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Abstract

We present the unification of many previously disparate results in noisy quantum Shan-

non theory and the unification of all of noiseless quantum Shannon theory. More specif-

ically we deal here with bipartite, unidirectional, and memoryless quantum Shannon

theory. We find all the optimal protocols and quantify the relationship between the re-

sources used, both for the one-shot and for the ensemble case, for what is arguably the

most fundamental task in quantum information theory: sharing entangled states between

a sender and a receiver. We find that all of these protocols are derived from our one-shot

superdense coding protocol and relate nicely to each other. We then move on to noisy

quantum information theory and give a simple, direct proof of the “mother” protocol, or

rather her generalization to the Fully Quantum Slepian-Wolf protocol(FQSW). FQSW

simultaneously accomplishes two goals: quantum communication-assisted entanglement

distillation, and state transfer from the sender to the receiver. As a result, in addi-

tion to her other “children,” the mother protocol generates the state merging primitive

of Horodecki, Oppenheim, and Winter as well as a new class of distributed compres-

sion protocols for correlated quantum sources, which are optimal for sources described

by separable density operators. Moreover, the mother protocol described here is eas-

ily transformed into the so-called “father” protocol, demonstrating that the division of

single-sender/single-receiver protocols into two families was unnecessary: all protocols in

the family are children of the mother.
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Unification of noiseless quantum

information theory

Quantum information theory can be described as the effort to identify and quantify the

basic resources required to communicate or, more generally, process information in a

quantum mechanical setting. The dual goals of identifying new protocols and demon-

strating their optimality have, respectively, helped to expose the surprising range of

information processing tasks facilitated by quantum mechanics and highlighted the sub-

tle ways in which physics dictates limitations on the transmission and processing of

information.

Part of the appeal of the information theoretic paradigm is that it emphasizes the

notions of interconvertibility and simulation. Identifying basic resources and evaluating

their interconvertibility provides a general strategy for systematically charting the capa-

bilities of quantum mechanical systems. Some early successes of this approach include

Schumacher’s quantum noiseless coding theorem [37, 38], which demonstrated that a

single number quantifies the compressibility of memoryless sources of quantum states,

and the theory of pure state bipartite entanglement, where a single number, likewise,

determines the asymptotic interconvertibility of entanglement [39]. The last ten years

have seen major advances in the area, including, among many other discoveries, the

determination of the classical capacity of a quantum channel [62, 63], the capacities
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of entanglement-assisted channels [64, 65], the quantum capacity of a quantum chan-

nel [66, 67, 68], and the best ways to use noisy entanglement to extract pure entangle-

ment [69] or send classical information [70].

From the point of view of communication theory, these results identify three basic

and inequivalent resources: noiseless classical channels, noiseless quantum channels and

maximally entangled states. Other inequivalent resources exist, of course. One such,

classically correlated bits, will prove useless for the problems we investigate. Noisy ver-

sions of the basic list of three resources identified above adds many others but we do

not study them here. They will be the subject of the next section. Those caveats aside,

the three basic resources serve as formalized versions of abstract “classicality,” “quan-

tumness” and “nonlocality,” quantifiable in units of classical bits (cbits), quantum bits

(qubits) and maximally entangled qubits (ebits). While the three basic resources are

inequivalent, relationships exist between them. Because cbits can be encoded in qubits

and ebits can be established by sending qubits, the noiseless quantum channel is (in this

narrow sense) the strongest of the three. Because it is impossible to establish entangle-

ment using classical communication or to communicate using only entanglement, ebits

and cbits are simply incomparable; neither is truly stronger than the other.

In this section, we quantify the relationship between the three resources for a basic

task in quantum information theory: communicating quantum states from a sender to a

receiver (and, more generally, sharing entangled states between them). There are at least

two variations on the task, depending on whether or not the sender has knowledge of the

states she is required to communicate. If she is only given a copy of the quantum state

and not a description, we describe the source as hidden and the encoding as oblivious

(or blind). At the other extreme, if she is told which state she is required to transmit,

we describe the source as visible and the encoding as non-oblivious. (Sometimes in

the quantum information literature the adjective “visible” is also applied, somewhat
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nonsensically, to the encoding.) While the distinction makes no difference in classical

information theory, quantum mechanical restrictions on the sender’s ability to measure

without causing a disturbance lead to very different results for the two tasks in the

quantum case. (Compare, for example, the results of Refs. [42, 43] and [44].) Our

emphasis here is on the visible scenario since there is generically only a trivial trade-off

for the blind encoder case: using teleportation, two cbits and one ebit can be used to

simulate a noiseless one-qubit channel but no other interesting trade-offs are possible.

In the visible scenario, the relationship between the three resources becomes much

more varied. When no quantum channel is permitted, we recover the problem known

as remote state preparation, which was solved for the ensemble case in [45, 46], while

forbidding use of the classical channel leads to superdense coding of quantum states,

which was solved for the ensemble case in [47, 48]. Likewise, if entanglement is not

permitted, we recover the trade-off between classical and quantum communication solved

in Ref. [44]. This section completely solves the problem of trading all three resources

against each other, finding that optimal protocols for any combination of resources can

be constructed by appropriate combinations of the protocols representing the extremes

identified above, which in turn are derived from one unifying protocol: the one-shot

superdense coding protocol presented in the first chapter.



Chapter 1

Optimal superdense coding of entangled

states

1.1 Introduction

A sender’s power to communicate with a receiver is frequently enhanced if the two par-

ties share entanglement. The most well-known example of this phenomenon is perhaps

superdense coding [47], the communication of two classical bits of information by the

transmission of one quantum bit and consumption of one ebit. If the sender knows the

identity of the state to be sent, superdense coding of quantum states also becomes possi-

ble, with the result that, asymptotically, two qubits can be communicated by physically

transmitting one qubit and consuming one bit of entanglement [48, 18]. In [48] it was

furthermore shown that a sender (Alice) can asymptotically share a two-qubit entangled

state with a receiver (Bob) at the same qubit and ebit rate, along with the consump-

tion of some shared randomness. That result, however, failed to exploit one of the most

basic observations about superdense coding: highly entangled states are much easier to

prepare than non-entangled states. Indeed, maximally entangled states can be prepared

with no communication from the sender at all.
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In this chapter, we construct a family of protocols that take advantage of this effect,

finding that even partial entanglement in the state to be shared translates directly into

a reduction in the amount of communication required. Recall that every bipartite pure

state can be written in the form |ϕAB〉 =
∑

i

√
λi|ei〉|fi〉, where 〈ei|ej〉 = 〈fi|fj〉 = δij

and λi ≥ 0 [25]. Since the numbers
√

λi, known as Schmidt coefficients, are the only

local invariants of |ϕAB〉, they entirely determine the nonlocal features of the state. In

the case of one-shot superdense coding, we find that it is the largest Schmidt coefficient

that plays a crucial role. More specifically, we show how Alice can share with Bob any

pure state that has reduction on Bob’s system of dimension dS and maximum Schmidt

coefficient
√

λmax by transmitting roughly 1
2
log dS + 1

2
log λmax qubits and consuming

1
2
log dS − 1

2
log λmax ebits. We also show that these rates are essentially optimal.

In the spirit of [11], this new protocol can be viewed as the “father” of the noise-

less, visible state communication protocols. Composing it with teleportation generates

an optimal remote state preparation [21, 46] protocol. Applying it to the preparation of

states drawn from a memoryless source generates all the optimal rate points of the triple

cbit-qubit-ebit trade-off studied in [1], when combined with quantum-classical trade-off

coding [56, 44]. An inspiration for the present work was Harrow’s alternative construc-

tion of optimal protocols in this memoryless setting that made use of coherent classical

communication [71] and pre-existing remote state preparation protocols [50]. Harrow’s

techniques provided strong circumstantial evidence that the protocol we present here

should exist.

The rest of this chapter is structured as follows: We begin, in Section 3.2, by present-

ing the universal protocol for superdense coding of entangled states and then prove its

optimality, along with that of the associated remote state preparation protocol, in Sec-

tion 1.3. Section 1.4 contains an easy application of typical subspace techniques to the

task of developing an optimal protocol for preparing states generated by a memoryless
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source. Section 1.5 provides another application of the protocol, this time to the theory

of identification [29, 2]. Specifically, we show that the quantum identification capacity of

an ebit is two qubits.

Notation: We use the following conventions throughout the paper: log and exp are

always taken base 2. Unless otherwise stated, a “state” can be pure or mixed. The

density operator |ϕ〉〈ϕ| of the pure state |ϕ〉 will frequently be written simply as ϕ. If

ϕAB is a state on A⊗ B, we refer to the reduced state on A as ϕA. Sometimes we omit

subscripts labelling subsystems, in which case the largest subsystem on which the state

has been defined should be assumed: ϕ = ϕAB in the bipartite system A⊗B, for example.

A system we call A will have a Hilbert space also called A with a dimension dA. U(d)

denotes the unitary group on Cd, and B(Cd) the set of linear transformations from Cd to

itself. We write the fidelity between two states ρ and σ as F (ρ, σ) = ‖√ρ
√

σ‖2
1 and the

von Neumann entropy of a state ρ as S(ρ) = −Tr ρ log ρ.

1.2 The universal protocol

To begin, suppose that Alice would like to share a maximally entangled state with Bob.

Clearly, this can be accomplished without any communication – Alice need only perform

operations on her half of a fixed maximally entangled state shared between them. In

particular, if |ψ〉 is an arbitrary maximally entangled state and we denote by |Φd〉 =

1√
d

∑d
i=1 |i〉|i〉 a fixed maximally entangled state, then |ψ〉 can be expressed as

|ψ〉 = Vψ ⊗ 11B|Φd〉, (1.1)

where Vψ is a unitary transformation of Alice’s system that depends on ψ. This identity

is equivalent to the circuit diagram (1.2), in which time runs from left to right:

Of course, in general, we would like to prepare an arbitrary state |ψAB〉 that may

not be maximally entangled, and to do so by using as few resources as possible. Our



7

|Φd〉
A

B

Vψ


|ψ〉

(1.2)

Figure 1.1:

|ΦdB
〉

A1

A2

B

Vψ

U




|ψ〉

U †
A2B

(1.3)

Figure 1.2:

general method is as follows: Alice and Bob initially share a fixed maximally entangled

state |ΦdB
〉, to which Alice applies an isometry Vψ. She then sends a subsystem A2 of

dimension dA2 to Bob, who will apply a fixed unitary U †
A2B. Alice’s goal is to make

dA2 as small as possible while still reliably preparing |ψAB〉. The procedure can again

be summarized with a circuit diagram, although this time it is much less clear whether

there exist choices of the operations Vψ and UA2B that will do the job:

Figure (1.3) does provide a method for preparing the state |ψ〉 as long as 11⊗UA2B|ψ〉
is maximally entangled across the A1A2|B cut. (All such states are related by an op-

eration on Alice’s system alone.) We will now use this observation, together with the

fact that high-dimensional states are generically highly entangled [22, 20, 27, 13, 30, 31],

to construct a protocol that prepares an arbitrary state with high fidelity. The precise

statement about the entanglement of generic states that we will need is the following

lemma.

Lemma 1.2.1 Let ϕ be a state on A ⊗ B proportional to a projector of rank r and let
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UAB ∈ U(dAdB) be chosen according to the Haar measure. Then, if dB ≤ dA,

Pr
(
S(TrA UABϕU †

AB) < log dB − α− β
)

≤ 12r exp

(
−rdAdB

α2C

(log dB)2

)
, (1.4)

where we may choose C = (8π2 ln 2)−1, and β = 1
2 ln 2

dB

rdA
.

It generalizes the following lemma for rank-one ϕ, which was proved in [18].

Lemma 1.2.2 Let |ϕ〉 be chosen according to the Haar measure on A ⊗ B. Then, if

3 ≤ dB ≤ dA,

Pr
(
S(ϕB) < log dB − α− β

)

≤ exp

(
− (dBdA − 1)

α2C

(log dB)2

)
, (1.5)

where C = (8π2 ln 2)−1 as before and β = 1
ln 2

dB

dA
. ut

Proof (of Lemma 1.2.1) If we let R be a space of dimension r and |τABR〉 be a uniformly

distributed state on A⊗B ⊗R, then 1
r
ΠτAB

is equal in distribution to UABϕU †
AB, where

ΠτAB
is the projector onto the support of τAB. Let σ denote the unitary transformation

∑r−1
j=0 |e(j+1 mod r)〉〈ej|+11−ΠτAB

that implements a cyclic permutation on the eigenvectors

{|ej〉} of τAB corresponding to non-zero eigenvalues. (There are r such eigenvalues except

on a set of measure zero, which we will ignore.) We then have

1

r
ΠτAB

=
1

r

r−1∑

k=0

σkτABσ−k. (1.6)

Eq. (1.6), together with the concavity of entropy, implies

S

(
1

r
TrA ΠτAB

)
≥ 1

r

r∑

k=1

S(TrA σkτABσ−k), (1.7)
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which in turn gives

Pr
(
S(TrA UABϕU †

AB) < log dB − α− β
)

≤ Pr

(
1

r

r∑

k=1

S(TrA σkτABσ−k) < log dB − α− β

)

≤ r Pr
(
S(TrA σkτABσ−k) < log dB − α− β

)

= r Pr
(
S(τB) < log dB − α− β

)
, (1.8)

where the final step is a result of the unitary invariance of τABR. Applying Lemma 1.2.2

to Eq. (1.8) with A → AR and B → B reveals that

Pr
(
S(TrA UABϕU †

AB) < log dB − α− β
)

≤ 12r exp
(
− rdBdA

α2C

4(log dB)2

)
. (1.9)

ut
The idea behind the protocol is then simple: We will show that there exists a single

unitary UA2B such that 11A1 ⊗ UA2B|ψA1A2B〉 is almost maximally entangled across the

A1A2|B cut for all states |ψA1A2B〉 satisfying a bound on their Schmidt coefficients and

whose support on A2 ⊗ B lies in a large subspace S ⊂ A2 ⊗ B. Since any such 11A1 ⊗
UA2B|ψA1A2B〉 is almost maximally entangled, we can then find an exactly maximally

entangled state that closely approximates it. This state, in turn, can be prepared by the

method of Eq. (??). More formally, the following general prescription can be made to

succeed:

Protocol: To send an arbitrary pure state with maximal Schmidt coefficient ≤ √
λmax

and reduction of Bob’s system to dimension dS.

1. Alice and Bob share a maximally entangled state of log dB = 1
2
(log dS− log λmax)+

o(log dS) ebits on their joint system AB.

2. Alice applies a local partial isometry Vψ with output on two subsystems A1 and

A2. The size of A2 is log dA2 = 1
2
(log dS + log λmax) + o(log dS).
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3. Alice sends A2 to Bob.

4. Bob applies U †
A2B followed by a projection onto S, which is embedded as a subspace

of A2B.

Proposition 1.2.3 Let 0 < κ ≤ 1. For sufficiently large dS,and for dA2 and dB as

defined in the protocol, there exists choices of Vψ that depend on the input state |ψA1S〉
and UA2B such that for all input states |ψA1S〉 with largest Schmidt coefficient ≤ √

λmax,

the output of the protocol has fidelity at least 1− κ with |ψA1S〉.

Proof Our method will be to show that if UA2B is chosen according to the Haar

measure, then the corresponding protocol has a non-zero probability over choices of

UA2B of achieving high fidelity for all states that satisfy the restriction on their Schmidt

coefficients, establishing the existence of a particular UA2B for which this is true.

Now, to ensure that the protocol succeeds on a given |ψA1S〉, we only need to ensure

that 11A1 ⊗ UA2B|ψA1S〉 is highly entangled across the A1A2|B cut, which amounts to

showing that S(TrA2 UA2BψSU †
A2B) is close to log dB. This is exactly what Lemma 1.2.1

tells us is overwhelmingly likely for an individual random state |ϕA1S〉 maximally entan-

gled with a subspace A′
1 of A1. By standard arguments, this will ensure that there exists

a unitary UA2B such that S(TrA2 UA2BϕSU †
A2B) is close to log dB for all the states on S

maximally entangled with A′
1. Majorization can then be used to extend the argument to

general states |ψA1S〉 with bounded largest Schmidt coefficient.

We begin by restricting to the case of states |ϕA′1S〉 maximally entangled between S

and a fixed subspace A′
1 ⊆ A1, with dA′1 = b1/λmaxc. Now, let N γ

A′1S be a trace norm

γ-net for such states. It is possible to choose |N γ
A′1S| ≤ (5/γ)

2dA′1
dS . (See, for example,

[17]. We will fix γ later.) By the definition of the net and the contractivity of the trace

norm under the partial trace, for every maximally entangled state |ϕ〉 on A′
1⊗S there is
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a state |ϕ̃〉 ∈ N γ
A′1S such that

∥∥∥TrA2(UA2BϕSU †
A2B)− TrA2(UA2Bϕ̃SU †

A2B)
∥∥∥

1

≤ ‖ϕ− ϕ̃‖1 ≤ γ, (1.10)

which, by the Fannes inequality [59], implies that

∣∣∣S
(
TrA2(UA2BϕSU †

A2B)
)− S

(
TrA2(UA2Bϕ̃SU †

A2B)
)∣∣∣

≤ δ + η(γ), (1.11)

where δ = γ log dB and η(t) = −t log t for γ ≤ 1/4. Noting that all the states |ψA1S〉 have

the same reduction on Bob, we have

Pr
(

inf
|ϕA′1S〉

S(TrA2 UA2BϕSU †
A2B)

< log dB − α− β − δ − η(γ)
)

(1.12)

≤ |N γ
A′1S|Pr

(
S(TrA2 UA2BϕSU †

A2B)< log dB −α−β
)

≤
(

5

γ

)2dA′1
dS

4dA′1 exp

(
−dA′1dA2dB

α2C

4(log dB)2

)
, (1.13)

where β = dB/(2 ln 2dA′1dA2). Choosing α = β =: ε/4 ≤ 1/4, γ = α2/(4 log dB) and

dS < dA2dB
α2C

8(log dB)2 log(20 log dB/α2)
− 1,

we find that the probability bound (1.13) is less than 1. For our choice of parameters,

we have furthermore α + β + δ + η(γ) ≤ 4α = ε, using η(x) ≤ 2
√

x for x ≤ 1/4.We have

chosen parameters such that dA2 = dB/(2 ln 2 αdA′1).

Moreover, relaxing the restriction on the input states now, suppose that |ψ〉 is any

state on A1⊗S satisfying the condition ‖ψS‖∞ ≤ λmax. Then any such ψS is majorized by

any ϕS maximally entangled with A′
1, so that ψS can be written as a convex combination

∑
j pjWjϕSW †

j , where each Wj is unitary [4]. It then follows from the concavity of the
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entropy that

S
(
TrA2 UA2BψSU †

A2B

)

≥ min
j

S
(
TrA2 UA2BWjϕSW †

j U †
A2B

)
. (1.14)

Therefore, the probability of Eq. (1.12) is actually an upper bound for

Pr
(

inf
|ψA1S〉

S(TrA2 UA2BψSU †
A2B) < log dB − ε

)
. (1.15)

Thus, with our choice of parameters, there is a unitary UA2B such that for all states |ψ〉
on A1 ⊗ S satisfying the requirement that TrA1 ψ have eigenvalues ≤ λmax, we have

S(ψ′B) ≥ log dB − ε, (1.16)

introducing |ψ′〉 = (11 ⊗ UA2B)|ψ〉. Since this can be rewritten as S (ψ′B‖11B/dB) =

log dB − S(ψ′B) ≤ ε, it in turn implies [26] that, for such states,

‖ψ′B − 11B/dB‖1 ≤
√

2 ln 2ε =: κ, (1.17)

and, therefore, that F (ψ′B, 11B/dB) ≥ 1− κ. By Uhlmann’s theorem [32, 19], there exists

a purification Φψ of 11/dB such that |〈ψ′|Φψ〉|2 ≥ 1− κ. Starting from a fixed maximally

entangled state |Φ0〉, |Φψ〉 can be prepared by Alice using a local operation Vψ on A1A2

alone. Sending the system A2 to Bob and having him perform U †
A2B completes the

protocol. The final state has fidelity at least 1− κ with |ψ〉.
We end with the accounting: The foregoing discussion implies that we may choose

log dA2 =
1

2
(log dS + log λmax)

−O(log κ) + O(log log dS)

log dB =
1

2
(log dS − log λmax)

−O(log κ) + O(log log dS).

ut
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The main idea behind the proof, combining an exponential concentration bound with

discretization, has been used a number of times recently in quantum information the-

ory [17, 50, 48]. (It is, of course, much older; see [23].) If there is a twist in the present

application, it is illustrated in Eq. (1.13). Since dS is comparable in size to dA2dB, any

prefactor significantly larger than (5/γ)
2dA′1

dS would have caused the probability bound

to fail. Therefore, it was crucial to restrict first to states maximally entangled between

A′
1 and S, giving the manageable prefactor, and then extend to general states and larger

A1 using majorization.

1.3 Optimality of the protocol

The communication and entanglement resources of Proposition 1.2.3 are optimal up to

terms of lower order than log dS or log λmax: the amount of quantum communication can-

not be reduced, neither can the sum of the entanglement and quantum communication.

(Entanglement alone can be reduced at the cost of increasing the quantum communica-

tion.) We will demonstrate the result in two steps. First we prove an optimality result for

the task of remotely preparing entangled quantum states using entanglement and clas-

sical communication. We then show that by teleporting the quantum communication

of our superdense coding protocol for entangled states, we generate the optimal remote

state preparation protocol, meaning the original superdense coding protocol must have

been optimal.

Proposition 1.3.1 A remote state preparation protocol of fidelity F ≥ 1/2 for all dS-

dimensional states with maximum Schmidt coefficient ≤ √
λmax must make use of at least

log dS + log λmax + log F − 2 cbits and log dS − 18
√

1− F log dS − 2η
(
2
√

1− F
)

ebits,

where η(t) = −t log t.
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Proof Consider a remote state preparation protocol involving the transmission of

exactly log K cbits that can, with fidelity F , prepare all dS dimensional states having

maximum Schmidt coefficient
√

λmax. We will show that causality essentially implies

that K must be roughly as large as dSλmaxF .

In particular, suppose Alice wants to send Bob a message i ∈ {
1, . . . , bdS

a
c}, with

a = d 1
λmax

e. One way she can accomplish this is by preparing (a purification of) the

state σi = 1
a

∑ai
k=1+a(i−1) |k〉〈k| on Bob’s system, with some fixed basis {|k〉}. The remote

state preparation protocol will produce a state ρi for Bob that will have a fidelity F

with the intended state, σi. In order to decode the message, Bob simply measures Πi =

∑ai
k=1+a(i−1) |k〉〈k|. His probability of decoding the message Alice intended is Tr(ρiΠi) ≥

F .

Now, imagine that Alice and Bob use the same protocol, with the modification that

rather than Alice sending cbits, Bob simply guesses which j ∈ {1, . . . , K} Alice would

have sent. The probability of Bob correctly identifying i in this case is thus at least F
K

—

he has a probability 1
K

of correctly guessing j and, given a correct guess, a conditional

probability F of correctly identifying i. However, since this protocol involves no forward

communication from Alice to Bob, it can succeed with probability no greater than bdS

a
c−1

(by causality), implying K ≥ F bdS

a
c, which implies that K ≥ log dS +log λmax+log F−2.

The entanglement lower bound follows easily from conservation of entanglement un-

der local operations and classical communication (LOCC): let Alice and Bob prepare a

maximally entangled state |Φ0〉 of Schmidt rank dS. If they were able to do this exactly,

by the non-increase of entanglement under LOCC, they would need to start with at least

log dS ebits. However, the protocol only succeeds in creating a state ρ of fidelity ≥ F

with |Φ0〉. By a result of Nielsen [24], this implies that for the entanglement of formation,

EF (ρ) ≥ log dS − 18
√

1− F log dS − 2η
(
2
√

1− F
)

.
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Since EF cannot increase under LOCC, the right hand side is also a lower bound on the

number of ebits Alice and Bob started with. ut

Corollary 1.3.2 A superdense coding protocol of fidelity F ≥ 1/2 for all dS-dimensional

states with maximum Schmidt coefficient ≤ √
λmax must make use of at least 1

2
log dS +

1
2
log λmax + 1

2
log F − 1 qubits of communication. The sum of qubit and ebit resources

must be at least log dS − 18
√

1− F log dS − 2η
(
2
√

1− F
)
.

Proof Suppose there exists an superdense coding protocol that can prepare all dS

dimensional states with maximum Schmidt coefficient ≤ √
λmax and that uses only Q

qubits and E ebits. Use teleportation to transmit the qubits, turning it into an remote

state preparation protocol.

The qubit cost translates directly to a cbit cost of 2Q. From Proposition 1.3.1 we

infer the lower bound on Q. The protocol including teleportation requires Q + E ebits,

thus the lower bound on Q + E follows from Proposition 1.3.1 as well. ut

Thus, when F → 1 and ignoring terms of order o(log dS), the upper resource bounds

from our protocol, and the above lower bound coincides.

1.4 Protocol for a memoryless source

The universal protocol of Proposition 1.2.3 is easily adapted to the task of sending states

produced by a memoryless source. A standard application of typical subspace techniques

gives control of the value of λmax and the effective size of the states received by Bob, the

two parameters determining the resources consumed by the universal protocol. We model

the source EA1S = {pi, |ϕA1S
i 〉}m

i=1 as a sequence of independent, identically distributed

states:

|ϕA1S
in 〉 = |ϕA1S

i1
〉 ⊗ · · · ⊗ |ϕA1S

in
〉 (1.18)
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occurs with probability pin = pi1pi2 . . . pin , where in = i1i2 · · · in. If we define S(ES) =

S (
∑

i pi TrA1 |ϕi〉〈ϕi|) and S̄(ES) =
∑

i piS(TrA1 |ϕi〉〈ϕi|), Harrow combined coherent clas-

sical communication and a remote state preparation protocol to demonstrate that a qubit

rate of 1
2
(S(ES) − S̄(ES)) and ebit rate of 1

2
(S(ES) + S̄(ES)) are simultaneously achiev-

able [71], an optimal result [1] that hinted at the existence of the universal protocol. Here

we show how the universal protocol provides an alternate, perhaps more direct, route to

Harrow’s rate pair.

Proposition 1.4.1 There exist protocols for superdense coding of entangled states with

mean fidelity approaching one and asymptotically achieving the rate pair of 1
2
(S(ES) −

S̄(ES)) qubits and 1
2
(S(ES) + S̄(ES)) ebits.

Proof With probability pin , Alice needs to prepare the state |ϕA1S
in 〉. Instead, for typical

in, she prepares a state |σA1S
in 〉 obtained by applying a typical projector and a conditional

typical projector to ϕS
in . When in is atypical, the protocol fails.

Given a probability distribution q on a finite set χ, define the set of typical sequences,

with δ > 0, as

T n
q,δ =

{
xn : ∀x|N(x|xn)− nqx| ≤ δ

√
n
√

qx(1− qx)
}

, (1.19)

where N(x|xn) counts the numbers of occurences of x in the string xn = x1x2 · · · xn.

If ρ =
∑

i piϕ
S
i has spectral decomposition

∑dS

j=1 R(j)Πj, we then define the typical

projector to be

Πn
ρ,δ =

∑
jn∈T n

R,δ

Πj1 ⊗ · · · ⊗ Πjn (1.20)

and the conditional typical projector to be

Πn
ϕS ,δ(i

n) =
m⊗

i=1

ΠIi
ϕi,δ

, (1.21)

where Ii = {j ∈ [n] : ij = i}and ΠIi
ϕi,δ

refers to the typical projector in the tensor product

of the systems j ∈ Ii. In terms of these definitions, σA1S
in , the state Alice prepares instead



17

of ϕA1S
in , is proportional to

(11A1 ⊗ Πn
ρ,δΠ

n
ϕS ,δ(i

n))ϕA1S
in (11A1 ⊗ Πn

ϕS ,δ(i
n)Πn

ρ,δ), (1.22)

With respect to approximation, the relevant property of these operators is that, defin-

ing

ξin = Πn
ϕS ,δ(i

n)ϕS
inΠn

ϕS ,δ(i
n), (1.23)

we have

Tr[Πn
ρ,δΠ

n
ϕS ,δ(i

n)ϕS
inΠn

ϕS ,δ(i
n)Πn

ρ,δ]

= Tr[ξin ]− Tr[(11− Πn
ρ,δ)ξin ] ≥ 1− ε, (1.24)

if δ = m
√

2dS/ε (by Lemmas 3 and 6 in [35]). The Gentle Measurement Lemma, referred

to as the tender operator inequality in [35], together with a simple application of the

triangle inequality, implies that ‖ϕA1S
in − σA1S

in ‖1 ≤
√

8ε + 2ε. For a more detailed proof

of these facts and further information about typical projectors, see [35]. If in is typical,

meaning it is in the set T n
p,δ (which occurs with probability at least 1−m/δ2), then it is

also true that

Πn
ϕS ,δ(i

n)ϕS
inΠn

ϕS ,δ(i
n) ≤ Πn

ϕS ,δ(i
n)2−nS̄(ES)+cδ

√
n, (1.25)

Rank Πn
ρ,δ ≤ 2nS(ES)+cδ

√
n, (1.26)

where c > 0 is independent of n and δ. Equation (1.25) implies that (1 − ε)σS
in ≤

2−nS̄(ES)+cδ
√

nΠn
ρ,δ, which in turn leads to the conclusion that λmax(σ

S
in) ≤ 1

1−ε
2−nS̄(ES)+cδ

√
n =:

λmax; Eq. (1.26) provides a bound on the effective dimension of the system S since

σS
in ≤ Πn

ρ,δ for all in.

Applying the universal superdense coding protocol to σA1S
in , we find that the number

of qubits that must be sent is

1
2
[log Rank Πn

ρ,δ + log λmax] + o(n) (1.27)

≤ n
2
[S(ES)− S̄(ES)] + cδ

√
n− log(1− ε) + o(n)
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while the number of ebits used is

1
2
[log Rank Πn

ρ,δ − log λmax] + o(n) (1.28)

≤ n
2
[S(ES) + S̄(ES)] + log(1− ε) + o(n),

matching the rates of the proposition. ut
We’ve already used, in Section 1.3, the fact that teleporting the qubits of a super-

dense coding protocol leads to a remote state preparation protocol. When applied to

Proposition 1.4.1, we get an alternative proof of Proposition 15 of [50]:

Corollary 1.4.2 There exist protocols for remote state preparation of entangled states

with mean fidelity approaching one and asymptotically achieving the rate pair of S(ES)−
S̄(ES) cbits and S(ES) ebits. ut

1.5 Identification

Quantum message identification, a generalization of hypothesis testing to the quantum

setting, has been explored recently in a series of papers [3, 34, 33]. As opposed to trans-

mission, where the goal is to communicate a message over a channel reliably, identification

only allows the receiver to answer a single binary question: Is the message x or is it not?

A surprising aspect of the theory of identification is that the number of questions that can

be answered grows as a doubly exponential function of the number of uses of the channel,

as opposed to the well-known singly exponential behavior for transmission [29, 2]. In the

quantum setting, a number of versions of the identification (ID) capacity have been de-

fined; these divide broadly into the capacities for quantum resources to identify classical

messages and the capacities for those quantum resources to identify quantum messages.

In the former case, doubly exponential growth of the number of messages was found,

with the most important result to date that the ID capacity of an ebit, supplemented
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with negligible rate of forward classical communication, is two [33]. It follows, of course,

that the ID capacity of a qubit is also two [34].

In this section, we will instead be focusing on the capacity of an ebit to identify

quantum messages, that is, quantum states. We will consider the model with a visible

encoder and ID-visible decoder, according to the terminology introduced in [34].

Specifically, we say that we have a quantum-ID code on B(Cd) of error 0 < λ < 1 and

dimension dC if there exists an encoding map ε : B(CdC ) → B(Cd) and a decoding map

D : CdC → B(Cd) such that for all pure states |ϕ〉 and |ψ〉 on CdC

∣∣∣Tr(ϕψ)− Tr(ε(ϕ)Dψ)
∣∣∣ ≤ λ

2
. (1.29)

This condition ensures that the measurement (Dψ, 11−Dψ) can be used on the states ε(ϕ)

to simulate the test (ψ, 11 − ψ) applied to the states ϕ. In the blind encoder, ID-visible

decoder case, ε must be a quantum channel and D can be an arbitrary assignment to

operators 0 ≤ Dψ ≤ 11. It was shown in [34] that for all 0 < λ < 1 there exists on

Cd such a quantum-ID code of error λ and dC =
⌊
d2 (λ/100)4

4 log(λ/100)

⌋
. Since, for fixed λ,

log dC = 2 log d + const, this shows that, asymptotically, one qubit of communication

can identify two qubits. We claim that, again asymptotically, but now using a visible

encoding map, one ebit plus a negligible (rate of) quantum communication can be used to

identify two qubits. Rather than introducing another cumbersome definition, we simply

state the method: The states ε(ϕ) that are output by the blind encoding can be prepared

visibly using superdense coding. Because they are extremely mixed, their purifications

are highly entangled and Proposition 1.2.3 demonstrates that negligible communication

is sufficient.

The negligible communication cost is encountered frequently in the theory of identifi-

cation: The classical identification capacity of a bit of shared randomness supplemented

by negligible communication is a bit. In [33], it was found that the classical identification

capacity of an ebit supplemented by negligible communication is two bits. Our finding
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here that the quantum identification capacity of an ebit and negligible communication is

two qubits, provides, in fact, an alternative proof of this result.

Proposition 1.5.1 If dC = d2(λ/100)2/(log d)4, then for all states |ϕ〉 ∈ CdC , approx-

imations |Φ′
ϕ〉 of the purifications of the states ε(ϕ) can be prepared on Ca ⊗ Cd using

log d + o(log d) ebits and o(log d) qubits of communication, in such a way that

∣∣∣Tr[ϕψ]− Tr[(TrCa Φ′
ϕ)Dψ]

∣∣∣ ≤ λ

2
. (1.30)

Proof From the proof of Proposition 19 in [34], if we choose a = εd/2, η = λ/8 and

ε = (η/6)2, let ε(ϕ) = TrCa(V ϕV †) with V : CdC → Cd⊗Ca a Haar distributed isometry

and choose Dψ = supp ε(ψ),

Pr

(
∃ψ, ϕ such that |Tr(ϕψ)− Tr(ε(ϕ)Dψ)| > λ

4

)

≤
(

10

η

)4dC

3 exp(−d2ε2/16). (1.31)

with absolute constants c0 and c1. (Note that this statement is trivial for a = 0 or a = 1.)

To be precise, in [34] the above probability bound is derived for states in the net, but it

is also explained how to use triangle inequality to lift this to all states.

Therefore, the states ε(ϕ) form a good quantum-ID code. We will demonstrate how

to make them using superdense coding. Arguing along the lines of Eq. (1.13), we find

that for all α > 0, dC = ad/(log a)4 and sufficiently large d,

Pr

(
inf
ϕ

S
(
ε(ϕ)

)
< log a− α

)
<

1

2
. (1.32)

(This is also a special case of Theorem IV.1 from [18].) From here, we observe that by

the same reasoning given after Eq. (1.17), there exists a maximally entangled state |Φϕ〉
such that |〈Φϕ|V |ϕ〉|2 ≥ 1 −

√
2α ln 2. We can, therefore, invoke Proposition 1.2.3 with

dS = d and λmax = 1/a to conclude that for sufficiently large d, states |Φ′
ϕ〉 approximating

|Φϕ〉 to within fidelity
√

2α ln 2 can be prepared using log d + o(log d) ebits and o(log d)
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qubits of communication. By an appropriate choice of α, we can therefore ensure that

|〈Φϕ|V |ϕ〉|2 ≥ λ/4. Using the triangle inequality, we then find that

|Tr(ϕψ)− Tr(Φ′
ϕDψ)| ≤ λ/2 (1.33)

for all pure states |ϕ〉 ∈ CdC . ut
There is a little subtlety in the proof that is worth considering briefly. The states

to be prepared, |Φϕ〉, are maximally entangled, so one might think that they can be

prepared without any communication at all. The party holding Cd can, indeed, create

them without communication. The party holding the smaller Ca, however, cannot; local

unitary transformations on Ca will not change the support of the reduction to Cd, for

example. Nonetheless, by appealing to Proposition 1.2.3, we see that the asymmetry

disappears in the asymptotic limit if negligible communication is allowed.

1.6 Discussion

We have proved the existence of protocols that allow a sender to share entangled states

with a receiver while using as little quantum communication as is possible. These pro-

tocols interpolate between requiring no communication at all for maximally entangled

states and a rate of two remote qubits per sent qubit for product states. An immediate

application of the result was a proof that the identification capacity of an ebit is two

qubits when visible encoding is permitted.

The question of efficient constructions remains – we would like to have protocols

with the same ebit and qubit rates that are implementable in polynomial time (as has

been demonstrated for state randomization [17] by Ambainis and Smith [5]). It would

also be interesting to know whether stronger success criteria can be satisfied while still

achieving the same rates. Specifically, the universal remote state preparation protocol of

[50] produces an exact copy of the desired state when the protocol succeeds, not just a
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high fidelity copy. Is such a probabilistic-exact protocol possible in the superdense coding

setting? (One could even ask questions about perfectly faithful superdense coding, in

analogy to what has been done for remote state preparation in [28, 36, 9].) Another

natural question is the quantum identification capacity of an ebit in the blind scenario.

We have shown that it is possible to achieve the identification rate of two qubits per ebit

in the case when the identity of the encoded qubits is known, but it is not at all clear

whether this rate is achievable when the identity of the qubits is unknown.

In the next chapter we show how the optimal superdense coding protocol for a memo-

ryless source leads to the optimal trade-off of all three resources – qubits, cbits and ebits

in noiseless quantum communication.



Chapter 2

Generalized remote state
preparation: Trading cbits, qubits and ebits in

quantum communication

2.1 Introduction

We consider the problem of communicating quantum states by simultaneously making use

of a noiseless classical channel, a noiseless quantum channel and shared entanglement. We

specifically study the version of the problem in which the sender is given knowledge of the

state to be communicated. In this setting, a trade-off arises between the three resources,

some portions of which have been investigated previously in the contexts of the quantum-

classical trade-off in data compression, remote state preparation and superdense coding of

quantum states, each of which amounts to allowing just two out of these three resources.

We present a formula for the triple resource trade-off that reduces its calculation to

evaluating the data compression trade-off formula. In the process, we also construct

protocols achieving all the optimal points. These turn out to be achievable by trade-

off coding and suitable time-sharing between optimal protocols for cases involving two

resources out of the three mentioned above.

The rest of this chapter is structured as follows. Section 2.2 defines the problem

23
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rigorously and describes previous results for the cases when one of the three resources

is not used, along with some minor extensions. Section 2.3 studies the relationship

between the trade-off between qubits and cbits in quantum data compression (QCT) and

the trade-off between ebits and cbits in remote state preparation (RSP). In Section 2.4

these connections and the results described in section 2.2 are used to obtain optimal

protocols and optimal resource trade-offs for communicating quantum states when all

three resources are used simultaneously: the full “triple trade-off.”

We use the following conventions throughout this chapter. If EAB = {ϕAB
i , pi} is an

ensemble of bipartite states then we write EA for the ensemble {ϕA
i , pi} of reduced states

on system A. Sometimes we omit subscripts (or superscripts) labelling subsystems, in

which case the largest subsystem on which the ensemble (or state) has been defined should

be assumed: E = EAB and ϕi = ϕAB
i . We identify states with their density operators

and if |ϕ〉 is a pure state, we use the notation ϕ = |ϕ〉〈ϕ| for its density operator. The

function S(ρ) is the von Neumann entropy S(ρ) = −Tr ρ log ρ and S(E) the von Neumann

entropy of the average state of the ensemble E . Functions like S(A|B)ρ and S(A : B|C)ρ

are defined in the same way as their classical counterparts:

S(A : B|C)ρ = S(ρAC) + S(ρBC)− S(ρABC)− S(ρC), (2.1)

for example. χ(E) is the Holevo χ quantity of E [49]. Given a bipartite ensemble EAB =

{ϕAB
i , pi}, we also make use the abbreviations S = S(EB), S̄ =

∑
i piϕ

B
i , χ = χ(EB) and

H = H(pi). Throughout, log and exp are taken base 2.

2.2 Definition of the problem and previous results

We now give a more formal definition of the task to be completed by the sender and

receiver, henceforth, respectively, Alice and Bob. The reader can also refer to Figure 2.1,

which illustrates the definition. We consider an ensemble of bipartite quantum states
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Ein

Dj

B1

X : in

B2

A

B

|Φ〉
C : j ϕ̃in

Figure 2.1: In the above quantum circuit diagram for generalized remote state preparation

time goes from left to right, solid lines represent quantum registers and dashed lines

represent classical registers. The registers connected in the left represent a maximally

entangled state of log dE ebits initially shared between Alice and Bob. The log dQ-qubit

quantum register B1 is sent from Alice to Bob, as is the log dC cbit classical message

m. Alice’s encoding operation is denoted by Ein and Bob’s decoding operation, which is

conditioned on m, by Dm.
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E = {|ϕi〉AB, pi} on a finite-dimensional Hilbert space HAB = HA⊗HB and the product

ensembles E⊗n = {|ϕin〉AB, pin} on H⊗n
AB, where

in = i1i2 . . . in,

pin = pi1pi2 . . . pin and

|ϕin〉 = |ϕi1〉 ⊗ |ϕi2〉 ⊗ . . .⊗ |ϕin〉.

At the end of the protocol, Alice and Bob are to reproduce the states of the bipartite

ensemble with high fidelity. (Regardless of whether pure states are prepared in Bob’s

system, or entangled states are shared between Alice and Bob, we will always refer to the

task simply as communicating from Alice to Bob.) We imagine that there is a noiseless

classical channel from Alice to Bob capable of sending one of dC messages, a noiseless

quantum channel capable of sending a dQ-dimensional quantum system and a maximally

entangled state |Φ〉 = d
−1/2
E

∑dE

i=1 |i〉|i〉 of Schmidt rank dE. A source provides Alice with

in, drawn with probability pin , at which point Alice applies a quantum operation Ein to

her half of |Φ〉 that without loss of generality has output of the form

dC∑
j=1

ρAB1B2
in,j ⊗ q(j|in)|j〉〈j|C , (2.2)

where B1 is a dQ-dimensional quantum system, B2 is the quantum system supporting

Bob’s half of |Φ〉, the states {|j〉} are orthonormal (i.e classical) and q(·|i) is a probability

distribution. Alice then sends register B1 to Bob over her noiseless quantum channel

and C to Bob over the noiseless classical channel. The protocol is completed by Bob

performing a quantum operation Dj on registers B1 and B2. Write ϕ̃in for the joint

Alice-Bob output state averaged over different values of j. We say that the protocol has

fidelity 1− ε if

∑
in

pin〈ϕin|ϕ̃in |ϕin〉 ≥ 1− ε. (2.3)



27

Likewise, (R,Q, E) is an achievable rate triple for the ensemble E if for all δ, ε > 0 there

exists N such that for all n > N there is a protocol for E⊗n with fidelity 1− ε and

1

n
log dC ≤ R + δ

1

n
log dQ ≤ Q + δ

1

n
log dE ≤ E + δ. (2.4)

Our goal will be to identify these achievable triples. In particular, we will find a

formula for the function

E∗(R,Q) = inf{E : (R, Q,E) is achievable}. (2.5)

We refer to rate triples of the form (R,Q, E∗(R, Q)) as optimal rate triples and the

protocols that achieve them as optimal protocols. We will indicate that a rate triple

(R, Q, E) is optimal by writing it as (R, Q,E)∗. Throughout the paper, unless otherwise

stated, all entropic quantities will be taken with respect to 4-partite states ω of the

following form:

ω =
∑

i

pi|i〉〈i|X ⊗ ϕAB
i ⊗

m+1∑
j=1

p(j|i)|j〉〈j|C , (2.6)

where m is the number of states in EAB (if that number is finite), and p(·|·) is a classical

noisy channel. Note that for all such states

S(X : B|C) = S(B|C)− S̄, where S̄ =
∑

i

piS(ϕB
i ), (2.7)

a fact that will be useful later.

Before moving on to the general problem, we consider the special cases given by

setting one of the three rates to zero.

2.2.1 Q = 0 : Remote state preparation (RSP)

This problem was studied extensively in Ref. [50]. It is impossible to achieve an entangle-

ment rate of less than
∑

i piϕ
B
i , essentially because that is the amount of entanglement

shared between Alice and Bob at the end of any successful protocol. The optimal cbit
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rate when the entanglement is minimal is just H(pi), meaning that the simple protocol

consisting of Alice communicating in to Bob and then the pair performing entangle-

ment dilution is optimal. At the other extreme, the cbit rate is minimized (at least for

irreducible sources) by a protocol achieving the rate (χ(EB), 0, S(EB)). In general, we

introduce the function

E∗(R) = inf{E : (R, 0, E) is achievable}. (2.8)

This choice, a slight abuse of notation given our earlier definition of a function E∗ with

two arguments, is chosen for consistency with the remote state preparation paper. Note

that E∗(R) = E∗(R, 0). We have the following theorem from Ref. [50]:

Theorem 2.2.1 For the ensemble E = {|ϕi〉AB, pi} of pure bipartite states and R ≥ 0,

E∗(R) = min{S(B|C) : S(X : BC) ≤ R}, (2.9)

where the entropic quantities are with respect to the state ω, minimization is over all 4-

partite states ω of the form of Eq. (2.6) with classical channels p(j|i), and m the number

of states in E. E∗ is convex, continuous and strictly decreasing in the interval in which

it takes positive values.

We will also use the simple fact that the inequality in Eq. (2.9) can be replaced by

equality.

2.2.2 E = 0: Quantum-classical trade-off (QCT)

The case where the ensemble E consists only of product states |ϕi〉AB = |0〉A|ϕi〉B was the

focus of Ref. [44]. At the extreme when R = 0, only quantum communication is permitted

so the problem of finding achievable rates is answered by the quantum noiseless coding

theorem: (0, S(EB), 0) is an optimal point, in the sense that none of the three rates can be
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reduced. Likewise, the optimal point when Q = 0 is given by (H(pi), 0, 0), meaning that

Alice has no better strategy than to communicate the label in to Bob. More generally,

when the ensemble is allowed to contain entangled states, the techniques of Refs. [44, 50]

are easily adapted to yield a formula for

Q∗(R) = inf{Q : (R, Q, 0) is achievable}. (2.10)

In particular, we have the following analog of Theorem 2.2.1:

Theorem 2.2.2 For the ensemble E = {|ϕi〉AB, pi} of pure bipartite states and R ≥ 0,

Q∗(R) = min{S(B|C) : S(X : C) ≤ R}, (2.11)

where the entropic quantities are with respect to the state ω, minimization is over all 4-

partite states ω of the form of Eq. (2.6) with classical channels p(j|i), and m the number

of states in E. Q∗ is convex, continuous and strictly decreasing in the interval in which it

takes positive values. There exists a critical value of R, hereafter referred to as Hc such

that R + Q∗(R) = S(B) for R ≤ Hc and R + Q∗(R) > S(B) otherwise.

As before, the inequality in Eq. (2.11) can be replaced by equality.

2.2.3 R = 0 : Superdense coding of quantum states (SDC)

In the last chapter we showed that

(
0, 1

2
χ(EB), S(EB)− 1

2
χ(EB)

)
(2.12)

is an achievable rate triple. Using this construction, we can easily find the R = 0 trade-off

curve:

Theorem 2.2.3 For the ensemble E = {|ϕi〉AB, pi} of pure bipartite states and Q ≥ 0,

E∗(0, Q) =





S(EB)−Q if Q ≥ χ(EB)/2

+∞ otherwise.
(2.13)
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Proof Since (0, S, 0) and (0, χ/2, S − χ/2) (S and χ are defined in the introduction)

are both achievable rate triples, any convex combination of the two is an achievable rate

triple corresponding to a time-shared protocol. Thus, if 0 ≤ λ ≤ 1,

(0, λS + (1− λ)χ/2, (1− λ)(S − χ/2)) (2.14)

is achievable. Suppose these points are not optimal. Then there exists ε > 0 such that

(0, λS + (1− λ)χ/2, (1− λ)(S − χ/2)− ε) (2.15)

is optimal. By using quantum communication to establish entanglement, however, pro-

tocols achieving this rate can be converted into protocols with the rate triple

(0, λS + (1− λ)χ/2 + (1− λ)(S − χ/2)− ε, 0) = (0, S − ε, 0), (2.16)

contradicting the optimality of Schumacher compression. We conclude that E∗(0, Q) =

S−Q when this conversion is possible, that is, when Q ≥ χ/2. This condition is required

by causality. (For a detailed proof, see Section 2.4.3.) ut
The simple argument used in the proof of Theorem 2.2.3 is characteristic of what will

follow. Our evaluation of E∗(R,Q) will be accomplished via operational reductions to

the three extremal cases we have now completed, just as Theorem 2.2.3 was demon-

strated using a reduction from the unknown E∗(0, Q) curve to the known Schumacher

compression point.

Later we will also have occasion to make use of the following analog of the QCT

and RSP constructions. Given a state ω of the form of Eq. (2.6), the trade-off coding

technique from Ref. [44] then gives protocols achieving all the rate triples of the form

(
S(X : C), 1

2
S(X : B|C), S(B|C)− 1

2
S(X : B|C)

)
. (2.17)

Briefly, once an optimal channel p(j|i) is chosen, Alice and Bob can share (typical)

jn = j1 . . . jn at a cost of nS(X : C) + o(n) bits of communication plus shared random
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bits using the reverse Shannon theorem [65]. Harrow’s protocol is then used on the

induced “conditional” ensembles

{|ϕin〉AB, q(in|jn) = q(i1|j1) . . . q(in|jn)}, where

q(i|j) =

(∑

i′
pi′p(j|i′)

)−1

p(j|i)pi. (2.18)

The shared random bits are then seen to be unnecessary because we only require high

fidelity on average (so that some particular value of the shared random bits can be used).

Evaluation of the rates for the approach gives exactly Eq. (2.17).

Given any (R, Q∗(R), 0) there is a state ω of the form Eq. (2.6) for which (S(X :

C), S(B|C), 0) = (R,Q∗(R), 0). For this state, we therefore find a new achievable rate

triple:

(
S(X : C), 1

2
S(X : B|C), S(B|C)− 1

2
S(X : B|C)

)
=

(
R, 1

2
(Q∗(R)− S̄), 1

2
(Q∗(R) + S̄)

)
,

(2.19)

where we have used Eq. (2.7) to arrive at the expression on the right hand side.

2.3 Relating optimal QCT and optimal RSP

Any protocol for quantum-classical compression can be converted into an RSP protocol

by using RSP to send the compressed qubits. One might hope that if the original QCT

point was optimal that the resulting RSP point would also be optimal. For classical rates

above Hc this is indeed the case but otherwise it need not be. Consider, for example, the

ensemble consisting of the orthonormal states |0〉 and |1〉, each occurring with probability

1
2
. In this case, Q∗(0) = 1 but the corresponding RSP protocol would wastefully consume

1 cbit and 1 ebit per signal when 1 cbit and no entanglement are sufficient.

As an aside, while we have described a natural way to convert optimal QCT protocols

into optimal RSP protocols (that works when R ≥ Hc), there is no known way to do the
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opposite. An appendix to Ref. [50], however, demonstrates the existence of just such an

operational reduction but only under the assumption that the mixed state compression

conjecture is true. (See Refs. [53, 54, 55] for more details on the conjecture.)

The following two lemmas formally express the relationship between optimal QCT

and optimal RSP:

Lemma 2.3.1 When R ≥ Hc, E∗(R+Q∗(R)−S̄) = Q∗(R). Otherwise, E∗(R+Q∗(R)−
S̄) = Q∗(Hc).

Proof We begin by showing that E∗(R + Q∗(R) − S̄) ≤ Q∗(R). We know that

(S(X : BC), 0, S(B|C)) is an achievable rate triple for any ω of the form of Eq. (2.6). In

particular, it is achievable when (S(X : C), S(B|C), 0) = (R, Q∗(R), 0), in which case

(S(X : BC), 0, S(B|C)) =
(
S(X : C) + S(B|C)− S̄, 0, S(B|C)

)
(2.20)

=
(
R + Q∗(R)− S̄, 0, Q∗(R)

)
. (2.21)

This proves the claim. Note that this inequality is true regardless of whether R is greater

or less than Hc.

We now prove the opposite inequality: E∗(R + Q∗(R) − S̄) ≥ Q∗(R) when R ≥ Hc.

Substituting our expressions for E∗(R) and Q∗(R) shows that what we need to prove is

that

min{S(B|C) : S(X : C) + S(B|C) = R + Q∗(R)} (2.22)

≥ min{S(B|C) : S(X : C) = R}. (2.23)

Let ω be the state that minimizes the first expression for fixed R. If S(X : C)ω ≤ R then

we’re done so we may suppose not: S(X : C)ω = R + ∆ for some ∆ > 0. By convexity

and the definition of Hc, for any R ≥ Hc,

Q∗(R + ∆)−Q∗(R)

∆
> −1. (2.24)
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Rearranging this inequality yields

(R + ∆) + Q∗(R + ∆) > R + Q∗(R). (2.25)

Using the hypothesis S(X : C)ω = R + ∆ and the fact that the right hand side of the

above inequality is S(X : C)ω + S(B|C)ω, we find that S(B|C)ω < Q∗(R + ∆). But,

again by hypothesis, S(X : C)ω = R + ∆ so we have a contradiction of the definition of

Q∗(R + ∆). We conclude that S(X : C)ω ≤ R.

Finally, R + Q∗(R)− S̄ = χ when R < Hc so E∗(R) = E∗(χ) is constant. Using the

first half of the lemma, we then find E∗(χ) = E∗(Hc + Q∗(Hc)− S̄) = Q∗(Hc). ut

Lemma 2.3.2 Q∗(R− E∗(R) + S̄) = E∗(R) when R ≥ χ. Otherwise E∗(R) = +∞.

Proof Let Hc ≤ R1 and consider R = R1+Q∗(R1)−S̄. R is a strictly increasing function

of R1 by the definition of Hc, taking all values χ ≤ R. Substituting into Lemma 2.3.1

gives

Q∗(R− E∗(R) + S̄) = Q∗(R1 + Q∗(R1)− S̄ −Q∗(R1) + S̄) (2.26)

= Q∗(R1) (2.27)

= E∗(R1 + Q∗(R1)− S̄) (2.28)

= E∗(R). (2.29)

Also, R < χ is not achievable (by causality, see section 2.4.3), yielding the second half of

the lemma. ut

2.4 The triple trade-off

The following theorem is the main result of the paper: a prescription for calculating the

minimal amount of entanglement required given any cbit and qubit rate.
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Theorem 2.4.1

E∗(R,Q) =





0 if Q∗(R) < Q

Q∗(R)−Q if 1
2
(Q∗(R)− S̄) ≤ Q ≤ Q∗(R)

E∗(R + 2Q)−Q if 1
2
(χ−R) ≤ Q < 1

2
(Q∗(R)− S̄)

+∞ if Q < 1
2
(χ−R)

We discuss each of the four ranges for Q separately, referring to them, in order,

as the QCT region, the low-entanglement region, the high-entanglement region and the

forbidden region. The names of the first and last regions should be self-explanatory. (QCT

is optimal by definition in the QCT region and no amount of entanglement is sufficient in

the forbidden region.) In the low-entanglement region we’ll find that optimal protocols

can be found by time-sharing between QCT and SDC (the first of which does not use

entanglement) while the optimal protocols for the high-entanglement region are found by

time-sharing between RSP and SDC, both of which rely on entanglement.

While Hc does not appear explicitly in our formula, it once again delineates the

boundary between two qualitatively different regimes: for R < Hc we have that 1
2
(Q∗(R)−

S̄) = 1
2
(χ − R) so there is no high-entanglement region in this case. The region defined

by R < Hc and Q ≥ 1
2
(χ−R) is entirely contained in low-entanglement region.

Before giving a proof of Theorem 2.4.1, we consider the standard example: EAB being

the uniform (unitarily invariant) ensemble over qubit states on B. Devetak and Berger

gave an explicit parametrization [56] of the function identified as Q∗(R) for this ensemble

in Ref. [44] and the corresponding RSP curve appeared in Ref. [50]. We present the full

trade-off surface E∗(R, Q) in figure 2.3. (In the case of an infinite ensemble, theorems

2.2.1 and 2.2.2 need to be slightly modified: the min should be replaced by an inf as

explained in Theorem 10.1 of Ref. [44]. The only modification required to the argument

of this paper is in the second half of Lemma 2.3.1, where a sequence of ωn needs to be

considered instead of a fixed minimizing ω.)
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Figure 2.2: Achievable rate triples and conversions

Rate triple Description

(R, Q∗(R), 0) QCT

(R, 0, E∗(R)) RSP

(R, 1
2
(Q∗(R)− S̄), 1

2
(Q∗(R) + S̄)) SDC on QCT: Eq. (2.19)

(R + Q∗(R)− S̄, 0, Q∗(R)) for R ≥ Hc QCT to RSP: lemma 2.3.1

(R− E∗(R) + S̄, E∗(R), 0) RSP to QCT: lemma 2.3.2

(R, Q,E) −→ (R + 2Q, 0, E + Q) Teleportation (of qubits)

(R, Q,E) −→ (0, Q + 1
2
R + Q, 1

2
R + E) Superdense coding (of cbits)

(R1, Q1, E1) & (R2, Q2, E2)

−→ λ(R1, Q1, E1) + (1− λ)(R2, Q2, E2) Time-sharing

(R, Q,E) −→ (R, Q + E, 0) Sending entanglement using qubits

We also summarize for convenience in Table 2.2 all the rate triples and conversions be-

tween them that we will use in the proof. We use the notation (R,Q, E) −→ (R′, Q′, E ′)

to indicate that if the rate triple (R,Q, E) is achievable then so is the rate triple

(R′, Q′, E ′); i.e. (R, Q, E) can be converted into (R′, Q′, E ′). Similarly, if we write

(R, Q, E)∗ −→ (R′, Q′, E ′) then the conversion is possible conditional on (R, Q,E) being

optimal.

2.4.1 The low-entanglement region: 1
2(Q

∗(R)− S̄) ≤ Q ≤ Q∗(R)

Define λ = 2(Q∗(R)−Q)/(Q∗(R)+ S̄). By the definition of the low-entanglement region,

0 ≤ λ ≤ 1. Both (R, Q∗(R), 0) and (R, 1
2
(Q∗(R) − S̄), 1

2
(Q∗(R) + S̄)) are achievable so

the convex combination

(R, Q,Q∗(R)−Q) = λ(R,Q∗(R), 0) + (1− λ)

(
R,

1

2
(Q∗(R)− S̄),

1

2
(Q∗(R) + S̄)

)
(2.30)
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is achievable by time-sharing.

The proof that these points are optimal is very simple. Suppose they are not. Then

there would exist an ε such that (R, Q, Q∗(R) − Q − ε) were optimal. Now, using the

conversion (R,Q, E) → (R,Q+E, 0), it follows that (R, Q∗(R)−ε, 0) is achievable, which

is a contradiction of the definition of Q∗.

2.4.2 The high-entanglement region: 1
2(χ−R) ≤ Q < 1

2(Q
∗(R)−S̄)

We first define two new variables R1 and R2, which are functions of R and Q but much

easier to work with:

R1 = R + 2Q− E∗(R + 2Q) + S̄, (2.31)

R2 = R−R1 + S̄ = E∗(R + 2Q)− 2Q. (2.32)

We collect for future use some simple facts about R1 and R2:

1. R1 ≥ Hc :

The function R′ − E∗(R′) + S̄ is a monotonically increasing function of R′. By

causality, therefore, the minimum of this function over achievable R′ occurs when

R′ = χ. From Lemma 2.3.1, E∗(χ) = Q∗(Hc) = S −Hc, so R′ − E∗(R′) + S̄ ≥ Hc.

Since R + 2Q ≥ χ in the high-entanglement region, we conclude that R1 ≥ Hc.

2. Q = 1
2
(Q∗(R1)−R2) :

This follows by Lemma 2.3.2: Q∗(R1) = E∗(R + 2Q) = R2 + 2Q.

3. E∗(R + 2Q)−Q = R2 + Q = 1
2
(Q∗(R1) + R2) :

This follows by the definition of R2 and the previous fact.

4. R2 ≤ Q∗(R1) :

By fact 1, R2 = Q∗(R1)− 2Q.
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5. Q∗(R1) ≥ S̄ :

Q∗(R1)− S̄ = S(B|C)− S̄ = S(X : B|C) ≥ 0 (for optimal ω).

6. R2 ≥ S̄ (for Q ≤ 1
2
(Q∗(R)− S̄)) :

This is equivalent to E∗(R + 2Q) ≥ 2Q + S̄. Since 2Q ≤ Q∗(R)− S̄ in this region,

we have by the monotonicity of E∗ and by Lemma 2.3.1 that

E∗(R + 2Q) ≥ E∗(R + Q∗(R)− S̄) (2.33)

= Q∗(R) (2.34)

≥ 2Q + S̄. (2.35)

Equipped with these observations we can now proceed to the proof of Theorem 2.4.1 in

the high-entanglement region. That is, we will prove that E∗(R, Q) = E∗(R + 2Q) − Q

when 1
2
(χ−R) ≤ Q < 1

2
(Q∗(R)− S̄). Note that

(R, Q, E∗(R + 2Q)−Q) =
(
R1 + R2 − S̄, 1

2
(Q∗(R1)−R2),

1
2
(Q∗(R1) + R2)

)
(2.36)

in terms of the new variables, by the definition of R1 and R2 as well as facts 2 and 3.

Proof of achievability

(R1,
1
2
(Q∗(R1) − S̄), 1

2
(Q∗(R1) + S̄)) is achievable by Eq. (2.19) and (R1 + Q∗(R1) −

S̄, 0, Q∗(R1)) is achievable by Lemma 2.3.1. By facts 4,5,and 6, λ = (Q∗(R1)−R2)/(Q
∗(R1)−

S̄) is between 0 and 1. Therefore, the convex combination

(
R1 + R2 − S̄, 1

2
(Q∗(R1)−R2),

1
2
(Q∗(R1) + R2)

)
(2.37)

= λ
(
R1,

1
2
(Q∗(R1)− S̄), 1

2
(Q∗(R1) + S̄)

)
+ (1− λ)

(
R1 + Q∗(R1)− S̄, 0, Q∗(R1)

)
(2.38)

is also achievable by time-sharing.
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Proof of optimality

Suppose these points were not optimal. Then there would exist an ε such that
(
R1 + R2 − S̄, 1

2
(Q∗(R1)−R2),

1
2
(Q∗(R1) + R2)− ε

)
were optimal. Performing telepor-

tation yields the conversion

(
R1 + R2 − S̄, 1

2
(Q∗(R1)−R2),

1
2
(Q∗(R1) + R2)− ε

) −→ (R1 + Q∗(R1)− S̄, 0, Q∗(R1)− ε)(2.39)

(Note that teleportation is appropriate here instead of RSP because the encoding

map corresponding to the first triple will generally produce complicated entangled states

between Alice and Bob, conditioned on the classical bits being communicated. Telepor-

tation will preserve this entanglement.)

This is a contradiction by Lemma 2.3.1.

2.4.3 The forbidden region: Q < 1
2(χ−R)

In keeping with the operational spirit of the other arguments in this paper, we argue that

achievability in this region would lead to a violation of causality. A classical channel of

dimension dC and a quantum channel of dimension dQ can be used to transmit at most

log dC + 2 log dQ bits of classical information by the optimality of superdense coding [47,

49]. Success in the ensemble communication task, however, results in Bob holding a

high-fidelity copy of EB. By using coding, Alice could then communicate approximately

χ(EB) classical bits to Bob per usage of the protocol [63, 58], a violation of causality (for

sufficiently high fidelity and small δ in the notation of section 2.2) if χ(EB) > R + 2Q.

A simple entropic argument is also possible. Consider the state

ρ =
∑
in,j

pin|in〉〈in|X ⊗ ρAB1B2
in,j ⊗ q(j|in)|j〉〈j|C , (2.40)

which represents the output of Alice’s encoding operation for a given (unspecified) pro-
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tocol of the form of figure 2.1. We can estimate

1
n
χ({ϕ̃B

in , pin}) ≤ S(X : B1 B2 C) (by monotonicity of χ) (2.41)

= S(X : B2) + S(X : C|B2) + S(X : B1|B2C) (2.42)

≤ log dC + 2 log dQ, (2.43)

using Lemma 2.4.2 (see below) twice and the fact that S(X : B2) = 0 since B2 is

maximally mixed for all in. On the other hand, applying the Fannes inequality [59] and

the fidelity condition implies that

1
n
χ({ϕ̃B

in , pin}) ε→0−→ χ, (2.44)

giving the constraint χ ≤ R + 2Q.

Lemma 2.4.2 Let ρ be a tripartite density operator of the form

ρ =
∑

i

pi|i〉〈i|X ⊗ ρAB
i , (2.45)

where the states {|i〉X} are orthonormal and the pi are probabilities. Then

S(X : A|B) ≤ min(log dim X, 2 log dim A). (2.46)

Proof We can expand S(X : A|B) = S(X|B)−S(X|AB). By subadditivity of the von

Neumann entropy, the first term is less than or equal to S(X), which is in turn no more

than log dim X. Moreover, because ρ is separable across the X/AB cut, S(X|AB) ≥ 0.

(This follows immediately from concavity of the entropy [60, 61].)

To prove the second inequality, we expand the definition of S(X : A|B) differently:

S(X : A|B) = S(A|B)ρAB +
∑

i

piS(A|B)ρAB
i

. (2.47)

Using subadditivity of the von Neumann entropy again, S(A|B) ≤ S(A) for any density

operator. S(A), in turn, is always less than or equal to log dim A. ut
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Figure 2.3: Trade-off surface for the uniform qubit ensemble. The region on the left

for which E∗(R,Q) = 0 is the QCT region, whose boundary with the low-entanglement

region is given by the curve (R,Q∗(R), 0). The transition to the high-entanglement region

then occurs when 2Q = Q∗(R); note that the surface is not smooth at the transition.

Finally the points corresponding to pure RSP, (1, 0, 1), and pure SDC, (0, 1/2, 1/2), define

the boundary of the forbidden region. In the low-entanglement region, the trade-off is a

ruled surface, linear for constant R.



Unification of noisy quantum

information theory

One of the major goals of quantum information theory is to find the optimal ways to make

use of noisy quantum states or channels for communication or establishing entanglement.

Quantum Shannon theory attacks the problem in the limit of many copies of the state or

channel in question, in which situation the answers often simplify to the point where they

can be expressed by relatively compact formulae. The last ten years have seen major

advances in the area, including, among many other discoveries, the determination of the

classical capacity of a quantum channel [62, 63], the capacities of entanglement-assisted

channels [64, 65], the quantum capacity of a quantum channel [66, 67, 68], and the best

ways to use noisy entanglement to extract pure entanglement [69] or send classical in-

formation [70]. Until recently, however, each new problem was solved essentially from

scratch and no higher-level structure was known connecting the different results. Har-

row’s discovery of the cobit [71] and its subsequent application to the construction of

the so-called “mother” and “father” protocols provided that missing structure. All the

problems listed above and others were shown to fall into two families, first the mother

and her descendants, and second the father and his [72]. Appending or prepending sim-

ple transformations like teleportation and superdense coding sufficed to transform the

parents into their children.

41
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In this paper, we provide a direct proof of the mother protocol or, more precisely, of the

existence of a protocol performing the same task as the mother. In contrast to most proofs

in information theory, instead of showing how to establish perfect correlation of some

kind between the sender (Alice) and the receiver (Bob), our proof proceeds by showing

that the protocol destroys all correlation between the sender and a reference system.

Since destroying correlation is a relatively straightforward task, the resulting proof is

correspondingly simple. This approach also makes it clear that the mother actually

accomplishes even more than originally thought. In particular, in addition to distilling

entanglement between Alice and Bob, the protocol transfers all of Alice’s entanglement

with a reference system to Bob. This side effect is extremely important in its own

right, and a major focus of our paper. To start, it places the state merging protocol of

Horodecki, Oppenheim and Winter [73] squarely within the mother’s brood. In addition,

it makes it possible to use the mother as a building block for distributed compression.

We analyze the resulting protocols, finding they are optimal for sources described by

separable density operators, as well as inner and outer bounds on the achievable rate

region in general.

Finally, the new approach to the mother solves a major problem left unanswered in

the original family paper. No operational relationship between the mother and father

could be identified but they were nonetheless connected by a symmetry called source-

channel duality [74]. This new mother protocol can be directly transformed into the

father, resolving the mystery of the two parents’ formal similarity and collapsing the two

families into one.

We use the following conventions throughout this chapter. For a quantum system A,

let dA = dim A. For two quantum systems A and A′, let FA be the operator that swaps

the two systems. An operator acting on a subsystem is freely identified with its extension

(via tensor product with the identity) to larger systems. Π+
A denotes the projector onto
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the symmetric subspace of A⊗A′ and Π−
A the projector onto the antisymmetric subspace

of A ⊗ A′. Let U(A) be the unitary group on A. H(A)ϕ is the von Neumann entropy

of ϕA, I(A; B)ϕ = H(A)ϕ + H(B)ϕ − H(AB)ϕ is the mutual information between the

A and B parts of ϕ and H(A|B)ϕ = H(AB)ϕ − H(B)ϕ the conditional entropy. The

symbol |Φ〉AB will be used to represent a maximally entangled state between A and B.



Chapter 3

Restructuring quantum

information’s family tree

3.1 The family of quantum protocols

The mother protocol is a transformation of a tensor power quantum state (|ϕ〉ABR)⊗n.

At the start, Alice holds the A shares and Bob the B shares. R is a reference system

purifying the AB systems and does not participate actively in the protocol. In the orig-

inal formulation, the mother protocol accomplished a type of entanglement distillation

between Alice and Bob in which the only communication permitted was the ability to

send qubits from Alice to Bob. The transformation can be expressed concisely in the

resource inequality formalism as

〈ϕAB〉+
1

2
I(A; R)ϕ [q → q] ≥ 1

2
I(A; B)ϕ [qq]. (3.1)

We will informally explain the resource inequalities used here, but the reader is directed

to Ref. [75] for a rigorous treatment. [q → q] represents one qubit of communication from

Alice to Bob and [qq] represents an ebit shared between them. In words, n copies of the

44
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state ϕ shared between Alice and Bob can be converted into 1
2
I(A; B)ϕ EPR pairs per

copy provided Alice is allowed to communicate with Bob by sending him qubits at rate

1
2
I(A; R)ϕ per copy. Small imperfections in the final state are permitted provided they

vanish as n goes to infinity.

In this chapter, we prove a stronger resource inequality that we call the fully quantum

Slepian-Wolf (FQSW) inequality. The justification for this name will become apparent in

Section 3.6, where we study its applicability to distributed compression. The inequality

states that starting from state (|ϕ〉ABR)⊗n and using only quantum communication at

the rate 1
2
I(A; R)ϕ from Alice to Bob, they can distill EPR pairs at the rate 1

2
I(A; B)ϕ

and produce a state approximating (|ψ〉RB̂)⊗n, where B̂ is held by Bob and ϕR = ψR.

That is, Alice can transfer her entanglement with the reference system R to Bob while

simultaneously distilling ebits with him. This can be expressed as a resource inequality

in the following way:

〈US→AB : ϕS〉+
1

2
I(A; R)ϕ [q → q] ≥ 1

2
I(A; B)ϕ [qq] + 〈idS→B̂ : ϕS〉. (3.2)

This inequality makes use of the concept of a relative resource. A resource of the form

〈N : ρS〉 is a channel with input system S that is guaranteed to behave like the channel

N provided the reduced density operator of the input state on S is ρS. In the inequality,

US→AB is an isometry taking the S system to AB. Thus, on the left hand side of the

inequality, a state is distributed to Alice and Bob while on the right hand side, that same

state is given to Bob alone. Transforming the first situation into the second means that

Alice transfers her portion of the state to Bob.

Since the relationship of the mother to entanglement distillation and communication

supplemented using noisy entanglement is explained at length in the original family paper,

we will not describe the connections here. The FQSW inequality is stronger than the

mother, however, and leads to more children. In particular, if the entanglement produced
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at the end of the protocol is then re-used to perform teleportation, we get the following

resource inequality:

〈US→AB : ϕS〉+ H(A|B)ϕ [q → q] + I(A; B)ϕ [c → c] ≥ 〈idS→B̂ : ϕS〉, (3.3)

which is known as the state merging primitive, discovered by Oppenheim and Winter. It

is of note both because it is a useful building block for multiparty protocols and because it

provides an operational interpretation of the conditional entropy H(A|B)ϕ as the number

of qubits Alice must send Bob in order to transfer her state to him, ignoring the classical

communication cost.

On the other side of the family there is the father protocol. In contrast to the mother,

in which Alice and Bob share a mixed state (ϕAB)⊗n, for the father protocol they share

a noisy channel NA′→B. Let UA′→BE be a Stinespring dilation of N with environment

system E, such that N (ρ) = TrE UρU †, and define |ϕ〉ABE = UA′→BE|ϕ〉AA′ for a pure

state |ϕ〉AA′ . The resource inequality is

〈NA′→B〉+
1

2
I(A; E)ϕ [qq] ≥ 1

2
I(A; B)ϕ [q → q]. (3.4)

Thus, Alice and Bob use pre-existing shared entanglement and the noisy channel to pro-

duce noiseless quantum communication. Comparing Eq. (3.4) to the mother, Eq. (3.1),

reveals the two to be strikingly similar: To go from one to the other it suffices to replace

channels by states and vice-versa, as well as replace the reference R by the environment

E. This is known as source-channel duality [74].

3.2 The fully quantum Slepian-Wolf protocol

The input to the fully quantum Slepian-Wolf protocol is a quantum state, (|ϕ〉RAB)⊗n,

and the output is also a quantum state, |Φ〉A2B̃(|ϕ〉RB̂)⊗n. A2 is a quantum system
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held by Alice while both B̃ and B̂ are held by Bob. |Φ〉A2B̃ therefore represents a

maximally entangled state shared between Alice and Bob. The size of the A2 system is

n1
2
I(A; B)ϕ − o(n) qubits. The steps in the protocol that transform the input state to

the output state are as follows:

1. Alice performs Schumacher compression on her system An. The output space AS

factors into two subsystems A1 and A2 with log dA1 = n1
2
I(A; R) + o(n).

2. Alice applies a unitary transformation UA to AS and then sends A1 to Bob.

3. Bob applies an isometry VB taking A1B
n to B̂B̃.

It remains to specify which transformations UA and VB Alice and Bob should apply,

as well as a more precise bound on dA1 . Observe that each step in the protocol is

essentially non-dissipative. Since no information is leaked to the environment at any

step, Bob will hold a purification of the A2R
n system after step 2, regardless of the choice

of UA. Because all purifications are equivalent up to local isometric transformations

of the purifying space, it therefore suffices to ensure that the reduced state on A2R
n

approximates ΦA2 ⊗ (ϕR)⊗n after step 2. Bob’s isometry UB will be the one taking the

purification he holds upon receiving A2 to the one approximating |Φ〉A2B̃(|ϕ〉RB̂)⊗n.

From this perspective, the operation ρ → TrA1(UA ρ U †
A) should be designed to destroy

the correlation between A2 and Rn: the mother will succeed provided the state on A2⊗Rn

is a product state and A2 is maximally mixed. The operation UA does not itself destroy

the correlation; the partial trace over A1 does that. UA should therefore be chosen in order

to ensure that tracing over A1 should be maximally effective. Because one qubit can carry

at most two bits of information, tracing over a qubit can reduce mutual information by

at most two bits. The starting state (ϕAR)⊗n has nI(A; B)ϕ bits of mutual information,

which means that A1 must consist of at least n
2
I(A; B)ϕ qubits. We will see that choosing



48

Figure 3.1: The transformations of the input state to the output state in the FQSW

protocol

UA randomly according to the Haar measure will come close to achieving this rate. The

result is similar in spirit to a recent result of Groisman et al. that demonstrated that in

order to destroy correlation in the state ϕ by discarding classical information instead of

quantum, Alice must discard twice as large a system as she does here: I(A; B)ϕ bits per

copy [76].

3.3 Fully quantum Slepian-Wolf: one-shot version

While the tensor power structure of (|ϕ〉ABR)⊗n allows the fully quantum Slepian-Wolf

inequality (3.2) to be expressed conveniently in terms of mutual information quantities,

our approach allows us to treat arbitrary input states without such structure as well. In

this section, we will prove a general “one-shot” version of the fully quantum Slepian-Wolf

result that leads quickly to Inequality (3.2) in the special case where the input state is a

tensor power.

For this section, we will therefore dispense with |ϕ〉⊗n and instead study a general

state |ψ〉ABR shared between Alice, Bob and the reference system. We also eliminate

the Schumacher compression step: assume that A has been decomposed into subsystems

A1 and A2 satisfying dA = dA1dA2 . Finally, let σA2R(U) = TrA1 [(U ⊗ IR)ψAR(U † ⊗ IR)]
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be the state remaining on A2R after the unitary transformation U has been applied to

A = A1A2.

The following inequality is essentially the one-shot version of fully quantum Slepian-

Wolf:

Theorem 3.3.1 (One-shot, fully quantum Slepian-Wolf bound) Let ψ and σ be

defined as in the previous paragraph. Then

∫

U(A)

‖σA2R(U)−σA2(U)⊗σR(U)‖2
1 dU ≤ dAdR

d2
A1

{
Tr[(ψAR)2] +Tr[(ψA)2] Tr[(ψR)2]

}
.

(3.5)

The theorem quantifies how distinguishable σA2R(U) will be from its completely decou-

pled counterpart σA2(U)⊗σR(U) if U is chosen at random according to the Haar measure.

As a first observation, note that as dA1 grows, the two states become progressively more

indistinguishable. Also, the upper bound on the right hand side is expressed entirely

in terms of the dimensions of the spaces involved and the purities Tr[(ψAR)2], Tr[(ψA)2]

and Tr[(ψR)2]. In the tensor power source setting, both dimensions and purities can be

replaced by functions of the corresponding entropies, but in the one-shot setting they

must be distinguished.

Focusing on the first term in the upper bound reveals that in order for the bound to

be small, it is necessary that

log dA1 À
1

2

[
log dA + log dR + log Tr[(ψAR)2]

]
. (3.6)

This expression plays the role of 1
2
I(A; R) = 1

2
[H(A) + H(R)−H(AR)] in the one-shot

setting.

According to the proof strategy outlined in the previous section, if σA2R(U) is close

to σA2(U) ⊗ σR(U), then σA2R(U) has a purification which is itself close to a product
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state. This argument can be made quantitative using the Uhlmann fidelity F (τ, ω) =

(Tr
√

τ 1/2ωτ 1/2)2. If
∥∥σA2R(U)−σA2(U)⊗σR(U)

∥∥
1
≤ ε, then standard inequalities imply

that F
(
σA2R(U), σA2(U)⊗σR(U)

) ≥ 1−ε [77]. But if two mixed states are close in fidelity,

then they have equally close purifications [78, 79]. That is, σA2R can be purified to a state

|ξ〉A2B̃B̂R and σA2(U) ⊗ σR(U) to a state |ξ1〉A2B̃|ξ2〉RB̂ such that |〈ξ| |ξ1〉|ξ2〉|2 ≥ 1 − ε.

Since all purifications are locally equivalent, Bob could apply a transformation V to A1B

taking |ψ〉A1A2BR to |ξ〉A2B̃B̂R. The net result would be that B̂ would hold nearly all of

the original Alice-Bob entanglement with the reference system R and that A2B̃ would

contain nearly pure entanglement between Alice and Bob.

The proof of the Theorem 3.3.1 is quite straightforward. We will evaluate the corre-

sponding average over the unitary group exactly for the Hilbert-Schmidt norm and then

use simple inequalities to extract Inequality (3.5). Before starting in earnest, we perform

a calculation that will prove to be useful:

Lemma 3.3.2

∫

U(A)

(U † ⊗ U † ⊗ IRR′)FA2R(U ⊗ U ⊗ IRR′) dU = [pΠ+
A + qΠ−

A]⊗ FR, (3.7)

where

p =
dA1 + dA2

dA + 1
and q =

dA1 − dA2

dA − 1
. (3.8)

Proof Let X be Hermitian. By Schur’s lemma,

∫

U(A)

(U † ⊗ U †)X(U ⊗ U) dU = α+(X)Π+
A + α−(X)Π−

A, (3.9)

with the coefficients α±(X) = Tr(XΠ±
A)/ Rank(Π±

A).
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Recall that Π±
A = 1

2
(IAA′ ± FA).

Rank(Π±
A) α±(FA2) = Tr(Π±

AFA2) (3.10)

=
1

2
Tr

[(
IAA′ ± FA1 ⊗ FA2

)
FA2

]
(3.11)

=
1

2

[
Tr(IA1A′1 ⊗ FA2)± Tr(FA1 ⊗ IA2A′2)

]
(3.12)

=
1

2
[d2

A1
dA2 ± dA1d

2
A2

]. (3.13)

The second line uses the identity FA = FA1 ⊗ FA2 . The third follows from F 2 = I and

the explicit inclusion of previously implicit identity operators to help in the evaluation

of the trace in line four. The formula then follows after a little algebra, using that

FA2R = FA2 ⊗ FR and Rank(Π±
A) = dA(dA ± 1)/2. ut

The next step is an exact evaluation of the Hilbert-Schmidt analogue of the one-shot,

fully quantum Slepian-Wolf inequality.

Lemma 3.3.3

∫

U(A)

‖σA2R(U)− σA2(U)⊗ σR(U)‖2
2 dU =

dA1d
2
A2
− dA1

d2
A − 1

{
Tr[(ψAR)2]− 2 Tr[ψAR(ψA ⊗ ψR)] + Tr[(ψA)2] Tr[(ψR)2]

}
. (3.14)

Proof Note that

‖σA2R− σA2 ⊗ σR‖2
2 = Tr[(σA2R)2]− 2 Tr[σA2R(σA2 ⊗ σR)] + Tr[(σA2)2] Tr[(σR)2]. (3.15)

Starting with the first term,
∫

U(A)

Tr[(σA2R(U))2] dU =

∫
Tr

[(
σA2R(U)⊗ σA′2R′(U)

)
FA2R

]
dU (3.16)

=

∫
Tr

[(
TrA1(UψARU †)⊗ TrA′1(UψA′R′U)†

)
FA2R

]
dU (3.17)

= Tr
[
(ψAR ⊗ ψA′R′) ·

∫
(U † ⊗ U †)(IA1A′1 ⊗ FA2R)(U ⊗ U) dU

]
(3.18)

= Tr
[
(ψAR ⊗ ψA′R′) · (pΠ+

A + qΠ−
A)⊗ FR

]
(3.19)

=
p + q

2
Tr[(ψR)2] +

p− q

2
Tr[(ψAR)2], (3.20)
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where p and q are defined as in Eq. (3.8). In the fourth line we’ve used the result of

Lemma 3.3.2, and in the fifth the identity Π±
A = 1

2
(IAA′±FA). The third term in Eq. (3.15)

can also be evaluated using this formula and the observation that σR(U) = ψR, giving

∫

U(A)

Tr[(σA2)2] Tr[(σR)2] dU =
{p + q

2
+

p− q

2
Tr[(ψA)2]

}
Tr[(ψR)2]. (3.21)

That leaves the second term of Eq. (3.15), which can be calculated in the same way as

Eq. (3.16), with the result that

∫

U(A)

Tr[σA2R(σA2 ⊗ σR)] dU =
p + q

2
Tr[(ψR)2] +

p− q

2
Tr[ψAR(ψA ⊗ ψR)]. (3.22)

Substituting back into Eq. (3.15) shows that
∫
U(A)

‖σA2R(U) − σA2(U) ⊗ σR(U)‖2
2 dU is

equal to

p− q

2

{
Tr[(ψAR)2]− 2 Tr[ψAR(ψA ⊗ ψR)] + Tr[(ψA)2] Tr[(ψR)2]

}
, (3.23)

which, after substitution for p and q, yields (3.14). ut

The one-shot fully quantum Slepian-Wolf theorem is then an easy corollary:

Proof (of Theorem 3.3.1) The Cauchy-Schwarz inequality can be used to relate the

two norms: ‖ · ‖2
1 ≤ dA2dR‖ · ‖2

2. Also, Tr[ψAR(ψA ⊗ ψR)] is non-negative. Finally,

dA1d
2
A2
− dA1

d2
A − 1

≤ 1

dA1

(3.24)

holds for all dA1 ≥ 1. ut

For good measure, we can check how entangled the state Bob shares with Alice will
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be. In general, the decoupling can occur without producing a maximally entangled state.

∫

U(A)

∥∥∥σA2(U)− I

dA2

∥∥∥
2

1
dU ≤ dA1

∫

U(A)

∥∥∥σA2(U)− I

dA2

∥∥∥
2

2
dU (3.25)

= dA2

∫

U(A)

Tr[(σA2(U))2]dU − 1 (3.26)

= dA2

{p + q

2
+

p− q

2
Tr[(ψA)2]

}
− 1 (3.27)

≤ dA2

p− q

2
Tr[(ψA)2] (3.28)

≤ dA

d2
A1

Tr[(ψA)2]. (3.29)

The first line is Cauchy-Schwarz, the second is an integral that we already performed in

proving Lemma 3.3.3, and the last is an application of Eq. (3.24).

3.4 Fully quantum Slepian-Wolf: i.i.d. version

We return now to the setting where Alice, Bob and the reference system share the state

|ψ′〉 = (|ϕ〉ABR)⊗n. Combining the one-shot, fully quantum Slepian-Wolf result with

Schumacher compression will lead to the FQSW resource inequality. Let Πtyp
A , Πtyp

R and

Πtyp
AR be projectors onto the typical subspaces of the systems indicated by the subscripts.

If we define

|ψ〉 = Πtyp
A Πtyp

R Πtyp
AR|ψ′〉, (3.30)

then we can choose the projectors such that Rank Πtyp
F ≤ 2nH(F )+o(n) and Πtyp

F ψΠtyp
F ≤

2−nH(F )−o(n) for any combination of subsystems F and such that 〈ψ|ψ′|ψ〉 ≥ 1 − o(1).

Therefore, while we are concerned with the output of the protocol when it is applied to

the state (|ϕ〉ABR)⊗n, we will analyze its effect on |ψ〉 and be able to conclude that the

outputs are indistinguishable in the limit of many copies. In particular, we can assume

that Schumacher compression has been performed on the AR and R systems even though

the definition of the protocol only has it performed on A. This is an important point
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because R is the reference system and is therefore not permitted to participate actively

in the protocol.

Thanks to the Schumacher compression, the various dimensions in Theorem 3.3.1

then get replaced by the ranks of the corresponding projectors and the purities by

the corresponding eigenvalue bounds. For an arbitrary combination of subsystems F ,

let F typ denote the support of Πtyp
F and assume Atyp = A1 ⊗ A2. Let σA2Rtyp

(U) =

TrA1(UψU †)/〈ψ|ψ〉. (Note that U now acts only on the typical subspace of A.) By

Theorem 3.3.1, we find that

∫

U(Atyp)

∥∥∥σA2Rtyp

(U)− σA2(U)⊗ σRtyp

(U)
∥∥∥

2

1
dU ≤ 1

d2
A1

{
2−nI(A;R)+o(n) + 2o(n)

}
. (3.31)

Therefore, if log dA1 ≥ n[I(A; R)/2+ δ] for any δ > 0, σA2Rtyp
and Alice sends A1 to Bob,

he will end up holding a close approximation to a purification of ϕR⊗n
for sufficiently

large n. To a good approximation, he will also hold a purification of the state remaining

on Alice’s system. We can use Eq. (3.29) to test how entangled we expect the state to

be:
∫

U(Atyp)

∥∥∥σA2(U)− I

dA2

∥∥∥
2

1
dU ≤ 1

d2
A1

2o(n). (3.32)

Therefore, Alice and Bob will share maximal entanglement provided Alice sends qubits

to Bob at a positive rate. As discussed after Theorem 3.3.1, Bob could therefore apply a

transformation V taking A1B to B̃B̂ with final state |ξ〉A2B̃B̂R satisfying
∥∥〈ξ||Φ〉A2B̃|ψ′〉B̂R

∥∥2 ≥
1− o(1).

3.5 Father from FQSW

We begin with a third version the FQSW theorem that we will need to invoke in order to

prove the existence of the father protocol. Let |ψ〉 and |ψ′〉 be as before. Now define Πt
A
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to be the projector onto a particular typical type t and consider the normalized states

|ψ′t〉 =
1√
P ′

t

Πt
A|ψ′〉 and |ψt〉 =

1√
Pt

Πt
A|ψ〉. (3.33)

By standard arguments using the method of types, we know that Pt ≥ 2−o(n) for each

typical type t. Since Πtyp
A |ψ′〉 =

∑
t

√
P ′

t |ψ′t〉, and |ψ〉 =
∑

t

√
Pt|ψt〉, we have

∑
t

√
PtP ′

t |〈ψt|ψ′t〉| ≥ |〈ψ|ψ′〉| ≥ 1− o(1). (3.34)

Again by standard methods, there exists a t for which both

|〈ψt|ψ′t〉| ≥ 1− o(1) (3.35)

and P ′
t ≤ 3Pt. Choose t to be such. Then Pt ≥ 2−o(n). Thus, from (3.33)

‖ψA
t ‖∞ ≤ 2o(n)‖ψA‖∞ ≤ 2−nH(A)+o(n) (3.36)

and similarly for R and AR. Decomposing At = A1A2, by Theorem 3.3.1 and Eq. (3.35)

there exists a unitary U on At such that

∥∥σA2R
t (U)− σA2

t (U)⊗ σR
t (U)

∥∥
1
≤ 1

dA1

{2nI(A;R)/2+o(n) + 2o(n)}+ o(1), (3.37)

where σA2R
t (U) = TrA1 [(U ⊗ IR)ψAtR

t (U † ⊗ IR)]. Choosing dA1 ≥ 2nI(A;R)/2+o(n), there is

thus an isometry V A1B→B̃B̂ such that

∣∣∣(V ◦ U)〈ψt|AtBR|Φ2〉A2B̃|Γ〉RB̂
∣∣∣ ≥ 1− o(n),

where |Φ2〉 is a maximally entangled state of rate I(A; B)/2 − o(1) ebits. This is the

required variant of the fully quantum Slepian-Wolf theorem.

Given a channel NA′→B, choose a Stinespring dilation UN
A′→BE such that N (ρ) =

TrE UρU † and define |ϕ〉ABE = UN |ϕ〉AA′ . If t is a type, then |ψt〉AtBE is the result

of sending a maximally entangled state proportional to |Φ〉AtA′t = (ΠA
t ⊗ ΠA′

t )(|ϕ〉AA′)⊗n

through UN
⊗n. Recall that the father protocol is a type of entanglement-assisted quantum
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Figure 3.2:

Father FQSW

B3 A1

R A2

B B

E R

communication. Let Alice and Bob initially share a maximally entangled state |Φ3〉A3B3 of

nI(A; E)ϕ/2+o(n) ebits. In order to verify that the quantum communication performed

by the protocol is correct, we will introduce a reference system R and a maximally

entangled state |Φ0〉RA0 . Alice performs an isometry identifying A0A3 with A′
t. There is

a corresponding isometry identifying RB3 with At. Thus, we have identified |Φ〉AtA′t with

|Φ0〉RA0|Φ3〉B3A3 . The situation is illustrated in Figure 3.2. We will now invoke the type

class variant FQSW result but now with the subsystems playing different roles: If the

FQSW unitary U were applied to B3R, we see that the effect would be to decouple the

registers corresponding in the FQSW picture to A2 and R, meaning R and E, respectively.

This is precisely what is desired because there will exist a decoding protocol for Bob to

complete the father provided that, after the application of the channel N , he holds the

entire purification of R. Of course, applying U to B3R is not possible because, as always,

the reference system cannot participate in the protocol. Because the states |Φ0〉RA0 and

|Φ3〉A3B3 are maximally entangled, however, it would be equivalent for Alice to apply UT

to A0A3. This, in fact, will be her encoding operation. After sending A′
t through the

channel, the state is precisely U |ψ′t〉AtBE. Bob performs V B3B→B̃B̂, obtaining a state in

which the B̃ system approximately purifies the reference system, which plays the role of

A2 in the FQSW picture.
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3.6 Correlated source coding: distributed compres-

sion

One of the major applications of the state merging inequality (3.3) is to the problem

of distributed compression with free forward classical communication. For this problem,

Horodecki, Oppenheim and Winter demonstrated that the resulting region of achievable

rates has the same form as the classical Slepian-Wolf problem [80, 73]. In this section,

we consider the application of the fully quantum Slepian-Wolf inequality to distributed

compression without classical communication.

Because distributed compression studies multiple senders, it no longer fits into the

resource inequality framework. We therefore begin with some definitions describing the

task to be performed. A source provides Alice and Bob with the A and B parts of a

quantum state |ψ〉 = (|ϕ〉ABR)⊗n purified by a reference system R. They must inde-

pendently compress their shares and transmit them to a receiver Charlie. That is, they

will perform encoding operations EA and EB described by completely positive, trace-

preserving (CPTP) maps with outputs on systems CA and CB of dimensions 2nQA and

2nQB , respectively. The receiver, Charlie, will then perform a decoding operation, again

described by a CPTP map, this time with output systems Â and B̂ isomorphic to A and

B. A rate pair (QA, QB) will be said to be achievable if for all ε > 0 there exists an

N(ε) > 0 and a sequence of increasing nk with corresponding (EA, EB, D) such that

〈ψ|ÂB̂R(D ◦ (EA ⊗ EB))(ψABR)|ψ〉ÂB̂R ≥ 1− ε (3.38)

for all nk > N . The achievable rate region SW(ϕ) for a given |ϕ〉 is the closure of the

set of achievable rates.

The fully quantum Slepian-Wolf inequality provides a natural class of protocols for

this task. One party, say Bob, first Schumacher compresses his share and sends it to
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Charlie. This is possible provided QB ≥ H(B)ϕ. The other party, in this case Alice,

then implements the fully quantum Slepian-Wolf protocol with Charlie playing the role

of Bob. This is possible provided QA ≥ I(A; R)/2. Looking at the total number of qubits

required gives a curious symmetrical formula:

QA + QB ≥ 1

2
I(A; R)ϕ + H(B)ϕ =

H(A)ϕ + H(B)ϕ + H(AB)ϕ

2
. (3.39)

By switching the roles played by Alice and Bob and also time-sharing between the re-

sulting two protocols, we find that the region defined by

QA ≥ 1
2
I(A; R)ϕ

QB ≥ 1
2
I(B; R)ϕ

QA + QB ≥ H(A)ϕ+H(B)ϕ+H(AB)ϕ

2

(3.40)

is contained in the achievable rate region SW(ϕ).

In fact, the region is in some cases equal to SW(ϕ), as we will see by proving a general

outer bound on the achievable rate region. Assume that (QA, QB) ∈ SW(ϕ). To begin,

fix n > N(ε) and let WA and WB be the environments for the Stinespring dilations of

the encoding operations EA and EB.

To bound QA, assume that Charlie has received both CB and WB, that is, all of Bn.

Let WC be the output environment for the dilation of Charlie’s D. Again, without loss

of generality we can assume that the initial environment state is an unentangled pure

state.

First we will make rigorous the intuition that ÂB̂ is almost decoupled from WC .

By the fidelity condition,

λmax(ϕ
Rn bA bB) ≥ 〈ψ|AnBnRn

ϕRnAnBn |v〉AnBnRn

≥ 1− ε,

where λmax(ϕ
Rn bA bB) denotes the maximum eigenvalue of ϕRn bA bB.
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Therefore, |ϕ〉Rn bA bBWAWC can be Schmidt decomposed as

|ϕ〉Rn bA bBWAWC =
∑

i

√
λc|i〉WAWC |i〉WAWC , (3.41)

where λmax ≥ 1− ε and

〈ϕ|Rn bA bBWAWC (ϕRn bA bB ⊗ ϕWAWC )|ϕ〉Rn
bA bBWAWC

=

(∑
i

√
λi〈i|Rn bA bB〈i|WAWC

)(∑
j

λj|j〉〈j|Rn bA bB ⊗
∑

k

λk|kXk|WAWC

)

(∑

`

√
λ`|`〉Rn bA bB|`〉WAWB

)

=
∑

i

λ3
i

≥ (1− ε)3

≥ 1− 3ε3.

So,

F (|ϕ〉Rn bA bBWAWC , ϕRn bA bB ⊕ ϕWAWC ) ≥ 1− 3

2
ε2 (3.42)

and

D(|ϕ〉Rn bA bBWAWC , ϕRn bA bB ⊕ ϕWAWC ) ≤
√

3ε. (3.43)

by the contractivity of distance we have

D(ϕ
bA bBWC , ϕ

bA bB ⊗ ϕWC ) ≤
√

3ε

We can now apply the Fannes inequality to yield

∣∣∣H(ϕ
bA bBWC )−H(ϕ

bA bB ⊗ ϕWC )
∣∣∣ ≤

√
3ε log(dn

Adn
BdWC

) + η(
√

3ε) (3.44)

for ε ≤ 1√
3e

.

Since the environment for any quantum operation ρ 7→ ε(ρ) can be modelled as a

Hilbert Space of less than d2 dimensions, where d =dim(ρ) we have that

dim WC ≤ d2n
A d2n

B .
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Therefore,

|H(ϕ
bA bBWC )−H(ϕ

bA bB ⊗ ϕWC )| ≤ n3
√

3ε log(dAdB) + η(
√

3ε) (3.45)

for ε ≤ 1√
3 e

.

Next we will make rigorous the intuition that WA nearly purifies WC .

Since

F (|ψ〉AnBnRn

, ϕRn bA bB) ≥ 1− ε

2
, (3.46)

D(|ϕ〉AnBnRn

, ϕRn bA bB) ≤ √
ε (3.47)

and by Fannes inequality,

H(ϕRn bA bB) ≤ n
√

ε log(dAdBdR) + η(
√

ε), (3.48)

(for
√

ε ≤ 1
e
). Therefore,

n
√

ε log(dndBdA) + η(
√

ε) ≥ H(ϕRn bA bB) = H(WAWC) ≥ |H(WA)−H(WC)| (3.49)

The first inequality is because RnÂB̂WAWC is in a pure state, and the second inequality

is the Aracki-Lieb inequality.

Finally we will make rigorous the intuition that Rn nearly purifies ÂB̂.

By the contractiivity of distance,

D(ψAnBn

, ϕ
bA bB) ≤ D(|ψ〉AnBnRn

, ϕRn bA bB) ≤ √
ε (3.50)

and

D(ψRn

, ϕRn

) ≤ D(|ψ〉AnBnRn

, ϕRn bA bB) ≤ √
ε (3.51)

By application of the Fannes inequality,

|H(ϕ
bA bB)−H(ψAnBn

)| ≤ n
√

ε log(dAdB) + η(
√

ε) (3.52)
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and

|H(ϕRn

)−H(ψRn

)| ≤ n
√

ε log(dAdB) + η(
√

ε). (3.53)

Therefore,

|H(ϕ
bA bB)−H(ϕRn

)|

≤ |H(ϕ
bA bB)−H(ψAnBn

)|+ |H(ψAnBn

)−H(ϕAn

)|

= |H(ϕ
bA bB)−H(ψAnBn

)|+ |H(ψRn

)−H(ϕRn

)|

≤ n
√

ε log(dAdBdR) + 2η(
√

ε). (3.54)

The first inequality is an application of the triangle inequality, while the first equality is

because AnBnRn is a pure state.

Putting (3.45),(3.49) and (3.54) together and using the subadditivity of the Von

Neumann entropy and the fact that the overall state is pure we have

|H(Bn) + H(Cn)| ≥ H(BnCA) = H(wcÂB̂)

≥ H(Wc) + H(ÂB̂)− n3
√

3ε log(dAdB)− η(
√

3ε)

≥ H(WA)− n
√

ε log(dAdBdR)− η(
√

ε) + H(Rn)

−n
√

ε log(dAdBdR)− 2η(
√

ε)− n3
√

3 log(dAdB)− η(
√

3ε)

= H(WA) + H(Rn)− n
√

ε log(d2
Ad2

BD2
R)− n3

√
3ε log(dAdB)− 4η(

√
ε)

≥ H(An)−H(CA) + H(Rn)− n
√

ε log(d2
Ad2

Bd2
R)− n3

√
3ε log(dAdB)− 4η(

√
ε).

Therefore,

2nQA ≥ 2nH(CA)

≥ H(An)−H(Bn) + H(Rn)− n
√

ε log(d2
Ad2

Bd2
n)− n3

√
3ε log(dAdB)− 4η(

√
ε)

= nI(A; R)− n
√

ε log(d2
Ad2

Bd2
R)− n3

√
3 log(dAdB)− 4η(

√
ε)

and so,

QA ≥ 1

2
I(A; R)− 1

2

√
ε log(d2

Ad2
Bd2

R)− 3
√

3

2
ε log(dAdB)− 2η(

√
ε)

n
. (3.55)
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Since this is true for all ε > 0 we have that

QA ≥ 1

2
I(A; R). (3.56)

Switching the roles of Alice and Bob gives the corresponding inequality

QB ≥ 1

2
I(B; R). (3.57)

To bound QA + QB let us return to the situation where Alive and Bob perform their

original encoding. Then,

H(An) = H(CAWA) ≤ H(WA) + H(CA) ≤ H(WA) + nQA. (3.58)

The first equality follows from the fact that the initial environment is a pure unentangled

state and from the unitary invariance of the Von Neumann entropy.

Combining with the analogous inequality for B leads to

n(QA + QB) ≥ n[H(A) + H(B)]−H(WA)−H(WB). (3.59)

By similar arguments as before,

|H(WAWBRn)−H(WAWB)−H(Rn)| ≤ n
√

3ε log(d2
Ad2

BdR) + η(
√

3ε), (3.60)

for ε ≤ 1√
3e

.

So,

H(CACB) = H(WAWBRn)

≥ H(WA) + H(WB)− I(WA; WB) + H(Rn)

−n
√

3ε log(d2
Ad2

BdR)− η(
√

3ε).

Using the purity of overall the overall state, however, gives H(Rn) = nH(AB), which

combined with the bound H(CACB) ≤ n(QA + QB), leads to the inequality

H(WA) + H(WB) ≤ n(ϕA + ϕB)− nH(AB) + I(WA; WB)

+n
√

3ε log(d2
Ad2

BdR) + n(
√

3ε). (3.61)



63

Adding equations (3.59) and (3.61),

2n(QA +QB) ≥ nH(A)+nH(B)+nH(AB)− I(WA; WB)−n
√

3ε log(d2
Ad2

BdR)−η(
√

3ε).

(3.62)

Thus,

QA + QB ≥ 1

2

[
H(A) + H(B) + H(AB)− I(WA; WB)

n
−
√

3ε log(d2
Ad2

BdR)− η(
√

3ε)

n

]
.

(3.63)

Now, let T : Rn → R′ be any CPTP map on Rn

I(WA; WB)− I(WA; WB|R′)

= (H(WA) + H(WB)−H(WAWB))− (H(WA|R′) + H(WB|R′)−H(WAWB|R′))

= H(WA) + H(WB)−H(WAWB)−H(WAR′) + H(R′)

−H(WBR′) + H(R′) + H(WAWBR′)−H(R′)

= H(WA)−H(WAR′) + H(WB)−H(WBR′)−H(WAWB) + H(WAWBR′)

≤ −H(R′) + n
√

3ε log(d)A2dR) + η(
√

3ε)−H(B′)

+n
√

3ε log(d2
BdR) + η(

√
3ε) + H(R′)−H(WAWB) + H(WAWBR′)

= H(WAWBR′)−H(WAWB)−H(R′) + n
√

3ε log(d2
AdR)

+n
√

3ε log(d2
BdR) + 2η(

√
3ε)

≤ n
√

3ε log(d2
Ad2

BdR) + n
√

3ε log(d2
AdR) + n

√
3ε log(d2

BdR) + 3η(
√

3ε)

= n
√

3ε log(d4
Ad4

Bd2
R) + 3η(

√
3ε),

here we have used similar arguments as before to make rigorous the intuitions that

WAR′, WBR′ and WAWBR′ are almost uncorrelated with R′, followed by the Fannes

inequality.

We have

I(WA; WB) ≤ I(WA; WB|R′) + n
√

3ε log(d4
Ad4

Bd2
R) + 3η(

√
3ε) (3.64)
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By the monotonicity of mutual information under local operations,

I(WA; WB) ≤ I(An; Bn|R′) + n
√

3ε log(d4
Ad4

Bd2
R) + 3η(

√
3ε). (3.65)

Therefore,

QA + QB ≥ 1

2
[H(A) + H(B) + H(AB)]− 1

2
I(A; B|R)

−3
√

3ε log(d4
Ad4

Bd2
R)− 4η(

√
3ε)

n
−
√

3ε log(d2
Ad2

BdR)

=
1

2
[H(A) + H(B) + H(AB)]− 1

2
I(A; B|R)

−
√

3ε log(d6
Ad6

Bd3
R)− 4η(

√
3ε)

n

≥ 1

2
[H(A) + H(B) + H(AB)]− Esq(ϕ

AB), (3.66)

where Esq(ϕ
AB) is the squashed entanglement of ϕAB, defined as the infimum of 1

2
I(A; B|E)

over extensions ϕABE of ϕAB [81]. We have used explicitly the fact, proved in the cited

paper, that Esq(ϕ
⊗n) = nEsq(ϕ).

We have therefore proved the following outer bound on the achievable rate region

SW(ϕ):

QA ≥ 1
2
I(A; R)ϕ

QB ≥ 1
2
I(B; R)ϕ

QA + QB ≥ H(A)ϕ+H(B)ϕ+H(AB)ϕ

2
− Esq(ϕ).

(3.67)

In the special case where ϕAB is separable, Esq(ϕ) = 0, which implies that the region

defined by Eq. (3.40) is optimal. Under certain further technical assumptions, namely

that ϕAB be the density operator of an ensemble of product pure states satisfying a

condition called irreducibility, the same conclusion could be found in Ref. [82]. That

paper, however, was unable to show that the bound was achievable.

The appearance of the squashed entanglement in (3.67) may seem somewhat mysteri-

ous, but a slight modification of the protocols based on fully quantum Slepian-Wolf will
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lead to an inner bound on the achievable region that is of a similar form. Specifically,

let D0(ϕ
AB) be the amount of pure state entanglement that Alice and Bob can distill

from ϕAB without engaging in any communication. Since this pure state entanglement

is decoupled from the reference system R, they could actually perform this distillation

process and discard the resulting entanglement before beginning one of their FQSW-

based compression protocols. While neither I(A; R) nor I(B; R) would change, each of

H(A) and H(B) would decrease by D0(ϕ
AB). The corresponding inner bound on the

achievable rate region SW(ϕ) would therefore be defined by the inequalities

QA ≥ 1
2
I(A; R)ϕ

QB ≥ 1
2
I(B; R)ϕ

QA + QB ≥ H(A)ϕ+H(B)ϕ+H(AB)ϕ

2
−D0(ϕ).

(3.68)

The only gap between the inner and outer bounds, therefore, is a gap between different

measures of entanglement.

3.7 On efficiency

While the protocols described so far make use of a unitary transformation drawn at

random according to the Haar measure, that is not essential. In fact, the only place the

Haar measure was used was in the proof of Lemma 3.3.2. Therefore, the full unitary

group could be replaced by any subset yielding the same average as in the lemma. (We

thank Debbie Leung for alerting us to this possibility.) In fact, DiVincenzo, Leung and

Terhal have shown that

∫

U(C2n )

(U ⊗ U)X(U † ⊗ U †) dU =
1

|Gn|
∑
g∈G

(g ⊗ g)X(g† ⊗ g†), (3.69)

where Gn is the Clifford group on n qubits [83]. They also demonstrate in that paper that

choosing an element of Gn from the uniform distribution can be done in time polynomial



66

in n. More specifically, they show that a random walk on a particular set of generators

for Gn mixes in O(n8) time, leading to an associated quantum circuit for the selected

element that is of size O(n2) gates.

Since the Schumacher compression portion of the fully quantum Slepian-Wolf proto-

col can also be done in polynomial time [84], we conclude that the encoding portion of

the mother can be done efficiently. Since her immediate children, including entanglement

distillation and state merging, are built by composing the mother with efficient proto-

cols, namely superdense coding and teleportation, their encodings can also be found and

implemented efficiently.

The transformation from FQSW to the father, however, included another non-constructive

step, namely the choice of a good type class. Since the number of type classes is polyno-

mial in the number of qubits in the input, however, that step could also be implemented

efficiently. The corresponding isometries mapping the shared maximally entangled state

and the input space into At can also be performed efficiently. Finally, while the proof

presented here implies that the transpose of a random Clifford group element can be used

as the encoding operation, there is in fact no need for the transpose because the Clifford

group is closed under transposition. Thus, the encoding for the father can be found

and implemented in polynomial time, as can those of his children, entanglement-assisted

classical communication and quantum communication over a noisy channel.
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