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Abstract

Nucleic acids present great promise as building blocks for nanoscale devices. To achieve this poten-

tial, methods for the analysis and design of DNA and RNA need to be improved. In this thesis,

traditional algorithms for analyzing nucleic acids at equilibrium are extended to handle a class of

pseudoknots, with examples provided relevant to biologists and bioengineers. With these analyti-

cal tools in hand, nucleic acid sequences are designed to maximize the equilibrium probability of a

desired fold. Upon analysis, it is concluded that both affinity and specificity are important when

choosing a sequence; this conclusion holds for a wide range of target structures and is robust to ran-

dom perturbations to the energy model. Applying the intuition gained from these studies, a process

called hybridization chain reaction (HCR) is invented, and sequences are chosen that experimentally

verify this phenomenon. In HCR, a small number of DNA or RNA molecules trigger a system wide

configurational change, allowing the amplification and detection of specific, nucleic acid sequences.

As an extension, HCR is combined with a pre-existing aptamer domain to successfully construct

an ATP sensor, and the groundwork is laid for the future development of sensors for other small

molecules. In addition, recent studies on multi-stranded algorithms and improvements to HCR are

included in the appendices. Not only will these advancements increase our understanding of bio-

logical RNAs, but they will also provide valuable tools for the future development of nucleic acid

nanotechnologies.
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Chapter 1

Introduction to Nucleic Acid
Based Devices

Since Ned Seeman’s early work on the creation of synthetic DNA shapes and patterns [27, 29, 11,

30], nucleic acids have emerged as a powerful and facile tool for the development of nanoscale,

biocompatible technologies. With utility as both programmable scaffolds [28, 27, 4, 15, 42, 12,

43, 16, 17, 32] and dynamic, functional motifs [45, 44, 14, 35, 2, 33, 31, 34], DNA and RNA have

potential applications as biosensors [22, 9], drug delivery systems [18], molecular transporters [34, 31],

and “lab on a chip” [23] technologies. In addition to the well-established chemical and enzymatic

methods for manipulating DNA and RNA, one key reason nucleic acids are popular components

for engineered nanodevices is that reasonably accurate and efficient computational methods exist

[47, 38, 46, 20] for predicting and analyzing basic DNA and RNA structures. These algorithms allow

for the rapid, in silico design and improvement of nucleic acids before synthesizing and testing them

in the laboratory. Described in this thesis are improvements to these algorithms (chapters 2 and

3), followed by a detailed study of nucleic acid sequence design (chapter 4). This culminates in the

creation and experimental validation of DNA devices (chapter 5) that can detect specific nucleic

acid sequences, as well as small molecules such as ATP.
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1.1 Structural Hierarchy of Nucleic Acids

A nucleic acid can be described in many different ways. For a given problem, choosing the proper

level of detail is crucial in distilling key features without being inundated with extraneous informa-

tion. Three useful representations of nucleic acids are primary, secondary, and tertiary structure;

the strengths and weaknesses of each viewpoint will be described below. While the physical prop-

erties, chemical composition, and biological roles of nucleic acids are also important, a description

of such details is not necessary to understand the main thrust of this thesis. For a more complete

appreciation of the physical, chemical, and biological contexts of nucleic acids, see Appendix A.

1.1.1 Primary Structure

The primary structure of a nucleic acid is simply the sequence, typically given in the 5’ to 3’ direction.

For DNA, sequences are combinations of the four bases: adenine (A), cytosine (C), guanine (G) and

thymine (T). In RNA, thymine is replaced by uracil (U). Throughout this thesis, a sequence, such

as CGTGACCCAG, always represents a single strand as opposed to the double helix normally imagined

when referring to DNA (see Appendix A). Primary structure can be incredibly useful, especially

when describing the proteins that nucleic acids often encode. However, this level of detail ignores

the folded structure of the DNA or RNA, and hence is insufficient for the purposes of this thesis.

1.1.2 Secondary Structure

Numbering the bases of a nucleic acid strand from 1 to N (where N is the sequence length), the

secondary structure is simply a list of base pairs between Watson-Crick complements (A·U, C·G

for RNA and A·T, C·G for DNA) or wobble pairs (G·U or G·T), where each number appears in at

most one pair. These base pairs dominate the energetics of folding for a nucleic acid and provide a

rough schematic of the shape of the molecule. Figure 1.1 shows two different representations of a

secondary structure, and depicts the canonical base pairing patterns that can arise. It is this level

of description that can be efficiently computed and analyzed, providing an in silico feedback loop

for the development of nucleic acid technologies.
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An important secondary structure motif in both engineered DNA nanostructures [42, 43] and

biologically important RNAs [39] is the pseudoknot (see figure 1.2). Traditional algorithms [47, 38,

46, 20] exclude pseudoknots (although some do attempt to handle them [1, 25]), making it difficult

to rigorously analyze, predict and design pseudoknots. Since McCaskill’s original work in 1990 on

the equilibirum properties of non-pseudoknotted structures, little to no progress was made on the

incorporation of pseudoknots into these calculations until 2003 and 2004, when the papers [7, 8]

described in chapters 2 and 3 were published.

Due to the strength of base pairing interactions, secondary structure is often sufficient to describe

a useful level of functionality for a DNA or RNA nanostructure. In particular, unpaired bases are

often free to hybridize with other nucleic acids and hence represent active sites. In contrast, base

paired positions are protected and are much less likely to hybridize with a neighboring RNA or DNA.

This easy to describe structure-function relationship makes secondary structure descriptions the best

choice for many nucleic acid applications, and was essential in creating the biosensor described in

chapter 5.

1.1.3 Tertiary Structure

For the purposes of this thesis, all structural information beyond simple base pairs is lumped into

tertiary structure. This includes how different elements of secondary structure orient themselves with

respect to one another and describes the overall three-dimensional geometry of the molecule. This

also describes how an RNA or DNA aptamer [13] binds to a substrate or how a ribozyme [24] catalyzes

chemical reactions. Clearly, for a truly de novo design of nucleic acid devices, this level of description

is essential in creating diverse functionalities. However, the computational advantages that make

nucleic acids especially easy to analyze and design do not yet extend to molecular modeling. Instead,

more detailed calculations that take into account such factors as hydrophobic packing, electrostatics,

and solvent interactions are required. To take advantage of these atomic level interactions in nucleic

acid devices, functional modules can be borrowed from natural ribozymes or from in vitro selection

experiments [37, 10], and incorporated into a design schematic [22, 9] without directly addressing the
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Figure 1.1. Canonical loops of nucleic acid secondary structure: hairpin loops (one closing base
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(two closing base pairs with one loop side of length greater than zero), an interior loop (two closing
base pairs with both loop sides of length greater than zero), and a multiloop (more than two closing
base pairs). On the right is a polymer graph representation of the same secondary structure, with
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Figure 1.2. A sample pseudoknot with base pairs a·f and c·h (with a < c) that fail to satisfy the
nesting property a < c < h < f . This leads to crossing arcs in the polymer graph. The letters a, c, h,
and f represent the numbers associated with each base, counting upwards in the 5’ to 3’ direction.
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tertiary structure that explains how the sequence operates. The computational challenge of directly

modeling tertiary structure makes this level of description, while important, not currently necessary

for the development of new technologies.

1.2 Thesis Overview

The research done for this thesis can be divided into three distinct categories: analysis, design, and

construction.

1.2.1 Analysis

First, computational tools for the analysis of nucleic acid secondary structures will be described.

Emphasis is placed on the rigorous incorporation of a class of pseudoknots [7] into both minimum free

energy and partition function algorithms [41, 40, 21, 48, 47, 38, 46, 20], while maintaining the fidelity

of the nearest neighbor energy model [36, 26, 19]. This is a challenge that had been unsolved since

the original algorithms in the late 1970s and early 1980s. These dynamic programming methods

can completely explore an exponentially large class of secondary structures in polynomial time,

where both the size of the class and the computational cost grow with respect to the length of the

sequence. With these algorithms, the minimum free energy structure [47, 38, 46], as well as the

partition function [20] describing all possible folds, can be determined for a single stranded RNA

or DNA. This allows the equilibrium population of any structure or base pair to be calculated and

provides insight into the stability of the dominant fold, as well as any competing configurations

[20, 3].

Using the sparse existing data on known pseudoknots, the energy model used for these dynamic

programming algorithms has been roughly parameterized [7]. Subsequent applications to both a

biologically relevant pseudoknot, as well as an engineered one, demonstrate the utility of these

methods. In addition, the algorithms are described in a general way [8] to easily accommodate

future modifications.

Work has also been done to analyze the free energy landscapes of multiple, interacting strands
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of DNA, and will be published shortly [5]. This work is described in Appendix D.

1.2.2 Design

For a series of target secondary structures, a collection of different design criteria are used to generate

sequences. The quality of these sequences is then compared [6] using the partition function analysis

developed previously. From these comparisons, it is concluded that both affinity and specificity

are important in designing sequences with optimal thermodynamic properties. To determine the

robustness of these results, random perturbations are introduced to the energy model parameters and

the sequences are reevaluated [6]. The same qualitative trends are observed even as the parameters

are varied by as much as 50%. These results should significantly affect how researchers in the field

create sequences for nucleic acid devices.

In addition to the thermodynamic properties of the designed sequences, the folding kinetics of

these sequences are explored with stochastic simulations. No clear correlation is observed between

favorable equilibrium probabilities and fast folding, suggesting that kinetics and thermodynamics

are independent issues when designing sequences [6].

1.2.3 Construction

In the final chapter, a DNA system will be described that can undergo a substantial configurational

change upon the introduction of a small amount of target DNA (or RNA). This change, termed

hybridization chain reaction (HCR), can be easily detected experimentally [9], thereby acting as a

sensor for a DNA or RNA signal. By incorporating a pre-existing aptamer into the system, the

sensor can be adapted to detect other small molecules. The sequences for HCR were chosen using

the analysis tools and design criteria described in the corresponding sections. More sophisticated

versions of HCR still under investigation are described in Appendix F. When fully developed,

the invention of HCR may prove to be a valuable tool in the creation of practical, nucleic acid

technologies.
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Chapter 2

Analysis of Secondary Structures

The work presented here is heavily based on:

R. M. Dirks and N. A. Pierce, A partition function algorithm for nucleic acid secondary structure in-

cluding pseudoknots. Journal of Computational Chemistry, 2003. 24(13): pp. 1664-1677. Reprinted

with copyright permissions.
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2.1 Abstract

Nucleic acid secondary structure models usually exclude pseudoknots due to the difficulty of treating

these non-nested structures efficiently in structure prediction and partition function algorithms.

Here, the standard secondary structure energy model is extended to include the most physically

relevant pseudoknots. An O(N5) dynamic programming algorithm is described, where N is the

length of the strand, for computing the partition function and minimum energy structure over this

class of secondary structures. Hence, it is possible to determine the probability of sampling the

lowest energy structure, or any other structure of particular interest.

2.2 Introduction

The problem of predicting the minimum energy secondary structure of an RNA or single-stranded

DNA (ssDNA) molecule has been studied extensively for the past two decades. Secondary structure

is described by a list of base pairs i·j and is described in more detail in Chapter 1. Using a loop-

based nearest-neighbor energy function and experimentally derived parameters, numerous algorithms

have been implemented to predict the secondary structure or structures that a given nucleic acid

sequence will adopt. The first dynamic programming algorithms for secondary structure prediction

were proposed by Waterman and Smith [24, 25] and Nussinov et al. [13]. In 1981, Zuker and

Stiegler [29] introduced an improved dynamic programming algorithm that explores all possible

unpseudoknotted secondary structures in O(N4) time, where N is the sequence length. Several

reviews describe subsequent progress on methods for secondary structure prediction [28, 20, 27]. In

1990, McCaskill [12] described a different O(N4) dynamic programming algorithm for computing

the partition function of a given sequence over all possible unpseudoknotted secondary structures.

Both the Zuker and Stiegler structure prediction algorithm and the McCaskill partition function

algorithm can be reduced to O(N3) complexity using a simplified energy model [29, 12]. The

partition function can be used to derive thermodynamic properties of the equilibrium conformational

ensemble including the base-pairing probability of any two bases [12, 2]. As a result, the partition
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function holds promise as a means of evaluating and improving sequence designs for molecules that

are intended to adopt a specified secondary structure [7, 5].

In the absence of pseudoknots, thermodynamic models for nucleic acid secondary structure are

based on a decomposition of the base-pairing graph for a molecule into distinct loops that are associ-

ated with empirically measured enthalpic and entropic terms that depend on loop sequence, length,

and type [15, 11]. Starting with the work of Tinoco [19], the development of these physical models

has involved the work of many researchers [28, 20, 27]. The canonical loop types are illustrated in

figure 1.1, where the base-pairing graph incorporates stacked bases, hairpin loops, a bulge loop, an

interior loop, and a multiloop. Depicted as a polymer graph with the polymer backbone drawn as a

straight line and paired bases connected by arcs, all of these loop types appear as nested structures

with no crossing arcs. The energy of the structure is the sum of the energies of its constituent loops.

One deficiency in most RNA or ssDNA secondary structure models has been the assumption that

these structures do not contain pseudoknots. Pseudoknots are formed when two base pairs i·j and

d·e, with i < d, fail to satisfy the nesting property i < d < e < j as illustrated in figure 1.2. The

omission of pseudoknots from secondary structure models removes an exponentially large subset of

all possible secondary structures from consideration. Pseudoknots are known to exist in ribosomal

RNA, viral RNA and a number of ribozymes [23]. Currently, pseudoknots have been identified in

over 200 naturally occurring RNAs, as cataloged in the Pseudobase database [22]. Pseudoknotted

structures also arise in engineering efforts to design new molecular structures and machines using

nucleic acids [26].

Pseudoknots present a major obstacle to the algorithms commonly used to predict RNA and

ssDNA structures. Dynamic programming approaches solve large problems by breaking them up

into smaller, self-contained subproblems. For example, to find the minimum energy fold of a sequence

containing N nucleotides, Zuker and Stiegler’s algorithm [29] calculates the minimum energy fold

for each subsequence [i, j], for all 1 ≤ i < j ≤ N . Using the standard energy model, in the special

case where bases i and j are paired, the assumption that there are no pseudoknots ensures that

this subproblem is self-contained; no base between i and j can base-pair with anything outside of
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this region, and no secondary structure outside of this region will affect the loop energy of this

subsequence. As a consequence, the minimum energy fold for this region (still assuming i and j are

paired) can be determined independently of the rest of the sequence, and the solution can be applied

wherever this subsequence occurs. However, when pseudoknots are allowed, forcing i to be paired

with j is not sufficient to define a self-contained subproblem, as neither the structure nor the energy

of the region between i and j is independent of the rest of the sequence. Thus, in order to use a

dynamic programming algorithm for pseudoknots, simplifying assumptions about the complexity of

pseudoknots must be made, and additional, more intricate recursions must be adopted.

Owing to these difficulties, alternative approaches have been attempted for predicting pseudo-

knotted secondary structures. Maximum weighted matching [18] has been applied to this problem

using a non-loop-based energy model. Heuristics have also been used to include some pseudoknots

in structure searches based on the standard energy model [4, 3, 21, 8]. However, there is currently no

known efficient algorithm that considers all possible secondary structures and produces a minimum

energy structure or the partition function. In fact, Lyngso and Pedersen [9] and Akutsu [1] proved

that finding a minimum energy structure among all possible pseudoknots is NP -hard when using

the standard nearest-neighbor energy function.

One strategy for bypassing the inherent intractability of a complete search of secondary structure

space is to limit the class of pseudoknots to those that are physically most likely to occur. Rivas and

Eddy [14] have attempted to do this by expanding the dynamic programming scheme for structure

prediction to include a restricted set of pseudoknots. Owing to a dearth of experimental data on

pseudoknot energetics, Rivas and Eddy parameterize a plausible and computationally expedient en-

ergy function for pseudoknots. Their algorithm is slower than Zuker and Stiegler’s original dynamic

program [29], running in O(N6) time, but it does successfully capture many possible pseudoknots.

Akutsu [1] describes an O(N5) dynamic program for secondary structure prediction over a differ-

ent class of pseudoknots. Unfortunately, the recursions defined by Rivas and Eddy and by Akutsu

contain many redundancies, and are hence unsuitable for partition function calculations.

A recursion is redundant if a single secondary structure is reached by multiple trajectories in the
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recursion process. For structure prediction algorithms, redundancy is not a fundamental problem;

the goal is to evaluate the minimum energy structure and hence it is inconsequential whether the

same structure is examined more than once (except for efficiency concerns). Partition function

algorithms determine a weighted sum of all configurations, so repetition implies overcounting. The

goal of the present work is to design nonredundant pseudoknot recursions that allow for partition

function calculations on a restricted set of physically important pseudoknots. The partition function

algorithm can be modified in a straightforward way to obtain an algorithm for computing the

minimum energy structure over the same class of secondary structures.

This chapter proceeds by summarizing the standard physical model and introducing McCaskill’s

partition function algorithm for the unpseudoknotted case, which requires O(N4) computation and

O(N2) storage [12]. With the exception of interior loop terms, this algorithm can be reduced to

O(N3) following ideas presented by McCaskill [12]. However, Lyngso, Zuker and Pedersen [10]

have shown that the complexity of the interior loop evaluations can also be reduced to O(N3) by

exploiting certain features of the standard energy model. Following a similar strategy, we present an

O(N3) partition function algorithm for the unpseudoknotted case that requires no approximation

to the standard energy model.

A pseudoknot energy model is then introduced that resembles the standard multiloop treatment.

A nonredundant O(N8) algorithm requiring O(N4) storage is described that computes the parti-

tion function for structures including the most common pseudoknots in nature and in engineering

applications. By increasing the number of O(N4) storage arrays, the computational complexity

of the algorithm can be reduced to O(N6). Furthermore, by generalizing the special interior loop

treatment to the pseudoknotted case, it is possible to further reduce the computational complexity

to O(N5) without approximation.

The dynamic programming algorithms are described using two compatible representations. Re-

cursion diagrams facilitate the invention, modification, and interpretation of the algorithms by illu-

minating the relationships between the various recursive quantities. Each diagram corresponds to

a mathematical recursion equation. For clarity and conciseness, we present these equations in the
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form of compact pseudocode. Finally, we perform a preliminary parameterization of our pseudoknot

model for RNA using 200 known RNA pseudoknots and 400 unpseudoknotted tRNAs.

2.3 Partition Function without Pseudoknots

2.3.1 Standard Energy Model

In the standard energy model for unpseudoknotted secondary structures [15, 11], a loop free energy

GL is associated with each loop L in a secondary structure s, so that the total free energy Gs is

Gs =
∑
L∈s

GL.

The partition function is then a weighted sum over the set of all possible secondary structures S

Q =
∑
s∈S

e−Gs/RT

where R is the universal gas constant and T is the temperature.

A base pair d·e is interior to another base pair i·j if i < d < e < j. In the standard energy model,

the energy associated with an empty subsequence [i, j] that contains no base pairs and is external

to all loops is assumed to be zero

Gempty
i,j = 0. (2.1)

The energy associated with a hairpin loop closed by base pair i·j is represented by a two-dimensional

array

Ghairpin
i,j (2.2)

that depends on sequence and loop size. The energy of an interior loop defined by closing base pair

i·j and an interior base pair d·e is represented in a four-dimensional array

Ginterior
i,d,e,j (2.3)
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that depends on sequence, loop size, and loop asymmetry. Bulge loops are treated as special cases

of interior loops (where either d= i+1 or e= j−1). Stacked pairs are represented by interior loops

with both d = i+1 and e = j−1. In treating multiloops, it is impractical to incorporate sequence

dependence for all of the defining base pairs. This is true both because there is a lack of experimental

data and because the energy array would continue to increase in size by a factor of O(N2) with the

addition of each interior base pair to the loop. Instead, the multiloop energetics are approximated

by the expression

Gmulti = α1 + α2B + α3U (2.4)

where α1 is the penalty for the formation of a multiloop, B is the number of base pairs that define

the multiloop (including the closing pair i·j) and U is the number of unpaired bases in the multiloop.

This energy expression is illustrated in appendix figure B.1. The total energy for a multiloop must

be introduced incrementally as each interior base pair defining the loop is encountered during the

multiloop recursions. The form of these incremental pieces of Gmulti will be stated as the recursions

are defined.

2.3.2 O(N4) Algorithm

To determine the partition function Q for an unspeudoknotted strand of length N , McCaskill’s

algorithm [12] starts by considering all continuous subsequences of length l = 1 and explores all

subsequences of incrementally increasing length until l = N . The O(N4) form of the algorithm

requires the calculation and storage of three terms Qi,j , Qb
i,j , and Qm

i,j for each subsequence. These

quantities ignore the portions of the structure that are exterior to the subsequence [i, j].

Qi,j represents the full partition function for subsequence [i, j] and is defined recursively by the

equation

Qi,j = 1 +
∑
d, e

i≤d<e≤j

Qi,d−1 Qb
d,e (2.5)
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Figure 2.1. O(N4) Algorithm: Recursion for Qi,j , the full partition function for the subsequence
[i, j]. Either the subsequence [i, j] is empty with recursion energy Gempty

i,j =0, or there exists one or
more pairs with rightmost base pair d·e and recursion energy Gempty

e+1,j =0.

where Qb
i,j requires its own recursive definition and represents the partition function for subsequence

[i, j] assuming that i and j are base-paired. The definition of Qi,j may be equivalently represented

by the recursion diagram of figure 2.1. Recursion diagrams [14] are a useful tool for describing the

relationships between recursive quantitities. A horizontal line indicates the phosphate backbone, a

solid curved line indicates that two bases are paired, and a dashed curved line denotes a subsequence

with terminal bases that may be paired or unpaired. The letter under the curve matches the

superscript of the quantity defining the contribution (e.g. ‘b’ corresponds to Qb). Shaded regions

indicate portions of secondary structure that are fixed at the current recursion level and contribute

a recursion energy to the partition function as defined by the standard energy model (2.1)–(2.4).

Unshaded regions under curves have partition function contributions based on recursive quantities

previously evaluated for shorter subsequences.

In equation (2.5) and figure 2.1, the first possibility is that the subsequence [i, j] is empty,

contributing the term exp(−Gempty
i,j /RT ) = 1. Otherwise, there must exist a rightmost base pair d·e

on the subsequence [i, j] denoted by a solid b-curve with an associated partition function contribution

given by a previous evaluation of Qb
d,e. The term rightmost implies that no other base on the

subsequence [e+1, j] is involved in a base pair, so the shaded region is associated with a recursion

energy Gempty
e+1,j = 0. The subsequence [i, d−1] may, however, contain additional base-pairs and its

partition function is given by a previous evaluation of Qi,d−1. Every possible base pair d ·e that

can be formed in subsequence [i, j] must be considered as a possible rightmost pair, and for each

of these, the product Qi,d−1 Qb
d,e exp(−Gempty

e+1,j /RT ) is added to Qij . The reliance on the concept

of a rightmost pair ensures that the recursions are nonredundant and is a key distinction between
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Figure 2.2. O(N4) Algorithm: Recursion for Qb
i,j , the partition function for the subsequence [i, j]

assuming i and j are base-paired. Either the subsequence [i, j] is a hairpin loop with recursion
energy Ghairpin

i,j , or there exists one internal base pair d ·e forming an interior loop with recursion
energy Ginternal

i,d,e,j , or there are at least two interior base pairs forming a multiloop with rightmost pair
d·e and recursion energy α1 + 2α2 + α3(j−e−1).

McCaskill’s partition function approach and the redundant energy minimization recursions of Zuker

and Stiegler [29], Rivas and Eddy [14], and Akutsu [1]. (The use of a leftmost extremal convention

is equally valid.)

The above recursion relied on the calculation of Qb
i,j , representing the partition function for

subsequence [i, j] assuming i and j are base-paired. This quantity is defined by the recursive equation

Qb
i,j = exp(−Ghairpin

i,j /RT )

+
∑
d, e

i<d<e<j

exp(−Ginterior
i,d,e,j /RT ) Qb

d,e

+
∑
d, e

i<d<e<j

Qm
i+1,d−1Q

b
d,e exp{−[α1+2α2+α3(j−e− 1)]/RT},

or equivalently by the recursion diagram of figure 2.2. Though similar in spirit, there are important

differences from the recursions for Qi,j defined above. First, since i and j are paired, the empty re-

cursion becomes a hairpin loop, with a recursion energy given by (2.2) and a corresponding partition

function contribution exp(−Ghairpin
i,j /RT ). Second, placing a rightmost pair d·e can lead to two types
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of structures with very different energy functions. If [i, j] contains only the single interior base pair

d·e, then an interior loop is formed, with a recursion energy given by (2.3). The partition function

contribution associated with the subinterval [d, e] is given by a previous evaluation of Qb
d,e so that the

total contribution for each interior loop structure is exp(−Ginterior
i,d,e,j /RT )Qb

d,e. Otherwise, in addition

to the rightmost pair d·e, there must be at least one base pair in the interval [i+1, d−1], and a multiloop

is formed. This requirement is depicted in figure 2.2 by a dashed m-curve which implies that there

is at least one base pair in the subinterval that may or may not involve the terminal bases. Rather

than explicitly enumerating all possible base pairing scenarios for the interval [i+1, d−1] at this

level in the recursion (an approach that would increase the time complexity by a factor of O(N2) for

every additional base pair), the influence of these additional pairs may be obtained more efficiently

by evaluating the recursive quantity Qm
i+1,d−1. This is possible because the energetic model for mul-

tiloops (2.4) depends only on the number of interior base pairs and the number of unpaired bases

and not on simultaneous knowledge of all the base pairs that define the multiloop. The multiloop

recursion energy for this diagram is then α1+2α2+α3(j−e−1), accounting for initiating a multiloop,

the closing base pair i·j, the interior base pair d·e, and the number of unpaired bases j−e−1. The

corresponding partition function contribution is Qm
i+1,d−1 Qb

d,e exp{−[α1+2α2+α3(j−e− 1)]/RT}.

The quantity Qm
i,j is used to examine all multiloop structures and is defined by the recursive

equation

Qm
i,j =

∑
d, e

i≤d<e≤j

[
exp{−[α2 + α3(d−i) + α3(j−e)]/RT}Qb

d,e

+Qm
i,d−1 Qb

d,e exp{−[α2 + α3(j − e)]/RT}
]

(2.6)

or the recursion diagram of figure 2.3. Again we consider the placement of a rightmost base pair

d·e with partition function contributions given by a previous evaluation of Qb
d,e. Inside a multiloop,

there are exactly two possibilities. The pair d ·e may complete the definition of the multiloop, in
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Figure 2.3. O(N4) Algorithm: Recursion for Qm
i,j , the parition function for the subsequence [i, j]

inside a multiloop when there is at least one base pair in the subsequence. Either there is only one
more base pair d·e defining the multiloop and the recursion energy is α2 + α3(d−i) + α3(j−e), or
there is more than one pair with rightmost pair d·e and recursion energy α2 + α3(j−e).

which case the recursion energy α2 + α3(d−i) + α3(j−e) accounts for the single new pair and the

remaining bases. Otherwise, there is at least one more base pair in the subsequence [i, d−1] to be

accounted for by a previous evaluation of Qm
i,d−1. The recursion energy then accounts for the new

pair d·e and the newly identified unpaired bases to give α2 + α3(j − e).

Pseudocode for the algorithm is shown in figure 2.4, where the recursion equations (2.5)–(2.6)

lead to O(N4) computational complexity, as reflected in the programming loops that are nested

four deep to compute Q, Qb, and Qm. Note that Qb must be computed prior to Q and Qm for

each subsequence. The bounds for each programming loop are chosen so as to exclude hairpins with

fewer than three unpaired bases. These sterically impossible structures have infinite energies in the

standard physical model and so do not contribute to the partition function.

2.3.3 O(N3) Algorithm

As noted by McCaskill in his original paper [12], this algorithm can be improved to run in time

O(N3) if the standard energy model for interior loops is simplified and extra memory is used to

store intermediate values in computing Q and Qm. Lyngso, Zuker and Pedersen [10] exploit the form

of the standard interior loop energy expression to calculate interior loop contributions in O(N3).

Following McCaskill [12] and Lyngso [10], we now describe an O(N3) algorithm that reproduces the

results of the O(N4) algorithm without approximation. The modifications necessary to obtain this

improvement will provide a useful precedent for achieving similar gains in the pseudoknotted case.

Recursion diagrams are presented in figures 2.5–2.8 and pseudocode is shown in figure 2.9. The
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Initialize (Q, Qb, Qm) // O(N2) space
Set all values to 0 except Qi,i−1 = 1
for l = 1, N

for i = 1, N−l+1
j = i+l−1

// Qb recursion

Qb
i,j = exp{−Ghairpin

i,j
/RT}

for d = i+1, j−5 // loop over all possible rightmost pairs d·e
for e = d+4, j−1

Qb
i,j += exp{−Ginterior

i,d,e,j /RT}Qb
d,e

Qb
i,j += Qm

i+1,d−1 Qb
d,e exp{−[α1 + 2α2 + α3(j−e−1)]/RT}

// Q, Qm recursions
Qi,j = 1 //empty recursion
for d = i, j−4 // loop over all possible rightmost pairs d·e

for e = d+4, j

Qi,j+= Qi,d−1 Qb
d,e

Qm
i,j += exp{−[α2 + α3(d−i) + α3(j−e)]/RT}Qb

d,e

Qm
i,j += Qm

i,d−1 Qb
d,e exp{−[α2 + α3(j − e)]/RT}

//Partition function is Q1,N

1

Figure 2.4. Pseudocode implementation of McCaskill’s O(N4) dynamic programming partition
function algorithm for nucleic acids without pseudoknots. Here, N is the length of the strand and
l = j−i+1 is the length of the substrand under consideration at any given point during the recursive
process. The recursions are described schematically in figures 2.1–2.3.

recursion for Qi,j described in figure 2.5 no longer explicitly considers a rightmost base pair d ·e.

Instead, the secondary recursive quantity Qs
d,j is used to evaluate all possible rightmost base pairs

that can form with base d. Note that the s-curve is solid on one half and dotted on the other since

base d is known only to be paired to some base in the interval [d+1, j].

The recursions for Qb
i,j and Qm

i,j are modified in a similar way in figures 2.6 and 2.7 by introducing

the secondary recursion quantity Qms to compute the multiloop contributions. The Qs
i,j and Qms

i,j

recursions have exactly the same structure but different recursion energies and are depicted by the

i j

Qi,j recursion

=

i j

Empty

i j

At least one pair

dd-1

s

Figure 2.5. O(N3) Algorithm: Recursion for Qi,j , the full partition function for the subsequence
[i, j]. Either the subsequence [i, j] is empty with recursion energy Gempty

i,j = 0, or there exists one
or more pairs with a rightmost base pair that involves d and some other base on the subinterval
[d+4, j].
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i j

=

i j

Hairpin loop

i dd j-1e i+1 d-1 j

Multiloop

i j

Interior loop O(N 
3)

Qi,j recursionb

m ms

b

b

call fastiloops

Figure 2.6. O(N3) Algorithm: Recursion for Qb
i,j , the partition function for the subsequence [i, j]

assuming i and j are base-paired. Either the subsequence [i, j] is a hairpin loop with recursion
energy Ghairpin

i,j , or there exists one internal base pair d ·e forming an interior loop with recursion
energy Ginternal

i,d,e,j , or there are at least two interior base pairs with rightmost base pair that involves
d and some other base on the subinterval [d+4, j−1]. The interior loop contributions are obtained
in O(N3) using the function “fastiloops” described in appendix figures B.2 and B.3.

=

i j

Qi,j recursion

m

m

i j

One pair

d

ms

i j

More than one pair

d-1 d
m ms

Figure 2.7. O(N3) Algorithm: Recursion for Qm
i,j , the parition function for the subsequence [i, j]

inside a multiloop when there is at least one base pair in the subsequence. One possibility is that
there is only one more base pair defining the multiloop. In this case, the unpaired subinterval [i, d−1]
is associated with a recursion energy α3(d−i) and the rightmost pair involves d and some other base
on the subinterval [d+4, j]. The other possibility is that there are at least two interior base pairs
with a rightmost base pair that involves d and some other base on the subinterval [d+4, j].

recursion diagram in figure 2.8. As suggested by the solid and dashed halves of the s- and ms-

curves, this recursion considers all possible base-pairing partners for base i. For Qs
i,j , the bases on

the subinterval [d+1, j] are external to all loops so the recursion energy is Gempty. For Qms
i,j , pair i·d

is inside a multiloop and the bases [d + 1, j] are unpaired bases inside a multiloop so the recursion

energy is α2 + α3(j−d).

Using these recursions, the pseudocode in figure 2.9 now describes an algorithm that is O(N3)

with the exception of the interior loop contributions, which are computed in the function “fastiloops”.

To this point, the interior loop energy has been described by the black-box function Ginterior
i,d,e,j of

equation (2.3), whose four subscripts imply an O(N4) computational complexity for computing the
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i j

Qi,j or Qi,j    recursion

=

i j

One pair

d

mss

s or ms
b

Figure 2.8. O(N3) Algorithm: Recursion for Qs
i,j and Qms

i,j , secondary parition functions for consid-
ering all possible rightmost base pairs that involve base i. For Qs

i,j , the subsequence [d, j] is external
to all base pairs so the recursion energy is Gempty

d+1,j = 0. For Qms
i,j , the subsequence [d, j] is inside a

multiloop so the recursion energy is α2+α3(j−d).

Initialize (Q, Qb, Qm, Qs, Qms, Qx, Qx1, Qx2) //O(N2) space
Set all values to 0 except Qi,i−1 = 1
for l = 1, N // subsequence length

Initialize Qx = Qx1, Qx1 = Qx2, Qx2 = 0
for i = 1, N−l+1

j = i+l−1

// Qb recursion

Qb
i,j = exp(−Ghairpin

i,j
/RT )

//Compute internal loop contributions to Qb in O(N3)

call fastiloops(i, j, l, Qb, Qx, Qx2)
for d = i+6, j−5

Qb
i,j += Qm

i+1,d−1 Qms
d,j−1 exp{−[α1 + α2]/RT}

// Qs, Qms recursion
for d = i+4, j // loop over all possible rightmost pairs i·d

Qs
i,j += Qb

i,d

Qms
i,j += Qb

i,d exp{−[α2 + α3(j−d)]/RT}
// Q, Qm recursions
Qi,j = 1 //empty recursion
for d = i, j−4

Qi,j+= Qi,d−1 Qs
d,j

Qm
i,j += exp{−α3[d−i]/RT}Qms

d,j

Qm
i,j += Qm

i,d−1 Qms
d,j

//Partition function is Q1,N

2

Figure 2.9. Pseudocode implementation of an O(N3) dynamic programming partition function
algorithm for nucleic acids without pseudoknots. Here, N is the length of the strand and l = j−i+1
is the length of the substrand under consideration at any given point during the recursive process.
The recursions are described schematically in Figures 2.5–2.8. The function “fastiloops” computes
the interior loop contributions to Qb

i,j for all i and j in O(N3) as detailed in the pseudocode and
schematic of appendix figures B.2 and B.3.
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interior loop contributions to Qb. To reduce the complexity, it will be necessary to examine the

definition of Ginterior
i,d,e,j .

An interior loop with closing pair i·j and interior pair d·e has sides of length

L1 ≡ d− i− 1, L2 ≡ j − e− 1 (2.7)

so that the loop size and asymmetry may be expressed as

size ≡ L1 + L2, asymmetry ≡ |L1 − L2|.

Stacked bases correspond to the special case L1 = L2 = 0 and bulge loops to the case where either

L1 = 0 or L2 = 0. In the standard model, special energy expressions are used for stacked pairs and

bulge loops as well as for those interior loops with either L1 ≤ 3 or L2 ≤ 3. However, for all cases

when both L1 ≥ 4 and L2 ≥ 4, the form of the energy function becomes

Ginterior
i,d,e,j = γ1(L1+L2) + γ2(|L1−L2|) (2.8)

+ γ3(i, j, i+1, j−1) + γ3(e, d, e+1, d−1)

corresponding to functions of loop size, loop asymmetry and the identity of the closing base pairs

and nearest neighbors. We term these structures “extensible loops” and the related structures in

which i and j are not required to base pair “possible extensible loops”. For subsequences of length

l = j−i+1, we now define the quantity

Qx
i,s ≡

∑
possible extensible loops

with size L1+L2 =s

exp
{
−

[
γ1(s) + γ2(|L1−L2|)

+ γ3(e, d, e+1, d−1)
]
/RT

}
Qb

d,e,
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where d and e are expressed in terms of L1 and L2 using (2.7). If the nucleotides at i and j can form

a base pair, then the partition function contributions to Qb
i,j associated with the extensible interior

loops of size s can be computed as the product

Qx
i,s exp{−γ3(i, j, i+1, j−1)/RT} (2.9)

since all of the loops in the summation are closed by i·j. Note that the value of j is implied by i

and l. Whether or not i and j can base pair, the quantity Qx
i,s remains useful because it satisfies

the following recursive extension property [10]

Qx
i−1,s+2 = Qx

i,s exp{−[γ1(s+2)− γ1(s)]/RT} (2.10)

+ exp
{
−

[
γ1(s + 2) + γ2(|L1−L2|)

+ γ3(e, d, e+1, d−1)
]
/RT

}
Qb

d,e

∣∣∣∣L1 =4
L2 =s−2

+ exp
{
−

[
γ1(s + 2) + γ2(|L1−L2|)

+ γ3(e, d, e+1, d−1)
]
/RT

}
Qb

d,e

∣∣∣∣L1 =s−2
L2 =4

.

Hence, possible extensible loops for which i and j cannot base pair can still be used to compute

the partition function contributions for larger loops when the sequence does permit the closing base

pair to form. The first line of the extension property expresses the fact that extending each side

of the possible extensible loop by one base requires a change in the size contribution from γ1(s) to

γ1(s+2) but otherwise leaves the asymmetry and interior base pair contributions of each of these

structures unchanged. The subsequent lines add the new contributions from possible extensible

loops of size s + 2 with either L1 = 4 or L2 = 4. These are the only two possible extensible loops of

length s+2 that cannot be obtained by extending smaller loops since these smaller loops do not use

the energy expression (2.8). Exploiting the extension property (2.10) and making use of (2.9), the
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contributions of all extensible interior loops to each Qb
i,j can be computed in O(N3). For each of

O(N2) closing i·j pairs, the remaining O(N) non-extensible interior loops are evaluated as special

cases using expressions contained in the black box function Ginterior
i,d,e,j . The total complexity of the

interior loop evaluations is thus O(N3). Using these ideas, the algorithm for computing the interior

loop contributions in O(N3) is described in the pseudocode and schematic of appendix figures B.2

and B.3.

2.3.4 Minimum Energy Structure Modifications

Recurrence relations that generate each secondary structure exactly once can be applied equally

well to either energy minimization or partition function calculations by treating the loop energies

differently in the two cases. When the partition function scheme calculates the term exp(−G/RT )

for a loop, the energy minimization scheme considers the loop energy G. When the exponentiated

energies are multiplied in the partition function algorithm, the loop energies are added for energy

minimization. Finally, when the contributions from alternative structures are added in the partition

function scheme, a minimum is taken over these structures in the energy minimization scheme. After

fully applying the recursions, the structure prediction scheme identifies the energy of the most stable

structure, while the partition function scheme produces a sum with one exponentiated energy term

for every possible structure.

2.4 Partition Function with Pseudoknots

2.4.1 Pseudoknot Energy Model

We now introduce an energy model for pseudoknots that is motivated by the standard treatment of

multiloops. The energy associated with an exterior pseudoknot is given by

Gpseudo = β1 + β2B
p + β3U

p,
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where β1 is the penalty for introducing a pseudoknot, Bp is the number of base pairs that border

the interior of the pseudoknot, and Up is the number of unpaired bases inside the pseudoknot. If

the pseudoknot is inside a multiloop, β1 is replaced by βm
1 , and if the pseudoknot is inside another

pseudoknot, β1 is replaced by βp
1 . Several features of this potential function are illustrated in

appendix figure B.4.

2.4.2 O(N8) Algorithm

We now introduce pseudoknots into the partition function recursions while maintaining the property

that each structure contributes to the partition function exactly once. First we consider a relatively

straightforward but inefficient approach that increases the complexity of the algorithm to O(N8)

and the storage requirements to O(N4).

In the unpseudoknotted case, Q, Qb, and Qm were defined in a nonredundant manner by using

the extremal convention of introducing rightmost base pairs or b-curves. The same approach can

be followed for pseudoknots, introducing rightmost pseudoknots or p-curves. In figures 2.10–2.12,

p-curves are introduced in a completely analagous manner to b-curves. Each p-curve represents the

boundaries of a pseudoknot, so d and e are paired to some bases in the subinterval [d−1, e−1] but not

to each other, as reflected in the solid divided arc of the p-curve. Using a nonredundant definition

for the paritition function contribution of the p-curve, Qp, will ensure that the algorithm never visits

a structure twice.

The quantity Qp
i,j is defined recursively by the diagram in figure 2.13, where the pseudoknot

interior is specified. Arcs that would cross in this diagram are reflected across the horizontal axis for

clarity. The structure of the spanning regions is described by another recursive quantity Qg, which

requires four subscripts and hence O(N4) storage. The three interior regions of the pseudoknot are

depicted as dashed z-curves to indicate that the right and left bases may or may not be paired. The

corresponding quantity Qz is defined by exactly the same recursive process as Q (see figure 2.10)

but with recursion energies that reflect the fact that Qz is inside a pseudoknot.

The gap partition function Qg
i,d,e,j is defined by the recursion in figure 2.14. There are two types
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At least one pair
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Figure 2.10. O(N8) Algorithm: Recursion for Qi,j , the full partition function for the subsequence
[i, j]. Either the subsequence [i, j] is empty with recursion energy Gempty

i,j , or there is at least one
pair (with rightmost base pair d·e) with recursion energy Gempty

e+1,j , or there is at least one pseudoknot
(with rightmost pseudoknot filling subsequence [d, e]) with recursion energy β1 + Gempty

e+1,j . The same
recursion is used (with modified recursion energies) for Qz

i,j , the full partition function for the
subsequence [i, j] inside a pseudoknot. In this context, either the subsequence [i, j] is empty with
recursion energy β3(j− i+1), or there is at least one pair (with rightmost base pair d · e) with
recursion energy β2 +β3(j−e), or there is at least one pseudoknot (with rightmost pseudoknot filling
subsequence [d, e]) with recursion energy βp

1 + 2β2 + β3(j−e).

i j

=

i j

Hairpin loop

d ei j

Interior loopQi,j recursionb

d ei j

One pseudoknot One pseudoknot and more

i d ei+1 d-1 j

One base pair and more

m
i d ei+1 d-1 j

mp p

b

b
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Figure 2.11. O(N8) Algorithm: Recursion for Qb
i,j , the partition function for the subsequence [i, j]

assuming i and j are base-paired. Either the subsequence [i, j] is a hairpin loop with recursion
energy Ghairpin

i,j , or there exists one internal base pair d ·e forming an interior loop with recursion
energy Ginternal

i,d,e,j , or there is more than one base pair or pseudoknot (with rightmost pair d·e) forming
a multiloop with recursion energy α1 + 2α2 + α3(j−e−1), or there is one pseudoknot filling the
subsequence [d, e] with recursion energy α1 + βm

1 + 3α2 + α3(d−i−1) + α3(j−e−1), or there is more
than one pseudoknot or base pair (with rightmost pseudoknot filling the subsequence [d, e]) with
recursion energy α1 + βm

1 + 3α2 + α3(j−e−1).
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Figure 2.12. O(N8) Algorithm: Recursion for Qm
i,j , the parition function for the subsequence [i, j]

inside a multiloop when there is at least one base pair or pseudoknot in the subsequence. Either
there is one final base pair d ·e in the multiloop with recursion energy α2 + α3(d− i) + α3(j−e),
or there is more than one base pair or pseudoknot (with rightmost pair d·e) and recursion energy
α2 +α3(j−e), or there is one pseudoknot contributing two base pairs to the multiloop with recursion
energy βm

1 + 2α2 + α3(d−i) + α3(j−e), or there is more than one pseudoknot or base pair (with
rightmost pseudoknot filling subsequence [d, e]) and recursion energy βm

1 + 2α2 + α3(j−e).
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Figure 2.13. O(N8) Algorithm: Recursion for Qp
i,j , the partition function for the pseudoknot filling

the subsequence [i, j]. The recursion energy is 2β2, where β2 is the penalty associated with each
base pair bordering the interior of the pseudoknot.
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Figure 2.14. O(N8) Algorithm: Recursion for Qg
i,d,e,j , the partition function for the pseudoknot

spanning region filling subsequence [i, j] excluding the gap [d+1, e−1]. There are two types of cases:
i. either i·j and d·e are the only spanning base pairs, ii. there is another outermost spanning pair
c·f inside the spanning region. An interior loop may be formed (with recursion energy i. Ginterior

i,d,e,j

or ii. Ginterior
i,c,f,j ) or else a multiloop is formed due to at least one more base pair or pseudoknot in the

spanning region. There may be additional structure to the left of the gap (with recursion energy i.
α1 + 2α2 + α3(j−e−1) or ii. α1 + 2α2 + α3(j−f−1)), to the right of the gap (with recursion energy
i. α1 + 2α2 + α3(d−i−1) or ii. α1 + 2α2 + α3(c−i−1)), or on both sides of the gap (with recursion
energy i. or ii. α1 + 2α2).

of cases: either i·j and d·e are the only spanning pairs or there is another outermost spanning pair

c·f inside the spanning region. In either case, if there is no additional structure inside the spanning

region then an interior loop is formed. If there is at least one additional base pair or pseudoknot in

the spanning region to the left, right, or on both sides of the gap, then a multiloop is formed inside

the spanning region.

The precise mathematical form of the recursions for the O(N8) algorithm is given in appendix

figure B.5. The computational complexity of the algorithm increases to O(N8) because it requires

the eight indices i, a, b, c, d, e, f, j to specify the structure of the pseudoknot.

The pseudoknot recursion of figure 2.13 describes pseudoknots that have precisely two spanning

regions (i.e. g-curves). Note that pseudoknots may be nested within the interior (using z-curves)

or the spanning regions (using m-curves) of pseudoknots to as many levels as are allowed by the

length of the strand. This class of pseudoknots includes 98% of the pseudoknots in the Pseudobase
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Figure 2.15. O(N5) Algorithm: Recursion for Qp
i,j , the partition function for the pseudoknot filling

the subsequence [i, j]. There is no recursion energy associated with this diagram.

database of known RNA pseudoknots [23, 22]. However, this class is somewhat more restrictive than

those treated by the redundant structure prediction recursions of Rivas and Eddy [14] and Akutsu

[1] (see appendix figure B.6).

2.4.3 O(N5) Algorithm

The previous O(N8) algorithm can be improved to O(N5) complexity by defining additional in-

termediate recursions and generalizing the fastiloops approach to calculate interior loops inside the

spanning regions of pseudoknots. Noting the number of indices on the recursion diagrams in fig-

ures 2.10–2.14 or the nesting depth of the loops in the O(N8) pseudocode of appendix figure B.5,

it is apparent that the two parts of the algorithm that require modification are the calculation of

Qp, which is O(N8), and the calculation of Qg, which has four contributions that are O(N6). The

other recursions for Q, Qb, Qm and Qz depicted in figures 2.10–2.12 are O(N4) and need not be

modified. The challenge is to find a way of specifying the pseudoknot internal structure in stages so

as to recurse over exactly the same set of nonredundant structures using exactly the same recursion

energies.

A new Qp recursion for the pseudoknot interior is show in figure 2.15. In comparison to figure 2.13,

the interior z-curve regions of the pseudknot have been subsumed into left and right gap recursions

Qgl and Qgr. Qgl has an outer spanning pair i·f and an inner spanning pair between e and some

base in the subsequence [i+1, d−1]. Qgr has an outer spanning pair d·j and an inner spanning pair

with one end in the subsequence [d+1, e−1] and the other in the subsequence [f +1, j−1]. There
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=

i j

Qi,j recursiongl

ggl

i d e je f f
z

=

i j

Qi,j recursiongr

glgr

i d e jd e f
z

Figure 2.16. O(N5) Algorithm: Recursions for Qgl
i,d,e,j and Qgr

i,d,e,j , the partition functions for the
left and right spanning regions of a pseudoknot. The recursion energy for Qgl is β2 corresponding
to the penalty for base pair d·f bordering the interior of a pseudoknot. There is no recursion energy
for Qgr.

are now five subscripts corresponding to an O(N5) complexity.

The recursions for Qgl and Qgr are defined in figure 2.16, where the pseudoknot interior regions

are specified by introducing z-curves. The definitions of Qgr and Qgl were chosen specifically so that

Qgr could recurse to Qgl, which in turn recurses to Qg. This approach is more efficient in terms of

operation count and storage than alternative formulations in which Qgr recurses to Qg through a

different intermediate quantity.

The new O(N5) recursion for Qg is shown in figure 2.17. The only cases that require modification

are the ones where there is an additional spanning pair. If there is an interior loop, the use of the

black-box potential Ginterior
i,c,f,j would lead to an O(N6) computational complexity. However, a similar

fastiloops treatment of possible extensible loops can be used to compute these contributions in O(N5)

as detailed in pseudocode of appendix figure B.7. For the three multiloop cases where there is an

additional spanning pair, we introduce the left and right supplementary gap recursions Qgls and Qgrs

defined in figure 2.18. These recursions define the spanning region using g-curves and introduce the

multiloop interior using m-curves.

It is critical to employ these recursions in the correct order so that all quantities are available
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Qi,d,e,j recursiong

i d e jf

gls

i d e jc f

g

i d e jc
m

i d e jc

grs

i jd e
m

i jd ei jd

g

e

i jd e
m m

i jd e
m

=

grs

call fastiloops

Figure 2.17. O(N5) Algorithm: Recursion for Qg
i,d,e,j , the partition function for the pseudoknot

spanning region filling subsequence [i, j] excluding the gap [d+1, e−1]. There are two types of cases:
i. either i·j and d·e are the only spanning base pairs, ii. there is another outermost spanning pair
c ·f inside the spanning region. All cases of type i. are O(N4) and the treatment is identical to
figure 2.14. The contribution for the interior loop case of type ii. may be calculated in O(N5) using
the function “fastiloops” detailed in the pseudocode of appendix figure B.7. The three other type ii.
cases correspond to multiloops with at least one more base pair or pseudoknot in the spanning region.
There may be additional structure to the left of the gap (with recursion energy α1+α2+α3(j−f−1)),
to the right of the gap (with recursion energy α1 + α2 + α3(c−i−1)), or on both sides of the gap
(with recursion energy α1 + α2). The boundaries of the spanning regions are specified in the left
and right supplementary gap recursions Qgls and Qgrs.

=

i j

Qi,j   recursiongls

gls

d e i c

g

d e j
m

=

i j

Qi,j   recursiongrs

grs

d e i j

g

d e f
m

Figure 2.18. O(N5) Algorithm: Recursions for Qgls
i,d,e,j and Qgrs

i,d,e,j , supplementary gap partition
functions used in computing Qg. The recursion energy for both diagrams is α2, corresponding to
the introduction of a base pair bordering the interior of a multiloop.
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when needed. Pseudocode describing the mathematical formulation of this O(N5) algorithm for

computing the partition function of a nucleic acid strand is shown in figure 2.19. This is the main

result of the chapter.

2.5 Methods

The partition function algorithms and minimum energy structure prediction algorithms described

in this chapter were implemented in the C programming language using recursion energies based on

standard secondary structure energy models for unpseudoknotted ssDNA and RNA [15, 11]. A new

pseudoknot energy model was introduced and a preliminary parameterization for RNA is described

under results.

One difference from the published form of the unpseudoknotted RNA energy potential [11] is

the exclusion of the special bonus for hairpins with GGG on the 5’ side of the stem since this term

violates the loop decomposition paradigm. Coaxial stacking terms [11] are also excluded, although

these could be incorporated with the same computational complexity by using additional memory.

However, from the point of view of partition function redundancy, it is unclear how to treat different

coaxial stackings of the same secondary structure.

All other energy terms in the standard model [11], including dangle energies [16] and penalties for

helices not terminated by G·C are included in the implementation. These terms are also applied to

the pseudoknot energy model. These details do not change the structure of the recursions described

in the pseudocode and are omitted for clarity. The dangle terms can be implemented exactly without

the use of additional recursions if helices are not allowed to terminate with a G·U wobble pair (this

is the method used for the results presented here). This case can also be handled exactly at the

expense of storing and computing multiple copies of some of the recursive quantities. Another

alternative is to allow G·U wobble pairs to terminate helices but to treat the associated dangle

energies approximately.

The structure prediction algorithms identify the energy of the most stable structure. Once the

minimum energy is known, a separate backtrack routine is used to identify a corresponding minimum
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Initialize (Q, Qb, Qm, Qp, Qz) // O(N2) space

Initialize (Qg, Qgl, Qgr, Qgls, Qgrs, Qx, Qx1, Qx2) // O(N4) space
Set all values to 0 except Qi,i−1 = Qz

i,i−1 = 1
for l = 1, N // examine subsequences of increasing length

Initialize Qx = Qx1, Qx1 = Qx2, Qx2 = 0
for i = 1, N−l+1

j = i+l−1

// Qb recursion

Qb
i,j = exp(−Ghairpin

i,j
/RT )

for d = i+1, j−5 // all possible rightmost pairs d·e
for e = d+4, j−1

Qb
i,j += exp(−Ginterior

i,d,e,j /RT ) Qb
d,e

Qb
i,j += Qm

i+1,d−1 Qb
d,e exp{−[α1 + 2α2 + α3 (j−e−1)]/RT}

for d = i+1, j−9 // all possible rightmost pseudoknots filling [d, e]
for e = d+8, j−1

Grecursion = α1 + βm
1 + 3α2 + α3 (j−e−1)

Qb
i,j += exp{−[Grecursion + α3 (d−i−1)]/RT}Qp

d,e

Qb
i,j += Qm

i+1,d−1 Qp
d,e

exp{−Grecursion/RT}
// Qg recursion
for d = i + 1, j−5 // set inner pair d·e

for e = d+4, j − 1

Qg
i,d,e,j

+= exp(−Ginterior
i,d,e,j /RT )

call fastiloops(i, j, l, Qg, Qx, Qx2)
for d = i + 6, j−5

for e = d+4, j − 1
Qg

i,d,e,j
+= Qm

i+1,d−1 exp{−[α1+2α2+α3(j−e−1)]/RT}
for d = i + 1, j−10

for e = d+4, j − 6
Qg

i,d,e,j
+= exp{−[α1+2α2+α3(d−i−1)]/RT}Qm

e+1,j−1
for d = i + 6, j−10

for e = d+4, j − 6
Qg

i,d,e,j
+= Qm

i+1,d−1 exp{−[α1+2α2]/RT}Qm
e+1,j−1

for d = i+7, j−6
for e = d+4, j − 2

for f = e+1, j − 1

Qg
i,d,e,j

+= Qgls
i+1,d,e,f

exp{−[α1+α2+α3(j−f−1)]/RT}
for d = i+2, j−11

for e = d+4, j − 7
for c = i + 1, d−1

Qg
i,d,e,j

+= exp{−[α1+α2+α3(c−i−1)]/RT}Qgrs
c,d,e,j−1

for d = i+7, j−11
for e = d+4, j − 7

for c = i + 6, d−1
Qg

i,d,e,j
+= Qm

i+1,c−1 Qgrs
c,d,e,j−1 exp{−[α1 + α2]/RT}

// Qgls, Qgrs recursions
for c = i + 5, j−6

for d = c+1, j−5
for e = d+4, j−1

Qgls
i,d,e,j

+= exp(−α2/RT ) Qm
i,c−1 Qg

c,d,e,j

for d = i+1, j−10
for e = d+4, j−6

for f = e+1, j−5
Qgrs

i,d,e,j
+= Qg

i,d,e,f
Qm

f+1,j exp(−α2/RT )

// Qgl, Qgr recursions
for d = i + 1, j−5

for f = d+4, j − 1
for e = d, f−3

Qgl
i,e,f,j

+= Qg
i,d,f,j

Qz
d+1,e exp(−β2/RT )

for d = i + 1, j−4
for e = d + 3, j−1

for f = e, j−1

Qgr
i,d,e,j

+= Qgl
i,d,f,j

Qz
e,f−1

// Qp recursion
for d = i + 2, j−4 // set points left to right

for e = max(d+2, i+5), j−3
for f = e+1, j − 2

Qp
i,j

+= Qgl
i,d−1,e,f

Qgr
d,e−1,f+1,j

// Q, Qm, Qz recursions
Qi,j = 1 //empty recursion
Qz

i,j = exp(−[β3(j−i+1)]/RT )
for d = i, j−4 // all possible rightmost pairs d·e

for e = d+4, j

Qi,j+= Qi,d−1 Qb
d,e

Qm
i,j += exp{−[α2 + α3 (d−i) + α3 (j−e)]/RT}Qb

d,e

Qm
i,j += Qm

i,d−1 Qb
d,e exp{−[α2 + α3 (j−e)]/RT}

Qz
i,j += Qz

i,d−1 Qb
d,e exp{−[β2 + β3(j−e)]/RT}

for d = i, j−8 // all possible rightmost pseudoknots filling [d, e]
for e = d+8, j

Qi,j+= Qi,d−1 Qp
d,e

exp{−β1/RT}
Qm

i,j += exp{−[βm
1 + 2α2 + α3 (d−i) + α3 (j−e)]/RT}Qp

d,e

Qm
i,j += Qm

i,d−1 Qp
d,e

exp{−[βm
1 + 2α2 + α3 (j−e)]/RT}

Qz
i,j += Qz

i,d−1 Qp
d,e

exp{−[βp
1 + 2β2 + β3(j−e)]/RT}

//Partition function is Q1,N

Figure 2.19. Pseudocode implementa-
tion of an O(N5) dynamic programming
partition function algorithm for nucleic
acids with pseudoknots. Here, N is the
length of the strand and l = j − i + 1
is the length of the substrand under
consideration at any given point dur-
ing the recursive process. The recur-
sions are described schemataically in fig-
ures 2.10–2.12 and 2.15–2.18. The func-
tion “fastiloops” computes certain inte-
rior loop contributions to Qg in O(N5)
as detailed in the pseudocode of ap-
pendix figure B.7.
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Table 2.1. RNA pseudoknot parameterization

Negative Control Positive Control

Model Working Free Overall Working Free Overall

Dirks & Pierce 179/200 187/200 92% 60/100 61/100 61%

Rivas & Eddy [14] 195/200 197/200 98% 40/100 46/100 43%

energy structure.

2.6 Results

2.6.1 Pseudoknot Model Parameterization

Although it is not the emphasis of the present work, we provide a preliminary parameterization

of our pseudoknot model for RNA secondary structure by suggesting values for β1, βm
1 , βp

1 , β2

and β3. We focus on RNA rather than ssDNA because of the large number of pseudoknotted and

unpseudoknotted secondary structures that are known for RNAs. The standard RNA parameters

for unpseudoknotted structures are taken directly from mfold3.1 by Zuker and co-workers [11]. In

selecting values for the pseudoknot parameters, there are two competing objectives. A negative

control monitors the introduction of spurious pseudoknots into structures that are known to be

unpseudoknotted. A positive control monitors the correct prediction of pseudoknots in known pseu-

doknotted structures. For both controls, the selected cases are divided into a working set that is

used during the parameter search and a free set that is used to provide an independent evaluation

of the parameters after the search is completed. Model parameterization is performed by comparing

the predicted minimum energy structure with the experimentally determined secondary structure.

For the negative control, we rely on a database of over 3000 known tRNA sequences that are

believed to be unpseudoknotted based on experimental structures or sequence alignment [17]. From

these sequences we randomly select a working set and a free set with 200 sequences each. For

the purposes of this study, the only concern of the negative control was whether or not a spurious

pseudoknot is predicted in the lowest energy structure. Correct prediction of the unpseudoknotted

secondary structures for these tRNAs lies in the purview of the mfold3.1 parameters [11], which
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were not altered in this study. Two potential drawbacks to using tRNAs as the negative control are

that tRNAs all have roughly the same cloverleaf structure, and that most tRNAs involve modified

nucleotides. The first problem may result in a bias towards parameters that preserve cloverleaf

structures, while the second may produce errors if the modified nucleotides significantly affect the

minimum energy fold. In the future, it would be advantageous if secondary structure information was

provided in RNA crystal and NMR structure databases to provide more information for secondary

structure studies.

For the positive control, we draw from a database of 212 RNA pseudoknots, each described as a

single stretch of consecutive nucleotides [23, 22]. From this sample, we exclude the five structures

that contain chains of pseudoknots that cannot be modeled using the present recursions (see appendix

figure B.6). From the remaining sequences, we randomly select a working set and a free set of 100

pseudoknots each. In order to determine if the predicted and experimental structures are equivalent,

the structures are reduced to a basic pseudoknot topology. This is accomplished by considering

only the base pairs in the spanning regions that define the pseudoknot (i.e. the pairs in the Qg

recursion that span the gap). If both the experimental and the predicted structures have the same

pseudoknot topology, and the end of each spanning region in the predicted structure overlaps with

the corresponding region in the experimental structure, then the prediction is considered a match.

As a starting point, we began by interpolating the parameters of a recent pseudoknot model [6]

to obtain the partial specification: β1 + 2β2 = 9.6 and β3 = 0.15. After a search of the nearby

parameter space we selected the values

β1 = 9.6, βm
1 = βp

1 = 15.0, β2 = 0.1, β3 = 0.1.

The success rates for the working set and the free set for both the negative and the positive controls

are summarized in table 2.1. The O(N5) structure prediction algorithm avoids introducing spurious

pseudoknots in 92% of the negative controls and correctly predicts 61% of the pseudoknots in the

positive controls. By comparison, running Rivas and Eddy’s structure prediction algorithm with
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their parameters [14] on the same sequences, there are no spurious pseudoknots predicted for 98%

of the negative controls and the correct pseudoknots are predicted for 43% of the positive controls.

Our experience suggests that for our model, there is a clear tradeoff between avoiding spurious

pseudoknots and predicting correct ones. We chose to balance our parameters so as to obtain as

many correct pseudoknots as possible while maintaining at least a 90% rate on the negative control.

Additional assistance in parameterizing the pseudoknot model using computational or experi-

mental studies would be most welcome. Modifications to the formulation of the pseudoknot energy

expression can be accomodated to the extent that the dynamic programming framework allows.

2.6.2 Algorithm Complexity

The computational complexity of all four partition function algorithms is demonstrated empirically

in figure 2.20. The O(N4) and O(N3) algorithms excluding pseudoknots and the O(N8) and O(N5)

algorithms including pseudoknots are each tested on three random sequences for each of the depicted

sequence lengths. The slopes of the least squares fits to this data closely follow the expected theoret-

ical complexity estimates with the exception of the O(N5) algorithm, which scales somewhat worse

than the expected estimate. This effect occurs because some of the nested loops that dominate the

software execution time are shorter than length N , so the slope is greater than the predicted slope

for small N . The complexity estimates for all four algorithms should increase in accuracy as the

length of the test molecules increases.

To illustrate the impact of lower computational complexity, note that calculation of the unpseu-

doknotted partition function for a sequence of length 500 requires roughly 120 seconds using the

O(N3) algorithm and 2900 seconds using the O(N4) method. Shorter test molecules must be con-

sidered for the algorithms that incorporate pseudoknots. For a sequence of length 100, the O(N5)

algorithm requires roughly 80 seconds while the O(N8) algorithm requires roughly 1200 seconds. By

comparison, the O(N6) structure prediction algorithm of Rivas and Eddy [14] runs in approximately

2300 seconds on sequences of length 100. Complexity benchmarks were performed on a 700MHz

Pentium Xeon processor.
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Figure 2.20. Comparison of the observed computational complexity for O(N4) and O(N3) partition
function algorithms without pseudoknots and O(N8) and O(N5) partition function algorithms that
include pseudoknots. Each algorithm is run on three randomly selected sequences for each of the
depicted sequence lengths N . Timings are performed on a 700MHz Pentium Xeon processor.
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2.7 Conclusions

We describe a nonredundant dynamic programming algorithm that computes the partition function

of an RNA or ssDNA strand over secondary structure space. For the first time, this space is extended

to include the most physically relevant pseudoknots. The algorithm has a time complexity of O(N5)

and requires O(N4) memory, where N is the length of the strand. An algorithm for identifying the

minimum energy structure is obtained by a straightforward modification of the partition function

algorithm. A preliminary parameterization of the model is performed for RNA using 200 RNA

pseudoknots and 400 unpseudoknotted tRNAs.
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Chapter 3

Analysis: Recursion Probabilities

The work presented here is heavily based on:

R.M. Dirks and N.A. Pierce, An algorithm for computing nucleic acid base-pairing probabilities

including pseudoknots. Journal of Computational Chemistry, 2004. 25(10): p. 1295-1304. Reprinted

with copyright permissions.
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3.1 Abstract

Given a nucleic acid sequence, the algorithm in the preceding chapter allows the calculation of the

partition function over secondary structure space including a class of physically relevant pseudo-

knots. Here, a method for computing base-pairing probabilities starting from the output of this

partition function algorithm is presented. The approach relies on the calculation of recursion prob-

abilities that are computed by backtracking through the partition function algorithm, applying a

particular transformation at each step. This transformation is applicable to any partition function

algorithm that follows the same basic dynamic programming paradigm. Base-pairing probabilities

are useful for analyzing the equilibrium ensemble properties of natural and engineered nucleic acids,

as demonstrated for a human telomerase RNA and a synthetic DNA nanostructure.

3.2 Introduction

Thermodynamic models based on nucleic acid secondary structure and nearest-neighbor identities

[17, 18, 14, 10, 24] underly dynamic programming algorithms for predicting the minimum energy

secondary structure [20, 21, 12, 25, 8] and calculating the partition function over secondary structure

space [11, 2, 8]. In their original forms, these algorithms exclude the possiblity of pseudoknots,

a biologically relevant class of secondary structures [19] that also arises in DNA nanotechnology

applications [22, 23]. Pseudoknots result when two base pairs i·j and d·e, with i < d, fail to satisfy

the nesting property i < d < e < j (see figure 3.1). Recent extensions of the structure prediction

[13, 1, 6] and partition function [6] algorithms allow the inclusion of certain pseudoknots.

For an ensemble of secondary structures s ∈ Ω, the partition function

Q =
∑
s∈Ω

e−Gs/RT

may be used to compute the probability

p(s∗) = 1
Qe−Gs∗/RT (3.1)
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Figure 3.1. Secondary structures of competing pseudoknot and hairpin constructs in human telom-
erase RNA. The wild-type sequence is shown. For the two-point mutant implicated in dyskeratosis
congenita, GC is replaced by AG in the shaded boxes, disrupting two base pairs in the pseudoknot
construct. For the experimental studies of the hairpin structure [16], the 18 nucleotides at the 3’
end are excluded to prevent formation of the pseudoknot.

that secondary structure s∗ is sampled at thermodynamic equilibrium. The ensemble equilibrium

can also be characterized by the matrix of base-pairing probabilities with entries pi,j corresponding

to the probability that base i is paired with base j in Ω.

McCaskill’s original paper [11] defines elegant dynamic programs to compute the partition func-

tion and base-pairing probabilities over the ensemble of unpseudoknotted secondary structures. The

partition function algorithm builds up recursively from short subsequences to the full strand and

then the pair probabilities are computed by working backwards to short subsequences using inter-

mediate results from the partition function calculation. In the absence of pseudoknots, the partition

function algorithm is sufficiently succinct that McCaskill is able to determine the form of the pair

probability backtrack algorithm simply by considering the few possible forms of enclosing secondary

structure for any given base pair. While this approach is simple and efficient, it is not easily gener-

alizable to algorithmic extensions, such as the inclusion of pseudoknots. Here, we describe a general

method for mechanically transforming the new pseudoknot partition function algorithm [6] to com-

pute recursion probabilities, which can be used in turn to compute base-pairing probabilities. The
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transformation approach is generalizable to any future partition function extensions that follow the

same dynamic programming paradigm.

Base-pairing probabilities assist in the analysis of biologically relevant pseudoknots. Here, we

examine human telomerase RNA, which exists at equilibrium in both hairpin and pseudoknotted

forms [3]. A two-point mutation, implicated in the disease dyskeratosis congenita, alters the ther-

modynamic balance between these competing structures [16]. This shift in equilibrium is clearly

identifiable when the base-pairing probabilities for the two sequences are compared. Base-pairing

probabilities that permit pseudoknots are also useful in analyzing synthetic DNA nanostructures

[22, 23].

3.3 Algorithm

For clarity, we begin by considering the class of secondary structures excluding pseudoknots and

then address the additional complexity that arises when pseudoknots are introduced.

3.3.1 Partition Function Recursions

For a strand of length N , the partition function may be computed over all unpseudoknotted sec-

ondary structures in O(N4) using the algorithm [11, 8] summarized in figure 2.4 (see chapter 2 for

a detailed description)1. Partition function recursions are non-redundant in the sense that every

secondary structure in the ensemble Ω is visited exactly once using a unique sequence of recursions.

The algorithm computes the partition function Qi,j for each subsequence [i, j] ignoring all bases

exterior to [i, j], starting from subsequences of length l = 1 and building up incrementally to l = N .

The recursions that define Qi,j rely on additional restricted partition functions Qb
i,j and Qm

i,j . Qb
i,j

represents the partition function for subsequence [i, j] given that i and j are base paired and Qm
i,j

is used to calculate multiloop contributions. At the end of the recursive process, the full partition

function Q is given by Q1,N and the values of Qi,j , Q
b
i,j , Q

m
i,j are stored in matrices for 1≤ i, j≤N .

1The complexity may be reduced to O(N3) by exploiting the formulation of the nearest-neighbor energy model for
long interior loops [9, 6]
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+=

i e jdd-1
b

Figure 3.2. Recursion diagram corresponding to recursive update (3.2), depicting the addition to
Qi,j of partition function contributions for those structures with rightmost base pair d·e. See chapter
2 for a thorough description of the partition function algorithm (with or without pseudoknots) in
terms of recursion diagrams.

These intermediate results will play a critical role in the new algorithm described below.

3.3.2 Recursion Probabilities

Following the execution of the partition function calculation, a second algorithm can be implemented

to calculate probability matrices, P, P b, Pm, corresponding to the Q, Qb, Qm matrices. The values

stored in these P -type matrices will be termed recursion probabilities.

Recursion probabilities can be intuitively described as follows. Consider sampling the ensem-

ble of secondary structures s ∈ Ω where the probability of selecting structure s∗ is given by the

Boltzmann probability (3.1). For each secondary structure s∗, the contribution to Q is computed

by a unique recursion sequence involving specific Qi,j , Qb
i,j and Qm

i,j intermediates. Associating

these intermediates with structure s∗, the recursion probability Pi,j , P b
i,j or Pm

i,j corresponds to the

probability that the sampled structure s∗ requires the use of the corresponding intermediate Qi,j ,

Qb
i,j or Qm

i,j to calculate the partition function contribution.

Recent work by Ding and Lawrence [4] exploits quantities related to recursion probabilities to

statistically sample the distribution of unpseudoknotted secondary structures for a given sequence.

Here, we develop a general approach for computing P -type matrices given a set of Q-type matrices

and corresponding partition function recursions.

An algorithm for computing recursion probabilities can be formulated in a mechanical way start-

ing from a set of partition function recursions. The crux of this formulation is the repeated ap-

plication of a single transformation to the partition function code. In particular, updates of the
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form

Qi,j+= Qi,d−1 Qb
d,e (3.2)

(equivalent to the recursion diagram of figure 3.2) are converted to the following series of statements.

∆p = Pi,j

conditional probability︷ ︸︸ ︷
Qi,d−1 Qb

d,e/Qi,j

Pi,d−1 += ∆p

P b
d,e += ∆p

Specifically, the right hand side (RHS) of each recursive update is divided by the left hand side

(LHS), and the P term corresponding to the new denominator is multiplied by this quotient. The

resulting probabilities, temporarily stored as ∆p, are subsequently added to every P -type value

corresponding to the Q-type terms on the RHS of the original statement (3.2).

To understand this transformation, recall that Qi,j , Qb
i,j and Qm

i,j are partition functions for

structural subclasses of the full sequence. In recursive updates such as (3.2), the ratio of the RHS to

the fully-computed LHS corresponds to the probability that a structure drawn from an equilibrium

ensemble defined by the LHS partition function is in the sub-ensemble defined by the RHS partition

function. As an example, transformation (3.3) states that for any i, d, e, j, the structures represented

by Qi,j partially consist of substructures represented by Qi,d−1 and Qb
d,e. Consequently, once the

probability Pi,j is determined, it can be used to augment Pi,d−1 and P b
d,e since the frequencies of

the corresponding substructures within the Qi,j ensemble can be derived from Qi,d−1 and Qb
d,e.

By backtracking through the partition function algorithm and transforming all recursive updates

analagously to (3.3), probabilities can be calculated for each recursion.

Starting from the partition function algorithm of figure 2.4, the recursion probability algorithm

is obtained by performing three modifications: (1) the two outermost loops are altered so that

the algorithm starts with the full strand of length l = N and decrements down to subsequences

of length l = 1, (2) all recursive updates are transformed as for equation (3.3), (3) the order

of the recursion blocks (Qb, [Q,Qm]) is reversed ([P, Pm], P b). This last modification is necessary



52

Compute Q, Qb, Qm using O(N4) partition function algorithm

Initialize (P, P b, P m) // O(N2) space
Set all P -type values to 0
P1,N = 1 //probability of “recursing” to the entire strand is 1
for l = N, 1 //decrement

for i = 1, N−l + 1
j = i+l−1
//P, P m recursions
for d = i, j−4 // loop over all possible rightmost pairs d·e

for e = d+4, j

∆p = Pi,jQi,d−1 Qb
d,e/Qi,j

Pi,d−1+= ∆p

P b
d,e+= ∆p

P b
d,e+= P m

i,j exp{−[α2 + α3(d−i) + α3(j−e)]/RT}Qb
d,e/Qm

i,j

∆p = P m
i,jQm

i,d−1 Qb
d,e exp{−[α2 + α3(j − e)]/RT}/Qm

i,j

P m
i,d−1+= ∆p

P b
d,e+= ∆p

// P b recursion
for d = i+1, j−5 // loop over all possible rightmost pairs d·e

for e = d+4, j−1

P b
d,e+= P b

i,j Qb
d,e exp{−Ginterior

i,d,e,j /RT}/Qb
i,j

∆p = P b
i,jQm

i+1,d−1 Qb
d,e exp{−[α1 + 2α2 + α3(j−e−1)]/RT}/Qb

i,j

P m
i+1,d−1+= ∆p

P b
d,e+= ∆p

Figure 3.3. O(N4) recursion probability algorithm that excludes pseudoknots. For simplicity, we
omit details such as checking for updates with zero in the denominator (in which case the numerator
will also evaluate to zero and the expression should be skipped).

because the recursion order in the partition function algorithm ensures that if one quantity (e.g. Qi,j)

recurses to another quantity of the same length (e.g. Qb
i,j) then the “lower level” quantity (i.e. Qb

i,j)

is calculated first. The reverse ordering is needed for the recursion probability algorithm since P b
i,j

cannot be used until it has been fully computed in the Pi,j loop.

The pseudocode in figure 3.3 details the outcome of these transformations for the unpseudo-

knotted case. This modified algorithm reverses the flow of the partition function calculation and

incrementally determines all recursion probabilities (frequencies of families of structures), based on

the probabilities of all superstructures that directly contain them. Once recursion probabilities are

computed for all i and j, the base-pairing probability pi,j is simply P b
i,j , since Qb

i,j is associated with

every structure s in which i·j appears, and i·j is associated with exactly one Qb
i,j . By starting from

a more complicated O(N3) partition function algorithm [9, 6], the computational complexity of the

recursion probability algorithm can also be reduced to O(N3) as described in Appendix C.
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3.3.3 Pseudoknots

The procedure outlined above for obtaining recursion probability algorithms is equally applicable to

a new partition function algorithm that includes pseudoknots (see the pseudocode of figure 2.19).

For the unpseudoknotted algorithm, all base pairs stem from Qb recursions, so the values stored in P b

are precisely the desired probabilities (i.e. pi,j = P b
i,j). For the pseudoknotted case, P b

i,j only gives

the probability that i and j form a nested pair. The full base-pairing probability must also take into

consideration those base pairs that are non-nested and lead to pseudoknotted structures (termed

gap-spanning pairs in [6]). For these gap-spanning pairs, there is no single recursion probability

that represents the contribution to pi,j . However, this contribution may be succinctly represented

in terms of Q-type and P -type matrices for the full pseudoknotted algorithm.

A new set of quantities, P bg
i,j , will be used to store the base pairing probabilities of i·j gap-spanning

pairs in pseudoknots. The most pertinent recursion probability, P g
i,d,e,j , stores the probability of a

gap structure with outer gap-spanning pair i·j and inner gap-spanning pair d · e corresponding to

the partition function recursion Qg
i,d,e,j (see figure 19 in [6]). Due to the structure of the Qg

i,d,e,j

recursion, the sum of P g
i,d,e,j over all values of d, e precisely gives the probability of an outer pair i · j

P bg
i,j+=

∑
i<d<e<j

P g
i,d,e,j . (3.3)

However, the sum of P g
i,d,e,j over all values of i, j does not give the probability of an inner pair

d · e, since the same inner pair may be present in multiple recursions required to define the same

secondary structure. To correctly determine the probabilities of inner gap-spanning pairs, only the

portion of P g that corresponds to calling Qg directly from Qgl should be included

P bg
d,f+=

∑
i<d≤e<f<j

P gl
i,e,f,jQ

g
i,d,f,jQ

z
d+1,e exp(−β2/RT )/Qgl

i,e,f,j . (3.4)

Here, Qgl and Qz are partition function recursions used to define the interior structure of a pseudo-

knot and β2 is a pseudoknot energy parameter (see figures 18 and 12 in [6]). Allowing pseudoknots,
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the total probability of a base pair i·j is then

pi,j = P b
i,j + P bg

i,j .

Pseudocode detailing the algorithm for computing recursion probabilities in the pseudoknotted

case is provided in figure 3.4, where the calculation of P bg
i,j using (3.3) and (3.4) has been embed-

ded at little additional cost.2 In Appendix C, we describe how to reduce the complexity of the

pseudoknotted algorithm from O(N6) to O(N5).

3.4 Methods

The standard energy model [10] and pseudoknot extension [6] are implemented as described previ-

ously [6], including dangle energies and penalties for helices not terminated by a G·C pair. These

terms do not change the structure of the recursions described in the pseudocode and are omitted for

clarity. Coaxial stacking contributions are not included in the physical model, as it is unclear how

to treat different stackings associated with the same secondary structure in the context of the par-

tition function. To maintain consistency with a recent design study [5], dangle energies are treated

analogously to the d2 option in the Vienna package [8]. Following this approach, dangle energies

are included even if two helices are separated by one or zero bases, providing some compensation

for the neglect of coaxial stacking bonuses.

3.5 Applications

The recursion probability algorithm provides a simple, general method for calculating the frequency

of various substructures in the ensemble of states for a given nucleic acid. Base-pairing probabilities

derived from the recursion probabilities are particularly useful for analyzing secondary structure via

dot plot analyses [11]. A traditional dot plot depicts the probabilities of forming all possible i·j base

pairs. In the case of pseudoknots, the dot plot can be decomposed into two dot plots, one for nested
2Note that (3.3) and (3.4) use different indices for P bg to maintain consistency with the pseudocode.
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Compute Q, Qb, Qm, Qp, Qz, Qg, Qgl, Qgr, Qgls, Qgrs

// using O(N5) partition function algorithm

Initialize (P, P b, P m, P p, P z, P bg) // O(N2) space

Initialize (P g, P gl, P gr, P gls, P grs) // O(N4) space
// Initialize (Qx, Qx1, Qx2, P x, P x1, P x2) for O(N5) version
// Set all Qx-type values to 0 for O(N5) version
Set all P -type values to 0
P1,N = 1 //probability of “recursing” to the entire strand is 1
for l = N, 1 //decrement

// Initialize Qx = Qx1, Qx1 = Qx2, Qx2 = 0 for O(N5) version
// Initialize P x = P x1, P x1 = P x2, P x2 = 0 for O(N5) version
for i = 1, N−l + 1

j = i+l−1
//P, P m, P z recursions
for d = i, j−4 // all possible rightmost pairs d·e

for e = d+4, j

∆p = Pi,jQi,d−1 Qb
d,e/Qi,j

Pi,d−1+= ∆p

P b
d,e+= ∆p

P b
d,e+= P m

i,j exp{−[α2 + α3(d−i) + α3(j−e)]/RT}Qb
d,e/Qm

i,j

∆p = P m
i,jQm

i,d−1 Qb
d,e exp{−[α2 + α3(j − e)]/RT}/Qm

i,j

P m
i,d−1+= ∆p

P b
d,e+= ∆p

∆p = P z
i,jQz

i,d−1Qb
d,e exp{−[β2 + β3(j−e)]/RT}/Qz

i,j

P z
i,d−1+= ∆p

P b
d,e+= ∆p

for d = i, j−8 // all possible rightmost pseudoknots filling [d, e]
for e = d+8, j

∆p = Pi,jQi,d−1Qp
d,e

exp{−β1/RT}/Qi,j

Pi,d−1+= ∆p
P p

d,e
+= ∆p

P p
d,e

+= P m
i,j exp{−[βm

1 + 2α2 + α3(d−i + j−e)]/RT}Qp
d,e

/Qm
i,j

∆p = P m
i,jQm

i,d−1Qp
d,e

exp{−[βm
1 + 2α2 + α3(j−e)]/RT}/Qm

i,j

P m
i,d−1+= ∆p

P p
d,e

+= ∆p

∆p = P z
i,jQz

i,d−1Qp
d,e

exp{−[βp
1 + 2β2 + β3(j−e)]/RT}/Qz

i,j

P z
i,d−1+= ∆p

P p
d,e

+= ∆p

//P p recursion
for d = i+2, j−4

for e = max(d+2, i+5), j−3
for f = e+1, j−2

∆p = P p
i,j

Qgl
i,d−1,e,f

Qgr
d,e−1,f+1,j

/Qp
i,j

P gl
i,d−1,e,f

+= ∆p

P gr
d,e−1,f+1,j

+= ∆p

// P gr recursion
for d = i+1, j−4

for e = d+3, j−1
for f = e, j−1

∆p = P gr
i,d,e,j

Qgl
i,d,f,j

Qz
e,f−1/Qgr

i,d,e,j

P gl
i,d,f,j

+= ∆p

P z
e,f−1+= ∆p

// P gl recursion
for d = i + 1, j−5

for f = d+4, j−1
for e = d, f−3

∆p = P gl
i,e,f,j

Qg
i,d,f,j

Qz
d+1,e exp(−β2/RT )/Qgl

i,e,f,j

P g
i,d,f,j

+= ∆p

P z
d+1,e+= ∆p

P bg
d,f

+= ∆p // P bg inner gap-spanning base-pairing prob

// P grs recursion
for d = i+1, j−10

for e = d+4, j−6
for f = e+1, j−5

∆p = P grs
i,d,e,j

Qg
i,d,e,f

Qm
f+1,j exp(−α2/RT )/Qgrs

i,d,e,j

P g
i,d,e,f

+= ∆p

P m
f+1,j+= ∆p

// P gls recursion
for c = i+5, j−6

for d = c+1, j−5
for e = d+4, j−1

∆p = P gls
i,d,e,j

exp(−α2/RT )Qm
i,c−1Qg

c,d,e,j
/Qgls

i,d,e,j

P m
i,c−1+= ∆p

P g
c,d,e,j

+= ∆p

// P g recursion
for d = i+2, j−6 // simple interior loops

for e = d+4, j−2
for c = i+1, d−1

for f = e+1, j−1

P g
c,d,e,f

+= P g
i,d,e,j

exp(−Ginterior
i,c,f,j /RT )Qg

c,d,e,f
/Qg

i,d,e,j

// for O(N5) version, replace previous five lines with:
// call fastiloopsN5(i, j, l, Qg, Qx, Qx2, P g, P x, P x2)
for d = i+6, j−5

for e = d+4, j−1
∆p = P g

i,d,e,j
Qm

i+1,d−1 exp{−[α1 + 2α2 + α3(j−e−1)]/RT}/Qg
i,d,e,j

P m
i+1,d−1+= ∆p

for d = i+1, j−10
for e = d+4, j−6

∆p = P g
i,d,e,j

exp{−[α1 + 2α2 + α3(d−i−1)]/RT}Qm
e+1,j−1/Qg

i,d,e,j

P m
e+1,j−1+= ∆p

for d = i+6, j−10
for e = d+4, j−6

∆p = P g
i,d,e,j

Qm
i+1,d−1 exp{−[α1 + 2α2]/RT}Qm

e+1,j−1/Qg
i,d,e,j

P m
i+1,d−1+= ∆p

P m
e+1,j−1+= ∆p

for d = i+7, j−6
for e = d+4, j−2

for f = e+1, j−1

∆p = P g
i,d,e,j

Qgls
i+1,d,e,f

exp{−[α1 + α2 + α3(j−f−1)]/RT}/Qg
i,d,e,j

P gls
i+1,d,e,f

+= ∆p

for d = i+2, j−11
for e = d+4, j−7

for c = i+1, d−1
∆p = P g

i,d,e,j
exp{−[α1 + α2 + α3(c−i−1)]/RT}Qgrs

c,d,e,j−1/Qg
i,d,e,j

P grs
c,d,e,j−1+= ∆p

for d = i+7, j−11
for e = d+4, j−7

for c = i+6, d−1
∆p = P g

i,d,e,j
Qm

i+1,c−1Qgrs
c,d,e,j−1 exp{−[α1 + α2]/RT}/Qg

i,d,e,j

P m
i+1,c−1+= ∆p

P grs
c,d,e,j−1+= ∆p

// P bg outer gap-spanning base-pairing prob
for d = i+1, j−5

for e = d+4, j−1

P bg
i,j

+ = P g
i,d,e,j

// P b recursion
for d = i+1, j−5 // all possible rightmost pairs d·e

for e = d+4, j−1

P b
d,e+= P b

i,j exp(−Ginterior
i,d,e,j /RT )Qb

d,e/Qb
i,j

∆p = P b
i,jQm

i+1,d−1 Qb
d,e exp{−[α1 + 2α2 + α3(j−e−1)]/RT}/Qb

i,j

P m
i+1,d−1+= ∆p

P b
d,e+= ∆p

for d = i+1, j−9 // all possible rightmost pseudoknots filling [d, e]
for e = d+8, j−1

Grecursion = α1 + βm
1 + 3α2 + α3(j−e−1)

P p
d,e

+= P b
i,j exp{−[Grecursion + α3(d−i−1)]/RT}Qp

d,e
/Qb

i,j

∆p = P b
i,jQm

i+1,d−1 Qp
d,e

exp{−Grecursion/RT}/Qb
i,j

P m
i+1,d−1+= ∆p

P p
d,e

+= ∆p

Figure 3.4. O(N6) recursion probability algorithm that includes a class of pseudoknots. Modifica-
tions required to produce an O(N5) version of the algorithm are noted in comments. See Appendix C
for details.
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pairs and one for non-nested gap-spanning pairs.

To see the utility of this decomposition, calculations were run on wild-type and mutant sequences

of a pseudoknot construct derived from human telomerase RNA [16]. Experimental evidence sug-

gests that this pseudoknot exists in equilibrium with an alternative, hairpin structure, and that

this equilibrium functions as a biological switch [3]. A two-point mutant, found in a small percent-

age of people, shifts the equilibrium towards the hairpin structure, leading to a disease known as

dyskeratosis congenita [3]. Feigon et al. [16] examine this shift in equilibrium for segments of the

wild-type and mutant sequences described in figure 3.1, revealing that the pseudoknot conformation

dominates the hairpin for the wild-type sequence (∼95% to ∼5%) but competes roughly equally

in the mutant sequence (∼50% to ∼50%). Using preliminary pseudoknot parameters [6], energies

were computed for both the wild-type sequence and the two-point mutant on the psuedoknotted and

hairpin structures. The predicted energies in Table 3.1 match reasonably well with experimental

values [16]. For the wildtype sequence, the disparity between the pseudoknot and hairpin energies

suggests an equilibrium that favors the more stable pseudoknot. In contrast, the energies for the

double mutant sequence suggest a more balanced equilibrium. Figures 3.5 and 3.6 illustrate that

the hairpin conformation has a significant impact on the pair probabilities for the mutant, but not

for the wild-type sequence.

Base-pairing probabilities can also be used to construct metrics for evaluating nucleic acid designs.

The secondary structure s may be described by a symmetric N×N matrix S with entries Si,j = 1

if s contains base pair i·j and Si,j = 0 otherwise. We augment this matrix by an additional column

with entries Si,N+1 = 1 if base i is unpaired and Si,N+1 = 0 otherwise. Hence, each row sum is one.

For a given sequence of length N , the metric [5]

n(s∗) = N −
∑

1 ≤ i ≤ N
1 ≤ j ≤ N+1

pi,jS
∗
i,j

represents the average number of nucleotides that differ from the target secondary structure s∗ at
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Table 3.1. Energy comparisons for human telomerase RNA constructs

Energies (kcal/mol)RNA Conformation
∆G◦

exp ∆G◦
calc

Pseudoknot -17.8 -18.52

Wild-type
Hairpin -9.81 -11.53

Pseudoknot -11.2 -11.32

Mutant
Hairpin -10.51 -11.53

1 Experiments were performed on partial sequences that excluded the 18 nucleotides on the 3’ end
to prevent the formation of pseudoknots [16]. This truncation does not affect the corresponding
∆G◦

calc.
2 A related pseudoknot structure that is otherwise identical but omits the three consecutive A ·U
pairs in the stem with the bulge loop is predicted to be 0.5 kcal/mol more stable.
3 The secondary structure energy calculation ignores the four consecutive non-canonical base pairs
that are observed to close the interior loop in the hairpin stem [16].
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Figure 3.5. Dot plots for wild-type human telomerase RNA. (a) Pseudoknot (bottom left) and
hairpin (top right) constructs. For (b) and (c), large dots indicate a pi,j ≥ 0.5 and small dots
indicate 0.5 > pi,j ≥ 0.05. (b) Base-pairing probabilities including pseudoknots (bottom left) and
excluding pseudoknots (top right). (c) A decomposition of the full base-pairing probabilities into gap-
spanning pairs (bottom left) and nested pairs (top right). Note that there are no nested pairs with
significant probability, indicating that pseudoknot conformations are dominating the equilibrium.

thermodynamic equilibrium. This is a less stringent metric than p(s∗), the probability that the

sequence exactly adopts structure s∗; even if p(s∗) is not close to unity, n(s∗) can still be small if

the equilibrium ensemble is dominated by structures that differ only slightly from s∗.

It is illustrative to compare the two metrics on a real design problem involving pseudoknots.

For example, Winfree et al. [22] designed and constructed DNA double-crossover molecules [7] that

interact to form a two-dimensional lattice with a pseudoknotted unit cell. These sequence designs

were performed using sequence symmetry minimization [15] to ensure that incorrectly paired sub-

sequences of length six would always contain at least one mismatch and most incorrectly paired
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Figure 3.6. Dot plots for double mutant human telomerase RNA. The plots are analagous to those of
figure 3.5. The key difference is observed in (c), where the hairpin stem appears as both gap-spanning
pairs and nested pairs, indicating the increased significance of hairpin conformations.

subsequences of length five would also contain a mismatch [22]. Lacking DNA pseudoknot param-

eters, we examine an RNA analog of their sequence for the portion of the pseudoknotted unit cell

depicted in figure 3.7a. The probability of adopting the target structure is p(s∗) = 0.1 and the av-

erage number of incorrect nucleotides is n(s∗) = 4.0. The low value of p(s∗) might indicate a cause

for concern, but for a structure with 90 nucleotides and helices of length eight, the average number

of incorrect nucleotides is relatively small. Hence, it is not surprising that the sequence behaves well

experimentally, demonstrating the correct base-pairing topology despite slight predicted variations

at the ends of helices. The dot plot in figure 3.7b illustrates the similarity between the average

structure and the desired target.

Interestingly, design methods described in previous work [5] can be used, in conjunction with the

pseudoknot partition function algorithm, to find sequences that achieve p(s∗) = 0.98 and n(s∗) << 1.

It is unclear whether these sequences would provide any experimental benefit for this system (even

given a perfect energy model), since the difference between n(s∗) ≈ 4 and n(s∗) << 1 may be lost

in experimental noise. By contrast, if a sequence produced p(s∗) = 0.1 with n(s∗) >> 4, then

the equilibrium ensemble could include important structures differing significantly from the target

structure.
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Figure 3.7. Computational examination of a pseudoknotted DNA nanostructure. (a) Secondary
structure for a double-crossover molecule that forms a portion of the unit cell in a two-dimensional
lattice [22]. For our computational study, we join the blue and orange strands (arrows denote 3’) into
a single strand using auxiliary nucleotides (green) to facilitate the use of the single-stranded partition
function algorithm [6]. In the absence of DNA pseudoknot parameters, we consider the RNA ana-
log 5’-CCAACUCCUAGCGAUUUUUCGCUAGGUUUACCAGAUCCACAAGCCGACGUUACA-
UUUU- GGAUCUGGUAAGUUGGUGUAACGUCGGCUUGU-3’, where the interior hyphens de-
note the boundaries of the auxiliary linker segment. (b) Dot plot analysis of the designed sequence.
The bottom left depicts the base pairs in the target structure, and the upper right depicts the base-
pairing probabilities. Large dots indicate a pi,j ≥ 0.5 and small dots indicate 0.5 > pi,j ≥ 0.05. The
circles indicate the major differences between the target structure and the calculated pair probabil-
ities.
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3.6 Conclusions

A general transformation rule extends nucleic acid partition function algorithms to calculate recur-

sion probabilities, which in turn can be used to compute base-pairing probabilities. We use this

approach to derive an algorithm for computing base-pairing probabilities starting from a partition

function algorithm that includes a class of pseudoknots. The same strategy will apply to future

partition function extensions that follow the same dynamic programming paradigm.

To demonstrate the utility of base-pairing probabilities, calculations were performed on a pseu-

doknot/hairpin construct thought to represent an important biological switch. In agreement with

experimental evidence, the computational results indicate that the pseudoknot dominates the hair-

pin for the wild-type sequence, but not for the double mutant. Base-pairing probabilities were also

used to examine the ensemble properties of a synthetic nucleic acid sequence designed to assemble

into a pseudoknotted double-crossover molecule. The average number of incorrect nucleotides was

found to be small, suggesting that the relatively low computed probability of adopting the target

secondary structure should not significantly affect the experimental performance of the molecule.
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4.1 Abstract

The design of DNA and RNA sequences is critical for many endeavors, from DNA nanotechnology, to

PCR-based applications, to DNA hybridization arrays. Results in the literature rely on a wide variety

of design criteria adapted to the particular requirements of each application. Using an extensively-

studied thermodynamic model, we perform a detailed study of several criteria for designing sequences

intended to adopt a target secondary structure. We conclude that superior design methods should

explicitly implement both a positive design paradigm (optimize affinity for the target structure)

and a negative design paradigm (optimize specificity for the target structure). The commonly used

approaches of sequence symmetry minimization and minimum free energy satisfaction primarily

implement negative design and can be strengthened by introducing a positive design component.

Surprisingly, our findings hold for a wide range of secondary structures and are robust to modest

perturbation of the thermodynamic parameters used for evaluating sequence quality, suggesting the

feasibility and ongoing utility of a unified approach to nucleic acid design as parameter sets are

further refined. Finally, we observe that designing for thermodynamic stability does not determine

folding kinetics, emphasizing the opportunity for extending design criteria to target kinetic features

of the energy landscape.

4.2 Introduction

Understanding how to design molecular structures is an essential step in allowing technology to

interface with biology and in developing systems with increasing functional density. Nucleic acids

hold great promise as a design medium for the construction of nanoscale devices with novel mechan-

ical or chemical function [36, 37]. Efforts are currently underway in many laboratories to use DNA

and RNA molecules for applications in patterning [45], assembly [21, 7, 25], transport, switching

[41, 47, 46], circuitry [42], DNA computing [4], and DNA chips [40, 6]. Computational sequence

selection algorithms [36, 38, 18, 28, 13, 5, 2, 20, 11] are likely to play an increasing role in exploring

this new design space.
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Figure 4.1. (a) Feedback loop for evaluating nucleic acid sequence designs and methodologies. (b)
Positive and negative design paradigms. Two sequences are evaluated using an empirical potential
on both the desired target structure and an undesired structure. Using a positive design paradigm,
sequence A would be selected since it exhibits a stronger affinity than sequence B for the target
structure (i.e. lower ∆G◦). Using a negative design paradigm, sequence B would be selected since
it exhibits specificity for the target structure while sequence A exhibits specificity for the undesired
structure. To provide a common basis for comparison, ∆G◦ = 0 for a strand with no base pairs.

A fundamental design problem consists of selecting the sequence of a nucleic acid strand that

will adopt a target secondary structure. As depicted in figure 4.1a, this is the inverse of the more

famous folding problem of determining the structure (and folding mechanism) for a given sequence.

To attempt the rational design of novel nucleic acid structures, we require both an approximate

empirical physical model and a search algorithm for selecting promising sequences based on this

model. Experimental feedback on the quality of the design and the performance of the design

algorithm can then be obtained by folding the molecule in vitro. Alternatively, if this feedback loop

can be closed computationally by folding the molecule in silico, the quality of sequence designs could

be rapidly assessed and improved before attempting laboratory validation.

In designing nucleic acid sequences, we consider the two principal paradigms illustrated in fig-

ure 4.1b. Positive design methods attempt to select for a desired outcome by optimizing sequence

affinity for the target structure. Negative design methods attempt to select against unwanted out-

comes by optimizing sequence specificity for the target structure. A successful design must exhibit

both high affinity and high specificity [38], so useful design algorithms must satisfy the objectives of



67

both paradigms, even if they explicitly implement only one.

For some applications, it may be desirable to supplement these thermodynamic design consid-

erations with additional kinetic requirements. For example, in designing molecular machines [47],

selecting sequences that fold or assemble quickly may be crucial, since naturally occuring RNA se-

quences have been observed to have persistent metastable states [3] and theoretical models suggest

that random sequences have highly frustrated energy landscapes with folding times that grow expo-

nentially with sequence length [17]. Alternatively, it may be important to design interactions with

intentionally frustrated folding kinetics in order to control fuel delivery during the work cycle [43].

The present study uses efficient partition function algorithms and stochastic kinetics simulations

to examine the thermodynamic and kinetic properties of sequences designed using seven methods

that capture aspects of the positive and negative design paradigms. Although several of these design

criteria have been widely used, we are not aware of any previous attempt to assess their relative

performance. Evaluated based on thermodynamic considerations, we consistently observe that se-

quence selection methods that implement both positive and negative design paradigms outperform

methods that implement either paradigm alone. This trend appears to be robust to changes in both

the target secondary structure and the parameters in the physical model, and to the choice of either

RNA or DNA as the design material. The trend does not hold when the design criteria are judged

based on kinetic considerations, as favorable thermodynamic properties do not ensure fast folding.

4.3 Physical Model

The secondary structure of a nucleic acid strand is a list of base pairs; the precise form is described

in sections 1, 2.2 and 2.3.1. A coarse-grained energy landscape may be defined over the finite number

of all possible secondary structures, where the properties of each secondary structure represent an

ensemble average over the three-dimensional atomic structures consistent with that base-pairing

graph.

The folding kinetics of a sequence can be addressed by simulating the trajectory through sec-

ondary structure space as a continuous-time Markov process [14, 12]. Changes in secondary structure
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are described in terms of elementary steps corresponding to the breaking or formation of a single

base pair. For each elementary step, the ratio of the forward and backward rates is defined to be

consistent with the equilibrium probabilities of the two end states [12, 48]. However, ad hoc ar-

guments are required to set the magnitude of the rates. There is some evidence that qualitative

properties of kinetic simulations are insensitive to the specific rate model [12].

4.4 Thermodynamic and Kinetic Evaluation Metrics

The partition function over secondary structure space provides an ideal conceptual framework for

evaluating the affinity and specificity of a sequence for the target structure. If ∆G◦(s) is the free

energy of a sequence in secondary structure s, then the probability of sampling s at thermodynamic

equilibrium is given by

p(s) = 1
Qe−∆G◦(s)/RT ,

where the partition function

Q =
∑
s∈Ω

e−∆G◦(s)/RT ,

is a weighted sum over the set of all secondary structures Ω, R is the universal gas constant and T

is the temperature. If the probability p(s∗) of folding to the target graph s∗ is close to unity, then

within the context of the approximate physical model, the sequence achieves both high affinity and

high specificity for the target structure.

The probability p(s∗) represents a very stringent design evaluation criterion since it measures

the probability that every nucleotide exactly matches the target graph. For some applications (e.g.

those involving large DNA molecules where some “breathing” is unavoidable), it is acceptable to

use sequences that adopt an ensemble of secondary structures similar to the target graph. In such

cases, requiring p(s∗) to be close to unity is a sufficient but not necessary condition for identifying

satisfactory sequence designs.

A more lenient design criterion may be obtained by using a modified form of the partition function

algorithm to compute the matrix of base-pair probabilities [30] with entries Pi,j ∈ [0, 1] corresponding
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to the probability of forming base pair i·j. By comparing the entries of P to the structure matrix S∗

with entries S∗
i,j ∈{0, 1} describing the target secondary structure s∗, we may compute the average

number of incorrect nucleotides n(s∗) over the equilibrium ensemble of secondary structures Ω.

The derivation of n(s∗) for a strand of length N proceeds as follows. Each secondary structure

s ∈ Ω is defined by a symmetric N×N structure matrix S with entries Si,j = 1 if s contains base

pair i ·j and Si,j = 0 otherwise. We augment the matrix S by adding an additional column with

entries Si,N+1 = 1 if base i is unpaired and Si,N+1 = 0 otherwise. Hence, every row sum is one. Using

the same convention, the augmented structure matrix corresponding to the target structure s∗ is

denoted S∗. Given a sequence, if the probability of sampling structure s is p(s), then the average

number of incorrect nucleotides may be expressed

n(s∗) = N −
∑
s∈Ω

[
p(s)

∑
1 ≤ i ≤ N
1 ≤ j ≤ N+1

Si,j S∗
i,j

]
.

This may be rearranged to give

n(s∗) = N −
∑

1 ≤ i ≤ N
1 ≤ j ≤ N+1

[∑
s∈Ω

p(s) Si,j

]
S∗

i,j ,

where the quantity in brackets is just the matrix of pair probabilities P with entries Pi,j equal to the

probability of forming base pair i·j. The extra column has entries Pi,N+1 equal to the probability that

base i is unpaired. Again, each row sum is one. Hence the average number of incorrect nucleotides1

1The formula for n(s∗) is a special case of a general metric, d(p, p′), between two ensembles of secondary structures,
p and p′, that measures the average number of differing nucleotides when one secondary structure is chosen from each
ensemble. By a derivation similar to the one above,

d(p, p′) = N −
X

1 ≤ i ≤ N
1 ≤ j ≤ N+1

Pi,jP ′
i,j .

The metric of Morgan and Higgs [17] is equivalent to d(p, p) and n(s∗) = d(p, s∗), where we abuse notation to indicate
that the probability distribution is concentrated entirely on the target structure s∗.
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may be expressed

n(s∗) = N −
∑

1 ≤ i ≤ N
1 ≤ j ≤ N+1

Pi,jS
∗
i,j .

This metric has the advantage that sequences that adopt secondary structures similar to s∗ (e.g.

due to breathing) are now identified as promising candidates. However, even if n(s∗) << N , it is

possible that the consistent omission or addition of certain base pairs (e.g. a hairpin stem) may cause

dramatic changes to the geometric structure. The requirement that n(s∗) << N is necessary but

not sufficient to ensure that p(s∗) is close to unity. On the other hand, n(s∗)≈0 is both necessary

and sufficient to ensure p(s∗) ≈ 1.

We measure folding efficiency as the median time, t(s∗), to achieve the target structure starting

from a random coil initial condition (no secondary structure). This metric is distinct from fast

folding time when the target structure is not the minimum free energy structure. Thus, t(s∗) being

small is neither necessary nor sufficient to imply p(s∗) is near unity. In this chapter, we consider

ideal sequences to be those with p(s∗)≈1, n(s∗)≈0 and t(s∗) small.

4.5 Design Criteria

We evaluate the following sequence design criteria:

1. Random. Sequences are selected to satisfy the complementarity requirements of the base-

pairing graph but are otherwise random. This is a primitive approach to both positive and negative

design; compatibility with the target graph implies some affinity for the structure and incompatibility

with many other graphs. At least this mild level of positive and negative design is implicit in each

of the design methods that follow.

2. Energy Minimization. Sequences are selected that attain a low energy on the target

structure using the standard energy model. This approach implements explicit positive design.

3. Minimum Free Energy (MFE) Satisfaction. Sequences are selected to ensure that the

target structure is the lowest energy structure [18, 2]. Note that a sequence with the correct minimum
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energy structure may nonetheless have a low probability of adopting the target fold. This approach

implements explicit negative design.

4. Sequence Symmetry Minimization (SSM). Sequences are selected to prohibit repeated

subsequences of a specified word length [36]. For subsequences that are not base-paired to consecutive

bases in the target graph (e.g. single stranded or branched regions), the complementary words are also

prohibited from appearing in the design. This is a heuristic approach to negative design, attempting

to ensure specificity for the target structure by guaranteeing mismatches within any subsequence of

the word length that hybridizes incorrectly.

5. Energy Minimization and SSM. Sequences are selected that attain a low energy on the

target graph subject to the constraint that SSM is satisfied [38]. This approach explicitly addresses

both paradigms, combining rigorous positive design and heuristic negative design.

6. Probability. Sequences are selected to maximize the probability [18, 13, 11] of sampling the

target structure p(s∗). Positive and negative design are simultaneously addressed in a single rigorous

approach.

7. Average Incorrect Nucleotides. Sequences are selected to minimize the average number

of incorrect nucleotides n(s∗). Positive and negative design are simultaneously addressed in a single

rigorous approach.

In each case, a design method is obtained by employing a heuristic search procedure to optimize

one of the design criteria. It is these design criteria that are the focus of the present work. Examining

a set of sequences obtained by independent search processes provides a characterization of typical

performance. For the the random method, as well as MFE satisfaction and SSM, any sequence

that satisfies the criterion is a global minimum. For the probability and average incorrect nucleotide

methods, the global optimum is not necessarily attained, but there is an absolute standard of success

(i.e. p(s∗) ≈ 1 or n(s∗) ≈ 0) that is frequently achieved. For methods involving energy minimization,

there is no mathematical guarantee that the selected sequences are near the global minimum.2

2For energy minimization, the global minimum energy is achieved by at least one sequence for all structures we
consider. For energy minimization plus SSM, we verified this property only for small structures, (e.g. the one in
figure 4.1a), where the global minimum was determined using a branch and bound algorithm [15] (see Materials and
Methods).
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Table 4.1. Sequence statistics for RNA multiloop designs of figure 4.2
Design Method p(s∗) n(s∗) CG content Entropy
Random 0.00 7.22 0.50 1.00
Energy Minimization 0.00 32.46 0.91 0.35
MFE Satisfaction 0.16 4.14 0.50 0.99
SSM 0.08 4.89 0.50 0.99
Energy Minimization & SSM 0.87 0.28 0.66 0.68
Probability 0.97 0.06 0.69 0.40
Average Incorrect Nucleotides 0.97 0.06 0.68 0.39

Implementation details for all design methods are provided in Materials and Methods.

4.6 Results

We now compare the perfomance of these seven design methods. All designed sequences are at local

minimima in the sense that no mutation of one base pair or of one unpaired base results in a better

sequence based on the given design criterion.

RNA Multiloop Design. Each method was used to perform 100 independent sequence designs

for a 4-stem RNA multiloop comprising 71 nucleotides. Histograms of p(s∗) and n(s∗) are shown in

figures 4.2a and 4.2b, with median values recorded in table 4.1. For random sequences, approximately

95% of the designs have p(s∗) < 0.1 and the median value of n(s∗) is 7.2. Energy minimization

performs worse than random while MFE satisfaction and SSM perform somewhat better. There

is a dramatic improvement in sequence quality using a combination of energy minimization and

SSM. Directly optimizing either p(s∗) or n(s∗) leads to sequences with excellent thermodynamic

properties.

To provide an alternative view of average design performance, figure 4.2c depicts the base-pairing

probabilities Pi,j for the median sequence based on p(s∗). Energy minimization completely fails to

capture the connectivity of the target structure. The other methods demonstrate the correct basic

structure with varying propensities for extending or adding helices.

Model Robustness. It is inevitable that new parameter sets will continue to be developed

for the loop-based potential functions used for these studies [34, 29]. For our design methods to be

useful, the quality of a sequence must be robust to perturbations in the approximate physical model;

sequences that behave well using many different parameter sets are more likely to perform well in
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Figure 4.2. RNA multiloop: (a) Histograms for 100 sequence designs based on probability of sam-
pling the target graph, p(s∗). The color legend applies to all plots. (b) Histograms for the same 100
sequence designs based on average number of incorrect nucleotides, n(s∗). (c) Base-pairing probabil-
ities Pi,j for the median sequence based on p(s∗). Square sizes correspond to Pi,j ≥ {0.5, 0.05, 0.005},
respectively. The target structure is identical to that obtained by optimizing probability (black) or
the average number of incorrect nucleotides (not shown). (d) p(s∗) versus free energy, ∆G◦(s∗).
Each dot corresponds to one of 100 sequences designed using each method. Each bold square corre-
sponds to the median over the 100 sequences designed using each method. (e) p(s∗) versus median
folding time, t(s∗), over 1000 kinetic trajectories starting from random coil initial conditions. Dots
and squares interpreted as for part (d).
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the laboratory. To examine this issue, we consider 1000 randomized potential functions for RNA

where every parameter3 is independently adjusted by an amount uniformly distributed on ±10%,

±20% or ±50%.

For each design method, the top-ranked sequence based on p(s∗) is reexamined using these modi-

fied potentials. The new probabilities are shown in figure 4.3, with the original probabilities depicted

as dashed lines. For perturbations distributed uniformly on ±10%, these probability distributions

are peaked near the original probabilities, with the sharpest peaks occuring for the best original

sequences. The studies with perturbations distributed uniformly on ±20% and ±50% demonstrate

that the best sequences are surprisingly robust even to large perturbations.

Sequence Composition. The contrasting behavior of sequences designed by different methods

is partly attributable to the variation in sequence composition as summarized by Table 4.1 in terms

of fraction of CG nucleotides and average Shannon entropy per position.4 As expected, the random

and SSM designs have a CG content of 50% and an average sequence entropy of approximately

one, meaning that each base is equally likely at each position. Similar trends are observed for MFE

satisfaction, emphasizing that it is a negative design approach, in that it does not attempt to optimize

affinity for the target structure by increasing the CG content. By contrast, energy minimization leads

to 91% CG content with a dramatic drop in the sequence entropy at each position. The combined

approach of energy minimization and SSM increases the average sequence entropy and reduces the

CG content to about 65%. By comparison, designs based on direct optimization of p(s∗) or n(s∗)

have similar CG contents, but much lower average sequence entropies, suggesting greater uniformity

across independent sequence designs in the placement of C and G bases throughout the strand.

The differing design objectives of methods that implement positive and negative design paradigms

are amply illustrated by the plot of probability versus free energy in figure 4.2d. Here, the methods of

SSM and MFE satisfaction produce sequences with ∆G◦ values comparable to those for the random
3There are 10,692 and 12,198 nonzero parameters for the RNA [29] and DNA [34] models, respectively.
4For 100 sequences designed by a given method, the information entropy at position i is defined by

σi = −
X

η=A,C,G,U

fi(η) log4 fi(η)

where fi(η) is the fraction of base η at position i, and σi varies between zero (all nucleotides are identical) and one
(equal number of each nucleotide). The average entropy per position over a sequence of length N is then

P
i=1,N σi/N .
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Figure 4.3. RNA model perturbation study. For the multiloop designs of figure 4.2, the top-ranked
sequence for each method based on p(s∗) is reexamined using 1000 randomized potential functions
where every parameter is independently adjusted by an amount uniformly distributed on ±10%,
±20%, or ±50%.The original probabilities are depicted as dashed lines.

method. Energy minimization naturally produces the lowest ∆G◦ values, while the methods that

combine positive and negative design sacrifice some level of affinity to achieve greater specificity and

hence higher p(s∗) values.

Kinetics. We estimate t(s∗) as the median folding time over 1000 stochastic simulation runs as

plotted against p(s∗) in figure 4.2e. Each simulation was terminated after 104 dimensionless time

units had elapsed.

Sequences designed by energy minimization had very low probabilities and failed to fold during

the time frame of the simulations. Random sequences also had very low probabilities but did

succeed in folding. On average, the negative design approaches of MFE satisfaction and SSM
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yielded sequences with improved probabilities and folding times relative to random sequences. The

combined approach of energy minimization and SSM yielded significantly higher probabilities with

folding times that are comparable with SSM. Sequences designed by direct optimization of p(s∗) or

n(s∗) yielded the highest probabilities but somewhat slower folding times. Figure 4.2e illustrates

two distinct classes of slow folding sequences: sequences with low p(s∗) have energy landscapes in

which s∗ is not a prominent local minimum, while sequences with high p(s∗) have s∗ as the global

minimum, but often have highly frustrated energy landscapes, possibly due to high CG content.

Each of the three methods that implement both positive and negative design paradigms produces

a number of sequences that appear excellent based on both equilibrium and kinetic properties.

However, in general, the depth of the global minimum in the energy landscape does not determine

the kinetic accessibility of that conformation [12].

Other RNA Structures. The multiloop structure considered in figure 4.2 had stems of length

α = 6 and single stranded multiloop regions of length β = 2. In figure 4.4, the design conclusions

are generalized to a related family of multiloop structures with α ∈ {4, 6, 8}, β ∈ {0, 2, 4}. Results

for a larger RNA multiloop with 122 nucleotides and a small RNA pseudoknot with 30 nucleotides

are shown in figures 4.5 and 4.6. We have also examined design performance for open structures,

hairpins, and three-stem multiloop structures (not shown). In all of these cases, the same trends are

observed in the relative performance of the different design methods.

DNA Design. For each of the non-pseudoknotted cases, analogous data is provided for DNA in

figures E.1-E.4 and Table E.1. Similar trends are observed in the relative performance of the different

design methods. Based on equilibrium properties, the most noticeable differences compared to the

RNA designs are: (a) the best methods no longer consistently produce sequences with p(s∗) > 0.90,

(b) structures with helices of length α = 4 are difficult to stabilize. Comparing equilibrium and

kinetic properties, higher probabilities are achievable with RNA, and faster folding times are typical

for DNA.
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(a)

(b)

Figure 4.4. RNA Multiloop Variations: Design performance based on (a) p(s∗) and (b) n(s∗) with
stem α = (4, 6, 8) and single stranded multiloop regions β = (0, 2, 4). Surfaces show the mean values
plus and minus one standard deviation for 100 independently designed sequences. The results for
optimizing average incorrect nucleotides (not shown) are nearly indistinguishable from those obtained
by optimizing probability.

4.7 Discussion

Relative Merits of Design Criteria. Based on thermodynamic considerations, our results sup-

port classifying design criteria according to the extent to which they implement positive (affinity)

and negative (specificity) design paradigms. The design methods that implement both paradigms

(energy minimization plus SSM, probability, average incorrect nucleotides) significantly outperform

other methods. In general, the worst performance was observed for methods that implemented

neither paradigm (random) or positive design alone (energy minimization), with somewhat better

performance observed for negative design methods (MFE satisfaction, SSM). It is perhaps surpris-

ing that MFE satisfaction, which performs negative design using the full thermodynamic energy

model, performs so similarly to SSM, which neglects the model. Methods based on SSM are widely
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Figure 4.5. Large RNA multiloop. See captions for figures 4.2abc.

used—our results suggest that they could be improved by incorporating a positive design component.

For many structures, high probabilities (within the context of an approximate physical model) are

obtained by directly optimizing p(s∗) or n(s∗).

Optimization of equilibrium properties leads to sequences with widely differing folding times. One

simple design approach is to filter sequences to identify fast or slow folders as desired. Alternatively,

new sequence selection algorithms could be developed that explicitly take into account the structure

of the energy landscape to optimize the kinetic accessibility of the global minimum energy secondary

structure. Furthermore, the observed decoupling of thermodynamic and kinetic properties suggests

that there are sufficient degrees of freedom in sequence space to allow the design of more complex
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Figure 4.6. RNA Pseudoknot. See captions for figures 4.2abc.

features of the energy landscape (e.g. metastable states [12]).

Robustness of Claims. The consistency in the relative merits of these design methods suggests

a level of generality that goes beyond the structures investigated here. It appears that it is not

necessary to classify target structures according to the demands that they place on positive or

negative design, as methods that implement both paradigms are generally preferred. Furthermore,

we observe the same relative performance rankings for RNA and DNA despite systematically different

thermodynamic parameters for the two materials. Evaluations of sequence quality for either material

appear robust to perturbations in the parameter sets. This suggests that the relative merits of the

design criteria are not likely to change as the empirical models are improved.
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The validity of our thermodynamic metrics is linked to the validity of the underlying empirical

models, which continue to be refined and evaluated by experimental studies [35, 29]. Further im-

provement of these models for both thermodynamic and kinetic predictive capability will directly

benefit rational design methods. Historically, some parameters have experienced adjustments sig-

nificantly larger than 10% as the model was refined [35]. It seems likely that parameters that have

undergone extensive study (e.g. base-pair stacking) will experience relatively small changes in the

future, while other parameters that have not received the same degree of scrutiny (e.g. coaxial

stacking or dangling ends) may change more dramatically. These adjustments could alter the design

conclusions for some target structures.

The partition function may retain utility for design in certain cases where the energy model is

known to be incorrect. For example, pseudoknot energy models do not fully consider geometric

constraints, such as steric hindrance. Nevertheless, it is reasonable to believe that the unknown

energy correction terms are non-negative; that is, structures violating geometric constraints are in

fact less likely than predicted. In this case, for design targets that are geometrically unstrained (so

that the missing energy term is small), the predicted p(s∗) will be strictly lower than if the energy

correction terms had been included (since all undesired structures have non-negative correction

terms). Consequently, high-ranking sequences based on existing models are likely to be successful

in practice.

Algorithmic Considerations. Each design method consists of a criterion score and a heuristic

for optimizing that score. Evaluating the score for a single sequence of length N is an O(N)

operation for random, energy minimization, SSM, and energy minimization plus SSM methods.

When used in an adaptive walk, each incremental change to the score can be evaluated in constant

time. For designs based on MFE satisfaction, probability, and average incorrect nucleotides, each

score evaluation is an O(N3) operation if pseudoknots are excluded and an O(N5) operation if a

class of pseudoknots is included. The cost of these latter methods motivates further investigation

of optimization techniques for these scores, including filtering the designs of less expensive methods

[38] and assembling larger structures hierarchically [18, 2].
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The random and SSM methods apply to single or multi-stranded structures with or without

pseudoknots. The other five methods require extensions to the standard empirical potential functions

to handle multiple strands or pseudoknots.5 The dynamic programming algorithms that underly

three of the methods also require generalization to handle problems with multiple strands [28, 2, 26].

Additional Design Constraints. Each design method considered here has been simplified to

reflect the essence of the approach so as to admit easy description, comparison and replication. In

practice, there are many additional considerations that might be used to modify these approaches to

satisfy various additional constraints. For example, the designer may wish to limit the CG content,

to use a three-letter alphabet [31, 4], to prohibit consecutive stretches of a single base, to fix the

melting temperature, or to impose various other rules of thumb that have been garnered from years

of lab experience. The intended function of the design may also impose additional requirements, such

as the inclusion of subsequences of biological or biochemical relevance (e.g. promoters, restriction

sites, genomic targets, ribozymes and deoxyribozymes). Frequently, the intention is to design a set

of strands that interact to form one of several allowed secondary structures (e.g. a DNA beacon

switches from a hairpin to a helix in the presence of a target ligand). In DNA computing, it is often

necessary to design a combinatorial library of strands, each of which is devoid of secondary structure

[5]. These problems naturally lead to multi-objective optimizations, where we expect positive and

negative design paradigms to continue to play a critical role.

Comparison with Protein Design. It is informative to compare rational nucleic acid design

efforts to those in the related area of rational protein design. Proteins provide a rich design space

with a much greater demonstrated range of natural function than RNA and DNA. Hence, they

represent a fertile medium for the design of new medical and industrial products. While fold affinity

and specificity remain fundamental design objectives for proteins, it is not clear to what degree

the explicit implementation of both positive and negative design paradigms remains critical. It is

possible that the biochemical properties of the twenty amino acids are sufficiently different from

those of the four nucleotides that there is a change in the degree to which positive and negative
5This complication can be avoided for the two methods involving energy minimization if only stacking energies are

considered and other loop terms (which are largely independent of sequence) are neglected.
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design methods yield collateral specificity and affinity, respectively.

Computational models for protein thermodynamics currently require three-dimensional fold in-

formation. To stabilize a given target fold, rational design efforts have focused on positive design

for fold affinity: identify the sequence with the lowest energy on the target fold [10, 8, 23]. Ex-

plicit negative design for fold specificity is problematic since it is challenging to describe the space

of unwanted three-dimensional folds. However, small ensembles of unwanted structures have been

used to explicitly design for fold specificity [16, 19]. Arguments based on the random energy model

suggest that implicit negative design may be achieved by fixing the sequence composition prior to

optimization [39, 22, 27]. Recently, a novel protein fold was designed from scratch [24] by alternately

optimizing the sequence on a fixed backbone and the backbone for a fixed sequence. The former step

represents positive design via energy minimization. The latter step was implemented by searching

nearby structure space and redefining the target to be the minimum energy structure – a local form

of negative design. Conceptually, it is unclear to what extent this local structural optimization

implements global negative design.6

There is currently no physical abstraction (akin to nucleic acid secondary structure) that fa-

cilitates the prediction of protein structure from protein sequence. Hence, the feedback loop in

figure 4.1a must be closed either by experimental structural characterization methods or by compu-

tationally solving the protein structure prediction problem [32]. This feedback can be used both to

improve particular sequence designs and to improve the physical model on which the design process

is based. To avoid the risk of introducing artifacts into the physical model [44], significant effort

has been invested in developing exact search methods to find the globally optimal sequence based

on fold affinity, though approximate search methods have also proved useful in practice [9, 23].

These limitations would similarly apply to nucleic acid design based on three-dimensional atomic

coordinates. However, by designing at the level of secondary structure, it is possible to explicitly

address both positive and negative design paradigms and to use partition function algorithms to

evaluate design quality computationally. The probability of sampling the target graph p(s∗) has a
6The related hypothetical approach of performing global structure prediction and adjusting the target to be the

minimum free energy structure would correspond to explicit negative design (identical to MFE satisfaction except
that specificity is achieved by adjusting the structure instead of the sequence).
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maximum value of unity. Hence, it is no longer necessary to perform exact global sequence searches

in order to be sure that the sequence accurately reflects the properties of the physical model – it is

enough to check that p(s∗) is near unity or that n(s∗) is sufficiently small.

Implications for Design of Nanodevices. For many design applications, nucleic acids rep-

resent an attractive building material. Consider for example, an attempt to design a mechanical

device that performs work by moving through a series of conformations. It would be cumbersome

to parameterize the protein design problem for mechanical devices in terms of atomic coordinates.

It also seems unlikely that it would be possible to conditionally stabilize a sequence of non-natural

folds using positive design methods that do not explicitly treat fold specificity. However, DNA

devices with moving parts and complex conditional conformational changes have already been de-

signed (using ad hoc methods) and experimentally demonstrated [47, 43, 42]. We expect that nucleic

acid secondary structure will provide a productive framework for formulating the design problem

for functional multi-state machines in a way that simultaneously addresses positive and negative

design requirements. Ultimately, the objective of rational nucleic acid design efforts is to develop a

‘molecular compiler’ that takes as input a conceptual design for a device and produces as output,

a list of nucleic acid sequences that can be expected to assemble into the desired structures and

function robustly.

4.8 Materials and Methods

4.8.1 Design Implementation Details

The parameter sets for RNA and DNA are taken from Mfold3.1 [29] with RNA pseudoknot param-

eters provided by reference [11]. There are currently no pseudoknot parameters for DNA. Dangle

energies were treated as the d2 option in the Vienna package [18]. After each sequence search

is performed with any of the methods described below, we check to see whether the sequence is

quenched, in the sense that no mutation of a single base pair or of a single unpaired base improves

the design according to the design metric. If the sequence is not quenched, we run a further adaptive
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walk, checking every 1000 steps to see if the sequence is quenched and terminating the search when

quenching is achieved.

Random. 100 random sequences are independently generated that satisfy the target graph

base-pairing requirements.

Energy Minimization. 100 independent simulated annealing runs with different random initial

sequences are used to identify 100 sequences with a low free energy on the target graph according

to the standard loop-based energy model. Each search uses an exponentially decreasing temper-

ature profile over 106 steps, where each step corresponds to a point mutation that is accepted if

exp(−∆G◦/RT ) ≥ ρ, where ∆G◦ is the change in energy and ρ ∈ [0, 1] is a uniformly distributed

random number.

MFE Satisfaction. An adaptive walk of 1000 steps is used to identify a sequence for which the

target structure is the lowest energy structure. Each step consists of a random point mutation that

is accepted if the new minimum energy structure calculated using dynamic programming methods

[49, 18, 33, 1, 11] does not increase the number of mismatches with the target graph [18, 2]. The

100 sequences used for the study are obtained from 100 independent searches starting from different

random initial sequences. In each case, the target is the minimum energy structure.

Sequence Symmetry Minization (SSM). 100 sequences are independently selected that are

compatible with the target graph and satisfy SSM [36] with word length 4. For the Large Multiloop

structure, the word length was increased to 5 to provide a larger vocabulary.

Energy Minimization and SSM. A penalty term is added to the standard energy model to

bias the simulated annealing search against sequences that violate SSM. The top-ranked sequences

from each of 100 independent searches are free of SSM violations for the cases presented.

Probability. An adaptive walk of 1000 steps is used to search for the sequence with the high-

est probability of sampling the target structure based on dynamic programing calculations of the

partition function [30, 11]. Each step consists of a random point mutation that is rejected if the

probability decreases and accepted otherwise [18, 13, 11]. The study uses the top-ranked sequence

from each of 100 independent searches starting from different random initial sequences.
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Average Number of Incorrect Nucleotides. Independent adaptive walks based on n(s∗)

are used to obtain 100 sequences in a manner analogous to the direct optimization of probability

described above.

4.8.2 Global Energy Minimization

For methods involving energy minimization, there is no mathematical guarantee that the selected

sequences are near a global minimum. For small problems, the performance of heuristic search

methods may be assessed by comparison to the global minimum energy obtained using an exact

exponential-time branch-and-bound algorithm developed for protein design [15]. If a protein is

modeled as a rigid backbone with side-chains represented by discrete rotamers, the protein design

problem may be formulated as follows [10, 8]: Given p disjoint sets of rotamers Ri (one set for

each position i) and a potential function E(·, ·) that returns the energy between a pair of rotamers

at different positions, choose the rotamer ri ∈ Ri at each position that minimizes the sum of the

pairwise interactions energies between all positions

Etotal =
∑

i

∑
j,j<i

E(ri, rj).

Methods developed for protein design may be applied to nucleic acid design if the nearest-neighbor

empirical potentials [34, 29] are cast as a sum of pairwise terms. For the method based on energy

minimization, this is accomplished by constructing overlapping compound ‘rotamers’ from nearest-

neighbor bases and defining infinite energies for neighboring rotamer pairs with inconsistent overlaps.

For energy minimization plus SSM, the scope of each rotamer is increased to the SSM word length

and infinite energies are assigned to rotamer pairs that violate SSM. Hence, energy minimization

results in 34 rotamers per position, while energy minimization plus SSM results in W 4 rotamers per

position, where W is the SSM word length.



86

4.8.3 Kinetic Simulation Software

Simulations are performed using Kinfold [12] with Kawasaki rate definitions based on parameter

sets provided by the authors.
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Chapter 5

Construction of a DNA-Based
Biosensor

The work presented here is heavily based on:

R. M. Dirks, and N. A. Pierce, Triggered amplification by hybridization chain reaction. Proceedings

of the National Academy of Sciences of the United States of America, 2004. 101(43): p. 15275-

15278. Reprinted with copyright permissions.
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5.1 Abstract

Given the previously developed tools for the analysis and design of nucleic acid secondary structures,

the challenge is to parlay these techniques into useful DNA systems. To this end, we must first

conceive of a system of DNA structures predicted to have experimentally interesting behavior, then

design sequences to instantiate this framework. Along these lines, we introduce the concept of

hybridization chain reaction (HCR), in which stable DNA monomers assemble only upon exposure

to a target DNA fragment. In the simplest version of this process, two stable species of DNA hairpins

coexist in solution until the introduction of initiator strands triggers a cascade of hybridization events

that yields nicked double helices analogous to alternating copolymers. The average molecular weight

of the HCR products varies inversely with initiator concentration. Amplification of more diverse

recognition events can be achieved by coupling HCR to aptamer triggers. This functionality allows

DNA to act as an amplifying transducer for biosensing applications.

5.2 Introduction

Biosensors require both a recognition component for detection and a transduction component for

read-out. In gene chips, recognition is performed by single-stranded DNAs that screen for comple-

mentary nucleic acid fragments and transduction is typically performed by optical or electrochemical

means [25, 6]. Nucleic acid aptamers obtained by in vitro selection methods [8, 34] generalize this

recognition capability to a wide range of target analytes [11, 16] and are amenable to optical trans-

duction approaches [14, 22]. Here, we demonstrate that DNA can also play the transduction role via

a new amplification approach termed hybridization chain reaction (HCR). This class of mechanisms

suggests the possibility of constructing biosensors solely from unmodified single-stranded DNA.

Single-stranded DNA is a versatile construction material [27] that can be programmed [26, 28,

12, 10, 2, 5] to self-assemble into complex structures [26, 4, 18, 37, 15, 38, 19, 20, 30] driven by the

free energy of base pair formation. Synthetic DNA machines can be powered by strand displacement

interactions initiated by the sequential introduction of auxiliary DNA fuel strands [40, 39, 17, 33, 1,
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Figure 5.1. Basic HCR system. (a)-(c) Secondary structure schematic of HCR function. Letters
marked with * are complementary to the corresponding unmarked letter. (a) Hairpins H1 and H2
are stable in the absence of initiator I. (b) I nucleates at the sticky end of H1 and undergoes an
unbiased strand displacement interaction to open the hairpin. (c) The newly exposed sticky end of H1
nucleates at the sticky end of H2 and opens the hairpin to expose a sticky end on H2 that is identical
in sequence to I. Hence, each copy of I can propagate a chain reaction of hybridization events between
alternating H1 and H2 hairpins to form a nicked double-helix, amplifying the signal of initiator
binding. (d) Effect of initiator concentration on HCR amplification. Six different concentrations of
initiator (0.00, 10.00, 3.20, 1.00, 0.32, 0.10 µM ) in a 1 µM mixture of H1 and H2 (Lanes 2-7). DNA
markers with 100-bp and 500-bp increments, respectively (Lanes 1 and 8). (e) HCR kinetics. The
hairpin monomers do not hybridize prior to triggering by initiator ((H12AP + 1.2x H2) + 0.5x I,
red). The same quenched baseline is achieved without HCR by adding excess initiator to H12AP in
the absence of H2 (H12AP + 4.0x I, green). Addition of insufficient initiator to H12AP provides only
partial quenching (H12AP + 0.5x I, blue).
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31, 29, 32]. Typically, various DNA strands begin to associate as soon as they are mixed together.

Catalytic fuel delivery provides a conceptual approach to powering autonomous DNA machines by

storing potential energy in loops that are difficult to access kinetically except in the presence of a

catalyst strand [35]. In the system described here, monomer DNA building blocks are mixed together

but do not hybridize on an experimental time scale. Exposure of an initiator strand triggers a chain

reaction of hybridization events similar to living chain polymerization but without covalent bond

formation. This system introduces the concept of triggered self-assembly of DNA nanostructures.

5.3 Methods

5.3.1 System Specifications

DNA sequences were designed using a combination of criteria [5]: sequence symmetry minimization

[26], probability of adopting the target secondary structure at equilibrium [12], average number of

incorrect nucleotides at equilibrium relative to the target structure [5] and hybridization kinetics [9].

The sequences for the basic HCR system of figure 1 and the aptamer HCR system of figure 2 are

shown in table 1. The aptamer system required new sequence designs to ensure compatibility with

the fixed sequence of the aptamer. For the kinetic studies of figure 1c, H12AP is used in place of H1

with the third base (A) replaced with 2-aminopurine [23].

DNA was synthesized and purified by Integrated DNA Technologies. For the basic HCR system

of figure 1, concentrated DNA stock solutions were prepared in buffer that was later diluted to

reaction conditions: 50 mM Na2HPO4, 0.5 M NaCl, pH 6.8. For the ATP aptamer HCR system of

figure 2, concentrated stock solutions were later diluted to reaction conditions: 5 mM MgCl2, 0.3 M

NaCl, 20 mM Tris, pH 7.6.

5.3.2 Native Gel Electrophoresis

Samples were heated to 95◦ C for 2 minutes and then allowed to cool to room temperature for 1

hour prior to use. The 1% agarose gels of Figs 1d and 2b contained 0.5 µg ethidium bromide per
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mL of gel volume and were prepared using 1x SB buffer [3]. Agarose gels were run at 150V for

60 minutes and visualized under UV light. The native polyacrylamide gel of figure 2c was a 10%

precast gel made with 1x TBE buffer. The gel was run at 150V for 40 minutes in 1x TBE, stained

30 minutes in a solution containing 0.5 µg ethidium bromide per mL, and then viewed under UV

light. For the reactions of figure 1d, stock solutions of I, H2 and H1 were diluted in reaction buffer

to 3x their final concentrations (see legend) and 9 µL of each species were combined in that order

(27 µL reaction volume). For figure 2b, DNA species were combined to yield 1 µM concentrations in

27 µL of reaction buffer, with additions made in the order: buffer and/or (I or IATP), H1 and then

H2 (note that I and IATP interact with H2 rather than H1). In this case,1 µL of 40 mM ATP, 40

mM GTP or water was added to each reaction, as appropriate, for a total reaction volume of 28 µL.

Reactions were incubated at room temperature for 24 hours before running 24 µL of each product

on a gel. Reactions for the polyacrylamide gel of figure 2c were performed at half volume and the

entire reaction volumes were loaded on the gel.

5.3.3 Fluorescence Kinetics.

Fluorescence data were obtained using a fluorometer from Photon Technologies International, with

the temperature controller set to 22◦ C. Excitation and emission wavelengths [23] were 303nm and

365nm, respectively, with 4 nm bandwidths. Stock solutions of 0.40 µM H12AP and 0.48 µM H2

were prepared in reaction buffer, heated to 90◦ C for 90 seconds and then allowed to cool to room

temperature for 1 hour prior to use. For each experiment, 250 µL of H12AP were added to either 250

µL of H2 or 250µL of reaction buffer. These 0.20 µM H12AP solutions were allowed to sit at room

temperature for at least 24 hours before taking fluorescence measurements. The initial signal was

obtained after rapidly pipetting the sample in the cuvette to obtain a stable fluorescence baseline.

After acquiring at least 2000 seconds of this baseline, runs were paused for approximately one minute

to add 20 µL of initiator (either 20µM or 2.5µM ) and allow mixing by rapid pipetting. The final

reaction volume was 520 µL for all experiments.
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Figure 5.2. Aptamer HCR system. (a) Aptamer trigger mechanism. Binding of the DNA aptamer
(blue) to ATP [13] exposes a sticky end [22] (magenta) that triggers the HCR mechanism of figure
1 by opening hairpin H2. The region x (red) is introduced to help stabilize the trigger in the
absence of analyte [22]. The region b* includes both the hairpin loop and the portion of the stem
complementary to x. b-c, ATP detection via HCR. (b) Agarose and (c) acrylamide gels demonstrate
amplification of ATP recognition, with the former providing better resolution of HCR products and
the latter providing better resolution of unreacted species. Reactions are performed with 1.4mM
ATP and GTP and all DNA species at 1µM. The hairpins do not polymerize when mixed (H1 +
H2, Lane 1). Addition of simple initiator triggers HCR (H1 + H2 + I, Lane 2). Hairpins with ATP
(H1 + H2 + ATP, Lane 3). Aptamer initiator with ATP (IATP + ATP, Lane 4). Weak spurious
HCR in the absence of ATP (H1 + H2 + IATP , Lane 5) or the presence of GTP (H1 + H2 + IATP

+ GTP, Lane 7). Strong HCR amplification of ATP recognition (H1 + H2 + IATP + ATP, Lane 6).
DNA ladder (100-1000 bp in 100 bp increments, Lane 8).
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Table 5.1. HCR systems
System Strand Sequence∗

Basic H1 5′-TTAACCCACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTG-3′

H2 5′-AGTCTAGGATTCGGCGTGGGTTAACACGCCGAATCCTAGACTACTTTG-3′

I 5′-AGTCTAGGATTCGGCGTGGGTTAA-3′

Aptamer† H1 5′-CATCTCGGTTTGGCTTTCTTGTTACCCAGGTAACAAGAAAGCCAAACC-3′

H2 5′-TAACAAGAAAGCCAAACCGAGATGGGTTTGGCTTTCTTGTTACCTGGG-3′

IATP 5′-CCCAGGTAACAAGAAAGCCAAACCTCTTGTTACCTGGGGGAGTATTGCGGAGGAAGGT-3′

I 5′-CCCAGGTAACAAGAAAGCCAAACC-3′

∗ In the hairpin sequences, loops are underlined and sticky ends are overlined. †Aptamer nucleotides [22] are italicized.

5.4 Results

The simplest HCR mechanism employs two hairpin species (H1 and H2 in figure 1abc). The key to

this system is the storage of potential energy in short loops protected by long stems. This situation

contrasts with that for molecular beacons [36], where short stems protect long loops to allow the

target nucleotide to bind in the loop and open the beacon. In the present HCR system, each

hairpin is caught in a kinetic trap, preventing the system from rapidly equilibrating. Introduction

of an initiator strand (I) triggers a chain reaction of alternating kinetic escapes by the two hairpin

species corresponding to ‘polymerization’ into a nicked double helix. Amplification of the initiator

recognition event continues until the supply of H1 or H2 is exhausted. The average molecular weight

of the resulting polymers is inversely related to the initiator concentration (figure 1d), suggesting

the potential for quantitative sensing. This inverse relationship follows from the fixed supply of

monomer hairpins, but the phenomenon can be observed after 10 minutes, when the supply has not

yet been exhausted.

The kinetics of HCR can be explored using fluorescence quenching. 2-aminopurine (2AP), an

analog of adenine, fluoresces when single-stranded, but is significantly quenched when in a stacked

double-helical conformation [23]. Monomer usage can be monitored as polymerization occurs by

replacing H1 with the labelled hairpin H12AP (obtained by substituting 2AP for an A in the sticky

end of H1). Monitoring 2AP fluorescence is preferable to using standard end-labeled strands because

the local environment of quenched 2AP will be the same regardless of whether I or H2 performs the

quenching. In contrast, dyes tethered to the ends of strands may have different fluorescent properties

based on their position (terminal or internal) in the HCR polymer.
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The hairpin monomers H12AP and H2 do not hybridize in the absence of initiator (figure 1e).

Addition of I to the hairpin mixture at a lower concentration leads to fluorescence quenching via

HCR. The same quenched baseline is achieved without HCR by combining H12AP with excess I.

In this case, each I molecule causes one fluorescent signalling event by binding to H12AP; with H2

present, HCR performs fluorescent amplification, allowing each I molecule to alter the fluorescence

of multiple hairpins. Addition of insufficient initiator to H12AP (at the same concentration as for

the first experiment) provides only partial quenching, demonstrating that HCR, and not I alone, is

responsible for exhausting the supply of H12AP monomer. The variation in initial fluorescence inten-

sities is approximately 10% across the three experiments. The off/on kinetic behavior of this HCR

system suggests that these hairpin constructs may also be useful for delivering fuel to autonomous

DNA machines.

More diverse biosensors can be created by triggering HCR with molecular recognition events

based on DNA or RNA aptamers [8, 34]. Figure 2a depicts a scheme for HCR amplification of ATP

detection using an aptamer construct [13, 22] that exposes an initiator strand upon binding ATP.

Figs 2b-c demonstrate successful detection of ATP, as well as specificity in differentiating ATP from

GTP.

5.5 Discussion

These data suggest that HCR can be described by a coarse-grained, structure/function relationship

in which secondary structure (as opposed to tertiary atomic coordinates) is sufficient to determine

the qualitative interactions of components in the system. This property represents a significant

advantage in using nucleic acids as a construction material [27]. The basic HCR system of figure 1

and the aptamer HCR system of figure 2 have identical hairpin secondary structures, with stems of

length 18 and loops of length 6 (sticky ends match loop lengths); both sets of hairpins are stable as

monomers when mixed, but undergo HCR in response to triggering. The sequence identity between

analogous hairpins in these systems is only 30%, corresponding to 9 of 30 independent positions

(25% identity would be expected for random sequences).
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A series of experiments on hairpins with different combinations of loop and stem lengths gave

widely different results (data not shown). For example, systems with stems of length 18 and loops

of length 8 or with stems of length 10 and loops of length 6 were not stable at room temperature

(monomers polymerized overnight in the absence of initiator). If the loops were too small (e.g. of

length 4 with stems of length 10), polymerization in the presence of initiator occurred very slowly, if

at all. While sequence and tertiary structure are central to aptamer function [13], secondary structure

appears to be the appropriate level of description to represent and design the core functionality of

HCR. Further experimental studies of this structure/function relationship are warranted.

The concept of HCR is not limited to polymerization of monomer hairpins. The HCR mechanism

depicted in figure 1 represents linear growth in response to initiator. It is possible to envision more

complicated sets of monomers that would undergo triggered self-assembly to create branched struc-

tures corresponding to quadratic growth or even dendritic systems exhibiting exponential growth.

Nonlinear amplifiers of this type are currently under investigation.

Here, HCR detection was performed by gel electrophoresis or fluorescence quenching. Using in-

expensive synthesized DNA components and standard gel electrophoresis equipment, HCR schemes

could potentially serve as economical and easily adopted amplifiers for molecular detection. Alter-

natively, it may be possible to develop a nano-gold based colorimetric assay [7, 21] for HCR that

could be used for read-out in non-laboratory settings.

HCR amplification could be applied to a wide range of sensing applications by developing a

general approach to aptamer triggering. Furthermore, the trigger need not be based on molecular

recognition; any physical process that exposes initiator strand will suffice. It may sometimes be useful

to employ HCR for both amplification and capture, using the resulting DNA polymers to remove

the analyte from solution. For some applications in which detection is the primary objective of

amplification, HCR may have the potential to become an attractive protein-free, room temperature

alternative to polymerase chain reaction (PCR) [24].
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Appendices

The following appendices contain supplementary information pertaining to Robert Dirks’s thesis.

Appendix A contains a general overview of nucleic acid structure and function. Appendices B and

C contain additional figures and pseudocode for the chapters on analysis. Appendix D discusses the

thermodynamics of multi-strand complexes, and Appendix E gives more examples of nucleic acid

design. Appendix F describes more sophisticated versions of HCR.



106

Appendix A

Background on Nucleic Acids

A.1 Composition and Structure of Nucleic Acids

Nucleic acids are versatile biopolymers essential to all life. Composed of directed, negatively charged

sugar-phosphate backbones and side groups called bases, nucleic acids come in two major forms: de-

oxyribonucleic acids (DNA) and ribonucleic acids (RNA). For naturally occurring DNA, the predom-

inant four bases are adenine (A), cytosine (C), guanine (G) and thymine (T), while RNA replaces

thymine with uracil (U). Strands of DNA and RNA are typically described by their primary struc-

ture, a sequence of bases, listed in the 5’ to 3’ direction (Figure A.1a).

An important feature of nucleic acids is the ability to form stabilizing contacts (see Figure A.1b)

between complementary bases (C pairs with G, and A with T or U) when arranged in an anti-parallel

direction. If several of these Watson-Crick base pairs are aligned consecutively, the hydrogen bonding

between complementary bases, along with the stacking interactions between the adjacent aromatic

rings can contribute about -1.0 to -3.5 kcal/mol per stack1, depending on the sequence. These base

pairs lead to higher order configurations known as secondary structure, and are the main reason

why nucleic acids are so useful for both biological and synthetic purposes.

When two complementary strands of DNA hybridize, base pairing and stacking can be maximized

by adopting a B-DNA structure (Figure A.1c), a right-handed double helix with a diameter of about

20Å, and a height of 34Å per turn (roughly 10 base pairs). These double helices tend to be rigid

on length scales of roughly 50 nm (150 base pairs), but are flexible over longer distances. To give
1At 37◦ C and 1M NaCl
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Figure A.1. (a) A single strand of DNA showing the sugar phosphate backbone and attached bases.
This DNA molecule can be described by its sequence, AGTCTA. (b) The canonical Watson-Crick
base pairs. The dotted lines indicate hydrogen bonds. (c) B-DNA. Two complementary strands of
DNA can form a double helix, with the two purple tubes added to accentuate the sugar-phosphate
backbone. The bases are perpendicular to the helical axis and stabilize the structure thorugh
hydrogen bonding and base stacking.



108

a sense of typical size, humans have roughly three billion base pairs of DNA in the genome, with

the average DNA molecule roughly 4 to 5 cm in length [24]. In contrast, synthetic DNA structures

typically employ much shorter fragments, on the order of 100 nucleotides per strand.

RNA can also form a double helix (called A-RNA), but the structure is shorter (∼27Å) and

fatter (∼26Å) and the base pairs are significantly tilted with respect to the helical axis [24]. A single

strand of RNA or DNA can also fold back on itself to form intramolecular double helices, resulting

in hairpins or other more complicated patterns called secondary structures (see Figure 1.1). The

stability of base pairing interactions are dependent on cations such as Na+ and Mg2+ to stabilize

and shield the negatively charged backbone.

A.2 Nucleic Acids in Biology and Engineering

Traditionally, DNA and RNA are regarded solely with respect to their biological roles as the carriers

and transmitters of genetic information. According to the central dogma of molecular biology [24],

double stranded DNA stores genetic sequences which can be easily replicated with the help of

proteins. DNA can also be transcribed to generate single stranded messenger RNAs, which in

turn are translated by ribosomes to create proteins. Unlike DNA, RNA primarily exists in single-

stranded form, making self-complementary interactions much more significant for both the structure

and function of the molecule in vivo. For example, hairpins in messenger RNA play an important

role in transcription termination, and the cloverleaf structures of transfer RNA are essential in the

translation of amino acids [24]. RNAs have also been found to play a role in the regulation of gene

expression, through mechanisms such as riboregulator domains [9] and RNA interference [7]. Even

more striking are RNAs with catalytic activity. These include the hammerhead ribozyme [6], a

nucleic acid with self-cleaving abilities and the RNA component of the ribosome, a key catalytic

domain in protein synthesis [25, 2].

Nucleic acids have many properties that make them well-suited for engineering applications.

Current techniques in chemical synthesis allow for the inexpensive production and purification of

arbitrary sequences of single stranded DNA, up to lengths of about 100 bases. In addition, fluo-
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(a)                                                               (b)

(c)

Figure A.2. (a) The bottom strand of this double helix has a six base overhang. (b) A second
strand, perfectly complementary to the bottom strand, can bind at the six base overhang, called a
toehold or sticky end. (c) A subsequent competition occurs between the dotted strand and the new
strand, analogous to a random walk in two dimensions. Eventually the dotted strand is displaced as
it has no toehold. In all schematics of this type, arrowheads indicate the 3’ end of a nucleic acid.

rophores, linkers and modified bases can be readily incorporated into the syntheses of these molecules.

“Simple” base pairing rules allow for the rational design of sequences that will stick together in a

specified manner, allowing for the construction of a vast array of shapes including DNA tiles, tubes

and polyhedra [17, 4, 12, 26, 8, 27, 13, 14, 16, 19] on a nanometer to micrometer length scale. Dy-

namic structures, such as molecular tweezers, switches and walkers [29, 28, 11, 22, 1, 20, 18, 21] can

also be made of DNA by taking advantage of hybridization and strand displacement (Figure A.2).

RNA can also be used for these engineering applications, although the enhanced stability2 of DNA

over RNA with respect to degradation makes RNA a less favorable choice.

In addition, a wealth of naturally occurring enzymes that manipulate nucleic acids in sequence-
2This stability is primarily due to the lack of a 2’ hydroxyl group in the backbone of DNA
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specific and structurally dependent ways have been isolated and are commercially available. These

allow for such techniques as 32P radiolabelling, selective cleavage, in vitro transcription and poly-

merase chain reaction (PCR). A process called SELEX [23, 5] selects and amplifies nucleic acids from

random combinatorial libraries, allowing for the discovery of aptamers (RNA or DNA that bind spe-

cific substrates [10]) and (deoxy)ribozymes (nucleic acids with catalytic activities [3]). Combining

these enzymatic methods with developments in systems design and hybridization techniques, the

emerging field of nucleic acid engineering has already started to produce useful nucleic acid devices

[15] and should continue to flourish as understanding increases and technologies mature.
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Appendix B

Supplementary Material for the
Analysis of Nucleic Acids

The work presented here is heavily based on the supplementary material provided with:

R. M. Dirks, and N. A. Pierce, A partition function algorithm for nucleic acid secondary structure

including pseudoknots. Journal of Computational Chemistry, 2003. 24(13): p. 1664-1677. Reprinted

with copyright permissions.
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Figure B.1. Multiloop energy expression. For this example there are three base pairs defining the
multiloop (B = 3) and six unpaired bases in the multiloop (U = 6) so Gmulti = α1 + 3α2 + 6α3.
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function fastiloops(i, j, l, Qb, Qx, Qx2)

//Qx recursion for O(N3) internal loop contributions to Qb

if (l ≥ 15) //smallest subsequence not added to Qb as special case
L1 = 4 //explicitly add in terms for L1 = 4, L2 ≥ 4
d = i + L1 + 1
for L2 = 4, j−d−5

s = L1 + L2
e = j − L2 − 1

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(e, d, e+1, d−1)

Qx
i,s+= exp{−Gpartial/RT}Qb

d,e

L2 = 4 //explicitly add in terms for L1 ≥ 5, L2 = 4
e = j−L2−1
for L1 = 5, e−i−5

s = L1 + L2
d = i + L1 + 1

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(e, d, e+1, d−1)

Qx
i,s+= exp{−Gpartial/RT}Qb

d,e

//Next convert Qx into interior loop energies
for s = 8, l−7

if (sequence permits i·j base pair)

Qb
i,j+= Qx

i,s exp{−γ3(i, j, i+1, j−1)/RT}
//Extend loops from s to s+2 for future calculation

//of Qb
i−1,j+1 with subsequence length l+2

if (i 6= 1 & j 6= N)
for s = 8, l−7

Qx2
i−1,s+2 = Qx

i,s exp{−[γ1(s+2) − γ1(s)]/RT}
//Add small inextensible interior loop terms to Qb as special cases
for L1 = 0, 3

d = i + L1 + 1
for L2 = 0, min(3, j−d−5)

e = j − L2 − 1

Qb
i,j+= exp{−Ginternal

i,d,e,j /RT}Qb
d,e

//Add bulge loops and large asymmetric loops as special cases
for L1 = 0, 3 //Cases L1 = 0, 1, 2, 3, L2 ≥ 4

d = i + L1 + 1
forL2 = 4, j−d−5

e = j − L2 − 1

Qb
i,j+= exp(−Ginternal

i,d,e,j /RT ) Qb
d,e

for L2 = 0, 3//Cases L1 ≥ 4, L2 = 0, 1, 2, 3
e = j−L2−1
for L1 = 4, e−i−5

d = i + L1 + 1

Qb
i,j+= exp{−Ginternal

i,d,e,j /RT}Qb
d,e

Figure B.2. Pseudocode for comput-
ing interior loop contributions to Qb in
O(N3) as an alternative to the O(N4)
interior loop recursion of Figure 2.6.
Here, N is the length of the strand and
l = j− i + 1 is the length of the sub-
strand under consideration at any given
point during the recursive process. A
schematic representation of “fastiloops”
is provided in Figure B.3. The small-
est “possible extensible loop” is the case
L1 = L2 = 4 with size s = 8. Therefore,
the smallest subsequence for which Qx

can be employed is l = 15 (adding the
four bases for i, d, e, j and a minimum
hairpin of three bases between d·e). For
a given i and j, Qx

i,s already contains the
contributions to Qb

i,j for all extensible
loops of size s except for the two cases
when either L1 = 4 or L2 = 4 (which
cannot be obtained by extending smaller
loops that use a different energy expres-
sion). Enriching Qx

i,s with these two new
possible extensible loops, we then con-
vert Qx

i,s into contributions to Qb
i,j by

introducing the term for closing these
loops with pair i·j. Qx

i,s is then extended
to provide future values of Qx

i−1,s+2. All
other interior loop contributions (cases
with either L1 ≤ 3 or L2 ≤ 3) are then
added directly to Qb

i,j using the spe-
cial energy expressions of the standard
model implied by Ginternal

i,d,e,j . Note that
the subsequence length l is fixed inside
each call to the function “fastiloops”.
Hence, specifying i implies j = i+l−1.
For subsequences of length l, we use Qx

i,s

(j implied) to compute Qx
i−1,s+2 (j +1

implied) which will later be used to com-
pute contributions to Qb

i−1,j+1 for sub-
sequences of length l +2. Thus, for a
given value of l, the values of Qx

i,s need
only be stored for all legal values of i and
s until l has been incremented 3 times,
at which point it can be discarded. This
is accomplished by using Qx1

i,s and Qx2
i,s

to store future contributions for subse-
quences of length l+1 and l+2.
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Figure B.3. Schematic for interpreting the pseudocode of Figure B.2, which computes the interior
loop contributions to the partition function in O(N3). For a given i (with j implied by the current
subsequence length l), the grid illustrates the method of computing contributions to Qb

i,j for all
interior loops with sides of length L1 and L2. For the depicted case, the maximum interior loop size
is s = L1+L2 = 12. Adding seven bases to account for the closing bases i, d, e, j and the smallest
allowed hairpin of three bases between d·e, the subsequence under consideration is therefore of length
l = 19. The O(N) pale gray cases with either L1 ≤ 3 or L2 ≤ 3 use special energy functions and
are added explicitly to Qb

i,j . The medium gray and dark gray cases are the possible extensible loop
contributions that are computed using Qx

i,s. Each diagonal line spans the terms that will be stored
in Qx

i,s for a particular value of s. The medium gray terms are the new possible extensible loops
with either L1 = 4 or L2 = 4. The dark gray terms were previously incorporated into to Qx

i,s by
extending smaller possible extensible loops.



118

β3

β2

β2

β1

β1

β3

β3

β3 β3 β3β3

β3

β2

β2

β1

β3

β3

β3

β3

β2

β2α2

α3α3α3

α3

α2

β1

α1

α2

β3

β3

β3

β3

β2

β2β2

β3

β1

β2

β3

β3

β3

β3

β2
β2

β1

α1

β3 β3β3
β3α3α3α3

β2

α2

α2

α2

α2

α2 α2
α1

α1

α3 α3

β2

α3

β1
β1

β3 β3β3 β3β3β3
β3

β2

β2

β2 β2

β2
β2

β3 β3

β3

β2

β2

β1

β1

β3

β3

β3 α3 β3α3
β3β3

β2

α2

α2 α2

β2

β3

G 
interior

G 
interior

G hairpin

G hairpin

m

m

p

p

(a)

(b)

(c)

(d)

Figure B.4. Illustration of the pseudoknot energy expression. (a) An external pseudoknot. Bases
external to the pseudoknot have no associated energy. The penalty for forming an external pseu-
doknot is β1. Base pairs that border the pseudoknot interior receive penalty β2 while unpaired
bases on the pseudoknot interior receive penalty β3. The energies associated with the stacked base
pairs are described using the standard model. (b) A pseudoknot inside a multiloop. The penalty
for forming a pseudoknot inside a multiloop is βm

1 . The treatment of β2 and β3 inside the pseudo-
knot remains the same. In addition, the standard penalty for formation of a multiloop is α1, the
two pseudoknot base pairs that border the multiloop are given the standard multiloop penalty α2,
and unpaired bases that are inside the multiloop are given penalty α3. (c) A pseudoknot within
a pseudoknot. The energy treatment for the exterior pseudoknot remains the same. The penalty
for forming a pseudoknot inside a pseudoknot is βp

1 . Base pairs from the interior pseudoknot that
border the exterior pseudoknot receive penalty β2. Otherwise, the energetic treatment of the interior
pseudoknot is the same as for an exterior pseudoknot. The partition function recursions allow an
arbitrary number of levels of pseudoknots within pseudoknots. (d) Pseudoknot with a hairpin and
an interior loop inside a spanning region of the pseudoknot. The multiloop that forms at the base
of the hairpin is treated using the standard multiloop potential. In general, the spanning region of
a pseudoknot may contain interior loops, hairpins, multiloops or additional pseudoknots.
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Initialize (Q, Qb, Qm, Qp, Qz) //O(N2) space
Initialize (Qg) //O(N4) space
Set all values to 0 except Qi,i−1 = Qz

i,i−1 = 1
for l = 1, N

for i = 1, N−l+1
j = i+l−1

//Qb recursion

Qb
i,j = exp(−Ghairpin

i,j /RT )

for d = i+1, j−5 //all possible rightmost pairs d·e
for e = d+4, j−1

Qb
i,j += exp(−Ginterior

i,d,e,j /RT ) Qb
d,e

Qb
i,j += Qm

i+1,d−1 Qb
d,e exp{−[α1 + 2α2 + α3 (j−e−1)]/RT}

for d = i+1, j−9 //all possible rightmost pseudoknots filling [d, e]
for e = d+8, j−1

Grecursion = α1 + βm
1 + 3α2 + α3 (j−e−1)

Qb
i,j += exp{−[Grecursion + α3 (d−i−1)]/RT}Qp

d,e

Qb
i,j += Qm

i+1,d−1 Qp
d,e exp{−Grecursion/RT}

//Qg recursion
for d = i + 1, j−5 //set inner pair d·e

for e = d+4, j − 1

Qg
i,d,e,j+= exp(−Ginterior

i,d,e,j /RT )

for d = i + 2, j−6 //set inner pair d·e
for e = d+4, j − 2

for c = i + 1, d−1 //recursion on middle pair c·f
for f = e+1, j − 1

Qg
i,d,e,j+= exp(−Ginterior

i,c,f,j /RT ) Qg
c,d,e,f

for d = i + 6, j−5 //set inner pair d·e
for e = d+4, j − 1

Qg
i,d,e,j+= Qm

i+1,d−1 exp{−[α1+2α2+α3(j−e−1)]/RT}
for d = i + 1, j−10 //set inner pair d·e

for e = d+4, j − 6
Qg

i,d,e,j+= exp{−[α1+2α2+α3(d−i−1)]/RT}Qm
e+1,j−1

for d = i + 6, j−10 //set inner pair d·e
for e = d+4, j − 6

Qg
i,d,e,j+= Qm

i+1,d−1 exp{−[α1+2α2]/RT}Qm
e+1,j−1

for d = i + 7, j−6 //set inner pair d·e
for e = d+4, j − 2

for c = i + 6, d−1 //recursion on middle pair c·f
for f = e+1, j − 1

Grecursion = α1+2α2+α3(j−f−1)

Qg
i,d,e,j+= Qm

i+1,c−1 Qg
c,d,e,f exp{−Grecursion/RT}

for d = i + 2, j−11 //set inner pair d·e
for e = d+4, j − 7

for c = i + 1, d−1 //recursion on middle pair c·f
for f = e+1, j − 6

Grecursion = α1+2α2+α3(c−i−1)

Qg
i,d,e,j+= exp{−Grecursion/RT}Qg

c,d,e,f Qm
f+1,j−1

for d = i + 7, j−11 //set inner pair d·e
for e = d+4, j − 7

for c = i + 6, d−1 //recursion on middle pair c·f
for f = e+1, j − 6

Qg
i,d,e,j+= Qm

i+1,c−1 exp{−[α1+2α2]/RT}Qg
c,d,e,f Qm

f+1,j−1
//Qp recursion
for a = i + 1, j−7 //place points from left to right

for b = a+1, j−6
for c = b + 1, j−5

for d = max(c+1, a+4), j − 3
for e = d+1, j − 2

for f = max(e+1, c+4), j − 1
Qp

i,j+= Qz
a+1,b−1 Qz

c+1,d−1 Qz
e+1,f−1

· Qg
i,a,d,e Qg

b,c,f,j exp{−2β2/RT}
//Q, Qm, Qz recursions
Qi,j = 1 //empty recursion
Qz

i,j = exp(−[β3(j−i+1)]/RT )
for d = i, j−4 //all possible rightmost pairs d·e

for e = d+4, j

Qi,j+= Qi,d−1 Qb
d,e

Qm
i,j += exp{−[α2 + α3 (d−i) + α3 (j−e)]/RT}Qb

d,e

Qm
i,j += Qm

i,d−1 Qb
d,e exp{−[α2 + α3 (j−e)]/RT}

Qz
i,j += Qz

i,d−1 Qb
d,e exp{−[β2 + β3(j−e)]/RT}

for d = i, j−8 //all possible rightmost pseudoknots filling [d, e]
for e = d+8, j

Qi,j+= Qi,d−1 Qp
d,e exp{−β1/RT}

Qm
i,j += exp{−[βm

1 + 2α2 + α3 (d−i) + α3 (j−e)]/RT}Qp
d,e

Qm
i,j += Qm

i,d−1 Qp
d,e exp{−[βm

1 + 2α2 + α3 (j−e)]/RT}
Qz

i,j += Qz
i,d−1 Qp

d,e exp{−[βp
1 + 2β2 + β3(j−e)]/RT}

//Partition function is Q1,N

Figure B.5. Pseudocode implementa-
tion of an O(N8) dynamic program-
ming partition function algorithm for
nucleic acids with pseudoknots. Here,
N is the length of the strand and l =
j − i + 1 is the length of the substrand
under consideration at any given point
during the recursive process. The re-
cursions are described schematically in
Figures 2.10-2.14. In this pseudocode,
care has been taken to define program-
ming loop bounds so as to consider only
valid secondary structures. The stan-
dard model requires three or more un-
paired bases in a hairpin, so a b-curve
must satisfy j − i ≥ 4. Looking at
Figure 2.13, imposing this requirement
on all base pairs implies that a p-curve
must satisfy j − i ≥ 8. In the interior
of a pseudoknot, the steric constraints
on hairpins sometimes lead to two con-
flicting requirements that are incorpo-
rated using a “max” function to define
the bounds for d and f . The disallowed
structures have infinite energies accord-
ing to the physical model so it is compu-
tationally efficient to exclude them from
consideration.
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a)

b)

Figure B.6. Examples of pseudoknots that are excluded from the partition function recursions.
Neither structure can be decomposed into two spanning regions as required by Figure 2.13. The
structure prediction recursions of Rivas and Eddy [2] include both structures while the the structure
prediction recursions of Akutsu [1] include the latter.
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function fastiloops(i, j, l, Qg, Qx, Qx2)
//Qx recursion for O(N5) internal loop contributions to Qg

if (l ≥ 17) //smallest subsequence not added to Qg as special case
for d = i+6, j−10

for e = d+4, j−6
L1 = 4 //explicitly add in terms for L1 = 4, L2 ≥ 4
c = i + L1 + 1
for L2 = 4, j−e−2

s = L1 + L2
f = j − L2 − 1

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(f, c, f+1, c−1)

Qx
i,d,e,s+= exp{−Gpartial/RT}Qg

c,d,e,f

if ( d ≥ i + 7)
L2 = 4 //explicitly add in terms for L1 ≥ 5, L2 = 4
f = j − L2 − 1
for L1 = 5, d−i−2

s = L1 + L2
c = i + L1 + 1

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(f, c, f+1, c−1)

Qx
i,d,e,L1+L2

+= exp{−Gpartial/RT}Qg
c,d,e,f

for d = i+1, j−5
for e = d+4, j−1

//Convert Qx into interior loop energies
if (l ≥ 17 & sequence permits i·j base pair)

for size = 8, l−9
Qg

i,d,e,j+= Qx
i,d,e,s exp{−γ3(i, j, i + 1, j − 1)/RT}

//Extend loops for future use
if (i 6= 1 & j 6= N)

for s = 8, l−9
Qx2

i−1,d,e,s+2 = Qx
i,d,e,s exp{−[γ1(s+2) − γ1(s)]/RT}

//Add small inextensible interior loops to Qg as special cases
for L1 = 0, min(3, d−i−2)

c = i + L1 + 1
for L2 = 0, min(3, j−e−2)

f = j − L2 − 1

Qg
i,d,e,j+= exp{−Ginterior

i,c,f,j /RT}Qg
c,d,e,f

//Add bulge loops and large asymmetric loops as special cases
for L1 = 0, min(3, d−i −2) //Cases L1 = 0, 1, 2, 3, L2 ≥ 4

c = i + L1 + 1
for L2 = 4, j−e−2

f = j − L2 − 1

Qg
i,d,e,j+= exp{−Ginterior

i,c,f,j /RT}Qg
c,d,e,f

for L2 = 0, min(3, j−e−2) //Cases L1 ≥ 4, L2 = 0, 1, 2, 3
f = j − L2 − 1
for L1 = 4, d−i−2

c = i + L1 + 1

Qg
i,d,e,j+= exp{−Ginterior

i,c,f,j /RT}Qg
c,d,e,f

Figure B.7. Pseudocode for computing interior loop contributions to Qg in O(N5) as an alternative
to the O(N6) interior loop recursion of Figure 2.17. Here, N is the length of the strand and l=j−i+1
is the length of the substrand under consideration at any given point during the recursive process.
The smallest “possible extensible loop” is the case L1 = L2 = 4 with size s = 8. Therefore, the
smallest subsequence for which Qx can be employed is l=17 (adding the four closing bases i, c, f, j,
the additional spanning pair d ·e, and a minimum hairpin loop of three bases). For given values
of i, d and e, Qx

i,d,e,s already contains the contributions to Qg
i,d,e,j for all extensible loops of size

s except for the two cases when either L1 = 4 or L2 = 4 (which cannot be obtained by extending
smaller loops that use a different energy expression). Enriching Qx

i,d,e,s with these two new possible
extensible loops, we then convert Qx

i,d,e,s into contributions to Qg
i,d,e,j by introducing the term for

closing these loops with pair i·j. Qx
i,d,e,s is then extended to provide future values of Qx

i−1,d,e,s+2.
All other interior loop contributions (cases with either L1 ≤ 3 or L2 ≤ 3) are then added directly
to Qb

i,j using the special energy expressions of the standard model implied by Ginternal
i,d,e,j . Note that

the subsequence length l is fixed inside each call to the function “fastiloops”. Hence, specifying i
implies j = i+l−1. For subsequences of length l, we use Qx

i,d,e,s (j implied) to compute Qx
i−1,d,e,s+2

(j+1 implied) which will later be used to compute contributions to Qg
i−1,d,e,j+1 for subsequences of

length l+2. Thus, for a given value of l, the values of Qx
i,d,e,s need only be stored for all legal values

of i, d, e, and s until l has been incremented 3 times, at which point it can be discarded. This is
accomplished by using Qx1

i,d,e,s and Qx2
i,d,e,s to store future contributions for subsequences of length

l+1 and l+2.
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Appendix C

Reducing Computational
Complexity

The algorithms presented in the main text provide an inefficient treatment of interior loops. By

exploiting the form of the interior loop potential function, the computational complexity of the

partition function algorithms excluding and including pseudoknots can be reduced by a factor of

N , where N is the sequence length [2, 1]. A detailed description of the “fastiloops” treatment

is provided in [1] and the corresponding Supplementary Material. The “fastiloops” modification

detracts from the simplicity of the presentation because the necessary recursions do not conform

to the same structure as the other terms in the algorithm. Here, we describe the extension of this

approach to recursion probability algorithms.

In the unpseudoknotted case, pseudocode for an O(N3) partition function algorithm is provided

in figure 11 of [1], which employs the “fastiloops” function of Supplementary Material figure S2.

To this point, we have assumed that all Q-type values are accessible at the end of the partition

function calculation. For the “fastiloops” methods, the values Qx, Qx1 and Qx2 are computed

on the fly and discarded to save memory. Hence, for the recursion probability algorithm, it is

necessary to recompute the Qx-type terms at the same time that the corresponding P x-type terms

are calculated. An O(N3) recursion probability algorithm that excludes pseudoknots is described in

figure A1, which references the function “fastiloopsN3” of figure A2. If pseudoknots are included, the

computational complexity of the recursion probability algorithm in figure 3.4 is reduced to O(N5)

using “fastiloopsN5” described in figure A3. A few aspects of the “fastiloopsN3” and “fastiloopsN5”
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Compute Q, Qb, Qm, Qs, Qms using O(N3) partition function algorithm

Initialize (Qx, Qx1, Qx2, P, P b, P m, P s, P ms, P x, P x1, P x2) // O(N2) space
Set all Qx-type and P -type values to 0
P1,N = 1 //probability of “recursing” to the entire strand is 1
for l = N, 1 //decrement subsequence length

Initialize Qx = Qx1, Qx1 = Qx2, Qx2 = 0
Initialize P x = P x1, P x1 = P x2, P x2 = 0
for i = 1, N−l + 1

j = i+l−1
//P, P m recursions
for d = i, j−4

∆p = Pi,jQi,d−1 Qs
d,j/Qi,j

Pi,d−1+= ∆p
P s

d,j+= ∆p
P ms

d,j += P m
i,j exp{−α3[d−i]/RT}Qms

d,j /Qm
i,j

∆p = P m
i,jQm

i,d−1 Qms
d,j /Qm

i,j

P m
i,d−1+= ∆p

P ms
d,j += ∆p

//P s, P ms recursions
for d = i + 4, j // loop over all possible rightmost pairs i·d

P b
i,d+= P s

i,jQb
i,d/Qs

i,j

P b
i,d+= P ms

i,j Qb
i,d exp{−[α2 + α3(j−d)]/RT}/Qms

i,j

// P b recursion

// Compute internal loop contributions to P b in O(N3)

call fastiloopsN3(i, j, l, Qb, Qx, Qx2, P b, P x, P x2)
for d = i+6, j−5

∆p = P b
i,j Qm

i+1,d−1 Qms
d,j−1 exp{−[α1 + α2]/RT}/Qb

i,j

P m
i+1,d−1+= ∆p

P ms
d,j−1+= ∆p

Figure C.1. O(N3) recursion probability algorithm that excludes pseudoknots. The algorithm
proceeds from longer subsequences to shorter ones, so in contrast to the analogous partition function
algorithm (see figure 11 of [1]), Qx1 and Qx2 refer to subsequences whose lengths are shorter (by 1
and 2, respectively) than the current subsequence of length l.

routines deserve mention. It is advisable to review the relevant sections of chapter 2 and appendix

B before proceeding.

An interior loop with closing pair i·j and interior pair d·e has energy Ginterior
i,d,e,j , sides of lengths

L1 ≡ (d− i− 1), L2 ≡ (j − e− 1),

and size L1 + L2. Loops with both L1 ≥ 4 and L2 ≥ 4 are termed “extensible” and their contri-

butions to the partition function algorithm are calculated using Qx. Furthermore, Qx also contains

information about “possible extensible loops” for which the definitions of L1, L2 are the same but i

and j are not required to base-pair.

The partition function algorithm examines subsequences of length l = j−i+1, starting with l=1
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and ending with l=N . Qx is efficiently calculated using the extension identity (see equation 15 of

[1])

Qx
i−1,s+2 = Γ(s + 2)|L1 =4

L1+L2 =s+2

+ Γ(s + 2)|L2 =4
L1+L2 =s+2

(C.1)

+

[
Qx

i,s exp{−[γ1(s+2)− γ1(s)]/RT}

]

which relates Qx
i,s (for subsequences of length l) to Qx

i−1,s+2 (for subsequences of length l+2). The

first line “seeds” Qx with cases at an extension border (L1 = 4 or L2 = 4) for subsequent extension

to longer subsequences. For conciseness, we have introduced the definition

Γ(s) ≡ exp
{
−

[
γ1(s) + γ2(|L1−L2|) + γ3(e, d, e+1, d−1)

]
/RT

}
Qb

d,e,

where d and e are defined implicitly in terms of L1 and L2. For implementation purposes, the second

line of (C.1) is calculated during the l, i loop and temporarily stored in Qx2
i−1,s+2. The first line of

(C.1) is added to this contribution in the l+2, i−1 loop. As a result of this two step procedure, we

adopt the convention that L1 and L2 are defined with respect to the loop index in which they are

calculated (i.e. l, i for the second line and l+2, i−1 for the first line). This convention facilitates

the comparison of the extension identity with pseudocode.

The recursion probability algorithm examines subsequences of length l starting with l =N and

ending with l=1. To recompute Qx in this context, we use the contraction identity

Qx
i+1,s−2 =

∑
i=1
L1≥4, L2≥4
L1+L2 =s−2

Γ(s− 2) +
∑

j =N
L1≥4, L2≥4
L1+L2 =s−2

Γ(s− 2) (C.2)

+

[(
Qx

i,s − Γ(s)|L1 =4
L1+L2 =s

− Γ(s)|L2 = 4
L1+L2 =s

)
exp

{
−[γ1(s−2)− γ1(s)]/RT

}]
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which relates Qx
i,s (for subsequences of length l) to Qx

i+1,s−2 (for subsequences of length l−2). The

first line “seeds” Qx with cases that are both extensible (L1 ≥ 4 and L2 ≥ 4) and at an end of the

strand (i = 1 or j = N). For implementation purposes, the second line of (C.2) is calculated during

the l, i loop and temporarily stored in Qx2
i+1,s−2. The first line of (C.2) is added to this contribution

in the l−2, i+1 loop. We retain the convention that L1 and L2 are defined with respect to the loop

index in which they are calculated (i.e. l, i for the second line and l−2, i+1 for the first line).

Derivation of the algorithm to compute P x requires careful consideration. The quantities Qx

and Qx2 contain incomplete partition function information for “possible extensible loops”, but they

do not represent subsequence partition functions in the manner of other Q-type matrices. In a

normal recursion relation, Q-type matrices on the right hand side are subsequence partition functions

describing a local structural motif that contributes to the larger subsequence partition function on

the left hand side. Qx
i,s contains information about possible extensible loops that may not actually

exist (if i and j are not complementary). The extension identity (C.1) passes this potentially useful

information on to Qx2
i−1,s+2. Consider, for example, a chain of Qx values related by the extension

identity in a case where no complementary i·j base pair is encountered while incrementing l by 2

until an end of the strand is reached. In this scenario, the values of Qx computed in this chain

should not contribute to the corresponding recursion probabilities P x because the values of Qx are

not identified with any secondary structure in the equilibrium ensemble. Hence, the calculation of

P x requires information about which Qx quantities ultimately contribute to secondary structures

in the ensemble. As a result, the extension identity (C.1) cannot simply be transformed using the

standard recursion probability approach which assumes that both sides of the equation represent

subsequence partition functions that are assured of contributing to the equilibrium ensemble. This

realization suggests computing P x
i,s by adding the probabilities of all internal loops that rely on Qx

i,s

to incorporate information in the partition function.

To calculate P x
i,s (for a fixed l), note that Qx

i,s will be invoked for all interior loops (i′, d, e, j′)
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function fastiloopsN3(i, j, l, Qb, Qx, Qx2, P b, P x, P x2)

//Add small non-contractible interior loop terms to P b as special cases
for L1 = 0, 3

d = i + L1 + 1
for L2 = 0, min(3, j−d−5)

e = j − L2 − 1

P b
d,e+= P b

i,j exp{−Ginternal
i,d,e,j /RT}Qb

d,e/Qb
i,j

//Add bulge loops and large asymmetric loops as special cases
for L1 = 0, 3 //Cases L1 = 0, 1, 2, 3, L2 ≥ 4

d = i + L1 + 1
for L2 = 4, j−d−5

e = j − L2 − 1

P b
d,e+= P b

i,j exp{−Ginternal
i,d,e,j /RT}Qb

d,e/Qb
i,j

for L2 = 0, 3//Cases L1 ≥ 4, L2 = 0, 1, 2, 3
e = j−L2−1
for L1 = 4, e−i−5

d = i + L1 + 1

P b
d,e+= P b

i,j exp{−Ginternal
i,d,e,j /RT}Qb

d,e/Qb
i,j

// Seed Qx with contractible cases
// Also add cases that are at an end with L1 ≥ 4, L2 ≥ 4
if (i = 1 or j = N) and l ≥ 15

for d = i + 5, j − 9
L1 = d − i − 1
for e = d + 4, j − 5

L2 = j − e − 1
s = L1 + L2

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(e, d, e+1, d−1)

Qx
i,s+= exp{−Gpartial/RT}Qb

d,e

//Use Qx to finish calculation of P x

if (sequence permits i·j base pair)
for s = 8, l − 7

P x
i,s+= P b

i,jQx
i,s exp{−γ3(i, j, i+1, j−1)/RT}/Qb

i,j

//Calculate P b contribution using Qx and P x

if (l ≥ 15) // smallest subsequence not added to P b as special case
L1 = 4 // explicitly add in terms for L1 = 4, L2 ≥ 4
d = i + L1 + 1
for L2 = 4, j − d − 5

e = j − L2 − 1
s = L1 + L2

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(e, d, e+1, d−1)

∆p = P x
i,s exp{−Gpartial/RT}Qb

d,e/Qx
i,s

P b
d,e+= ∆p

P x
i,s−= ∆p // Remove border cases

Qx
i,s−= exp{−Gpartial/RT}Qb

d,e // Remove border cases

 (∗)

L2 = 4 // explicitly add in terms for L1 ≥ 5, L2 = 4
e = j − L2 − 1
for L1 = 5, e − i − 5

d = i + L1 + 1
Insert (∗)

// Store partial values for Qx2 and P x2

for s = 10, l − 7
Qx2

i+1,s−2 = Qx
i,s exp{−[γ1(s−2) − γ1(s)]/RT}

P x2
i+1,s−2 = P x

i,s

Figure C.2. Pseudocode for computing interior loop contributions to P b in O(N3) as an alternative
to the O(N4) interior loop recursion of figure 3.3
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with interior pair d · e and closing pair i′ · j′ such that

i− i′ = j′ − j ≥ 0, L1 ≥ 4, L2 ≥ 4, L1 + L2 = s, (C.3)

where L1, L2 and s are defined with respect to i and j. Hence, a particular loop (i′, d, e, j′) is

identified with a set of Qx
i,s terms that are related by the extension identity (C.1). Alternatively,

a particular Qx
i,s term is identified with all of the interior loops (i′, d, e, j′) to which it ultimately

contributes via the extension identity. Consequently, from the notion of recursion probabilities

introduced earlier, P x
i,s (for a fixed l) should be the sum of the probabilities of all interior loops

(i′, d, e, j′) that satisfy the properties (C.3). For the case where i−1 ≤ N − j (the case i−1 > N − j

yields analogous results), it follows that

P x
i,s =

i∑
i′=1

∑
L1≥4, L2≥4
L1+L2 =s

p(i′, d, e, j′), (C.4)

where p(i′, d, e, j′) is the probability of the (i′, d, e, j′) interior loop in the equilibrium ensemble of

secondary structures. Since P x2
i+1,s−2 is defined similarly, with l and s decremented by 2, it follows

that

P x2
i+1,s−2 =

i+1∑
i′=1

∑
L1≥5, L2≥5
L1+L2 =s

p(i′, d, e, j′), (C.5)

where L1 and L2 are temporarily defined with respect to i and j to retain the size constraint

L1+L2 =s. Comparing (C.4) and (C.5), we then identify the relationship

P x2
i+1,s−2 =

∑
L1≥5, L2≥5
L1+L2 =s

p(i′, d, e, j′)|i′=i+1,j′=j−1

+

[
P x

i,s −
i∑

i′=1

p(i′, d, e, j′)|L1 =4, L2≥4
L1 + L2 = s

−
i∑

i′=1

p(i′, d, e, j′)|L1≥5, L2 =4
L1 + L2 = s

]
,
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where L1 and L2 continue to be defined with respect to i and j. Finally, we shift the indices in the

first line so that L1 and L2 are defined with respect to i + 1 and j − 1

P x2
i+1,s−2 =

∑
L1≥4, L2≥4
L1+L2 =s−2

p(i′, d, e, j′)|i′=i+1,j′=j−1 (C.6)

+

[
P x

i,s −
i∑

i′=1

p(i′, d, e, j′)|L1 =4, L2≥4
L1 + L2 = s

−
i∑

i′=1

p(i′, d, e, j′)|L1≥5, L2 =4
L1 + L2 = s

]
.

This identity relates P x
i,s (for subsequences of length l) to P x

i+1,s−2 (for subsequences of length l−2).

For implementation purposes, the second line is calculated during the l, i loop and temporarily

stored in Qx2
i+1,s−2. Each of the sums of form

∑i
i′=1 operates on a single term that is a subset of

the terms in the definition of P x
i,s (C.4). Hence, the sums of form

∑i
i′=1 in (C.6) may be evaluated

implicitly as P x
i,s times a quotient with Qx

i,s in the denominator and the corresponding subset of

Qx
i,s in the numerator. The first line is added to this contribution in the l−2, i+1 loop. There,

the summation corresponds to exactly those loops treated by Qx
i+1,s−2 in the case where i+1 and

j−1 base pair. As usual, L1 and L2 are defined with respect to the loop index in which they are

calculated (i.e. l, i for the second line and l−2, i+1 for the first line).
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function fastiloopsN5(i, j, l, Qg, Qx, Qx2, P g, P x, P x2)
for d = i + 1, j − 5

for e = d + 4, j − 1
//Add small non-contractible interior loop terms to P g as special cases
for L1 = 0, min(3, d − i − 2)

c = i + L1 + 1
for L2 = 0, min(3, j − e − 2)

f = j − L2 − 1

P g
c,d,e,f

+= P g
i,d,e,j

exp{−Ginternal
i,c,f,j /RT}Qg

c,d,e,f
/Qg

i,d,e,j

//Add bulge loops and large asymmetric loops as special cases
for L1 = 0, min(3, d − i − 2) //Cases L1 = 0, 1, 2, 3, L2 ≥ 4

c = i + L1 + 1
for L2 = 4, j−e−2

f = j − L2 − 1

P g
c,d,e,f

+= P g
i,d,e,j

exp{−Ginternal
i,c,f,j /RT}Qg

c,d,e,f
/Qg

i,d,e,j

for L2 = 0, min(3, j − e − 2)//Cases L1 ≥ 4, L2 = 0, 1, 2, 3
f = j−L2−1
for L1 = 4, d−i−2

c = i + L1 + 1

P g
c,d,e,f

+= P g
i,d,e,j

exp{−Ginternal
i,c,f,j /RT}Qg

c,d,e,f
/Qg

i,d,e,j

// Seed Qx with contractible cases
// Also add cases that are at an end with L1 ≥ 4, L2 ≥ 4
if (i = 1 or j = N) and l ≥ 17

for d = i + 6, j − 10
for e = d + 4, j − 6

for c = i + 5, d − 1
L1 = c − i − 1
for f = e + 1, j − 5

L2 = j − f − 1
s = L1 + L2

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(f, c, f+1, c−1)

Qx
i,d,e,s+= exp{−Gpartial/RT}Qg

c,d,e,f

// Use Qx to finish calculation of P x

if (sequence permits i·j base pair)
for d = i + 1, j − 5

for e = d + 4, j − 1
for s = 8, l − 9

P x
i,d,e,s+= P g

i,d,e,j
Qx

i,d,e,s exp{−γ3(i, j, i+1, j−1)/RT}/Qg
i,d,e,j

// Calculate P g contribution using Qx and P x

if (l ≥ 17)
for d = i + 6, j − 10

for e = d + 4, j − 6
L1 = 4 // explicitly add in terms for L1 = 4, L2 ≥ 4
c = i + L1 + 1
for L2 = 4, j − e − 2

f = j − L2 − 1
s = L1 + L2

Gpartial = γ1(s) + γ2(|L1 − L2|) + γ3(f, c, f+1, c−1)

∆p = P x
i,d,e,s exp{−Gpartial/RT}Qg

c,d,e,f
/Qx

i,d,e,s

P g
c,d,e,f

+= ∆p

P x
i,d,e,s−= ∆p // Remove border cases

Qx
i,d,e,s−= exp{−Gpartial/RT}Qg

c,d,e,f
// Remove border cases

 (∗)

L2 = 4 // explicitly add in terms for L1 ≥ 5, L2 = 4
f = j − L2 − 1
for L1 = 5, d − i − 2

c = i + L1 + 1
Insert (∗)

// Store partial values for Qx2 and P x2

for s = 10, l − 9
Qx2

i+1,d,e,s−2 = Qx
i,d,e,s exp{−[γ1(s−2) − γ1(s)]/RT}

P x2
i+1,d,e,s−2 = P x

i,d,e,s

Figure C.3. Pseudocode for computing interior loop contributions to P g in O(N5) as an alternative
to the O(N6) interior loop recursion of figure 3.4.
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Systems
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D.1 Introduction

Single stranded nucleic acids can adopt many different secondary structures depending on their

sequence. Using an experimentally parameterized, secondary structure based energy model [9, 8, 5],

minimum free energy structures, partition functions and base pairing probabilities [12, 11, 7, 15, 14,

10, 13, 6] can be determined in polynomial time (with respect to sequence length) using dynamic

programming (see Chapters 2 and 3). However, the rigorous generalizations of these algorithms

to multiple, potentially interacting strands have yet to be fully described, although a recent paper

begins to answer some of these questions [1]. In this chapter, methods are provided that explore the

thermodynamics of multiple strands, excluding the possibility of pseudoknots.

D.2 Definitions

Before details of the multi-stranded algorithms can be described, extensions to the standard energy

model must be made to allow for multi-stranded secondary structures. First, some definitions and

lemmas:

Definition 1 For k strands, an ordering is a concatenation of the sequences according to some

permutation, p. The first base (5’ end) of the first strand in the ordering is assigned the number 1,

and the last base (3’ end) of the last strand is assigned N , where N is the sum of the lengths of all

k strands.

Definition 2 For an ordering of k strands, the last base of each strand, excluding the final strand

in the ordering, is defined as a nick point. An ordering of k strands will always have k − 1 nicks.

Definition 3 A cyclic permutation of k strands is one that preserves the relative order of the

strands when the strands are considered on a circle. For a given ordering, there are exactly k cyclic

permutations if all the strands are distinct. These permutations can be generated by the process of

taking the last strand and moving it to the front. The set of cyclic permutations for a given ordering

forms an equivalence class.
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Definition 4 A circular permutation of k strands is an equivalence class of cyclic permutations.

There are exactly (k − 1)! circular permutations for k distinct strands.

Definition 5 For a sequence of length N , a secondary structure is a list of ordered pairs, B,

such that ∀(i, j) ∈ B, 1 ≤ i < j ≤ N , and ∀((i1, j1), (i2, j2)) ∈ B × B, i1 6= i2 or j2, j1 6= i2 or j2.

For a multi-stranded system, a secondary structure refers to the absolute base pairing relationships,

so the list B will vary with the particular ordering that is being considered.

Definition 6 A secondary structure is considered pseudoknotted if ∃((i1, j1), (i2, j2)) ∈ B × B,

such that i1 < i2 < j1 < j2. A multi-stranded secondary structure, S, is pseudoknotted if every

possible ordering has a pseudoknotted B. A secondary structure that is not pseudoknotted is called

non-pseudoknotted. If the DNA backbone is drawn as a straight line with base pairs represented

as arcs above the line, then pseudoknots correspond to the intersection of two or more arcs.

Definition 7 Any non-pseudoknotted secondary structure can be completely decomposed into loops.

A loop is created by starting at any base in the secondary structure and following the phosphate

backbone in a 5’ to 3’ direction. Whenever a base pair is encountered, trace along the base pair

rather than the backbone, and continue in the 5’ to 3’ direction until a closed loop is formed. In the

case that a nick is encountered, simply go past it. In the case of the end of the strand being reached,

continue at base 1. This process can be repeated until every segment of phosphate backbone has been

assigned to exactly one loop.

Definition 8 A non-pseudoknotted, multi-stranded secondary structure, S, is connected if no loop

contains more than one nick, where the 3’ end of the last strand is considered a nick for this purpose.

Alternatively, if each strand were reduced to a vertex with edges drawn between vertices when there

exists at least one base pair between the corresponding strands, then this graph is connected if and

only if S is connected. This second definition also works for pseudoknotted structures. A collection

of k connected strands is defined as a complex of size k.

Lemma 1 (Concatenation Lemma) A connected, non-pseudoknotted secondary structure has

exactly one circular permutation that allows the structure. Any strand permutation not in this
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cyclic class must contain a pseudoknot for this secondary structure.

The proof of the above lemma is in section D.8.

D.3 Energy Model

The energy of a connected, non-pseudoknotted secondary structure can be obtained by chosing one

of the non-pseudoknotted orderings of the k strands and summing the energies of the loops as if it

were a single strand, with the exception that all loops containing a single nick are treated as exterior

loops. If a loop contains two nicks (counting the end of the last strand as a nick for this purpose),

then the energy becomes infinite as this disconnects the structure.

Lemma 2 For a given sequence with a connected, non-pseudoknotted secondary structure, all cyclic

permutations of the strands have the same energy as computed by the multi-stranded energy model

described above.

The proof of the above lemma follows from the fact that loop types and loop energies are preserved

by cyclic permutations. Cyclic permutations correspond to rotating the entire complex in space, and

hence have no effect on a loop based energy model. If the energy model were to be modified in the

future to include pseudoknots for example care must be taken to ensure that calculated energies

remain invariant under cyclic permutations. �

As shown above, the calculated energy for a given secondary structure is independent of the

particular non-pseudoknotted permutation used to represent it as a single strand. This is crucial in

making the energy of a connected, non-pseudoknotted secondary structure a well-defined value.

The nearest neighbor energy model described above is based solely on the local energies of loops

and consequently ignores the global structure and geometry of a secondary structure. In particular,

the total number of different states available to a molecule, and hence its free energy, is affected by

any rotational symmetries. For a linear, single-stranded DNA or RNA, the unique locations of the

5’ and 3’ ends, as well as the asymmetry of individual nucleotides, preclude any such symmetries.

In contrast, complexes of multiple strands may have symmetries if sequences can be rotated onto
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identical copies of themselves. The typical example of multi-strand symmetry is the perfectly self-

complementary homodimer, a complex with a two-fold rotational axis. When a rotational symmetry

of order Y exists, the needed correction to the entropy is R ln(Y ), where R is the gas constant [2].

The free energy of the complex thus needs to be adjusted by RT ln(Y ).

D.4 Symmetry

When multiple strands are concatenated to form a nicked, “single-stranded” secondary structure, it

has already been shown that all cyclic permutations of a given ordering are equivalent with respect

to the nearest neighbor energy model. Since it is arbitrary which strand is first, a symmetry is

possible whenever a non-trivial cyclic permutation maps a strand ordering onto itself. With four

copies of two strands, A and B, the strand permutation ABABABAB can potentially have four-

fold or two-fold symmetry. If the base pairing is such that every AB segment (or ABAB subunit)

behaves in an identical manner, then there must be a corresponding physical symmetry, as each AB

unit (or ABAB unit) would be indistinguishable from the others. If the secondary structures of the

repeating subunits are not identical, then the complex would not be symmetric. As an illustration,

the AAAA tetramer in Figure D.1 is shown with secondary structures that imply four-fold, two-fold

or no rotational symmetry.

D.5 Partition Functions

D.5.1 Distinct Strands

For the case where there are L distinct strands, no rotational symmetries are possible. To calculate

the partition function for a specific permutation, a variation of the standard, single-stranded partition

function algorithm (see Chapter 2 for a review) can be implemented to compute the Boltzmann-

weighted average of all connected, non-pseudoknotted secondary structures.

The pseudocode in figure D.2, along with the recursion diagrams in Figure D.3, show how to

determine the partition function for a specific ordering of the strands in time O(N4) where N is
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A A

A A

1

N

(a)

A A

A A

1

N

A A

A A

1

N

A A

A A

1

N

A A

A A

1

N

(b)

A A

A A

1

N

A A

A A

1

N

(c)

Figure D.1. (a) This secondary structure has a symmetry factor of 4. (b) These four secondary
structures are rotationally equivalent, but do not have rotational symmetry . (c) These two rota-
tionally equivalent secondary structures have a symmetry factor of 2.
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the total sequence length of the permutation. The time complexity can be reduced to O(N3) using

standard methods [4]. In the pseudocode, the following arrays have importance as partial partition

functions. Qi,j represents all possible structures on the [i, j] interval that contain zero exterior nicks,

where an exterior nick is a strand breakpoint that is not contained within a base pair. This includes

nicks assigned to base j, but excludes nicks assigned to base i− 1.

Qb
i,j represents all possible structures in the interval [i, j] containing the pair i · j.

Qm
i,j represents all possible interiors of a multiloop that contain at least 1 base pair. Qm

i,j excludes

all structures with an exterior nick, and in addition, is always zero when i− 1 is nicked.

Q1
i,j is identical to Qi,j, but with the extra condition that there is at least one base pair in the

interval. In other words, Q1
i,j is simply Qi,j minus the empty case.

Q1r
i,j is identical in nature to Q1

i,j but only describes the cases where j is a nick point i.e. the end

of a strand. Since a nick at j must be an exterior nick, it follows that whenever Q1r
i,j is non-zero,

then Qi,j must be zero. Similarly, if Q1r
i,j is zero, then Qi,j must be non-zero.

In addition, the definition of some energy terms are given below.

GHairpinMS
i,j is the standard hairpin loop energy, but with a check for nicks. With no nicks, it is

identical to the standard hairpin treatment. With two or more nicks, the energy is infinite. With

exactly one nick, the energy is that of an exterior loop. In the case of a nicked hairpin, the restriction

that j − i ≤ 4 no longer applies.

GInteriorMS
i,d,e,j is analagous to GHairpinMS

i,j , but for interior loops. If there are no nicks in [i, d-1] and

no nicks in [e, j-1], then the standard interior loop term is used. With one total nick, the exterior

loop energy is used, and with two or more nicks, the energy is infinite.
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If we repeat this algorithm for one ordering from each circular permutation, the concatenation

lemma proves that each secondary structure will be evaluated exactly once. Summing the values for

these permutations will give us the partition function for the complex. Again, since every strand

was assumed to be distinct, there are no global symmetry corrections needed.

D.5.2 Repeated Strands

Next, consider a complex of n1+n2+n3+ ...+nk = L strands, where sequence i is repeated ni times.

As with the previous case, we can take one linear strand ordering for each circular permutation and

compute the partition function. The Cauchy-Frobenius lemma tells us that the total number of

circular permutations, and hence the number of partition function evaluations required, will be

L∑
l=1

1
l

l∑
m=1

kgcd(m,l).

However, depending on the circular permutation, some secondary structures may have a global

symmetry. Figure D.1 shows secondary structures of the AAAA complex with either four-fold, two-

fold or no rotational symmetry. Consequently, some secondary structures should have their free

energy increased by RTln(4), some by RTln(2), and some should not be altered. Unfortunately,

the dynamic program used to calculate the partition function can only use local information and

consequently cannot distinguish between symmetric and asymmetric structures.

Before resolving the issue of symmetry, a second source of error worth addressing is over-counting.

For an accurate partition function, it is imperative to count each possible secondary structure exactly

once. This is ensured in the case of distinct strands by the concatenation theorem. However, for

the case of repeated strands, over-counting may still be a factor. This is because two different

secondary structures of the same linear permutation may in fact be physically indistinguishable.

Figure D.1 highlights this possibility. Consequently, the partition function contribution of each

secondary structure needs to be divided by the number of equivalent representations. As with the

case of global symmetries, the dynamic program used to calculate the partition function is unable

to distinguish which structures are correctly handled and which are not.
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Although independently intractable with current methods, the problems of global symmetry and

over-counting are related in such a way as to make the simultaneous correction of both possible.

The following symmetry theorem illustrates this approach.

Theorem 1 Consider a permutation, p, of L elements (strands), some of which may be identical.

Let m be the smallest integer such that the first m strands can be repeated n = L/m times to

produce the entire permutation. For example, m = 2, n = 4 for the pattern ABABABAB, whereas

m = 4, n = 2 for ABBAABBA, and m = 8, n = 1 for ABABBABA. Let Ωp be the set of all possible

connected secondary structures without pseudoknots for permutation p. If the multi-stranded partition

function algorithm is applied to p and yields q(p), then the corrected partition function, q′(p), which

properly accounts for both the reduced entropy caused by rotational symmetries and the over-counting

of indistinguishable secondary structures, is precisely q′(p) = q(p)/n.

The proof of the the above uses the orbit-stabilizer theorem from abstract algebra. Let G be the

group of n cyclic permutations of p, acting on the set Ωp. This is best visualized by equally spacing

the L strands on the perimeter of a circle. By doing this, the elements of G correspond to physical

rotations that map each strand to a strand of the same type, i.e. A → A,B → B, etc. Since m is

minimal, it can be readily shown that all rotations that preserve strand identities must be in G.

Let s ∈ Ωp be an arbitrary secondary structure. The stabilizer of s, denoted Gs, is the set of

rotations that map s onto itself. In other words, g ∈ Gs if and only if base pairs map to base pairs

and unpaired bases map to unpaired bases. Each of the rotations g · s is described by the exact

same secondary structure, so over-counting is not an issue with the partition function algorithm.

However, |Gs| corresponds to the degree of physical symmetry in the circular representation of the

secondary structure. Due to the indistinguishability of strands of the same type, this symmetry in

the secondary structure must correspond to a three-dimensional rotational symmetry of the same

degree. Since the nearest-neighbor energy model used in the partition function calculations only

applies to local energies and not global properties, the entropy of this structure must be adjusted

by ∆So = −R ln(|Gs|).

The orbit of s in G, denoted G(s), is the set of all algorithmically distinguishable secondary
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structures {g · s, g ∈ G}. Each element in G(s) is considered a different structure and contributes

exactly once to the partition function. However, even those these secondary structures have different

lists of base pairs, they are actually indistinguishable because it was arbitrary which of the L strands

we picked to be the first strand in p. Consequently, the partition function algorithm counts all |G(s)|

versions of s as distinct instead of as a single structure, so there is an over-counting by a factor of

|G(s)| for every s ∈ Ωp.

The orbit-stabilizer theorem gives a useful relationship between the sizes of the orbit and stabilizer

of s. In particular, |Gs||G(s)| = |G| = n,∀s ∈ Ωp.

The partition function algorithm for p calculates

q(p) =
∑
s∈Ωp

e−F o
NN (s)/RT

where F o
NN (s) is the standard free energy of s as described by the nearest neighbor energy function.

The corrected partition function should then be

q′(p) =
∑
s∈Ωp

1
|G(s)|

e(−F o
NN (s)−RT ln(|GS |))/RT

=
∑
s∈Ωp

1
|G(s)|

e−F o
NN (s)/RT e−ln(|GS |)

=
∑
s∈Ωp

1
|G(s)||Gs|

e−F o
NN (s)/RT

=
1
n

∑
s∈Ωp

e−F o
NN (s)/RT

=
1
n

q(p). �

Consequently, the partition function generated by the standard algorithm need only be divided by

n in order to correct for both global symmetries and over-counting. Summing over each circular

permutation, and dividing each by the appropriate n will give the partition function for a complex

with repeated strands.
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D.6 Equilibrium Concentrations

Now that the proper partition function can be calculated for any complex of k types of strands,

regardless of strand repetition, it becomes possible to calculate the equilibrium concentration of

important species, given initial concentrations. Although complexes of arbitrarily large size are

possible, considering all of these is computationally intractable. As an approximation, assume that

the largest complex is of size L. Define the set, Ck,L, to be all possible complexes of L or fewer

strands. Assuming that their are at least L copies of each of the k strands, it follows that

|Ck,L| =

 L + k

k

− 1.

To solve for the equilibrium concentrations of these complexes, the partition function for each

of these complexes needs to be calculated as described in the previous sections. Any permutation

independent corrections to the free energy, such as a penalty for the number strands in a complex,

can also be incorporated at this time. If the total concentrations of the k different strand types

are specified, a system of equations can be solved for the distribution of complexes that minimizes

the free energy. By the second law of thermodynamics, the minimum solution is equivalent to the

equilibrium distribution of complexes. The precise method for setting up and solving the equilibrium

equations is described elsewhere [3].

D.7 Pair Probabilities

After calculating a single-stranded partition function, an additional algorithm can be used to cal-

culate the probability that any two bases are paired. For the multi-stranded case where there is

no periodic subunit in the strand permutation, these same values can be calculated using the gen-

eral method described in Chapter 3. Other useful properties such as n(s∗), the average number

of bases that deviate from secondary structure s∗, can also be determined directly (see Chapters

3 and 4). However, when a strand permutation has a periodic symmetry of order n > 1, these
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algorithms require modification. In particular, every pair i · j belongs to a family of n, physically

indistinguishable pairs. For example, when three identical strands of length ten are considered, pairs

{i · j, i + 10 · j + 10, i + 20 · j + 20}(mod 30) are equivalent. Consequently, the notion of pair prob-

abilities should be broadened to pair-family probabilities. Unfortunately, since more than one pair

from a family could occur in the same secondary structure, an accurate determination of pair-family

probabilities would require joint knowledge of multiple pairs simultaneously, something that is not

possible with the standard, dynamic programming algorithm.

Rather than solve for joint-probabilities, a similar, yet more tractable value is the expected

number of pairs from a given family that is present in a random, Boltzmann-weighted secondary

structure. This value can range from 0 to n. By the linearity of expectation, we can separately

determine the average occurrence of each pair in the family and add them together to get the final

answer. Since a pair-probability is equivalent to the expected number of times a specific pair will

occur (assuming we can distinguish all positions), these expected values can be determined using

the standard pair-probability algorithm. When n = 1, the expected value of any pair i · j is simply

the pair-probability, Pi,j . For n > 1, the symmetry theorem states that the partition function

contribution of every secondary structure visited by the algorithm should be scaled by a factor of

1/n. If we temporarily take the algorithm’s perspective that all the positions are distinguishable,

then it is clear the standard pair-probability algorithm will give the correct expected values for

each pair, since the probability of every structure is unaffected by this constant scaling1. Since all

positions are not distinguishable, however, the physically meaningful value of interest is the sum of

the expected values for all pairs in a family. By symmetry, this is equivalent to n times the calculated

expected value of any one member of the pair-family.

The calculation of n(s∗) is straightforward once the expected value of every pair-family is known.

Define lm to be the length of the smallest periodic subunit for a strand permutation with total length

N . For a secondary structure s∗, define a target matrix S∗ such that S∗
i,j is the number of pairs in

the target structure from the i ·j class. Augment this matrix with an N +1st column such that every
1By the same argument, equilibrium sampling is also valid if physically equivalent structures are pooled together.
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row adds to the symmetry factor, n. The value of S∗
i,N+1 represents the unpaired state for the n

positions equivalent to i. The average number of bases in the incorrect state can then be calculated

by

n(s∗) ≡ 1
2

∑
1≤i≤lm

∑
1≤j≤N+1

|S∗
i,j − Ei,j |

where Ei,j is the expected value of pair-family i · j, as described above. The one-half is required

because every base is penalized for both failing to be in the correct state, as well as being in the

incorrect state. It can be shown that this is equivalent to the definition of n(s∗) given in Chapter

4 for the case of n = 1. To see this, recall that when n = 1, Ei,j = Pi,j ,
∑

1≤j≤N+1 Pi,j = 1 and

∀i, S∗
i,j = 1 for exactly one value of j, call it j′i, and is zero otherwise. It then follows that

n(s∗) =
1
2

∑
1≤i≤N

∑
1≤j≤N+1

|S∗
i,j − Ei,j |

=
1
2

∑
1≤i≤N

∑
1≤j≤N+1

|S∗
i,j − Pi,j |

=
1
2

∑
1≤i≤N

1− Pi,j′i
+

∑
j 6=j′i

Pi,j


=

1
2

∑
1≤i≤N

(1− Pi,j′i
) + (1− Pi,j′i

)

=
∑

1≤i≤N

1− Pi,j′i

= N −
∑

1≤i≤N

Pi,j′i

= N −
∑

1≤i≤N

∑
1≤j≤N+1

Pi,jS
∗
i,j .

The value of n(s∗) for a complex can also be determined by properly averaging the values of

n(s∗) from each circular permutation, based on their corrected partition functions.
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D.8 Proof of Lemma

Lemma 1 states:

A connected, non-pseudoknotted secondary structure has exactly one circular permutation that allows

the structure. Any strand permutation not in this cyclic class must contain a pseudoknot for this

secondary structure.

To prove this, we start with a few observations:

Observation 1 For any secondary structure, if base pairs are removed and lemma 1 can be shown

to be true for this reduced structure, then the lemma must also hold for the original secondary

structure.

Observation 2 In attempting to prove lemma 1, all pairs within the same strand can be removed.

In addition, all helices, including bulges and interior loops, can be reduced to a single base pair. If

lemma 1 holds for all such reduced structures, then the lemma must be true for all structures.

Observation 3 Since cyclic permutations of a structure can neither create nor remove pseudoknots,

any structure can be cyclically permuted without affecting the veracity of lemma 1.

Observation 4 If two strands are identical, then this will reduce the number of possible circular

permutations. Since the lemma states there is at most 1 circular permutation that allows the

structure, reducing the available permutations cannot invalidate the lemma. Therefore, for the sake

of the proof, we can assume the strands are distinct.

The proof of lemma 1 will proceed by induction on the number of strands L in a complex. If L

is one or two, then there is only a single circular permutation and the lemma is true by default.

Assume the lemma is true for all positive integers l < L. We will show that it must be true for

L. Consider an arbitrary connected, non-pseudknotted secondary structure on L strands. Remove

all intra-strand base pairs and reduce all helices (and interior loops and bulges) to a single base

pair. Imagine each strand as a vertex of a graph, with the base pairs as edges connecting the nodes.

Reduce this graph to a tree by systematically removing an arbitrary edge (base pair) from every

cycle. These reductions will yield a minimal, connected, non-pseudoknotted secondary structure.
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Since this reduced secondary structure is equivalent to a tree, there must be at least two leaves

(strands with exactly one base pair). Perform a cyclic permutation to move one of the leaves to

the first position. Since removing a leaf from a tree cannot disconnect the graph, removing the first

strand and its base pair must result in a connected, non-pseudoknotted structure on L− 1 strands.

By the inductive hypothesis, there is at most one circular permutation that is not pseudoknotted.

Since the current strand ordering is connected and non-pseudoknotted, this must be the only circular

permutation possible. All of the L − 1 cyclic permutations are legal and equivalent, so there is no

need to consider these cases separately.

Number the strands from left to right as 1 to L−1, with position i, base in being the strand and

base to which the removed leaf was base paired. Consider the possible locations where the removed

leaf and its base pair can be added back to the graph. Clearly, inserting it before position 1 is valid

because this simply recreates the original, non-pseduoknotted permutation. The strand could also

be added after L − 1 because this is cyclically equivalent to inserting it at the first position. If we

can show that all other locations would cause a pseudoknot, then this will prove that there is exactly

one circular permutation that allows the original secondary structure.

Since adding the strand before position 1 is legal, there can be no base pair directly connecting

strands 1 through i − 1 to any base to the right of in. If there were such a pair, this would have

intersected the removed base pair, causing a pseudoknot in the original structure. Consequently, if

the removed strand were added between positions j and j + 1, with 1 ≤ j ≤ i− 1, then strands 1 to

j must be disconnected from strands j + 1 and greater. This is because strands 1 to j cannot pair

to the added strand (the added strand is a leaf whose pair is already used), nor to any base between

the added strand and in (this would form a pseudoknot with the added base pair), nor to any base

right of in (see the argument above). By the inductive hypothesis the secondary structure must be

connected. Thus, no such insertion between positions 1 and i− 1 is possible.

In addition, since adding the strand after position L − 1 is also legal, a symmetric argument

shows that insertion between j and j + 1 with i ≤ j ≤ L− 2 is also impossible. Therefore, the only

legal insertion points are at the beginning and ends of the strand ordering, verifying the lemma for
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size L. By induction, this lemma must hold for all L. �
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function multiFunc( s1, s2, ..., sL) //this function will return the partition function for L strands concatenated
//in the order they are input. The total length of |s1| + |s2| + ... + |sL| = N.

Initialize (Q, Qb, Qm, Q1, Q1r) // O(N2) space
Set all values to 0 except Qi,i−1 = 1
for l = 1, N

for i = 1, N−l+1
j = i+l−1

// Qb recursion

Qb
i,j = exp{−GHairpinMS

i,j /RT}
for d = i+1, j−2 // loop over all possible rightmost pairs d·e

for e = d+1, j−1

Qb
i,j += exp{−GInteriorMS

i,d,e,j /RT}Qb
d,e

//Next treat nicked multiloops
nicksEJ1 = # of nicks >= e and <= j − 1
//Case 1: Single nick is to the right of d·e pair
if (nicksEJ1 == 1) and (i not nicked)

Qb
i,j += Q1

i+1,d−1 Qb
d,e

//Case 2: Single nick is in [i, d − 1]
if nicksEJ1 == 0 and (i is nick)

//Consider i as the single nick ”in” the multiloop
//Any other nicks in this interval must therefore be enclosed in a pair

Qb
i,j += Q1

i+1,d−1 Qb
d,e

if nicksEJ1 == 0 and (i not a nick)
//If i not nicked, then any other nick in [i, d − 1] can be the single nick
foreach k ∈ [i + 1, d − 1]|k is a nick

leftN0 = 1 //number of empty structures in [i + 1, k]
rightN0 = 1 //number of empty structures in [k + 1, d − 1]
if ∃ nick in [i, k] then leftN0 = 0
if ∃ nick in [k + 1, d − 1] then rightN0 = 0
//Case 2a: No pairs left of k, at least 1 to the right of k

Qb
i,j += leftN0 · Q1

k+1,d−1Qb
d,e

//Case 2b: At least 1 pair left of k, no pairs to the right of k

Qb
i,j += Q1r

i+1,k · rightN0 · Qb
d,e

//Case 2c: At least 1 pair on both sides of k

Qb
i,j += Q1r

i+1,kQ1
k+1,d−1Qb

d,e

//Consider regular multiloop

Qb
i,j += Qm

i+1,d−1 Qb
d,e exp{−[α1 + 2α2 + α3(j−e−1)]/RT}

// Q, Qm, Q1, Q1r recursions
//Empty recursion
Qi,j = 1
if ∃ nick on [i, j] then Qi,j = 0
for d = i, j−1 // loop over all possible rightmost pairs d·e

for e = d+1, j
if no nicks on [e, j − 1] and j is nick

Q1r
i,j+= Qi,d−1 Qb

d,e

if no nicks on [e, j]

Qi,j+= Qi,d−1 Qb
d,e

Q1
i,j+= Qi,d−1 Qb

d,e

//single pair in Qm

if no nicks on (i − 1, d − 1)

Qm
i,j += exp{−[α2 + α3(d−i) + α3(j−e)]/RT}Qb

d,e

//more than 1 pair in Qm

Qm
i,j += Qm

i,d−1 Qb
d,e exp{−[α2 + α3(j − e)]/RT}

//Partition function for this ordering of strands is Q1,N

return Q1,N

Figure D.2. Pseudocode for the partition function evaluation of a single permutation of L strands.
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Appendix E

Extra Figures for DNA Design

The work presented here is heavily based on the supplementary material for:

R. M. Dirks, M. Lin, E. Winfree, and N. A. Pierce, Paradigms for computational nucleic acid design.

Nucleic Acids Research, 2004. 32(4): p. 1392-1403.

Reprinted with copyright permissions.
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Figure E.1. DNA multiloop: See caption for Figure 4.2.
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Table E.1. Sequence designs for DNA multiloop designs of Figure E.1.
Design Method p(s∗) n(s∗) CG content Entropy

Random 0.00 8.27 0.50 1.00
Energy Minimization 0.01 23.67 0.78 0.32
MFE Satisfaction 0.15 5.31 0.50 0.98
SSM 0.07 7.06 0.50 0.99
Energy Min & SSM 0.76 0.58 0.65 0.72
Probability 0.90 0.34 0.63 0.48
Average Incorrect Nucleotides 0.87 0.28 0.68 0.46

0 0.1 0.2 0.3 0.4 0.5
p(s*)

0.6 0.7 0.8 0.9 10

200

400

600

800

1000

N
um

be
r o

f P
ar

am
et

er
 S

et
s DNA Model Study with 10% Perturbations

0 0.1 0.2 0.3 0.4 0.5
p(s*)

0.6 0.7 0.8 0.9 10

200

400

600

800

1000

N
um

be
r o

f P
ar

am
et

er
 S

et
s DNA Model Study with 20% Perturbations

0 0.1 0.2 0.3 0.4 0.5
p(s*)

0.6 0.7 0.8 0.9 10

200

400

600

800

1000

N
um

be
r o

f P
ar

am
et

er
 S

et
s DNA Model Study with 50% Perturbations

Figure E.2. DNA model perturbation study. See caption for Figure 4.3.
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(a)

(b)

Figure E.3. DNA Multiloop Variations: See caption for Figure 4.4.
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Appendix F

HCR Variations

The following variations to HCR are currently being investigated and may appear in future publi-

cations.
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The original version of HCR exhibits linear growth in response to an initiator. With slightly

more sophisticated systems, higher order growth can be achieved. This, in turn, could lead to more

sensitive biosensors. To generate quadratic growth, molecules such as Q1 and Q2 (Figure F.1) could

be used in conjunction with H1 and H2. Here, an initiator Qi binds to Q1 and a three-way branch

migration exposes a sticky end comprising f-e*-b*. This single-stranded region then binds to Q2,

exposing e*-d*-b*-c. The e*-d* can act as an initiator for another copy of Q1, thereby creating

a linear system with periodic, single-stranded stretches of b*-c. These periodic regions can then

act as an initiators for the H1-H2 system, resulting in structures similar to branched polymers.

Figure F.1 shows the Q1-Q2 main chain (drawn as a blue and red dashed line) with H2-H1 polymers

(orange-green lines) branching off at each Q2.

To achieve pseudo-exponential growth, the same Q1 and Q2 molecules can be used with E1 and

E2 rather than H1 and H2. Like Q1 and Q2, E1 and E2 form a linear chain in the presence of

an initiator, in this case c-b*. This initiator sequence is identical to the single-stranded stretches

produced by Q1-Q2. Furthermore, E1-E2 itself generates periodic stretches of e*-d*, an initiator

for the Q1-Q2 system. Consequently, if Q1, Q2, E1, and E2 were mixed together and an initiator

were added (either c*-b* or e*-d*), each branch of the original polymer would itself be a branched

polymer. The result of this would be exponential growth, similar to a dendrimer. However, since

three-dimensional space can only grow cubicly, exponential growth could not be sustained, and the

rate of growth would eventually slow to at most cubic.

An alternative way to increase the sensitivity of HCR is to increase the loop length. However,

if the loops are too big, the hairpins tend to form large complexes in the absence of initiator. One

possible way to avoid this is to break the loops into two parts, and have two sticky ends on the

hairpins (see Figure F.2). This also has the advantage of “locking” each hairpin in the open state

when the initiator is bound, making it more difficult for the hairpins to close and knock the initiator

off. Due to the geometry, the two sticky ends of H1 will have difficulty binding simultaneously to

the hairpin loop of H2, making the species less susceptible to direct strand invasion than traditional

large loops.
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