
Upscaling for Two-phase Flows in Porous Media

Thesis by

Andrew Westhead

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended January 14, 2005)

ii

c© 2005

Andrew Westhead

All Rights Reserved

iii

Acknowledgements

I am grateful to many of my friends and collegues for the support that they have provided

me whilst I have been at Caltech. Firstly, I would like thank my advisor Tom Hou for

his patience and guidance, and for giving me the opportunity to develop. There were

many times of great frustration during my research but somehow Tom had the foresite and

wisdom, and above all faith in me, to know the there would indeed be a light at the end of

the tunnel and I would reach it.

I also wish to thanks the many friends that I have made during my time here, especially

Chad Schmutzer, Theofilos Strinopoulos, Tobias Kippenberg and Andy Monro. Thanks to

Sheila Shull for keeping the department running smoothly.

Thanks to my family for their support.

Thanks to everyone at ExxonMobil, particularly Xiao-Hui Wu and Rossen Pareshkov

for their help and advice whilst I was there.

Thanks to Sean Mauch for lending me so many of his books

Finally, I need to thank my true love Kathleen for all the support and keeping me on

focus.

iv

Abstract

The understanding and modeling of flow through porous media is an important issue in

several branches of engineering. In petroleum engineering, for instance, one wishes to

model the “enhanced oil recovery” process, whereby water or steam is injected into an oil

saturated porous media in an attempt to displace the oil so that it can be collected. In

groundwater contaminant studies the transport of dissolved material, such as toxic metals

or radioactive waste, and how it affects drinking water supplies, is of interest.

Numerical simulation of these flow are generally difficult. The principal reason for this is

the presence of many different length scales in the physical problem, and resolving all these

is computationally expensive. To circumvent these difficulties a class of methods known

as upscaling methods has been developed where one attempts to solve only for large scale

features of interest and model the effect of the small scale features.

In this thesis, we review some of the previous efforts in upscaling and introduce a new

scheme that attempts to overcome some of the existing shortcomings of these methods. In

our analysis, we consider the flow problem in two distinct stages: the first is the determi-

nation of the velocity field which gives rise to an elliptic partial differential equation (PDE)

and the second is a transport problem which gives rise to a hyperbolic PDE.

For the elliptic part, we make use of existing upscaling methods for elliptic equations.

In particular, we use the multi-scale finite element method of Hou et al. to solve for the

velocity field on a coarse grid, and yet still be able to obtain fine scale information through

a special means of interpolation.

The analysis of the hyperbolic part forms the main contribution of this thesis. We

first analyze the problem by restricting ourselves to the case where the small scales have a

periodic structure. With this assumption, we are able to derive a coupled set of equations

for the large scale average and the small scale fluctuations about this average. This is

done by means of a special averaging, which is done along the fine scale streamlines. This

v

coupled set of equations provides better starting point for both the modeling of the large-

scale small-scale interactions and the numerical implementation of any scheme. We derive

an upscaling scheme from this by tracking only a sub-set of the fluctuations, which are

used to approximate the scale interactions. Once this model has been derived, we discuss

and present a means to extend it to the case where the fluctuations are more general than

periodic.

In the sections that follow we provide the details of the numerical implementation,

which is a very significant part of any practical method. Finally, we present numerical

results using the new scheme and compare this with both resolved computations and some

existing upscaling schemes.

vi

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Modeling Two-Phase Flows 4

2.1 Overview . 4

2.2 Two-Phase Flow Equations . 6

2.2.1 Pressure/Velocity Equation . 7

2.2.2 Saturation Equation . 10

2.3 Simplified Model Problem . 13

3 Resolved Scheme for the Porous Media Flow 16

3.1 Resolved Scheme for the Pressure Equation 16

3.2 Resolved Scheme for the Saturation Equation 19

3.2.1 Solving Nonconvex Riemann Problems 22

3.2.2 Convex Hull Construction . 24

3.2.3 Osher’s solution . 25

3.2.4 Finite Volume Scheme for the Saturation Equation 26

3.3 Numerical Results for the Resolved Numerical Scheme 30

3.3.1 The Core-Plug Model . 30

3.3.2 The Five-Spot Model . 31

3.3.3 Numerical Observations . 32

3.4 Previous Work on Upscaling and Context of the Present Work 34

vii

4 Multiple Scale Analysis 41

4.1 Overview . 41

4.2 Formulation of Multiple Scale Model . 42

4.3 Upscaling for the Pressure/Velocity Equation 43

4.4 Upscaling for the Saturation Equation . 46

4.4.1 Justification for the Asymptotic Expansions 63

5 Numerical Implementation 65

5.1 Overview . 65

5.2 Coarse-grid Sub-grid Approach . 66

5.3 Numerical Upscaling Method for the Saturation Equation 70

5.3.1 Finite-Volume Solution of Homogeneous System 71

5.3.2 Wave-Propagation Method . 73

5.3.3 Computation of Source Terms . 80

5.3.4 Computation of Streamline Projection 83

5.3.5 Consistency and Convergence of our Scheme 85

5.4 Numerical Upscaling Method for the Pressure/Velocity Equation 103

5.4.1 Multiscale Finite Element Method 104

5.4.2 Special MSFEM for the Case of Periodic Oscillations 108

5.4.3 Implementation of MSFEM . 111

5.5 Extension to Non-Periodic Problems . 113

6 Numerical Results 119

6.1 Overview . 119

6.2 Periodic Permeability Field . 119

6.2.1 Single-Phase Results . 120

6.3 Non-Periodic Examples . 127

6.3.1 Single-Phase Results . 127

6.3.2 Two-Phase Results . 133

6.3.3 Timing Results . 134

7 Summary and Conclusions 146

7.1 Further Work . 147

viii

A Hyperbolicity of the Upscaled Saturation Equations 148

B Special MSFEM Convergence 153

B.1 H1 estimates . 154

B.2 L2 estimates . 155

B.3 Numerical results . 157

C Implementation of the Hyperbolic Solver via CLAWPACK 161

Bibliography 163

ix

List of Figures

2.1 Plot of the flux function f(S) for the mobility ratios m = 0.1, 0.5, 1.0. 14

3.1 Discretization for the resolved pressure equation. 17

3.2 Diagram for the construction of the shock via the equal area rule. 21

3.3 Characteristic diagram for the Buckley-Leverett problem. 22

3.4 1-dimension saturation profiles at different times for different values of m.

Values of m are 1.0, 0.5 and 0.1 respectively. 23

3.5 Convex-hull construction of the Riemann solution for the Buckley-Leverett

equation with Sl = 1 and Sr = 0. 25

3.6 Grid for the discretization of the saturation equation. 27

3.7 Core-plug permeability and streamlines at t = 0. 33

3.8 Saturation contours for core-plug model, initial data and at intermediate times. 36

3.9 Comparison of streamlines at initial time and at the final time, showing that

the change in the streamlines is very small. 37

3.10 Five-spot permeability streamlines at t = 0. 38

3.11 Saturation contours for five-spot model, initial data and at intermediate times. 39

3.12 Fractional flow against PVI for the core-plug model. 40

5.1 Diagram for the coarse-grid sub-grid setup. 69

5.2 Finite volume grid in two space dimensions, where Qij represents cell average. 72

5.3 Riemann solution for the variable-coefficient equation in the case of ui−1Ji−1 >

0 and uiJi > 0 (left). Structure of the Riemann solution for a generalized

Riemann problem with m = 3 (right). 77

5.4 Log-log convergence plot of l2-norm of the update in the projection computa-

tions, using 32× 32 and 64× 64 grids. 85

5.5 Plot of v′1 in a single cell. 86

x

5.6 Plot of P(v′1) in a single cell. 86

5.7 Plot of v · ∇yp, for p = P(v′1) in a single cell. 87

5.8 Streamlines for the velocity field used in testing the scheme for the saturation

equation. 88

5.9 Density plot for the initial saturation. 89

5.10 Density plot for the “exact” solution for the saturation in the single-phase

case, resolved solution and average. 91

5.11 Multiscale reconstruction of the saturation from the upscaling scheme for the

single-phase case using 16× 16, 32× 32 and 64× 64 coarse-grids. 92

5.12 Average saturation from the upscaling scheme for the single-phase case using

16× 16, 32× 32 and 64× 64 coarse-grids. 93

5.13 Log-log error plots for the l2 and max norm error respectively in the multi-

scale reconstructed solution for the single-phase case, demonstrating first-order

convergence. 94

5.14 Log-log error plots for the l2 and max norm error respectively in the homoge-

nized solution for the single-phase case, demonstrating first-order convergence. 95

5.15 Comparison of the saturation contours for the upscaling scheme (top) and in

the case where the interaction terms are ignored (bottom). 97

5.16 Density plot for the “exact” solution for the saturation. 98

5.17 Multiscale reconstruction of the saturation from the upscaling scheme for the

two-phase case using 16× 16, 32× 32 and 64× 64 coarse-grids. 99

5.18 Average saturation from the upscaling scheme for the two-phase case using

16× 16, 32× 32 and 64× 64 coarse-grids. 100

5.19 Log-log error plots for the l2 and max norm error respectively in the multiscale

reconstruction for the single-phase case. 101

5.20 Log-log error plots for the l2 and max norm error respectively in the homoge-

nized solution for the single-phase case. 102

5.21 Oversampled basis function construction, using a samples from a larger domain

to avoid the boundary effect. 108

xi

5.22 Diagram illustrating the fact that the MSFEM basis functions need only be

updated frequently in a region near the oil-water front. Only in the coarse

grid cells shown will the saturation be changing rapidly and behind it will be

changing much more slowly. 112

5.23 Original log permeability and “reparametrized” log permeability for a non-

layered case. 116

5.24 Close up of the reconstructed log permeability. 117

5.25 Original log permeability and “reparametrized” log permeability for a layered

case. 118

6.1 Permeability used in the periodic case. 120

6.2 Density plot for the “exact” solution for the saturation in the single-phase

case, resolved and average. 122

6.3 Upscaled transport combined with MSFEM on different grids for the single-

phase case, reconstructed multiscale solution. 123

6.4 Upscaled transport combined with MSFEM on different grids for the single-

phase case, average solution. 124

6.5 Log-log error plots for the l2 and max norm error respectively in the recon-

structed multiscale solution for the single-phase case. 125

6.6 Log-log error plots for the l2 and max norm error respectively in the homoge-

nized solution for the single-phase case, demonstrating first-order convergence. 126

6.7 Layered permeability used. 127

6.8 Comparison of the horizontal components of the velocity field computed using

resolved scheme (top), and MSFEM (bottom). 129

6.9 Comparison of the average horizontal components of the velocity field com-

puted using resolved scheme (top), and MSFEM (bottom). 130

6.10 Comparison of the vertical components of the velocity field computed using

resolved scheme (top), and MSFEM (bottom). 131

6.11 Comparison of the vertical horizontal components of the velocity field com-

puted using resolved scheme (top), and MSFEM (bottom). 132

6.12 The resolved saturation at t = 0.17. 133

xii

6.13 Comparison of the average saturation profiles for the single-phase case at t =

0.17 for the exact calculation (top), upscaled (center), naive (bottom). . . . 136

6.14 Comparison of the average saturation profiles for the single-phase case at t =

0.3 for the exact calculation (top), upscaled (center), naive (bottom). 137

6.15 Comparison of the average saturation profiles for the single-phase case at t =

0.45 for the exact calculation (top), upscaled (center), naive (bottom). . . . 138

6.16 Comparison of the fractional flow curves for the single-phase case. 139

6.17 The resolved saturation at t = 0.17 for the two-phase case. 140

6.18 Comparison of the average saturation profiles for the two-phase case at t = 0.17

for the exact calculation (top), upscaled (center), naive (bottom). 141

6.19 Comparison of the average saturation profiles for the two-phase case at t = 0.3

for the exact calculation (top), upscaled (center), naive (bottom). 142

6.20 Comparison of the average saturation profiles for the two-phase case at t = 0.45

for the exact calculation (top), upscaled (center), naive (bottom). 143

6.21 Comparison of the fractional flow curves for the two-phase case. 144

6.22 Timing breakdowns for the resolved computations (top) and upscaled compu-

ations (lower). 145

xiii

List of Tables

5.1 Errors in the multiscale reconstruction in the single-phase case using different

grids. 96

5.2 Errors in the homogenized solution in the single-phase case using different grids. 96

5.3 Errors in the multiscale reconstruction in the two-phase case using different

grids. 98

5.4 Errors in the homogenized solution in the two-phase case using different grids. 98

5.5 Errors in the multiscale reconstruction in the two-phase case using different

grids, before shock forms. 103

5.6 Errors in the homogenized solution in the two-phase case using different grids,

before shock forms. 103

5.7 Statistics for the original and reconstructed log permeability in the non-layered

case. 117

5.8 Statistics for the original and reconstructed log permeability in the layered case.117

6.1 Errors in the multiscale reconstruction in the single-phase case using different

grids. 121

6.2 Errors in the homogenized in the single-phase case using different grids. . . . 121

6.3 Errors in the velocity field in the single-phase case using different grids. . . . 121

B.1 ||P h
ε − P h

0 ||l2 for various α = h/ε. 159

B.2 ||P h
ε − P h

0 ||l2 for various α = h/ε that were not considered in [17]. 159

B.3 ‖pε − ph
ε ‖L2(Ω) computed for various MSFEM grids. 160

1

Chapter 1

Introduction

The understanding and modeling of flow through porous media is an important issue in

several branches of engineering. In petroleum engineering, for instance, one wishes to

model the “enhanced oil recovery” process, whereby water or steam is injected into an oil

saturated porous media in an attempt to displace the oil so that it can be collected. In

groundwater contaminant studies the transport of dissolved material, such as toxic metals

or radioactive waste, and how it affects drinking water supplies, is of interest.

Modeling such flows are difficult and a principal source of the difficultly is the presence

of widely different length scales in the problems. In modeling an oil reservoir, for example,

geological data will be gathered over an area extending hundreds of meters, if not kilometers.

Large scale geological features will be present, such as “faults” or the well pipes, as well

as very small scale features such as layers created by sedimentation. For stability when

using traditional numerical methods we need to use spatial discretizations that are capable

of resolving all these length scales. Even with improving computer technologies this is

a formidable task for most data sets, both in terms of memory and computational time.

However, for the most part, the resolution required for stability is greater than that needed

for engineering purposes. Average properties of the flow, such as the total amount of oil

produced, are often of more importance.

To address both these issues, various “upscaling” schemes have been proposed. In an

upscaling scheme, one solves only for the average flow features and the effect of the small

scale features is modeled. Since capturing average quantities requires less grid resolution,

the schemes should use less computer memory and CPU time. The goal of research in

this area is to make practical simulation available on limited computer resources. However,

the existing upscaling methods often have limitations. Most methods do not have a very

2

firm mathematical basis, and some rely heavily on experience. Other methods make very

restrictive assumption on the nature of the small scale features and are therefore applicable

only in a limited range of data sets. A common assumption is that the magnitude of the

small scale features is small, an assumption that often does not hold.

The aim of this research has been to develop a framework in which to develop upscaling

schemes. We take a particular, simplified model for the porous media flow problem, which

is derived in Chapter 2. This model retains the essential difficulty of the problem, namely

the presence of multiple scales, and moreover it is one that is used practically. The model

consists of an elliptic equation for the fluid pressure and velocity field, and a non-linear

hyperbolic transport for the oil-saturation in the porous media. To illustrate the difficulties

and motivate the need for upscaling with show some resolved simulations in Chapter 3. At

this point we then review some of the previous efforts in designing upscaling schemes and

their drawbacks.

The first stage is the formal multiscale analysis of the equations, which is presented in

Chapter 4. We perform a multiscale analysis by introducing a small length scale ε and small

scale variable y = x/ε, where x is the large scale variable. To facilitate the initial analysis

we assume that there exist only the two distinct length scales outlined above, and that all

functions of y are periodic, i.e. the small scale features are periodic. We can apply existing

results for the pressure equation to develop a formal equation for the average pressure.

The analysis for the hyperbolic transport part are new results and these, along with the

numerical results, are the main contribution of this work. We perform a multiscale analysis

to derive coupled equations for the average and the fluctuations. In the analysis, we develop

a closed set of equations. This is novel since previous results obtain closure only through

restrictive assumptions. Closure in our case is obtained by projecting the fluctuations onto

a suitable subspace. It turns out that this projection corresponds exactly to averaging along

streamlines of the flow. In this subspace, the system becomes closed.

Once these multiscale equations have been derived, we consider the numerical imple-

mentation in Chapter 5. We develop a novel approach to sampling the fluctuations in order

to compute the small-scale large-scale interaction terms. This is done by using what we

call a coarse-grid sub-grid method. We first discretize at the coarse level, using a sufficient

number of grid points to resolve average features. Then, within each grid block we solve

the equations for the fluctuations at a set number of points. These fluctuations are then

3

used for computing the interaction terms. The resulting system for the transport part is a

coupled hyperbolic system of equations with source terms. In order to solve the pressure

equation on such a grid configuration, we make use of a variant of the multiscale finite

element method of Hou. It turns out that this complements perfectly the scheme for the

transport part.

The numerical method for the hyperbolic part is then tested using a prescribed velocity

field and we demonstrate that the average is computed with first-order accuracy. Similarly,

we demonstrate the efficacy of MSFEM in capturing the velocity field. We then test the

method for the case where the geological data (the permeability) is of the form described

above, i.e. with small scale features that are periodic. The results demonstrate that the

method captures the average with first order accuracy.

A method for extending the results to the case where permeability is not periodic is then

described. We then use this in demonstrating that our method is applicable for practical

examples. A sample of some of the results is then given in Chapter 6, and we compare

the resulting solutions with those obtained by averaging resolved simulations. Our method

captures this average very well. In addition, we compare the computational costs for our

method versus resolved computations.

4

Chapter 2

Modeling Two-Phase Flows

2.1 Overview

In a porous media flow simulation, we are interested in modeling the displacement, within

a porous media, of either oil, water or some gas. For the most part of this thesis, including

all computations, we will be looking at the case of water-oil simulations. However, for the

moment we will stay with the more general case where one of the fluids (but not both)

could be a compressible gas. By porous media, we mean a solid with many small voids,

or pores, potentially connected, through which fluid may flow. The volume fraction of the

pores as a total of the whole volume is known as the porosity. Since it is typical to view

the pores as a microscale feature, this porosity is a macroscale feature, given pointwise. We

usually consider one of the fluids to be displacing the other, as in the case of a oil-water flow

where the water is pumped in so as to displace the oil. While the displacing fluid may be

immiscible with the fluid being displaced, the displacement does not take place as a piston

like process with a sharp interface between the two-fluids. Rather, simultaneous flow of the

immiscible fluids takes place within the porous media.

In considering this simultaneous flow we assume, for the present, no mass transfer be-

tween the fluids. Mass transfer could potentially occur if there was a chemical reaction

taking place between the fluids. Typically, one of the fluids wets the porous media more

than the other; we refer to this as the wetting phase fluid (and identify it using the subscript

w), and we refer to the other as the non-wetting phase fluid (and use the subscript n). Wet-

tability describes the relative preference of a rock (from which the porous media is formed)

to be covered by a certain phase. In a water-oil system, water is most often the wetting

phase; in a oil-gas system, oil is the wetting phase. We now introduce several concepts

5

related to multiphase flow, namely saturation and capillary pressure. The saturation, Sk,

of a phase k (k = w, n) is defined as the fraction of the void volume of the porous medium

filled by that phase. Since the two fluids jointly fill the void space, we have

Sn + Sw = 1 . (2.1)

Due to the surface tension and the curvature of the interfaces between the two fluids within

the small pores, the pressure in the nonwetting fluid is higher than the pressure in the

wetting fluid [28]. The difference between these two pressures is the capillary pressure,

pc = pn − pw . (2.2)

We take as a given fact that the capillary pressure is a unique function of the saturation

only [28],

pn − pw = pc(Sw) . (2.3)

Here we have taken as the reference saturation that of the wetting phase, though we could

equally have chosen to use that of the non-wetting phase.

In order to model flows in porous media, it is vital to be able to model the velocity

field for the flow. It is standard to use Darcy’s law as the model for this [28]. For a single

phase of fluid in the porous media, Darcy’s law relates the fluid velocity v to the pressure

p, viscosity µ, density ρ, permeability K, and depth of fluid D via

v = −K
µ

(∇p− ρg∇D) (2.4)

where g is the gravitational constant. We again take this law as an empirical fact [28].

Darcy’s law can be thought of a viscous limit of the Navier-Stokes equation, which of course

makes sense given how slowly fluid can flow within the porous media. In this equation, we

have the permeability which, along with the porosity, is a basic property which characterizes

the ease by which fluid can flow in the media. Low permeability characterizes regions where

fluid cannot easily penetrate, high permeability where fluid can penetrate.

Darcy’s law is extended to multi-phase flow by postulating that the phase pressures pn

and pw are responsible for the flow within each phase. Thus, equation (2.4) can then be

6

written for each fluid

vn = −Kn

µn
(∇pn − ρng∇D) , (2.5)

vw = −Kw

µw
(∇pw − ρwg∇D) . (2.6)

Here vn and vw are the velocities within the nonwetting and wetting fluids, and the other

quantities are also identified for each fluid via the subscripts n or w. Kn and Kw are now

the effective permeabilities for the flow for each of the two fluids. Because the simultaneous

flow of the two fluids causes each to interfere with the flow of the other, these effective

permeability’s must be less than or equal to the single-fluid permeability, K, of the medium.

Relative permeabilities, which are functions of their respective saturations, are therefore

defined by

krn =
Kn

K
≤ 1 , (2.7)

krw =
Kw

K
≤ 1 . (2.8)

Again we accept as an empirical fact that these relative permeabilities are unique functions

of the saturation.

We rewrite Darcy’s law now, using the relative permeabilities, to obtain

vn = −Kkrn

µn
(∇pn − ρng∇D) , (2.9)

vw = −Kkrw

µw
(∇pw − ρwg∇D) . (2.10)

2.2 Two-Phase Flow Equations

If we consider a volume element in the porous media, with porosity φ, the usual conservation

of mass principle, applied to the single phase case gives

−∇ · (ρv) + q =
∂(φρ)
∂t

. (2.11)

Here the q-term represents the external rate of injection of fluid into the volume element.

This term will generally be zero, except in those regions in the vicinity of sources or sinks

7

(which correspond to injection and production wells respectively for our application).

To obtain the corresponding equations for the two-phase flow, by applying the same

argument to each fluid phase. Hence, we have

−∇ · (ρnvn) + qn =
∂(φρnSn)

∂t
, (2.12)

−∇ · (ρwvw) + qw =
∂(φρwSw)

∂t
. (2.13)

By combining equations (2.12), (2.13) with (2.9) and (2.10), we obtain the set of simulta-

neous differential equations that describe two-phase flow

∇ ·
[
ρnKkn

µn
(∇pn − ρng∇D)

]
+ qn =

∂(φρnSn)
∂t

, (2.14)

∇ ·
[
ρwKkw

µw
(∇pw − ρwg∇D)

]
+ qw =

∂(φρwSw)
∂t

. (2.15)

These equations are extremely general in their applicability, as they include the effects of

compressibility, capillary pressure, and relative permeability. Furthermore, we also allow

for variations in the permeability and porosity.

In flow simulations we are mainly interested in the evolution of the saturation of a

particular phase. For instance in the oil-water simulations, we are often interested in the

water saturation. The oil saturation can then be immediately obtained via equation (2.1).

Using equations (2.14), (2.15) we will now develop a pair of alternative equations. The

first of this pair is a “pressure equation” that primarily describes how pressure varies with

time and position; the second is a “saturation equation” that describes the variation of

saturation with time and position. Not only will these equations be more interesting and

insightful, they also are much better suited for numerical solution.

2.2.1 Pressure/Velocity Equation

Our main objective in developing the pressure differential equation is to eliminate the time

derivatives of the saturation. To do this, we begin by expanding the time derivatives of

8

equations (2.12), (2.13) to obtain

−∇ · (ρnvn) + qn =
[
ρnSn

∂φ

∂t
+ φSn

dρn

dpn

∂pn

∂t
+ φρn

∂Sn

∂t

]
, (2.16)

−∇ · (ρwvw) + qw =
[
ρwSw

∂φ

∂t
+ φSw

dρw

dpw

∂pw

∂t
+ φρw

∂Sw

∂t

]
. (2.17)

Dividing equation (2.16) by ρn and equation (2.17) by ρw, and adding the resulting equations

and using equation (2.1), we obtain:

− 1
ρn
∇ · (ρnvn)− 1

ρw
∇ · (ρwvw) +Qt =

∂φ

∂t
+ φSncn

∂ρn

∂t
+ φSwcw

∂ρw

∂t
(2.18)

where we have written

Qt =
qn
ρn

+
qw
ρw

(2.19)

as the total volume injection rate, and

cn =
1
ρn

dρn

dpn
, (2.20)

cw =
1
ρw

dρw

dpw
(2.21)

are the phase compressibilities. Note that time derivatives of saturation are now absent

from equation (2.18).

Defining an average pressure by

pavg =
pn + pw

2
(2.22)

the individual phase pressures can then be expressed in terms of the average pressure and

the capillary pressure via

pn = pavg +
1
2
pc , (2.23)

pw = pavg −
1
2
pc . (2.24)

In addition, let us define phase mobilities, λn and λw, which will be functions of the satu-

9

ration, by

λn =
krn

µn
, (2.25)

λw =
krw

µw
. (2.26)

Then, substitution of equations (2.9) and (2.10) into (2.18) and rearrangement gives the

final form of the pressure equation

[
1
ρn
∇ · (ρnλn) +

1
ρw
∇ · (ρwλw)

]
∇pavg +

[
1

2ρn
∇ · (ρnλn)− 1

2ρw
∇ · (ρwλw)

]
∇pc +Qt

=
[
dφ

dpavg
+ φ(Sncn + Swcw)

]
∂pavg

∂t
+
(
φ(Sncn − Swcn)

2

)
∂pc

∂t

+ g

[
1
ρn
∇ · (ρ2

nλn) +
1
ρw
∇ · (ρ2

wλw)
]
∇D . (2.27)

At first sight this equation seems much more complex than the equations we started with.

However, several of the terms vanish upon making some very reasonable assumptions. To

understand the nature of equation (2.27), we note first that the capillary pressure pc is

usually quite small relative to the average fluid pressure pavg. The final term, involving

depth, may be regarded as a modification to the source term, Qt. Finally, we can ignore for

the moment the variation of ρn and ρw with position since we will only consider the case

where both phases are fluids. Then, equation (2.27) can be simplified to

∇ · [(λn + λw)K∇pavg] +Qt ≈ φct
∂pavg

∂t
(2.28)

where ct is a total compressibility defined by:

ct =
1
φ

dφ

dpavg
+ (Sncn + Swcw) . (2.29)

Thus we see that equation (2.28) and therefore equation (2.27) is basically a parabolic

equation. However, while the effects of compressibility may not be fully ignored in reservoir

calculations, they usually do not dominate. Indeed, any reservoir simulator must be capable

of dealing satisfactorily with multiphase flow of incompressible fluids, for which case, ct = 0.

This will be the case for the model we will be considering, where the fluids are oil and water.

In a oil-gas simulation compressibility effects would likely have a more significant influence.

10

In short, equation (2.27) should be regarded as being elliptic, or very nearly elliptic, in

nature.

For the incompressible case, in which φ, ρn and ρw are constant, equation (2.28) sim-

plifies to

−∇ · (vn + vw) +Qt = 0 . (2.30)

If we define a total velocity by:

vt = vn + vw (2.31)

then

∇ · vt = Qt . (2.32)

The simplicity of this equation indicates the fundamental role that total velocity plays in

two-phase flow, as opposed to the velocities of each individual phase.

2.2.2 Saturation Equation

In developing an equation for the saturation we may focus on either the wetting or the

nonwetting phase. Here we choose, as is standard, the wetting phase. If we have the

solution of equation (2.27), then pw may be obtained from (2.2) and vw obtained from

(2.9) and (2.10). Equation (2.14) which involves vw, could then be used for the saturation

equation.

We can, however, derive a more insightful saturation equation that involves the total

velocity field defined by equation (2.31). To do this, we first obtain the wetting phase

velocity in terms of the total velocity. From equations (2.2), (2.9), (2.10) and (2.26), we

have

∇pc = ∇pn −∇pw (2.33)

vn = −λn(∇pn − ρng∇D) , (2.34)

vw = −λw(∇pw − ρwg∇D) . (2.35)

Combining these equations and rearranging gives

λnλw∇pc = −λwvn + λnvw + λnλw(ρn − ρw)g∇D . (2.36)

11

Using (2.31) to eliminate vn, we obtain

(λn + λw)vw = λwvt + λnλw [∇pc + (ρw − ρn)g∇D] . (2.37)

Now define the following functions of saturation

fw =
λw

λn + λw
, (2.38)

hw = − λnλw

λw + λw

dpc

dSw
. (2.39)

Typical curves of fw versus Sw is shown in Figure 2.1. The negative sign is included in the

definition of hw to keep it positive, since pc is a decreasing function of Sw. Equation (2.37)

then becomes:

vw = fwvt − hw∇Sw + λnfw(ρw − ρn)g∇D . (2.40)

and equation (2.12) can be written in the following form

∇ · (ρwhw∇Sw)−∇ · (ρwfw) [vt + λn(ρw − ρn)g∇D] + qw =
∂(φρwSw)

∂t
. (2.41)

To investigate the nature of (2.41) we note that the first term (which involves the capillary

pressure) strongly suggests that it is basically parabolic in nature, unless capillary effects are

insignificant. In that case, the two center terms that involve velocity and gravity becomes

more important, but their significance is not so obvious. If we assume incompressibility so

that ρn and ρw are constant, and also constant porosity φ, equation (2.41) becomes

∇ · (hw∇Sw)−∇ · (ρwfwvt)−∇ · (Gw∇D) +
qw
ρw

= φ
∂Sw

∂t
(2.42)

where

Gw = fwλn(ρw − ρn)g (2.43)

is another function of saturation. To understand the nature of the second term of equation

(2.42) we expand it, to obtain

∇ · (fwvt) = fw∇ · vt + vt · ∇fw . (2.44)

12

In turn, we can write

∇fw =
dfw

dSw
∇Sw . (2.45)

Now, we are primarily concerned with the form of the saturation equation in the regions

of the reservoir between the sources and sinks. Therefore, we take qw = Qt = 0. Equation

(2.32) becomes

∇ · vt = 0 (2.46)

and equation (2.42) simplifies to

∇ · (hw∇Sw)− dfw

dSw
vt · ∇Sw = φ

∂Sw

∂t
+∇ · (Gw∇D) . (2.47)

Equation (2.47) can be regarded as a non-linear variation of the convection-diffusion equa-

tion

D∇2C − v · ∇C = φ
∂C

∂t
(2.48)

which governs multidimensional miscible displacement. Here D is diffusivity and C is con-

centration.

The first term of equation (2.48) is the diffusion term, and when it dominates, (2.48)

behaves like the parabolic heat equation. On the other hand, when the diffusion term

is small, the center term, i.e. the convection term, dominates and (2.48) approaches the

first-order hyperbolic equation:

− v · C = φ
∂C

∂t
. (2.49)

Referring back to equation (2.47), we can now see that it may be either parabolic or hyper-

bolic in nature, depending on the importance of the capillary pressure term relative to the

convection term. When capillary pressure effects dominate, hw is large, and (2.47) behaves

like a parabolic problem. When capillary pressure effects are small or absent, or more im-

portantly sometimes, when velocities are large, then the convection term dominates, and

(2.47) approaches the first-order non-linear hyperbolic equation

dfw

dS
vt · ∇Sw = φ

∂Sw

∂t
+∇ · (Gw∇D) . (2.50)

13

2.3 Simplified Model Problem

To make definite our mathematical formulation we simplify the model with the following

assumptions: the porosity φ is constant throughout the media; the effects of compressibility

can be ignored; capillary effects can be ignored; and gravitational effects can be ignored. In

this case, the governing equations (2.28) and (2.50) become

∇ · (λt(Sw)K∇pavg) = 0 , (2.51)
∂Sw

∂t
+∇ · (vtf(Sw)) = 0 . (2.52)

where vt = −λt(Sw)K∇pavg and we have written λn + λw = λt. Henceforth, we will refer

to these equations as the pressure equation and the saturation equation respectively. In

addition, we will drop the use of the subscripts in future so that, for example, v and S are

understood to be the total velocity and the saturation of the wetting phase respectively.

The saturation equation (2.52) was first derived by Buckley and Leverett [6] and is therefore

often referred to as the “Buckley-Leverett” equation. In order to complete the description

of the model problem we must provide the forms for the functions λ and f in (2.51) and

(2.52) and also provide appropriate initial and boundary conditions for the problem. The

form of λ and f would in general be determined by experiment. However, for two-phase

flow, the phase mobilities given by

λw(S) = S2 , (2.53)

λn(S) = m(1− S)2 (2.54)

provide a good model and this model is widely used. Here m is the mobility ratio, which is

a number between 0 and 1 that indicates the relative ease by which the non-wetting phase

can flow. In our case m will generally be less than 1 since oil does not flow as easily as

water within the porous medium. From the expressions above and the expression for λt

and equation (2.39) we have

λ(S) = S2 +m(1− S)2 , (2.55)

f(S) =
S2

S2 +m(1− S)2
. (2.56)

14

The form of f(S) is shown in Figure 2.1 for several different values of m. The special case

Figure 2.1: Plot of the flux function f(S) for the mobility ratios m = 0.1, 0.5, 1.0.

of single phase, or “tracer” flow can be derived more easily, and described in the same

framework. The analysis gives us [28]

λ(S) = 1 , (2.57)

f(S) = S . (2.58)

Note also in the case of one-phase flow that the capillary pressure will be identically zero.

One-phase flow is a useful model for the case of solute transport in groundwater flows. In

this case contaminated and uncontaminated water, say, will be the two “phases” within the

porous media.

We now wish to solve the problem (2.51) and (2.52) for the evolution of the saturation.

In general the permeability will be given as input data and this is gathered using some

geological survey or seismic imaging. Therefore, we will have to solve the system numerically.

We will first describe the solution scheme before any upscaling is done, i.e. our resolved

scheme. This will lead us to some general observations as to the nature of the problem and

15

furthermore, highlight the need for upscaling.

16

Chapter 3

Resolved Scheme for the Porous
Media Flow

To compute the numerical solution of equations (2.51), (2.52) we adopt a solution strategy

based on the so-called IMPES (IMplicit Pressure, Explitcit Saturation) scheme [29], [9],

which is widely used in reservoir simulation. In this method, a sequential updating of the

velocity field and saturation is performed, and each is treated seperately. Initially, the

saturation field will be prescribed, along with boundary conditions for the flow field. The

first step is to solve for the pressure and velocity field at this initial time. Then, with this

velocity field and initial saturation, the saturation is evolved over a small time step with the

velocity field kept constant. The resulting saturation is then used to update the pressure

and velocity. The process is repeated in this manner up until the time of interest.

The great advantage of this strategy is that the elliptic solver and the hyperbolic solver

can essentially be treated seperately and therefore we can take advantage of the existing

schemes for each. This will mostly be true in our upscaling scheme as well.

In the next several sections we described the scheme for the resolved calculations. We

introduce several important concepts that are common to both our resolved scheme and the

upscaling scheme that will be derived. Also, the resolved calculations will demonstrate the

need for upscaling more clearly.

3.1 Resolved Scheme for the Pressure Equation

Consider first the pressure equation (2.51), which is elliptic in character. As mentioned, the

permeability K will generally be given from geological data and therefore we must solve

17

���
�

���
�

p∗
H

pi,j

1 2

Ω

pi+1,j

Figure 3.1: Discretization for the resolved pressure equation.

this equation numerically. One of the most important considerations in solving for the

velocity field here is that the scheme should preserve the divergence-free property (2.46)

in the interior of the domain. Without this property, we will not have conservation of the

saturation S which is convected by this velocity field. Although the finite element method

(FEM) is often used for solving elliptic equations, in the standard method we cannot force

the divergence free condition (2.46) explicitly. While there exist variants that enforce this

explicitly, we the method described below is simpler and sufficient for our purposes.

To derive the numerical scheme consider (2.51) on some domain Ω. We divide this

domain into rectangular grid blocks, as shown in figure 3.1. First, write a = λ(S)K for

notational clarity. Then, integrating (2.51) over a grid block H gives

∫
H
∇ · (a∇p) dV =

∫
∂H

n · (a∇p) ds (3.1)

where n is the outward pointing normal from H. The integral on the right-hand side

represents the flux across a cell boundary and this flux across neighboring boundaries should

be equal. Assume that the grid is fine enough so that within each grid block H, the

saturation S and permeability K can be assumed to be constant. Consider the two adjacent

cells 1 and 2 shown in figure 3.1. The pressures at the centers are pi,j and pi+1,j respectively.

Similarly, permeabilities are Ki,j and Ki+1,j , and saturations are Si,j and Si+1,j . Let the

18

pressure at the edge be p∗, then the flux continuity can be approximated by

hyai,j
(p∗ − pi,j)

hx
= hyai+1,j

(pi+1,j − p∗)
hx

(3.2)

if we use a finite difference for the pressure gradient. hx and hy denote the grid block sizes

in each direction. Rearranging to get an expression for p∗ we have

p∗ =
ai+1,jpi+1,j − ai,jpi,j

ai,j + ai+1,j
(3.3)

Then, the flux across the interface is

f1,0 = ai,j(p∗ − pi,j)
hy

hx
=

ai,jai+1,j

ai,j + ai+1,j
(pi+1,j − pi,j)

hy

hx
= a∗i,j,1,0(pi+1,j − pi,j)

hy

hx
(3.4)

where we use the notation
ai,jai+k,j+l

ai,j + ai+k,j+l
= a∗i,j,k,l (3.5)

We can apply the same argument to obtain fluxes over the other edges. Since we have

conservation of fluxes over the whole cell we must have

∑
fk,l = qi,j (3.6)

where qi,j is the external injection rate into the cell (which will be zero except at sources or

sinks). Therefore, we have

hy

hx

∑
a∗i,j,k,l(pi+k,j+l − pi,j) = qi,j (3.7)

Taking all grid indices i and j in the domain we get a coupled system of linear equations

for the pressures at the cell centers. At the edges of the computational domain we usu-

ally prescribe no-flow (Neumann) boundary conditions or specify the pressure (Dirichlet)

boundary conditions. This system of equations is then solved using a preconditioned conju-

gate gradient (PCG) scheme or a multigrid solver. Since the permeability K will typically

have a large degree of variation it is essential that the solver be able to cope with this.

Two particularly robust solvers that we use here are the PCG scheme of Concus et al. [10],

and the multigrid solver of DeZeeuw [33]. Once we have solved for the pressures, the fluxes

19

are computed at the center of cell edges using (3.4). Numerical results for the solution are

shown in section 3.3.

3.2 Resolved Scheme for the Saturation Equation

We consider now the solution of the saturation equation (2.52), a first-order non-linear

hyperbolic problem for the (water) saturation S. In order to understand the structure of

the solution we will confine ourselves to the 1- and 2-dimensional cases. We will give a

non-rigorous analysis of the problem that provides a useful insight into the structure of the

solution.

The full structure of the solution to (2.52) is difficult to analyze in general. However,

we can make progress if we note that the mobility ratio m will, in general, not be far from

1 if we are considering oil-water models. This would not be so if we were to be considering

the case of an oil-gas model in which the mobility ratio would be extremely small. If the

mobility ratio is O(1), then the velocity field is only weakly coupled to the saturation, so that

changes in the saturation cause only very small corresponding changes in the streamlines.

This has been observed by [22] among others, who use it to reduce the number of updates

to the velocity field.

Thus, the velocity field v evolves much slower than S and we can consider v = v(x) for

the moment. In section 3.3 we show some calculations that reveal how slowly the streamlines

vary as a function of time, which justifies this assumuption. With the velocity field now

just a function of the spatial variable x we can write the equation (2.52) as

∂S(x, t)
∂t

+ f ′(S)
[
v1(x)

∂S(x, t)
∂x1

+ v2(x)
∂S(x, t)
∂x2

]
= 0 (3.8)

where v1 and v2 are the components of v. Now introduce the transformations

dτ

dx1
=

1
v1(x1, η)

(3.9)

dη

dx1
=

v2(x1, η)
v1(x1, η)

(3.10)

20

then we can rewrite (3.8) in the coordinates (x, t) as

∂S(χ, t)
∂t

+ f ′(S)
[
ν
∂S(χ, t)
∂χ1

+ (v2(x)− νv2(x1, η))
∂S(χ, t)
∂χ2

]
= 0 (3.11)

in terms of the coordinates (χ, t) attached to the streamlines χ1 = τ(x1;xo) and χ2 =

x2 − η(x1;xo) which pass though the point xo). In the above, ν = v1(x)/v1(x1, η). At

τ = 0, η = x2o for x1 = x1o; and x2 = η(x1;xo) is simply the equation of the streamlines of

the steady-state velocity field. Along the streamline χ2 = 0, i.e. x2 = η, one obtains ν = 1

and the following equation

∂S(χ, t)
∂t

+ f ′(S)
∂S(χ, t)
∂τ

= 0 (3.12)

which is basically a 1-dimensional equation, except for the additional dependency on χ2 =

x2 − η(x1;xo), which appears only as a parameter identifying the particular streamline.

Therefore, in the case of a steady velocity field, we can reduce the 2-dimensional problem

to that of a set of 1-dimensional problems along each of the streamlines. This is very useful,

as it means that we can determine the structure of the solution by just consideration of the

1-dimensional problem.

The approach outlined above is also the basis of the streamline method for solving the

porous media flow problem (2.52). In such a method, a set of streamlines ηi = η(x1;xo,i) is

computed and then the method of characteristics is applied upon each of these streamlines to

map out the solution. This method also can handle the more practical case of 3-dimensional

fields in an exactly similar manner. The purpose of the method is to reduce the effect of

numerical diffusion that exists in traditional finite-difference solvers for the flow problem.

See [4] and [31] for further details of the method. The drawback with this method is that a

very large number of streamlines may be needed for a reasonable solution. Further, in the

two-phase flow problem, each time the velocity field is updated, all the streamlines must be

updated in addition.

Thus from the simple analysis above, we can see that for the case of modest mobility

ratio, with m = O(1) then solution structure for the saturation equation can be understood

from the 1-dimensional equation

∂S

∂t
+
∂f(S)
∂x

= 0 (3.13)

21

with f(S) having the same form as before (2.56) We note that the flux function f(S) in

our case is nonconvex, though monotonically increasing. Therefore, for general initial data

we can expect shocks to form. Before the appearance of shocks we can easily solve this

equation by the method of characteristics. In order to see the structure of the shocks that

form consider the Riemann problem with initial states Sl = 1 and Sr = 0. This corresponds

to an all water to all oil interface, as shown in figure 3.4 (t = 0 plots).

By following the characteristics, we can construct the triple-valued solution shown in

figure 3.2. The characteristics velocities are f ′(S), so that the profile, seen here at time t,

Figure 3.2: Diagram for the construction of the shock via the equal area rule.

is simply the graph of tf ′(S) turned sideways. In order to find the size and position of the

shock we use the equal area rule (see for example Whitham [32] for a detailed discussion of

the construction of the shock), which states that the regions A and B in figure 3.2 must be

equal. A simple calculation shows that the size of the shock for this initial data is

SBL =
√

m

1 +m
(3.14)

(the subscript BL denotes that this is for the Buckley-Leverett problem). The speed of the

shock for this case can either be determined from the Rankine-Hugoniot condition

s =
f(SBL)− f(Sr)

SBL − Sr
=
f(SBL)
SBL

(3.15)

22

x

rarefaction
shock

t

Figure 3.3: Characteristic diagram for the Buckley-Leverett problem.

since Sr = 0, or from the equal area construction, which gives the speed as f ′(SBL). Both

the size of the shock and its speed are constant in time. Behind the shock we have a

rarefaction wave. The characteristic diagram for the problem is shown in figure 3.3

The resulting weak solutions are shown in figure 3.4 for various values of the mobility

ratio m. Note that for smaller values of m the height of the shock is smaller and the speed

is greater. The physical interpretation of the solution shown in figure (3.4) is that as water

moves in, it displaces a certain fraction SBL of the oil immediately. Once the shock has

passed, there is a mixture of oil and water, with less and less oil as time increases. Looking

at the output at edge point x = 1, one obtains pure oil (S = 0) until the shock arrives,

followed by a mixture of oil and water (with S > SBL) with diminishing returns as time

goes on. Note that we never get S = 1 at the edge point x = 1, and this indicates that it

is not possible to force out all the oil in finite time by this means.

Note that the Riemann solution involves both a shock and a rarefraction wave and is

called a compound wave. If the structure of f(S) was more complicated and there were

more inflection points (where f ′(S) = 0), the solution might involve several shocks and

rarefractions.

3.2.1 Solving Nonconvex Riemann Problems

At this point it is worth presenting some theory for the Riemann problem with general

nonconvex flux functions f(S). This will be useful not only for the resolved calculations

that we are currently considering but also when we derive an upscaled model for the porous

23

Figure 3.4: 1-dimension saturation profiles at different times for different values ofm. Values
of m are 1.0, 0.5 and 0.1 respectively.

media flow problem we will again arrive at system whose hyperbolic part has a nonconvex

flux function.

To determine the correct weak solution to a non-convex scalar conservation law, we need

24

an admissibility criterion for shock waves that applies in this case. We have a very general

form of the entropy condition, due to Oleinik [26], that applies in the case of nonconvex

scalar flux functions f(S):

Theorem 3.1 (Entropy Condition) A weak solution S(x, t) is the vanishing-viscosity

solution to a general scalar conservation law if all the discontinuties have the property that

f(S)− f(Sl)
S − Sl

≥ α ≥ f(S)− f(Sr)
S − Sr

(3.16)

for all S between Sl and Sr, where α is the shock speed.

For convex f(S), this requirement reduces to the standard entropy condition.

3.2.2 Convex Hull Construction

Consider a general non-convex flux function f(S) and denote the height of the shock by S∗.

The entropy-satisfying solution to a nonconvex Riemann problem can be determined from

the graph of f(S) in a simple manner. If Sr < Sl, then construct the convex hull of the set

{(S, y) : Sr ≤ S ≤ Sl and y ≤ f(S)}. The convex hull is the smallest convex set containing

the original set. This is shown in figure 3.5 for the case Sl = 1, Sr = 0.

If we look at the upper boundary of this set, we see that it is composed of a straight

line segment from (0, 0) to (S∗, f(S∗)) and then follows y = f(S) up to (1, 1). The point

of tangency is precisely the postshock value. The straight line represents a shock jumping

from S = 0 to S = S∗, and the segment where the boundary follows f(S) is the rarefaction

wave. This works more generally for any two states (provided Sl > Sr) and for any f .

Note that the slope of the line segment is equal to the shock speed α in equation (3.16).

The fact that this line is tangent to the curve f(S) at S∗ means that s = f ′(S∗), the shock

moves at the same speed as the as the characteristics at this edge of the rarefaction fan,

as seen in figure 3.3. If the shock were connected to some point Ŝ < S∗, then the shock

speed f(Ŝ)/Ŝ would be less than f ′(Ŝ), leading to a triple valued solution. On the other

hand, if the shock were connected to some point above S∗, then the entropy condition (3.1)

would be violated. This explains the tangency requirement, which comes naturally from

the convex-hull construction. This same construction works for any Sr < Sl lying in [0, 1].

If Sl < Sr, then the same idea works, but we instead look at the convex hull of the

25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

���
�

���
�

� �� ���

Shock

Rarefraction

f(S)

(S∗, f(S∗))

Figure 3.5: Convex-hull construction of the Riemann solution for the Buckley-Leverett
equation with Sl = 1 and Sr = 0.

set of points above the graph {(S, y) : Sr ≤ S ≤ Sl and y ≥ f(S)}. However, we will not

consider this case in any greater detail, as we are primarily interested in the case Sl > Sr

which corresponds to water displacing oil.

Note that if we were to have convex flux function g, the convex hull construction would

give either a single line segment (single shock) if Sl > Sr or the function g itself (single

rarefaction) if Sl < Sr.

3.2.3 Osher’s solution

Osher [27] found a simple representation for the entropy-satisfying similarity solution S(x, t) =

S̃(x, t) for a general nonconvex scalar Riemann problem with arbitrary data Sl and Sr. Let

ξ = x/t, and set

G(ξ) =


min

Sl≤S≤Sr

(f(S)− ξS) if Sl ≤ Sr

max
Sr≥S≥Sl

(f(S)− ξS) if Sr ≤ Sl

(3.17)

Then it can be shown that S̃(ξ) satisfies the equation

f(S̃(ξ))− ξS̃(ξ) = G(ξ) (3.18)

26

In other words, for any given value of ξ, S̃(ξ) is the value of S for which f(S) − ξS is

minimized or maximized, depending on whether Sl ≤ Sr or Sr ≤ Sl. We can also write this

as

S̃(ξ) =


argmin
Sl≤S≤Sr

[f(S)− ξS] if Sl ≤ Sr

argmin
Sr≥S≥Sl

[f(S)− ξS] if Sl ≤ Sr

(3.19)

In general the argmin function returns the argument that minimizes the expression and

similarly for argmax.

Note that for any fixed S0 we can replace f(S) − ξS by [f(S) − f(S0)] − ξ(S − S0) in

(3.19). Often an appropriate choice of S0 (e.g. Sl or Sr) makes it is easier to interpret this

expression, since it is initimately related to the Rankine-Hugoniot jump condition.

Differentiating the expression (3.18) with respect to ξ gives

[
f ′(S̃(ξ)− ξ

]
S̃′(ξ)− S̃(ξ) = G′(ξ) (3.20)

Along every ray x/t = ξ in the Riemann solution we have either S̃(ξ) = 0 or else f ′(S̃(ξ)) = ξ

(in a rarefaction wave), and hence (3.20) reduces to an expression for S̃(ξ)

S̃(ξ) = −G′(ξ) (3.21)

This gives the general solution to the Riemann problem.

The equation (3.18) is particularly useful in the case ξ = 0, for which it yields the

value f(S̃(0) along x/t = 0. This is the flux value f(S, (Sl, Sr)) needed in implementing

Godunov’s method and generalizations. When ξ = 0, (3.18) reduces to

f(S, (Sl, Sr)) = f(S̃(0) = G(0) =


min

Sl≤S≤Sr

f(S) if Sl ≤ Sr

max
Sr≥S≥Sl

f(S) if Sl ≤ Sr

(3.22)

3.2.4 Finite Volume Scheme for the Saturation Equation

We now have a greater understanding of the structure of the solution to the saturation

equation (2.52) in the 1-dimensional case. By the previous analysis, we know that the solu-

tion of the fully coupled 2-dimensional problem should have a similar shock and rarefaction

structure. We now will discuss the the scheme that we will use to obtain numerical solution

27

for the 2-D problem.

Since (2.52) is a conservation law in S it is essential that the numerical method we

choose respect this property. By using finite volume schemes, which use cell averages of

the solution on a numerical grid, we can more easily ensure that the numerical method is

also conservative than with other methods. Throughout the following sections we will only

consider rectangular grids, as in figure 3.6. As a first step to obtaining a general finite volume

Sij

x2,i+1/2

x2,i−1/2

x1,i−1/2 x1,i+1/2

Figure 3.6: Grid for the discretization of the saturation equation.

method, we integrate the saturation equation (2.52) over the cell Ci,j = [x1,i−1/2, x1,i+1/2]×

[x2,i−1/2, x2,i+1/2] to obtain

d

dt

∫ ∫
Ci,j

S(x1, x2, t) =
∫ x2,i+1/2

x2,i−1/2

v1f(S(x1,i+1/2, x2, t))dx2 −
∫ x2,i+1/2

x2,i−1/2

v1f(S(x1,i−1/2, x2, t))dx2

+
∫ x1,i+1/2

x1,i−1/2

v2f(S(x1, x2,i+1/2, t))dx1 −
∫ x1,i+1/2

x1,i−1/2

v2f(S(x1, x2,i−1/2, t))dx1

(3.23)

If we now integrate this expression from tn to tn+1 and divide by the cell area ∆x∆y, we

obtain the fully discrete flux-differencing method of the form

Sn+1
i,j = Sn

i,j −
∆t
∆x1

[
Fn

i+1,j − Fn
i−1,j

]
− ∆t

∆x2

[
Gn

i,j+1 −Gn
i,j−1

]
(3.24)

28

where

Fn
i−1/2,j ≈ 1

∆t∆x2

∫ tn+1

tn

∫ x2,i+1/2

x2,i−1/2

v1f(S(x1,i−1/2, x2, t))dx2dt (3.25)

Gn
i,j−1/2 ≈ 1

∆t∆x1

∫ tn+1

tn

∫ x1,i+1/2

x1,i−1/2

v2f(S(x1, x2,j−1/2, t))dx1dt (3.26)

and Sn
i,j is the numerical approximation to the cell-averages of S

Sn
i,j ≈

1
∆x1∆x2

∫ x1,i+1/2

x1,i−1/2

∫ x2+1/2

x2−1/2
S(x1, x2, t)dx1dx2 (3.27)

The numerical fluxes Fn
i−1/2,j and Gn

i−1/2,j at each edge are typically computed from the data

(numerical approximation) Sn at the previous time. Different methods for evaluating these

terms give rise the multitude of different schemes available. In the numerical simulations

here, we use the robust wave propagation methods of LeVeque [24] that are implemented

in the freely available software package CLAWPACK [23]. Wave-propagation algorithms

are based upon solving a Riemann problem at each interface between grid cells and using

the resulting wave structure to update the solution in the grid cell on either side. This

is, of course, the basis for other methods for conservation laws, going all the way back to

Godunov’s method.

To see how incorporate the results for the non-convex flux into the scheme, consider

using dimension splitting as a means to solve the problem (2.52), i.e. splitting the problem

into

∂S

∂t
+ v1

∂ (f(S))
∂x1

= 0 (3.28)

∂S

∂t
+ v2

∂ (f(S))
∂x2

= 0 (3.29)

In the x-sweeps, we start with the cell averages Sn
i,j at time tn and solve the 1-dimensional

problem (3.28) along each row of cells Ci,j with j fixed, updating Sn
i,j to an intermediate

value S∗i,j ,

S∗i,j = Sn
i,j −

∆t
∆x1

[
Fn

i+1,j − Fn
i−1,j

]
(3.30)

Then, in the y-sweeps, we use the S∗i,j values as data for solving (3.29) along each column

29

of cells with i fixed, which results in our approximation for Sn+1
i,j ,

Sn+1
i,j = S∗i,j −

∆t
∆x2

[
G∗i+1,j −G∗i−1,j

]
(3.31)

An advantage of looking first at this method is that it is easier to see how to enforce the

entropy condition (3.16). For example, consider the x-sweeps. From equation (3.28) the

numerical fluxes should approximate

Fn
i+1,j ≈

1
∆t

∫ tn+1

tn
v1f(S(x1,i−1/2, x2, t))dt (3.32)

≈ v1
1

∆t

∫ tn+1

tn
f(S(x1,i−1/2, x2, t))dt (3.33)

(second approximation from the fact that the velocity field is slowly varying). Here S(x1,i−1/2, x2, t)

is taken to be the exact solution of (3.28) with initial data being the numerical solution

from the previous time step. Since the initial data consists of the piecewise constant cell av-

erages, we may compute this integral exactly by integrating along the characteristics using

Osher’s similarity solution for the Riemann problem. This also gives the correct entropy

satisfying solution by construction. Since the solution is constant along the characteristics

we compute Fn
i+1,j = v1f(S̃i−1/2,j) where S̃i−1/2,j is the value along x/t = 0 in the entropy

satisfying solution to the Riemann problem between the states Si−1,j and Si,j , which is

computed using (3.22). The y-sweeps are then treated in a similar manner.

The above gives a first-order scheme, similar to Godunov’s method. Second-order cor-

rections can be introduced in the usual way by incorporating Lax-Wendroff type terms that

approximate higher derivatives in the Taylor expansion of the exact solution about (x, t).

The modification to Fn
i+1,j for our case will be of the form

F̃i−1/2,j =
1
2

∣∣si−1/2

∣∣ (1− ∆t
∆x1

)
W̃i−1/2,j (3.34)

where W̃i−1/2,j is limited version of the wave Wi−1/2,j = Si,j − Si−1,j and si−1/2,j is the

corresponding Rankine-Hugoniot speed,

si−1/2,j =
f(Si,j)− f(Si−1,j)

Si,j − Si−1,j
(3.35)

30

As usual, the limiter limits the influence of this correction so that it is only applied in

smooth regions away from the shock. It is also important that the CFL number be less

than 1 for stability. In the case of dimension splitting this is satisfied if we have C ≤ 1

where

C = max
∣∣∣∣vi

∆t
∆xi

f ′(S)
∣∣∣∣ (3.36)

(no summation in i). Here we maximize over the entire range of S that appears in the

solution, which in our case will be [0, 1].

In addition to the dimension splitting scheme, it is possible to derive an unsplit scheme

for the hyperbolic solver. The details of this method can be found in [24] and so will not

be given here. An unsplit scheme is more useful when using a non-uniform mesh and with

hyperbolic systems, both of which will be used later.

3.3 Numerical Results for the Resolved Numerical Scheme

To complete the modeling for the flow problem we must specify a domain and flow (or

pressure) boundary conditions. In addition we must also specify the initial saturation. We

consider two models that are fairly common in the reservoir modeling literature. In both

instances will have a domain of rectangular shape (0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1).

3.3.1 The Core-Plug Model

This model corresponds to a 2-D vertical cross section of an initially oil-saturated “core-

plug” (which refers to a sample of the porous media obtained from drilling). For this model

it is typical to use a layered permeability field. For the pressure/velocity equation the

following configuration is used

• The two ends aligned in the horizontal direction will have zero flux condition, i.e.

v · n = 0 where n is the outward pointing normal

• The two other sides will have prescribed pressures, p = 1 at x1 = 0 and p = 0 at

x1 = 1.

• The main flow will be in the positive x1-direction.

The initial saturation, S, will be an established shock

31

• Initial saturation is independent of x2

• Initial saturation is a linear function of x1 between inlet and shock. That is, S = 1

at inlet (x1 = 0), S = SBL at shock and S = 0 in front of the shock x1 = b. Thus, if

we position the shock at position x1 = b, initial saturation is given by

S0(x1) = 1−
(

1− SBL

b

)
x1, 0 ≤ x1 ≤ b (3.37)

3.3.2 The Five-Spot Model

The second model is a quarter of a “five-spot” well pattern domain. This model corresponds

to an areal view of a field with an injection well at (0, 0) and a production well at (1, 1). In

this case, we are viewing the field from above and therefore we should not see layering in

the permeability but rather a more uniform hetrogeneous structure:

• The pressure/velocity equation is solved with Neumann condition zero flux, v ·n = 0,

on all four sides

• Injection is at lower corner and production well at upper right. Both wells have

constant production, Q = Q0 and Q = −Q0 respectively.

Initial saturation, S, will be an established shock:

• Initial saturation is a linear function of r =
√
x2 + y2 the distance from the injection

well

• Initial saturation is a linear function of r between injection and shock. That is, S = 1

at inlet S = 1 at inlet (r = 0), S = SBL at shock. Thus, if we position the shock at

position r = b, initial saturation is given by:

S0 = 1−
(

1− SBL

b

)
r, 0 ≤ r ≤ b (3.38)

In both models the geological model is provided by prescribing a spatially varying perme-

ability field (note that we assume a constant porosity for the medium). The permeabilities

were generated using the package GSLIB [12], which is used extensively both in industry

and within the academic community. The basic model for the permeability uses a scalar

log-normal distribution.

32

To model the effects of hetrogeneous layering which is typically found in geological

models, GSLIB will accept, as parameters, the correlation lengths l1 and l2 in the horizontal

and vertical directions respectively. For the core-plug model we will generally take l1/l2 ≥ 1

and for the five-spot we will use l1/l2 = 1. Cell-centered permeability fields (constant over

the grid blocks) are generated, with 128 × 128 grid blocks in the vertical and horizontal

directions. No additional smoothing of the permeability field is done for finer grids used

in the numerical methods, so that finer numerical schemes will still see only a 128 × 128

underlying permeability field. Examples of the permeability are shown in figures 3.7 and

3.10. Note that in these plots the scale of the color scheme is logarithmic, so that in fact

the permeability has an extremely large degree of spatial variation.

There are many other additional parameters that can be given to the GSLIB package to

generate permeabilities that better model the different types of porous media. The details

of these models are outside the scope of the current investigation.

3.3.3 Numerical Observations

We solve the model problems described above on a 1024× 1024 grid. This was determined

to be sufficient to resolve the flow details fully. First we describe some of the overall

characteristics of the resulting solutions.

Figure 3.7 shows the permeability field with the initial streamlines superimposed for the

core-plug model. As one might expect, we see that the flow is channeled through regions

of high permeability and it avoids the low permeability regions. Figures 3.8 show the

saturation contours at several different times for the core-plug model. We see that saturation

develops many hetrogeneous “fingers” as the shock progresses and that behind that shock

the saturation has a great deal of spatial variability. By comparing with the permeability

field note how the saturation generally follows the fast channels of high permeability.

Figure 3.10 shows the streamlines at t = 0 for the five-spot model. In this case we see

the flow from the injection well at the lower left corner to the production well at upper right

corner. Figures 3.11 show the saturation contours at several different times. Again we see

saturation fingers along the fast channels, especially towards the production well.

In addition to the solution variation of the solution S(x1, x2, t) with space and time

measures of the overall reservoir performance are usually calculated as well. An important

characteristic is the so-called fractional flow which measures the fraction of oil produced at

33

Figure 3.7: Core-plug permeability and streamlines at t = 0.

the production with time. This is most easily computed in the case of the core-plug model.

In that case, the fractional flow is defined as

Ψ(t) = 1−

∫ 1

0
S(1, x2, t)n · v(1, x2, t)dx2∫ 1

0
n · v(1, x2, t)dx2

(3.39)

where n = (1, 0) is the outward pointing normal at the edge x1 = 1. Figure 3.12 shows the

variation of the fractional flow for core-plog model. At t = 0 we have Ψ = 1 since initially

the domain was oil saturated. After some time however, we see that Ψ < 1. This time

is the breakthrough time corresponding to the first time that water reaches the production

well. Accurate determination of breakthough times is also of interest in the performance

of the reservoir. Note that instead of time we plot Ψ against pore-volumes injected (PVI).

This is a non-dimensional quantity that gives the volume of injected fluid (water in our

case) as a fraction of the total pore volume. Since we are assuming constant porosity in our

simulations, we have

PVI(t) =
∫ t

0

∫ 1

0
n · v(1, x2, t)dx2dt (3.40)

34

3.4 Previous Work on Upscaling and Context of the Present

Work

The study of upscaling techniques is by no means new and there have been many contri-

butions to this area. Many of these are relevant to our study here and our discussion will

be limited to those closest. Most of the approaches to upscaling are designed to generate

some coarse grid description which is approximately equivalent to the underlying fine grid

description.

Essentially, the upscaling problem for the whole system can be split into upscaling

for the elliptic pressure/velocity equation (which we denote by PVE for short hereafter)

and upscaling for the hyperbolic transport equation. For the PVE equation, there have

been several upscaling methods developed. Since the permeability data is the principal

source of the small scale features, much effort has been devoted to methods for upscaling

this quantity. Durlofsky [13], has attempted to find effective permeability properties by

dividing the domain into coarse grid blocks, then solving flow problems within each of

these. By averaging the resulting flow field within the coarse grid block one can obtain an

effective permeability for this grid block. The full PVE is then solved in the domain with

the resulting coarse grid effective permeabilities. The limitation of this approach is that

boundary conditions must be imposed for the solution of the flow problem within each coarse

cell. Since the global flow field is not known apriori, the boundary conditions imposed do

not correspond well to the actual boundary conditions, and therefore the resulting effective

permeability is dependent on the choice of boundary conditions chosen.

The multi-scale finite element (MSFEM) is a very promising alternative to upscaling the

permeability. In this method, coarse grid basis functions are specially constructed which

sub-grid features which accurately capture the fine-scale fluctuations. MSFEM has been

used successfully to solve the PVE ([19], [20], [17], [16], [8]). Indeed, in the upscaling scheme

that we will develop we will be using variant of this method, whereby basis functions are only

updated selectively. This leads to a great saving in the amount of computation required.

Less satisfactory progress has been made in developing useful upscaling schemes for

the transport equation. The methods that exist can roughly categorized by whether they

use a stochastic framework or a deterministic framework. The first approach entails a

stochastic formulation of the equations, where the velocity and saturation field are assumed

35

to have a random component, corresponding to the small scale fluctations. The resulting

flow equation for the average saturation then incorporates the expected value and higher

statistical moments of these. Langlo and Espedal [22] used this approach to upscale the

saturation equation.

Efendiev et al. [15], [14], used a hybrid formulation, whereby the upscaled model for

the saturation was developed within a fully deterministic framework but the higher order

moments of the velocity field were modeled emprically. This was found to be successful in

range of cases, though there did exist some serious limitations. The principal difficulty with

their scheme was the fact that in developing the model, fluctuations in all quantities were

assumed to be small.

The approach in this work is similar to that of Efendiev et al. [15]. The main emphasis

of this work is to develop an effective scheme for upscaling the saturation equation.

We will initially use a fully deterministic framework to develop an understanding of the

effect of the small scale fluctuations upon the average. This will be done at first within the

restrictive assumption that all the fine scale fluctuations are periodic. After developing the

model in this way, and presenting a numerical implementation to demonstrate it’s validity,

we will make some minor modifications that will allow us to consider the more general case

where the fluctuations are non-periodic.

36

Figure 3.8: Saturation contours for core-plug model, initial data and at intermediate times.

37

Figure 3.9: Comparison of streamlines at initial time and at the final time, showing that
the change in the streamlines is very small.

38

Figure 3.10: Five-spot permeability streamlines at t = 0.

39

Figure 3.11: Saturation contours for five-spot model, initial data and at intermediate times.

40

Figure 3.12: Fractional flow against PVI for the core-plug model.

41

Chapter 4

Multiple Scale Analysis

4.1 Overview

In this chapter we will present the framework for upscaling the porous media flow problem.

We perform a multiple-scale analysis for the problem under the assumption that there exists

two length scales within the problem: a large scale that captures features at the size of the

domain, and a small scale which captures the features within the permeability field. By

doing such an analysis, with some assumptions on the nature of the small scale features, we

are able to develop equations that model the large scale features and quantify how these are

affected by the small scales. From these equations, a numerical scheme for the evolution of

the average saturation can be derived easily.

We split up this section in a manner consistent with the overall solution strategy. First,

we define some conventions and set up a framework in which to work. Then, we consider

the multiple-scale solution for the pressure/velocity equation. This section will mostly be

a review of known results. After deriving results for the multiple-scale velocity field, we

use this as a starting point for the multiple-scale analysis of the saturation equation. The

results for the saturation equation, and their numerical implementation, form the main

contribution of this thesis. We develop a coupled set of equations for both the average and

the fluctuation. The desirable features of these equations are that they capture all of the

important features of the original equation and are closed. The closure property is often

lacking in previous results, or else is taken care of by making overly restrictive assumptions

on the nature of small scales. We achieve this closure by means of a special projection,

which we show is equivalent to averaging along streamlines of the flow.

42

4.2 Formulation of Multiple Scale Model

Consider first the principal source of the small scales in the porous media flow, namely the

form of the permeability K. We assume the this has a great deal of spatial variation, and

that this is characterized by two scales. The first is a large length scale, on the order of

the size of the domain, i.e. O(1) and which we denote by x. The second is small length

scale, of the order ε, with 0 < ε � 1. To model features at this length scale, we introduce

the “fast” spatial variable y = x/ε. Note that we assume that the two length scales are

always distinct. This assumption may not necessarily hold for all types of permeability

but it is useful in developing our initial models. With the above length scales defined, the

permeability is then given by K(x,y). Furthermore, we may write

K(x,y) = K(x) +K ′(x,y) (4.1)

where K(x) represents an “average” of K and K ′(x,y) is a fluctuation around this average.

In general, K(x) is understood as being the weak limit of K in the limit of ε → 0. As in

Chapter 1, we assume that K is a scalar, though in general it could be a tensor.

For our analysis we make the assumption that all functions of the fast variable y are

periodic with period Y and that they all lie within the space of square integrable functions.

This space will be denoted in the usual way by L2
Y . For convenience, we will always scale

ε so that Y is the unit square [0, 1] × [0, 1]. Note that L2
Y is a Hilbert space if we use the

scalar product

(u, v)0 = (u, v)L2
Y

:=
∫

Y
u(y)v(y)dy (4.2)

and the corresponding norm

‖u‖0=
√

(u, u)0 . (4.3)

Often in the sections that follow we will drop the use of the subscript 0 when writing this

norm. We also introduce the related Sobolev spaces Hm
Y which consists of the set of all

functions u in L2
Y which possess weak derivatives ∂α

y u in L2
Y for all |α| ≤ m. Hm

Y is a

Hilbert space with the scalar product

(u, v)m :=
∑
|α|≤m

(∂αu, ∂αv)0 (4.4)

43

with the associated norm

‖u‖m=
√

(u, u)m =
√ ∑
|α|≤m

‖∂α
y u‖2L2

Y
. (4.5)

For the most part, we will only be interested in the case of m = 1, since our equation (4.32)

does not involve higher order derivatives.

Since we will often using the concept of an average quantity, we make this definite by

defining, for a function φ(x,y), the average

φ(x) =
1
|Y |

∫
Y
φ(x,y)dy . (4.6)

Note that this is a particular form of the expression for the weak limit of φ. The fluctuating

part of φ will be denoted by φ′ and is defined in the natural way as

φ′(x,y) = φ(x,y)− φ(x) . (4.7)

This has clearly zero average, i.e. φ′ = 0. The average (4.6) can be thought of as a smoothing

or spatial “filtering” of the small scales (c.f. Beckie et al [2]).

4.3 Upscaling for the Pressure/Velocity Equation

Consider the elliptic pressure equation (2.52). We make the assumption (which will later

be justified) that S consists of an average and a periodic fluctuating part. Then, we have

a = λ(S)K, with a = a(x) + a′(x,y). Within the framework described above, the form of

the solution can be determined using the analysis given in [3]. In equation (2.52) denote

the second order elliptic operator by Aε,

Aε = ∇ · (a(x,y)∇) . (4.8)

When differentiating a function φ(x,y), the operator ∇ becomes

∇x +
1
ε
∇y =

∂

∂xi
+

1
ε

∂

∂yi
. (4.9)

44

With this notation, we expand Aε as

Aε = ε−2A1 + ε−1A2 + ε0A3 (4.10)

where

A1 =
∂

∂yi

(
a(x,y)

∂

∂yi

)
, (4.11)

A2 =
∂

∂yi

(
a(x,y)

∂

∂xi

)
+

∂

∂xi

(
a(x,y)

∂

∂yi

)
, (4.12)

A3 =
∂

∂xi

(
a(x,y)

∂

∂xi

)
. (4.13)

We look for an asymptotic expansion of the pressure in the form

pε = p(x,y) + εp1(x,y) + ε2p2(x,y) +O(ε3) (4.14)

where each of the functions pi is periodic in y. Substituting the expansion for pε into our

equation Aεpε = 0 and gathering together terms with the same powers of ε we obtain

A1p = 0 , (4.15)

A1p1 +A2p = 0 , (4.16)

A1p2 +A2p1 +A3p = 0 . (4.17)

The first equation
∂

∂yi

(
a(x,y)

∂p

∂yi

)
= 0 (4.18)

and the fact that p(x,y) is periodic in y implies that p = p(x) by elliptic theory [3]. This

result then simplifies the second equation, so that we have

∂

∂yi

(
a(x,y)

∂p1

∂yi

)
=
(
∂a

∂yi

)
∂p

∂xi
. (4.19)

If we define χj as the solution of the following cell problem

∂

∂yi

(
a(x,y)

∂χj

∂yi

)
=

∂a

∂yj
(4.20)

45

with χj periodic in y, then the general solution of the second equation is

p1(x,y) = −χj ∂p

∂xj
+ p̃1 . (4.21)

Finally, the solvability condition for p2 in our third equation

∂

∂yi

(
a(x,y)

∂p2

∂yi

)
= A2p1 +A3p (4.22)

implies that the right-hand side must have mean zero in y

∫
Y

(A2p1 +A3p)dy = 0 . (4.23)

This solvability condition gives rise to the homogenized equation for p,

∂

∂xi

(
a∗ij(x)

∂p

∂xj

)
= 0 (4.24)

where a∗ is a diagonal tensor with

a∗ij(x) =
1
|Y |

∫
Y
a(x,y)

(
1− ∂χj

∂yi

)
dy (4.25)

Thus, (4.24), (4.25) and (4.21) define equations for the first two terms in the expansion for

the pressure (4.14). Note that the dependence on the fast variable y appears only at O(ε).

We can obtain an expression for the velocity field by substituting this pressure expansion

into Darcy’s law. Doing this we obtain

vε = −(a+ a′)
(
∂

∂xi
+

1
ε

∂

∂yi

)
(p(x) + εp1(x,y) + ε2p1(x,y) + . . .) (4.26)

= −(a+ a′)(∇xp+∇yp1) +O(ε) . (4.27)

Thus, vε has the expansion

vε = v + v′ + εv1 (4.28)

46

with

v = a∇xp+ a′∇yp′ (4.29)

v′ = a∇yp
′ + a′∇xp+ a′∇yp

′ − a′∇yp′ (4.30)

The expression for v1 and higher order terms can also be derived. The analysis shows us

that if we start with a permeability field with O(1) fluctuations then the resulting velocity

field will also have fluctuations which are O(1). As mentioned in the previously, since the

mobility λ depends on S, the velocity field is not steady but will change as the S changes

throughout the domain.

Note further that the averaged velocity field v retains the divergence free property, i.e.

∇ · v = 0 to O(ε). To see this note that

(
∇x +

1
ε
∇y

)
·
(
v + v′

)
= 0 . (4.31)

Equating terms with the same power of ε, at O(ε−1) we get ∇y · v′ = 0. At O(1) we have

∇x ·(v + v′) = 0. Averaging this equation over Y gives ∇x ·v = 0 and hence also ∇x ·v′ = 0.

Therefore, we see that spatial averaging preserves the divergence-free properties.

4.4 Upscaling for the Saturation Equation

We now consider the problem of homogenization for the hyperbolic saturation equation

∂Sε

∂t
+ vε · ∇f(Sε) = 0 (4.32)

in 2-dimensions. The incompressible velocity field vε was shown, in the previous section, to

have an O(1) oscillatory component.

In the same way as for the pressure equation, we will confine our analysis the case where

the functions of the “fast” variable y = x/ε are periodic. Within this framework we will

derive a closed, coupled system of equations for the average S and the O(1) fluctuations S′.

Closure is obtained making use of a special streamline average that eliminates higher-order

fluctuations. After developing these expressions we will propose some approximations that

allow the methodology to be applied to more general flows for which the oscillations are not

47

necessarily periodic with respect to the fast variable. In our case, where we are looking at

flows more complex than shear flows, we will again see that the nature of the streamlines

plays a very important role in determining the effective equation.

We first apply the standard multiple-scale analysis of looking for a formal expansion of

the saturation of the form

Sε = S(x, t) + S′(x,y, t) + εS1(x,y, t, τ) +O(ε2) . (4.33)

Thus, S consists of an average, S, modified by a fluctuating part S′. We have also introduced

in this expansion a possible dependence on a fast time scale τ = t/ε, which appears at the

O(ε) level. The justification for such an expansion will be probed further in section 4.4.1.

As before, with the expansion for the velocity field, all the terms except S have zero mean.

The flux function f(S) is expanded in a similar manner

f(Sε) = f(x, t) + f ′(x,y, t) + εf1(x,y, t, τ) +O(ε2) (4.34)

where again we have that f ′, f1, . . . are periodic in y and f ′ has with zero mean, i.e. f ′ = 0.

This expansion is determined solely from the (prescribed) form of f and Sε, with

f + f ′ = f(S + S′) , (4.35)

f1 = fSS1 , (4.36)

f2 = fSS2 +
1
2
fSSS

2
1 (4.37)

where fS = df
dS |S+S′ , and similarly for the higher-order terms. Note that f1, f2 and higher

order terms do not necessarily have mean zero.

We again use that fact that for a function φ(x,x/ε, t, t/ε) we must expand the partial

derivatives as

∇ = ∇x +
1
ε
∇y , (4.38)

∂

∂t
=

∂

∂t
+

1
ε

∂

∂τ
. (4.39)

Substituting our expansions into the saturation equation and gathering together terms with

48

the same power of ε we obtain the following hierarchy of equations:

ε−1 : (v + v′) · ∇yf
′ = 0 (4.40)

ε0 :
∂S

∂t
+
∂S′

∂t
+
∂S1

∂τ

+ (v + v′) · ∇xf + (v + v′) · ∇xf
′ + (v + v′) · ∇yf1 = 0 (4.41)

ε1 :
∂S1

∂t
+
∂S2

∂τ
+ (v + v′) · ∇xf1 + (v + v′) · ∇yf2 = 0 . (4.42)

To facilitate the analysis, we now introduce some subspaces of L2
Y and then several Lemmas,

which build a framework for multiscale analysis. We introduce the following spaces in L2
Y :

N = {u ∈ H1
Y : v · ∇yu = 0} , (4.43)

W = {v · ∇yu : u ∈ H1
Y } (4.44)

here v is our velocity field as computed from the pressure equation, so that ∇y · v = 0.

We now also assume that v is bounded and that vi ∈ L2
Y . With these spaces, we have the

following orthogonal decomposition of L2
Y :

Lemma 4.1

L2
Y = N ⊕W . (4.45)

Proof. In order to prove this lemma we need the following well known theorem:

Theorem 4.1 Let H be a Hilbert space and M ⊂ H be a subspace. Then, any element

x ∈ H has the unique decomposition x = y + z, with y ∈ M, z ∈ M⊥, where M⊥ denotes

the orthogonal complement of M. Furthermore,

‖x− y‖= min
ν∈M

‖x− ν ‖ (4.46)

where ‖·‖ is the associated norm of H.

Thus, to prove Lemma 4.1 we show that N and W are orthogonal complements in L2
Y . To

do this, first note from their definitions that N and W are clearly subspaces of L2
Y (we

need to take the closure of W since this is not a closed space). Now consider u such that

(u,v · ∇yw) = 0 is satisfied for each w ∈ H1
Y . This implies that (v · ∇yu,w) = 0 for each

w ∈ H1
Y and hence u ∈ N . Since v ·∇yw ∈ W we therefore we have W ⊥ N in L2

Y . Because

49

L2
Y is a Hilbert space all the hypotheses of Theorem 4.1 are satisfied and thus Lemma 4.1

follows. �

In Theorem 4.1, the element y ∈M is called the orthogonal projection of x onto M and

the abstract form of the projection is given by (4.46). To derive a more explicit form for the

projection in our case, consider using M = W in the theorem. Then, from the definition

(4.44) for W, for a given u ∈ L2
Y the projection Q : L2

Y 7→ W is the defined as the solution

of the minimization problem

‖u−Q(u)‖= min
θ∈H1

Y

‖u− v · ∇yθ‖ (4.47)

where ‖ · ‖ is the L2
Y norm defined by (4.5). If we had an orthonormal basis for W (or its

restriction to a finite dimensional subspace) then we could use a least-squares approximation

to determine the solution to this problem. In the absence of possessing such a basis we use

the following lemma:

Lemma 4.2 For u ∈ H1
Y the projection Q : H1

Y 7→ W is uniquely given by Q(u) = v · ∇yθ

where θ ∈ H2
Y is the solution of the degenerate elliptic PDE

∇y · (A∇yθ) = v · ∇yu (4.48)

with periodic boundary conditions where A is the 2× 2 matrix with components Aij = vivj.

Proof. First expand the norm in (4.47) via

‖u− v · ∇yθ‖2 =
∫

Y
(u− v · ∇yθ)

2 dy (4.49)

=
∫

Y
u2 − 2uv · ∇yθ + (v · ∇yθ)

2 dy (4.50)

=
∫

Y
u2 + 2θvi

∂u

∂yi
+ vivj

∂θ

∂yi

∂θ

∂yj
dy (4.51)

where we have used integration by parts and ∇y · v = 0 to go from the second equation to

the third. Defining

a(ψ, φ) =
∫

Y
vivj

∂ψ

∂yi

∂φ

∂yi
dy , (4.52)

h(u, φ) = −
∫

Y
φvi

∂u

∂yi
dy (4.53)

50

then the minimization problem (4.47) is equivalent to finding the minimum of

J(θ) :=
1
2
a(θ, θ)− h(u, θ) (4.54)

over H1
Y . It is easy to see that a(ψ, φ) is a symmetric semi-positive bilinear form, i.e.

a(ψ,ψ) ≥ 0 for all ψ ∈ H1
Y . a(ψ,ψ) is not positive since we can see from its definition that

it is zero for ψ ∈ N ⊂ H1
Y . However, for φ ∈ H1

Y −N , φ 6= 0 we have a(φ, φ) > 0. We first

show that J(θ) attains its minimum over H1
Y at θ if and only if

a(θ, φ) = h(u, φ) (4.55)

for all φ ∈ H1
Y , and that this minimum is unique up to a function in N . To see this consider

ψ, φ ∈ H1
Y and t ∈ R. We have

J(θ + tφ) =
1
2
a(θ + tφ, θ + tφ)− h(u, θ + tφ) (4.56)

= J(θ) + t [a(θ, φ)− h(u, φ)] +
1
2
t2a(φ, φ) . (4.57)

If θ ∈ H1
Y satisfies (4.55) then (4.57) with t = 1 implies

J(θ + φ) = J(θ) +
1
2
a(φ, φ) for all φ ∈ H1

Y (4.58)

≥ J(θ) (4.59)

with equality only if φ = 0 or φ ∈ N . Thus, up to a function in N , θ is a unique minimal

point. Conversely, if J has its minimum at θ, then for every φ ∈ H1
Y , the derivative of the

function t 7→ J(θ + tφ) must vanish at t = 0. By (4.57) the derivative is a(θ, φ) − h(u, φ)

and so (4.55) follows. Note that A has eigenvalues λ = 0, v2
1 + v2

2 and therefore (4.48) is a

degenerate elliptic equation.

Integration by parts of (4.55) and using the fact that ∇y · v = 0 gives

∫
Y
φ
∂

∂yi

(
vivj

∂θ

∂yj

)
dy =

∫
Y
φvi

∂u

∂yi
dy (4.60)

for all φ ∈ H1
Y , from which equation (4.48) follows. Returning to (4.47) we see that v · ∇yθ

is the unique minimizer over H1
Y , which proves the Lemma. �

51

With the projection Q defined, we immediately have from Lemmas 4.1 and 4.2 the

following corollary:

Corollary 4.1 For u ∈ H1
Y the projection P : H1

Y 7→ N is uniquely given by P(u) =

u−Q(u).

In order to make full use of the projections, we now present several simple but useful

Lemmas.

Lemma 4.3 P and Q are linear.

Proof. This is obvious.

Lemma 4.4 For w ∈ W we have Q(w) = w.

Proof. Since w ∈ W then w = v · ∇yu for some u ∈ H1
Y . Then, from Lemma 4.2 we have

Q(w) = v · ∇yθ where θ is the periodic solution of

∇y · (A∇yθ) = v · ∇yw (4.61)

= v · ∇y (v · ∇yu) (4.62)

= ∇y · (A∇yu) . (4.63)

Thus, using the analysis in Lemma 4.2, θ = u uniquely up to function in N . Then,

Q(w) = v · ∇yθ = v · ∇yu = w . (4.64)

Lemma 4.5 For u ∈ N we have Q(u) = 0.

Proof. Consider v = u+ w where w ∈ W. Then, taking the Q projection gives

Q(v) = Q(u) +Q(w) = Q(u) + w (4.65)

using Lemma 4.4. Then, subtracting this from v = u+ w and rearranging gives

v −Q(v)− u = Q(u) . (4.66)

Since v − Q(v) ∈ N and u ∈ N the left hand side is in N . But Q(u) ∈ W and since

N ∩W = {0} we must therefore have Q(u) = 0.

52

Corollary 4.2 For u ∈ N we have P(u) = u.

Corollary 4.3 For w ∈ W we have P(w) = 0.

Lemma 4.6 For each u ∈ H1
Y , we have

P(u) = u . (4.67)

Proof. Using the expression for P(u) = u−Q(u) we have

P(u) = u−Q(u) (4.68)

= u−Q(u) . (4.69)

Using the expression for the projection Q(u) and the definition for the average gives

Q(u) =
∫

Y
Q(u)dy (4.70)

=
∫

Y
v · ∇yθdy (4.71)

= 0 (4.72)

since ∇y · v = 0 and thus (4.67).

Lemma 4.7 If u,w ∈ N then uw ∈ N .

Proof. This is simply proved by expanding

v · ∇y(uw) = w(v · ∇yu) + u(v · ∇yw) = 0 . (4.73)

Lemma 4.8 For each u ∈ H1
Y , v ∈ N we have

(P(u), v) = (u, v) . (4.74)

Proof. From Lemma 4.1 and Lemma 4.1 we have u = P(u) + w with w ∈ W. Then

(u, v) = (P(u) + w, v) = (P(u), v) + (w, v) = (P(u), v) (4.75)

since W ⊥ N .

53

Lemma 4.9 If w ∈ N , then P(wv) = wP(v) for each v ∈ H1
Y .

Proof. For any u ∈ H1
Y we have

(P(wv), u) = (P(wv),P(u)) = (wv,P(u)) = (v, wP(u)) . (4.76)

Since wP(u) is also in N by Lemma 4.7, we have

(v, wP(u)) = (P(v), wP(u)) = (wP(v),P(u)) = (wP(v), u), (4.77)

where we have used again Lemma 4.7 to show that wP(v) is in N . Thus, (P(wv), u) =

(wP(v), u) for any u ∈ H1
Y and the lemma follows.

Lemma 4.10 P(u) and Q(u) are unchanged if multiply the velocity field v by ψ ∈ N ,

ψ 6= 0.

Proof. We have Q(u) = v · ∇yθ where θ is the periodic solution of (4.48). Then, consider

the projection with velocity field u = ψv, i.e. Q∗(u) = ψv · ∇yθ
∗ where θ∗ satisfies

ψv · ∇y (ψv · ∇yθ
∗) = ψv · ∇yu . (4.78)

Since ψ ∈ N , ψ 6= 0 this gives

v · ∇y (v · ∇y(ψθ∗)) = v · ∇yu . (4.79)

Therefore, ψθ∗ = θ up to a function in N . But then ψv · ∇yθ
∗ = v · ∇y(ψθ∗) = v · ∇yθ so

that Q∗(u) = Q(u). Since P(u) = u−Q(u) this is also unchanged.

Lemma 4.11 For v, w ∈ H1
Y we have

(Q(v),v · ∇yw) = (v,v · ∇yw) . (4.80)

54

Proof. By simple substitution we have

(Q(v),v · ∇yw) = (v − P(v),v · ∇yw)

= (v,v · ∇yw)− (P(v),v · ∇yw)

= (v,v · ∇yw) (4.81)

since P(v) ∈ N , v · ∇yw ∈ W and W ⊥ N .

Lemma 4.12 If u ∈ N then

(Q(∂xiu),v · ∇yw) = − (u, ∂xi(v) · ∇yw) (4.82)

and

(Q(∂tu),v · ∇yw) = − (u, ∂t(v) · ∇yw) (4.83)

holds for all w ∈ H1
Y .

Proof. In Lemma 4.11 let v = ∂u
∂x1

, where u ∈ N . By definition, we have v · ∇yu = 0, and

∂

∂x1
(v · ∇yu) =

∂vi

∂x1

∂u

∂yi
+ vi

∂2u

∂x1∂yi
= 0 . (4.84)

Thus, we have
∂vi

∂x1

∂u

∂yi
= −vi

∂2u

∂x1∂yi
. (4.85)

Now using Lemma 4.11 with Q(∂x1u) we get

(
Q
(
∂u

∂x1

)
,v · ∇yw

)
=

(
∂u

∂x1
,v · ∇yw

)
(4.86)

=
(
∂u

∂x1
,∇y · (vw)

)
(4.87)

=
∫

Y

∂u

∂x1

∂

∂yi
(viw)dy (4.88)

= −
∫

Y
viw

∂2u

∂x1∂yi
dy (4.89)

=
∫

Y
w
∂vi

∂x1

∂u

∂yi
dy (4.90)

55

using (4.85). Integration by parts on this gives us

−
∫

Y
u
∂

∂yi

(
w
∂vi

∂x1

)
dy = −

∫
Y
u

[
∂vi

∂x1

∂w

∂yi
+ w

∂

∂x1

(
∂vi

∂yi

)]
dy (4.91)

= −
∫

Y
u

(
∂vi

∂x1

∂w

∂yi

)
dy (4.92)

using the fact that ∇y · v = 0. Thus we obtain the Lemma. The other results are derived

in an exactly similar manner. �

Lemma 4.12 is very useful since it provides an alternative means of calculating the

quantity Q(∂tu), which can be seen from the following lemma:

Lemma 4.13 For u ∈ H1
Y the projection Q(∂tu) can be uniquely determined by Q(∂tu) =

v · ∇yφ where φ is the solution of the degenerate elliptic PDE

∇y · (A∇yφ) = −∂v

∂t
· ∇yu (4.93)

with periodic boundary conditions where A is the 2× 2 matrix with components Aij = vivj.

Proof. From the proof of Lemma 4.2 we know that the equation (4.93) has a solution which

is unique up to a function in N . For all w ∈ H1
Y we have, using the definition for φ that

(v · ∇yφ,v · ∇yw) =
∫

Y
vivj

∂φ

∂yi

∂w

∂yj
dy (4.94)

= −
∫

Y
w
∂

∂yi

(
vivj

∂φ

∂yj

)
dy (4.95)

=
∫

Y
w
∂vi

∂t

∂u

∂yi
dy (4.96)

=
∫

Y
w
∂

∂yi

(
u
∂vi

∂t

)
dy (4.97)

= −
∫

Y
u
∂vi

∂t

∂w

∂yj
dy (4.98)

= − (u, ∂t(v) · ∇yw) . (4.99)

From Lemma 4.12 we also have that

(Q(∂tu),v · ∇yw) = − (u, ∂t(v) · ∇yw) (4.100)

holds for all w ∈ H1
Y . Since v · ∇yw spans W, we therefore have that Q(∂tu) = v · ∇yφ

56

uniquely determines the projection. �

An exactly similar result holds for the projection Q(∂xiu). From the above lemma, we

see that Q(∂tu) can be found without explicitly calculating ∂tu. This will be useful in the

development of a numerical scheme later on.

Another, more intuitively meaningful, form of the projection P can be derived. From

Lemma 4.1 and equation (4.48) we have P(u) = u−v ·∇yθ where θ is the solution of (4.48).

In this equation the matrix A is symmetric and therefore we can write it in the diagonal

form A = TDT T where T is an orthonormal matrix

T =
1√

v2
1 + v2

2

 v1 v2

v2 −v1

 , D =

 v2
1 + v2

2 0

0 0

 . (4.101)

Note that A is singular and hence D has only a single no-zero diagonal element. Now

introduce a new set of coordinates ỹ such that ∇ỹ = T∇y. Then, equation (4.48) can be

written using the ỹ variables as

∇ỹ ·
(
D∇ỹ θ̃

)
= v ·

(
T−1∇ỹũ

)
(4.102)

where θ̃(ỹ1, ỹ2) = θ(y1, y2) and similarly for ũ. Expanding and simplifying the right-hand

side and also using the form of the matrix D we obtain the much simpler equation

∂

∂ỹ1

[
(v2

1 + v2
2)
∂θ̃

∂ỹ1

]
=
√
v2
1 + v2

2

∂ũ

∂ỹ1
(4.103)

which contains only the ỹ1-derivatives. Solving for θ̃ from this gives

θ̃ =
∫ ỹ1

0

1
v2
1 + v2

2

∫ η

0

√
v2
1 + v2

2

∂ũ

∂ỹ1
dξdη + c

∫ ỹ1

0

1
v2
1 + v2

2

dη + d (4.104)

where c = c(ỹ2, t) and d = d(ỹ2, t) are to be determined, and η is the dummy variable for

ỹ1 in the integration. From Lemma 4.2, the projection is computed as Q(u) = v · ∇yθ. and

in the new coordinates (ỹ1, ỹ2), using (4.104) this gives

Q(u) =
√
v2
1 + v2

2

∂θ̃

∂ỹ1
=

1√
v2
1 + v2

2

∫ ỹ1

0

√
v2
1 + v2

2

∂ũ

∂ỹ1
dη +

c√
v2
1 + v2

2

. (4.105)

The constants in (4.104) are determined from the boundary conditions. However, these

57

are not immediately obvious in the coordinates (ỹ1, ỹ2). To determine the corresponding

boundary conditions we first derive expressions for ỹ1, ỹ2. To do this, use ∇y = T∇ỹ and

apply this to ỹ1 and ỹ2 to obtain the equations:

∂ỹ1

∂y1
=

1√
v2
1 + v2

2

(
v1 + v2

∂ỹ1

∂ỹ2

)
, (4.106)

∂ỹ1

∂y2
=

1√
v2
1 + v2

2

(
v2 − v1

∂ỹ1

∂ỹ2

)
, (4.107)

∂ỹ2

∂y1
=

1√
v2
1 + v2

2

(
v1
∂ỹ2

∂ỹ1
+ v2

)
, (4.108)

∂ỹ2

∂y2
=

1√
v2
1 + v2

2

(
v2
∂ỹ2

∂ỹ1
− v1

)
. (4.109)

Eliminating the cross-derivative terms ∂ỹ1

∂ỹ2
and ∂ỹ2

∂ỹ1
gives the equations

v · ∇yỹ1 =
√
v2
1 + v2

2 , (4.110)

v⊥ · ∇yỹ2 =
√
v2
1 + v2

2 , (4.111)

where v⊥ = (−v2, v1). Dividing both sides of equation (4.110) by
√
v2
1 + v2

2 we have

dỹ1

dn
= 1 (4.112)

where n = v
|v| is the unit vector tangential to the streamline. Thus, the interpretation of

ỹ1 is that it is the arc-length along a streamline of the flow. Similarly, at each point on

the streamline ỹ2 is increasing in the orthogonal direction (it is trivial to show that ỹ1, ỹ2

form an orthogonal coordinate system). Since in the original coordinates y1, y2, the flow is

periodic, the streamlines will either “wrap-around” in a finite number of times or else never

reconnect. Consider the first case; since the streamlines reconnect, all smooth, continuous

functions on this trajectory must be periodic. Denote this period by P . Then, applying

this periodic boundary condition to (4.104) gives us

c = −

∫ P

0

1
v2
1 + v2

2

∫ η

0

√
v2
1 + v2

2

∂ũ

∂ỹ1
dξdη∫ P

0

1
v2
1 + v2

2

dη

(4.113)

and d will be an arbitrary constant.

58

Now consider a particular fluid particle on the streamlines z(τ), i.e. a Lagrangian de-

scription, with coordinates (ỹ1, ỹ2). In view of the fact that ỹ1 is the arc-length along a

streamline this means that we must have

dỹ1

dτ
=
√
v2
1 + v2

2 . (4.114)

Further, assume that
√
v2
1 + v2

2 is independent of τ , which is reasonable in light of the

results of section (3.3) which showed that the veloctity field and streamlines are slowly

varying with time. Then, we can use this to simplify (4.105) and (4.113). From (4.114) we

get

ỹ1 = τ
√
v2
1 + v2

2 + c1 (4.115)

where c1 is a constant, which we can set to zero by choice the fast-time parametrization

along the particular streamline. Changing integration variables to τ in (4.105) using

dỹ1 =
√
v2
1 + v2

2dτ (4.116)

∂

∂ỹ1
=

1√
v2
1 + v2

2

∂

∂τ
(4.117)

gives us

Q(u) = ũ(x, ỹ1(τ), ỹ2, t, τ)−
1
T

∫ T

0
ũ(x, ỹ1(τ), ỹ2, t, τ)dτ (4.118)

where T =
√
v2
1 + v2

2P . Equivalently, we have in our original coordinate system

Q(u) = u− 1
T

∫ T

0
u(x,z(τ), t, τ)dτ (4.119)

where
dz

dτ
= v , (4.120)

since ỹ1 and ỹ2 are the coordinates along the streamline.

Now using Corollary 4.1 we obtain

P(u) =
1
T

∫ T

0
u(x,z(τ), t, τ)dτ (4.121)

with z(τ) again given by (4.120).

Thus, from the above analysis we have the following equivalent definition of the projec-

59

tion P:

Lemma 4.14 The projection P : H1
Y 7→ N is uniquely given by

P(u)(x,y, t) = lim
T→∞

1
T

∫ T

0
u(x,Θ(s), t, s)ds (4.122)

where Θ(x, t, τ ;y) is the flow map defined by

dΘ
dτ

= v, Θ(0) = y . (4.123)

The interpretation of the projection P(u) is now obvious. It is the average of the quantity u

along the streamlines and we therefore will refer to it as the streamline averaging. It is the

natural complement to the spatial average for this problem: the spatial average eliminates

dependence on the fast-spatial scales; the streamline average eliminates dependence on the

fast-time scales.

Consider again our set of equations from the multi-scale expansion. From the O(ε−1)

equation

v · ∇yf
′ = 0 (4.124)

we have f ′ ∈ N . Recalling that f ′ is determined from f ′ = f(S + S′)− f and that f(S) is

smooth and f is independent of y we have

v · ∇y

[
f(S + S′)− f

]
= fSv · ∇yS

′ (4.125)

where

fS =
df

dS

∣∣∣∣
S+S′

. (4.126)

Thus, from this we see that we have S′ ∈ N provided that fS 6= 0. From (2.56) f(S) is

given by f(S) = S2

S2+a(1−S)2
with a > 0 so that

df

dS
=

2aS(1− S)
(S2 + a(1− S)2)2

. (4.127)

From this we see that (4.126) is zero for S + S′ = 0, 1 only. However, note that if S = 1

then this implies that S′ ≡ 0 in the cell and therefore v · ∇yS
′ = 0. Similarly for the case

of S = 0. If S 6= 0, 1 and S + S′ = 1 then we must clearly have ∂S′

∂y1
= 0 and ∂S′

∂y2
= 0

60

(since it is a maximum) and hence v · ∇yS
′ = 0. The same argument holds for the case

where S + S′ = 0 and where S′ must be a minimum. Thus, we can conclude that S′ ∈ N

everywhere.

Equation (4.125) only provides a constraint that S′ ∈ N but S′ cannot be solved for

directly from this equation. In order to determine S′ we will need to develop a second

equation that describes its evolution in time.

Now consider the O(ε0) equation. Taking the spatial average of this equation and using

that fact that all fluctuating terms have mean zero gives us, upon rearrangement:

∂S

∂t
+ v · ∇xf = −∇x · v′f ′ . (4.128)

This equation is basically similar to our original equation (4.32) since we have ∇x · v = 0

and so the homogeneous part gives a conservation law for S. The right-hand side term

corresponds to the interaction of the small scale fluctuations upon the large scale average.

The overall nature of this equation is not immediately clear without knowledge of the flux

fluctuation f ′. The essence of the upscaling problem is how to accurately compute this

term without computing the actual fluctuations S′ at all points. Towards this end, we first

derive the equation for S′. Subtract (4.128) from equation (4.41) to obtain:

∂S′

∂t
+ v′ · ∇xf + (v + v′) · ∇xf

′ +
∂S1

∂τ
+ (v + v′) · ∇yf1 −∇x · v′f ′ = 0 . (4.129)

We now apply the P projection to this equation. Consider each of the terms: for the first

term we have

P
(
∂S′

∂t

)
=
∂S′

∂t
−Q

(
∂S′

∂t

)
. (4.130)

The second term on the right-hand side is computable without having to evaluate ∂S′

∂t if

we use Lemma 4.13 since S′ ∈ N (only knowledge of S′ and ∂S′

∂t is needed). This is useful

since we obtain the time derivative in explicit form. Next, using ∂f
∂xi

∈ N (since it has no

y-dependence) and Lemma 4.9 we have

P
(
v′ · ∇xf

)
= P

(
v′
)
· ∇xf (4.131)

61

where P (v′) = (P(v1),P(v2)). Similarly, we have

P
(
∇x · v′f ′

)
= ∇x · v′f ′ . (4.132)

since there is no y-dependence. The projection of the other terms in the equation are more

complicated to evaluate. First consider the third term of (4.129)

P
(
(v + v′) · ∇xf

′) = P
(
v · ∇xf

′)+ P
(
v′ · ∇xf

′) . (4.133)

For the first of the term in (4.133),

P
(
v · ∇xf

′) = v · P
(
∇xf

′) (4.134)

= v · ∇xf
′ − v · Q

(
∇xf

′) . (4.135)

For the second term in (4.133) we have

P
(
v′ · ∇xf

′) = P
((
P(v′) +Q(v′)

)
· ∇xf

′) (4.136)

= P
(
P(v′) · ∇xf

′)+ P
(
Q(v′) · ∇xf

′) . (4.137)

For the first term in (4.137) we use Lemma 4.9 to obtain

P
(
P(v′) · ∇xf

′) = P(v′) · P
(
∇xf

′) (4.138)

= P(v′) · ∇xf
′ − P(v′) · Q

(
∇xf

′) (4.139)

and for the second term in (4.137) we have

P
(
Q(v′) · ∇xf

′) = P
(
Q(v′) ·

(
P
(
∇xf

′)+Q
(
∇xf

′))) (4.140)

= P
(
Q(v′) · P

(
∇xf

′))+ P
(
Q(v′) · Q

(
∇xf

′)) (4.141)

= P
(
Q(v′) · Q

(
∇xf

′)) . (4.142)

62

Thus, we obtain

P
(
(v + v′) · ∇xf

′) =
(
v + P(v′)

)
· ∇xf

′ −
(
v + P(v′)

)
· Q
(
∇xf

′)+P
(
Q(v′) · Q

(
∇xf

′)) .
(4.143)

Now consider the projection of the remaining terms which involve the fast time τ :

P
(
∂S1

∂τ
+ (v + v′) · ∇yf1

)
. (4.144)

From (4.36) we have f1 = fSS1. Note that v · ∇yfS = 0 since fS = df
dS |S+S′ and therefore

v · ∇yS
′ = 0 (fSS = 0 only at values of S less than the shock height) Thus,

∂S1

∂τ
+ (v + v′) · ∇yf1 =

∂S1

∂τ
+ fS(v + v′) · ∇yS1 . (4.145)

If we project the right-hand side of this equation onto streamlines z̃ defined the velocity

field fSv, then this becomes the total derivative dS1

dz̃ . By Lemma 4.10, the projection P

is unchanged by multiplying the velocity field by a function g ∈ N . Therefore, using the

alternative form of the projection, with fSv instead of v we get

P
(
∂S1

∂τ
+ fS(v + v′) · ∇yS1

)
= lim

T→∞

1
T

∫ T

0

dS1

dz̃
dτ (4.146)

= lim
T→∞

S1(T)− S1(0)
T

(4.147)

= 0 (4.148)

if S1 is bounded.

Combining the above results, we obtain the following theorem:

Theorem 4.2 For the ansatz (4.33), S and S′ satisfy the following closed, coupled system

of equations

∂S

∂t
+ v · ∇xf +∇x · v′f ′ = 0 , (4.149)

∂S′

∂t
+
(
v + P(v′)

)
· ∇xf

′ + P
(
v′
)
· ∇xf −∇x · v′f ′ = G(x,y, t) (4.150)

63

where

G(x,y, t) =
(
v + P(v′)

)
· Q
(
∇xf

′)− P (Q(v′) · Q
(
∇xf

′))+Q
(
∂S′

∂t

)
. (4.151)

Furthermore, for each fixed y the system is hyperbolic with respect to the variables x and t.

Proof. Combining the previous results gives us the form of the equations. We therefore

only need to demonstrate that the system is hyperbolic in the variables x and t (note that

the fast spatial variable y now appears only as a parameter in the above system and also

that the fast time τ has been completely eliminated). Hyperbolicity is proved in Appendix

A. �

Note that the our system (4.149) and (4.150) is not in conservation form, even though

the original equation (4.32) defines a conservation law. This is due to the fact that the

original saturation has been split as Sε = S + S′ +O(ε).

4.4.1 Justification for the Asymptotic Expansions

In our analysis we been deliberately vague with the choice of initial conditions for the terms

in the expansion of the saturation. This is due to the fact that terms involving the fast

time scale τ appear in the analytic solution do not generally appear if we start from smooth

initial data (i.e. the initial saturation is a function of the large scale x only). To see this, we

write the solution of (4.32) as Sε = Ŝ(x,y, t) + S̃(x,y, t, τ), i.e. an “average” with respect

to the fast time plus a fluctuation about this average. Then, substituting into (4.32), using

(4.38) and (4.39) and gathering terms with the same power of ε gives at O(ε−1)

∂S̃

∂τ
+ v · ∇yS̃ + v · ∇yŜ = 0 . (4.152)

If Sε is initially smooth then v · ∇yŜ will be zero and S̃ = 0. Hence S̃ will be identically

zero for all subsequent times and hence no fast time scales appear in the solution. Note

that this is also the case if Ŝ ∈ N initially (this provides the constraint on the initial form

of the fluctuations S′). If Ŝ has any component in W then S̃ will be non-zero and hence

the fast time scale appears. In our problems, the initial saturation will always be smooth.

However, in the course of numerical computations, at steps beyond the first, we are in effect

solving (4.32) with oscillatory initial data and due to numerical errors this may not exactly

64

lie in the space N . Therefore, it is important to show that if this is the case, these errors

do not grow.

To show that this is indeed the case, we need to show that S1 remains bounded as

τ → ∞. To do this, we derive the equation for S1. Taking (4.150) as our given equation

for S′, we subtract it from the fluctuation equation (4.129) to obtain, upon simplification,

∂S1

∂τ
+fSv·∇yS1 = −Q(v′)·

[
∇x(f + f ′)

]
−
(
v + P(v′)

)
·Q(∇xf

′)+P
(
Q(v′) · Q

(
∇xf

′))−Q(∂S′
∂t

)
.

(4.153)

If we project this onto the streamlines defined by fSv then the left-hand side becomes a total

derivative. To show that S1 remains bounded, we must estimate how fast the terms on the

right-hand side decay along the streamline. Suppose first that the streamlines reconnect.

Then, by Lemma 4.10, since the projection P is invariant if we multiply v by g ∈ N , the

integral of right-hand side over one such period is exactly PP(RHS), where as before P is

the length of the path the streamlines traverse before reconnecting. Taking the P projection

of these terms and using the fact that P(Q(u)) = 0 and the other properties of P these

become

− P
(
Q(v′) · ∇xf

′)− P (P(v′) · Q(∇xf
′)
)

+ P
(
Q(v′) · Q

(
∇xf

′)) . (4.154)

Using Lemma 4.9 the second term is zero. Then, combining the other terms

− P
(
Q(v′) · ∇xf

′)+ P
(
Q(v′) · Q

(
∇xf

′)) = P
[
Q(v′) ·

(
∇xf

′ −Q
(
∇xf

′))](4.155)

= P
[
Q(v′) · P(∇xf

′)
]

(4.156)

= P
(
Q(v′)

)
· P(∇xf

′) (4.157)

= 0 . (4.158)

Thus, PP(RHS) = 0. Hence Hence S1 is periodic and bounded over this interval P .

If the streamlines do not reconnect, then we still have that the average of the right-hand

side terms approach zero as T →∞. Thus, we have S1(T)/T → 0 as T →∞ which shows

that S1 at least grows sub-linearly.

65

Chapter 5

Numerical Implementation

5.1 Overview

In this section of this thesis we describe how to take the analysis given in the first previous

sections and translate this into a scheme for computing upscaled numerical solutions to our

two-phase flow problem.

The results of the analysis given in Chapter 2 lead to the upscaled equations (4.24)

for the pressure equation, and (4.149) for the saturation. As mentioned, both retain the

original character of the problem (2.51), (2.52), i.e. the upscaled pressure equation remains

elliptic and the upscaled saturation equation remains hyperbolic. From now on, when we

refer to the “saturation” equation we mean the upscaled equation (4.149) and when we refer

to the “pressure” equation we mean (4.24). The multiple scale analysis was sequential, in

that period fluctuations in the permeability give rise to period fluctuations in the velocity

and this then gives rise to periodic fluctuations in the saturation. The numerical method

we employ is similarly sequential, in the same way that the resolved computations were

(an IMPES scheme). We solve the pressure equation (4.24) via an implicit, ellptic method

and then use the resulting velocity field to explicitly update the saturation (4.149). These

equations are solved on coarse grids. However, as was noted, in both equations we need to

compute fluctuating quantities (from (4.25) for the pressure equation and (4.150) and the

velocity fluctuations for the saturation equation). Thus, in addition to the coarse grid, we

also define sub-grids within each of the coarse grid cells that enable us to compute these

quantities.

We first concentrate on the numerical method for solving (4.149), which is the main

emphasis of this thesis. Combining this with equation (4.150) leads to a coupled system

66

of hyperbolic equations with source terms. These are solved using a finite-volume method.

This scheme for the saturation equation then guides us in choosing a numerical method for

(4.24). We are able to use a variant of the multi-scale finite element method for this. These

two numerical methods complement one another very nicely to give a succicnt upscaling

method.

This chapter is laid out as follows. We first describe the overall strategy for solving the

saturation equation and how this leads to what we call the coarse-grid sub-grid method.

We present the details of the numerical method, the hyperbolic solver and the method

used to compute the streamline average (4.122). At that point we then demonstrate the

converge of the scheme for this part by performing some numerical tests. We then describe

the numerical method for the pressure equation using multi-scale finite element methods,

and, in particular, a special variant for periodic permeabilities that we use in our scheme.

Combining the upscaling methods for the saturation equation and the pressure equation

gives our overall numerical scheme. Finally, a modification is suggested that allows for the

method to be used in practice where the fluctuations in the permeability are not periodic.

5.2 Coarse-grid Sub-grid Approach

Recall our set of equations for the evolution of the average and fluctuation of the saturation

∂S

∂t
+ v · ∇xf = −∇x · v′f ′ , (5.1)

∂S′

∂t
+
(
v + P(v′)

)
· ∇xf

′ + P
(
v′
)
· ∇xf = ∇x · v′f ′ +G(x,y, t) , (5.2)

S being the spatial average of the multiscale solution Sε (the solution of our original system

(2.51), (2.52)) and S′ the O(1) fluctuation about this average. The terms are G given

by (4.151) and note that we have now moved the small-scale large-scale interaction terms

∇x·v′f ′ to the right-hand side of both equations, where they are now treated as source terms.

v and v′ are the average and fluctuation of the velocity field. Note that the fluctuation

equation (5.2) has dependence on the fast-spatial variable y but that this appears only as a

parameter. Thus, for each particular value ykl, (5.2) gives the evolution of the fluctuation

67

S′kl, i.e.

∂S′kl

∂t
+
(
v + P(v′)kl

)
· ∇xf

′
kl + P

(
v′
)
kl
· ∇xf = ∇x · v′f ′ +G(x,y, t)kl , (5.3)

with the subscript kl denoting the evaluation of terms that depend on y at the point ykl.

Assume further that we have sufficient number of ykl points to cover the cell Y , so that the

average (4.6) can be approximated by

φ(x) =
∫

Y
φ(x,y)dy (5.4)

≈
∑
k,l

hk,lφ(x,ykl) , (5.5)

i.e. a numerical quadrature for the average. This converges as the number of points ykl are

increased, provided φ(x,y) is bounded and continuous. For convenience of analysis, we can

take the points ykl to form a Cartesian mesh over the cell Y with K grid points along y1

and L grid points along y2. In this case we have hk,l = h = 1/KL for all k, l. The above

quadrature rule is the 2-d equivalent of the trapezoidal rule, which is extremely accurate

for periodic functions. Then, we can use this for the average and fluctuation fluxes and the

interaction term,

f =
∫

Y
f(S + S′)dy ≈

∑
k,l

hf(S + S′kl) , (5.6)

f ′ = f(S + S′)− f , (5.7)

v′f ′ =
∫

Y
v′f ′dy ≈

∑
k,l

hv′klf
′
kl . (5.8)

Note that from the approximation for the interaction term we can see that

∇x · v′f ′ = ∇x ·
∑
k,l

hv′klf
′
kl (5.9)

=
∑
k,l

h
[
f ′kl∇x · v′kl + v′kl · ∇xf

′
kl

]
(5.10)

=
∑
k,l

hv′kl · ∇xf
′
kl , (5.11)

since ∇x · v′ = 0. Combining the K × L fluctuation equations (5.3) with the average

equation (5.1) and using the approximation (5.11) for the term ∇x · v′f ′ leads us to the

68

coupled system of nonlinear equations

∂q
∂t

+Ah
∂f(q)
∂x1

+Bh
∂f(q)
∂x2

= H , (5.12)

where q is the vector

q =
(
S, S′11, S

′
12, . . . , S

′
1L, S

′
21, S

′
22, . . . , S

′
KL

)T
, (5.13)

Ah and Bh are matrices with

Ah =


v1 0 0

P(v′1)11 v1 + P(v′1)11 0

P(v′1)12 0 v1 + P(v′1)12
...

. . .

 (5.14)

(contains only the x1-components of the velocity field), and similarly for Bh. The h subscript

is used to denote the dependence on the particular choice of the discretization of the sub-

grid ykl. For the most part we will drop the use of this subscript for clarity. f(q) is the flux

vector with components

f(q) =
(
f, f ′11, f

′
12, . . . , f

′
1L, f

′
21, f

′
22, . . . , f

′
KL

)T (5.15)

and H is the vector of “source-terms”

H =
(
−∇x · v′f ′,∇x · v′f ′ +G11,∇x · v′f ′ +G12, . . . ,∇x · v′f ′ +GKL

)T
. (5.16)

Equation (5.12) can be solved numerically by discretizing in x, i.e. at the coarse level since

the y dependence has been taken care of by our choice of ykl. We refer to the above

methodology as coarse-grid sub-grid method. Within the domain of interest we first define

a coarse-grid with a sufficient number of points xij to discretize the features on the large

scale (those that vary with respect to the large scale variable x). Then, within each of

the coarse-grid cells we define sub-grids, the points ykl, to discretize the features on the

fast scale y. The sub-grids need not cover the whole of the coarse-grid block, nor in fact,

use any particular feature of the its geometry. The sub-grid need only contain a sufficient

69

sub-grid

coarse grid

Figure 5.1: Diagram for the coarse-grid sub-grid setup.

number of points so that the integrals in (5.6) and (5.8) are computed accurately. Thus, we

may choose to use a sub-grid located at the center of the coarse-grid block, as illustrated in

figure 5.1. Taking this approach, we can view our sub-grid as a sampling of the fast-scales

within the coarse-grid. Therefore, our method is similar in several respects to the work of

Kevrekidis et al [18] who used an approach known as “patch dynamics” to develop coarse-

grid models for multiscale problems. In that method a fine grid simulator is used to find

the approximate evolution of the average over a short time period and then a larger step is

then taken by extrapolating this forward in time. Their work, however, concentrated more

on dissipative systems and also the fine scale information is not carried forward between

time steps, so that the initial conditions for the fine scale solver are artificially imposed.

In our case, since we retain the solution on the sub-grid between steps, we naturally use

these as the initial condition for the next coarse-grid time step. Moreover, for the case of

periodic velocity fields, our method exactly (to within O(ε)) captures the true solution at

each point within the domain, even if we use a sub-grid that does not cover the whole of

the coarse-grid. This is because we can interpolate the solution S + S′, to all points in the

coarse-grid block using periodicity (strictly we must also have the coarse-grid block being

an integer multiple of the fast scale period Y/ε).

Equation (5.12) is the basis for our numerical upscaling of the saturation equation.

By solving for only a subset of the fluctuations, we hope to be able to approximate the

70

small scale large scale interaction term ∇x · v′f ′ sufficiently accurately so that S is evolved

correctly. Since the discretization of (5.12) is done at the coarse-grid level, we benefit both

from an overall smaller number of grid points than resolved calculations and the fact that

we are now able to take large time steps that will still satisfy stability conditions for the

numerical scheme. For the velocity field, we are able to compute the corresponding average

and fluctuations on exactly the same coarse and sub-grids when we use MSFEM, as will be

described in section 5.4.

We refer our system (5.12) an “upscaled” system even though we compute fluctuations

which are, by definition, small scale features. Whilst this is perhaps not as pleasing as

deriving a single homogenized equation for the average saturation S, as can be done in

the case of elliptic equations, or in special cases, it is more practical from a computational

viewpoint.

5.3 Numerical Upscaling Method for the Saturation Equa-

tion

In Appendix A we show we that the homogeneous part of the upscaled equations (5.12)

form a hyperbolic system of equations. The strategy we use for solving such a system when

coupled with the source terms what is often called a fractional-step or operator-splitting

method [24]. For this method, we split the problem (5.12) into two sub-problems; the

homogeneous part
∂q
∂t

+A
∂f(q)
∂x1

+B
∂f(q)
∂x2

= 0 (5.17)

and the source terms
∂q
∂t

= H . (5.18)

To advance the solution forward in time we alternate between solving (5.17) and (5.18).

The great advantage of this method is that we can apply existing techniques for hyperbolic

equations in solving (5.17). For (5.18) we can treat these as a set of ODEs in time and so

again have a wide range of solution methods at our disposal.

For the hyperbolic part, we can take advantage of the well developed theory that exists

for solving such systems numerically. Further, as was shown above, the fluctuations in

the saturation will develop steep gradients and shocks, consistent with the original scalar

71

problem. Therefore, the numerical scheme must be able to handle these features of the

solution. Finite-volume schemes are perfectly suited to handle these issues and we choose

to use the class of schemes known as wave-propagation methods, developed by LeVeque [24].

These are implemented via the freely available package CLAWPACK [23]. A description of

the methods and their implementation for our problem is given in sections 5.3.1 and 5.3.2.

The updating of the source terms via (5.18) is done using a second order Runge-Kutta

method. The reasons for this will be given in section 5.3.3.

A crucial part of the numerical implementation for the transport problem is the com-

putation of the streamline projection and this is discussed in section 5.3.4.

Finally, in section 5.3.5 we demonstrate the convergence of the numerical scheme for

the saturation part of the upscaling. The problem for the velocity field is eliminated by

prescribing an analytic form for the velocity field that is divergence-free and has rapid

fluctuations. By doing this we are able to show that the scheme for the hyperbolic transport

part is first order overall.

5.3.1 Finite-Volume Solution of Homogeneous System

In developing a numerical scheme for (5.17), recall that the fast spatial variable y has been

taken care of via our choice of the set of points ykl. The hyperbolic solver therefore sees

the system as a function of x, the coarse variable, and t only. When we refer to grids in

what now follows, we mean discretizations in x.

Finite volume methods are based on subdividing the spatial domain into cells (the

“finite volumes”) and keeping track of an approximation to the integral of q, our vector

of unknowns in the hyperbolic problem (5.17), over each of these volumes. The methods

are well described in several texts, e.g. LeVeque [24]. By working with cell averages, it is

easier to use important properties of the conservation law in deriving numerical methods.

In particular we can make sure that the methods are conservative in a way that mimics the

true solution and this is very important in accurately calculating shock waves and other

features.

We will begin by considering uniform Cartesian grids, using the notation illustrated in

figure 5.2. The grid point at (x1,i, x2,j) will often be abbreviated by (i, j) in this case to avoid

the cumbersome use of subscripts. Each grid cell is of the form Ci,j = [x1,i−1/2, x1,j+1/2] ×

[x2,i−1/2, x2,j+1/2], ∆x1 = x1,i+1/2 − x1,i−1/2 and ∆x2 = x2,j+1/2 − x2,j−1/2. To derive the

72

Qij

x2,i−1/2

x2,i+1/2

x1,i−1/2 x1,i+1/2

Figure 5.2: Finite volume grid in two space dimensions, where Qij represents cell average.

basic form of the finite-volume scheme integrate the homogeneous equation (5.17) over Ci,j ,

which gives

d

dt

∫ ∫
Ci,j

q(x1, x2, t)dx1dx2 = −
∫
Ci,j

A
∂f
∂x1

dx1dx2 −
∫
Ci,j

B
∂f
∂x2

dx1dx2

= −
∫ x2,j+1/2

x2,j−1/2

Af
(
q(x1,i+1/2, x2, t)

)
dx2 +

∫ x2,j+1/2

x2,j−1/2

Af
(
qx1,i−1/2, x2, t)

)
dx2

−
∫ x1,i+1/2

x1,i−1/2

Bf
(
q(x1, x2,j+1/2, t)

)
dx1 +

∫ x1,i+1/2

x1,i−1/2

Bf
(
q(x1, x2,j−1/2, t)

)
dx1 .

(5.19)

Now integrating this expression from tn to tn+1 = tn + ∆t and dividing by the cell area

∆x1∆x2 we obtain the fully-discrete flux-differencing method of the form

Qn+1
i,j = Qn

i,j −
∆t
∆x1

[
Fn

i+1/2,j − Fn
i−1/2,j

]
− ∆t

∆x2

[
Gn

i,j+1/2 −Gn
i,j−1/2

]
(5.20)

where

Qn
i,j ≈

1
∆x1∆x2

∫ x2,i+1/2

x2,i−1/2

∫ x1,i+1/2

x1,i−1/2

q(x1, x2, t)dx1dx2 (5.21)

is the approximation to the average of q over Ci,j at time t = tn (note that it will be an

73

approximation since q(x1, x2, t) will not be available in general at t = tn) and

Fn
i−1/2,j ≈ 1

∆t∆x2

∫ tn+1

tn

∫ x2,i+1/2

x2,i−1/2

Af
(
q(x1,i−1/2, x2, t)

)
dx2dt (5.22)

Gn
i,j−1/2 ≈ 1

∆t∆x1

∫ tn+1

tn

∫ x1,i+1/2

x1,i−1/2

Bf
(
q(x1, x2,i−1/2, t)

)
dx1dt (5.23)

are the numerical fluxes each each edge of the cell Ci,j . Note that the averaging used here to

obtain Qi,j is different that the average (4.6) used in deriving the upscaled equations. Here

it is assumed that q has no fast spatial dependence and the average is only used for the

convenience of developing a discretely conservative numerical method. Note also that the

matrices A and B will be spatially varying since they depend on the velocity field.

5.3.2 Wave-Propagation Method

To obtain expressions for the fluxes (5.22), (5.23) we use the wave-propagation algorithms

of LeVeque and Bale [24, 1]. These are based upon solving a Riemann problem at each cell

interface between grid cells and using the resulting wave structure to update the solution in

the grid cell on each side. This is also the basis for Godunov’s method and other shock cap-

turing schemes. Due to the discrete nature of the methods, it is easier to interpret the fluxes

(5.22), (5.23) as updates to the cell averages, as in (5.20), rather than focusing on them as

approximations to the integrals (5.22). We give a summary of the wave-propagation meth-

ods below for the 1-dimensional case. This can then be used directly for the 2-dimensional

method, as in a dimension splitting method, or with some minor modifications to give an

unsplit method.

First note that the system (5.17) is not autonomous, i.e. the flux function depends not

just on the solution q but also the spatial variable x. This case is not usually treated in

the analysis of Godunov’s method since it gives rise to a Riemann problem that is not of

the classical form, but rather a generalized Riemann problem. The 1-dimensional problem

we use to illustrate the method is

qt +A(x, t) (f(q))x1
= 0 (5.24)

which, together with

qt +B(x, t) (f(q))x2
= 0 (5.25)

74

is the basis for solving (5.17) by dimension splitting [24]. The matrices A and B are of the

form given by (5.14). f is given by (5.15). For convenience, we denote by x the variable x1

for the 1-d discussion.

The flux function Af is discretized with respect to x in a manner consistent with the

finite-volume interpretation. Note that for our grid, two possible discretizations are possible;

cell-centered flux functions or edge-centered flux functions. In a cell-centered approach the

flux function Af is discretized to yield a flux function (Af)i(q) that holds throughout the ith

grid cell (different functional form in each cell). This is actually the most natural approach

for our problem since f is determined from (A.6) and (A.7) by averaging over the fast scales

within a grid block. When cell-centered flux functions are used, the generalized Riemann

problem at cell interface xi−1/2 consists of the equation

qt + Fi−1/2(q, x)x = 0 (5.26)

where

Fi−1/2(q, x) =

 (Af)i−1(q) if x < xi−1/2

(Af)i(q) if x > xi−1/2

(5.27)

together with the initial data

q(x, 0) =

 Qi−1 if x < xi−1/2

Qi if x > xi−1/2

(5.28)

This Riemann problem is slightly more complicated than in the autonomous case where the

equation (5.26) would be the same on either side of the discontinuity in the initial data. We

give some details below. Note that this choice of discretization dictates that A, and hence

the velocity field, should also be discretized in a cell-centered manner.

The alternative discretization approach is to use cell-edge flux functions. In this we

assume that a distinct flux function (Af)i−1/2 is associated with each cell interface xi−1/2.

This is natural if we interpret the flux function as measuring the the flow between cell i− 1

and cell i and often makes more sense than the cell-centered approach. We can relate this to

the cell-centered flux approach by viewing the flux (Af)i−1/2(q) as holding over the interval

[xi−1, xi] between the center of cell i− 1 and the center of cell i. The Riemann problem at

xi−1/2 is now a classical Riemann problem for the single equation qt + (Af)i−1/2(q)x = 0

75

with the data (5.28). However, to be consistent it would be necessary to consider a second

set of Riemann problems at the cell centers xi, where the flux function jumps. Nontrivial

waves can arise from these points even though the data Qi is the same to both sides.

The basis of the numerical method is to approximately solve the generalized Riemann

problem (5.26) at xi−1/2. To motivate the method, first consider the classical Riemann

problem for a constant-coefficient system

qt + Cf(q)x = 0 (5.29)

where the matrix C is constant, with piecewise-constant data (5.28). The solution can be

expressed in terms of the eigenvectors rp
i−1/2 of Jacobian matrix Ji−1/2 = Cf ′ (note that

the standard primed notation now refers to differentiation with respect to q rather than

signifying fluctuating quantities as in the section on multiscale analysis). The standard

approach is to decompose the jump in Q as a linear combination of the eigenvectors in

order to define “waves” Wp
i−1/2:

Qi −Qi−1 =
m∑

p=1

αp
i−1/2r

p
i−1/2 ≡

m∑
p=1

Wp
i−1/2 . (5.30)

The coefficients αp
i−1/2 are given by

αp
i−1/2 = R−1

i−1/2(Qi −Qi−1) (5.31)

where Ri−1/2 is the matrix of right eigenvectors. Waves corresponding to positive eigenval-

ues will move right into cell i and waves with positive eigenvalues will move left into cell

i − 1. Denoting the eigenvalues of Ji−1/2 by sp
i−1/2, we would then we define fluctuations

(using notation of LeVeque [24])

A+∆Qi−1/2 =
m∑

p=1

(sp
i−1/2)

+Wp
i−1/2 , (5.32)

A−∆Qi+1/2 =
m∑

p=1

(sp
i+1/2)

−Wp
i+1/2 . (5.33)

Here s+ = max(s, 0) and s− = min(s, 0). These give, respectively, the contributions to the

cell average Qi due to the right-going waves from xi−1/2 and left-going waves from xi+1/2.

76

The 1-d scheme in this case is then

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
. (5.34)

In this method, we have some freedom in the approximation used for the Jacobian Ji−1/2.

A common choice is one such that the method is discretely conservative, i.e.

Ji−1/2(Qi −Qi−1) = C(f(Qi − f(Qi−1) . (5.35)

This leads to the well-known “Roe average”.

For the spatially-varying case, we need the solution of the generalized Riemann problem,

(5.26), (5.27), (5.28), which is not as simple, and cannot be written in terms of simple waves

as in (5.30). To see this we first consider the structure of the solution in the scalar case.

This case also covers the solution of the original resolved calculations that were shown in

Chapter 1. The case for systems then follows in a similar manner. Consider our original

saturation equation (now using q = S for the saturation),

qt + (u(x, t)f(q))x = 0 (5.36)

where ui is the Darcy velocity and f(q) is the flux given by (2.56). As described above, we

discretize these using a cell-centered approach to give the flux uifi(q) which holds over the

entire ith cell. This nonlinear function of the solution q is then used to obtain the Riemann

problem

qt + Fi−1/2(q)x = 0 (5.37)

where Fi−1/2 is as given by (5.27) with A = u (so that F is now a scalar) and initial data as

in (5.28). For the moment, we assume that uif
′
i(q) has the same sign everywhere, i.e. over

all cells, with, say uif
′
i(q) > 0 so that shocks and other information will move right. Then,

the Riemann solution for (5.37) is [1]

q(x, t) =


Qi−1 if x < xi−1/2

Qr
i−1 if xi−1/2 < x < xi−1/2 + s1i−1/2t

Qi if x > xi−1/2 + s1i−1/2t

(5.38)

77

where

ui−1fi−1(Qi−1) = uifi(Qr
i−1/2) (5.39)

gives the value Qr
i−1/2 of q just to the right of xi−1/2 as illustrated in left hand plot of figure

5.3. There is a single propagating wave W 1
i−1/2 with speed s1i−1/2 given by the Rankine-

Qr
i−1/2

Qi−1

W 1
i−1/2

Qi

qt + uifi(q)x = 0qt + ui−1fi−1(q)x = 0

Qi−1

qt + Aifi(q)x = 0

Qi

Qr
i−1/2

qt + Ai−1fi−1(q)x = 0

W3
i−1/2W2

i−1/2

Ql
i−1/2

W1
i−1/2

Figure 5.3: Riemann solution for the variable-coefficient equation in the case of ui−1Ji−1 > 0
and uiJi > 0 (left). Structure of the Riemann solution for a generalized Riemann problem
with m = 3 (right).

Hugoniot condition,

s1i−1/2 =
uifi(Qi)− ui−1fi−1(Qr

i−1)
Qi −Qr

i−1

. (5.40)

Note that there is also a stationary discontinuity in q at xi−1/2 that arises from the jump

in the Jacobian Ji−1/2 = uf ′ at this point, which leads to a corresponding jump in the

saturation. The flux, however, should be continuous at this point since the saturation

leaving cell i − 1 must enter cell i, and this leads to the expression (5.39). Note that

this is also a special case of the Rankine-Hugoniot jump condition across the stationary

discontinuity at xi−1/2.

For equation (5.37), we can choose r1i−1/2 = 1 as the “eigenvector” of Ji−1/2 with eigen-

value s1i−1/2, so that Ji−1/2 = s1i−1/2. Attempting to solve the Riemann problem by a decom-

position of the form (5.30) would fail here, as it would lead to W 1
i−1/2 = α1

i−1/2 = Qi−Qi−1,

which is not correct. The problem is that we have neglected to take account of the jump in

q at xi−1/2. The crucial observation is that if we instead decompose the flux-difference, as

opposed to the solution itself, and write the solution in terms of these flux-waves, we are

able to solve this Riemann problem correctly. The update formula then uses flux-waves,

as opposed to waves generated using the discontinuity in the solution, to update the cell-

78

averages on either side. Using the same eigenvectors of the approximate Jacobian Ji−1/2

the flux-difference is decomposed as

uifi(Qi)− ui−1fi−1(Qi−1) =
m∑

p=1

βp
i−1/2r

p
i−1/2 ≡

m∑
p=1

Zp
i−1/2 (5.41)

where

βi−1/2 = R−1
i−1/2 (uifi(Qi)− ui−1fi−1(Qi−1)) (5.42)

(note that m = 1 and R = 1 here). This is correct since the entire flux difference is carried

by the one propagating wave, with no flux difference remaining at xi−1/2. To see that this

agrees with the solution (5.38), we can obtain the correct wave W 1
i−1/2 of figure 5.3 by

dividing Z1
i−1/2 by the wave speed (as suggested by (5.41) and (5.30))

W 1
i−1/2 = Z1

i−1/2/s
1
i−1/2 (5.43)

= Qi −Qr
i−1/2 (5.44)

using (5.40). Whilst this is useful for interpretation, we do not need to use W 1
i−1/2 since

the flux waves Zp
i−1/2 can be used directly in the wave-propagation algorithm. Using the

previous notation, the the fluctuations (5.33), (5.32) used in the update formula (5.34) are

now defined as

A+∆Qi−1/2 =
∑

p:sp
i−1<0

Zp
i−1/2 , (5.45)

A−∆Qi+1/2 =
∑

p:sp
i+1>0

Zp
i+1/2 , (5.46)

i.e. we again identify the left and right going wave contributions to the cell averages.

To summarize the above, attempting to solve the generalized Riemann problem in terms

of the wave W p as illustrated in figure 5.3 requires determining the proper jump Qr
i−1/2 −

Ql
i−1/2, since q is not continuous across xi−1/2. We would need to determine waves W p

i−1/2

that are proportional to eigenvectors rp
i−1/2 and that also lead to states Qr

i−1/2 and Ql
i−1/2

satisfying (5.39). In the nonlinear case this leads to a nonlinear system of equations to solve.

By working instead in terms of the flux difference, the fact the flux is continuous across

xi−1/2 works to our advantage since the entire flux difference can then be decomposed into

79

propagating flux-waves using the linear decomposition (5.39).

Now consider our nonlinear system of m = 1 +K × L equations (5.24),

qt +A(x, t) (f(q))x = 0 . (5.47)

A cell-centered discretization followed by a linearization leads to a Jacobian Ji = Aif ′i

associated with cell i. Note that fi is computed numerically using (5.15) and (5.6) and

(5.7) within each of coarse grid cells. Similarly, the Jacobian is computed numerically using

the expressions (A.15), (A.16), (A.17), (A.18) derived in Appendix A. The terms in A are

computed using (5.14). The details of computing the projected terms are given in section

5.3.4.

Suppose that this matrix Ji is nonsingular with Pi positive eigenvalues and m − Pi

negative eigenvalues. The generalized Riemann solution must now satisfy the equations qt + Ji−1qx = 0 if x < xi−1/2

qt + Jiqx = 0 if x > xi−1/2

(5.48)

with data (5.28). This has a bounded solution provided that Pi−1 = Pi ≡ P and that the

set of m vectors obtained by taking the eigenvectors of Ji−1 that correspond to negative

eigenvalues along with the eigenvectors of Ji that correspond to positive eigenvalues forms a

linearly independent set. These are the vectors we use as the rp
i−1/2 for p = 1, 2, . . . ,m, along

with the corresponding eigenvalues as the sp
i−1/2. Then the Riemann problem has a unique

solution in the form illustrated in right hand plot of figure 5.3, with m propagating waves

proportional to these vectors. The left-going m − P waves satisfy the Rankine-Hugoniot

conditions for the equation qt + Ji−1qx = 0 valid for x < xi−1/2, while the right-going

P waves satisfy the Rankine-Hugoniot conditions for the equation qt + Jiqx = 0 valid for

x > xi−1/2. At xi−1/2 the values Ql
i−1/2 and Qr

i−1/2 must be related via Ai−1fi−1(Ql
i−1/2) =

Aifi(Qr
i−1/2) so that the flux is continuous. Thus, the approximate Jacobian Ji−1/2 is defined

using the combination of the eigenvectors and eigenvalues from Ji−1 and Ji as described

above. The numerical scheme proceeds in exactly the way described above for the scalar

case, using the expression (5.41) (with uf now replaced by Af) to define the waves Zp which

are used in the update formulas.

The above methods give first order schemes (5.34), like Godunov’s method, but written

80

in terms of the waves and the cell averages. To extend the 1-d scheme to high-resolution

method, correction fluxes are added, so that (5.34) now becomes [24]

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
− ∆t

∆x

[
F̃i+1/2 − F̃i−1/2

]
(5.49)

where

F̃i−1/2 =
1
2

m∑
p=1

sgn(sp
i−1/2)

(
1− ∆t

∆x
|sp

i−1/2|
)

Z̃p
i−1/2 . (5.50)

Z̃p
i−1/2 is a “limited” version of the wave Zp

i−1/2 obtained by comparing Zp
i−1/2 to Zp

I−1/2,

the corresponding wave from the adjacent Riemann problem on the upwind side, where

I =

 i− 1 if sp
i−1/2 > 0

i+ 1 if sp
i−1/2 < 0

(5.51)

If no limiter is applied, so that Z̃p
i−1/2 = Zp

i−1/2 then for the linear problem, this method

reduces to the Lax-Wendroff method. Using a limiter reduces the non-physical oscillations

that are present in that method, and allows for robust and accurate computations of shocks

and other discontinuous solutions.

To use these schemes for multidimensional methods, we can either use dimension split-

ting, as mentioned above, or directly apply the wave-propagation methodology. In this

second case, the method is developed in much the same way as was done above, where

we solve approximate Riemann problems at each of the cell edges individually and then

use the flux-continuity over cell edges to determine the flux across each edge and hence

the contribution to the cell averages. These methods, and their extension to higher order

schemes are well described in [24].

As mentioned, we use the hyperbolic package CLAWPACK to solve the homogeneous

system (5.17). Some further details of doing this are given in Appendix C.

5.3.3 Computation of Source Terms

As mentioned in the introduction of this section, we use a fractional step method to handle

the source terms present in our upscaled equations (5.12). Thus, to update the contribution

81

from the source terms, we use equation (5.18),

∂q
∂t

= H(q,x, t) (5.52)

where H is the vector function

H(q,x, t) = (0, G11, G12, . . . , GKL)T (5.53)

with the function G given by

G(q,x,y, t) =
(
v + P(v′)

)
· Q
(
∇xf

′)− P (Q(v′) · Q
(
∇xf

′))+Q
(
∂S′

∂t

)
. (5.54)

The benefit of using this fractional step method is that we can take advantage of the schemes

that are available for the hyperbolic part, described above, and also (5.18) becomes a set of

ODEs in q and hence we can take advantage of the schemes available for solving these. The

type of splitting that we used here is known as a Godunov splitting and is generally only

first-order accurate. A modification to the method yields a formally second order scheme,

known as Strang’s method. However, the difference in accuracy in the solution is minimal

for the coarse-grids that we are attempting to use here and does not justify the additional

cost (c.f. examples in [24]).

The general implementation of this method is very simple, the only issue being the choice

of ODE solver to be used. A wide variety of ODE solvers are available for systems of the

form y′ = ψ(y, t) where y(t) ∈ Rn. Note, however, that in general we cannot use multi-step

methods that require more than one level of data (e.g. yn−1 as well as yn) to generate the

solution yn+1 at the next time level. This is because we only have data Q∗
i (the result of

solving the hyperbolic part at this stage) to use in computing Qn+1
i . Previous values (e.g.

Qn
i or Q∗

i from the previous time step) are not suitable to use in the context of multi-step

methods because Q∗
i is computed from Qn

i by solving a different equation (the hyperbolic

equation (5.17)) than the ODE (5.18) we are now attempting to approximate. Because of

this issue, we use Runge-Kutta methods to solve (5.18) which do not use previous values of

82

the solution. The following classical second-order, two-stage method is used

Q∗∗
i = Q∗

i +
∆t
2

H(Q∗
i ,x, t

n) (5.55)

Qn+1
i = Q∗

i +
∆t
2

H(Q∗∗
i ,x, t

n) . (5.56)

In numerical tests, this scheme was found to be stable with the same time step ∆t that was

used for the updating of the hyperbolic part (5.17) via the wave-propagation methods.

The other issue that remains are the actual details of the computation for the terms in

H, i.e. ∇x · v′f ′ and the computation of G. For ∇x · v′f ′ we first compute the average v′f ′

with f ′ computed using the solution Q∗
i from the hyperbolic part. As mentioned previously,

this average is computed using the 2-d equivalent of the trapezoidal rule on the sub-grid.

The Darcy velocity v′ is computed at the start of the overall time step. Note that we do

not update v′ at the intermediate steps (e.g. using the solution Q∗∗
i) since it depends on the

solution Q which is not available at these intermediate points. The averaging gives a cell

centered values for v′f ′ (cell-centered with respect to the coarse grid). We then perform

finite-differencing of these to obtain an approximation for ∇x · v′f ′. It was found that

upwind differencing is needed for stability (upwind with respect to the coarse velocity v),

i.e. for
(
v′f ′

)
x1

, if v1 > 0 then we use the approximation

(
v′f ′

)
x1
≈

(
v′f ′

)
i,j
−
(
v′f ′

)
i−1,j

∆x1
(5.57)

otherwise if v1 < 0 then we use

(
v′f ′

)
x1
≈

(
v′f ′

)
i+1,j

−
(
v′f ′

)
i,j

∆x1
. (5.58)

The x2-derivatives are approximated in a corresponding manner. Despite being first order

approximations, these were found to be adequate. When second order central difference ap-

proximations were used, spurious oscillations formed in the solution. ∇x ·v′f ′ is recomputed

at the intermediate time using Q∗∗
i in exactly the same way.

The computation of the function G is more involved since the terms all involve using

the streamline average P or the related projection Q. For the moment, assume that the

velocity, its average and fluctuation have been computed. The streamline projection of the

83

velocity fluctuations P(v1), P(v2) will already have been computed from the velocity solver

and the preparation stages for the hyperbolic solver. We give the details of the method

we use to compute the streamline projection numerically in the next section. Q(v′) is also

easily computed from Q(v′) = v′ − P(v′). The remaining terms to be computed therefore

are Q (∇xf
′) and Q

(
∂S′

∂t

)
. In the case where we prescribe a form for the velocity field, as

in the testing sections that immediately follow this, we can compute these using Lemma

4.13. In this case, we do not actually need to compute the derivatives of S′ nor f ′. The

computation of these projections then involves simply computing derivatives of v (see the

derivation of Lemma 4.13 and the details for the streamline projection given below). By

employing the multiscale finite element method, described in section 5.4.2, we are also able

to compute the velocity derivatives needed in Lemma 4.13 in the more practical case where

the permeability field is prescribed.

5.3.4 Computation of Streamline Projection

From the section on the multiscale analysis, we see that the streamline projection P is a

fundamental component of the upscaling scheme since it eliminates the fast-time depen-

dence. In numerically computing this quantity we have the option of using the two different

forms: via (4.48) and Corollary 4.1, or else via (4.122) and (4.123). Whilst the second of

these is useful for interpretation, it was found that using this form to numerically compute

the projection was cumbersome. Thus, to compute the projections P and Q we use (4.48)

and Corollary 4.1. Recall that in order to obtain Q(u) we must solve

∇y · (A∇yθ) = v · ∇yu (5.59)

with periodic boundary conditions where A is the 2×2 matrix with components Aij = vivj .

Then, Q(u) = v · ∇yθ. P(u) is then obtained via P(u) = u − Q(u). The equation (5.59)

is degenerate because A is singular, having eigenvalues 0 and v2
1 + v2

2. Because of this,

solving this equation is more difficult than a standard elliptic equation, where most solution

methods rely on A be positive-definite. For example, we had no success in using finite-

element methods to try to solve (5.59) numerically. As noted in Chapter 4, the solution of

(5.59) is unique only up to a function in N .

Because of the difficulties associated with A being singular, to solve (5.59) we instead

84

consider the related equation

∂g

∂µ
= ∇y · (A∇yg)− v · ∇yv (5.60)

with periodic boundary conditions, where µ is an “artifical time”. The steady state solution

of this equation is clearly a solution of (5.59). Thus, the idea is to solve (5.60) to a steady

state using time stepping, starting from an initial guess of the solution. To do this we

employ a semi-implicit discretization,

gn+1 − gn

∆µ
= α∇2gn+1 +∇y · (A∇yg

n)− α∇2gn − v · ∇yu (5.61)

where α is a constant, chosen to improve the rate of convergence to the steady state.

Rearranging terms in this equation gives

(
1− α∆µ∇2

)
gn+1 =

(
1− α∆µ∇2

)
gn + ∆µ∇y · (A∇yg

n)−∆µv · ∇yu (5.62)

so that at each time step, we solve a constant coefficient elliptic equation for gn+1. This

is easily accomplished on a uniform Cartesian grid and fast-Fourier transforms (FFT). The

grid corresponds exactly to the subgrid ykl described above. In addition, all derivatives

were calculated using the FFT. This method of solution is similar to that used by Ceniceros

and Hou [7] and Oberman [25].

Using (5.62) with ∆t = 1/K we marched to a steady state, which was when ‖gn+1−gn ‖l2

was less than a specified tolerance (usually 10−6). The initial guess was taken simply to

be g = 0 everywhere (note that it would have been better to use the g computed from

the previous time step of the hyperbolic solver, but that this would have required too

much memory). The convergence rate was generally found to be rather slow, particularly

for velocity fields v with complicated features. Several experiments were done to try to

determine an optimal value for α that would give both a decent convergence rate and also

be robust enough so that the scheme converged over a wide range of velocity fields. The

value of α that seemed to work best was

α ≈ 0.7 max
Y

√
v2
1 + v2

2 , (5.63)

85

Figure 5.4: Log-log convergence plot of l2-norm of the update in the projection computa-
tions, using 32× 32 and 64× 64 grids.

with the maximum taken over the sub-grid in each coarse cell (i.e. a different α is used

in each coarse grid cell). Figure 5.4 shows the log-log plot of the convergence rate of the

scheme for the particular velocity field given by (5.64) and (5.65) with x1 = 0.5, x2 = 0.5

and when taking the projection of the v′1 component of it. These are computed using 32×32

and 64 × 64 points for the sub-grid. Figure 5.5 shows v′1. It takes 827 and 1022 steps to

achieve the desired tolerance respectively on these grids. The important property of the

projection is that it returns a function p ∈ N , i.e. with v · ∇yp = 0. Figure 5.6 shows

p = P(v′1) and figure 5.7 shows v · ∇yp for the case of a 32 × 32 sub-grid. We see that to

within a reasonable degree, our computed p lies in N . The l2-norm of this error is 0.001839.

5.3.5 Consistency and Convergence of our Scheme

It is important that we evaluate each part of the numerical scheme separately to ensure

that it behaves as our analysis predicts. Therefore, since we have completely described the

numerical implementation of the hyperbolic part of the scheme, we present some results

86

Figure 5.5: Plot of v′1 in a single cell.

Figure 5.6: Plot of P(v′1) in a single cell.

87

Figure 5.7: Plot of v · ∇yp, for p = P(v′1) in a single cell.

that demonstrate the method works. We compare the results for our upscaling scheme with

resolved computations, computing error norms.

To avoid the issues involved in computing the velocity field numerically, we prescribe an

analytical form for the velocity. We choose one such that the divergence-free property holds

and also has fluctuations with a periodic structure. Any such velocity should be “realistic”

in that it should mimic features that are typically seen in porous media flows. For instance,

the fluctuations should be O(1) and have a sufficiently complicated structure so that the

streamline projection is not trivial to compute e.g. shear flows. The following velocity field

provides a reasonable model upon which to test the scheme:

v(x) = (4 + cos(6πx2), 0) (5.64)

v′(x,y) =
2
3
π sin(4(x1 + x2)) cos(2π(y1 + y2))(1,−1) + (sin(2πy1), 0) . (5.65)

The streamlines of this flow are shown in figure 5.8. The streamlines are close to that for a

shear flow, but one can see the oscillations in the vertical directions. Note that this velocity

field does not satisfy the no-flow boundary conditions on the top and bottom edges and

88

Figure 5.8: Streamlines for the velocity field used in testing the scheme for the saturation
equation.

so the model does not correspond exactly to that for the core-plug model that we wish

to replicate. To be consistent, however, we choose periodic boundary conditions on these

edges for the hyperbolic problem. Since the flow is mainly in the positive x1-direction this

is only a minor issue. Finally, we need to prescribe an initial saturation for the problem.

For this we use an initially smooth (i.e. with no spatial fluctuations) function S0 given by:

S0 =


1 x1 <

(
b− δ

4

)
1
2

[
1− sin

(
2π(x1−b)

δ

)]
|x1 − b| < δ

4

0 x1 >
(
b− δ

4

) (5.66)

This initial saturation is a smoother version of the initial profile that we used earlier in the

resolved computations for the full flow problem, as in it is an jump centered at b mollified

by the parameter δ. The “density plot” of the initial saturation S0 is shown in figure 5.9

for the particular values δ = 0.8 and b = 0.3. Bright red corresponds to all water regions

and dark blue corresponds all oil regions.

We perform a convergence analysis for the scheme using the setup described above.

All computations are done on our usual unit domain. Although the velocity field is given

analytically, an analytical form for the evolution saturation is hard to determine. Therefore,

89

Figure 5.9: Density plot for the initial saturation.

as is often done in the evaluation of numerical schemes for homogenization, we take well

resolved computations to be our “exact” solution. The scheme is tested with different

coarse-grids, which for simplicity will always be uniform with an equal number of grid

blocks in the x1- and x2-directions. We keep the number of grid points for the cell problems

alway the same. By analysis similar to that described in the evaluation of the streamline

projection, we determined that 32 × 32 grid points were sufficient to accurately compute

the fluctuations.

We compare the results for the both the homogenized solution, i.e. S and also the S+S′,

which by our multiscale analysis, should give the exact solution Sε to within O(ε). Note

that since we have prescribed the form of the velocity field analytically, the value of the

small-scale parameter ε does not actually appear anywhere in the computations (all the

evaluations for the cell problem are scaled so that ε does not appear explicitly). However,

in comparing with the exact solution we must choose a particular value for ε. We choose

ε = 1/128 which is much smaller that the mesh size of the largest coarse-grid. We choose

this value since it allows us to more easily reconstruct the solution S + S′, which we will

refer to as the “multiscale reconstruction”. We do not, however, take any advantage of the

fact that this ε is rational.

We compute solutions on the coarse-grids N × N , with N = 16, 32, 64. The “exact”

90

solution is computed on a 2048× 2048 grid. For the resolved computations, we compute a

homogenized solution by taking the numerical spatial average (5.6). For both S and S+S′

we compute discrete error norms. We compute the l2-norm and the infinity norm, which

are given respectively by

‖ U − Uh ‖l2 =
(∑∫

k
(U − Uh)2dx

) 1
2

(5.67)

‖ U − Uh ‖∞ = max
k
|U − Uh| (5.68)

where k is a grid block and K is the set of grid blocks over the domain. Here we take U to

be the resolved saturation (or average) and Uh the corresponding saturation computed via

our upscaling scheme. For the “exact” average saturation we compute the average of the

resolved solution using a numerical quadrature, with the area of integration corresponding

to exactly one oscillation cell. This was done at points corresponding to the centers of the

coarse grid used in the upscaled calculations.

We first show the results for the more simple case of single-phase flow (f(S) = S in the

saturation equation). Figure 5.10 shows the resulting solution at time t = 0.1. This time is

sufficient to allow the fluctuations in the saturation to form whilst maintaining the whole

front to remain within the domain. From the figure we can see the saturation “fingers”

that develop. Figure 5.11 shows the corresponding solutions computed from our upscaling

scheme. Comparing with the resolved computations we see that the scheme accurately

captures the overall profile and the fluctuations. Indeed, the results on the 64× 64 coarse-

grid appear almost identical.

Tables 5.2 and 5.1 show the errors in the homogenized solution and the multiscale

reconstruction for the single-phase case. These are also illustrated in on the log-log plots

in figures 5.14 and 5.13. By computing the slope of the line of best-fit on these plots we

get the order of accuracy of the scheme. We see that the scheme is first-order accurate as

expected since the updating of the source terms is first-order.

If we ignore the interaction terms in the average equation (5.1) then the average satura-

tion is not captured correctly. To see this, we show the average saturation contours for the

upscaling method above and in the case when the interaction term ∇·v′f ′ is ignored. These

are shown in figures 5.15 for exactly the same setup as the previous plots. Comparing the

plots, which are shown with grid lines for ease of comparsion, we see that if the interaction

91

Figure 5.10: Density plot for the “exact” solution for the saturation in the single-phase
case, resolved solution and average.

92

Figure 5.11: Multiscale reconstruction of the saturation from the upscaling scheme for the
single-phase case using 16× 16, 32× 32 and 64× 64 coarse-grids.

93

Figure 5.12: Average saturation from the upscaling scheme for the single-phase case using
16× 16, 32× 32 and 64× 64 coarse-grids.

94

Figure 5.13: Log-log error plots for the l2 and max norm error respectively in the multiscale
reconstructed solution for the single-phase case, demonstrating first-order convergence.

95

Figure 5.14: Log-log error plots for the l2 and max norm error respectively in the homoge-
nized solution for the single-phase case, demonstrating first-order convergence.

96

N l2 error max error
16 0.0276 0.3012
32 0.0140 0.1541
64 0.0069 0.0686

Table 5.1: Errors in the multiscale reconstruction in the single-phase case using different
grids.

N l2 error max error
16 0.0144 0.0460
32 0.0070 0.0233
64 0.0034 0.0071

Table 5.2: Errors in the homogenized solution in the single-phase case using different grids.

terms are ignored, we do not get the right amount of “spreading” of the average saturation

front. Since the time at which the comparison is done is not very great, the difference is

only small. However, even at this stage it is clearly noticable and in longer simulations this

would grow.

We next show the results for the two-phase flows. We again use the same velocity field

and same initial data for the tests. In addition, we use exactly the same grids for both the

coarse and sub-grids. Tables 5.4 and 5.3 show the errors in the solution. Figure 5.16 shows

the resolved calculations, figure 5.17 shows the results of using the upscaled calculations.

We again see that the upscaled calculations capture the solution well.

In this case, we see that the error convergence is less than first-order, being approxi-

mately 0.4 for the reconstructed solution and approximately 0.7 for the homogenized solu-

tion. This is due to the fact that a shock has already formed in the solution by this time

and so the formal convergence rates no longer apply. To check that the scheme has first-

order rate of convergence, we computed the solution before the shock forms, at t = 0.05.

The corresponding errors are shown in Tables 5.6 and 5.5 show clearly that the scheme is

first-order.

97

Figure 5.15: Comparison of the saturation contours for the upscaling scheme (top) and in
the case where the interaction terms are ignored (bottom).

98

Figure 5.16: Density plot for the “exact” solution for the saturation.

N l2 error max error
16 0.0697 0.7007
32 0.0524 0.6959
64 0.0467 0.6811

Table 5.3: Errors in the multiscale reconstruction in the two-phase case using different grids.

N l2 error max error
16 0.0723 0.0354
32 0.0433 0.0251
64 0.0275 0.0212

Table 5.4: Errors in the homogenized solution in the two-phase case using different grids.

99

Figure 5.17: Multiscale reconstruction of the saturation from the upscaling scheme for the
two-phase case using 16× 16, 32× 32 and 64× 64 coarse-grids.

100

Figure 5.18: Average saturation from the upscaling scheme for the two-phase case using
16× 16, 32× 32 and 64× 64 coarse-grids.

101

Figure 5.19: Log-log error plots for the l2 and max norm error respectively in the multiscale
reconstruction for the single-phase case.

102

Figure 5.20: Log-log error plots for the l2 and max norm error respectively in the homoge-
nized solution for the single-phase case.

103

N l2 error max error
16 0.0184 0.1120
32 0.0095 0.0764
64 0.0049 0.0461

Table 5.5: Errors in the multiscale reconstruction in the two-phase case using different grids,
before shock forms.

N l2 error max error
16 0.0270 0.0831
32 0.0148 0.0495
64 0.0076 0.0264

Table 5.6: Errors in the homogenized solution in the two-phase case using different grids,
before shock forms.

5.4 Numerical Upscaling Method for the Pressure/Velocity

Equation

We now turn to the problem of developing a numerical upscaling scheme for the pres-

sure/velocity equation (PVE) (2.51). The multiscale analysis of section 4.3 shows us that

for permeability fields with O(1) oscillations (in the fast variable y) we can expect that the

velocity field (needed in the saturation equation) will also have oscillations which are O(1).

The goal of the upscaling scheme is of course to be able to solve (2.51) on a coarse-grid.

Moreover, infact, we wish to use the same coarse-grid that is used for the saturation scheme.

Should we wish to get only the solution at coarse-grid points, i.e. only the average v, then

we would look to solve the homogenized equation (4.24) with either an approximation for

the “equivalent” permeability a∗(x, t) or else use expression (4.25) which is valid in the case

of periodic oscillations. As mentioned in Chapter 1, there have been several attempts to

calculate equivalent permeabilities for different flow situations. However, in our scheme for

the saturation equation, we see that we need to have not only the average velocity but also

the fluctuations v′, e.g. in equation (5.1) where we need to evaluate the interaction term

∇x ·v′f ′. Therefore, the scheme must be capable of providing both. At first this may appear

a contradictory goal: we wish to upscale, i.e. solve the equation on a coarse-grid, and yet

get be able to get fine scale information within the same scheme. This contradiction can

be resolved if we realize that may be able to somehow interpolate the coarse-grid solution,

using only locally computed quantities, to get fine scale information within the interior of

104

coarse-grid cells. We are fortunate that such a method with this philosophy already exist

and incorporating it into our scheme is just a matter of effective implementation. This

method is the multiscale finite element. The method is special in the sense that it can be

viewed as an upscaling method, and yet they also provide a handle to fine scale information.

This latter feature is sometimes referred to as downscaling.

We give a description of these methods in the sections that follow.

5.4.1 Multiscale Finite Element Method

The multiscale finite element (MSFEM) for elliptic problems is fully described in [19], [20],

[16]. We will give an outline of the method and then describe the adaptations needed to

use it efficiently in our scheme.

Consider our elliptic pressure equation (2.51)

−∇ · (a(x, t)∇p) = f (5.69)

where, as in the section on multiscale analysis, we have written a = λ(S)K. Since a depends

on the saturation it is actually time dependent. However, since we are advancing the

numerical solution to (2.51), (2.52) by alternately solving each seperately, we can consider

t as a parameter when solving the pressure equation. In our case, the source term f will

be zero everywhere unless there exist source or sinks within the domain. However, for

generality in describing the method we leave it in (5.69). For the moment, x is used to

denote a general spatial variable, rather than the coarse-grid variable used above.

For the purpose of deriving the method, we first suppose that (5.69) holds in a domain Ω

and that p = 0 on ∂Ω. The modifications for handling inhomogeneous boundary conditions

are trivial. The variational problem of (5.69) is then to seek p ∈ H1
0 (Ω) such that

a(p, q) = f(q), ∀q ∈ H1
0 (Ω) (5.70)

where

a(p, q) =
∫

Ω
a(x)

∂q

∂xi

∂p

∂xi
dx (5.71)

f(q) =
∫

Ω
f(x)q(x)dx (5.72)

105

(summation convention is used for repeated indices here). Since a(x, t) is bounded from

below by a positive constant, the linear form a(·, ·) is elliptic and continuous, i.e.

α |q|21,Ω ≤ a(q, q), ∀q ∈ H1
0 (Ω) (5.73)

and

|a(p, q)| ≤ β |p|1,Ω |q|1,Ω , ∀q ∈ H1
0 (Ω) (5.74)

A finite element method is obtained by restricting the weak formulation (5.70) to a finite

dimensional subspace of H1
0 (Ω). Let Kh be a partition of Ω of elements K with diameter

less than h. In our method we will always assume that the partition consists of rectangular

elements which are defined by an axi-parallel rectangular mesh and with maximum edge

length h. This case covers the meshes we described in the previous sections for the saturation

equation. Let xs ∈ K (s = 1, . . . , d), d = 4, be the nodal points of K. In each element

K ∈ Kh, we define a set of basis functions {φr
K , i = 1, . . . , d}. In the traditional finite

element method these basis functions would be bilinear function [5]. In MSFEM, these

basis functions satisfy

−∇ · (a(x)∇φr
K) = 0 (5.75)

inside K. As is usual for finite element basis functions we require φr
K(xs) = δrs. Further,

we need to specify the boundary conditions of φr
K for well posedness of (5.75). The choice

of boundary conditions on the basis functions has a strong influence on the convergence

of MSFEM. For the moment we assume that the boundary conditions are linear along the

boundaries of the elements, i.e. along the boundaries MSFEM basis functions and traditional

(linear) finite element basis functions coincide.

MSFEM with these basis functions is conforming, i.e.

V h = span{φr
K : i = 1, . . . , d;K ∈ Kh} ⊂ H1

0 (Ω) (5.76)

and the approximate solution of (5.69) in V h, i.e. ph ∈ V h is

a(ph, q) = f(q), ∀q ∈ H1
0 (Ω) . (5.77)

We can see that the only difference between MSFEM and a traditional finite element method

106

is in the construction of the basis functions. Note that (5.77) is solved at the coarse grid

level, with the solution ph given at coarse grid nodes, and it is in this sense that it is an

upscaling scheme.

The purpose of introducing MSFEM is for upscaling the pressure equation in the case

where two length scales exist. In this case we are assuming, as in the multiscale analysis

of Chapter 4, that a = a(x,y) where x is slow variable and y = x/ε is the fast variable.

For the linear finite element method, convergence is possible only by using meshes with

element size h < ε. When ε is small this is clearly a restrictive condition. Note that in this

case, MSFEM is very similar to the linear finite element method since within each element

K, a will have little variation and hence (5.75) with linear boundary conditions will give

basis functions φr
K that are close to bilinear functions. The great benefit of MSFEM is that

convergence is possible for h � ε. In this case, the basis functions will be quite different

from the linear case. In general the φr
K will have a oscillatory component (i.e. that depends

on the fast scale y) within K. Because the basis functions satisfy the same equation as the

pressure equation (5.69) this oscillatory component captures the small scale features in the

same way as the exact pressure p.

The statements above are made precise in the paper of Hou, Wu and Cai [20] for the case

when a is a period function of the fast-variable y. In the case where h � ε, the following

estimates for the convergence of the solution ph are derived

‖p− ph ‖1,Ω≤ C

(
h

ε

)
‖f ‖1,Ω (5.78)

and

‖p− ph ‖0,Ω≤ C

(
h

ε

)2

‖f ‖0,Ω . (5.79)

Here C is used to denote a generic constant. This result holds for both the linear finite ele-

ment method and also MSFEM. However, for MSFEM we also have the following estimates

valid for h� ε,

‖p− ph ‖1,Ω≤ C1h ‖f ‖0,Ω +C2

(ε
h

) 1
2 (5.80)

and

‖p− ph ‖0,Ω≤ C1h
2 ‖f ‖0,Ω +C2ε+ C3

h

ε
. (5.81)

Again C1 and C2 are used to denote generic constants. Note that the approximation ph is

107

interpolated over the basis functions, i.e. for ph in K

ph(x,y) =
d∑

i=1

ph(xi)φr
K(x,y) (5.82)

where xi are the nodal points of K. Thus in the case where the fast oscillations are

resolved by the coarse grid, MSFEM has similar convergence properties to (linear) FEM.

However, in the case where the coarse grid does not resolve the fast oscillations we still get

convergence for MSFEM (in this case, the features in the basis functions resolve the fast

oscillations). Generalizations of the results (5.80) and (5.80) to cases where the oscillations

are non-periodic can be found in [16].

As mentioned above, the choice of boundary conditions imposed on the basis functions

can have a significant influence on the quality of the resulting solution ph. This was in-

vestigated in detail in [19] and [20]. Imposing linear boundary conditions gives rise to a

boundary layer near ∂K in the solution for the basis functions. To overcome this problem

in choosing the boundary conditions, an oversampling scheme for the construction of the

basis functions was proposed in [19]. The basis functions in this oversampling method are

constructed in the following way. We first construct the basis functions ψρ in a sampling

domain S ⊃ K (see figure 5.21) by solving

∇ · (a(x)∇ψρ) = 0 (5.83)

where the ψρ are piecewise linear along ∂S and ψρ(xσ) = δρσ at the nodal points of S.

For simplicity we assume that S is rectangular and hence having the same number of nodal

points as K. Moreover, we choose S sufficiently large so that diam(S) = h1 > h and ∂S is

away from ∂K at a distance of order ε. Next, the basis functions φr on K are constructed

from the linear superposition of ψρ

φk
r =

d∑
ρ=1

ckrρψ
ρ (5.84)

where r is the index of the nodal point and constants ckrρ are determined by the condition

φk
r (xs) = δrs, xs being the nodal points of K. By this procedure, the boundary layer

structure near ∂S is avoided.

108

K

Boundary layer of ψ

H

ε

h

S

Figure 5.21: Oversampled basis function construction, using a samples from a larger domain
to avoid the boundary effect.

An important consequence of the above construction is that the basis functions φr are

no longer continuous across the internal boundaries of the elements, nor are they zero on the

external boundaries. Setting the basis functions to be zero outside the external boundaries

of the elements introduces first order discontinuities of φ along all sides of the elements

([16]). Thus, these basis functions are non-conforming and V h spanned by φ is no longer in

H1. This complicates the analysis (the details of which can be found in [16]). The improved

convergence results for h� ε are now

‖p− ph ‖1,Ω≤ C1h+ C2

(ε
h

)
+ C3

√
ε (5.85)

and

‖p− ph ‖0,Ω≤ C1h
2 + C2ε+ C3

(ε
h

)2
+ C4ε |lnh| . (5.86)

Whilst the above results were derived under the assumption of periodic oscillations in a,

numerical tests show that the method works well in cases where this may not hold.

5.4.2 Special MSFEM for the Case of Periodic Oscillations

In the case of periodic oscillations such as those that have been considered in Chapter 4

we may employ a variant of the MSFEM that gives a numerical two-scale solution directly,

i.e. a solution of the form p = p(x,y). Recall that the basis functions in MSFEM satisfy

109

(5.75) within a coarse grid cell. a is assumed to be of the form a = a(x,y) and periodic in

y. In exactly the same way as the pressure equation had an asymptotic expansion of the

form (4.14), the basis functions will have an expansion of the form

φr
K = φr

0,K(x) + εφr
1,K(x,y) + ε2φr

2,K(x,y) +O(ε3) . (5.87)

Using an exactly similar analysis that was used to derive the expressions (4.24) and (4.21)

for p0 and p1 and now applied to (5.87) we get

∂

∂xi

(
a∗(x)

∂φr
0,K

∂xi

)
= 0 (5.88)

and

φr
1,K(x,y) = −χj

∂φr
0,K

∂xj
. (5.89)

where a∗ is a diagonal tensor with

a∗ij(x) =
1
|Y |

∫
Y
a(x,y)

(
1− ∂χj

∂yi

)
dy (5.90)

and χj satisfies
∂

∂yi

(
a(x,y)

∂χj

∂xi

)
=

∂a

∂yj
(5.91)

with periodic boundary conditions.

The coarse grid will always have sufficient resolution so that the elements in a∗(x) can

be approximated by constants throughout a coarse grid cell K. Thus, (5.88) with linear

boundary conditions will have solutions that correspond to the standard bilinear basis

functions. That is, the φr
0,K are the standard bilinear basis functions. Then, we take

φr
K = φr

0,K + εφr
1,K (5.92)

= φr
0,K − εχj

∂φr
0,K

∂xj
(5.93)

which gives the basis functions to within O(ε2). To determine the basis functions in all the

coarse grid blocks, we need to solve (5.91) within each to obtain χj , j = 1, 2 and then use

these in (5.93).

Once the solution for the pressure has been obtained at coarse grid points, via the

110

usual construction of the stiffness matrix and solving the resulting linear equations we can

reconstruct the two-scale pressure within each cell using

p =
d∑
r

ph
rφ

r
K (5.94)

=
d∑
r

ph
r

(
φr

0,K − εχj
∂φr

0,K

∂yj

)
+O(ε2) . (5.95)

We call this a two-scale numerical solution since it has variation with respect to the coarse

grid (each ph
r is given at coarse grid node) and variation within the cell (χj is varying as a

function of y inside the cell). We can prove the convergence of this MSFEM, and this is

given in Appendix B along with numerical examples. To obtain the two-scale velocity field

for use in our scheme for the saturation equation, we use Darcy’s law

v = −a(x,y)∇p (5.96)

= −a(x,y)
(
∂

∂xi
+

1
ε

∂

∂yi

)[d∑
r

ph
r

(
φr

0,K − εχj
∂φr

0,K

∂xj

)]
+O(ε) (5.97)

= −a(x,y)
d∑
r

ph
r

(
∂φr

0,K

∂xi
− ∂χj

∂yi

∂φr
0,K

∂xj

)
+O(ε) . (5.98)

We compute v at the center of each coarse grid cell using (5.98), and then take the average

of this to obtain v and v′ which are then used in the scheme for the saturation equation.

Note that χj and hence v′ are solved for on exactly the sub-grid described in the previous

sections for the saturation equation, and the average velocity is computed as a cell-centered

quantity on the coarse grid. This is consistent with our hyperbolic scheme described in

section 5.3.2. Further, from the above expression we can compute vxi which is needed for

computing Q (∇xf
′) via Lemma 4.13. From the expression for v above we get

∂vi

∂x1
= − ∂a

∂x1

d∑
r

ph
r

(
∂φr

0,K

∂xi
− ∂χj

∂yi

∂φr
0,K

∂xj

)

−a(x,y)
d∑
r

ph
r

(
∂2φr

0,K

∂x1∂xi
− ∂2χj

∂x1∂yi

∂φr
0,K

∂xj
− ∂χj

∂yi

∂2φr
0,K

∂x1∂xj

)
(5.99)

and similarly for the x2-derivatives. In order to compute the above, we need the x-derivatives

of χj . To derive an expression for these, take the x-derivative of equation (5.91) (which

111

defines χj). Doing this and rearranging the result gives:

∂

∂yi

[
a(x,y)

∂

∂yi

(
∂χj

∂x1

)]
=

∂2a

∂x1∂yj
− ∂

∂yi

(
∂a

∂x1

∂χj

∂yi

)
, (5.100)

i.e. an elliptic equation for ∂χj

∂x1
. Again, a similar result holds for the x2-derivative. We can

solve these equations very easily once we have solved for χj .

The only disadvantage to using a finite-element method in solving the pressure equation

is that the divergence-free property of the velocity field (4.31), in particular, ∇x ·v = 0, nor

∇x · v′ = 0 are not explicitly enforced (note that ∇y · v′ = 0 by construction). Thus, the

resulting velocity fields are not exactly divergence-free. This was generally not found to be a

problem for our computations since the velocity field is used in the upscaled equations (5.1)

and (5.2) which does not have a conservation property, unlike the original equation (4.32).

When MSFEM is used for the velocity field in (4.32) it was found that it gave poor results

for long time simulations [8, 21]. To overcome these problems, a mixed multiscale finite

element method was introduced in [8], and in [21] a multiscale finite volume method was

introduced. However, neither is as simple to implement as the MSFEM described above,

which is why we implemented this method.

5.4.3 Implementation of MSFEM

The implementation of MSFEM is relatively straightforward, being similar to a traditional

finite element method. The only differing issue is in the construction of the basis functions.

For the case of periodic coefficients we use the method described above for the construction

of the basis functions. This involves solving for the two functions χj , j = 1, 2 given by

(5.91). To solve this equation we employ the same numerical scheme as that used for the

computation of the projections P and Q, i.e. a semi-implicit discretization of the form

(5.61). Since a(x,y) > 0 everywhere, (5.91) is uniformly elliptic, and the convergence rate

of the scheme is much improved than that for the projections P and Q. Once the χj are

computed we take the derivatives using FFTs. These are then used in the construction of

the stiffness matrix, which is formed from the evaluation of (5.77) over all the combinations

of basis functions over the coarse grid. This gives a set of linear equations. The resulting

equations are modified to incorporate the boundary conditions given in (3.3.1) and (3.3.2).

Then, we solve the equations using a multigrid solver. The solver of DeZeeuw [33] was

112

found to be very fast and robust. Once the pressures are the coarse grid nodes have been

found, we then evaluate (5.98) at each cell center and use this to obtain the cell-centered

average velocity v and velocity fluctuations v′.

Once the basis functions have been solved for, the solution at the coarse-grid is extremely

cheap. However, the construction of the basis functions is relatively expensive. Since we

will be solving the pressure equation at each time step, it is worth discussing an efficient

implementation of the method as it applies to our problem. In principal, since a depends

on the saturation, we need to update the basis functions at each time step. The crucial

observation is that for many regions, the saturation will be evolving slowly and therefore it

is not necessary to update the basis functions in these regions. We can selectively choose

which basis functions to update based upon how much the saturation within the cell has

changed. An obvious region where basis functions would need to be updated often is near

the oil-water front. Regions ahead of this front, where the water saturation is zero would

need no updating, and regions behind, where the saturation is evolving more slowly, would

need updating only at a less frequent intervals. Figure 5.22 illustrates the idea.

x1

oil-water front

x
2

Figure 5.22: Diagram illustrating the fact that the MSFEM basis functions need only be
updated frequently in a region near the oil-water front. Only in the coarse grid cells shown
will the saturation be changing rapidly and behind it will be changing much more slowly.

113

5.5 Extension to Non-Periodic Problems

In the multiscale analysis so far we have assumed that all small scale fluctuations are periodic

with respect to the fast variable y. However, this is clearly a restrictive assumption that

will not hold for all permeabilities. Nevertheless, the assumption is an integral part of our

framework and so we restrict our attention to permeabilities with two distinct length scales

for which the fluctuations can be well-approximated as being locally periodic. Given such a

permeabililty, the method we describe below will give us a permeability which approximates

the original and also has periodic oscillations.

For the moment we assume that our permeability K(x) is a periodic function on a unit

square [0, 1]× [0, 1], i.e. our whole domain. We expand K into its Fourier series

K =
∑
r∈Z2

K̂(r) exp(2πir · x) , (5.101)

i =
√
−1, r = (s1, s2). Choose 0 < ε = 1/E < 1, reference wavelength, E integer. Let

ΛE = {r; |sj | ≤
E

2
, 1 ≤ j ≤ 2}, Λ′E = Z2 − ΛE . (5.102)

Then,

K = K(l) +K(s) (5.103)

where

K(l) =
∑

r∈ΛE

K̂(r) exp(2πir · x) (5.104)

K(s) =
∑

r∈Λ′
E

K̂(r) exp(2πir · x) . (5.105)

Clearly, the component K(l) corresponds to the large scale permeability, and K(s) cor-

responds to the small scale permeability field. Here the superscripts s and l stand for

small-scales and large-scales respectively. For each r, write as

r = Er(s) + r(l) . (5.106)

114

Based on this, further decompose K(s) as

K(s) =
∑

r∈Λ′
E

K̂(r) exp(2πir · x) (5.107)

=
∑

Er(s)+r(l)∈Λ′
E

K̂(Er(s) + r) exp(2πi(Er(s) + r) · x) (5.108)

=
∑
r 6=0

 ∑
r′∈ΛE

K̂(Er + r′) exp(2πir′ · x)

 exp(2πir · (Ex) (5.109)

=
∑
r 6=0

K̂(s)(r,x) exp(2πir · x

ε
) (5.110)

= K(s)
(
x,

x

ε

)
(5.111)

where the coefficient K̂(s)(r,x) contains Fourier modes lower than E/2 only. Thus, we can

decompose a periodic function formally into a two-scale function with periodic structure:

K = K(l)(x) +K(s)
(
x,

x

ε

)
. (5.112)

More generally, by using a partition of unity, i.e. for a family of smooth cut-off functions

{φj}J
j=1 such that

φj ∈ C1
0 ([0, 1]2) (5.113)

0 ≤ φj ≤ 1 (5.114)
J∑

j=1

φj = 1 (5.115)

we can decompose K as

K =
J∑

j=1

φjK ≡
J∑

j=1

Kj . (5.116)

We can then treat Kj as a periodic function and use the same method described above

to decompose the function into large and small scales. Thus, we can describe the given

permeability K in the generic form

K = K(l)(x) +K(s) (x,y) (5.117)

whereK(s) (x,y) is a periodic function of period 1 in y. We can use a coarse grid with sizeH

115

to resolve low frequency components of wavelength larger than ε and use a fine grid with size

h to resolve high frequency components of wavelength smaller than ε. With this form for the

permeability we can now apply our multiscale method for upscaling. To eliminate problems

of edge effects from applying the partition of unity, we use an oversampling method. In this

case, the original permeability is extended to a slightly larger domain and the method is

then applied to that domain.

We now demonstrate the ability of the above method to capture the fluctuations cor-

rectly. We take an example permeability and apply the above method to it. Since the

permeability is a strictly positive quantity, i.e. K > 0 throughout the domain, we find it

better to apply the method to the log of the permeability, i.e. to u = log(K). By applying it

to this and then taking the exponential, we are guaranteed that the resulting approximation

is also strictly positive.

To demonstrate the method we show some results for two different types of permeability.

The first is a non-layered example. The original log permeability is shown in the first plot

of figure 5.23. This permeability was generated using the GSLIB package on a 256 ×

256 uniform grid. This is then interpolated (bilinear interpolation) to give a 1024 × 1024

permeability. The interpolation is done because the variation in the original permeability is

very strong and even on a 256×256 grid can appear discontinous as one crosses the layers of

high/low permeability. With this new permeability the above method is then applied and

the resulting reconstruction is shown in the second plot of figure 5.23. For this, the cut-off

wavelength was ε = 1/32. Each periodic wave was reconstructed using a 16 × 16 subgrid.

As can be seen from the plots, the reconstruction is very close to the original permeability.

Statistics for the original and reconstruction are shown in table 5.7. Since it is difficult to

distinguish the solutions at this magnification, we show a close up of the reconstruction in

figure 5.24. From this, one can see the boundaries at which we force the solution to be

locally periodic.

Similarly, we show results for a layered permeability in figure 5.25. The results show

again that the reconstruction works well.

116

Figure 5.23: Original log permeability and “reparametrized” log permeability for a non-
layered case.

117

Figure 5.24: Close up of the reconstructed log permeability.

Original Reparametrized
max 0.947 0.968
min -0.920 -1.005

mean 0.053 0.053
variance 0.053 0.052
l2 error – 0.152

max error – 0.96

Table 5.7: Statistics for the original and reconstructed log permeability in the non-layered
case.

Original Reparametrized
max 1.074 1.022
min -0.914 -0.943

mean 0.0693 0.0693
variance 0.0642 0.0639
l2 error – 0.05

max error – 0.321

Table 5.8: Statistics for the original and reconstructed log permeability in the layered case.

118

Figure 5.25: Original log permeability and “reparametrized” log permeability for a layered
case.

119

Chapter 6

Numerical Results

6.1 Overview

In this chapter we present numerical results for the scheme proposed in the previous chap-

ter. We first demonstrate that the scheme is first order accurate in capturing the average

saturation for the single-phase case for periodic permeabilities. We perform simulations in

much the same manner as that done in section 5.3.5 of Chapter 5 for the core-plug model

boundary conditions. After this we then demonstrate the efficacy of our upscaling scheme

for non-periodic permeabilities, using the method proposed to approximate the non-periodic

oscillations into locally periodic ones. In this case, to evaluate the performance the upscaling

scheme we compare the fractional flow curves, as described in section 3.3 from the resolved

scheme and the upscaling scheme. We find that our upscaling scheme very accurately com-

putes this important quantity. In addition, we also perform timing tests to see how well

the scheme compares in run-time to the resolved calculation and give an analysis of the

timings, with a view that effective implementation may increase the performance benefits

of the upscaling scheme.

The chapter is laid out following outline described above.

6.2 Periodic Permeability Field

To demonstrate our method converges, we present some examples where the permeability is

a prescribed two-scale function. We do this for both single-phase using an analysis similar

to that given in section 5.3.5. We do not use the two-phase results here since the shock-

formation in that case reduces our ability to analyse the formal convergence rate of the

120

Figure 6.1: Permeability used in the periodic case.

scheme. We use only the core-plug model boundary conditions in this case. The sections

that follow describe in detail the results obtained.

6.2.1 Single-Phase Results

To test the scheme in this case, we prescribe a permeability field with fast periodic oscilla-

tions. We use

K(x,y) = 15x2(1.0− x2) +
2 + P (x1, x2) sin(2πy1)
2 + P (x1, x2) cos(2πy2)

+
2 + sin(2πy2)

2 + P (x1, x2) cos(2πy1)
(6.1)

where

P (x) = 1 +
1
2

cos(πx1) cos(2πx2) (6.2)

We set the small scale parameter ε = 1/64. Figure 6.1 shows the permeability field. As can

be seen, the permeability has rapid oscillations in the horizontal and vertical directions, with

the magnitude of the oscillations greatest in the center. A similar model for the permeability

was used in [19] in testing the convergence of MSFEM. We set up the boundary conditions for

the pressure equation exactly as described in section 3.3.1. Since the pressure is uncoupled

from the saturation in the single-phase case, we need only solve for this once at the start of

the simulation. The first test we perform is to check the convergence rate as the number of

121

N l2 error max error
16 0.0780 0.3725
32 0.0556 0.2793
64 0.0460 0.2239

Table 6.1: Errors in the multiscale reconstruction in the single-phase case using different
grids.

N l2 error max error
16 0.0745 0.2204
32 0.0419 0.1155
64 0.0215 0.0595

Table 6.2: Errors in the homogenized in the single-phase case using different grids.

N l2 error max error
16 0.2098 0.4014
32 0.1216 0.2416
64 0.0655 0.1636

Table 6.3: Errors in the velocity field in the single-phase case using different grids.

coarse grid points is increased. We do this in the same manner as that used in section 5.3.5

when we tested the scheme for the saturation seperately, i.e. by comparing the results with

resolved calculations for different coarse grid. Again, we use 16 × 16, 32 × 32 and 64 × 64

coarse grids. We keep the sub-grids the same in each of these cases, using 32× 32 sub-grid

points. The initial data for the saturation is given by (5.66). We evolve the saturation up

until time t = 0.1 and then compute the l2 and infinity norms of the error in the multiscale

reconstruction and the average. Figure 6.2 shows the resolved saturation and the average

computed from this. Figure 6.3 shows the multiscale reconstruction for the different coarse

grids. We see that the scheme captures the multiscale features well. However, perhaps due

to compounding of errors, the convergence rate for these grids is not yet first order. The

slope of the log-log error line, shown in Figure 6.5 is only about 0.38. Since both parts of the

scheme (saturation and velocity solver) are formally first order, we suspect that the scheme

would eventually show this as the number of coarse grid points is increased. However, due

to the limitations of our computer resources, we were unable to verify this. The average,

however, is clearly first-order accurate, as can be seen from the slope of the line on the

log-log error plot.

122

Figure 6.2: Density plot for the “exact” solution for the saturation in the single-phase case,
resolved and average.

123

Figure 6.3: Upscaled transport combined with MSFEM on different grids for the single-
phase case, reconstructed multiscale solution.

124

Figure 6.4: Upscaled transport combined with MSFEM on different grids for the single-
phase case, average solution.

125

Figure 6.5: Log-log error plots for the l2 and max norm error respectively in the recon-
structed multiscale solution for the single-phase case.

126

Figure 6.6: Log-log error plots for the l2 and max norm error respectively in the homogenized
solution for the single-phase case, demonstrating first-order convergence.

127

6.3 Non-Periodic Examples

We now apply all the preceeding numerical methods for the upscaling problem to a case

where the permeability field is a given non-periodic quantity. We apply the method to the

permeability fields shown in Chapter 5 in figures 5.23 for 1-phase and 2-phase computations.

As before, we compare the resulting solutions for the average saturation with those com-

puted using resolved calculations. In this case, we cannot hope to obtain the same kind of

convergence rates that we obtained in the previous sections where all the fluctuations had a

definite periodic structure. Therefore, as a measure of accuracy, we compute the fractional

flow curves that were described in Chapter 2, given by equation (3.39). As mentioned in

that section, this is a feature of interest to engineers when evaluating a reservoir simulation

and any upscaling scheme should aim to reproduce this accurately.

For the tests we use the same boundary conditions and initial data as those used in

section 5.3.5.

6.3.1 Single-Phase Results

Figure 6.7 shows the logarithm of permeability field. This is given on a 256× 256 grid, as

Figure 6.7: Layered permeability used.

128

described in section 5.5. For the resolved computations, we use a 1024×1024 grid which was

found to be sufficient to fully resolve flow features. For the upscaled computations, includ-

ing the permeability re-parameterization, we use a 64×64 coarse grid with 16×16 sub-grid

points. This configuration gives us a “scale-up” factor of 8 in each direction (since the aver-

age solution is given on a 64×64 grid). Figure 5.23 shows the re-parametrized permeability

field obtained by applying the method described in section 5.5 to this permeability. This is

almost indistinguishable from the original permeability.

We first compare the velocity fields computed from the resolved scheme and the upscaling

(MSFEM) method. Figure 6.8 shows the horizontal (x1) component of the velocity field

as computed by the different methods. The details of the velocity are captured well, with

layers computed accurately. Because of the coarser grid in the MSFEM computations, there

are some slight edge effects which can be seen. Note, however, that this velocity field shown

is not used directly in the upscaled computations, but rather it’s average and the locally

periodic velocity are used. The average component of the horizontal velocity as computed

from the resolved scheme and MSFEM are shown in figure 6.9. The agreement between

these is clearly very good.

Figures 6.10 and 6.11 show the corresponding results for the vertical component of

the velocity field. In this case one can seen again that the velocity field is captured well,

though not as well as for the horizontal component, especially for the resolved features.

However, since the main flow is in the horizontal direction this has only a minor effect on

the saturation computations.

The above velocity fields are now used to advance the saturation. Since the aim of

the method is to accurately compute the average, we compare the average saturations

computed from the resolved calculations and the upscaling scheme at several times. The

initial saturations for both methods is shown in figure 5.9. Figure 6.12 shows the resolved

calculations at time t = 0.17. Note the amount of “fingering” of the saturation front, which

is due to the amount of layering in the permeability and velocity fields. Figure 6.13 shows

the average saturation at this time computed from the resolved computations and upscaled

scheme. From these one can see that the upscaling scheme is accurately capturing the

average. In addition to these we also show the results that are obtained if one ignores the

129

Figure 6.8: Comparison of the horizontal components of the velocity field computed using
resolved scheme (top), and MSFEM (bottom).

interaction terms when computing the average, i.e. we solve

∂S

∂t
+ v · ∇xf(S) = 0 (6.3)

130

Figure 6.9: Comparison of the average horizontal components of the velocity field computed
using resolved scheme (top), and MSFEM (bottom).

for the average saturation S where v is computed using the MSFEM. One can see that in

this case, and more clearly at subsequent times, that the average saturation is not being

moved correctly in this case. This confirms that including the interaction terms is vital in

131

Figure 6.10: Comparison of the vertical components of the velocity field computed using
resolved scheme (top), and MSFEM (bottom).

computing the average correctly. It seems for this example, that if the interaction terms

are ignored, that the bulk of the saturation is moved too slowly.

Figure 6.14 shows the average saturation at time t = 0.3 computed from the resolved

132

Figure 6.11: Comparison of the vertical horizontal components of the velocity field computed
using resolved scheme (top), and MSFEM (bottom).

computations and upscaled scheme.

Figure 6.15 shows the average saturation at time t = 0.45 computed from the resolved

computations and upscaled scheme.

133

Figure 6.12: The resolved saturation at t = 0.17.

Figure 6.16 shows the fractional flow curves computed using the resolved computations,

the upscaled method and the naive approach described above. As with the saturation plots

one can see that the upscaled computations accurately capture the true fractional flow.

Again, if one ignores the interaction terms in the upscaling method then the results are

much poorer. One can see that for each of the methods, the time at which water reaches

x = 1 (the breakthrough time) is similar for each. However, for the naive method, since the

bulk of the saturation is moved too slowly, the fractional flow curve is too high after the

breakthrough time and remains far from the true fractional flow for all subsequent times.

For the upscaled scheme, the fractional flow curve follows the true one closely for most of

the time. There are some slight differences at later times, which are most likely due to

the fact, mentioned above, that the average velocity field computed from MSFEM is not

exactly divergence-free.

6.3.2 Two-Phase Results

For the two-phase flows we perform exactly the same analysis as was done above for the one-

phase case. In this case, since it has already been demonstrated that MSFEM accurately

134

captures the velocity field, we skip the comparisons of the velocity fields. Figure 6.17 shows

the resolved computations at t = 0.17. For this case, there is not as much “fingering” of

the saturation into the layers of high permeability as in the single-phase case but there is

still quite alot of small scale features. In figures 6.18, 6.19 and 6.20 we again show the

average saturations computed from the resolved, upscaled and naive methods at the times

t = 0.17, 0.3, 0.45. From these one can see again that the upscaled method captures the

average saturation accurately whilst the naive method does not move the average correctly.

This is also evident from the fractional flow curves shown in figure 6.21.

6.3.3 Timing Results

A stated goal of the upscaling scheme is that computations involved should take less time to

run compared to the resolved computations. We therefore performed a timing comparison

for the two-phase computations shown above (note that we did not do it for the single-phase

computations because in that case the velocity field does not need to be updated at each

stage, which is a major burden in the computations). The timing experiments provided

give only an approximate guide to the performance efficiency since they were done using

a limited set of runs. In addition, it is possible that more sophisticated coding techniques

could allow for further benefits. The code itself used a mixture of FORTRAN, C and C++.

The experiments were performed on a Windows XP machine (using the UNIX emulator

Cygwin) with a 2.4 GHz processor and 512 MB of memory. For the t = 0.45 results, shown

above, we compare the total run times of the two compuations, and also their breakdown

into the most significant contributions to these run times.

For the resolved computations, the total run time was close to 24200 seconds (about

6.75 hours). For the upscaled calculations, the total run time was 14700 seconds (just over

4 hours). Whilst this is not an order of magnitude greater it is worth pointing out the

breakdown in the timing for both.

In the resolved calculations, the vast majority (more than 99%) of the time is spent

in either the elliptic solver (for the velocity field updates) or else in the hyperbolic solver

(saturation field updates). Between these two, the elliptic solver is the much more expensive

stage, even if we use the pressure from the previous time step as the initial guess for solution

at the current time step. As shown in the breakdown chart in the upper pie chart of figure

6.22, 91% of the time is in this elliptic solver stage (which includes the construction of

135

the linear system of equations). The remaining time is spent in the hyperbolic solver. As

mentioned, the elliptic equation is solved using preconditioned conjugate gradient (PCG)

method and without resorting to an even faster scheme (such as multigrid) this stage cannot

be improved much. (We use a PCG method rather than a multigrid method since most

multigrid packages require that the grid size be of the form 2r + 1 × 2r + 1 where r is a

positive integer. Our grid is 1024×1024 since we use cell-centered pressures. PCG packages

generally have no such restrictions.)

For the upscaled computations the breakdown, shown in the lower pie chart in figure

6.22, shows the elliptic parts (which includes the MSFEM and all the associated steps in

computing the basis functions) takes up 21% of the run-time, the hyperbolic part (including

computation of source terms but not including the streamline projection) takes up 45% of

the run-time and the streamline projection computations take up 34 %. As mentioned in

the section on the streamline projection, finding an efficient method for computing this

was very difficult. Potentially, if one were able to reduce the run-time in this section,

the upscaling scheme would be significantly improved and the overall run time for the

upscaling computations could be half that of the resolved computations. In addition, in

longer simulations, perhaps where one is interested in following the reservoir performance

up until 90% of the oil is removed, the upscaling scheme should see further benefits due to

the fact that very few basis functions will need updated and hence the elliptic step will be

extremely fast. Further, in practical simulations the reservoir is likely to have significantly

more than 1024 × 1024 grid blocks and in these cases we can expect that an upscaling

scheme will have an even better scale up factor than the 8 which we used here.

136

Figure 6.13: Comparison of the average saturation profiles for the single-phase case at
t = 0.17 for the exact calculation (top), upscaled (center), naive (bottom).

137

Figure 6.14: Comparison of the average saturation profiles for the single-phase case at
t = 0.3 for the exact calculation (top), upscaled (center), naive (bottom).

138

Figure 6.15: Comparison of the average saturation profiles for the single-phase case at
t = 0.45 for the exact calculation (top), upscaled (center), naive (bottom).

139

Figure 6.16: Comparison of the fractional flow curves for the single-phase case.

140

Figure 6.17: The resolved saturation at t = 0.17 for the two-phase case.

141

Figure 6.18: Comparison of the average saturation profiles for the two-phase case at t = 0.17
for the exact calculation (top), upscaled (center), naive (bottom).

142

Figure 6.19: Comparison of the average saturation profiles for the two-phase case at t = 0.3
for the exact calculation (top), upscaled (center), naive (bottom).

143

Figure 6.20: Comparison of the average saturation profiles for the two-phase case at t = 0.45
for the exact calculation (top), upscaled (center), naive (bottom).

144

Figure 6.21: Comparison of the fractional flow curves for the two-phase case.

145

Figure 6.22: Timing breakdowns for the resolved computations (top) and upscaled compu-
ations (lower).

146

Chapter 7

Summary and Conclusions

In this these we have examined the need for upscaling in porous media flow simulations,

in particular in modeling the saturation in an enhanced oil recovery scheme. We have

presented both a framework for developing a multiscale analysis of the problem and a

numerical scheme for solving the resulting upscaled equations. The multiscale analysis was

facilitated by making the assumptions that the rapid spatial fluctuations in the underlying

permeability were of a distinct length scale from the larger features and also that they were

periodic. By manipulating the hyperbolic equation for the saturation and the introduction

of a special streamline averaging which eliminates fast time scales from the problem we

were able to split this equation into a pair of coupled hyperbolic equations for the average

saturation and the fluctuations about this average. We then developed a novel numerical

scheme by solving for only a subset of the fluctuations and then using these to approximate

the large scale small scale interaction terms in the average equation. Both the average

equation and the fluctuation equations were solved using standard hyperbolic solvers. This

numerical scheme was demonstrated to have first order accuracy in capturing the average

saturation for both one and two-phase flows in the case where a periodic velocity field was

prescribed. To extend the method to the more practical case when the permeability is not

periodic we used a re-parametrization of the permeability to give an approximation that was

locally periodic. This was then used in the numerical scheme. In addition, we used a special

variant of MSFEM to numerically evaluate the velocity field. We found that this numerical

scheme accurately captured the average saturation, which could be seen by looking at the

overall saturation profile and also by computing the fractional flow curves, which are a very

important feature of interest to engineers when evaluating oil reservoir performance.

147

7.1 Further Work

The field of reservoir modeling is quite large and this thesis has addressed only a particular

aspect of it. In particular, we assumed a specific model that ignored the effects of, for

instance, cappillary pressure among other variables, and have focused our attention on the

2-D case. In modeling more realistic cases it is entirely possible that some of the problems

faced here, such as the developement of sharp shocks in the solution for the saturation,

would disappear. Nevertheless, within the current framework and numerical scheme there

exist many potential avenues for improvement and further work. The most obvious of

these is the development of a faster numerical scheme for the streamline projection. As

mentioned in the section on numerical results, this was a major burden in the computations.

Any improvements here could lead to a drastic cut in the run time for simulations. Also,

coupling the scheme to an adaptive mesh refinement algorithm could also be useful. In this

case, one can view the scheme as upscaling away from the oil-water front but also resolving

features in this critical region.

An alternative to the scheme described could also be found by further modeling of the

fluctuations so that instead of them being solved for explicitly their interaction with the

large scales is modeled. Whilst this would possibly require a further set of assumptions to

be made, the framework given provides an excellent means from which to do this.

148

Appendix A

Hyperbolicity of the Upscaled
Saturation Equations

We need to demonstrate that the system (4.149), (4.150) is hyperbolic in the variables y

and t. First, recall the definition of hyperbolicity for a system of equations [24]:

Definition A.1 The quasilinear system

qt + f ′(q)qx1 + g′(q)qx2 = H(x1, x2, t) (A.1)

is (strongly) hyperbolic in some region of state space if the Jacobian matrix f̃ ′(q) = n·f ′(q) =

n1f
′(q) + n2g

′(q) is diagonalizable with real eigenvalues for every n = (n1, n2), for all q in

this region.

For our problem we take q =
(
S, S′kl

)T , where S′kl = S′(x,ykl) identifies S′ evaluated for

the particular value of the parameter ykl. Notice that the right-hand side vector H =

(0, G(x,y, t))T can be evaluated without computing either ∂S′

∂t nor ∇xS
′ since the terms

Q (∇xf
′) and Q

(
∂S′

∂t

)
can be evaluated using the method given in Lemma 4.13. Therefore,

we need not consider these in the evaluation of the Jacobian matrix and this is the reason

why these are on the right-hand side. The system (4.150) can be written

∂q
∂t

+A
∂F
∂x1

+B
∂F
∂x2

= H (A.2)

149

where F =
(
f, f ′k,l,v

′f ′
)

A =

 v1 0 1

P(v′1) v1 + P(v′1) −1

 (A.3)

B =

 v2 0 1

P(v′2) v2 + P(v′2) −1

 (A.4)

Thus, we need to evaluate the terms of the matrix

R =


∂f

∂S

∂f
∂S′kl

∂f ′kl

∂S

∂f ′kl
∂S′kl

∂v′f ′

∂S

∂v′f ′

∂S′kl

 (A.5)

Recall that f and v′f ′ are defined as the spatial averages in y, i.e.

f(x, t) =
∫

Y
f(S + S′)dy (A.6)

v′f ′ =
∫

Y
v′f ′dy (A.7)

To derive expressions for (A.5) we write the integrals as Riemann sums. Consider the

uniform partition [y1,i−1, y1,i] × [y2,j−1, y2,j] with center points yi,j of the cell Y . Then,

since we have assume that S and S′ are bounded and continuous so that f(S + S′) is

bounded and continuous, we have

I∑
i=1

J∑
j=1

f(S + S′i,j)∆y1,i∆y2,j →
∫

Y
f(S + S′)dy (A.8)

as I, J →∞. Also, since f ′ = f(S + S′)− f we have

f(S + S′)−
I∑

i=1

J∑
j=1

f(S + S′i,j)∆y1,i∆y2,j → f ′ (A.9)

150

as I, J → ∞. Now take derivatives directly using these: for brevity we write αi,j =

∆y1,i∆y2,j

∂f

∂S
=

I∑
i=1

J∑
j=1

fS(S + S′i,j)αi,j (A.10)

∂f

∂S′k,l

= fS(S + S′k,l)αk,l (A.11)

and

∂f ′k,l

∂S
= fS(S + S′k,l)−

I∑
i=1

J∑
j=1

fS(S + S′i,j)αi,j (A.12)

∂f ′k,l

∂S′k,l

= fS(S + S′k,l)− fS(S + S′k,l)αk,l (A.13)

More generally, we have

∂f ′i,j
∂S′k,l

=

 fS(S + S′k,l)− fS(S + S′k,l)αk,l if i, j = k, l

−fS(S + S′k,l)αk,l otherwise
(A.14)

Thus, in the limit of I, J →∞ we have

∂f

∂S
=

∫
Y
fS(S + S′)dy (A.15)

∂f

∂S′k,l

= 0 (A.16)

∂f ′k,l

∂S
= fS(S + S′k,l)−

∫
Y
fS(S + S′)dy (A.17)

∂f ′k,l

∂S′k,l

= fS(S + S′k,l) (A.18)

Now consider the term v′f ′. Writing this using the Riemann sum gives

v′f ′ =
∫

Y
v′f ′dy (A.19)

=
I∑

i=1

J∑
j=1

v′i,jf
′
i,jαi,j (A.20)

151

Then

∂v′f ′

∂S
=

∂v′f ′

∂S
(A.21)

=
I∑

i=1

J∑
j=1

v′i,j
∂fi,j

∂S
αi,j (A.22)

=
I∑

i=1

J∑
j=1

v′i,jfS(S + S′i,j)αi,j (A.23)

where the first equality simply uses that fact that v′ = 0 and we have also ignored the

dependence of v′ on S. Also,

∂v′f ′

∂S′k,l

=
I∑

i=1

J∑
j=1

v′i,j
∂f ′i,j
∂S′k,l

αi,j (A.24)

= v′k,lfS(S + S′k,l)αk,l −
I∑

i=1

J∑
j=1

v′i,jfS(S + S′k,l)αk,lαi,j (A.25)

= v′k,lfS(S + S′k,l)αk,l − fS(S + S′k,l)αk,l

I∑
i=1

J∑
j=1

v′i,jαi,j (A.26)

= v′k,lfS(S + S′k,l)αk,l (A.27)

Thus, in the limit of I, J →∞ we have

∂v′f ′

∂S
= v′fS (A.28)

∂v′f ′

∂S′k,l

= 0 (A.29)

Finally, the Jacobian matrices that we need, AR and BR are given by

AR =

 v1 0 1

P(v′1) v1 + P(v′1) −1




∫
Y fS(S + S′)dy 0

fS(S + S′k,l)−
∫
Y fS(S + S′)dy fS(S + S′k,l)

v′fS 0


=

 v1fS + v′1fS 0

(v1 + P(v′1)) fS −
(
v1fS + v′1fS

)
(v1 + P(v′1)) fS

 (A.30)

152

with an exactly similar result for BR (with v1 replaced by v2). Then, consider the Jacobian

n1AR+ n2BR,

n1AR+ n2BR = n1

 v1fS + v′1fS 0

(v1 + P(v′1)) fS −
(
v1fS + v′1fS

)
(v1 + P(v′1)) fS


+ n2

 v2fS + v′2fS 0

(v2 + P(v′2)) fS −
(
v2fS + v′2fS

)
(v2 + P(v′2)) fS

(A.31)

By inspection, this has eigenvalues

λ1 = n1

(
v1fS + v′1fS

)
+ n2

(
v1fS + v′2fS

)
(A.32)

λ2 = n1

(
v1 + P(v′1)

)
fS + n2

(
v2 + P(v′2)

)
fS (A.33)

In general these will be distinct and therefore the Jacobian is diagonalizable with real

eigenvalues. Hence our system (4.149) and (4.150) is hyperbolic. �

153

Appendix B

Special MSFEM Convergence

We consider here the convergence in the H1 and L2 norms only. The methods of proof

are close to those given in [17] as the method is a nonconforming one. That the method is

nonconforming can easily be seen from the construction of φi
1,K since, in general, ∂φi

0
∂xj

will

be discontinuous across cell boundaries.

Homogenization theory has been used in the analysis of MsFEM [20] and is useful in

providing error estimates. The main results are briefly reviewed for completeness. It is

know that the solution of (5.69) can be expanded as [3]

pε = p0 + εχi
(x
ε

) ∂p0

∂xi
+ εθp (B.1)

Here p0 ∈ H2(Ω) is the solution of the homogenized equation

aij
∗

∂2

∂xixj
p0 = f, inΩ (B.2)

satisfying p0 = 0 on ∂Ω. The constant homogenized coefficients aij
∗ are given by

aik
∗ =

1
|Y |

∫
Y
aij

(
δjk +

∂χk(y)
∂xj

)
dy (B.3)

χk is the same as that given in (5.91) and the derivative of χk is with respect to the “fast”

variable y = x/ε.

154

For θp we have

−∇.
(
a(
x

ε
)∇θp

)
=

1
ε

(
pε − p0 − εχi∂p0

∂xi

)
(B.4)

θp|∂Ω = −χi
∂p0

∂xi
(B.5)

B.1 H1 estimates

Since the method is nonconforming, we cannot use Cea’s lemma. The following lemma by

Strang [30] gives the estimate of the error between the exact solution and the numerical

solution in the energy norm

‖pε − ph
ε ‖h,Ω ≤ C

(
inf

vh
ε ∈Ĥh

‖pε − vh
ε ‖h,Ω + sup

wh
ε ∈Ĥh

|f(wh
ε)− a(pε, w

h
ε)|

‖wh
ε ‖h

)
(B.6)

where Ĥh is the finite dimensional space generated by the nonconforming basis functions

(in general Ĥh 6⊂ H1),

‖wh
ε ‖h,Ω =

 ∑
K∈Kh

∫
K
|∇wh

ε |2dx)

1/2

, (B.7)

and
|f(wh

ε)− a(pε, w
h
ε)|

‖wh
ε ‖h

=

∣∣∣∣∣∣
∫

Ω
fwh

ε dx−
∑

K∈Kh

∫
K
aij

ε

∂pε

∂xi

∂wh
ε

∂xj
dx

∣∣∣∣∣∣ (B.8)

We are considering the case in which h� ε.

Theorem B.1.0.1 Let pε be the solution of (5.69) and ph
ε be the numerical solution com-

puted using the MsFEM variant described. Assuming that p0, the homogenized part of pε is

in W 1,∞(Ω), we have

‖pε − ph
ε ‖h,Ω ≤ C1

√
ε+ C2h (B.9)

Proof. The proof of this result is almost exactly the same as Theorem 3.1 in [17]. In that

result, the only difference is that the θh terms (from the expansion of the basis functions)

give a “resonant” term Cε/h in the estimate. Here, by construction of the basis functions,

no such terms exist and hence there is no resonant term.

155

B.2 L2 estimates

We use here a discrete error analysis [20, 17] to obtain the L2 estimate. Denote the numerical

solution of (B.2) using MsFEM by ph
0 . Since the coefficients aij

∗ are constants, the MsFEM

method reduces to the standard linear finite element method and estimates from the stand

theory apply. Therefore, we have

‖pε − ph
ε ‖L2(Ω) ≤ ‖pε − ph

0‖L2(Ω) + ‖ph
0 − ph

ε ‖L2(Ω) (B.10)

≤ Cε+ C1h
2 + C2‖ph

0 − ph
ε ‖l2(Ω) (B.11)

Let N ∼ 1/h2 be the number of nodal points. Denote ‖ · ‖ the standard maximum norm

of matrices in RN×N and | · | the maximum norm of vectors in RN . The linear system of

equations for P h
ε is

Ah
εP

h
ε = fh

ε (B.12)

where Ah
ε and fh

ε are obtained from a(uh, v) and f(v) by using v = φi
ε for i = 1, . . . , N .

Similarly, for P0 one has

Ah
0P

h
0 = fh

0 (B.13)

where Ah
ε and fh

ε are obtained by applying v = φi
0, i = 1, . . . , N to a∗(ph

0 , v) = f(v) with

a∗(ph
0 , v) =

∫
Ω
aij
∗ v,ip

h
0,jdx (B.14)

The “comma” notation for partial differentiation is used here.

The main result is the following:

Theorem B.2.0.1 Assuming that the distance between K and ∂S is of order h we have

|P h
ε − P h

0 | ≤ Cr
ε2

h2
+ C1ε| lnh| (h� ε) (B.15)

The term Cr
ε2

h2 is referred to as the “cell resonance” in [17]. It follows from the above

and (B.11) that for h� ε

‖pε − ph
ε ‖L2(Ω) ≤ Cε+ C1h

2 + Cr
ε2

h2
+ C2ε| lnh| (B.16)

156

Proof. Again the proof is almost exactly similar to the one given in [17]. P h
ε has the

following expansion

P h
ε = P h

0 +
∑
i≥1

εiP h
i (B.17)

where P h
i (i ≥ 1) are given by

Ah
0P

h
1 = fh

1 −Ah
1P

h
0 (B.18)

Ah
0P

h
i = −Ah

1P
h
i−1 (i > 1) (B.19)

There is no contribution from “boundary layers” in the basis functions due to there con-

struction here. Therefore, in the (c.f. [17]) we have

Ah
ε = Ah

0 + εAh
1 (B.20)

fh
ε = fh

0 + εfh
1 (B.21)

where Ah
ε and fh

ε are as described above and

Ah
1 = Λh

2 (B.22)

fh
1 = F h

2 (B.23)

(see equation 4.18 in [17]). Explicitly,

Λh
2kl

=
1
ε

∫
K
σ̃ijφl

0,jφ
k
0,idx (B.24)

F h
2 = −

∫
K
f(x)χpφi

0,pdx (B.25)

Both Λh
2 and F h

2 have a “difference structure”, i.e.

Λh
2 = Dλh (B.26)

F h
2 = Df̂h (B.27)

The analysis is exactly the same as in [17] except that there are no terms involving the

157

boundary correction θh. Therefore, we get the result (corresponding to 4.26 in [17]) that

|εP h
1 | ≤ Cε| lnh|+ C1ε (B.28)

and

|ε2P h
2 | ≤ C

ε2

h2
(B.29)

Further terms in the expansion for P h
ε are of higher order. Substituting the above into this

expansion gives (B.15).

B.3 Numerical results

In this section we investigate numerically the above estimates (B.15) and (B.16). We first

describe some of the implementation details for the scheme. We implement the scheme using

a rectangular mesh coarse mesh of size M ×N , so that the coarse mesh sizes is hx = 1/M

and hy = 1/N . In fact, in our tests we always take M = N and so we write hx = h. This

gives our partition of the domain Ω into the set of rectangular elements Kh. Within each

of these elements K, we solve for the basis functions given by

φi
K = φi

0,K + εφi
1,K (B.30)

where φi
0,K is the standard linear basis function in the element K with φi

0,K(xj) = δij and

φi
1,K is given

φi
1,K = −χj

∂φi
0,K

∂xj
(B.31)

where χj is the periodic solution of

∇y.
(
a(y)∇yχ

j
)

=
∂

∂yi
aij(y) (B.32)

in a unit cell Y with zero mean, i.e.

〈χj〉 =
1
|Y |

∫
Y
χjdy = 0 (B.33)

158

χj is solved for once at the start of the computations. We solve for χj using a linear finite

element method with 512×512 grid points. This gives χj extremely accurately. To evaluate

χj at non-grid points (which is needed since in general h/ε will not be an integer) we use

bilinear interpolation. Since this computation is performed only once at the start, it is not

absolutely necessary to have a very fast solver for this equation. However, here we use a

black-box multigrid that is capable of handling the perioidic boundary conditions [11]. We

evaluate each basis function at K×L points within each element, choosing K = L and also

K = 4096/M . This is done so that the fine grid reconstruction always has 4096× 4096 grid

points.

Once the basis functions have been computed, we need to compute the stiffness matrix.

This is done by integrating overlapping elements. The integration is done using the trapezio-

dal rule over the fine grid points. The right-hand side of the linear system is evaluated in

a likewise manner.

The resulting linear system is solved using a multigrid solver, [33]. This gives the ho-

mogenized solution P h
0 at coarse-grid points. The multiscale solution P h

ε is then constructed

by interpolation of this coarse-grid solution using the multiscale basis functions, i.e.

P h
ε =

∑
m,n

P h
0,mnφmn (B.34)

where P h
0,mn is the coarse-grid solution at the grid point m,n and φmn is the basis function

that is 1 at m,n, zero at all other coarse-grid points.

In the first set of experiments, we numerically investigate the error estimate (B.15),

which is crucial in getting the error estimate for the L2 norm of the error in the multiscale

solution. We perform the same basic tests as were done in [17]. That is, we fix the ratio

α = h/ε and then decrease the mesh size h and compute the l2 norm numerically. The

purpose of these experiments in [17] was to show that the “resonance” error, due to the

term of the form Cε/h in the l2 error estimate, was indeed observable. By decreasing h

and ε simulataneously with their ratio fixed, this resonant term should remain and this was

observed for the case of α = 1.5.

In this new method, we do not have such a term, but we still have the term Crε
2/h2. In

[17] it was reported that this error was generically small and very difficult to observe. Our

numerical experiments also show this to be true for the new method, i.e. that the constant

159

h α = 1.5 α = 1.5625 α =
√

10/2 ≈ 1.58
l2 rate l2 rate l2 rate

1/16 6.302e−4 6.010e−4 5.800e−4

1/32 2.906e−4 1.117 2.864e−4 1.069 2.791e−4 0.965
1/64 1.461e−4 0.992 1.426e−4 1.006 1.444e−4 1.041
1/128 7.109e−5 1.039 7.083e−5 1.010 7.174e−5 1.009
1/256 3.510e−5 1.018 3.496e−5 1.019 3.549e−5 1.015
1/512 1.661e−5 1.079 1.698e−5 1.041 1.724e−5 1.042
1/1024 6.7922e−6 1.290 7.952e−6 1.094 8.138e−6 1.083

Table B.1: ||P h
ε − P h

0 ||l2 for various α = h/ε.

h α = 1.0 α = 1.2 α = 1.9
l2 rate l2 rate l2 rate

1/16 3.331e−4 4.108e−4 7.014e−4

1/32 1.657e−4 0.999 2.101e−4 0.967 3.800e−4 0.884
1/64 8.275e−5 1.002 1.017e−4 0.932 1.950e−4 0.963
1/128 4.117e−5 1.007 5.084e−5 1.116 9.267e−5 1.073
1/256 2.017e−5 1.030 2.487e−5 1.032 4.617e−5 1.006
1/512 9.139e−6 1.142 1.775e−5 0.486 2.236e−5 1.046
1/1024 2.948e−6 1.632 5.043e−6 1.816 1.085e−5 1.043

Table B.2: ||P h
ε − P h

0 ||l2 for various α = h/ε that were not considered in [17].

Cr in (B.15) is extremely small and difficult to observe. Table B.1 summarizes the results.

We see that for α = 1.5, the rate remains close to 1 and does not stagnate, as was found

when using the standard MSFEM in [17]. For that case, it was shown, by use of Green’s

functions, that the resonance error should be greatest for the case of α = 1.5. Since we

have not performed such an analysis for the term Crε
2/h2 we also checked some different

values of α which are further away from 1.5, results that were not shown in [17]. For these

cases, we still see that the convergence rate remains close to 1. Other tests were performed

with different choices for the function a in () and similar result were obtained. Therefore,

we conclude that the constant Cr in (B.15) must be extremely small, or in fact there exists

further error cancellations so that it is an overestimate of the true error.

We also compute some l2 errors for the solution P h
ε we compared with “exact” solutions,

to verify the error bound (B.16). By exact, we mean very well resolved computations, carried

out using the standard linear finite element method with a 2048 × 2048 grid (which was

the maximum number we were able to handle on our current computing resources). For

160

h l2 rate
1/8 5.691e−4

1/16 3.963e−4 0.522
1/32 3.401e−5 0.221
1/64 3.187e−5 0.094

Table B.3: ‖pε − ph
ε ‖L2(Ω) computed for various MSFEM grids.

these tests we use ε =
√

2/100 ≈ 0.0070710 so that the resolved computations have about

14 grid points in each direction per period. This value of ε is not as small as we would

like, but as mentioned above, we were limited by hardware resources (in particular memory,

which becomes an issue for the multigrid solver used). We compute the MSFEM solution

ph
ε using M ×M grids, with M = 8, 16, 32, with sub-cell resolution K = 2048/M so that we

have 2048× 2048 fine grid points for the reconstructed solution. Table B.3 summarizes the

results. We see that error quickly stagnates due to the fact that even for M = 16 we have

h2 ≈ 0.00390625 which is smaller than ε. The convergence rate between 8 and 16 clearly

indicates, however, that the scheme is indeed convergent. A more satisfactory test would

involve using a smaller value of ε. This would allow us to see the second order convergence

in h of the error ‖pε − ph
ε ‖L2(Ω).

161

Appendix C

Implementation of the Hyperbolic
Solver via CLAWPACK

We have the system
∂Q
∂t

+A
∂Q
∂x1

+B
∂Q
∂x2

= 0 (C.1)

where A and B are matrices, with

A =


v1 0

P(v′1)0,0 v1 + P(v′1)0,0 0

P(v′1)0,1 0 v1 + P(v′1)0,1
...

. . .

 (C.2)

In CLAWPACK, a wave propagation approach is used to calculate fluxes. This involves

computing a set of eigenvectors of the matrices A. From the structure of A we can imme-

diately see that ei i = 2, . . . , 1 +KL are eigenvectors, with eigenvalues λi = v1 + P(v′1)k,l.

Here ei denotes with usual unit vectors in R1+KL with elements (ei)j = δij . Another eigen-

vector u is determined easily by setting the eigenvalue λ1 = A11 = v1. Then, u1 = 1, and

the other elements are computed using

An1 +Annun = λun = A11un ⇒ un =
An1

A11 −Ann
(C.3)

and then adjusting this to make the length 1. Thus, we have a set of eigenvectors.

We then need to express the flux difference ∆q as a combination of these eigenvectors.

162

We have

∆q =
1+KL∑
i=1

βiui (C.4)

The set {ui}, i = 2, . . . , 1 +KL is orthonormal. However, u1 is not orthogonal to vectors

in this set. To calculate these βi, note that

∆q · u1 = β1 +
1+KL∑
i=2

βi(ui · u1) (C.5)

∆q · uk = β1(u1 · uk) + βk, k = 2, . . . 1 +KL (C.6)

So we get the linear system


1 u1 · u2 u1 · u3

u1 · u2 1 0

u1 · u3 0 1 0 . . .
...

. . .




β1

β2

β3

...

 =


∆q · u1

∆q · u2

∆q · u3

...

 (C.7)

From this we see, we row manipulation that

β1 =
∆q · u1 −

∑1+KL
i=2 (ui · u1)∆q · ui

1−
∑1+KL

i=2 (ui · u1)2
(C.8)

=
∆q · u1 −

∑1+KL
i=2 u1,i∆q · ui

1−
∑1+KL

i=2 u2
1,i

(C.9)

Then,

βk = ∆q · uk − u1,kβ1 (C.10)

With these, we then have

A∆q =
∑

i

βiλiui (C.11)

163

Bibliography

[1] D. Bale, R. LeVeque, S. Mitran, and J. Rossmanith. A wave propagation method for

conservation laws and balance laws with spatially-varying flux functions. SIAM J. Sci.

Comput., 2002.

[2] R. Beckie, A. A. Aldama, and E. F. Wood. Modeling the large-scale dynamics of

saturated groundwater flow using spatial filtering theory, 1, theoretical development.

Water Resour. Res., 32:1269–1280, 1996.

[3] A. Bensoussan, J. Lions, and G. Papanicolaou. Asymptotic analysis for periodic struc-

tures, volume 5 of Studies in Mathematics and Its Applications. North-Holland Publ.,

1978.

[4] M. Blunt, L. Liu, and M. Thiele. A generalized streamline method to predict reservoir

flow. Petroleum geoscience, 02:259–269, 1996.

[5] D. Braess. Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics.

Cambridge University Press, 2001.

[6] S. E. Buckley and M. C. Leverett. Mechanisms of fluid displacements in sands. Trans.

AIME, 146:107–116, 1942.

[7] H. Ceniceros and T. Y. Hou. An efficient dynamically adaptive mesh for potentially

singular solutions. J. Comput. Phys., 172:1–31, 2001.

[8] Z. Chen and T. Y. Hou. A mixed multiscale finite element method for elliptic problems

with oscillating coefficients. Math. Comput., 2000.

[9] K. H. Coats. A note on impes and some impes-based models. SPE Journal, 5(3):245–

251, 2000.

164

[10] P. Concus, G. Golub, and G. Meurant. Block preconditioning for the conjugate gradient

method. SIAM J. Sci. Stat. Comput., 6(1), 1985.

[11] J. Dendy. Multigrid for periodic and singular problems. Applied Math. and Comp.,

25:1–10, 1988.

[12] C. Deutsch and A. G. Journel. GSLIB: Geostatistical Software Library and User’s

Guide. Oxford Univ. Press, New York, 2nd edition, 1998.

[13] L. J. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for

hetrogeneous porous media. Water Resour. Res., 27:699–708, 1991.

[14] Y. Efendiev and L. J. Durlofsky. Numerical modeling of subgrid hetrogeneity in two

phase flow simulations. Water Resour. Res., 2002.

[15] Y. Efendiev, L. J. Durlofsky, and S. H. Lee. Modeling of subgrid effects in coarse-

scale simulations of transport in hetrogeneous porous media. Water Resour. Res.,

36(8):2031–2041, 2000.

[16] Y. R. Efendiev. The Multiscale Finite Element Method and its Applications. PhD

thesis, Caltech, 1999.

[17] Y. R. Efendiev, T. Y. Hou, and X. H. Wu. Convergence of a nonconformal multiscale

finite element method. SIAM J. Numer. Anal., 2000.

[18] I. G. Kevrekidis et al. Coarse integration/bifurcation analysis via microscopic simula-

tors: micro-galerkin methods. Computers and Chemical Engineering, submitted.

[19] T. Y. Hou and X. H. Wu. A multiscale finite element method for elliptic problems in

composite materials and porous media. J. Comput. Phys., 134:169–189, 1997.

[20] T. Y. Hou, X. H. Wu, and Z. Cai. Convergence of a multiscale finite element method

for elliptic problems with rapidly oscillating coefficients. Math. Comput., 68:913–943,

1999.

[21] P. Jenny, S. Lee, and H. Tchelepi. Multi-scale finite-volume method for elliptic problems

in subsurface flow simulation. Journal of Computational Physics, to appear.

165

[22] P. Langlo and M. Espedal. Macrodispersion for two-phase, immiscible flow in porous

media. Advances in Water Resources, 17:297–316, 1994.

[23] R. LeVeque. CLAWPACK 4.1 User’s Guide.

[24] R. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge University

Press, 2002.

[25] A. Oberman. Convergent difference schemes for degenerate elliptic and parabolic equa-

tions: Hamilton-jacobi equations and free boundary problems. SINUM, 2003.

[26] O. A. Oleinik. Uniqueness and stability of the generalized solution of the cauchy

problem for a quasilinear equation. Amer. Math Soc. Transl., 33:285–290, 1964.

[27] S. Osher. Riemann solvers, the entropy condition, and difference approximations. SIAM

J. Numer. Anal., 21:217–235, 1984.

[28] D. Peaceman. Fundamentals of Numerical Reservoir Simulation. Elsevier Scientific

Publishing Co., 1977.

[29] H. L. Stone and A. Garder Jr. Analysis of gas-cap or dissolved-gas drive reservoirs.

Trans. AIME, 222, 1961.

[30] G. Strang and G. Fix. An anlysis of the finite element method. Prentice-Hall, Engle-

wood Cliffs, NJ, 1973.

[31] M. Thiele, R. Batycky, M. Blunt, and R. Orr. Simulating flow in hetrogeneous systems

using streamtubes and streamlines. SPE Reservoir Engineering, 11:5–12, 1996.

[32] G. B. Whitham. Linear and nonlinear waves. Wiley, New York, 1974. 636 p.

[33] P. M. De Zeeuw. Matrix-dependent prolongation and restrictions in a blackbox multi-

grid solver. J. Comput. Phys., 33:1–27, 1990.

	Acknowledgements
	Abstract
	Introduction
	Modeling Two-Phase Flows
	Overview
	Two-Phase Flow Equations
	Pressure/Velocity Equation
	Saturation Equation

	Simplified Model Problem

	Resolved Scheme for the Porous Media Flow
	Resolved Scheme for the Pressure Equation
	Resolved Scheme for the Saturation Equation
	Solving Nonconvex Riemann Problems
	Convex Hull Construction
	Osher's solution
	Finite Volume Scheme for the Saturation Equation

	Numerical Results for the Resolved Numerical Scheme
	The Core-Plug Model
	The Five-Spot Model
	Numerical Observations

	Previous Work on Upscaling and Context of the Present Work

	Multiple Scale Analysis
	Overview
	Formulation of Multiple Scale Model
	Upscaling for the Pressure/Velocity Equation
	Upscaling for the Saturation Equation
	Justification for the Asymptotic Expansions

	Numerical Implementation
	Overview
	Coarse-grid Sub-grid Approach
	Numerical Upscaling Method for the Saturation Equation
	Finite-Volume Solution of Homogeneous System
	Wave-Propagation Method
	Computation of Source Terms
	Computation of Streamline Projection
	Consistency and Convergence of our Scheme

	Numerical Upscaling Method for the Pressure/Velocity Equation
	Multiscale Finite Element Method
	Special MSFEM for the Case of Periodic Oscillations
	Implementation of MSFEM

	Extension to Non-Periodic Problems

	Numerical Results
	Overview
	Periodic Permeability Field
	Single-Phase Results

	Non-Periodic Examples
	Single-Phase Results
	Two-Phase Results
	Timing Results

	Summary and Conclusions
	Further Work

	Hyperbolicity of the Upscaled Saturation Equations
	Special MSFEM Convergence
	H1 estimates
	L2 estimates
	Numerical results

	Implementation of the Hyperbolic Solver via CLAWPACK
	Bibliography

