x) . 55

5.1 Decision boundaries of SVM-Stump (left) and AdaBoost-Stump (right)

on a 2-D twonorm dataset . 64

viii

List of Tables

5.1 Details of the datasets . 61

5.2 Test error (%) comparison of ensemble learning algorithms 63

5.3 Test error (%) comparison on sparsity and regularization 65

5.4 Test error (%) comparison of RBF kernels 66

5.5 Parameter selection time (sec.) comparison of RBF kernels 66

ix

List of Algorithms

1 AdaBoost . 27

2 LPBoost . 28

3 SVM-based framework for infinite ensemble learning 33

1

Chapter 1

Introduction

This thesis is about infinite ensemble learning, a promising paradigm in machine

learning. In this chapter, we would introduce the learning problem, the ensemble

learning paradigm, and the infinite ensemble learning paradigm. We would build up

our scheme of notations, and show our motivations for this work.

1.1 The Learning Problem

1.1.1 Formulation

In this thesis, we would study the problem of learning from examples (Abu-Mostafa

1989). For such a learning problem, we are given a training set Z = {zi : zi = (xi, yi)}
N
i=1

which consists of the training examples zi. We assume that the training vectors xi

are drawn independently from an unknown probability measure PX (x) on X ⊆ R
D,

and their labels yi are computed from yi = f(xi). Here f : X → Y is called the target

function, and is also assumed to be unknown. With the given training set, we want

to obtain a function g∗ : X → Y as our inference of the target function. The function

g∗ is usually chosen from a collection G of candidate functions, called the learning

model. Briefly speaking, the task of the learning problem is to use the information in

the training set Z to find some g∗ ∈ G that approximates f well.

For example, we may want to build a recognition system that transforms an image

of a written digit to its intended meaning. This goal is usually called an inverse

2

problem, but we can also formulate it as a learning problem. We first ask someone to

write down N digits, and represent their images by the training vectors xi. We then

label the digits by yi ∈ {0, 1, · · · , 9} according to their meanings. The target function

f here encodes the process of our human-based recognition system. The task of this

learning problem would be setting up an automatic recognition system (function) g∗

that is almost as good as our own recognition system, even on the yet unseen images

of written digits in the future.

Throughout this thesis, we would work on binary classification problems, in which

Y = {−1, +1}. We call a function of the form X → {−1, +1} a classifier, and define

the deviation between two classifiers g and f on a point x ∈ X to be I[g(x) 6= f(x)].1

The overall deviation, called the out-of-sample error, would be

π(g) =

∫

X
I[f(x) 6= g(x)] dPX (x).

We say that g approximates f well, or generalizes well, if π(g) is small.

We design the learning algorithm A to solve the learning problem. Generally, the

algorithm takes the training set Z and the learning model G, and outputs a decision

function g∗ ∈ G by minimizing a predefined error cost eZ(g). The full scenario of

learning is illustrated in Figure 1.1.

To obtain a decision function that generalizes well, we ideally desires eZ(g) = π(g)

for all g ∈ G. However, both f and pX are assumed to be unknown, and it is hence

impossible to compute and minimize π(g) directly. A substitute quantity that depends

only on Z is called the in-sample error

ν(g) =

N
∑

i=1

I[yi 6= g(xi)] ·
1

N
.

Many learning algorithms consider ν(g) to be an important part of the error cost,

because ν(g) is an unbiased estimate of π(g). The general wish is that a classifier

g with a small ν(g) would also have a small π(g). Unfortunately, the wish does not

1
I [·] = 1 when the inner condition is true, and 0 otherwise.

3

target function
f

?
training set

Z

?

learning algorithm decision function

A g∗

'
&

$
%

-

6

learning model
G

Figure 1.1: Illustration of the learning scenario

always come true. Although the in-sample error ν(g) is related to the out-of-sample

error π(g) (Abu-Mostafa et al. 2004), a small ν(g) does not guarantee a small π(g)

if the classifiers g ∈ G are considered altogether (Vapnik and Chervonenkis 1971).

Next, we would show that the difference between π(g) and ν(g) could indicate how

well the decision function g∗ generalizes.

1.1.2 Capacity of the Learning Model

It is known that the capacity of a learning model G plays an important role in the

learning scenario (Cover 1965; Baum and Haussler 1989; Abu-Mostafa 1989; Vapnik

1998). The capacity of G denotes how the classifiers in G could classify different

training sets (Cover 1965; Blumer et al. 1989). We say that G is more powerful, or

more complex, if it has a larger capacity.

There are many approaches for measuring the capacity of a learning model (Cover

1965; Zhang 2002; Bousquet 2003; Vapnik 1998). One of the most important ap-

proaches is the Vapnik-Chervonenkis dimension:

Definition 1 (Baum and Haussler 1989; Blumer et al. 1989) Consider the set of vec-

tors X = {xi}
N
i=1 ∈ X

N . We say that X is shattered by G if for all (y1, y2, · · · , yN) ∈

4

{−1, +1}N , there exists g ∈ G such that yi = g(xi) for i = 1, 2, · · · , N .

The Vapnik-Chervonenkis dimension (V-C dimension) of a learning model G, de-

noted DVC(G), is the maximum number N for which there exists X = {xi}
N
i=1 that

can be shattered by G. If there exists such X for all N ∈ N, then DVC(G) =∞.

When G shatters a set of N training vectors {xi}
N

i=1, we could find a classifier

g ∈ G that achieves ν(g) = 0 for any of the 2N possible labelings. In other words, G

is so powerful that no matter how those training labels are generated, we can always

obtain zero in-sample error on this training set. The V-C dimension captures this

classification power, or the capacity, by a single integer. Nevertheless, the integer

is very informative in the learning theory (Baum and Haussler 1989; Abu-Mostafa

1989; Vapnik 1998). In particular, the difference between the out-of-sample and the

in-sample error can typically be bounded by the V-C dimension.

Theorem 1 (Vapnik and Chervonenkis 1971; Abu-Mostafa 1989; Vapnik 1998) For

the binary classification problem, if the learning model G has DVC(G) <∞, then for

any ε > 0, there exists some N0 ∈ N such that for any training set of size N ≥ N0,

Pr

[

sup
g∈G

∣

∣π(g)− ν(g)
∣

∣ > ε

]

≤ 4
(

(2N)DVC(G) + 1
)

exp

(

−
Nε2

8

)

(1.1)

Theorem 1 is a route to estimate the out-of-sample error from the in-sample error.

The inequality (1.1) is independent of pX and f . In addition, it is a worst-case bound

for all g ∈ G, and thus can also be applied to the decision function g∗. Next, we

use this theorem to explain how the choice of a suitable G affects the generalization

performance of g∗.

When we fix the training set and the learning algorithm, there are two extreme ap-

proaches for choosing G. On the one hand, because the target function f is unknown,

we may want to include many diverse classifiers in G to prepare for any possible f . In

this situation, the V-C dimension of G would be large, because such a learning model

is likely to shatter a larger set of training vectors. One of the main drawbacks here,

called overfitting, is that the learning algorithm could possibly fit the training set Z

without learning much about the underlying target function f . More specifically,

5

6

-

capacity of G
small large

error

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

..

..

..

.

..

..

..
..
..
..
..
..
..
.

..

..
..
..
..
..
..
..
..
..
..

..

..
..
..
..
..
..
..
..
..
..
..

..
..
...
...
..
..
...
...
...
...
.

...
...
..
...
...
..
...
...
..
...
...

...
...
...
...
...
...
...
...
...
...
...

....
...
....
...
....
...
...
....
...
....

...
....
....
....
....
....
....
....
....
...

.....
....
.....
....
.....
....
....
.....
....
.

......
.....
.....
.....
.....
.....
.....
.....
...

.....
......
......
.....
......
.....
......
......
.

......
.......
......
......
.......
......
......
.....

......
.......
.......
.......
........

.......
.......
...

......
........

.........
........

........
........

.......

.........
.........

.........
.........

..........
.........

..

.........
...........

...........
..........

...........
........ ν(g∗)

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

.

..

..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
.

...
..
...
...
...
..
..
...
..
...
...
...
..
.

...
...
...
...
..
...
...
...
...
...
...
.

...
....
...
...
....
...
....
...
....
.

....
.....
....
.....
....
.....
...

........
.......
........

......

....................
.......

............................

............................

.............................

.............................

..............................

..............................

.......
.............

..........

..

.......
.......
.......
.......
...

.

.....
......
.....
.....
.....
.....
....

π(g∗)

underfitting overfitting

Figure 1.2: Overfitting and underfitting

even if we obtain a decision function g∗ with a small ν(g∗), the function may still

have a large π(g∗).

On the other hand, we can use a learning model G with a very small capacity to

avoid overfitting. Then, the bound in (1.1) would be smaller. However, if all g ∈ G are

too simple, they could be very different from the target function f . In other words,

both ν(g) and π(g) would be large for all g ∈ G. Hence, the learning algorithm could

not output any g∗ that has a small π(g∗). This situation is called underfitting.

We illustrate the typical behavior of overfitting and underfitting in Figure 1.2.

Successful learning algorithms usually handle these situations by working implicitly

or explicitly with a reasonable learning model. One famous strategy, called regular-

ization, implicitly shrinks the capacity of G by only considering some simpler subsets

of G, or by penalizing the more complex subsets of G. Regularization helps to avoid

overfitting, and is inherit in many learning algorithms, such as the Support Vector

Machine that we would encounter later.

Another famous strategy, called boosting, is widely used in the ensemble learn-

ing paradigm. Boosting usually starts from a simple learning model, and combines

multiple classifiers within the simple model to form a more complex classifier. The

combination step boosts up the capacity of the actual learning model, and thus gives

6

a remedy to underfitting. We would further explore the use of regularization and

boosting in this thesis.

1.2 Ensemble Learning

1.2.1 Formulation

The ensemble learning paradigm denotes a large class of learning algorithms (Meir

and Rätsch 2003). Instead of considering a powerful learning model G, an ensemble

learning algorithm A deals with a base learning model H, which is usually simple.

The classifiers h ∈ H are often called hypotheses or base learners. The algorithm then

constructs a decision function g∗ by 2

g∗(x) = sign

(

T
∑

t=1

wtht(x)

)

,

wt ≥ 0, t = 1, 2, · · · , T.

(1.2)

Any classifier g∗ that could be expressed by (1.2) is called an ensemble classifier, and

the wt in (1.2) are called the hypothesis weights. Without lose of generality for possible

ensemble classifiers, we usually normalize w by
∑T

t=1 wt. Then the hypothesis weights

would sum to 1.3 For each ensemble classifier in (1.2), we can define its normalized

version as

g∗(x) = sign

(

T
∑

t=1

w̃tht(x)

)

,

T
∑

t=1

w̃t = 1, w̃t ≥ 0, t = 1, 2, · · · , T.

(1.3)

We would denote the normalized hypothesis weights by w̃, while reserving w for pos-

sibly unnormalized ones. Note that w̃ and w can usually be used interchangeably,

because scaling the hypothesis weights by a positive constant does not affect the

2sign(v) is 1 when v is nonnegative, −1 otherwise.
3We usually ignore the degenerate case where we obtain all zero hypothesis weights.

7

prediction after the sign(·) operation. By considering normalized classifiers, we can

see that that g∗ ∈ cvx(H), where cvx(H) means the convex hull of H in the func-

tion space. In other words, the ensemble learning algorithm A actually works on

G = cvx(H).

Although H could be of infinite size in theory, traditional ensemble learning algo-

rithms usually deal with a finite and predefined T in (1.2). We call these algorithms

finite ensemble learning. Finite ensemble learning algorithms usually share another

common feature: they choose each hypothesis ht by calling another learning algo-

rithm AH, called the base learning algorithm.

Another approach in ensemble learning is infinite ensemble learning, in which the

size of {ht} is not finite. For infinite ensemble learning, the set {ht} could either

be countable or uncountable. In the latter situation, a suitable integration would be

used instead of the summation in (1.2).

Successful ensemble learning algorithms include Bayesian Committee Machines

(Tresp 2000), Bootstrap Aggregating (Breiman 1996), Adaptive Boosting (Freund

and Schapire 1997), and Adaptive Resampling and Combining (Breiman 1998). In

a broad sense, Bayesian inference that averages the predictions over the posterior

probability also belongs to the ensemble learning family (Vapnik 1998).

1.2.2 Why Ensemble Learning?

Ensemble learning algorithms are often favorable for having some or all of the follow-

ing three properties: stability, accuracy, and efficiency (Meir and Rätsch 2003).

1. Stability:

If a learning algorithm outputs a very different decision function g∗ when there

is a small variation in Z, we call the algorithm unstable. Unstable learning

algorithms are often not desirable, because they are easily affected by noise,

imprecise measurements, or even numerical errors in computing. Such algo-

rithms also may not output some g∗ that generalize well, because of the large

variance of the possible outcomes (Bousquet and Elisseeff 2002).

8

The stability of ensemble learning algorithms is best illustrated by the Bootstrap

Aggregating (Bagging) algorithm (Breiman 1996). Bagging generates T training

sets Z(t) by bootstrapping Z, and applies the base learning algorithm AH on

each Z(t) to obtain ht. The majority vote of each ht(x) determines the prediction

for some x ∈ X . In other words, the normalized hypothesis weights w̃t are

always set to 1
T

in (1.3). Breiman (1996) shows that the Bagging algorithm A

is stabler than the base learning algorithm AH because of the voting strategy.

Thus, we can view the ensemble learning algorithm as an approach to make the

base learning algorithm stabler.

2. Accuracy:

The ensemble learning algorithm usually outputs a decision function g∗ that has

a smaller π(g∗) than each individual π(ht). One simple explanation is that a

voting approach like Bagging could eliminate uncorrelated errors made by each

classifier ht. A deeper justification comes from the Probably Approximately

Correct (PAC) theory of learnability (Valiant 1984). In particular, when the size

of the training set is large enough, even if each classifier ht performs only slightly

better than random guess to f , we would construct an ensemble classifier g∗ that

is very close to f (Kearns and Valiant 1994). The boosting strategy illustrated

in Section 1.1 gets its name because of this theoretical result.

3. Efficiency:

This property usually holds for finite ensemble learning. Although the basic

learning model H is usually simple, the actual learning model G = cvx(H)

could be large and complex. Thus, a learning algorithm that directly works on

the learning model G may take a long running time. The ensemble learning

algorithms, on the other hand, usually exploit the structure of G to divide the

learning task into several small subproblems such that each of them could be

efficiently solved by the base learning algorithm AH. Because of the simplicity

of H, such divide-and-conquer approach could gain efficiency. For example,

9

the Adaptive Boosting algorithm (see Section 2.2) could perform a complicated

search in G with only some small number of calls to AH.

1.3 Infinite Ensemble Learning

We have introduced the basics of ensemble learning. In this section, we would discuss

the motivations and possible difficulties for infinite ensemble learning.

1.3.1 Why Infinite Ensemble Learning?

The most important reason for going from finite ensemble learning to infinite ensemble

learning is to further increase the capacity of the learning model. Baum and Haussler

(1989) show that ensemble classifiers in (1.2) with a finite predefined T is limited in

power.

Theorem 2 (Baum and Haussler 1989) For a base learning model H and a finite

predefined T ≥ 2, let

G = {g : g can be represented by (1.2) with ht ∈ H for all t = 1, 2, · · · , T} .

Then, DVC(G) ≤ 4T log2(eT).

Thus, choosing a suitable T for finite ensemble learning is as important as choosing

a suitable G for a learning algorithm. On the one hand, the limit in capacity could

make the algorithm less vulnerable to overfitting (Rosset et al. 2004). On the other

hand, the limit raises a possibility of underfitting (Freund and Schapire 1997).

Although traditional ensemble learning algorithms usually work with a finite pre-

defined T , many of their theoretical justifications are based on the asymptotic behav-

ior when T →∞. In other words, these algorithms can be viewed as approximations

to infinite ensemble learning. Some results show that it is beneficial to apply infinite

ensemble learning paradigm (Demiriz et al. 2002), while others show that it is harm-

10

ful to go closer to infinity by enlarging T (Rätsch et al. 2001). The controversial

results suggest further research on infinite ensemble learning.

There are many successful learning algorithms that work well by combining in-

finite processes, transition probabilities, or features. For example, infinite Gaussian

Mixture Model (Rasmussen 2000), infinite Hidden Markov Model (Beal et al. 2003),

or Support Vector Machine (Vapnik 1998). They successfully demonstrate that it can

be beneficial to consider infinite mixtures in the learning model. Thus, we want to

study whether infinite ensemble learning, that is, an infinite mixture of hypotheses,

could also work well. In particular, our motivation comes from an open problem of

Vapnik (1998, page 704):

The challenge is to develop methods that will allow us to average over large (even

infinite) numbers of decision rules using margin control. In other words, the problem

is to develop efficient methods for constructing averaging hyperplanes in high dimen-

sional space.

Here the “decision rules” are the hypotheses in H, the “margin control” is for

performing regularization, and the “averaging hyperplane” is the ensemble classifier.

Briefly speaking, our task is to construct an ensemble classifier with an infinite number

of hypotheses, while implicitly controlling the capacity of the learning model. Next,

we will see the difficulties that arise with this task.

1.3.2 Dealing with Infinity

To perform infinite ensemble learning, we would want to check and output classifiers

of the form

g(x) = sign

(∞
∑

t=1

wtht(x)

)

,

wt ≥ 0, t = 1, · · · ,∞,

11

or in the uncountable case,

g(x) = sign

(
∫

α∈C
wαhα(x) dα

)

,

wα ≥ 0, α ∈ C.

The countable and uncountable cases share similar difficulties. We would conquer

both cases in this thesis. Here, we will only discuss the countable case for simplicity.

The first obstacle is to represent the classifiers. The representation is important

both for the learning algorithm, and for doing further prediction with the decision

function g∗. We cannot afford to save and process every pair of (wt, ht) because of

the infinity. One approach is to save only the pairs with nonzero hypothesis weights,

because the zero weights do not affect the predictions of any ensemble classifier g.

We call this approach sparse representation.

An ensemble classifier that only has a small finite number of nonzero hypothesis

weights is called a sparse ensemble classifier. The viability of sparse representation

is based on the assumption that the learning algorithm only needs to handle sparse

ensemble classifiers. Some algorithms could achieve this assumption by applying an

error cost eZ(g) that favors sparse ensemble classifiers. An example of such design

is the Linear Programming Boosting algorithm (Demiriz et al. 2002), which would

be introduced in Section 2.2. The assumption on sparse ensemble classifiers is also

crucial to many finite ensemble learning algorithms, because such property allows

them to approximate the solutions well with a finite ensemble.

With the sparse representation approach, it looks as if infinite ensemble learning

could be solved or approximated by finite ensemble learning. However, the sparsity

assumption also means that the capacity of the classifiers is effectively limited by

Theorem 2. In addition, it is not clear whether the error cost eZ(g) that introduces

sparsity could output a decision function g∗ that generalizes well. Thus, we choose

to take a different route. We want to conquer the task of infinite ensemble learning

without sparse representation, and see if our approach could perform better.

12

Another obstacle in infinite ensemble learning is the infinite number of constraints

wt ≥ 0, t = 1, 2, · · · ,∞.

Learning algorithms usually try to minimize the error cost eZ(g), which becomes a

harder task when more constraints needs to be satisfied and maintained simultane-

ously. The infinite number of constraints resides in the extreme of this difficulty, and

is part of the challenge mentioned by Vapnik (1998).

1.4 Overview

This thesis exploits the Support Vector Machine (SVM) to tackle the difficulties in

infinite ensemble learning. We would show the similarity between SVM and boosting-

type ensemble learning algorithms, and formulate an infinite ensemble learning frame-

work. based on SVM. The key of the framework is to embed infinite number of hy-

potheses into the kernel of SVM. Such framework does not require the assumption

for sparse representation, and inherits the profound theoretical results of SVM.

We find that we can apply this framework to construct new kernels for SVM, and

to interpret some existing kernels. In addition, we can use this framework to fairly

compare SVM with other ensemble learning algorithms. Experimental results show

that our SVM-based infinite ensemble learning algorithm has superior performance

over popular ensemble learning algorithms.

This thesis is organized as follows. In Chapter 2, we discuss the connection be-

tween SVM and ensemble learning algorithms. Next in Chapter 3, we show our frame-

work for embedding hypotheses into the SVM kernel, and explain how this framework

converts SVM into an infinite ensemble learning algorithm. We then demonstrate the

framework with some concrete instances in Chapter 4. Finally, we show the experi-

mental results in Chapter 5, and conclude in Chapter 6.

13

Chapter 2

Connection between SVM and

Ensemble Learning

In this chapter, we focus on connecting Support Vector Machine (SVM) to ensemble

learning algorithms. The connection is our first step towards designing an infinite

ensemble learning algorithm with SVM. We start by providing the formulations of

SVM in Section 2.1, and show that SVM implements the concept of large-margin

classifiers. Next in Section 2.2, we introduce some ensemble learning algorithms that

also output large-margin classifiers. Then, we would further discuss the connection

between SVM and those algorithms in Section 2.3.

2.1 Support Vector Machine

The Support Vector Machine (SVM) is a learning algorithm based on V-C type learn-

ing theory (see Theorem 1). We shall first introduce the basic idea of SVM: producing

a hyperplane classifier with the largest minimum margin. Then, we would extend the

basic idea to a more powerful and more robust SVM formulation.

14

2.1.1 Basic SVM Formulation

We start from a basic SVM formulation: linear hard-margin SVM (Vapnik 1998),

which constructs a decision function 1

g∗(x) = sign
(

wT x + b
)

with the optimal solution (w, b) to the following problem:

(P1) max
w∈RD,b∈R,ρ∈RN

min
1≤i≤N

ρi

subject to ρi =
1

‖w‖2
yi

(

wTxi + b
)

, i = 1, 2, · · · , N,

ρi ≥ 0, i = 1, 2, · · · , N.

The classifier of the form sign
(

wTx + b
)

is called a hyperplane classifier, which divides

the space R
D with the hyperplane wTx + b = 0. For a given hyperplane classifier,

the value ρi is called the `2-margin of each training example zi = (xi, yi), and its

magnitude represents the Euclidean distance of xi to the hyperplane wTx + b = 0.

We illustrate the concept of margin in Figure 2.1. The constraint ρi ≥ 0 means that

the associated training example zi is classified correctly using the classifier. Linear

hard-margin SVM would output a hyperplane classifier that not only classifies all

training examples correctly (called separates all training examples), but also has the

largest minimum margin. In other words, the distance from any training vector to

the hyperplane should be as large as possible.

The intuition for obtaining a large-margin classifier is to have less uncertainty

near the decision boundary wTx + b = 0, where sign(·) switches sharply. A deeper

theoretical justification is that the large-margin concept implicitly limits the capacity

of the admissible learning model.

Theorem 3 (Vapnik 1998) Let the vectors x ∈ X ⊆ R
D belong to a sphere of ra-

1Here u
T means the transpose of the vector u, and hence u

T
v is the inner product of the two

vectors in R
D.

15

dx1

ρ1

d d
dx2

ρ2

d@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

wT x + b = 0

t

t

tx3

ρ3

t
t

�
��

w

Figure 2.1: Illustration of the margin, where yi = 2 · I[circle is empty]− 1

dius R, and define the Γ-margin hyperplane

gw,b(x) =

1, if 1
‖w‖

2

·
(

wTx + b
)

≥ Γ

−1, if 1
‖w‖

2

·
(

wTx + b
)

≤ −Γ

Then, the learning model G that consists of all the Γ-margin hyperplanes has V-C di-

mension

DVC(G) ≤ min

(

R2

Γ2
, D

)

+ 1.

Thus, when choosing the hyperplane with the largest minimum margin, we could

shrink and bound the capacity of the learning model. As mentioned in Section 1.1,

this idea corresponds to the regularization strategy for designing learning algorithms.

Problem (P1) contains the max-min operation and nonlinear constraints, which

are complicated to solve. Nevertheless, the optimal solution (w, b) for a following

simple quadratic problem is also optimal for (P1).

(P2) min
w∈RD,b∈R

1

2
wT w

subject to yi

(

wTxi + b
)

≥ 1.

16

The quadratic problem (P2) is convex and is easier to analyze. In the next section,

we would construct more powerful SVM formulations based on this problem.

2.1.2 Nonlinear Soft-Margin SVM Formulation

Linear hard-margin SVM problem (P2) has a drawback: what if the training examples

cannot be perfectly separated with any hyperplane classifier? Figure 2.2(a) shows a

training set of such situation. Then, the feasible region of (P2) would be empty, and

the algorithm could not output any decision function (Lin 2001).

This situation happens because the learning model (set of hyperplane classifiers)

is not powerful enough, or because the training examples contain noise. Nonlinear

soft-margin SVM applies two techniques to deal with the situation. First, it uses the

feature transformation to increase the capacity of the learning model. Second, it al-

lows the hyperplane classifier to violate some of the the constraints of (P2) (Schölkopf

and Smola 2002).

Nonlinear SVM works in a feature space F rather than the original space X ⊆ R
D.

The original vectors x ∈ X are transformed to the feature vectors φx ∈ F by a feature

mapping

Φ: X → F

x 7→ φx .

We assume that the feature space F is a Hilbert space defined with an inner prod-

uct 〈·, ·〉. Then, we can replace the wTx in linear SVM by 〈w, φx〉. The resulting

classifier would still be of hyperplane-type in F , and hence Theorem 3 could be ap-

plied by considering φx instead of x. When Φ is a complicated feature transform, it is

likely that we could separate the training examples in F . For example, assume that

Φ: R
2 → F = R

5

(

(x)1, (x)2

)

7→

(

(x)1, (x)2, (x)2
1, (x)1(x)2, (x)2

2

)

,
(2.1)

17

d
t
t

d

(a) No hyperplane classifier could
separate the training examples

d
t
t

d
.

.

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

.

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

.

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

.

..

.

..

..

.

..

.

..

..

.

..

.

.

.

.

..

..

.

..

..

.

..

..

.

.

.

..

.

..

..

..

..

..

.

..

..

..

..

.

..

.

.

..

..

.

..

.

..

..

..

...
.......

......

.

...

...

..

..

..

...

..

..

.

..

..

..

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

.

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

.

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

.

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

.

(b) A quadratic curve classifier
separates the training examples

Figure 2.2: The power of the feature mapping in (2.1)

where (x)d is the d-th element of the vector x. Then, any classifier of the form

sign

(

〈w, Φ(x)〉+ b

)

would be a quadratic curve in R
2, and the set of such classifiers is more powerful than

the set of hyperplane classifiers in R
2, as illustrated by Figure 2.2.

With a suitable feature transform, nonlinear soft-margin SVM outputs the deci-

sion function

g∗(x) = sign

(

〈w, φx〉+ b

)

(2.2)

with the optimal solution to

(P3) min
w∈F ,b∈R,ξ∈RD

1

2
〈w, w〉+ C

N
∑

i=1

ξi

subject to yi

(

〈w, φxi
〉+ b

)

≥ 1− ξi, i = 1, 2, · · · , N,

ξi ≥ 0, i = 1, 2, · · · , N.

The value ξi is the violation that the hyperplane classifier makes on training examples

zi = (xi, yi), and C > 0 is the parameter that controls the amount of the total

violations allowed. When C →∞, we call (P3) the problem of nonlinear hard-margin

SVM, in which all ξi would be forced to zero.

18

Because the feature space F could be of infinite number of dimensions, SVM

software usually solves the Lagrangian dual of (P3) instead:

(P4) min
λ∈RN

1

2

N
∑

i=1

N
∑

j=1

λiλjyiyjK(xi, xj)−
N
∑

i=1

λi

subject to

N
∑

i=1

yiλi = 0,

0 ≤ λi ≤ C, i = 1, · · · , N.

Here K is called the kernel, and is defined as

K(x, x′) ≡ 〈φx, φx′〉 . (2.3)

The duality between (P3) and (P4) holds for any Hilbert space F (Lin 2001). Through

duality, the optimal (w, b) for (P3) and the optimal λ for (P4) are related by (Vapnik

1998; Schölkopf and Smola 2002)

w =

N
∑

i=1

yiλiφxi
(2.4)

and

b ≥ max

−yi

(

1−
N
∑

i=1

λiyiK(xi, xj)

)

:
αj > 0, yj = −1

or αj < C, yj = +1

b ≤ min

+yi

(

1−

N
∑

i=1

λiyiK(xi, xj)

)

:
αj < C, yj = −1

or αj > 0, yj = +1

(2.5)

Then, the decision function becomes

g∗(x) = sign

(

N
∑

i=1

yiλiK(xi, x) + b

)

(2.6)

An important observation is that both (P4) and (2.6) do not require any compu-

tation of w explicitly. Hence, even if the feature space F has an infinite number of

19

dimensions, we could solve (P4) and obtain g∗ with only the kernel K(x, x′). The use

of a kernel instead of directly computing the inner product in F is called the kernel

trick, and is a key ingredient of SVM.

For the kernel trick to go through, the kernel K(x, x′) should be easy to compute.

Alternatively, we may wonder if we could start with an arbitrary kernel, and claim

that it is an inner product 〈·, ·〉 in some space F . An important tool for this approach

is the Mercer’s condition. Next, we first define some important terms in Definition 2,

and describe the Mercer’s condition briefly in Theorem 4.

Definition 2 For some N by N matrix K,

1. K is positive semi-definite (PSD) if vTKv ≥ 0 for all v ∈ R
N .

2. K is positive definite (PD) if vT Kv > 0 for all v ∈ R
N such that some vi is

nonzero.

3. K is conditionally positive semi-definite (CPSD) if vT Kv ≥ 0 for all v ∈ R
N

such that
∑N

i=1 vi = 0.

4. K is conditionally positive definite (CPD) if vT Kv > 0 for all v ∈ R
N such that

∑N

i=1 vi = 0 and some vi is nonzero.

Theorem 4 (Vapnik 1998; Schölkopf and Smola 2002) A symmetric function K(x, x′)

is a valid inner product in some space F if and only if for every N and {xi}
N
i=1 ∈ X

N ,

the matrix K constructed by Kij = K(xi, xj), called the Gram matrix of K, is PSD.

Several functions are known to satisfy Mercer’s condition for X ⊆ R
D, including:

• Linear: K(x, x′) = xT x′.

• Polynomial: K(x, x′) = (xT x′ + r)k, r ≥ 0, k ∈ N.

• Gaussian: K(x, x′) = exp
(

−γ ‖x− x′‖22
)

, γ > 0.

• Exponential: K(x, x′) = exp (−γ ‖x− x′‖2) , γ > 0.

20

• Laplacian: K(x, x′) = exp (−γ ‖x− x′‖1) , γ > 0.

SVM with different kernels try to classify the examples with large-margin hyper-

plane classifiers in different Hilbert spaces. Some ensemble learning algorithms can

also produce large-margin classifiers with a suitable definition of the “margin.” Note

that we deliberately use the same symbol w in (P3) for the hyperplane classifiers and

for the hypothesis weights in ensemble learning. In the next section, we shall see that

this notation easily connects SVM to ensemble learning through the large-margin

concept.

2.2 Ensemble Learning and Large-Margin Concept

We have introduced SVM and the large-margin concept. In this section we show two

ensemble learning algorithms that also output large-margin classifiers. The first one

is Adaptive Boosting, and the second one is Linear Programming Boosting.

2.2.1 Adaptive Boosting

Adaptive Boosting (AdaBoost) is one of the most popular algorithms for ensemble

learning (Freund and Schapire 1996; Freund and Schapire 1997). For a given inte-

ger T , AdaBoost iteratively forms an ensemble classifier

g∗(x) = sign

(

T
∑

t=1

wtht(x)

)

, wt ≥ 0, t = 1, 2, · · · , T.

In each iteration t, there is a sample weight Ut(i) on each training example zi, and

AdaBoost selects ht ∈ H with the least weighted in-sample error:

ht = argminh∈H

(

N
∑

i=1

I[yi 6= h(xi)] · Ut(i)

)

.

AdaBoost then assigns the unnormalized hypothesis weight wt to ht, and generates

Ut+1(·) for the next iteration. The details of AdaBoost are shown in Algorithm 1.

21

Algorithm 1 has an interpretation as a gradient-based optimization technique

(Mason et al. 2000). It obtains the hypotheses and weights by solving the following

optimization problem:

(P5) max
wt∈R,ht∈H,ρ∈RN

−
N
∑

i=1

exp (−‖w‖1 ρi)

subject to ρi =
1

‖w‖1
yi

(∞
∑

t=1

wtht(xi)

)

, i = 1, 2, · · · , N,

wt ≥ 0, t = 1, 2, · · · ,∞.

Although (P5) has an infinite number of variables (wt, ht), AdaBoost approximates

the optimal solution by the first T steps of the gradient-descent search. We could

compare (P5) with (P1). First, they have a similar term ρi. However, for SVM, ρi

is the `2-margin, while for AdaBoost, ρi is normalized by ‖w‖1, and is called the

`1-margin. The objective function of SVM is

min
1≤i≤N

ρi ,

while the objective function of AdaBoost is

N
∑

i=1

− exp (−‖w‖1 ρi) .

For large ρi, the term exp (−‖w‖1 ρi) would be close to zero and negligible. Thus,

the two objective functions both focus only on small ρi. Note that for a fixed w, the

term

− exp (−‖w‖1 ρi)

is an increasing function of ρi. Thus, both (P5) and (P1) want to maximize the smaller

margins.

Under some assumptions, Rätsch et al. (2001, Lemma 5) show that when T →∞,

AdaBoost indeed finds an ensemble classifier that has the largest minimum `1-margin.

22

In other words, AdaBoost asymptotically approximates an infinite ensemble classifier

g∗(x) = sign

(∞
∑

t=1

wtht(x)

)

,

such that (w, h) is an optimal solution for

(P6) min
wt∈R,ht∈H

‖w‖1

subject to yi

(∞
∑

t=1

wtht(xi)

)

≥ 1, i = 1, 2, · · · , N.

wt ≥ 0, t = 1, 2, · · · ,∞. (2.7)

Compare (P6) with (P3), we further see the similarity between SVM and AdaBoost.

Note, however, that AdaBoost has additional constraints (2.7), which makes the

problem harder to solve directly.

2.2.2 Linear Programming Boosting

Linear Programming Boosting (LPBoost) solves (P6) exactly with linear program-

ming. We will introduce soft-margin LPBoost, which constructs an infinite ensemble

classifier

g∗(x) = sign

(∞
∑

t=1

wtht(x)

)

,

with the optimal solution to

(P7) min
wt∈R,ht∈H

∞
∑

t=1

wt + C

N
∑

i=1

ξi

subject to yi

(∞
∑

t=1

wtht(xi)

)

≥ 1− ξi,

ξi ≥ 0, i = 1, 2, · · · , N,

wt ≥ 0, t = 1, 2, · · · ,∞.

23

Similar to the case of soft-margin SVM, the parameter C controls the amount of

violations allowed. When C → ∞, the soft-margin LPBoost approaches a hard-

margin one, which solves (P6) to obtain the decision function g∗.

LPBoost is an infinite ensemble learning algorithm. How does it handle infinite

number of variables and constraints? First, there are many optimal solutions to (P7),

and some of them only have a finite number of nonzero hypothesis weights wt. For

example, consider two hypothesis ht1 and ht2 such that

ht1(xi) = ht2(xi) for i = 1, 2, · · · , N.

We say that ht1 and ht2 have the same pattern, or are ambiguous, on the training

vectors {xi}
N
i=1. Assume that (w, h) is an optimal solution for (P7), and define

ŵt =

wt1 + wt2 t = t1

0 t = t2

wt otherwise.

Then, we can see that (ŵ, h) satisfies all the constraints of (P7), and still has the same

objective value as (w, h). Thus, (ŵ, h) is also an optimal solution. We can repeat this

process and get an optimal solution that has at most 2N nonzero weights. LPBoost

aims at finding this solution. Thus, it equivalently only needs to construct a finite

ensemble classifier of at most 2N hypothesis weights.

Even if LPBoost would need at most 2N nonzero hypothesis weights wt, the prob-

lem could still be intractable when N is large. However, minimizing the criteria ‖w‖1

often produces a sparse solution (Meir and Rätsch 2003; Rosset et al. 2004). Hence,

LPBoost could start with all zero hypothesis weights, and iteratively considers one

hypothesis ht that should have non-zero weight wt. Because (P7) is a linear program-

ming problem, such step can be performed efficiently with a simplex-type solver using

the column generation technique (Nash and Sofer 1996). The detail of LPBoost is

shown in Algorithm 2.

There are two drawbacks for LPBoost. First, solving the inner problem (P9)

24

dd d
d d@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
h1

h2

t
t

t
t

t

Figure 2.3: LPBoost can only choose one between h1 and h2

could be slow. As a consequence, the assumption on sparse representation becomes

important, because the level of sparsity determines the number of inner optimization

problems that LPBoost needs to solve. Second, for any specific pattern on the training

vectors, LPBoost use one and only one ht to represent it. The drawback here is that

the single hypothesis ht may not be the best compared to other ambiguous hypotheses.

Figure 2.3 shows one such situation, in which the hypotheses are hyperplanes in two

dimensional spaces. The classifier h1 seems to be a stabler choice over h2 for the

pattern, but LPBoost might only select h2 as the representative. This drawback

contradicts the ensemble view for stability: we should average over the predictions of

the ambiguous hypotheses to obtain a stabler classifier.

2.3 Connecting SVM to Ensemble Learning

In (P7), we consider selecting an infinite number of hypotheses ht from H, and then

assigning the hypothesis weights wt to them. When H is of countably infinite size,

an equivalent approach is to assume H = {h(a)}
∞
a=1, and obtain a nonnegative weight

w(a) for each hypothesis. We will use t when the hypotheses are iteratively selected,

25

and a as a general enumeration. Consider the feature transform

Φ(x) = (h(1)(x), h(2)(x), · · · , h(a)(x), · · ·). (2.8)

From (P3) and (P7), we can clearly see the connection between SVM and LPBoost.

The features in φx in SVM and the hypotheses h(a)(x) in LPBoost play similar roles.

SVM and LPBoost both work on linear combinations of the features (hypothesis

predictions), though SVM has an additional intercept term b. They both minimize

the sum of a margin-control term and a violation term. However, SVM focuses on

the `2-margin while LPBoost deals with the `1-margin. The later results in sparse

representation of the ensemble classifier.

The connection between SVM and ensemble learning is widely known in literature.

Freund and Schapire (1999) have shown the similarity of large-margin concept be-

tween SVM and AdaBoost. The connection has been used to develop new algorithms.

For example, Rätsch et al. (2001) have tried to select the hypotheses by AdaBoost

and obtain the hypothesis weights by solving an optimization problem similar to (P3).

Another work by Rätsch et al. (2002) has shown a new one-class estimation algorithm

based on the connection. Recently, Rosset et al. (2004) have applied the similarity

to compare SVM with boosting algorithms.

Although H can be of infinite size, previous results that utilize the connection

between SVM and ensemble learning usually only consider a finite subset of H. One

of the reasons is that the constraints w(a) ≥ 0, which are required for ensemble

learning, are hard to handle in SVM. If we have an infinite number of hypothesis

weights, and directly add the nonnegative constraints to (P3), Vapnik (1998) shows

that the dual problem (P4) would become

(P8) min
λ∈RN ,ζ

1

2

N
∑

i=1

N
∑

j=1

λiλjyiyjK(xi, xj)−
N
∑

i=1

λi +
N
∑

i=1

yiλi 〈φxi
, ζ〉+

1

2
〈ζ, ζ〉

subject to 0 ≤ λi ≤ C, i = 1, · · · , N,

ζ(a) ∈ R, ζ(a) ≥ 0, a = 1, 2, · · · ,∞.

26

Because ζ is an unknown vector of infinite size, we cannot perform 〈·, ζ〉 with the

kernel trick. In addition, we still have an infinite number of variables and constraints

in (P8), and we cannot solve such problem directly. We would deal with these dif-

ficulties in the next chapter. In addition, we would show how we could construct a

kernel from (2.8).

27

Algorithm 1 AdaBoost

• Input:

– The training set Z = {(x1, y1), ..., (xN , yN)}.

– The number of iterations T .

– The base learning model H and the base learning algorithm AH.

• Procedure:

– Initialize the sample weights U1(i) = 1/N for i = 1, 2, · · · , N .

– For t = 1, · · · , T do

1. Call AH to obtain ht ∈ H that achieves the minimum error on the
weighted training set (Z, Ut).

2. Calculate the weighted error εt of ht.

εt =

N
∑

i=1

I[ht(xi) 6= yi] · Ut(i),

Abort if εt = 0 or εt ≥
1
2
.

3. Set

wt = log

(

1− εt

εt

)

,

and update the sample weights by

Ut+1(i) = Ut(i) exp (−wtI[ht(xi) = yi]) , for i = 1, 2, · · · , N.

4. Normalize Ut+1 such that
∑N

i=1 Ut+1(i) = 1.

• Output:

– The decision function g∗(x) = sign
(

∑T
t=1 wtht(x)

)

.

28

Algorithm 2 LPBoost

• Input:

– The training set Z = {(x1, y1), ..., (xN , yN)}.

– The soft-margin parameter C.

– The base learning model H and the base learning algorithm AH.

• Procedure:

– Initialize the sample weights U1(i) = 1/N for i = 1, 2, · · · , N .

– Initialize β1 = 0.

– For t = 1, · · · ,∞ do

1. Call AH to obtain ht ∈ H that achieves the minimum error on the
weighted training set (Z, Ut).

2. Check if ht could really improve the optimal solution:
If
∑N

i=1 Ut(i)yiht(xi) ≤ βt, T ← t− 1, break.

3. Update the sample weights Ut and current optimality barrier βt by
solving

(P9) min
Ut+1,βt+1

βt+1

subject to

N
∑

i=1

Ut+1(i)yihk(xi) ≤ βt+1, k = 1, · · · , t, (2.9)

N
∑

i=1

Ut+1(i) = 1,

0 ≤ Ut+1(i) ≤ C, i = 1, · · · , N.

4. Update the weight vector w with the Lagrange multipliers of (2.9).

• Output:

– The decision function g∗(x) = sign
(

∑T

t=1 wtht(x)
)

.

29

Chapter 3

SVM-based Framework for Infinite

Ensemble Learning

Our goal is to conquer the task of infinite ensemble learning without confining our-

selves to the sparse representation. Traditional algorithms cannot be directly general-

ized to solve this problem, because they either iteratively include only a finite number

of T hypotheses (AdaBoost), or assume sparse representation strongly (LPBoost).

The connection between SVM and ensemble learning shows another possible ap-

proach. We can form a kernel that embodies the predictions of all the hypotheses

in H. Then, the decision function (2.6) obtained from SVM with this kernel is a

linear combination of those predictions (with an intercept term). However, there are

still two main obstacles. One is to compute the kernel when H is of possibly un-

countable size, and the other is to handle the nonnegative constraints on the weights

to make (2.6) an ensemble classifier. In this chapter, we shall address the details

of these obstacles, and then propose a thorough framework that exploits SVM for

infinite ensemble learning.

3.1 Embedding Learning Model into the Kernel

In this section, we try to embed the hypotheses in the base learning model H into an

SVM kernel. Our goal is infinite ensemble learning. Thus, although the embedding

works when H is of either finite or infinite size, we would assume the infinite case.

We have shown in (2.8) that we could construct a feature mapping using the

30

predictions of the hypotheses h(a) ∈ H. In Definition 3, we extend this idea to a more

general form, and defines a kernel based on the feature mapping.

Definition 3 Assume that H = {hα : α ∈ C}, where C is a measure space with mea-

sure µ. The kernel that embodies H with a positive function r : C → R
+ is defined

as

KH,r(x, x′) =

∫

C
φx(α)φx′(α) dµ(α), (3.1)

where φx(α) = r(α)hα(x) is a measurable function over µ, and the embedding function

r(α) is chosen such that the Lebesgue integral exists for all x, x′ ∈ X .

Here, the index α is called the parameter of the hypothesis hα. Note that depend-

ing on the way that we parameterize H, two hypotheses hα1
and hα2

, where α1 6= α2,

may have hα1
(x) = hα2

(x) for all x ∈ X . For example, we could parameterize the set

of finite ensemble classifiers in (1.2) by (w, h). But an ensemble classifier with param-

eter (w, h) is equivalent to an ensemble classifier with parameter (w̃, h), where w̃t are

the associated normalized hypothesis weights. We would treat those hypotheses as

different objects during parameterization, while bearing in mind that they represent

the same function. That is, the learning model H is equivalently
⋃

α∈C {hα}.

From now on, we shall denote KH,r by KH when it is clear about the embedding

function r from the context, or when the specific choice of r is irrelevant. If C is a

closed interval [L, R], we can easily observe that the right-hand-side of (3.1) is an

inner product (Schölkopf and Smola 2002), and hence Definition 3 constructs a valid

kernel. In the following theorem, we formalize such observation for a general C.

Theorem 5 Consider the kernel KH = KH,r in Definition 3.

1. The kernel is an inner product for φx and φx′ in the Hilbert space F = L2(C, dµ),

where L2(C, dµ) is the set of functions ϕ(·) : C → R that are square integrable

over measure µ.

2. For a given set of training vectors X = {xi}
N
i=1 ∈ X

N , the Gram matrix of KH

is PSD.

31

Proof. By Definition 3,

KH,r(x, x) =

∫

C
(φx(α))2 dµ(α)

exists for all x ∈ X . Thus, the functions φx(α) belongs to F = L2(C, dµ). The results

of Reed and Simon (1980, Section II.2, Example 6) show that F is a Hilbert space,

in which the inner product between two functions ϕ and ϕ′ is defined as

〈ϕ, ϕ′〉 =

∫

C
ϕ(α)ϕ′(α) dµ(α).

Then, we can see that KH(x, x′) is an inner product for φx and φx′ in F . The second

part is just a consequence of the first part by Theorem 4. �

The technique for using an integral inner product between functions is known in

SVM literature. For example, Schölkopf and Smola (2002, Section 13.4.2) explain that

the Fisher kernel takes an integral inner product between two regularized functions.

Our framework applies this technique to combine predictions of hypotheses, and thus

could handle the situation even when the base learning model H is uncountable.

When we apply KH to (P4), the primal problem (P3) becomes

(P10) min
w,b,ξ

1

2

∫

C
(w(α))2 dµ(α) + C

N
∑

i=1

ξi

s.t. yi

(
∫

C
w(α)r(α)hα(xi) dµ(α) + b

)

≥ 1− ξi,

ξi ≥ 0, i = 1, · · · , N,

w ∈ L2(C, dµ), b ∈ R, ξ ∈ R
N .

In particular, the decision function (2.6) obtained after solving (P4) with KH is the

same as the decision function obtained after solving (P10):

g∗(x) = sign

(
∫

C
w(α)r(α)hα(x) dµ(α) + b

)

. (3.2)

When C is uncountable, it is possible that each hypothesis hα(x) only takes an

32

infinitesimal weight w(α)r(α) dµ(α) in g∗(x). We shall discuss this situation further

in Section 3.3. Note that (3.2) is not an ensemble classifier yet, because we do not

have the constraints w(α) ≥ 0 for all possible α ∈ C, and we have an additional

intercept term b.1 In the next section, we focus on these issues, and explain that

g∗(x) is equivalent to an ensemble classifier under some reasonable assumptions.

3.2 Assuming Negation Completeness

To make (3.2) an ensemble classifier, we need to have w(α) ≥ 0 for all α ∈ C.

Somehow these constraints are not easy to satisfy. We have shown in Section 2.3 that

even when we only add countably infinite number of constraints to (P3), we would

introduce infinitely many variables and constraints in (P8), which makes the later

problem difficult to solve (Vapnik 1998).

One remedy is to assume that H is negation complete, that is,2

h ∈ H ⇔ (−h) ∈ H.

Then, every linear combination over H has an equivalent linear combination with

only nonnegative hypothesis weights. Thus, we can drop the constraints during op-

timization, but still obtain a decision function that is equivalent to some ensemble

classifier. For example, for H = {h1, h2, (−h1), (−h2)}, if we have a decision function

sign(3h1(x)− 2h2(x)) ,

it is equivalent to

sign(3h1(x) + 2(−h2)(x)) ,

and the later is an ensemble classifier over H.

1Actually, w(α)r(α) ≥ 0. Somehow we assumed that r(α) is always positive.
2We use (−h) to denote the function (−h)(·) = −(h(·)).

33

Algorithm 3 SVM-based framework for infinite ensemble learning

• Input:

– The training set Z = {(x1, y1), · · · , (xN , yN)}.

– The soft-margin parameter C.

– The base learning model H and the kernel KH given in Definition 3. The
kernel is computed from H, which is assumed to be an infinite, negation
complete learning model that contains a constant classifier.

• Procedure:

– Solve (P4) with KH and obtain Lagrange multipliers λi.

– Compute b from (2.5).

• Output:

– The decision function g∗(x) = sign
(

∑N

i=1 yiλiK(xi, x) + b
)

, which is equiv-

alent to some ensemble classifier over H.

Note that negation completeness is usually a mild assumption for a reasonable

learning model. Following this assumption, after solving (P4) with KH, the decision

function (3.2) can be interpreted an ensemble classifier over H with an intercept term

b. Note that b can be viewed as a hypothesis weight on a constant classifier c, which

predicts c(x) = 1 for all x ∈ X . In general, a reasonable learning model H contains

c and (−c), in order to handle, for example, the situation that all training labels are

the same. We shall make the assumption that H contains both c and (−c) from now

on. Then, g∗(·) in (3.2) or (2.6) is indeed equivalent to an ensemble classifier.

We summarize our framework in Algorithm 3. The algorithm looks simple because

most of the work could be done by existing SVM algorithms. The hard part is mostly

in obtaining the kernel KH. In the next section, we further show some properties

of the framework, which would facilitate the demonstration of concrete instances in

Chapter 4.

34

3.3 Properties of the Framework

In this section, we introduce two important properties of the SVM-based framework.

First we show that the framework allows us to embed multiple base learning models

together with a simple summation over the kernels. This property demonstrates not

only an advantage of the framework, but also the simpicity of manipulating with

kernels. Second, we show that the framework treats the ambiguous hypotheses fairly.

We have mentioned in Section 2.2 that LPBoost could only select one hypothesis

among the ambiguous ones, but our framework would average over the predictions of

all of them. Thus, from the ensemble point-of-view, our framework would be stabler.

3.3.1 Embedding Multiple Learning Models

The SVM-based framework allows us to embed multiple base learning models alto-

gether. Consider two base learning models H1 and H2, if we could embed them into

kernels KH1
and KH2

, respectively, then the kernel

K(x, x′) = KH1
(x, x′) +KH2

(x, x′)

embeds both of those learning models. In other words, if we use K(x, x′) in Algo-

rithm 3, and H = H1 ∪ H2 satisfies the required assumptions, we could obtain an

ensemble classifier over H.

When we want to consider multiple base learning models together, traditional

ensemble learning algorithms usually require calling a base learning algorithm for

each model. Such step is usually more time-consuming than just summing up the

kernel evaluations. In fact, as shown in the next theorem, our framework could

embed a countably infinite number of base learning models altogether, which can

hardly be done by traditional ensemble learning algorithms.

Theorem 6 Assume that for some M ∈ N ∪ {∞}, we could define the kernels

35

KH1
, · · · ,KHM

with learning models H1, · · · ,HM , respectively. Then, let

K(x, x′) =

M
∑

m=1

KHm
(x, x′).

If K(x, x′) exists for all x, x′ ∈ X , and

H =

M
⋃

m=1

Hm ∪ {c, (−c)}

is negation complete, Algorithm 3 using K(x, x′) could output an ensemble classifier

over H.

Proof. From Theorem 5, each KHm
is an inner product in a Hilbert space Fm. From

the results of Reed and Simon (1980, Example 5), we can see that a countable direct

sum over Hilbert spaces is still a Hilbert space. Let F be the countable direct sum

of the spaces F1, · · · ,FM , we could define an inner product in F by summing the

inner products in F1, · · · ,FM . The resulting inner product is K(x, x′), and hence the

decision function g∗ from (3.2) represents a linear combination over the predictions

of
⋃M

m=1Hm ∪ {c}. Under the assumption, we can see that g∗ is equivalent to an

ensemble classifier over H. �

Note that we do not intend to define a a kernel with H directly in Theorem 6,

because doing so may require choosing suitable C, µ, and r, which may not be an easy

task for such a complex learning model. However, Theorem 6 allows us to construct

kernels on the simpler learning models first, and use the combination of these kernels

to obtain an ensemble classifier over the full union. We will further see the power of

summing over kernels in Section 4.3.

3.3.2 Averaging Ambiguous Hypotheses

We have shown in Section 2.2 that LPBoost could only select one hypothesis among

the ambiguous ones. In the next theorem, we show that our framework takes a

different approach: if one of the ambiguous hypotheses is included with nonzero

36

hypothesis weight in the ensemble, all the ambiguous hypotheses are also included.

Theorem 7 For a given training set Z, and a kernel KH,r defined from a given

learning model H, assume that hα1
∈ H and hα2

∈ H are ambiguous on the training

vectors. Then, after solving (P10),

w(α1)

r(α1)
=

w(α2)

r(α2)
.

In other words, if the hypothesis hα1
has an infinitesimal, but nonzero, weight w(α1)r(α1)dµ(α),

then both hypotheses have nonzero weights.

Proof. Recall from (2.4) that for optimal solution (w, b, ξ) of (P10) and optimal

solution λ of (P4),

w(α) =

N
∑

i=1

yiλiφxi
(α).

Because of ambiguity, hα1
(xi) = hα2

(xi) for i = 1, 2, · · · , N . Then, by φxi
(α) =

r(α)hα(xi), we can see that

w(α1)

r(α1)
=

w(α2)

r(α2)
.

�

Let us take a deeper look at Theorem 7. For N training vectors, there are at

most 2N patterns to label them. Thus, we can divide the hypotheses in H to at

most 2N groups, each of which contains ambiguous hypotheses that produce the

same pattern. LPBoost selects at most one hypothesis from each group to form the

ensemble classifier, because of the restriction of sparse representation. On the other

hand, our framework, which does not have such restriction, could average over the

predictions of possibly infinite number of hypotheses within each group. Thus, even

if each hypothesis only has an infinitesimal hypothesis weight, the average of their

predictions, which is an integral, could be concrete. This shows how the infinitesimal

hypothesis weights work.

37

We have introduced our SVM-based framework for infinite ensemble learning. At

this point, the framework is still abstract. In the next chapter, we would demonstrate

some concrete instances of the framework. In particular, we would show how we

could parameterize some important learning models and embed their hypotheses into

kernels.

38

Chapter 4

Concrete Instances of the

Framework

In this chapter, we derive some concrete instances from the framework. In Section 4.1,

we would start by introducing the stump kernel, which embodies an infinite number

of decision stumps. The decision stump is one of the simplest base learning models

that are applied to ensemble learning, and we would show that the stump kernel is

simple yet powerful. Then, we would extend stump kernel to the perceptron kernel

in Section 4.2. The perceptron is a very important learning model that is related to

learning in neural network. We would show that our framework with the perceptron

kernel equivalently constructs a neural network with an infinite number of neurons.

In Section 4.3, we show an approach to construct kernels with hypotheses that are

combined by logical operations. Interestingly, this technique allows us to give novel

interpretations of some existing kernels from an ensemble point-of-view.

4.1 Stump Kernel

4.1.1 Formulation

The decision stump sq,d,α : X → {−1, +1} is of the form

sq,d,α(x) = q · sign
(

(x)d − α
)

.

39�
�

�
�(x)2 ≥ α?

�
�

�	
Y

@
@

@R
N�

�
�
�+1

�
�

�
�−1

(a) Decision Process

-

6

s+1,2,α(x) = +1

(x)2 = α

(x)2

(x)1

(b) Decision Boundary

Figure 4.1: Illustration of the decision stump s+1,2,α(x)

The decision stump works on the d-th feature element of x, and classifies the vector

x according to the direction q ∈ {−1, +1} and the threshold α. In other words,

the decision stump is a hyperplane classifier in which the associated hyperplane is

perpendicular to the d-th axis. The operation of decision stumps is illustrated in

Figure 4.1.

Although the set of decision stumps is a very simple learning model, ensemble

learning algorithms with such base learning model can usually achieve reasonable

performance. In addition, the associated base learning algorithm is efficient and easy

to implement. Thus, the set of decision stumps is a popular base learning model for

ensemble learning (Freund and Schapire 1996; Bauer and Kohavi 1999; Demiriz et al.

2002).

For constructing the stump kernel, we would consider the set of decision stumps

S = {sq,d,αd
: q ∈ {−1, +1} , d ∈ {1, · · · , D} , αd ∈ [Ld, Rd]} .

In addition, we would assume that

X ⊆ [L1, R1]× [L2, R2]× · · · × [LD, RD]. (4.1)

In this case, we can easily see that S is negation complete, and contains s+1,1,L1
(·) as

a constant classifier. Thus, the stump kernel KS , which would be defined below, can

40

be applied to Algorithm 3 to obtain an infinite ensemble classifier.

Definition 4 The stump kernel is KS with r(q, d, αd) = 1
2

for all valid (q, d, αd) in

the definition of S. The measure µ on parameters q and d is the counting measure,

and dµ is uniform in the range of αd. With (4.1) and Definition 3, we get

KS(x, x′) = ∆S −
D
∑

d=1

∣

∣(x)d − (x′)d

∣

∣,

where ∆S = 1
2

∑D

d=1(Rd − Ld) is a constant.

The stump kernel, as its associated base learning model, is very simple to compute.

However, it is very powerful, in the sense that SVM with the kernel is equivalently

searching within a learning model of infinite capacity. The stump kernel also shows

an interesting connection to radial basis functions, which is an important concept in

learning theory. Next, we would further discuss these properties.

4.1.2 Power of the Stump Ensemble

In Theorem 3, we see that the set of hyperplane classifiers (which has Γ→ 0) in R
D

has V-C dimension D. When we use nonlinear SVM, we work in a feature space F

instead of R
D. The general hope that the set of hyperplane classifiers in F would have

a larger capacity than such classifiers in R
D. This hope is indeed true for the stump

kernel. Next, analyze the capacity of the hyperplane classifiers in the associated

feature space of the stump kernel. With the negation completeness assumption, the

capacity of those hyperplane classifiers would be the same as the capacity of the

ensemble classifiers over S. We start our analysis with the following lemma for one-

dimensional training vectors.

Lemma 1 Consider one-dimensional training vectors {xi}
N

i=1, where xi ∈ X ⊆ (L, R).

Assume that S is defined with q ∈ {−1, +1} and α1 ∈ [L, R]. If xi 6= xj for all i 6= j,

the Gram matrix of KS is PD.

41

Proof. Assume that the Gram matrix is K. For each nonzero vector v ∈ R
N , we

want to test whether vT Kv > 0. Without loss of generality, consider

L < x1 < · · · < xN < R.

Let x′
i = xi − L. Then,

0 < x′
1 < · · · < x′

N < R− L.

The matrix P with Pij ≡ min(x′
i, x

′
j) is PD because P is congruent to a diagonal

matrix with positive diagonals x′
1, (x

′
2 − x′

1), · · · , (x
′
N − x′

N−1). Similarly, for x′′
i =

R − xi, the matrix Q with Qij ≡ min(x′′
i , x

′′
j) is PD. Now we could write K in two

different forms

Kij

=
1

2
(−R + L) + min(x′

i, x
′
j) + min(x′′

i , x
′′
j) (4.2)

=
1

2
(x1 − L) +

(

1

2
(R− x1)− |xi − xj|

)

. (4.3)

When v is nonzero but
∑N

i=1 vi = 0, we can evaluate vT Kv in three parts with (4.2).

The first part is 0. The second and the third parts are strictly positive when v 6= 0

because the matrices P and Q are PD. Hence, the sum is strictly positive.

When
∑N

i=1 vi 6= 0, the first part of (4.2) is negative, and hence we cannot prove

the PD-ness directly through this equation. Therefore, we apply (4.3) instead. From

this equation, we can evaluate vT Kv in two parts. The inner matrix of the second

part, name it K ′, can be calculated from a stump kernel with the stumps in [x1, R].

Thus, K ′ is PSD, and vT K ′v ≥ 0. The first part is
(

∑N
i=1 vi

)2

multiplied by a

positive constant. Hence, the sum of the two parts is still strictly positive. Therefore,

K is PD. �

With Lemma 1, we can extend the result to multi-dimensional vectors in the

following theorem.

42

Theorem 8 Consider training vectors {xi}
N
i=1 ∈ X

N and the stump kernel KS in

Definition 4. If there exists a dimension d such that (xi)d 6= (xj)d for all i 6= j, and

[

min
i=1,··· ,N

(xi)d, max
i=1,··· ,N

(xi)d

]

⊆ (Ld, Rd)

then the Gram matrix of KS is PD.

Proof. The multi-dimensional stump kernel is the sum of several one-dimensional

stump kernels, each of which produces a PSD Gram matrix by Theorem 5. If in

one of dimensions, we can obtain a PD Gram matrix from Lemma 1, the sum of the

matrices would be PD. �

The PD-ness of the Gram matrix is directly connected to the classification power

of the hyperplane classifiers in the associated feature space. This can be formalized

by the following theorem.

Theorem 9 (Chang and Lin 2001b, Corollary 1) If the Gram matrix of the kernel on

the training vectors is PD, the nonlinear hard-margin SVM with such kernel always

has a feasible solution. That is, for every possible pattern of the training labels, the

training examples can be separated by some hyperplane classifier in the associated

feature space.

In other words, if we can find a set of training vectors such that the Gram matrix

is PD, we can shatter those training vectors with the set of hyperplane classifiers in F .

For the stump kernel, such set of training vectors exists for any positive integer N .

Thus, the set of hyperplane classifiers in F , or equivalently, the set of ensemble

classifier over S, has infinite capacity, as shown below.

Corollary 1 The class of the infinite ensemble classifiers over S has an infinite

V-C dimension.

We make two remarks here. First, although the assumption of Theorem 8 is

mild in practice, there are still training sets that do not have this property. An

example is the XOR training set, which is illustrated in Figure 4.2. We can easily see

43

-

6

d
dt
t

Figure 4.2: The XOR training set.

that every possible decision stump would have in-sample error 1
2
. Thus, AdaBoost

and LPBoost would terminate with one stump in the ensemble. Similarly, the Gram

matrix of stump kernel is only PSD but not PD, and nonlinear hard-margin SVM with

the kernel cannot find any feasible solution for this problem. In other words, those

training examples cannot be perfectly separated by an ensemble over the decision

stumps.

Second, the unlimited capacity has to be used with suitable regularization in order

to have good generalization performance. Although SVM implicitly regularizes the

admissible learning model with the large-margin concept, the unlimited capacity may

still drag the algorithm towards overfitting. This situation has been observed for

SVM with the Gaussian kernel (Keerthi and Lin 2003). In this situation, soft-margin

SVM with a suitable parameter selection usually performs better than hard-margin

SVM, because trading accuracy with larger margin further regularizes the admissible

learning model.

4.1.3 Stump Kernel and Radial Basis Function

Next, we show another property of the stump kernel, which facilitates its practi-

cal usage. In particular, we could drop the constant ∆S for the stump kernel KS

without affecting the decision function obtained from Algorithm 3. That is, for fi-

nite number of training and testing examples, SVM could automatically compute the

ranges [Ld, Rd] and the constant ∆S for us.

44

Theorem 10 Solving (P4) with the simplified stump kernel K̃S(x, x′) = −‖x− x′‖1

is the same as solving (P4) with KS(x, x′). That is, they could obtain equivalent

decision functions (2.6).

Proof. Berg et al. (1984) prove that the Gram matrix of K̃S(x, x′) = −|x − x′| is

CPSD for one-dimensional vectors x, x′. The Gram matrix of simplified stump kernel

in R
D is the sum of the Gram matrix of several one-dimensional kernels, and hence

would also be CPSD. In addition, for (P4), a CPSD kernel K̃(x, x′) works exactly the

same as any PSD kernel of the form K̃(x, x′) + ∆ , where ∆ is a constant, because of

the linear constraint
∑N

i=1 yiλi = 0 (Schölkopf and Smola 2002; Lin and Lin 2003).

We have shown the value of ∆ = ∆S in Definition 4. Hence, the equivalence between

K̃S and KS for (P4) can be easily established. �

Let us take a closer look at this result. K̃S(x, x′) = −‖x− x′‖1 is a radial basis

function (RBF), just like the well-known Gaussian kernel. RBF is an important tool

for classification, regression, interpolation, and many other learning tasks (Haykin

1999). Compared to the Gaussian kernel, the stump kernel computes the distance

by one-norm, and did not use nonlinear transform of the distance. Nevertheless, the

class of SVM classifiers with the stump kernel still has an infinite V-C dimension.

We shall further compare them to some other types of RBF kernels in the end of this

chapter.

4.1.4 Averaging Ambiguous Stumps

In Section 3.3, we have shown that our framework would average over the predictions

of ambiguous hypotheses in the final ensemble. Next, we would use the stump kernel

to further illustrate this property. For example, consider one-dimensional training

vectors. We can see that all the decision stumps with q = 1 and thresholds strictly

between two adjacent training vectors are ambiguous. In the next theorem, we extend

this idea to multi-dimensional training vectors. We would explicitly show how these

ambiguous stumps group together in the final ensemble classifier.

45

Theorem 11 Define (x̃)d,a as the a-th smallest value in {(xi)d}
N
i=1, where xi are

the input vectors in the training set, and Ad as the number of different (x̃)d,a. Let

(x̃)d,0 = Ld, (x̃)d,(Ad+1) = Rd, and

ŝq,d,a(x) =

q for (x)d ≥ (x̃)d,t+1

−q for (x)d ≤ (x̃)d,t

q ·
2(x)d−(x̃)d,a−(x̃)d,a+1

(x̃)d,a+1−(x̃)d,a
otherwise.

Then,

KS(x, x′) =
∑

q∈{−1,+1}

D
∑

d=1

Ad
∑

a=0

(r(q, d, a))2 ŝq,d,a(x)ŝq,d,a(x
′),

where r(q, d, a) = 1
2

√

(x̃)d,a+1 − (x̃)d,a.

We can prove Theorem 11 by carefully writing down the equations. Note that the

function ŝq,d,t(·) is not exactly a decision stump, but a smoother variant. Each ŝq,d,t(·)

represents the group of ambiguous decision stumps in ((x̃)d,t, (x̃)d,t+1). When the

group is larger, ŝq,d,t(·) is smoother because it represents the average prediction over

more decision stumps. Compared to LPBoost, which can use one discrete decision

stump sq,d,αd
(·) for αd ∈

(

(x̃)d,t, (x̃)d,t+1

)

, our framework obtains a smoother stump

by averaging ambiguous decision stumps. Even though each decision stump only

has an infinitesimal hypothesis weight, the representative stump ŝq,d,t(·) could have

a concrete weight in the ensemble. This result could give us further insights on how

the infinitesimal hypothesis weights work.

4.2 Perceptron Kernel

4.2.1 Formulation

In this section, we extend the stump kernel to the perceptron kernel, which embodies

an infinite number of perceptrons. Each perceptron is of the form

pq,θ,α(x) = q · sign
(

θT x− α
)

.

46�
�

�
�θT x ≥ α?

�
�

�	
Y

@
@

@R
N�

�
�
�+1

�
�

�
�−1

(a) Decision Process

-

6

�
�

�
�

�
�

�
�

p+1,θ,α(x) = +1

θT x = α(x)2

(x)1

@I

−θ

(b) Decision Boundary

Figure 4.3: Illustration of the perceptron p+1,θ,α(x)

The perceptron defines a hyperplane classifier in R
D, which is illustrated in Fig-

ure 4.3. We can see that the set of possible perceptrons in R
D includes the set of

possible decision stumps. Hence, the perceptron model is usually considered to be

more powerful than the decision stump model. The perceptron is a basic theoretical

model for a neuron, and is very important for building neural networks (Haykin 1999).

It is generally difficult to design a base learning algorithm for choosing a desired per-

ceptron. Thus, the perceptron is hardly used in ensemble learning. Nevertheless, we

are able to construct an ensemble classifier over infinite number of perceptrons with

our framework.

We would consider the set of perceptrons

P =
{

pq,θ,α : q ∈ {−1, +1} , θ ∈ R
D, ‖θ‖2 = 1, α ∈ [−R, R]

}

.

In addition, we would assume that

X ⊆ B(R),

where B(R) is a ball of radius R centered at the origin in R
D. Then, we can see

that the perceptron model P is negation complete, and contains a constant classifier

p+1,(1,0,··· ,0),−R(·). Thus, we can apply the perceptron kernel KP , which would be

defined below, to Algorithm 3 and obtain an ensemble classifier over infinite number

47

of perceptrons.

Definition 5 The perceptron kernel is KP with r(q, θ, α) = κ, where κ is a constant

to be defined below. The measure µ(q, θ, α) is the counting measure in the q direction,

and dµ is uniform both on the surface ‖θ‖2 = 1 and in α ∈ [−R, R]. For x, x′ ∈ X ⊆

B(R),

KP(x, x′) = ∆P − ‖x− x′‖2 ,

where ∆P is a constant.

Proof. We have

KP(x, x′) = κ2
∑

q∈{−1,+1}

∫

‖θ‖
2
=1

(
∫

α∈[−R,R]

pq,θ,α(x)pq,θ,α(x′) dµα(α)

)

dµθ(θ)

= 2κ2

∫

‖θ‖2=1

(
∫

α∈[−R,R]

p+1,θ,α(x)p+1,θ,α(x′) dµα(α)

)

dµθ(θ)

= 2κ2

∫

‖θ‖
2
=1

(
∫

α∈[−R,R]

s+1,1,α(θT x)s+1,1,α(θT x′) dµα(α)

)

dµθ(θ)

= 4κ2

∫

‖θ‖
2
=1

(

∆S −
∣

∣θT x− θT x′∣
∣

)

dµθ(θ)

= 4κ2∆S − 4κ2 ·

(

∫

‖θ‖2=1

‖θ‖2 ‖x− x′‖2

∣

∣

∣

∣

cos
(

angle(θ, x− x′)
)

∣

∣

∣

∣

dµθ(θ)

)

= 4κ2∆S − 4κ2 ‖x− x′‖2 ·

(

∫

‖θ‖
2
=1

∣

∣

∣

∣

cos
(

angle(θ, (1, 0, · · · , 0))
)

∣

∣

∣

∣

dµθ(θ)

)

Here ∆S is the constant for a one-dimensional stump kernel with thresholds be-

tween [−R, R]. The operator angle(·, ·) is the angle between two vectors. Because θ

is taken for all directions, we can use symmetry to obtain the last equality. Then, we

can set

κ =

(

4

∫

‖θ‖
2
=1

∣

∣

∣

∣

cos
(

angle(θ, (1, 0, · · · , 0))
)

∣

∣

∣

∣

dµθ(θ)

)− 1

2

48

and

∆P = 4κ2∆S

to obtain the definition. �

With the perceptron kernel, we are able to construct an infinite ensemble classifier

over perceptrons. Such classifier is a neural network with one hidden layer, infinite

hidden nodes, and the hard-threshold activation functions (Haykin 1999). This kind of

neural network could never be constructed with traditional neural network algorithms,

both because of the infinity, and because the hard-threshold activation function is

not smooth. Traditional ensemble learning algorithms also cannot construct such

ensemble, because it is not easy to implement a base learning algorithm of perceptrons.

This demonstrates another usefulness of our framework: obtaining novel classifiers

that cannot be obtained by traditional algorithms.

The perceptron kernel shares many similar properties to the stump kernel. Next,

we would further illustrate these properties in detail.

4.2.2 Properties of the Perceptron Kernel

Similar to the stump kernel, the SVM classifier with the perceptron kernel also has

infinite V-C dimension. We start with a lemma that is well known in literature for

interpolation with RBF functions.

Lemma 2 (Micchelli 1986; Baxter 1991) When N > 1, for training vectors {xi}
N
i=1 ∈

XN such that xi 6= xj for all i 6= j, the Gram matrix of K̃P(x, x′) = −‖x− x′‖2

is CPD.

Then, we could show a sufficient condition for the Gram matrix of the perceptron

kernel to be PD.

Theorem 12 Consider training vectors {xi}
N

i=1 ∈ X
N , and the perceptron kernel KP

in Definition 5. If X ⊂ B(R) but X 6= B(R), and xi 6= xj for all i 6= j, then the

Gram matrix of KP is PD.

49

Proof. Assume that the Gram matrix is K, and xi ∈ B(R′), where R′ < R. Then,

we can evaluate K by two parts. Assume that K = K ′ + (K −K ′), where K ′ can be

computed from a perceptron kernel with only the perceptrons of thresholds [−R′, R′].

For all x, x′ ∈ X , we have

K(x, x′)−K ′(x, x′) =

∫

‖θ‖
2
=1

(
∫

α∈[−R,−R′]∪[R′,R]

κ2 dµα(α)

)

dµθ(θ)

is a constant. We want to test whether vT Kv > 0 for all v 6= 0. Consider two cases.

First, when
∑N

i=1 vi 6= 0, the first part is nonnegative because K ′ is PSD by Mercer’s

condition, and the second part is strictly positive. Thus, vT Kv > 0.

When
∑N

i=1 vi = 0 and we have some nonzero vi, we must have N > 1. Then, the

first part is strictly positive because K ′ is CPD by Lemma 2, and the second part

is 0. Thus, we still have vT Kv > 0. That is, K is PD. �

Therefore, we obtain the following corollary that illustrates the power of ensemble

classifiers over the perceptron model P.

Corollary 2 The class of the infinite ensemble classifiers over P has an infinite

V-C dimension.

The perceptron kernel shares another similarity with the stump kernel. The con-

stant ∆P could also be dropped when applying it to Algorithm 3. We formalize this

by the following theorem.

Theorem 13 Solving (P4) with the simplified perceptron kernel K̃P(x, x′) = −‖x− x′‖2

is the same as solving (P4) with KP(x, x′).

Proof. The steps of the proof are exactly the same as the one for Theorem 10. �

The stump kernel and the perceptron kernel both belong to the RBF kernel family.

Are there any other kernels in the RBF family that can be explained from an ensemble

point-of-view? In the next section, we extend the stump kernel and the perceptron

kernel using combination of logic rules. Such extension allows us to construct kernels

that embed an infinite number of decision trees. Interestingly, those kernels are

directly related to the popular Laplacian kernel and exponential kernel.

50

4.3 Kernels that Embed Combined Hypotheses

So far we have considered hypotheses that return {−1, +1}. However, Definition 3 is

not limited to such hypotheses. In the following, we show how to construct a kernel

that embeds functions which output {0, 1}. Those functions would be called the logic

rules. We would illustrate the connection between kernels that embed hypotheses and

kernels that embed logic rules. Then, we shall work on combined logic rules as well

as combined hypotheses, and would show how to derive kernels that embed combined

hypotheses.

4.3.1 Logic Kernels

For a given hypothesis h : X → {−1, +1}, we define its associated logic rule h̃ to be

h̃(x) = 1⇔ h(x) = +1.

Arithmetically, we can easily derive the relationship between h(·) and h̃(·) as

h̃(x) =
h(x) + 1

2
(4.4)

for all x ∈ X .

Consider H = {hα : α ∈ C}, and its associated set of logic rules H̃ =
{

h̃α : α ∈ C
}

.

The following lemma reveals the relationship between KH,r and KH̃,r.

Lemma 3 We call a learning model H = {hα : α ∈ C} neutral to X with a given

(r, µ) if for all x ∈ X

∫

α∈C
hα(x) (r(α))2 dµ(α) = 0.

Assume that for a neutral H,

∆ =

∫

α∈C
(r(α))2 µ(α)

51

exists. Then,

KH̃,r(x, x′) =
1

4
KH,r(x, x′) +

1

4
∆.

for all x, x′ ∈ X .

Proof. We have

KH̃,r(x, x′) =

∫

α∈C
(r(α))2 h̃α(x)h̃α(x′) dµ(α)

=

∫

α∈C
(r(α))2

(

hα(x) + 1

2

)(

hα(x′) + 1

2

)

dµ(α)

=

∫

α∈C
(r(α))2

(

hα(x)hα(x′) + hα(x) + hα(x′) + 1

4

)

dµ(α)

=
1

4
KH,r(x, x′) +

1

4
∆.

�

The kernel KH̃ would be called the logic kernel of H. Note that for a negation

complete learning model H, neutrality is usually a mild assumption with a suitable

parameterization and selection of (r, µ). The decision stump model and the percep-

tron model that we have used are both neutral with the (r, µ) in Definition 4 and

Definition 5, respectively. This relationship allows us to work with hypotheses and

logic rules interchangeably. Next, we shall see the benefit for working with logic rules.

4.3.2 Multiplication of Logic Kernels

Consider two logic rules h̃α(·) and h̃β(·). We can construct a logic rule h̃α,β(·) such

that

h̃α,β(x) = h̃α(x) ∧ h̃β(x).

for all x ∈ X . This is called the AND combination of the logic rules. We illustrate

the AND combination, both for the logic rules and for the hypotheses, in Figure 4.4.

The leaf node in the tree structure represents the logic value TRUE if and only if

52�
�

�
�h̃α(x) = 1?

�
�

�	
Y

@
@

@R
N�
�

�
�0

�
�

�
�h̃β(x) = 1?

�
�

�	
Y

@
@

@R
N�

�
�
�1

�
�

�
�0

(a) AND combination of logic rules

�
�

�
�hα(x) = +1?

�
�

�	
Y

@
@

@R
N�
�

�
�−1

�
�

�
�hβ(x) = +1?

�
�

�	
Y

@
@

@R
N�

�
�
�+1

�
�

�
�−1

(b) AND combination of hypotheses

Figure 4.4: Illustration of AND combination

both logic rules output TRUE. For example, when the first logic rule is associated

with a decision stump of whether (x)1 ≤ 2, and the second logic rule is associated

with a decision stump of whether (x)2 ≥ 1. The AND combination of these two rules

would be whether (x)1 ≤ 1 and (x)2 ≥ 1. Note that for logic rules, the ∧ operation

can be performed simply with multiplication

h̃α,β(x) = h̃α(x)h̃β(x).

This simple arithmetic property is the reason that we work on logic rules instead of

hypotheses.

For two learning models H1 = {hα : α ∈ C1} and H2 = {hβ : β ∈ C2}, consider

their associated set of logic rules H̃1 and H̃2, we can define the AND combination of

them as

H̃ = AND
(

H̃1, H̃2

)

=
{

h̃α,β : h̃α,β(x) = h̃α(x) ∧ h̃β(x), α ∈ C1, β ∈ C2

}

.

Then we get the following definition for a kernel embedding the combined logic rules.

53

Definition 6 For two sets of logic rules H̃1 and H̃2, let

H̃ = AND
(

H̃1, H̃2

)

.

Then, by constructing r(α, β) = r(α)r(β) and µ as a natural extension of the original

measures,

KH̃(x, x′) = KH̃1
(x, x′) · KH̃2

(x, x′).

for all x, x′ ∈ X .

Proof. The reason is that each h̃α,β is a simple multiplication of h̃α and h̃β. �

Multiplication of kernels is a common technique for constructing new kernels for

SVM (Schölkopf and Smola 2002). The specific property of logic rules allows us to

interpret multiplication of logic kernels as AND combination of logic rules. Then,

through the relationship between logic rules and hypotheses, we could interpret the

multiplication of kernels as combination of hypotheses. We formalize this idea by the

following theorem.

Theorem 14 For two learning models H1 = {hα : α ∈ C1} and H2 = {hβ : β ∈ C2},

consider their associated set of logic rules H̃1 and H̃2. Define

H̃ = AND
(

H̃1, H̃2

)

andH as the associated learning model for H̃. Assume that for some choice of (r1, µ1),

KH1
exists and H1 is neutral to X ⊆ R

D. Similarly assume such property for H2. In

addition, assume that both

∆1 =

∫

α∈C1

(r1(α))2 dµ(α)

∆2 =

∫

β∈C2

(r2(β))2 dµ(β)

54

exist. Then, there exists some r(α, β) and ∆ such that

KH,r(x, x′) =
1

4
(KH1,r1

(x, x′) + ∆1) · (KH2,r2
(x, x′) + ∆2)−∆ (4.5)

for all x, x′ ∈ X .

Proof. Consider the operation on associated logic kernels, from Definition 6, we get

1

4
KH,r(x, x′) +

1

4
∆ =

(

1

4
KH1,r1

(x, x′) +
1

4
∆1

)

·

(

1

4
KH2,r2

(x, x′) +
1

4
∆2

)

with r(α, β) = r1(α)r2(β). The equation is exactly the same as (4.5), and we could

compute ∆ from

∆ =

∫

α∈C1 ,β∈C2

(r1(α)r2(β))2 dµ(α, β) = ∆1∆2.

�

However, note theH may not be negation complete even ifH1 andH2 are, because

the AND combination “favors” the logic value FALSE. Thus, we would consider Ĥ,

the negation complete closure ofH, when we want to apply the kernel to Algorithm 3.

Corollary 3 Let

Ĥ = {hq,α,β : hq,α,β(x) = q · hα,β(x), q ∈ {−1, +1} , hα,β ∈ H} ,

where H is constructed from Theorem 14. Then, let r̂(q, α, β) = 1√
2
r(α, β) for q ∈

{−1, +1}, we get

KĤ,r̂(x, x′) =
1

4
(KH1,r1

(x, x′) + ∆1) · (KH2,r2
(x, x′) + ∆2)−∆.

In addition, Ĥ is neutral.

Proof. The corollary is a simple extension of Theorem 14. The neutrality is because

with the direction parameter q, every prediction has an unique negated prediction

in Ĥ. �

55

-

6

(x)2

(x)1

(a) AND combination

-

6

(x)2

(x)1

(b) NAND combination

Figure 4.5: Combining s−1,1,2(x) and s+1,2,1(x)

The learning model Ĥ contains the AND combinations of the hypotheses in H1

and H2, and the negation, which is called NAND combination, of them. For example,

H1 = H2 = S, which include the decision stumps of whether (x)1 ≤ 2 and whether

(x)2 ≥ 1. The combined rule would contain whether (x)1 ≤ 2 and (x)2 ≥ 1, which

represents some left-top corner of the two dimensional space, and whether (x)1 > 2 or

(x)2 < 1, which represents the union of the other three corners. We illustrate this in

Figure 4.5. That is, Ĥ represents a decision region of at most two stump boundaries.

Because Ĥ is neutral, we could combine it with S again, and obtain a kernel that

embeds decision regions of at most three stump boundaries. In the next section, we

would show how we could extend this process to infinity.

4.3.3 Laplacian Kernel and Exponential Kernel

We have shown that we could combine two decision stumps to form a decision region

with two stump boundaries, and embed the set of possible decision regions into a

kernel. We now extend this procedure level by level. We first define the L-level

stump region kernel KTL
as follows.

Definition 7 The L-level stump region kernel KTL
is recursively defined with the

56

following equations.

KT1
= KS

∆1 =
1

2

D
∑

d=1

(Rd − Ld) = ∆S

For L ∈ N and L > 1,

KTL
(x, x′) =

1

4

(

KTL−1
(x, x′) + ∆L−1

)

(KT1
(x, x′) + ∆1)−∆L.

∆L = ∆L−1∆1 = ∆L
1 .

Using Corollary 3, we see that an L-level stump region kernel embeds the decision

region classifiers with at most L stump boundaries. Note that we can solve the

recursion and get

KTL
(x, x′) =

(

1

4

)L−1

(KS(x, x′) + ∆S)
L
−∆L

S .

Then, we could use Theorem 6 to construct a kernel KT that embodies all possi-

ble decision region classifiers with stump boundaries. Such kernel can be applied

to Algorithm 3 to obtain an infinite ensemble classifier over those decision region

classifiers.

Theorem 15 The infinite stump tree kernel

KT (x, x′) = 4 exp

(

1

4
KS(x, x′) +

1

4
∆S

)

− exp (∆S)− 3

can be applied to Algorithm 3 to obtain an ensemble classifier over decision region

classifiers with any number of stump boundaries.

57

Proof. By Taylor’s series expansion, we have

KT (x, x′) = 4 exp

(

1

4
KS(x, x′) +

1

4
∆S

)

− exp (∆S)− 3

= 4

∞
∑

L=0

1

L!

(

1

4
KS(x, x′) +

1

4
∆S

)L

−

∞
∑

L=0

1

L!
∆L

S (∆S)− 3

=

∞
∑

L=1

1

L!

(

4

(

1

4
KS(x, x′) +

1

4
∆S

)L

−∆L
S (∆S)

)

=

∞
∑

L=1

1

L!
KTL

(x, x′).

With Theorem 6, KT embeds the learning models TL for L = 1, · · · ,∞, where the 1
L!

could be performed by scaling the embedding function r for KTL
. �

Note that the NAND operator is universal. Thus, for any classifier that could be

described by finite number of stump boundaries, there is an equivalent decision region

classifier in some TL. An equivalent learning model to
⋃∞

L=1 TL is the decision tree

model, in which the classifiers are similar to the one in Figure 4.4, but with arbitrary

tree structure. In other words, the kernel KT embodies an infinite number of decision

trees. Decision trees are popular for ensemble learning, and some theoretical analysis

of them are based on trees of infinite level (Breiman 2000). However, traditional

algorithms can only deal with trees with finite levels (Breiman 1998; Dietterich 2000).

On the other hand, our framework allows us to actually build an ensemble over

decision trees with arbitrary levels.

The infinite stump tree kernel KT (x, x′) is of the form

A1 exp (−A2 ‖x− x′‖1) + A3,

where A1, A2, A3 are constants and A1, A2 are positive. The parameter A2 is similar

to the scaling parameter γ in the Laplacian kernel exp (−γ ‖x− x′‖1), and is mainly

dependent to the embedding function r. Because of the linear constraint
∑N

i=1 yiλi =

0, adding any constant A3 to the kernel does not affect the solution of (P4) and the

decision function (2.6). In addition, scaling the kernel with A1 is equivalent to scaling

58

the soft-margin parameter C in SVM. Thus, when C is∞ or when we perform suitable

parameter selection, A1 does not affect the decision function obtained from (2.6),

either. Therefore, the infinite tree kernel is equivalent to the Laplacian kernel. This

reveals a novel interpretation of Laplacian kernel: SVM with the Laplacian kernel

allows us to obtain an infinite ensemble classifier over decision trees of any level.

Similarly, we could use the trick in Theorem 15 to show that the exponential

kernel exp (−γ ‖x− x′‖2) embeds infinite number of decision regions with perceptron

(hyperplane) boundaries. Both Laplacian kernel and exponential kernel are RBF ker-

nels, and have a PD Gram matrix when all training vectors xi are distinct (Micchelli

1986; Baxter 1991). Next, we further discuss the application of these RBF kernels as

well as the popular Gaussian kernel.

4.3.4 Discussion on RBF Kernels

We have shown that the stump kernel, the perceptron kernel, the Laplacian kernel, the

exponential kernel, and the Gaussian kernel are all RBF kernels. Next, we compare

two properties of these kernels, and discuss their use in applications of SVM.

First, we can group these kernels by the distance metrics they use. The stump

kernel and the Laplacian kernel uses the one-norm distance between vectors, while

the others uses the two-norm distance. An advantage of using the two-norm distance

is that the distance is invariant to rotations. This is useful to several applications,

including the Optical Character Recognition (OCR) problem, because images of writ-

ten characters are (locally) rotation invariant under suitable vector representations.

Some applications, however, may not desire rotation invariance. For example, when

representing an image with color histograms, rotation invariance might mix up the

information that are contained in each color component.

From the construction of the perceptron kernel (and the exponential kernel), we

can see how the rotation invariance is obtained from an ensemble point-of-view. The

transformation vectors θ in perceptrons represent the rotation, and rotation invariance

comes from embedding all possible θ in the kernel.

59

Second, we can group kernels by whether they are linear to positive scaling. The

stump kernel and the perceptron kernel are linear to positive scaling. That is, they

satisfy K(γx, γx′) = γK(x, x′) for positive γ. Note that for SVM, a positive linear

scaling to the kernel is equivalent to scaling the soft-margin parameter C. Thus, we do

not need a specific scaling parameter γ in the stump kernel or the perceptron kernel;

we only need to focus on the value of C. Compared to other kernels such as Gaus-

sian, where the different combinations of (γ, C) must be considered during parameter

selection (Keerthi and Lin 2003), SVM with the stump kernel or the perceptron ker-

nel has an advantage of faster parameter selection. Nevertheless, from Corollary 1

and Corollary 2, they theoretically still have almost the same classification power as

SVM with the Gaussian kernel. Thus, SVM applications that consider speed as an

important factor may benefit from using the stump kernel or the perceptron kernel.

60

Chapter 5

Experiments

Next, we present experimental results of our framework. The experiments would

demonstrate two important advantages of our framework. First, the framework al-

lows a fair comparison between SVM and ensemble learning. We would compare

SVM with traditional ensemble learning algorithms using decision stumps as the base

learning model. The comparison illustrates the differences between our framework

and traditional algorithms. In addition, we would show that infinite ensemble learn-

ing without sparse representation could achieve better performance.

Second, the framework is useful for constructing new kernels and interpreting

existing kernels in SVM. We would show that the kernels derived in Chapter 4 have

comparable performance to the popular Gaussian kernel, yet some of them could

benefit from faster parameter selection.

5.1 Setup

We would use three artificial datasets: twonorm, threenorm, and ringnorm, which

are described by Breiman (1998). We follow the procedure of Breiman (1999) to

randomly generate a training set of size 300 and a test set of size 3000. The results

are averaged over 100 different random runs.

In addition to artificial datasets, we would use nine real-world datasets: australian,

breast, cleveland, diabetes, german, heart, ionosphere, sonar, and vote84. They are

taken from the UCI Repository (Blake and Merz 1998). We clean each dataset by

61

Table 5.1: Details of the datasets

dataset full name number of number of
examples features

twonorm Twonorm - 20
threenorm Threenorm - 20
ringnorm Ringnorm - 20
australian Australian credit approval 690 14
breast Wisconsin breast cancer 683 10
cleveland Cleveland heart disease 297 13
diabetes Pima Indians diabetes 768 8
german German credit 1000 24
heart Statlog heart disease 270 13
ionosphere Ionosphere 351 34
sonar Sonar 208 60
vote84 Congressional voting records 435 16

removing the examples that contain missing feature elements. We then normalize each

feature element to [−1, 1]. The details of the cleaned datasets are shown in Table 5.1.

We randomly use 60% of the examples for training, and the rest for testing. The

results are also averaged over 100 different random runs.

In Section 5.2, we would compare several ensemble learning algorithms that use

decision stumps as the base learning model. The first one is called SVM-Stump,

which is Algorithm 3 with the stump kernel and soft-margin SVM. The second one

is AdaBoost-Stump, which is Algorithm 1 with the set of decision stumps as the

base learning model. We follow a common implementation for the base learning

algorithmAS, which only picks the middle stumps in S. In other words, the algorithm

AS returns either a constant classifier or a decision stump with threshold αd at some

value (see Theorem 11 for notations)

(x̃)d,a + (x̃)d,a+1

2
.

We also implement a variant of Algorithm 2 with the hard-margin setting. We call

this algorithm LPBoost-Stump, which also only considers middle stumps, and solves

(P7) exactly with C =∞.

62

For AdaBoost-Stump, we demonstrate the results using T = 100 and T = 1000.

For SVM, we use the suggested procedure for soft-margin SVM (Hsu et al. 2003). We

first conduct parameter selection with 5-fold cross validation of the training examples

on log2(C) ∈ {−17,−15, · · · , 3}, and use the best C value for actual training.

In Section 5.3, we would compare different RBF kernels for soft-margin SVM. We

name them SVM-Stump, SVM-Perceptron, SVM-Laplace, SVM-Exponential, and

SVM-Gauss. For SVM-Perceptron, we conduct parameter selection with the same

setting as SVM-Stump. For SVM-Laplace, SVM-Exp, and SVM-Gauss, we conduct

parameter selection on log2(C) ∈ {−5,−3, · · · , 15} and log2(γ) ∈ {−15,−13, · · · , 3}.

We use different candidate C values because the numerical ranges of the stump kernel

and the Gaussian kernel could be quite different.

We apply LIBSVM 2.8 with all its default settings as our SVM solver (Chang and

Lin 2001a). The AdaBoost algorithm comes from LEMGA (Li 2001), and the linear

programming solver for LPBoost comes from GNU Linear Programming Kit.

5.2 Comparison of Ensemble Learning Algorithms

5.2.1 Experimental Results

Table 5.2 shows the comparison between our framework (SVM-Stump) and traditional

ensemble learning algorithms. The results are shown with error bars computed by

standard error. We use bold font to indicate those results that are as significant as the

best one. We can see that SVM-Stump performs better than AdaBoost-Stump and

LPBoost-Stump. In addition, LPBoost-stump performs much worse than AdaBoost-

stump, which corresponds to past findings of Breiman (1999) and Li et al. (2003) that

aggressively maximizing the `1-margin may not improve generalization performance.

Next, we further analyze these observations.

63

Table 5.2: Test error (%) comparison of ensemble learning algorithms

dataset SVM-stump AdaBoost-stump AdaBoost-stump LPBoost-stump
C by cross T = 100 T = 1000 C =∞
validation

twonorm 2.86± 0.04 5.06± 0.06 4.97± 0.06 5.54± 0.68
threenorm 17.7± 0.10 21.8± 0.09 22.9± 0.12 24.1± 0.14
ringnorm 3.97± 0.07 12.2± 0.13 9.95± 0.14 11.9± 0.15
australian 14.5± 0.21 14.7± 0.18 16.9± 0.18 19.8± 0.23
breast 3.11± 0.08 4.27± 0.11 4.51± 0.11 4.82± 0.12
cleveland 17.6± 0.21 19.7± 0.30 22.5± 0.35 24.4± 0.34
diabetes 24.2± 0.23 24.8± 0.22 27.0± 0.25 31.4± 0.23
german 24.7± 0.18 25.0± 0.18 26.9± 0.18 32.0± 0.22
heart 16.4± 0.27 19.9± 0.36 22.6± 0.39 24.3± 0.38
ionosphere 8.13± 0.17 11.0± 0.23 11.0± 0.25 11.6± 0.23
sonar 16.6± 0.42 19.0± 0.37 19.0± 0.35 19.7± 0.36
vote84 4.76± 0.14 4.07± 0.14 5.29± 0.15 5.88± 0.16

(those that are as significant as the best result are marked in bold)

5.2.2 Regularization and Sparsity

Table 5.3 adds hard-margin SVM into comparison for the artificial datasets. That

is, we present the result for C = ∞ in SVM-Stump in the second column. First,

we can see that the hard-margin SVM-Stump performs worse than the soft-margin

one with parameter selection. We have illustrated this phenomena as a consequence

of overfitting in Section 4.1. For LPBoost-Stump and AdaBoost-Stump, we have

also mentioned that the hard-margin solution (LPBoost) performs worse than the

regularized solution (AdaBoost). These results demonstrate the importance of further

regularization rather than relying only on the large-margin concept.

The hard-margin SVM-Stump and hard-margin LPBoost-Stump only differ in

the objective functions that they try to minimize. Thus, it is meaningful to compare

their relative performance. From Table 5.3 we can see that hard-margin LPBoost-

Stump performs worse than hard-margin SVM-Stump. Their regularized versions,

soft-margin SVM-Stump and AdaBoost-Stump, also inherits this difference. One

possible explanation is that the assumption for sparse representation degrades the

performance of the ensemble classifier found. We further illustrate this by a sim-

64

−5 0 5
−5

0

5

(x)
1

(x
) 2

−5 0 5
−5

0

5

(x)
1

(x
) 2

Figure 5.1: Decision boundaries of SVM-Stump (left) and AdaBoost-Stump (right)
on a 2-D twonorm dataset

plified experiment. In Figure 5.1 we show the decision boundaries of soft-margin

SVM-Stump and AdaBoost-Stump on a training set of size 300 generated from the

two-dimensional version of the twonorm dataset. The Bayes optimal decision bound-

ary is the line (x)1 + (x)2 = 0. We can see that SVM-Stump produces a decision

boundary that is close to the optimal, but AdaBoost-Stump fails to do so. The

smooth decision boundary of SVM-Stump means that many decision stumps are in-

cluded the ensemble. On the other hand, the perpendicular decision boundary of

AdaBoost-Stump indicates that the algorithm only considers a small finite number

of decision stumps in the ensemble.

Although sparsity is often considered beneficial in learning paradigms like Occam’s

razor, sparse ensemble classifier does not always perform well. In our case, because

the decision stumps are very simple, general dataset would require many of them

to describe a suitable decision boundary. Thus, traditional ensemble learning algo-

rithms, such as AdaBoost and LPBoost, may suffer from the assumption of sparse

representation, regardless of the number iterations T when forming the ensemble.

On the other hand, our framework, which does not have the sparse representation

assumption, would gain an advantage in this situation.

65

Table 5.3: Test error (%) comparison on sparsity and regularization

dataset SVM-stump SVM-stump AdaBoost-stump LPBoost-stump
C by cross C =∞ T = 1000 C =∞
validation

twonorm 2.86± 0.04 4.02± 0.06 4.97± 0.06 5.54± 0.68
threenorm 17.7± 0.10 22.0± 0.13 22.9± 0.12 24.1± 0.14
ringnorm 3.97± 0.07 4.36± 0.06 9.95± 0.14 11.9± 0.15

(those that are as significant as the best result are marked in bold)

5.3 Comparison of RBF Kernels

Table 5.4 shows the test error comparison among the four RBF kernels derived in

Chapter 4 the Gaussian kernel. This table confirms several discussions at the end of

Section 4.3. First, the choice of which kernel is the best is application dependent.

The distance metric used seems to play an important role. In most of the datasets,

however, the performance of all of them are comparable. Even the simplest instance,

SVM-Stump, could sometimes have superior performance.

When the performances of those kernels are comparable, the amount of training

time spent becomes important. Recall that for parameter selection, we would solve 11

optimization problems (P4) for SVM-Stump and SVM-Perceptron, but we solve 110

problems for SVM with other kernels. Table 5.5 shows the average amount of CPU

time spent for parameter selection for each kernel. We compute the actual CPU time

with the same machine for each SVM kernel, which is of dual 1.7 GHz Intel Xeon

CPU running Fedora Linux Core 2. Note that the time for optimization is dependent

on the condition number of the Gram matrix (which depends on the training set and

the kernel), and the soft-margin parameter C in (P4). Thus, it is difficult to choose a

fair range of C for different kinds of kernels, and we should not compare the numbers

in Table 5.5 quantitatively. However, qualitatively, we can see that SVM-Stump and

SVM-Perceptron are indeed more efficient in parameter selection, which makes them

favorable choices when the size of dataset is large or when time is an important

concern in the application.

66

Table 5.4: Test error (%) comparison of RBF kernels

dataset SVM-Stump SVM-Perc. SVM-Lapl. SVM-Expo. SVM-Gauss
twonorm 2.86± 0.04 2.55± 0.03 2.87± 0.04 2.58± 0.04 2.64± 0.05
threenorm 17.7± 0.10 14.6± 0.08 15.0± 0.11 14.0± 0.10 14.6± 0.11
ringnorm 3.97± 0.07 2.46± 0.04 2.25± 0.05 2.07± 0.04 1.78± 0.04
australian 14.5± 0.21 14.5± 0.17 14.3± 0.18 14.7± 0.16 14.7± 0.18
breast 3.11± 0.08 3.23± 0.08 3.18± 0.08 3.31± 0.09 3.53± 0.09
cleveland 17.6± 0.21 18.2± 0.31 18.2± 0.34 18.3± 0.30 18.0± 0.31
diabetes 24.2± 0.23 23.6± 0.21 24.0± 0.24 23.3± 0.22 23.5± 0.19
german 24.7± 0.18 24.6± 0.19 24.9± 0.20 24.8± 0.19 24.5± 0.21
heart 16.4± 0.27 17.6± 0.31 16.8± 0.31 18.0± 0.30 17.5± 0.31
ionosphere 8.13± 0.17 6.40± 0.20 6.48± 0.19 5.49± 0.21 6.54± 0.19
sonar 16.6± 0.42 15.6± 0.40 14.7± 0.42 15.0± 0.37 15.5± 0.50
vote84 4.76± 0.14 4.43± 0.14 4.59± 0.15 4.36± 0.14 4.62± 0.14

(those that are as significant as the best result are marked in bold)

Table 5.5: Parameter selection time (sec.) comparison of RBF kernels

dataset SVM-Stump SVM-Perc. SVM-Lapl. SVM-Expo. SVM-Gauss
twonorm 1.34 1.44 19.5 17.9 23.1
threenorm 1.69 1.69 23.1 21.8 31.1
ringnorm 1.50 1.60 23.7 23.8 27.9
australian 2.04 2.01 32.0 31.0 43.3
breast 1.18 1.30 16.6 16.6 16.6
cleveland 0.95 0.96 8.53 7.91 10.0
diabetes 1.95 1.92 37.0 34.9 95.2
german 6.95 4.73 120 81.2 136
heart 0.90 0.88 7.42 6.86 8.57
ionosphere 1.21 1.27 13.1 12.1 12.6
sonar 1.14 1.16 9.06 8.86 9.30
vote84 1.02 1.10 12.4 11.5 13.8

67

Chapter 6

Conclusion

In this thesis, we have proposed a general framework to construct infinite ensemble

classifiers with SVM. Our framework conquers the theoretical challenge of infinite

ensemble learning without the assumption on sparse representation. It also inher-

its the profound theoretical and practical advantages of SVM. We have applied our

framework to several different base learning models, which not only generates two

new kernels for SVM, but also gives novel interpretations to two existing kernels from

an ensemble point-of-view.

The framework also allows a fair comparison between SVM and ensemble learn-

ing algorithms. We have compared their performances empirically on both artificial

and real-world datasets using the same base learning model. Experimental results

show that our framework could achieve significantly better performance. We have

analyzed the causes of the difference, and find that our framework benefits by suit-

able regularization with soft-margin SVM, and by dropping the assumption of sparse

representation. The study provides more understanding for both SVM and ensemble

learning algorithms.

The kernels that we have derived from the framework are useful for SVM. We

find that those kernels could have comparable performance to the popular Gaussian

kernel for SVM. The stump kernel and the perceptron kernel can further benefit from

faster parameter selection, which makes both kernels favorable to the Gaussian kernel

in the case of large datasets.

Further studies of the framework would include deriving kernels using some other

68

base learning models. Note that all the kernels constructed in this thesis are all within

the RBF family. We expect to interpret some other RBF kernels with techniques in

Section 4.3. We also hope to see whether other popular kernels for SVM could be

interpreted from an ensemble point-of-view. Another possible direction is to study

how the parameterization (α) and embedding (γ) affect the geometry of the feature

space, which may provide more understanding for designing SVM kernels.

69

Bibliography

Abu-Mostafa, Y. S. (1989). The Vapnik-Chervonenkis dimension: Information ver-

sus complexity in learning. Neural Computation 1, 312–317.

Abu-Mostafa, Y. S., X. Song, A. Nicholson, and M. Magdon-Ismail (2004). The bin

model. Technical Report CaltechCSTR:2004.002, California Institute of Tech-

nology.

Bauer, E. and R. Kohavi (1999). An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants. Machine Learning (36), 105–142.

Baum, E. B. and D. Haussler (1989). What size net gives valid generalization.

Neural Computation 1 (1), 151–160.

Baxter, B. J. C. (1991). Conditionally positive functions and p-norm distance ma-

trices. Constructive Approximation 7, 427–440.

Beal, M. J., Z. Ghahramani, and C. E. Rasmussen (2003). The infinite Hidden

Markov Model. In T. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Advances

in Neural Information Processing Systems, Volume 14, pp. 577–584. MIT Press.

Berg, C., J. P. R. Christensen, and P. Ressel (1984). Harmonic Analysis on Semi-

groups. Springer-Verlag.

Blake, C. and C. Merz (1998). UCI repository of machine learning databases.

Blumer, A., A. EhrenFeucht, D. Haussler, and M. K. Warmuth (1989). Learn-

ability and the Vapnik-Chervonenkis dimension. Journal of the Association for

Computing Machinery 36 (4), 929–965.

Bousquet, O. (2003). New approaches to statistical learning theory. Annals of the

Institute of Statistical Mathematics 55 (2), 371–389.

70

Bousquet, O. and A. Elisseeff (2002). Stability and generalization. Journal of Ma-

chine Learning Research 2, 499–526.

Breiman, L. (1996). Bagging predictors. Machine Learning 24 (2), 123–140.

Breiman, L. (1998). Arcing classifiers. Annals of Statistics 26 (3), 801–824.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computa-

tion (11), 1493–1517.

Breiman, L. (2000). Some infinity theory for predictor ensembles. Technical report.

Technical Report 577, Statistics Department, University of California, Berkeley.

Chang, C.-C. and C.-J. Lin (2001a). LIBSVM: a library for support vector ma-

chines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chang, C.-C. and C.-J. Lin (2001b). Training ν-support vector classifiers: Theory

and algorithms. Neural Computation 13 (9), 2119–2147.

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear

inequalities with applications in pattern recognition. IEEE Transactions on

Electronic Computers 14, 326–334.

Demiriz, A., K. P. Bennett, and J. Shawe-Taylor (2002). Linear programming

boosting via column generation. Machine Learning 46 (1-3), 225–254.

Dietterich, T. G. (2000). An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and randomization.

Machine Learning (40), 139–157.

Freund, Y. and R. E. Schapire (1996). Experiments with a new boosting algorithm.

In Machine Learning: Proceedings of the 13th International Conference.

Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences 55 (1), 119–139.

Freund, Y. and R. E. Schapire (1999). A short introduction to boosting. Journal

of Japanese Society for Artificial Intelligence 14 (5), 771–780. English version

71

downloadable in http://boosting.org.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (Second Edition

ed.). Prentice Hall.

Hsu, C.-W., C.-C. Chang, and C.-J. Lin (2003, July). A practical guide to support

vector classification. Technical report, National Taiwan University.

Kearns, M. and L. Valiant (1994). Cryptographic limitations on learning Boolean

formulae and finite automata. Journal of the ACM 41 (1), 67–95.

Keerthi, S. S. and C.-J. Lin (2003). Asymptotic behaviors of support vector ma-

chines with gaussian kernel. Neural Computation 15, 1667–1689.

Li, L. (2001). LEMGA: Learning Models and Generic Algorithms. Software avail-

able at http://www.work.caltech.edu/ling/lemga.

Li, L., Y. S. Abu-Mostafa, and A. Pratap (2003). CGBoost: Conjugate gradient in

function space. Technical Report CaltechCSTR:2003.007, California Institute

of Technology.

Lin, C.-J. (2001). Formulations of support vector machines: a note from an opti-

mization point of view. Neural Computation 13 (2), 307–317.

Lin, H.-T. and C.-J. Lin (2003). A study on sigmoid kernels for SVM and the

training of non-PSD kernels by SMO-type methods. Technical report, Dept. of

CSIE, National Taiwan Univ.

Mason, L., J. Baxter, P. L. Bartlett, and M. Frean (2000). Functional gradient

techniques for combining hypotheses. In A. J. Smola, P. J. Bartlett, B. Schökopf,

and D. Schuurmans (Eds.), Advances in Large Margin Classifiers. MIT Press.

Meir, R. and G. Rätsch (2003). An introduction to boosting and leveraging. In

S. Mendelson and A. J. Smola (Eds.), Advanced Lectures on Machine Learning.

Springer-Verlag.

Micchelli, C. A. (1986). Interpolation of scattered data: Distance matrices and

conditionally positive definite functions. Constructive Approximation 2, 11–22.

72

Nash, S. G. and A. Sofer (1996). Linear and Nonlinear Programming. McGraw-Hill.

Rasmussen, C. E. (2000). The infinite Gaussian Mixture Model. In S. A. Solla,

T. K. Leen, and K. Müller (Eds.), Advances in Neural Information Processing

Systems, Volume 12, pp. 443–560. MIT Press.

Rätsch, G., S. Mika, B. Schölkopf, and K. Müller (2002). Constructing boosting

algorithms from SVMs: an application to one-class classification. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 24 (9), 1184–1199.

Rätsch, G., T. Onoda, and K. Müller (2001). Soft margins for AdaBoost. Machine

Learning 42 (3), 287–320.

Reed, M. and B. Simon (1980). Functional Analysis (Revised and Enlarged ed.).

Methods of Modern Mathematical Physics. Academic Press.

Rosset, S., J. Zhu, and T. Hastie (2004). Boosting as a regularized path to a

maximum margin classifier. Journal of Machine Learning Research 5, 941–973.

Schölkopf, B. and A. Smola (2002). Learning with Kernels. Cambridge, MA: MIT

Press.

Tresp, V. (2000). A Bayesian Committee Machine. Neural Computation 12, 2719–

2741.

Valiant, L. G. (1984). A theory of the learnable. Comm. of the ACM 27 (11), 1134–

1142.

Vapnik, V. N. (1998). Statistical Learning Theory. New York, NY: Wiley.

Vapnik, V. N. and A. Y. Chervonenkis (1971). On the uniform convergence of

relative frequencies of events to their probabilities. Theory Prob. Appl. 16.

Zhang, T. (2002). Covering number bounds of certain regularized linear function

classes. Journal of Machine Learning Research 2, 527–550.

73

Index

`1-margin, 21

`2-margin, 14

AdaBoost, 20

ambiguous, 23

Bagging, 8

base

learner, see hypothesis

learning algorithm, 7

learning model, 6

binary classification problem, 2

boosting, 5

capacity, 3

classifier, 2

combination

AND, 51, 52

NAND, 55

CPD, 19

CPSD, 19

decision function, 2

decision stump, 38

decision tree, 57

embedding function, 30

ensemble classifier, 6

ensemble learning, 6

finite, 7

infinite, 7

error

in-sample, 2

out-of-sample, 2

feature mapping, 16

generalize, 2

Gram matrix, 19

hyperplane classifier, 14

hypothesis, 6

hypothesis weight, 6

normalized, 6

infinite stump tree kernel, 56

kernel, 18

exponential, 19

Gaussian, 19

infinite stump tree, see infinite stump

tree kernel

Laplacian, 20

logic, see logic kernel

perceptron, see perceptron kernel

stump, see stump kernel

74

stump region, see stump region ker.

kernel trick, 19

learning

algorithm, 2

model, 1

problem, 1

logic kernel, 51

logic rule, 50

LPBoost, 22

hard-margin, 23

soft-margin, 22

negation complete, 32

neutral, 50

overfitting, 4

parameter, 30

pattern, 23

PD, 19

perceptron, 45

perceptron kernel, 47

simplified, 49

PSD, 19

RBF, 44

regularization, 5

sparse representation, 11

stable, 7

stump kernel, 40

simplified, 44

stump region kernel, 55

SVM, 13

linear hard-margin, 14

nonlinear hard-margin, 17

nonlinear soft-margin, 17

target function, 1

training

example, 1

label, 1

set, 1

vector, 1

underfitting, 5

V-C dimension, 3

