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Abstract

Quantum mechanics is nonlocal, meaning it cannot be described by any classical local hidden variable

model. In this thesis we study two aspects of quantum nonlocality.

Part I addresses the question of what classical resources are required to simulate nonlocal quan-

tum correlations. We start by constructing new local models for noisy entangled quantum states.

These constructions exploit the connection between nonlocality and Grothendieck’s inequality, first

noticed by Tsirelson. Next, we consider local models augmented by a limited amount of classical

communication. After generalizing Bell inequalities to this setting, we show that (i) one bit of

communication is sufficient to simulate the correlations of projective measurements on a maximally

entangled state of two qubits, and (ii) five bits of communication are sufficient to simulate the joint

correlation of two-outcome measurements on any bipartite quantum state. The latter result can be

interpreted as a stronger (constrained) version of Grothendieck’s inequality.

In part II, we investigate the monogamy of nonlocal correlations. In a setting where three parties,

A, B, and C, share an entangled quantum state of arbitrary dimension, we: (i) bound the trade-off

between AB’s and AC’s violation of the CHSH inequality, obtaining an intriguing generalization of

Tsirelson’s bound, and (ii) demonstrate that forcing B and C to be classically correlated prevents

A and B from violating certain Bell inequalities. We study not only correlations that arise within

quantum theory, but also arbitrary correlations that do not allow signaling between separate groups

of parties. These results are based on new techniques for obtaining Tsirelson bounds, or bounds

on the quantum value of a Bell inequality, and have applications to interactive proof systems and

cryptography.
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Chapter 1

Introduction

1.1 Motivation

In 1935, Einstein, Podolsky, and Rosen suggested that quantum theory might emerge from a de-

terministic local theory, by averaging over the values of some hidden variables, or properties of the

system inaccessible to experiment [6]. Some thirty years later, Bell proved that this is impossible:

Any hidden variable model for quantum theory must be nonlocal, in a manner I shall make precise be-

low [7]. Bell’s conclusion has since been validated by a large number of experiments [8, 9, 10, 11, 12].

More recently, theoretical research into quantum algorithms [13], quantum communication com-

plexity [14], and quantum cryptography [15] has shown that quantum devices are more powerful

than their classical counterparts. Indeed, the goal of the burgeoning field of quantum information

theory [16] is to obtain an information-theoretic understanding of the power of quantum resources.

Here I apply this perspective to one quantum resource: nonlocal correlations. The aim is to go

beyond the conclusion that quantum theory is nonlocal, instead answering the question of just how

nonlocal it is.

1.2 Nonlocal correlations

1.2.1 An example

We start with an example. Alice and Bob, who will star in this thesis, each have a machine. Each

machine has a switch, which can be in one of two positions (labeled 0 and 1), together with two

lights, a red one and a green one. Every second, exactly one of the lights flashes.

After running some experiments, Alice deduces the following:

1. No matter which position her switch is in, the red light will flash with probability 1/2, otherwise

the green light will flash.

In other words, Alice’s machine behaves as a random number generator. Bob notices the same thing:
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2. No matter which position his switch is in, the red light will flash with probability 1/2, otherwise

the green light will flash.

But when they look at each other’s machines, they observe that

3. If Alice’s switch and Bob’s switch are both in position 1, then the color of Alice’s light is

always different from the color of Bob’s light; otherwise their lights are always the same color.

Furthermore, this is true no matter how far apart the machines are. So, although the colors of the

lights on Alice and Bob’s machines are locally random, they are correlated in a way that depends

on how their switches are set. After providing the relevant definitions, we’ll prove below that these

correlations are nonlocal, meaning they are incompatible with any classical local theory. In fact, the

machines just described are together known as a nonlocal box [17, 18]. We make three observations:

1. The switches are essential. Suppose the switches on Alice and Bob’s machines are stuck in

position 1. Then Alice and Bob’s machines are just a correlated random source, a classical

resource.

2. The machines can be realized with instantaneous communication and a correlated random

source. Suppose that, by some means, the position of Alice’s switch is (instantaneously) com-

municated to Bob’s machine. Then this is sufficient to reproduce their behavior. Of course,

instantaneous communication is unphysical.

3. The machines cannot be used to communicate. Suppose Alice is in Amsterdam and Bob in

Melbourne. Then there is no way for Alice to send a message to Bob using the machines. No

matter how she sets her switch, the data Bob obtains from his machine is just a sequence of

random bits. It is only when Alice and Bob meet up and compare their data that they notice

something nonclassical is going on. We term such correlations no-signaling. No-signaling

correlations are a weaker information-processing resource than communication, but a stronger

resource than a classical correlated random source.

The operation of the machines can be summarized by specifying the conditional joint probability

distribution of Alice and Bob’s results. Assume Alice sets her switch in position i ∈ {0, 1} and Bob

sets his in position j ∈ {0, 1}. Label the output of Alice’s machine (the color of the light) a ∈ {0, 1},
and the output of Bob’s b ∈ {0, 1}. Then the probability that Alice observes outcome a and Bob

observes outcome b is

Pr(a, b|i, j) =
1
2

[a⊕ b = i ∧ j], (1.1)

where [t] = 1 if the clause t is true and 0 otherwise.

We shall be concerned with the following question: Which conditional joint probability distribu-

tions are accessible in classical, quantum, and no-signaling theories? For example, we shall observe
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by the end of this chapter that the machine described above is unphysical: The distribution Eq. (1.1)

is not realizable, even with quantum resources.

1.2.2 Notation and definitions

We restrict attention to scenarios with two parties, Alice and Bob. In a measurement scenario, each

party selects one of M measurements (labeled 0, 1, . . . ,M − 1) and then outputs one of K different

outcomes (labeled 0, 1, . . . ,K − 1). Mostly we shall be interested in the case K = 2. As above, we

label Alice’s measurement i, and Bob’s j. Alice’s output is labeled a; Bob’s b.

A local hidden variable (LHV) model for a measurement scenario is defined as follows:

Definition 1.2.1 (LHV model). An LHV model for a (bipartite) measurement scenario is defined

by (i) a set Λ and a probability distribution q over Λ, (ii) a function A : Λ × ZM → ZK , and (iii) a

function B : Λ × ZM → ZK . We write the LHV model as a protocol:

Protocol 1.2.2. (Random Variables) Alice and Bob share a variable λ ∈ Λ, chosen according to

the distribution q.

(Alice) Alice outputs a = A(λ, i).

(Bob) Bob outputs b = B(λ, j).

We note that this definition is completely general: Any unshared randomness can be replaced

by shared randomness on which the one party does not act. To calculate the resulting conditional

probability distribution, we average over λ:

Pr(a, b|i, j) =
∫
dλ q(λ)[a = A(λ, i)][b = B(λ, j)]. (1.2)

If there exists an LHV model reproducing some correlations p(a, b|i, j), we say that the correla-

tions are local. Otherwise they are nonlocal.

Definition 1.2.3 (No-signaling conditional probability distribution). A conditional probability dis-

tribution is no-signaling if each party’s marginal distribution is independent of the other’s choice of

input. More formally, p(a, b|i, j) is no-signaling if

Pr(a|i, j) =
∑
b

p(a, b|i, j) (1.3)

is independent of j for all a and i and

Pr(b|i, j) =
∑
a

p(a, b|i, j) (1.4)

is independent of i for all b and j.
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Nonlocal correlations in quantum theory arise from making local measurements on entangled

quantum states. We assume that Alice and Bob share a mixed quantum state ρ with support on

HA ⊗ HB, where HA (HB) is the local Hilbert space of Alice’s (Bob’s) system. The dimensions of

the local spaces are denoted dA = dimHA, dB = dimHB. By extending the smaller of HA and HB

we can assume that the local spaces have the same dimension d = max(dA, dB). The operator 11d is

the identity operator operating on a space of dimension d. Where it is clear from the context, we

omit the subscript indicating the dimension. The most general measurement possible in quantum

theory is termed a postive operator-valued measure (POVM). A K-outcome POVM M on HA is

defined by K positive Hermitian operators A0, A1, . . . , AK−1 such that
∑
k Ak = 11. The elements

Ak are termed effects.

Definition 1.2.4 (quantum model). A quantum model for a (bipartite) measurement scenario is

defined by (i) a state ρ on HA ⊗HB; (ii) a set of M POVMs Mi on HA with effects Aa
i ; and (iii) a

set of M POVMs Nj on HB with effects Bb
j . We write the quantum model as a protocol:

Protocol 1.2.5. (Preparation) Alice and Bob share the state ρ.

(Alice) Alice measures the POVM Mi on ρ, outputting her result a.

(Bob) Bob measures the POVM Nj on ρ, outputting his result b.

This results in the conditional probability distribution

Pr(a, b|i, j) = tr
(
Aa
i ⊗ Bb

jρ
)
. (1.5)

We say that a conditional probability distribution p(a, b|i, j) is realizable with quantum resources if

there is a quantum model for p(a, b|i, j).
Specializing to two-outcome measurements, we define the joint correlation

〈αiβj〉 =
1∑

a,b=0

(−1)a+b Pr(a, b|i, j). (1.6)

We define the observable corresponding to a two-outcome measurement M as A = A0 −A1. When

Alice measures an observable A on ρ, we label the outcome α ∈ {−1,+1}. We similarly label Bob’s

outcome β. Denote the set of possible observables by OA for Alice and OB for Bob. Then the joint

correlation of Alice and Bob’s measurement results is given by

〈αβ〉QM = tr (A ⊗ B ρ) . (1.7)

Note that it is conventional to suppress the dependence of the left-hand side on A and B. The
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marginal probabilities are given by

〈α〉QM = tr (A⊗ 11B ρ) , (1.8)

〈β〉QM = tr (11A ⊗ B ρ) . (1.9)

Together, these three equations define the full probability distribution for two-outcome measure-

ments on ρ.

Often the conditional probability distributions we wish to study arise from making measure-

ments on quantum states, in which case the existence of a quantum model is trivial. A quantum

measurement scenario for two-outcome measurements is a measurement scenario where we label the

measurements by the corresponding quantum observables. For completeness, we state the following:

Definition 1.2.6 (LHV model for two-outcome observables). An LHV model for a (bipartite)

quantum measurement scenario is defined by (i) a set Λ and a probability distribution q over Λ, (ii)

a function A : Λ×OA → {−1,+1}, and (iii) a function B : Λ×OB → {−1,+1}. We write the LHV

model as a protocol:

Protocol 1.2.7. (Random Variables) Alice and Bob share a variable λ ∈ Λ, chosen according to

the distribution q.

(Alice) Alice outputs a = A(λ,A).

(Bob) Bob outputs b = B(λ,B).

We average over λ to calculate the resulting correlations:

〈α〉LHV =
∫
dλ q(λ)A(λ,A), (1.10)

〈β〉LHV =
∫
dλ q(λ)B(λ,B), (1.11)

〈αβ〉LHV =
∫
dλ q(λ)A(λ,A)B(λ,B). (1.12)

We say that the LHV model reproduces the joint correlation on a state ρ when 〈αβ〉LHV = 〈αβ〉QM

for all observables A and B. We say that the LHV model reproduces the full probability distribution

when, in addition, 〈α〉LHV = 〈α〉QM and 〈β〉LHV = 〈β〉QM.

1.2.3 Bell polytopes

Bell inequalities [7] describe necessary conditions on the probabilities Pr(a, b|i, j), which must be

satisfied if these probabilities are to be produced by an LHV theory. When a set of these conditions is

also sufficient, we say that we have a complete set of Bell inequalities. The construction of complete

sets of Bell inequalities is an exercise in convex geometry, which we briefly sketch. See Ref. [19] for

more details.
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Consider a deterministic protocol, i.e., one in which no randomness, shared or otherwise, is used.

Each party’s output can only depend on their local measurement. Such a protocol is characterized

by the two functions A and B in Def. 1.2.1, which describe the outcomes of the two parties’ mea-

surements: If A selects measurement i, she outputs A(i) and if B selects measurement j, he outputs

B(j). The probabilities for the scenario are then p(a, b|i, j) = [a = A(i)][b = B(j)].

By listing the components, we may view the probabilities p(a, b|i, j) as vectors �p in RD with

D = M2(K2−1) (there is a normalization constraint
∑
a,b p(a, b|i, j) = 1). To each pair of functions

{A,B}, there corresponds a deterministic protocol, so the set of all deterministic protocols is a finite

collection of such vectors {�dζ |ζ = 1, ...,K2M}.
Now consider the effect of allowing randomness. For any fixed choice of the random variables

λ ∈ Λ, the functions A(λ, ·) and B(λ, ·) are deterministic, so that the set of all possible protocols

that use randomness is described by a convex sum of the deterministic protocols

�p =
∑
ζ

λζ �dζ ,
∑
ζ

λζ = 1, λζ ≥ 0. (1.13)

The set of all protocols therefore corresponds to a region ΩMK in RD, which is a polytope because

there is a finite number of extreme vectors �dζ [20]. This permits an alternative description: Instead

of describing the polytope ΩMK as the convex combination of a finite set of extreme points, we can

describe it by specifying a complete (finite) set of facet inequalities. A facet inequality is a pair

{�f, c} that defines a half-space of RD via the inequality �f · �p ≤ c. Complete sets of facet inequalities

�fη, cη are satisfied if and only if �p is in ΩMK :

�p ∈ ΩMK iff �fη · �p ≤ cη, ∀η. (1.14)

Each facet is therefore a Bell inequality and complete sets of facet inequalities are complete sets

of Bell inequalities. Complete sets are known in the two-party case when M = 2,K = 2 [21];

M = 3,K = 2; M = 2,K = 3 [22, 23]; and also when extra symmetry constraints are imposed [24].

1.2.4 The CHSH inequality

In the simplest nontrivial case M = 2, K = 2, there is (up to symmetries) one nontrivial Bell

inequality, the Clauser-Horne-Shimony-Holt (CHSH) inequality [25]. Given a conditional probability

distribution p(a, b|i, j), define

〈BCHSH(p)〉 = 〈α0β0〉 + 〈α0β1〉 + 〈α1β0〉 − 〈α1β1〉, (1.15)

where 〈αiβj〉 are the joint correlations defined by Eq. (1.6).
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Theorem 1.2.8 ([21, 25]). Suppose there is an LHV model for a distribution p(a, b|i, j). Then

〈BCHSH(p)〉 ≤ 2. (1.16)

Furthermore, if a distribution p(a, b|i, j) satisfies Eq. (1.16), as well as equivalent inequalities ob-

tained by permuting parties, measurements, and outputs, then it is obtained from some LHV model.

Proof. The proof of completeness is via facet enumeration, as described in the previous section, and

we omit it. It is, however, simple to see that if there is an LHV model for p(a, b|i, j), then it satisfies

the inequality. Suppose the LHV model is defined by a set Λ, a probability distribution q on Λ, and

functions A,B : Λ × {0, 1} → {−1,+1}, where

〈αiβj〉 =
∫
dλq(λ)A(λ, i)B(λ, j). (1.17)

Then

〈BCHSH(p)〉 =
∫
dλq(λ) [A(λ, 0) (B(λ, 0) +B(λ, 1)) +A(λ, 1) (B(λ, 0) −B(λ, 1))] (1.18)

≤
∫
dλq(λ) [|B(λ, 0) +B(λ, 1)| + |B(λ, 0) −B(λ, 1)|] . (1.19)

Now, |B(λ, 0) +B(λ, 1)| is either 0 or 2. If it is 0, we’re done; if it is 2, then |B(λ, 0) −B(λ, 1)| = 0.

In either case 〈BCHSH(p)〉 ≤ 2.

At this point we can return to the nonlocal box, the example of nonlocal correlations given at

the start of this introduction. By construction, the correlations defined in Eq. (1.1),

Pr(a, b|i, j) =
1
2

[a⊕ b = i ∧ j], (1.20)

yield 〈α0β0〉 = 〈α0β1〉 = 〈α1β0〉 = −〈α1β1〉 = 1, which gives 〈BCHSH〉 = 4. Since 4 is larger than 2,

these correlations violate the CHSH inequality and are nonlocal. Furthermore, they are maximally

nonlocal, within this measurement scenario.

The nonlocal box is a powerful resource. Consider some Boolean function f : {0, 1}n×{0, 1}n →
{0, 1} with two n-bit strings as inputs, labeled a and b. Alice knows string a, while Bob knows string

b. They want to compute f(a, b) in a distributed manner, by exchanging some messages. Given a

supply of nonlocal boxes (such as the machine described above), van Dam has shown that Alice

and Bob can compute the function f with just one bit of communication, independent of n [26].

Thus nonlocal boxes trivialize communication complexity. In fact this conclusion is true even in the

presence of some noise [27].
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The nonlocal box is not realizable with quantum resources. This follows from the following, due

to Tsirelson:

Theorem 1.2.9 (Tsirelson [28]). Suppose Alice and Bob make local measurements on an entangled

quantum state, yielding a distribution p(a, b|i, j). Then

〈BCHSH(p)〉 ≤ 2
√

2. (1.21)

Proof. Assume there is a quantum model for p(a, b|i, j). By taking a purification of the shared state

ρ and conditioning on the randomness, it is sufficient to consider the case where Alice and Bob share

a pure state |ψ〉. Suppose Alice measures Ai on input i, and Bob Bj on input j. Then

〈αiβj〉 = 〈ψ|Ai ⊗ Bj |ψ〉. (1.22)

Define |ai〉 = Ai ⊗ 11B|ψ〉 and |bj〉 = 11A ⊗ Bj |ψ〉. Then 〈ai|ai〉 = 〈bj |bj〉 ≤ 1, since the eigenvalues

of Ai and Bj are in [−1,+1]. This implies

〈BCHSH(p)〉 = 〈a0| (|b0〉 + |b1〉) + 〈a1| (|b0〉 − |b1〉) (1.23)

≤ ‖|b0〉 + |b1〉‖ + ‖|b0〉 − |b1〉‖ (1.24)

= 2 (cos θ/2 + sin θ/2) (1.25)

≤ 2
√

2, (1.26)

where cos θ = |〈b0|b1〉|.

1.2.5 Measures of nonlocality

One benefit of narrowing in on one aspect of quantum theory—nonlocality—is that it allows us to

compare quantum theory to stronger theories, and not just to classical mechanics. But first we

need some way of measuring the nonlocality of some distribution p(a, b|i, j). We have seen one way

already: the extent of violation of a Bell inequality. This measure is the right one in a number

of contexts, such as the extent to which sharing entanglement allows the provers in a multi-prover

interactive proof system to “cheat,” an application I have explored in Ref. [29]. But other measures

are more relevant in physical applications, such as experimental tests of Bell inequality violation.

We explore some of these here.

Resistance to noise—Given a distribution p(a, b|i, j), define the noisy distribution

pμ(a, b|i, j) = μ p(a, b|i, j) + (1 − μ)q(a, b|i, j), (1.27)
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where 0 ≤ μ ≤ 1 and q(a, b|i, j) is a local distribution. What is the largest value of μ such that

pμ(a, b|i, j) is local? Here the local distribution q(a, b|i, j) can be some fixed distribution, such as

the uniform distribution, or can be chosen adversarily. We shall explore this measure in Chapters 2

and 3.

Communication cost of simulation—What is the communication complexity of generating a dis-

tribution p(a, b|i, j)? In other words, suppose we augment an LHV model with a limited amount of

communication, after the parties decide on which setting to measure and before they output results.

How many bits of communication are required to reproduce the correlations exactly or approxi-

mately? We formalize this notion for one-way communication (which is what will be relevant for

our results) as follows:

Definition 1.2.10 (LHV model with c bits of one-way classical communication). An LHV model

augmented by c bits of one-way classical communication for a (bipartite) measurement scenario is

defined by (i) a set Λ and a probability distribution q over Λ, (ii) a function A : Λ×ZM → ZK , (iii)

a function m : Λ×ZM → Zc, and (iv) a function B : Λ×ZM ×Zc → ZK . We write the model as a

protocol:

Protocol 1.2.11. (Random Variables) Alice and Bob share a variable λ ∈ Λ, chosen according

to the distribution q.

(Alice) Alice outputs a = A(λ, i). Alice sends a message m = m(λ, i) to Bob.

(Bob) Bob outputs b = B(λ, j,m(λ, i)).

We explore this measure in Chapters 4, 5, and 6.

Dectector efficiency required for loophole-free Bell inequality violation—There are a number of

“loopholes” in experimental tests of Bell inequality violation that a local theory might exploit in

order to simulate quantum correlations. For example, if there is time for a signal to travel from Alice’s

apparatus to Bob’s apparatus after she chooses her measurement but before he outputs his results,

then it is possible to simulate what appear to be quantum correlations with classical resources.

Known as the locality loophole, this can be closed by ensuring Alice and Bob’s measurement events

are spacelike separated. This has been done experimentally in Refs. [9, 10, 11].

Another loophole arises if the detectors used are not 100% efficient. We should compare correla-

tions measured with inefficient detectors to LHV models with an extra outcome, viz., “the detector

failed.” For a fixed value of the shared randomness, if the probability of detector failure depends on

the measurement setting, then it is possible to reproduce quantum correlations via a local model, for

sufficiently inefficient detectors. For a given set of correlations, what detector efficiency is required

for loophole-free Bell inequality violation? This loophole has been closed experimentally in [12].

We note that the locality and detector inefficiency loopholes have not yet been closed in the same

experiment.
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Statistical distance to local theories—How many trials of a Bell inequality experiment should we

perform to observe a contradiction with LHV models at some level of statistical significance? In this

case, the relevant parameter is the relative entropy between the nonlocal distribution and the best

local model. See Ref. [30].

1.3 Overview of the thesis

1.3.1 Classical models for the quantum joint correlation

In the first part of the thesis, we study classical models for the joint correlation 〈αβ〉QM = tr (A⊗ Bρ),

resulting from performing two-outcome measurements on a quantum state ρ.

For a quantum state ρ, define

ρμ = μ ρ+ (1 − μ)
11

dAdB
. (1.28)

In Chapter 2 we give bounds on the amount of noise required to make the correlations on ρμ local.

These build on work of Tsirelson [31, 32], who connected Bell inequality violation with Grothendieck’s

inequality. For two-qubit Werner states ρWμ = μ |ψ−〉〈ψ−| + (1 − μ)11/4, we show that there is an

LHV model for projective measurements if and only if μ ≤ 1/KG(3). If we restrict the projective

measurements to a plane, then there is a local model for projective meausurements on ρμ if and only

if μ ≤ 1/
√

2.

In Chapter 3, we exploit this connection to construct explicit LHV models, based on (the proofs

of) Krivine’s upper bounds on KG(n) [33]. Among the constructions are local hidden variables

models for (i) projective measurements on the qubit-qubit Werner state ρWμ = μ |ψ−〉〈ψ−| + (1 −
μ)11/4, for μ ≤ 0.6595, (ii) the joint correlation of projective measurements on ρμ = μ ρ+(1−μ)11/4,

where ρ is an arbitrary qubit-qubit quantum state, for μ ≤ 0.6009; and (iii) traceless two-outcome

observables on ρmax
μ = μ |ψ+

d 〉〈ψ+
d | + (1 − μ)11/d2, where |ψ+

d 〉 is a maximally entangled state in d

dimensions, for μ ≤ 0.5611.

Next we turn to simulation with LHV models augmented by classical communication. In Chap-

ter 4, we show how to generalize Bell inequalities to this setting. Suppose Alice and Bob each choose

one of M two-outcome measurements and exchange one bit of information. We present the complete

set of inequalities for M = 2, and the complete set of inequalities for the joint correlation observable

for M = 3. The correlations produced by quantum theory satisfy both of these sets of inequalities.

One bit of communication is therefore sufficient to simulate quantum correlations in both of these

scenarios.

In Chapter 5, we show that one bit of communication is sufficient to simulate the correlations

of projective measurements on a maximally entangled state of two qubits. We apply this result to
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show that certain quantum teleportation experiments, which teleport a single qubit, admit an LHV

model.

Part I culminates in Chapter 6. Here we put the ideas of Chapters 2 and 3 together with those

of Chapter 5 to show that five bits of communication are sufficient to simulate the joint correlation

of two-outcome measurements on any bipartite quantum state. This result can be interpreted as a

stronger (constrained) version of Grothendieck’s inequality.

1.3.2 Monogamy of nonlocal correlations

In Part II, we describe new techniques for obtaining Tsirelson bounds, or upper bounds on the

quantum value of a Bell inequality. Since quantum correlations do not allow signaling, we obtain

a Tsirelson bound by maximizing over all no-signaling probability distributions. In Chapter 7 we

show this maximization can be cast as a linear program.

We apply these techniques in a setting where three parties, A, B, and C, share an entangled

quantum state of arbitrary dimension. We: (i) bound the trade-off between AB’s and AC’s violation

of the CHSH inequality, and (ii) demonstrate that forcing B and C to be classically correlated

prevents A and B from violating certain Bell inequalities, relevant for interactive proof systems and

cryptography.
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Part I

Classical Models for the Quantum

Joint Correlation
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Chapter 2

Local models for noisy entangled
quantum states: existence

2.1 Introduction

In this chapter, we relate the nonlocal properties of noisy entangled states to Grothendieck’s constant,

a mathematical constant appearing in Banach space theory. For two-qubit Werner states ρWp =

p |ψ−〉〈ψ−|+(1−p)11/4, we show that there is a local model for projective measurements if and only

if p ≤ 1/KG(3), where KG(3) is Grothendieck’s constant of order 3. Known bounds on KG(3) prove

the existence of this model at least for p � 0.66, quite close to the current region of Bell violation,

p ∼ 0.71. We generalize this result to two-outcome measurements on arbitrary quantum states. This

chapter is joint work with Antonio Aćın and Nicolas Gisin.

From an operational point of view it is not difficult to define when a quantum state exhibits

nonclassical correlations. Suppose that two parties, Alice (A) and Bob (B), share a mixed quantum

state ρ with support on HA ⊗ HB, where HA (HB) is the local Hilbert space of A’s (B’s) system.

Then ρ contains quantum correlations when its preparation requires a nonlocal quantum resource.

Conversely, a quantum state is classically correlated, or separable, when it can be prepared using

only local quantum operations and classical communication (LOCC). From this definition, due to

Werner [34], it follows that a quantum state ρ is separable if it can be expressed as a mixture

of product states, ρ =
∑N
i=1 pi|ψiA〉〈ψiA| ⊗ |ψiB〉〈ψiB |. A state that cannot be written in this form

has quantum correlations and is termed entangled. But the above definition, in spite of its clear

physical meaning, is somewhat impractical. Tests to distinguish separable from entangled states are

complicated [35], except when dA = 2 and dB ≤ 3 [36, 37], dA and dB denoting the dimensions of

the local subsystems.

Violation of a Bell inequality by a quantum state is, in many situations, a witness of useful corre-

lations [38]. In particular, Bell inequality violation is a witness of a quantum state’s entanglement.

Now, the question is: Are all entangled states nonlocal? For the case of pure states, the answer is
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Figure 2.1: Nonlocal properties of two-qubit Werner states, ρWp . Werner’s local model works up to
p = 1/2, while the CHSH inequality is violated when p > 2−1/2 ∼ 0.71. Here, we prove the existence
of a local model for projective measurements when p � 0.66.

yes [39]: All entangled pure states violate the CHSH inequality. In 1989, Werner showed that the

previous result cannot be generalized to mixed states. He introduced what are now called Werner

states, and gave a local hidden variable (LHV) model for measurement outcomes for some entangled

states in this family [34]. Although the construction only worked for projective measurements, his

result has since been extended to general measurements [40].

In spite of these partial results, it is generally extremely difficult to determine whether an entan-

gled state has a local model or not, since (i) finding all Bell inequalities is a computationally hard

problem [22, 41] and (ii) the number of possible measurement is unbounded (see however [42] for

recent progress). This question remains unanswered even in the simplest case of Werner states of

two qubits. These are mixtures of the singlet |ψ−〉 = (|01〉 − |10〉)/√2 with white noise of the form

ρWp = p |ψ−〉〈ψ−| + (1 − p )
11
4
. (2.1)

It is known that Werner states are separable iff p ≤ 1/3, admit an LHV model for all measurements

for p ≤ 5/12 [40], admit an LHV model for projective measurements for p ≤ 1/2 [34] and violate

the CHSH inequality for p > 1/
√

2 (see Fig. 2.1). However, the critical value of p, denoted pWc ,

at which two-qubit Werner states cease to be nonlocal under projective measurements is unknown.

This question is particularly relevant from an experimental point of view, since pWc specifies the

amount of noise the singlet tolerates before losing its nonlocal properties.

In this chapter, we exploit the connection between correlation Bell inequalities and Grothendieck’s

constant [43], first noticed by Tsirelson [31], to prove the existence of a local model for several noisy

entangled states. We first demonstrate that pWc is related to a generalization of this constant, namely,

pWc = 1/KG(3), where KG(3) is Grothendieck’s constant of order 3 [33]. The exact value of KG(3)

is unknown, but known bounds establish that 0.6595 ≤ pWc ≤ 1/
√

2. Thus, we close more than

three-quarters of the gap between Werner’s result and the known region of Bell inequality violation
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(see Fig. 2.1). Next, we show that if Alice (or Bob) is restricted to make measurements in a plane

of the Poincaré sphere, then there is an explicit LHV model for all p ≤ 1/KG(2) = 1/
√

2. This

improves on the bound of Larsson, who constructed an LHV model for planar measurements for

p ≤ 2/π [44]. Thus, in the case of planar projective measurements, violation of the CHSH inequality

completely characterizes the nonlocality of two-qubit Werner states.

In the case of traceless two-outcome observables, we can extend our results to mixtures of an

arbitrary state ρ on Cd ⊗ Cd with the identity, of the form

ρp = p ρ+ (1 − p )
11
d2
. (2.2)

Denote by pc(ρ) the maximum value of p for which there exists an LHV model for the joint correlation

of traceless two-outcome observables on ρp, and define

pdc = min
ρ
pc(ρ) pc = lim

d→∞
pdc . (2.3)

Then pc = 1/KG where KG is Grothendieck’s constant. Again, the exact value of KG is unknown,

but known bounds imply 0.5611 ≤ pc ≤ 0.5963.

Finally, we discuss the opposite question of finding Bell inequalities better than the CHSH

inequality at detecting the nonlocality of ρWp , or, more generally, of Bell diagonal states.

Before proving our results, we require some notation. We write a two-outcome measurement by

Alice as {A+, A−}, where the projectors A± correspond to measurement outcomes ±1. Similarly, a

two-outcome measurement made by Bob is denoted {B+, B−}. We define the observable correspond-

ing to Alice’s (Bob’s) measurement as A = A+ −A− (B = B+ −B−). An observable A is traceless

if trA = 0, or equivalently trA− = trA+. The joint correlation of Alice and Bob’s measurement

results, denoted α and β, respectively, is

〈αβ〉 = tr (A⊗B ρ) . (2.4)

Alice’s local marginal is specified by 〈α〉 = tr (A⊗ 11 ρ), and Bob’s by 〈β〉 = tr (11 ⊗B ρ). Together,

〈αβ〉, 〈α〉 and 〈β〉 define the full probability distribution for two-outcome measurements on ρ. An

LHV model for the full probability distribution is one that gives the same values 〈αβ〉, 〈α〉 and 〈β〉 as

quantum theory. An LHV model for the joint correlation is one that gives the same joint correlation

〈αβ〉, but not necessarily the correct marginals. In the qubit case, the projective measurements

applied by the parties are specified by the direction of their Stern-Gerlach apparatuses, given by

normalized three-dimensional real vectors �a and �b: A = �a · �σ and B = �b · �σ.
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2.2 Werner states

Let us first consider the case of Werner states (2.1). For projective measurements on ρWp , LHV

simulation of the joint correlation is sufficient to reproduce the full probability distribution. This

follows from:

Lemma 2.2.1. Suppose that there is an LHV model L that gives joint correlation 〈αβ〉L. Then

there is an LHV model L′ with the same joint correlation and uniform marginals: 〈αβ〉L′ = 〈αβ〉L,

〈α〉L′ = 〈β〉L′ = 0.

Proof. Let α and β be the outputs generated by the LHV L (dependent on the hidden variables

and measurement choices). Define a new LHV L′ by augmenting the hidden variables of L with an

additional random bit c ∈ {−1, 1}. In L′, Alice outputs cα and Bob cβ.

Therefore, the analysis of the nonlocal properties of Werner states under projective measurements

can be restricted to Bell inequalities involving only the joint correlation. Actually, this holds for any

Bell diagonal state, under projective measurements, since trA ρ = trB ρ = 11/2 for all these states,

so all projective measurements give uniform marginals. In the Bell scenarios we consider, Alice and

Bob each choose from m observables, specified by {A1, . . . , Am} and {B1, . . . , Bm}. We can write a

generic correlation Bell inequality as

|
m∑

i,j=1

Mij 〈αiβj〉| ≤ 1, (2.5)

where M = (Mij) is an m ×m matrix of real coefficients defining the Bell inequality. The matrix

M is normalized such that the local bound is achieved by a deterministic local model, i.e.,

max
ai=±1, bj=±1

|
m∑

i,j=1

Mij aibj| = 1. (2.6)

For the singlet state 〈αiβj〉Ψ− = −�ai ·�bj. We obtain the maximum ratio of Bell inequality violation

for the singlet state, denoted Q, by maximizing over normalized Bell inequalities, and taking the

limit as the number of settings goes to infinity:

Q = lim
m→∞ sup

Mij

max
�ai,�bj

|
m∑

i,j=1

Mij �ai ·�bj |. (2.7)

Since all joint correlations vanish for the maximally mixed state, it follows that the critical point at

which two-qubit Werner states do not violate any Bell inequality is pWc = 1/Q.

As first noticed by Tsirelson, the previous formulation of the Bell inequality problem is closely

related to the definition of Grothendieck’s inequality and Grothendieck’s constant, KG (see [31] for
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details). Grothendieck’s inequality first arose in Banach space theory, particularly in the theory

of p-summing operators [45]. We shall need a refinement of his constant, which can be defined as

follows [43]:

Definition 2.2.2 (Grothendieck’s constant of order n). For any integer n ≥ 2, Grothendieck’s

constant of order n, denoted KG(n), is the smallest number with the following property: Let M be

any m×m matrix for which

|
m∑

i,j=1

Mij aibj | ≤ 1, (2.8)

for all real numbers a1, . . . , am, b1, . . . , bm ∈ [−1,+1]. Then

|
m∑

i,j=1

Mij �ai ·�bj | ≤ KG(n), (2.9)

for all unit vectors �a1, . . . ,�am,�b1, . . . ,�bm in R
n.

Definition 2.2.3 (Grothendieck’s constant). Grothendieck’s constant is defined as

KG = lim
n→∞KG(n). (2.10)

The best bounds currently known for KG are 1.6770 ≤ KG ≤ π/(2 log(1 +
√

2)) = 1.7822 [46].

The lower bound is due to Reeds and, independently, Davies [4, 5], while the upper bound is due to

Krivine [33].

It follows immediately from the first definition that the maximal Bell violation for the singlet

state (2.7) is KG(3). We have therefore proved

Theorem 2.2.4. There is an LHV model for projective measurements on the Werner state ρWp if

and only if p ≤ pWc = 1/KG(3).

It is known that
√

2 ≤ KG(3) ≤ 1.5163. The lower bound follows from the CHSH inequality; the

upper bound is again due to Krivine [33]. He shows that KG(3) ≤ π/(2c3) where c3 is the unique

solution of √
c3
2

∫ c3

0

t−3/2 sin t dt = 1 (2.11)

in the interval [0, π/2]. Numerically we find that c3 ≈ 1.0360. This implies KG(3) ≤ 1.5163 and

pWc ≥ 0.6595. Furthermore, it turns out that an explicit LHV model emerges from Krivine’s upper

bound on KG(3), as we shall see in the following chapter.

Another result follows from Krivine’s work:

Theorem 2.2.5. If Alice’s projective measurements are restricted to a plane in the Poincaré sphere,

then there is an LHV model for ρWp if and only if p ≤ 1/
√

2.
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Proof. In this case, the vectors �ai in (2.7) are two-dimensional. Since the quantum correlation

depends only on the projection of �bj onto �ai, we can assume that the vectors �bj lie in the same

plane. It follows that pWc = 1/KG(2) for planar measurements, and Krivine has shown that KG(2)

is equal to
√

2 [33].

Again Krivine’s proof can be adapted to give an explicit LHV model for planar measurements,

valid for p ≤ 1/
√

2 and we shall do this in the next chapter.

2.3 Generalization to higher dimensions

It is possible to extend these results to general states of the form (2.2), if we restrict our analysis

to correlation Bell inequalities of traceless two-outcome observables. Admittedly, this analysis is far

from sufficient. Indeed, it does not allow us to determine whether the full probability distribution

admits an LHV model even in the case of two-outcome measurements, since the most general Bell

inequalities have terms that depend on marginal probabilities [23]. Mindful of this caveat, we

now prove the existence of LHV models for the joint correlation of the states (2.2). To make the

connection with Grothendieck’s constant, we start with a representation of quantum correlations

as dot products, first noted by Tsirelson [31]. It is sufficient to restrict to the case of pure states,

since we can obtain an LHV model for a mixed state ρ by decomposing it into a convex sum of pure

states, and taking a convex combination of the LHVs for those pure states.

Lemma 2.3.1. Suppose Alice and Bob measure observables A and B on a pure quantum state

|ψ〉 ∈ Cd ⊗ Cd. Then we can associate a real unit vector �a ∈ R2d2 with A (independent of B), and

a real unit vector �b ∈ R2d2 with B (independent of A) such that 〈αβ〉ψ = �a ·�b. Moreover, if |ψ〉 is

maximally entangled, then we can assume the vectors �a and �b lie in Rd
2−1.

Proof. Let |a〉 = A⊗ 11B|ψ〉 and |b〉 = 11A ⊗B|ψ〉. Then 〈αβ〉 = 〈a|b〉, 〈a|a〉 = 〈b|b〉 = 1. Denote the

components of |a〉 as ai where i = 1, 2, . . . , d2, and similarly for |b〉. We now define a 2d2–dimensional

real vector �a = (Re a1, Im a1, Re a2, Im a2, . . . , Re ad2 , Im ad2), and similarly�b = (Re b1, Im b1, Re b2,

Im b2, . . . , Re bd2 , Im bd2). Then �a · �a = �b ·�b = 1 and 〈αβ〉 = �a ·�b (because 〈a|b〉 is real).

If |ψ〉 is maximally entangled, we can assume |ψ〉 = |ψ+〉 = 1/
√
d
∑d

i=1 |ii〉. We calculate

〈αβ〉ψ+ = trA (ABt) /d where Bt is the transpose of B. Introduce a (d2 − 1)–dimensional basis gi

for traceless operators on HA, normalized such that tr (gigj) = dδij . Let A =
∑

i aigi, B
t =
∑

i bigi,

which define the vectors �a and �b. Squaring these definitions and taking the trace gives
∑

i a
2
i =∑

i b
2
i = 1. Finally, tr (ABt) = d

∑
i aibj , which implies that 〈αβ〉 =

∑
i aibi = �a ·�b.

The converse of Lemma 2.3.1 is also true: All dot products of normalized vectors, �a,�b ∈ Rn, are

realized as observables on |ψ+〉, where n = 2�log2 d� + 1. This result was derived by Tsirelson in
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Ref. [31]. For the sake of completeness, we state it here without proof (see [31] for the details).

Theorem 2.3.2 (Tsirelson [31]). Let {âi}mi=1 and {b̂j}mj=1 be sets of unit vectors in Rn. Let d =

2�n/2� and |Φ〉 be a maximally entangled state on Cd ⊗ Cd. Then there are observables A1 . . . , Am

and B1 . . . , Bm on Cd such that

〈αi〉 = 〈Φ|Ai ⊗ 11|Φ〉 = 0, (2.12)

〈βj〉 = 〈Φ|11 ⊗Bj |Φ〉 = 0, (2.13)

〈αiβj〉 = 〈Φ|Ai ⊗Bj |Φ〉 = âi · b̂j , (2.14)

for all 1 ≤ i, j ≤ m.

Note that in our case, the stipulation that the observables be traceless ensures that their out-

comes are random on the maximally mixed state. Theorem 2.3.3 follows from Lemma 2.3.1 and

Theorem 2.3.2:

Theorem 2.3.3. Let ρ be a state on Cd ⊗ Cd and define ρp and pdc as in Eqs. (2.2,2.3). Then

1
KG(2d2)

≤ pdc ≤
1

KG(2�log2 d� + 1)
. (2.15)

In other words, there is always an LHV model for the joint correlation of traceless two-outcome

observables on ρp for p ≤ 1/KG(2d2) and there is a state (in fact, the maximally entangled state on

�log2 d� qubits) such that the joint correlation is nonlocal for p > 1/KG(2�log2 d� + 1).

Corollary 2.3.4. The threshold noise for the joint correlation of two-outcome traceless observables

is pc = 1/KG.

This follows from the previous theorem, taking the limit d → ∞. The known bounds imply

0.5611 ≤ pc ≤ 0.5963. Compare this to ps, the threshold noise at which the state ρp is guaranteed

separable: While ps decreases with dimension at least as 1/(1 + d) [47], pc approaches a constant.

In the case of two-qubit systems, we can be more specific, because projective measurements are

traceless and have two outcomes:

Corollary 2.3.5. Suppose ρ is an arbitrary state on C2 ⊗C2. Then there is an LHV model for the

joint correlation on ρp = p ρ + (1 − p)11/4 for p ≤ 1/KG(8). In particular, KG(8) ≤ 1.6641 [33],

which implies there is an LHV model for p ≤ 0.6009.

For maximally entangled states, marginals of traceless observables are uniform, so Lemmas 2.2.1

and 2.3.1 imply:

Theorem 2.3.6. Let ρp = p |ψ+〉〈ψ+| + (1 − p)11/d2 where |ψ+〉 is a maximally entangled state in
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Cd⊗Cd. Then there is an LHV for the full probability distribution arising from traceless observables

for p ≤ 1/KG(d2 − 1).

2.4 Bell inequalities for Werner states

Just as upper bounds on KG(n) yield LHV models, lower bounds yield Bell inequalities. The case of

Werner states appears of particular interest: At present, there is no Bell inequality better than CHSH

at detecting the nonlocality of ρWp . This and other approaches to construct new Bell inequalities

will be presented in [48]. Unfortunately, none of these inequalities could be proven to be better than

CHSH. It is remarkable how difficult it is to enlarge this region of Bell violation or, equivalently, to

show that KG(3) > KG(2) =
√

2. Actually, in the case of random marginal probabilities, as for Bell

diagonal states under projective measurements, no improvement over the CHSH inequality can be

obtained using 3 × n measurements [49].

This result, however, would imply that KG(3) = KG(2) =
√

2, which seems unlikely. Actually,

one can find in [46] an explicit construction with 20 settings showing that KG(5) ≥ 10/7 >
√

2.

More recently, one of us has shown that KG(4) >
√

2 as well [48].

2.5 Conclusions

In this work, we have exploited the connection between Bell correlation inequalities and Grothendieck’s

constants to prove the existence of LHV models for several noisy entangled states. In the case of

Werner states, one can demonstrate the existence of a local model for projective measurements up

to p ∼ 0.66, close to the known region of Bell violation. Although we only proved here the existence

of the LHV models, the correspondence between noise thresholds and Grothendieck’s constants can

also be exploited to construct the explicit models. Indeed, these can be extracted from (the proofs

of) Krivine’s upper bounds on KG(n). The details are presented in the following chapter.
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Chapter 3

Local models for noisy entangled
quantum states: constructions

3.1 Introduction

In the preceding chapter, I, with Aćın and Gisin, related the nonlocal properties of noisy entangled

states to KG(n), Grothendieck’s constant of order n. In this chapter, I exploit this connection

to construct explicit local hidden variables models, based on Krivine’s proofs of upper bounds on

KG(n).

As before, we consider the one-parameter family of states obtained by mixing an arbitrary quan-

tum state ρ with white noise

ρp = p ρ+ (1 − p)11d/d2, (3.1)

where 0 ≤ p ≤ 1. We list our results:

1. Qubit-qubit Werner states are mixtures of the singlet |ψ−〉 = (|01〉−|10〉)/√2 with white noise

of the form

ρWp = p |ψ−〉〈ψ−| + (1 − p )
11
4
. (3.2)

It is known that Werner states are separable iff p ≤ 1/3, admit an LHV model for all measure-

ments for p ≤ 5/12 [40], admit an LHV model for projective measurements for p ≤ 1/2 [34] and

violate the CHSH inequality for p > 1/
√

2 (see Fig. 2.1). In the previous chapter, we showed

that there is an LHV model for projective measurements iff p ≤ 1/KG(3). Although KG(3) is

not known exactly, it is known that
√

2 ≤ KG(3) ≤ 1.5163. The lower bound comes from the

CHSH inequality; the upper bound is due to Krivine [33]. He shows that KG(3) ≤ π/(2c3)

where c3 is the unique solution of

√
c3
2

∫ c3

0

t−3/2 sin t dt = 1 (3.3)
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in the interval c3 ∈ [0, π/2]. Numerically we find that c3 ≈ 1.0360. This implies KG(3) ≤
1.5163. It turns out that we can extract an explicit LHV model from Krivine’s proof, valid for

p ≤ 0.6595. We present it in Section 3.5.

2. For projective measurements on ρWp , but where Alice’s measurements are restricted to a plane

of the Poincaré sphere, there is an LHV model iff p ≤ 1/KG(2) = 1/
√

2. We construct

this model in Section 3.7. Previously, it was known that there is an LHV model for planar

measurements for p ≤ 2/π = 0.6366 [44].

3. For the joint correlation of projective meausurements on pρ+(1−p)11/4, where ρ is an arbitrary

state on C2 ⊗ C2, there is an LHV model for p ≤ 1/KG(8). Known bounds give an explicit

model for p ≤ 0.6009. We give this construction in Section 3.6.

4. For traceless observables on p |ψ+
d 〉〈ψ+

d |+(1−p)11/d2, where |ψ+
d 〉 is a maximally entangled state

in Cd ⊗ Cd, there is an LHV model for the full probability distribution if p ≤ 1/KG(d2 − 1).

This generalizes result 1 (for qubit-qubit Werner states) to higher dimensional systems. In

Section 3.4, we give an explicit construction that works for all d, provided p ≤ 0.5611. For any

particular value of d, we can do better: We describe this construction in Section 3.6.

5. For the joint correlation arising from traceless observables on pρ+ (1 − p)11/d2, where ρ is an

arbitrary state on Cd⊗Cd, there is an LHV model for p ≤ 1/KG(2d2). In Section 3.4, we give

an explicit construction that works for all d, provided p ≤ 0.5611. For any particular value of

d, we can do better: We describe this construction in Section 3.6.

In each case we state the LHV model first, before proving its correctness. This means we shall

have to pull some constants and functions from thin air, without much motivation. We have chosen

this format so that a reader who is only interested in the protocols need not wade through the

proofs. At first glance, the LHV models may appear rather mysterious, and so we attempt to give

some intuition where they come from. For further intuition, we refer the reader to Krivine’s original

paper. As these results owe much to Krivine’s work, we have attempted, where possible, to keep the

notation consistent with his paper.

The remaining material in the chapter is organized as follows: In Section 3.2, we present a simple

LHV model that does not actually reproduce any quantum correlations, but is used as a primitive

in LHV models that do. In Sections 3.3 and 3.4 we present two LHV models for the correlation of

traceless observables on mixtures of the identity with an arbitrary quantum state. The model in

Section 3.3 is simpler than that in Section 3.4; it is, however, valid only for p ≤ 0.4345, whereas the

model in Section 3.4 works for p ≤ 0.5611. Next, in Section 3.5, we give an LHV for observables

on qubit-qubit Werner states. In Section 3.6, we present an LHV model for traceless observables

on mixtures of the identity with an arbitrary state on C
d ⊗ C

d. The most important application
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of this result is the LHV for observables on noisy qubit-qubit states described above. The LHV

model for Werner states of Section 3.5 is actually just a special case of the model in Section 3.6: We

present it separately, however, because it is the case of most interest and requires only mathematical

machinery that is likely to be familiar to quantum theorists. Finally, in Section 3.7 we present an

LHV model for planar measurements on a Werner state.

Section 3.2 is required to understand what follows, but Section 3.3 through Section 3.7 can then

be read independently of one another. We have, however, ordered the sections so that the LHV

models increase in sophistication, and we do recommend they be read in order.

We write Sn for the unit sphere in R
n. We write the complex conjugate of a vector �v ∈ C

n as

�c∗. The function “sgn” is the sign function: sgnx = x/|x|.

3.2 A primitive for LHV models

In this section, we present a simple protocol that doesn’t itself give correct correlations for the

quantum states of interest, but is used as a primitive in the models that do. Originally due to

Grothendieck [45], it was presented independently by Bell [7] and others. The LHV model is as

follows:

Protocol 3.2.1. (Random Variables) Alice and Bob share a unit vector λ̂ ∈ R
n chosen uniformly

at random from the unit sphere.

(Alice) Alice outputs α = sgn(â · λ̂).

(Bob) Bob outputs β = sgn(b̂ · λ̂).

We claim:

Lemma 3.2.2. Protocol 3.2.1 results in correlations

〈αβ〉 =
2
π

sin−1 â · b̂. (3.4)

Proof. Let us calculate Pr(α = β). Introduce an azimuthal coordinate φ for λ̂ in the plane spanned

by â and b̂, such that â has coordinate φ = 0 and b̂ has coordinate r = cos−1 xs · yt ∈ [0, π]. Then

sgn(â · λ̂) = 1 for φ ∈ [−π/2, π/2] and −1 otherwise, while sgn(b̂ · λ̂) = 1 for φ ∈ [r − π/2, r + π/2]

and −1 otherwise. Because λ̂ is distributed uniformly in RN , φ is distributed uniformly in [0, 2π).

Thus Pr(α = β) = (π − r)/π, the fraction of the interval [0, 2π) on which α = β. It follows that

〈αβ〉 = Pr(α = β) − Pr(α �= β) =
2
π

(π
2
− r
)

=
2
π

sin−1 â · b̂, (3.5)

as required.
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Protocol 3.2.1 works in any dimension n. Notice that we didn’t really need the shared vector �λ

to be a unit vector: For any r ∈ (0,∞), replacing λ̂ by �λ = rλ̂ does not change the sign of �v · �λ,

so we can draw our shared random vectors from any set with the property that the projection of �λ

onto the unit sphere is uniform. A particularly convenient choice is to sample each coordinate of �λ

at random from a Gaussian distribution with mean 0 and standard deviation 1. This results in the

following model, which is equivalent to Protocol 3.2.1:

Protocol 3.2.3. (Random Variables) Alice and Bob share a sequence λ1, λ2, . . . , λn of numbers

where each λi is drawn from a normal distribution with mean 0 and standard deviation 1. We write

�λ = (λ1, λ2, . . . , λn) ∈ Rn.

(Alice) Alice outputs α = sgn(â · λ̂).

(Bob) Bob outputs β = sgn(b̂ · λ̂).

Lemma 3.2.4. Protocol 3.2.3 results in correlations

〈αβ〉 =
2
π

sin−1 â · b̂. (3.6)

We omit the proof.

3.3 LHV model based on Grothendieck’s upper bound on KG

In this section we present an LHV model for traceless observables on mixtures of an arbitrary

quantum state with the identity. It is based on Grothendieck’s original upper bound on what came

to be known as his constant KG and is valid for p < 0.4345. To proceed, let â ∈ Rn be the vector

associated with Alice’s observable A by Lemma 2.3.1, and let b̂ ∈ Rn be the vector associated with

Bob’s observable B by the same lemma.

Protocol 3.3.1. (Random Variables) Alice and Bob share an integer k drawn from the prob-

ability distribution Pr(k) = (π/2)2k+1

(2k+1)! sinh(π/2) . They also share 2k + 1 unit vectors λ̂1, λ̂2, . . . , λ̂2k+1

drawn uniformly at random from the unit sphere in Rn.

(Alice) Alice outputs α = (−1)k sgn
[
(â · λ̂1)(â · λ̂2) · · · (â · λ̂2k+1)

]
(Bob) Bob outputs β = sgn

[
(b̂ · λ̂1)(b̂ · λ̂2) · · · (b̂ · λ̂2k+1)

]
.

Theorem 3.3.2. Protocol 3.3.1 results in correlations

〈αβ〉 =
1

sinh(π/2)
â · b̂. (3.7)

Proof. We had better start by making sure that our protocol is well defined, i.e., check that
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k Pr(k) = 1. This is straightforward:

∑
k

Pr(k) =
1

sinh(π/2)

∑
k

1
(2k + 1)!

(π/2)2k+1 = 1, (3.8)

since the Taylor series for sinhx is
∑

k
1

(2k+1)!x
2k+1. Thus the protocol is well defined.

We calculate

〈αβ〉 =
∑
k

(−1)k
(π/2)2k+1

(2k + 1)! sinh(π/2)

∫
dλ̂1 · · ·

∫
dλ̂2k+1 (3.9)

sgn
[
(â · λ̂1) · · · (â · λ̂2k+1)

]
sgn
[
(b̂ · λ̂1) · · · (b̂ · λ̂2k+1)

]
. (3.10)

by averaging over the shared randomness. Since the vectors λ̂1, . . . , λ̂n are chosen independently, we

may break up the integral in the k’th term of the sum into the product of 2k + 1 terms:

〈αβ〉 =
∑
k

(−1)k
(π/2)2k+1

(2k + 1)! sinh(π/2)

[∫
dλ̂1 sgn(â · λ̂1) sgn(b̂ · λ̂1)

]2k+1

. (3.11)

Fortunately, we have already evaluated this integral in the preceding section. Indeed, it the just the

expression for the correlations arising from Protocol 3.2.1. Therefore, by Lemma 3.2.2 we have

∫
dλ̂1 sgn(â · λ̂1) sgn(b̂ · λ̂1) =

2
π

sin−1 â · b̂. (3.12)

Substituting this into Eq. (3.11), we obtain

〈αβ〉 =
1

sinh(π/2)

∑
k

(−1)k
1

(2k + 1)!

[
sin−1 â · b̂

]2k+1

(3.13)

=
1

sinh(π/2)
sin(sin−1 â · b̂) =

1
sinh(π/2)

â · b̂. (3.14)

This completes the proof.

3.4 LHV model based on Krivine’s upper bound on KG

In this section we give a better LHV model for correlations of traceless observables on mixtures

an arbitrary quantum state with the identity. The model in the previous section was valid for

p ≤ 0.4345; the model in this section works for p ≤ 0.5611. It is adapted from a proof of Krivine,

later simplified by Alon and Naor [41]. Let â ∈ Rn be the vector associated with Alice’s measurement

in accordance with Lemma 2.3.1, and let b̂ ∈ R
n be the vector associated with Bob’s measurement.
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Let c = sinh−1 1 = ln(1 +
√

2). We present a protocol that gives correlations

〈αβ〉 =
2c
π
â · b̂. (3.15)

To simulate these correlations, we map â and b̂ to new vectors, A(â) and B(b̂), respectively,

which live in a much larger space. We then run Protocol 3.2.1 on A(â) and B(b̂). The trick is in

choosing appropriate functions A and B.

To this end, let A,B : Rn →⊕∞
k=0(R

n)⊗(2k+1). The range of A and B is a direct sum of tensor

products of R
n. Of course

⊕∞
k=0(R

n)⊗(2k+1) is just R
∞ (usually denoted l∞), the space of infinite

sequences, but this particular parameterization is convenient. We write A(�v) =
⊕∞

k=0A
2k+1(�v), and

term the functions A2k+1(�v) “coordinates” of A(�v). Similarly B(�v) =
⊕∞

k=0 B
2k+1(�v)

Define

A2k+1(�v) = (−1)k
√

c2k+1

(2k + 1)!
�v ⊗(2k+1); B2k+1(�v) =

√
c2k+1

(2k + 1)!
�v ⊗(2k+1), (3.16)

where �v ⊗(2k+1) denotes the vector �v ⊗ �v ⊗ · · · ⊗ �v with 2k + 1 tensor factors.

The LHV model is as follows:

Protocol 3.4.1. (Random Variables) Alice and Bob share an infinite sequence λ1, λ2, . . . of real

numbers, where each λi is drawn from a normal distribution with mean 0 and standard deviation 1.

We write �λ = (λ1, λ2, . . .) ∈ l∞.

(Alice) Alice outputs α = sgn(A(â) · �λ).

(Bob) Bob outputs β = sgn(B(b̂) · �λ).

Theorem 3.4.2. Protocol 3.4.1 results in correlations

〈αβ〉 =
2c
π
â · b̂ =

2 sinh−1 1
π

â · b̂. (3.17)

Proof. In order to apply Lemma 3.2.2, we have to check that that A(â) is a unit vector whenever

â is, and do the same for B(b̂). We’ll defer verification of this fact until after we calculate the

correlations.

Provided A(â) and B(b̂) are unit vectors, Lemma 3.2.2 implies that Protocol 3.4.1 results in

correlations

〈αβ〉 =
2
π

arcsinA(â) · B(b̂). (3.18)

Now,

A(â) ·B(b̂) =
∞∑
k=0

A2k+1(â) · B2k+1(b̂) =
∞∑
k=0

(−1)k
c2k+1

(2k + 1)!
â⊗(2k+1) · b̂⊗(2k+1). (3.19)
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But â⊗i · b̂⊗i =
(
â · b̂
)i

, since we can just evaluate the dot product separately on each tensor factor.

Therefore

A(â) ·B(b̂) =
∞∑
k=0

(−1)k
c2k+1

(2k + 1)!
(â · b̂)2k+1 = sin

(
câ · b̂

)
, (3.20)

since the Taylor series for sinx =
∑

k(−1)kx2k+1/(2k + 1)!. It should now be apparent why the

functions A and B were chosen as they were. Lemma 3.2.2 then implies that

〈αβ〉 =
2
π

arcsinA(â) · B(b̂) =
2c
π
â · b̂. (3.21)

It remains to check that A(â) and B(b̂) are unit vectors. We check this for A(â):

A(â) ·A(â) =
∞∑
k=0

c2k+1

(2k + 1)!
â⊗(2k+1) · â⊗(2k+1) =

∞∑
k=0

c2k+1

(2k + 1)!
= sinh c = 1, (3.22)

which explains why we chose c as we did. The calculation for B(b̂) is almost identical. This verifies

that we were correct in applying Lemma 3.2.2.

3.5 LHV model based on Krivine’s upper bound on KG(3)

In this section we present an LHV model for observables on the Werner state

ρWp = p |ψ−〉〈ψ−| + (1 − p)
11
4
, (3.23)

valid for p < 0.6595. Although the LHV model in this section is just a special case of that which

will be presented in Section 3.6, we present it separately for two reasons: (i) LHV models for

qubit-qubit Werner states are of particular interest, and (ii) most physicists (ourselves included) are

more familiar with spherical harmonics and Legendre polynomials than they are with the equivalent

technical machinery in higher dimensions.

The protocol is similar to that developed in Section 3.4, in that it makes use of Protocol 3.2.1,

but we use different functions A and B to obtain an LHV model that works for a larger range of

parameters. Suppose Alice measures ρWp along a direction â ∈ R3, and Bob along b̂ ∈ R3.

In particular, let A3, B3 : S3 →⊕∞
k=0

⊕2k+1
m=−(2k+1) R

2 and write

A3(â) =
∞⊕
k=0

2k+1⊕
m=−(2k+1)

A
(2k+1,m)
3 (â), (3.24)

and similarly for B3, which serves to define the “coordinates” of A3 and B3.
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Let c3 be the unique solution of

√
c3
2

∫ c3

0

t−3/2 sin t dt = 1 (3.25)

in the interval c3 ∈ [0, π/2]. Numerically we find that c3 ≈ 1.0360. We define

A
(2k+1,m)
3 (â) = (−1)k+1

√
4π3/2J2k+3/2(c3)√

2c3

(
ReY m2k+1(â), ImY m2k+1(â)

)
, (3.26)

B
(2k+1,m)
3 (b̂) =

√
4π3/2J2k+3/2(c3)√

2c3

(
ReY m2k+1(b̂), ImY m2k+1(b̂)

)
, (3.27)

where Y ml are the spherical harmonics, and Jν is the Bessel function of the first kind of order ν.

The protocol proceeds as follows:

Protocol 3.5.1 (LHV model for qubit-qubit Werner states). (Random Variables) Alice and

Bob share an infinite sequence λ1, λ2, . . . of real numbers, where each λi is drawn from a normal

distribution with mean 0 and standard deviation 1. We write �λ = (λ1, λ2, . . .) ∈ l∞.

(Alice) Alice outputs α = sgn(A3(â) · �λ).

(Bob) Bob outputs β = sgn(B3(b̂) · �λ).

We claim that:

Theorem 3.5.2. Protocol 3.5.1 results in correlations

〈αβ〉 = −2c3
π
â · b̂. (3.28)

Before proving Theorem 3.5.2, we assemble a number of facts about special functions we shall

need:

Lemma 3.5.3 (Addition Theorem for Spherical Harmonics). The spherical harmonics Y mn satisfy

Pn(â · b̂) =
4π

2n+ 1

n∑
m=−n

Y mn (â)Y m∗
n (b̂), (3.29)

where Pn is the Legendre polynomial of order n, normalized such that Pn(1) = 1.

Lemma 3.5.4 (Orthogonality of Legendre polynomials). The Legendre polynomials satisfy

∫ 1

−1

Pn(t)Pm(t)dt =
2

2n+ 1
δnm. (3.30)

Lemma 3.5.5 (Rodrigues’ formula for Pn). The Legendre polynomial Pn(x) can be written as

Pn(x) =
1

2nn!

(
d

dx

)n
(x2 − 1)n. (3.31)
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Lemma 3.5.6 (Definition of Jν(x)). The Bessel function of the first kind has integral representation

Jν(x) =
1

Γ(ν + 1/2)
√
π

(x
2

)ν ∫ π
2

−π
2

cos(x sin t) cos2ν t dt, (3.32)

for ν > −1/2 and x ∈ R.

As before, to use our analysis of Protocol 3.2.1, we must first establish that the function A3 maps

unit vectors to unit vectors.

Lemma 3.5.7. If â is a unit vector, then so is A3(â). Similarly, if b̂ is a unit vector, then so is

B3(b̂).

Proof. We calculate

A3(â) ·A3(â) =
∞∑
k=0

2k+1∑
m=−(2k+1)

A
(2k+1,m)
3 (â) · A(2k+1,m)

3 (â) (3.33)

=
∞∑
k=0

4π3/2J2k+3/2(c3)
4
√

2c3
Re

⎡
⎣ 2k+1∑
m=−(2k+1)

Y m2k+1(â)Y
m∗
2k+1(â)

⎤
⎦ (3.34)

=
∞∑
k=0

4π3/2J2k+3/2(c3)√
2c3

4k + 3
4π

P2k+1(1) (3.35)

=
√

π

2c3

∞∑
k=0

(4k + 3)J2k+3/2(c3), (3.36)

where we made use of Lemma 3.5.3.

It is a technical exercise to evaluate this sum (see Appendix A) and we find that

√
π

2c3

∞∑
k=0

(4k + 3)J2k+3/2(c3) =
√
c3
2

∫ c3

0

t−3/2 sin t dt = 1, (3.37)

by our choice of the constant c3. This establishes that A3(â) is a unit vector. A similar analysis

works for B3(b̂).

With these tools in hand, we are in a position to prove Theorem 3.5.2:
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Proof of Theorem 3.5.2. We calculate

A3(â) ·B3(b̂) =
∞∑
k=0

2k+1∑
m=−(2k+1)

A
(2k+1,m)
3 (â) ·B(2k+1,m)

3 (b̂) (3.38)

=
∞∑
k=0

(−1)k+1 4π3/2J2k+3/2(c3)
4
√

2c3
Re

⎡
⎣ 2k+1∑
m=−(2k+1)

Y m2k+1(â)Y
m∗
2k+1(b̂)

⎤
⎦ (3.39)

=
∞∑
k=0

(−1)k+1 4π3/2J2k+3/2(c3)√
2c3

4k + 3
4π

P2k+1(â · b̂) (3.40)

=
√

π

2c3

∞∑
k=0

(−1)k+1(4k + 3)J2k+3/2(c3)P2k+1(â · b̂). (3.41)

We claim that this is the expansion of − sin(c3â · b̂) in Legendre polynomials. To check this, write

− sin(c3t) =
∞∑
k=0

a2k+1P2k+1(t), (3.42)

where the expansion is guaranteed to exist by completeness of the Legendre polynomials. By the

orthogonality of Legendre polynomials (Lemma 3.5.4), the coefficient a2k+1 is given by

a2k+1 = −4k + 3
2

∫ 1

−1

sin(c3t)P2k+1(t)dt. (3.43)

We use Rodrigues’ formula for P2k+1 (given in Lemma 3.5.5) and integrate by parts 2k+ 1 times to

obtain

a2k+1 = −4k + 3
2

1
22k+1(2k + 1)!

c2k+1
3 (−1)2k+1(−1)k

∫ 1

−1

cos(c3t)(t2 − 1)2k+1dt

=
(4k + 3)c2k+1

3

22k+2(2k + 1)!
(−1)k+1

∫ 1

−1

cos(c3t)(1 − t2)2k+1dt (3.44)

=
(4k + 3)c2k+1

3

22k+2(2k + 1)!
(−1)k+1

∫ π
2

−π
2

cos(c3 sin t′) cos2(2k+1)+1 t′dt′ (3.45)

=
√

π

2c3
(−1)k+1(4k + 3)J2k+3/2(c3), (3.46)

where we use the integral representation of Jν(x) given in Lemma 3.5.6.

It follows that

A3(â) · B3(b̂) = − sin
(
c3â · b̂

)
, (3.47)

and so, by Lemma 3.2.2, Protocol 3.5.1 gives correlations

〈αβ〉 = −2c3
π
â · b̂. (3.48)
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This completes the proof.

3.6 LHV model based on Krivine’s upper bound on KG(n)

In this section, we generalize the LHV model of the previous section to higher dimensions. If we

are interested in simulating the correlations of noisy states supported on Hilbert spaces of known

dimension, then we can do slightly better than Protocol 3.4.1. In particular we saw in Section 3.7

that KG(2) =
√

2, and in Section 3.4 that limn→∞KG(n) = KG ≤ 1.78. In this section we give

better upper bounds (or better hidden variables models) for finite n.

We start with a number of definitions and facts. This section is rather technical: Ref. [50] provides

an introduction to the required mathematics. Let Hn
k be the space of homogeneous polynomials in

n variables of degree k, harmonic on Rn. (A polynomial hk(�v) is homogeneous of degree k if it

satisfies hk(λ�v) = λkhk(�v) for λ > 0; it is harmonic if it satisfies Laplace’s equation ∇2hk(�v) = 0.)

The dimension of the space Hn
k is

Nn
k = (n+ 2k − 2)(n+ k − 3)!/k!(n− 2)!. (3.49)

Let Δn
k,j be a real orthonormal basis for Hn

k for j = 1, . . . , Nn
k . These functions are termed surface

harmonics. They are normalized such that

∫
Sk

Δn
k,jΔ

n
k,j′dΩ = δjj′ . (3.50)

Definition 3.6.1 (Gegenbauer polynomials). The Gegenbauer polynomial of degree k and order ν

is defined by the generating function

∞∑
k=0

Cνk (x)rk =
(
1 − 2rx+ r2

)−ν
. (3.51)

Setting ν = 1/2, we obtain the generating function for the Legendre polynomials, which implies

that C1/2
k (x) = Pk(x). These polynomials are the generalization to higher dimensions of the Legendre

polynomials. To make the comparison more explicit we have the following:

Definition 3.6.2 (Ultraspherical polynomial). The ultraspherical polynomial of degree k and order

n is

Pnk (x) =
C
n/2−1
k (x)

C
n/2−1
k (1)

=
k!(n− 3)!

(n+ k − 3)!
C
n/2−1
k (x). (3.52)

Our terminology here is not standard: “Ultraspherical polynomial” is often synonymous with

“Gegenbauer polynomial” as defined above; our ultraspherical polynomials are normalized, reparametrized
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Gegenbauer polynomials.

There is a generalization of the addition theorem for spherical harmonics (Lemma 3.5.3) to higher

dimensions:

Lemma 3.6.3 (Addition Theorem for Ultraspherical Polynomials (Theorem 11.4 of Ref. [50])). The

surface harmonics Δn
k,j satisfy

Pnk (â · b̂) =
ωn
Nn
k

Nn
k∑

j=1

Δn
k,j(â)Δ

n
k,j(b̂), (3.53)

where ωn = 2πn/2/Γ(n/2) is the surface area of Sn.

Notice how Lemma 3.6.3 reduces to Lemma 3.5.3 when we set n = 3.

Next, we define a probability distribution on [−1,+1] that mimics the distribution of â · b̂ on

Sn × Sn:

Lemma 3.6.4. Define

πn(dx) =
Γ(n/2)

π1/2Γ((n− 1)/2)
(1 − x2)(n−3)/2dx. (3.54)

Then for all continuous functions F : [−1,+1] → R,

∫ 1

−1

F (x)πn(dx) =
∫
Sn

∫
Sn

F (â · b̂)dâdb̂. (3.55)

The ultraspherical polynomials are orthogonal with respect to this measure:

Lemma 3.6.5 (Orthogonality and completeness of ultraspherical polynomials (Eqs. (3.15.16) and (1.15.17)

of Ref. [50])). The ultraspherical polynomials satisfy

∫ 1

−1

Pnk (x)Pnl (x)πn(dx) =
1
Nn
k

δkl. (3.56)

Furthermore, the ultraspherical polynomials form a complete system (with respect to πn) for functions

on [−1,+1].

Just as in the three-dimensional case, we can write the function sin cnx =
∑∞
k=0 b

n
2k+1P

n
2k+1(x),

where the coefficient bn2k+1 = Nn
2k+1

∫ 1

−1
sin cnxPn2k+1(x)πn(dx). Leaving aside the value of cn for the

moment, we can write down the LHV protocol. We define functions An, Bn : Sn →⊕∞
k=0

⊕Nn
2k+1

j=0 R,

with coordinates defined by

An(â) =
∞⊕
k=0

Nn
2k+1⊕
j=0

A(2k+1,j)
n (â) (3.57)
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and

Bn(â) =
∞⊕
k=0

Nn
2k+1⊕
j=0

B(2k+1,j)
n (â), (3.58)

such that

A(2k+1,j)
n (â) = (−1)k

√
bn2k+1N

n
2k+1

ωn
Δn

2k+1,j(â), (3.59)

B(2k+1,j)
n (b̂) =

√
bn2k+1N

n
2k+1

ωn
Δn

2k+1,j(b̂). (3.60)

Protocol 3.6.6 (LHV model for correlations on arbitrary states). (Random Variables) Alice and

Bob share an infinite sequence λ1, λ2, . . . of real numbers, where each λi is drawn from a normal

distribution with mean 0 and standard deviation 1. We write �λ = (λ1, λ2, . . .) ∈ l∞.

(Alice) Alice outputs α = sgn(An(â) · �λ).

(Bob) Bob outputs β = sgn(Bn(b̂) · �λ).

Theorem 3.6.7. Protocol 3.6.6 results in correlations

〈αβ〉 =
2cn
π
â · b̂ (3.61)

The proof that this protocol gives the correct correlations goes through in the same manner as

the proof of Theorem 3.5.2 in the previous section. To determine the value of cn, we require that

Ân(â) be a unit vector, which is equivalent to the condition
∑

k |bn2k+1| = 1. We shall state Krivine’s

result without proof:

Theorem 3.6.8 (Krivine [33]). The coefficient cn is determined by

∑
k

|bn2k+1| =
∑
k

A2k+1

(2k + 1)!
(cn)2k+1 = 1, (3.62)

where A1 = 1 and

A2k+1 =
(n− 4)(n− 8) · · · (n− 4k)

(n+ 2)(n+ 6) · · · (n+ 4k − 2)
. (3.63)

Using this expression, Krivine obtains c4 = 1, and so on. The case k = 8 is of particular

interest, in light of Corollary 2.3.5. We find c8 + c38/15 = 1, which gives c8 = 0.9439. This implies

KG(8) ≤ 1.6641, or that our LHV model for the joint correlation of projective measurements on

pρ+ (1 − p)11/4 works for p ≤ 0.6009.
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3.7 LHV model based on Krivine’s upper bound on KG(2)

In this section, we deal with the scenario where Alice and Bob share the Werner state

ρW
1/

√
2

=
1√
2
|ψ−〉〈ψ−| +

(
1 − 1√

2

)
11
4
, (3.64)

and make measurements on this state along axes that lie in a fixed plane of the Poincaré sphere. In

fact, it is sufficient if either Alice or Bob choses measurements from a plane, because then only the

projection of the other’s measurement axis onto that plane is relevant. We construct an LHV model

for these measurements from Krivine’s proof that KG(2) =
√

2.

Fix a reference direction in the plane, and assume Alice measures her qubit at an angle x and

Bob measures his at an angle y with x, y ∈ [−π, π). Alice outputs a bit α and Bob a bit β depending

on whether their qubit is aligned with, or opposite to, their measurement axis. We require that

〈αβ〉 = − 1√
2

cos(x− y).

We shall make use of the following particularly nice fact about LHV models for simulating

correlations of two-dimensional vectors:

Lemma 3.7.1. Let λ ∈ R. Suppose there is a protocol P that generates correlations 〈αβ〉 = F (x−y).
Then there is a protocol Pλ, which generates the correlations 〈αβ〉 = F (λ(x− y)).

Proof. Simply run the original protocol P on inputs λx and λy.

Note that we cannot obtain a similar result for vectors living in a space of dimension greater

than two.

Before stating the protocol, we require a few definitions. Define a function f : [−π, π) → [−1,+1]

such that f(t) = f(−t), f(t) = −f(π − t), and

f(t) =

⎧⎪⎨
⎪⎩

1 if t ∈ [0, π/4],

3
(
1 − 2t

π

)− 4
(
1 − 2t

π

)3 if t ∈ [π/4, π/2].
(3.65)

(This is the mysterious part of the protocol. We explain the choice of f below.) We sketch the

function f in Fig. 3.1. We can extend the function f to the real line by defining f(t + 2π) = f(t).

We also define a function g : [−π, π) → [−1,+1],

g(t) = sgn (cos t) . (3.66)

Let c2k+1 be the Fourier coefficients of f :

f(t) =
∞∑
k=0

c2k+1 cos(2k + 1)t, (3.67)
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t

f(t)

−π π
4−π

4

1

−1

1
2

− 1
2

π

Figure 3.1: The function f defined by Eq. (3.65)

and d2k+1 be the Fourier coefficients of g:

g(t) =
∞∑
k=0

d2k+1 cos(2k + 1)t. (3.68)

Let

a2k+1 =
c2k+1d2k+1

2
= (−1)k

2
π(2k + 1)

c2k+1, (3.69)

where we have substituted for the coefficients d2k+1. Finally, we define a sequence b2k+1. Let

b1 = 1/(
√

2 a1), and

b2k+1 = − 1
a1

∑
d|(2k+1),d 
=1

adb(2k+1)/d, (3.70)

for k > 0. Numerically, the first few terms are b1 = 0.9284, b3 = −0.0597, b5 = −0.0041, and

b7 = 0.0017.

We require the following lemma to ensure that our protocol is well defined. We defer its proof

until after presentation of the protocol.

Lemma 3.7.2. The set {|b2k+1| : k = 0, 1, . . .} is a probability distribution, i.e.,
∑
k |b2k+1| = 1.

We are now in a position to define the protocol.

Protocol 3.7.3. (Random Variables) Alice and Bob share an integer 2n + 1 chosen randomly

and distributed such that Pr(2n+ 1) = |b2n+1|. (In practice this can be accomplished by sharing a

random number r ∈ [0, 1) and choosing n such that
∑2n−1
k=1 |b2k+1| ≤ r <

∑2n+1
k=1 |b2k+1|.) They also

share an angle t ∈ [−π, π) drawn uniformly at random.

(Alice) Alice outputs

α = − sgn(b2n+1) g [(2n+ 1)(x− t)] . (3.71)
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(Bob) Bob outputs β ∈ {−1,+1} such that

〈β〉 = f [(2n+ 1)(t− y)] . (3.72)

In order to prove that Protocol 3.7.3 yields the correct correlations, we start by establishing some

properties of the function f(t). We shall need only these properties for the rest of the proof; the

function f(t), defined in Eq. (3.65), is chosen to establish the existence of a function that satisfies:

Lemma 3.7.4. Let the function f(t), defined by Eq. (3.65), have Fourier coefficients c2k+1, as

defined in Eq. (3.67). Let χ(2k + 1) =
√

2 cos [(2k + 1)π/4] (= ±1). Then

(i) f(t) = 1 for t ∈ [0, π/4];

(ii) f(t) = f(−t) and f(t) = −f(π − t);

(iii) c1 > 0 and sgn c2k+1 = −(−1)kχ(2k + 1) for k > 0;

(iv) c1 >
∑∞

k=1 |c2k+1|/(2k + 1).

Proof. Properties (i) and (ii) are obvious. To establish (iii) and (iv) we calculate the Fourier coeffi-

cients of f(t) directly. We find that

c2k+1 =
768 cos [(2k + 1)(π/4)]

π4(2k + 1)3

(
1

2k + 1
− (−1)k

π

4

)
. (3.73)

Property (iii) follows immediately. To prove (iv), we either plug Eq. (3.73) into a computer algebra

system, or calculate (following Krivine),

√
2π4

768

∞∑
k=1

|c2k+1|
(2k + 1)

=
∞∑
k=1

1
(2k + 1)4

(
π

4
− (−1)k

2k + 1

)
(3.74)

<

∞∑
k=1

1
(2k + 1)4

(
π

4
+

1
3

)
(3.75)

=
(
π4

96
− 1
)(

π

4
+

1
3

)
(3.76)

< 1 − π/4 =
√

2π4

768
c1, (3.77)

using
∑∞

k=0 1/(2k + 1)4 = π4/96.

Continuing, for the moment, to defer proof of Lemma 3.7.2 (which ensured our protocol was well

defined), we prove

Theorem 3.7.5. Protocol 3.7.3 results in correlations

〈αβ〉 = − 1√
2

cos(x− y). (3.78)
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Proof. Integrating over the random variables, we find that

〈αβ〉 = −
∑
n

b2n+1

∫
dt

2π
g((2n+ 1)(x− t))f((2n+ 1)(t− y)). (3.79)

Let F = f � g be the convolution of f and g:

F (x− y) =
∫

dt

2π
f(x− t)g(t− y) =

∑
k

a2k+1 cos [(2k + 1)(x− y)] , (3.80)

recalling the definition of a2k+1. It follows that

〈αβ〉 = −
∑
n

b2n+1F [(2n+ 1)(x− y)] (3.81)

= −
∑
n

∑
m

b2n+1a2m+1 cos [(2m+ 1)(2n+ 1)(x− y)] (3.82)

= −
∑
k

∑
(2m+1)|(2k+1)

a2m+1b(2k+1)/(2m+1) cos [(2k + 1)(x− y)] , (3.83)

where the rearrangement of the summations is justified because the series
∑

k a2k+1 and
∑

k b2k+1

are both absolutely converging (the former by Eq. (3.69) and property (iv) of Lemma 3.7.4; the

latter by Lemma 3.7.2).

The coefficients b2k+1 were chosen such that a1b1 = 1/
√

2 and

∑
(2m+1)|(2k+1)

a2m+1b(2k+1)/(2m+1) = 0 (3.84)

if k > 0 (this is just a rearrangement of Eq. (3.70)), so only the k = 0 term survives in Eq. (3.83)

and we have 〈αβ〉 = − 1√
2

cos(x− y).

Proof of Lemma 3.7.2. We first determine the signs of the bk. The Fourier coefficients a2k+1 are

given by Eq. (3.69) so that a1 > 0 and sgna2k+1 = −χ(2k + 1) for k > 0 by property (iii) of

Lemma 3.7.4. We prove by induction that sgn b2k+1 = χ(2k + 1). We need the fact that χ(mn) =

χ(m)χ(n) where m and n are odd integers, which is easily established (indeed it is sufficient to check

for m,n ∈ {±1,±3} since χ(m) = χ(m+ 8)). It is clear that sgn b1 = χ(1). The coefficient b2k+1 is

defined inductively via

b2k+1 = − 1
a1

∑
d|(2k+1),d 
=1

adb(2k+1)/d, (3.85)

and sgn(adb(2k+1)/d) = −χ(d)χ((2k + 1)/d) = −χ(2k + 1) for all 1 < d < 2k + 1 by the inductive

hypothesis. Hence all the terms in the sum have the same sign and we have sgn b2k+1 = χ(2k + 1).
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So we must compute
∑ |b2k+1| =

∑
b2k+1χ(2k + 1). To this end, define the Dirichlet series

D(s) =
∞∑
k=0

a2k+1χ(2k + 1)
(2k + 1)s

. (3.86)

From property (iv) of Lemma 3.7.4 it follows that a1 > |a3| + |a5| + · · · , so the series D(s) is

absolutely converging for s ≥ 0 and has an inverse,

1/D(s) =
√

2
∞∑
k=0

b2k+1χ(2k + 1)
(2k + 1)s

, (3.87)

where the coefficients are given by Eq.(3.70), as can be verified by equating coefficients in the product

term by term.

Substituting s = 0 gives

∑
b2k+1χ(2k + 1) =

[√
2
∑

a2k+1χ(2k + 1)
]−1

(3.88)

=
[
2
∑

a2k+1 cos [(2k + 1)π/4]
]−1

(3.89)

=
1

2F (π/4)
. (3.90)

Now F (π/4) =
∫ π
−π

dt
2πf(t)g(π4 − t). Noting that g(π4 − t) = sgn cos(π4 − t) = 1 if t ∈ [−π/4, 3π/4],

we find

F (π/4) =
∫ 3π/4

−π/4

dt

2π
f(t) −

∫ −π/4

−5π/4

dt

2π
f(t) =

2
π

∫ π/4

0

dt f(t), (3.91)

using property (ii) of Lemma 3.7.4. Now, since f(t) = 1 if t ∈ [0, π/4] by property (i) of the same

lemma, we have F (π/4) = 1/2, which implies that
∑

k |b2k+1| = 1.

It is instructive to look through the proof and note where we used each of the four properties of

the function f(t) enumerated in Lemma 3.7.4. Property (iv) ensures that the Dirichlet series D(s),

defined in Eq. (3.86), is absolutely converging for s > 0, which means we may write 1/D(s) as a

Dirichlet series that itself is absolutely converging. Property (iii) ensures that we can compute the

signs of the coefficients a2k+1 and b2k+1. Finally, properties (i) and (ii) ensure that F (π/4) is as

large as possible, which makes
∑

k |b2k+1| as small as possible, which gives the best possible LHV

model.

3.8 Discussion

In this chapter we have constructed explicit LHV models for the joint correlation resulting from

making two-outcome projective measurements on quantum states. This work raises a number of
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questions:

1. It is rather unsatisfying to have results only for the joint correlation. Can we generalize these

techniques to obtain LHV models for the full probability distribution?

2. Can we obtain better bounds on KG(n) and, in particular, on KG(3)? I have attempted to

improve the lower bound on KG(3) elsewhere, thus far without success [48]. I also suspect that

Krivine’s upper bound on KG(3) can be improved a little. This is because we know that the

upper bound given by the same construction (i.e., that of Section 3.6) is not tight for n = 2.

Perhaps a similar construction to that used in Section 3.7 is possible in the case n = 3, but

the analysis will be messier due to the absence of Lemma 3.7.1 when n > 2.

3. Do all proofs of Grothendieck’s inequality (and there are many) give rise to explicit LHV

models? For example, I do not see how to extract an LHV model from the proof in Ref. [51] (see

Theorem 6.27, p. 152).
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Chapter 4

Bell inequalities with auxiliary
communication

4.1 Introduction

We turn now to a different measure of nonlocality, the communication cost of classical simulation.

We generalize Bell inequalities to the setting of local realistic theories augmented by a fixed amount

of classical communication. Suppose two parties choose one of M two-outcome measurements and

exchange one bit of information. We present the complete set of inequalities for M = 2, and the

complete set of inequalities for the joint correlation observable for M = 3. We find that correlations

produced by quantum theory satisfy both of these sets of inequalities. One bit of communication

is therefore sufficient to simulate quantum correlations in both of these scenarios. This chapter is

joint work with Dave Bacon.

Quantum correlations on spacelike separated systems cannot be reproduced classically. If, how-

ever, the systems are timelike separated, then classical simulation is possible, albeit at the expense

of some communication, but how much is required? In particular, suppose a number of spatially

separate parties share an entangled quantum state, and each makes a local measurement on their

component. Then quantum correlations are manifest in the joint probability distribution of the par-

ties’ outcomes, dependent on each party’s choice of measurement. If this probability distribution

cannot be reproduced by a classical local realistic theory, then it violates some generalized Bell

inequality [19]. This means some communication between the parties is required to reproduce the

probability distribution, but Bell inequality violation does nothing to quantify how much. More

generally, entanglement is a resource for performing information processing tasks, and an important

goal of quantum information theory is to demarcate the difference between it and classical resources,

such as shared randomness and classical communication channels. What classical resources are re-

quired to reproduce the joint probability distributions arising from local measurement on shared

quantum states?
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Within the setting of local realistic theories augmented by a fixed amount of two-way classical

communication [52], we introduce the notion of Bell inequalities with auxiliary communication. These

inequalities provide conditions on the joint probability distribution, which must be satisfied if such

correlations can be simulated with shared randomness and a fixed amount of communication. Of

particular significance are complete sets of such inequalities, which provide necessary and sufficient

conditions. In the scenario where two parties choose one of M two-outcome measurements and

exchange one bit of information, we present the complete set of inequalities for M = 2, and the

complete set of inequalities for the joint correlation observable for M = 3. We find that quantum

correlations satisfy all of these inequalities, irrespective of the particular quantum state or the specific

measurements, and can therefore be explained in these settings by augmenting a local realistic theory

with a single bit of communication. This is particularly remarkable for the M = 3 case, where one

would naively expect a trit of auxiliary communication is required to simulate quantum correlations.

4.2 The model

We restrict attention to scenarios with two parties, A and B. In a quantum measurement scenario

for this bipartite case, each party selects one of M different measurements and then—possibly after

some delay, during which we might allow the parties to communicate—outputs one of K different

outcomes. (Note that A and B may choose measurements from different M -element sets.) Such a

measurement scenario results in a set of probabilities 0 ≤ p(a, b|i, j) ≤ 1, where p(a, b|i, j) is the

probability that A outputs a and B outputs b, given that A selects measurement i and B selects

measurement j. Discounting null outcomes (which can be incorporated as a separate outcome if

desired), it follows that
∑K−1
a=0

∑K−1
b=0 p(a, b|i, j) = 1, where 0 ≤ i, j ≤M − 1. A valid measurement

scenario is any set of probabilities that satisfies these normalization constraints.

Given a particular measurement scenario, we investigate all protocols that the two parties might

perform to produce the correct probabilities. A protocol consists of three stages: (i) preparation via

the distribution of shared randomness, (ii) communication via the exchange of messages between the

parties, and (iii) output of outcomes by each party as determined by information accessible to each

party. A and B select their measurements after step (i) but before step (ii). If a protocol produces

identical probabilities to the measurement scenario, then we say that the protocol has simulated the

scenario.

Two informational resources are of interest: the quantity of shared randomness and the amount

of communication between the parties. We focus on the amount of communication and define the

cost of a protocol to be the maximum amount of communication required (as opposed to the average

amount of communication, see [53, 54, 55, 56, 57]). In the preparation phase of a protocol, we allow

A and B to share an infinite amount of classical information and, in particular, continuous variables.
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In the parlance of foundational studies of quantum theory, these are known as local hidden variables

(LHVs) [58]. A protocol with no communication (step (ii) missing) is usually called an LHV theory.

In such a theory, each party’s output depends on the shared randomness and on which measurement

the particular party has locally selected, but not on the measurement choice of the other party.

The protocols we investigate are therefore an extension of LHV theories, where we allow the

parties to communicate after selecting measurements [52]. This allows some “which-measurement”

information to propagate between the parties. We emphasize that a protocol of this form simu-

lates the joint probability distribution resulting from a set of quantum measurements, but not the

quantum measurements themselves: It is not possible to replace local measurements made by two

spacelike separated parties on an entangled quantum state by classical communication. Even in this

case, however, the amount of two-way communication required to reproduce the joint probability

distribution provides a measure of the nonlocality of the correlations. From an information process-

ing perspective, this model provides a fair setting for the comparison of quantum correlations and

classical resources required to reproduce them.

Of particular significance in this respect is the result of Brassard, Cleve, and Tapp [52], who

demonstrated that the correlations produced by two-outcome projective measurements on an EPR

pair can be simulated by a local realistic theory augmented by eight bits of communication. Sur-

prisingly, a single bit of communication is sufficient, as we shall see in the next chapter.

Little, however, is known for more general states and more general measurements. The goal of

this paper is to illuminate how such bounds can be achieved by generalizing Bell inequalities to what

we term Bell inequalities with auxiliary communication.

4.3 Bell polytopes

We described how to construct Bell inequalities without auxiliary communication in Section 1.2.3.

For completeness, we reproduce the argument here. Bell inequalities [7, 25] describe necessary

conditions on the probabilities p(a, b|i, j), which must be satisfied if these probabilities are to be

produced by a local realistic theory. When a set of these conditions is also sufficient, we say that we

have a complete set of Bell inequalities. The construction of complete sets of Bell inequalities is an

exercise in convex geometry.

Consider a deterministic protocol, i.e., one in which no randomness, shared or otherwise, is

used. (This corresponds to a protocol consisting only of step (iii) above, with the additional re-

quirement that this step is deterministic.) Each party’s output can only depend on their local

which-measurement information, so that all such protocols can be completely characterized by two

functions α, β : ZM → ZK , which describe the outcomes of the two parties’ measurements: If A

selects measurement i, she outputs α(i) and if B selects measurement j, he outputs β(j). The
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probabilities for the scenario are then p(a, b|i, j) = δaα(i)δ
b
β(j).

By listing the components, we may view the probabilities p(a, b|i, j) as vectors �p in RD with

D = M2(K2 − 1) (recall the constraint
∑

a,b p(a, b|i, j) = 1). To each pair of functions {α, β}, there

corresponds a deterministic protocol, so the set of all deterministic protocols is a finite collection of

such vectors {�dζ |ζ = 1, ...,K2M}.
Now consider the effect of allowing randomness. Any unshared randomness can always be re-

placed by shared randomness on which the other party does not act [59], so we may continue to

assume step (iii) is deterministic. But then every set of random variables in step (i) corresponds

to a particular deterministic protocol. Therefore the set of all possible protocols that use random-

ness and no communication is described by a convex sum of the deterministic protocols without

communication

�p =
∑
ζ

λζ �dζ ,
∑
ζ

λζ = 1, λζ ≥ 0. (4.1)

The set of all protocols therefore corresponds to a region ΩMK in RD, which is a polytope because

there is a finite number of extreme vectors �dζ [20]. This permits an alternative description: Instead

of describing the polytope ΩMK as the convex combination of a finite set of extreme points, we can

describe it by specifying a complete (finite) set of facet inequalities. A facet inequality is a pair

{�f, c} that defines a half-space of RD via the inequality �f · �p ≤ c. Complete sets of facet inequalities

�fη, cη are satisfied if and only if �p is in ΩMK :

�p ∈ ΩMK iff �fη · �p ≤ cη, ∀η. (4.2)

Each facet is therefore a Bell inequality and complete sets of facet inequalities are complete sets

of Bell inequalities. Complete sets are known in the two-party case when M = 2,K = 2 [21],

M = 3,K = 2 [22], and also when extra symmetry constraints are imposed [24].

4.4 Bell inequalities with auxiliary communication

We now turn to the main focus of this chapter: extending the formalism of Bell inequalities to

protocols that permit communication after the parties have chosen their measurements. Again

consider a deterministic protocol, but now allow for the communication (possibly two way) of at

most r bits of information between the parties after selection of measurements. Such a protocol is

completely characterized by two functions α, β : ZM ⊗ ZM → ZK , which describe the outcomes of

the two parties’ measurements, but now each party’s output can also depend on which measurement

the other party selects: If A selects measurement i and B measurement j, A outputs α(i, j) and B

outputs β(i, j). The probabilities for such a deterministic protocol are then p(a, b|i, j) = δaα(i,j)δ
b
β(i,j).

While α and β can now depend on which measurement the other party selects, not all functions
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α(i, j), β(i, j) are necessarily accessible, if the parties exchange at most r bits of communication.

The set of possible functions α(i, j), β(i, j) for protocols that use at most r bits of communication

is the subject of the field of communication complexity [60, 59]. For example, with a single bit of

communication from A to B, α(i, j) is independent of B’s measurement j, and β(i, j) can depend

only on a partition of the set of possible i’s into two sets. Despite this complication, deterministic

protocols still correspond to a finite set of vectors of probabilities �d (r)
ζ in RD.

If we now allow randomness, the set of accessible probabilities Ω(r)
MK is given by the convex

combination of the deterministic probabilities, �p =
∑

ζ λζ
�d

(r)
ζ ,

∑
ζ λζ = 1, λζ ≥ 0. Again, Ω(r)

MK is

a convex combination of a finite number of extreme points—a polytope—and can be described by a

finite set of facet inequalities: �p ∈ Ω(r)
MK iff �f

(r)
η · �p ≤ cη, ∀η. The complete set of facet inequalities

for Ω(r)
MK is a complete set of Bell inequalities with r bits of communication. An important limit

arises when r ≥ 2 log2M because then each party can tell the other exactly which measurement they

have selected. In this setting, all deterministic protocols can be executed by the two parties: The

probability distribution p(a, b|i, j) is unrestricted. This implies that Bell inequalities with auxiliary

communication are trivial when M = 1.

Additionally, for r ≥ log2M , Bell inequalities with auxiliary communication, although not nec-

essarily trivial, are never violated by probability distributions arising from local measurements on a

shared quantum state. In fact this is true for any probability distribution satisfying the no-one-way-

signaling conditions: pa|i,j ≡ ∑K−1
b=0 p(a, b|i, j) = pa|i is independent of j for all a and i. In other

words, A’s marginal probability distribution is independent of B’s choice of measurement. In such

cases, it is sufficient that only A communicate her measurement choice. The simulation procedure is

as follows: For each of A’s measurements i, the parties share a random variable ãi drawn from the

probability distribution {a, pa|i} (i.e. ãi = a with probability pa|i). Suppose A chooses measurement

i and B chooses measurement j. A outputs ãi and sends her measurement choice i to B. B then

outputs b̃ãi,i,j , where b̃a,i,j is drawn from the probability distribution {b, pãi,b|i,j}. (The roles of A

and B in the no-one-way-signaling conditions and protocol may be reversed.)

4.4.1 Complete set of Bell inequalities with auxiliary communication

Consider the simplest case M = K = 2 and r = 1 bit. The polytope Ω(1)
2,2 is 12 dimensional

and has 112 extreme vectors. Using both the primal-dual algorithm and the double description

method [61, 62] for facet enumeration, we find that this polytope has 48 facets. Sixteen facets

describe trivial inequalities, p(a, b|i, j) ≥ 0 (0 ≤ i, j, a, b ≤ 1). Another 16 facets are of the form

p(a1, b1|0, 0) + p(a2, b2|0, 1) + p(a3, b3|1, 0) + p(a4, b4|1, 1) ≤ 2, (4.3)
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with (a1a2a3a4) ∈ {(0101), (1010), (0110), (1001)} and (b1b2b3b4) ∈ {(0011), (1100), (0110), (1001)}.
The remaining 16 facets are given by

p(a, 0|i, j) + p(a, 1|i, j) + p(0, b|̄i, j̄) + p(1, b|̄i, j̄) − p(a, b|i, j̄) ≥ 0 (4.4)

(0 ≤ i, j, a, b ≤ 1), where 0̄ = 1 and 1̄ = 0. The above inequalities completely describe the

region of probability distributions that can be created with one bit of communication. There are

probability distributions that violate these inequalities: For example, if p(a, b|i, j) = δaj δ
b
i , Eq. (4.3)

with (a1a2a3a4) = (0101) and (b1b2b3b4) = (0011) is maximally violated; substitution gives 4 �≤ 2.

It is straightforward to check that any probability distribution satisfying the no-signaling con-

ditions satisfies inequalities Eq. (4.3) and Eq. (4.4). Finally, consider the probability distribution

p(a, b|i, j) = 1
2

(
δa0δ

b
i + δaj δ

b
0

)
. This probability distribution violates the no-signaling conditions (in

both directions), but satisfies Eq. (4.3) and Eq. (4.4), thus indicating that these inequalities are

strictly stronger than no-signaling.

4.4.2 Complete set of Bell inequalities for the joint observable

The above complete Bell inequalities with auxiliary communication were used to bound the allowed

probabilities p(a, b|i, j) for protocols using a specified amount of communication. In quantum theory

we are often not interested in all of the probabilities for a measurement scenario, but only on the

value of a particular joint observable. This simplifies our computational task, because we may

project the polytope Ω(r)
MK onto a lower dimensional subspace and only enumerate the facets of the

projected polytope, as we shall explain in the following. We term a complete set of facet inequalities

for this convex set a complete set of Bell joint observable inequalities with auxiliary communication.

These generalize the CHSH inequality [25] to protocols with communication.

Consider a measurement scenario with probabilities p(a, b|i, j) and identify measurement out-

comes with values of local observables. The joint observable for the ith and jth measurements of A

and B is then defined as

ci,j =
K−1∑
a=0

K−1∑
b=0

AaBbp(a, b|i, j), (4.5)

where Aa and Bb are the values of the local observable corresponding to measurement outcomes

a and b, respectively. As for the full measurement scenario, we may list the components of the

joint observable to form a vector �c in RD with D = M2 (compare D = M2(K2 − 1) for the full

probability distribution). For deterministic protocols with at most r bits of communication, the

allowed functions α and β are the same as in the previous section, but now correspond to vectors

with components ci,j = Aα(i,j)Bβ(i,j). Since the map given by Eq. (4.5) is linear, the vectors

corresponding to joint observables accessible using randomness remain convex combinations of the
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vectors accessible via deterministic protocols.

We now specialize to the scenario where each party has local ±1-valued observables (K = 2) and

they exchange r = 1 bit of communication. The joint correlation observable then has components

ci,j = p(0, 0|i, j) + p(1, 1|i, j) − p(0, 1|i, j)− p(1, 0|i, j). If M = 2, we obtain only trivial inequalities

−1 ≤ ci,j ≤ 1. That the inequalities are trivial also follows from Eqs. (4.3) and (4.4), for in this

scenario all possible joint observables can be obtained from probability distributions that satisfy the

no-signaling conditions [17, 18].

If M = 3, the polytope has 320 extreme vectors. Using again both the primal-dual algorithm and

double description method for facet enumeration we find that this polytope has 498 facets. Eighteen

of these describe the trivial inequalities −1 ≤ ci,j ≤ 1. The remaining 480 facets can be described

by the inequalities
2∑

i,j=0

Mi,jci,j ≤ 1, (4.6)

where Mi,j is either

M1 =
1
6

⎛
⎜⎜⎜⎝

0 −1 1

−1 1 1

1 1 1

⎞
⎟⎟⎟⎠ , M2 =

1
11

⎛
⎜⎜⎜⎝

1 2 −2

2 1 2

−2 2 1

⎞
⎟⎟⎟⎠ , (4.7)

or any matrix obtained from these two matrices by (i) permuting the rows and/or columns of the

matrix and/or (ii) multiplying any subset of the rows and columns of the matrix by −1. The full

set of inequalities is a complete set of Bell joint observable inequalities for M = 3.

Let us show that quantum theory satisfies all of the above Bell joint observable inequalities with

auxiliary communication. We do this for a single one of the inequalities and the other inequalities all

follow by a similar argument. For ±1-valued observables Ai and Bj and the joint quantum state ρ,

a particular inequality looks like Tr [ρTi] ≤ 1, where Ti is the operator corresponding to matrix Mi,

e.g., T1 = [A1(−B2 +B3)+A2(−B1 +B2 +B3)+A3(B1 +B2 +B3)]/6. Tr [ρT] is bounded by the

sup norm of T, |T| = sup|ψ〉 ‖T|ψ〉‖/‖|ψ〉‖ and further Tr [ρT] ≤ |Tk|1/k. Calculation of Tk yields

a polynomial in Ai, Bi, and I. Since |X + Y| ≤ |X|+ |Y| and |P| ≤ 1 for any product P of Ai, Bi,

and I, it follows that |Tk| is less than or equal to the sum of the absolute value of the coefficients

in the polynomial expansion of Tk. By computer calculation we find that the sum of the absolute

value of the coefficients of T4
1 is 155

162 so that |T1| ≤ 4

√
155
162 . Thus this Bell inequality with auxiliary

communication is satisfied. Similar arguments using T4
1 or T5

2 show that all of the inequalities

Eq. (4.6) are satisfied. Therefore in the scenario where each party chooses one of three two-outcome

measurements, a single bit of communication is sufficient to simulate the joint correlation observable

in quantum theory for all quantum states and all quantum observables.
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4.5 Conclusion

Bell inequalities with auxiliary communication are a powerful new tool for understanding the cost

of producing quantum correlations. In all the cases we considered, it was sufficient to augment local

realistic theories with a single bit of communication to simulate the quantum correlations.
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Chapter 5

Communication cost of simulating
Bell correlations

5.1 Introduction

In this chapter, we continue our study of the communication cost of simulating quantum correlations.

For the simplest and most important case of local projective measurements on an entangled Bell

pair state, we show that exact simulation is possible using local hidden variables augmented by just

one bit of classical communication. Certain quantum teleportation experiments, which teleport a

single qubit, therefore admit a local hidden variables model. This chapter is joint work with Dave

Bacon.

Bell pairs are the maximally entangled states of two quantum bits (qubits) and are the basic

resource currency of bipartite quantum information theory. Various equivalences are known: One

shared Bell pair plus two bits of classical communication can be used to teleport one qubit [63] and,

conversely, one shared Bell pair plus a single qubit of communication can be used to send two bits

of classical communication via superdense coding [64].

Consider the gedanken experiment of Einstein, Podolsky, and Rosen [6] (EPR), as reformulated

by Bohm [65]. Two spatially separate parties, Alice and Bob, each have a spin- 1
2 particle, or qubit.

The global spin wave function is the entangled Bell singlet state (also known as an EPR pair)

|ψ〉 = 1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑B〉). The spin states | ↑〉, | ↓〉 are defined with respect to a local set

of coordinate axes: | ↑〉 corresponds to spin along the local +ẑ direction, while | ↓〉 corresponds to

spin along the local −ẑ direction. Alice and Bob each measure their particle’s spin along a direction

parameterized by a three-dimensional unit vector: Alice measures along â, Bob along b̂. Alice

and Bob obtain results, α ∈ {+1,−1} and β ∈ {+1,−1}, respectively, which indicate whether the

spin was pointing along (+1) or opposite (−1) the direction each party chose to measure. Locally,

Alice and Bob’s outcomes appear random, with expectation values 〈α〉 = 〈β〉 = 0, but their joint

probabilities are correlated such that 〈αβ〉 = −â·b̂. We refer to these correlations as Bell correlations.
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It is not possible to reproduce these correlations using a protocol that draws on random variables

shared between Alice and Bob, but does not allow communication after they have selected measure-

ments [7]. So how much communication is required to exactly simulate them [53, 52, 55, 66, 2, 54, 56]?

Naively, Alice can just tell Bob the direction of her measurement â (or vice versa), but this requires

an infinite amount of communication. The question of whether a simulation can be done with a finite

amount of communication was raised independently by Maudlin [53], Brassard, Cleve, Tapp [52],

and Steiner [55]. Their approaches differ in how the communication cost of the simulation is de-

fined: Brassard et al. take the cost to be the number of bits sent in the worst case, Steiner, the

average. (Steiner’s model is weaker because the amount of communication in the worst case can be

unbounded, although such cases occur with probability zero.) Brassard et al. present a protocol that

simulates Bell correlations using exactly eight bits of communication (since improved to six bits [66]).

In light of the previous chapter, where we could prove no nontrivial lower bounds, the only lower

bound for the amount of communication is given by Bell’s theorem: At least some communication

is needed. Here we present a simple protocol that uses just one bit of communication.

5.2 Simulation protocol

We first note three simple properties of Bell correlations: (i) if â = b̂, then we must have α =

−β: Alice and Bob must output perfectly anticorrelated bits; (ii) either party can reverse their

measurement axis and flip their output bit; and (iii) the joint probability is only dependent on â

and b̂ via the combination â · b̂. In his original paper, Bell gave a local hidden variables model

that reproduces these three properties for all possible axes, but his model fails to reproduce Bell

correlations because the statistical correlations when â �= b̂ are not as strong as those of quantum

mechanics [7]. The protocol we describe below is inspired by Bell’s original protocol. Property (iii)

implies that we may restrict attention to rotationally invariant protocols, for which all probabilities

depend only on â · b̂ and not â and b̂ separately, by randomizing over all inputs with the same dot

product. More precisely, suppose P is any protocol that simulates the correlations. Then define a

new protocol P ′ whose hidden variables consist of (i) those required by P , and (ii) a random rotation

R ∈ SO(3). Protocol P ′ then consists of running protocol P on Râ and Rb̂ in place of â and b̂.

We now describe our protocol. Alice and Bob share two random variables λ̂1 and λ̂2, which are

real three-dimensional unit vectors. They are chosen independently and distributed uniformly over

the unit sphere.

The protocol proceeds as follows:

1. Alice outputs α = − sgn(â · λ̂1).

2. Alice sends a single bit c ∈ {−1,+1} to Bob where c = sgn(â · λ̂1) sgn(â · λ̂2).
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3. Bob outputs β = sgn
[
b̂ · (λ̂1 + cλ̂2)

]
,

where we have used the sgn function defined by sgn(x) = +1 if x ≥ 0 and sgn(x) = −1 if x < 0. A

geometric description of our protocol is given in Fig. 5.1. We note immediately that Bob obtains no

information about Alice’s output from the communication.

We now prove that the protocol reproduces the correct expectation values. Each party’s output

changes sign under the symmetry λ̂1 ↔ −λ̂1, λ̂2 ↔ −λ̂2, so 〈α〉 = 〈β〉 = 0 because λ̂1 and λ̂2 are

uniformly distributed. The joint expectation value 〈αβ〉 can be calculated using

〈αβ〉 = E

{
− sgn(â · λ̂1)

∑
d=±1

(1 + cd)
2

sgn
[
b̂ · (λ̂1 + dλ̂2)

]}
, (5.1)

where E {x} = 1
(4π)2

∫
dλ̂1

∫
dλ̂2 x, c = sgn(â · λ̂1) sgn(â · λ̂2) and we have used the trick that

(1 + cd)/2 = 1 if c = d and 0 if c �= d. After substituting for c and expanding Eq. (1), we obtain the

sum of four terms (because each term inside the summation sign is itself the sum of two terms) and,

using sgn(â · λ̂1) c = sgn(â · λ̂2), we note that the four terms are related by the symmetries λ̂1 ↔ λ̂2

or λ̂2 ↔ −λ̂2, so each has the same expectation value. Hence

〈αβ〉 = E
{

2 sgn(â · λ̂1) sgn
[
b̂ ·
(
λ̂2 − λ̂1

)]}
. (5.2)

This integral may be evaluated with the help of the two diagrams shown in Fig. 5.2, with the result

that 〈αβ〉 = −â · b̂, as required.

Our protocol exactly simulates the quantum mechanical probability distribution for projective

measurements on the singlet Bell pair state. If a large number of simulations is performed in

parallel, the communication may be compressed. To see this, assume Alice’s measurement vector â

is uniformly distributed (if not, we randomize, as outlined above). Then, if λ̂1 · λ̂2 = cos η, Alice

sends −1 with probability η/π and 1 with probability 1 − η/π, so that the communication can

be compressed to
∫ π/2
0 sin η dηH(η/π) ≈ 0.85 bits, where H(η/π) is the Shannon entropy. This

encoding depends on the shared unit vectors λ̂1 and λ̂2: A third party without access to the hidden

variables will observe Alice sending uniformly distributed bits to Bob.

Our protocol is easily modified to simulate joint measurements on any maximally entangled

state of two qubits, because every such state is related to the singlet by a local change of basis and

thus may be simulated by rotating and/or reflecting the input vectors â and b̂, before running our

protocol.
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(a) Alice’s output

λ̂1 λ̂2

output −1

output +1

(b) Communication

A sends +1 A sends −1

λ̂1 λ̂2λ̂1 λ̂2

(c) Bob’s output

λ̂1 λ̂2 λ̂1 λ̂2
λ̂1 + λ̂2

λ̂1 − λ̂2

Figure 5.1: The protocol: The shared unit vectors λ̂1 and λ̂2 described in the text divide the Bloch
sphere into four quadrants, as shown. Alice and Bob’s actions depend on which quadrant their
respective measurement axes lie in, and in Bob’s case, the bit he receives from Alice. (a) Alice’s
output: if â lies in the shaded region, Alice outputs −1; in the unshaded region, she outputs +1. (b)
The communication: Alice sends c = +1 if her measurement axis lies in the N or S quadrants, and
−1 otherwise. (c) Bob’s output: this depends on the bit received from Alice. The shading is as for
(a).
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t r
θθ

b̂ = (0, 0, 1)

λ̂1 = (sin t, 0, cos t)

λ̂2 = (sin θ cosφ, sin θ sin φ, cos θ)

cos t = b̂ · λ̂1

â = (0, 0, 1)

b̂ = (sin r, 0, cos r)

λ̂1 = (sin θ cosφ, sin θ sin φ, cos θ)

cos r = â · b̂

(a)
1
4π

∫
dλ̂2 sgn

[
b̂ · (λ̂2 − λ̂1)

]
= −b̂ · λ̂1 (b)

1
2π

∫
dλ̂1 sgn(â · λ̂1)b̂ · λ̂1 = â · b̂

Figure 5.2: Construction used to evaluate Eq. (5.2): (a) We first integrate over λ̂2, taking b̂ to point
along the positive z-axis [67]. Observe that sgn

[
b̂ · (λ̂2 − λ̂1)

]
is positive in the top spherical cap

(shaded) and negative otherwise. The area of the top spherical cap is A+ = 2π
∫ t
0

sin θdθ = 2π(1 −
cos t) where cos t = b̂ · λ̂1, hence

∫
dλ̂2 sgn

[
b̂ · (λ̂2 − λ̂1)

]
= A+ − (4π−A+) = −4π cos t = −4πb̂ · λ̂1.

(b) We now take â to point along the positive z-axis [68], set b̂ = (sin r, 0, cos r), and integrate over
λ̂1, obtaining

∫
dλ̂1 sgn(â · λ̂1)b̂ · λ̂1 =

∫ π
0

sin θdθ
∫ 2π

0
dφ sgn(cos θ) (cos θ cos r + sin θ cosφ sin r) =

2π cos r = 2πâ · b̂.
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5.3 Application to teleportation experiments

Now consider the following experiment: Alice prepares a qubit in a state unknown to Bob. She

then teleports the qubit to Bob, who performs a projective measurement on it, along a direction

unknown to Alice. We shall show that this experiment admits a local hidden variables description.

We first note that quantum teleportation experiments do not purport to test whether quantum me-

chanics allows a local hidden variables model; rather they aim to distinguish quantum teleportation

from other protocols Alice and Bob might carry out using classical communication, but no entan-

glement [69]. From this point of view, teleportation experiments represent “investigations within

quantum mechanics” [70], rather than comparisons of quantum mechanics with classical local hidden

variables models [71]. With this distinction in mind, it is still interesting to ask whether teleportation

experiments can be explained by a local hidden variables model.

If one allows an infinite amount of classical communication from Alice to Bob, then there is a

trivial local hidden variables model, for Alice can just send a classical description of the state to

Bob, who then simulates his measurement. We now give a local hidden variables model that requires

only two bits of communication, which is the same amount as the quantum teleportation protocol.

The construction is based on Ref. [54], where the procedure is termed “classical teleportation.” It

is sufficient to consider the case where Alice prepares the qubit in a pure state, which we suppose

has spin aligned along the axis â. We suppose Bob’s measurement is aligned along the axis b̂. Alice

and Bob share uniformly distributed random three-dimensional unit vectors λ̂1 and λ̂2 (which can

be thought of as hidden variables carried by the Bell pair used for teleportation). The protocol is

as follows:

1. Alice sends c1 = sgn(â · λ̂1) and c2 = sgn(â · λ̂2) to Bob.

2. Bob outputs β = sgn
[
b̂ ·
(
c1λ̂1 + c2λ̂2

)]
.

It is easy to verify that 〈β〉 = â · b̂, as required. We also note that the two bits sent appear completely

random to a party without access to the hidden variables.

It is usual in teleportation experiments to have (i) a third party Victor supply Alice with a

quantum state unknown to her, and (ii) Bob hand off the teleported state to Victor (or another

party) to measure, rather than measuring it himself. Such a distinction is not important for the

question we address, because the qubit transmitted from Victor to Alice, for example, can carry

hidden variables describing its state. The point is that local hidden variables are hidden: Although

it is convenient to describe a local hidden variables model as if Alice and Bob had access to the

hidden variables, the model still exists even if the hidden variables are inaccessible to them. There

is no way for the experimenters to tell whether their experiment is described by quantum theory or

by “gremlins” within their apparatus, executing the local hidden variables protocol described above.
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Are there quantum teleportation experiments that do not have such a local hidden variables

description? One obvious possibility is an experiment that teleports entanglement itself. But there is

a more subtle possibility. If we allow Bob to measure the qubit using elements of a positive operator-

valued measure, then there may not be a local hidden variables description that respects the two-bit

classical communication bound. More generally, if Alice teleports n qubits (which requires 2n bits of

communication) and Bob makes a joint measurement on them, then it is known that any exact local

hidden variables theory requires that Alice send at least a constant times 2n bits of communication

in the worst case [52]. Whether this holds for protocols with bounded error is an important open

question.

Finally, using the classical teleportation protocol, we obtain a (not necessarily optimal) protocol

to simulate joint projective measurements on partially entangled states of two qubits, which uses two

bits of communication: Alice first simulates her measurement and determines the post-measurement

state of Bob’s qubit; Alice and Bob then execute the classical teleportation protocol.

5.4 Conclusion

The results presented here offer an intriguing glimpse into the nature of correlations produced in

quantum theory. If we interpret Bell inequality violation to mean that some communication is

necessary to simulate Bell correlations, then our results prove that the minimal amount, one bit,

is all that is necessary for projective measurements on Bell pairs. Is our straightforward protocol

an indication of a deep structure in quantum correlations? We hope that our protocol and the

development of a general theory of the communication cost of simulating quantum correlations will

help shed light on this fundamental question.
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Chapter 6

Communication cost of simulating
the quantum joint correlation

6.1 Introduction

In this chapter, we show how to simulate exactly the quantum joint correlation of two-outcome

measurements using five bits of communication. This combines ideas from Chapters 3 and 5. This

chapter is joint work with Oded Regev.

Suppose that Alice and Bob share a state ρ on Cd⊗Cd, on which they perform local two-outcome

measurements. Label Alice’s observable by A, Bob’s by B, Alice’s outcome by α, and Bob’s by β.

Recall that the joint correlation is

〈αβ〉 = tr (A⊗ Bρ) . (6.1)

Let n = 2d2. Let â ∈ Rn be the vector associated with Alice’s measurement in accordance with

Lemma 2.3.1, and let b̂ ∈ Rn be the vector associated with Bob’s measurement.

6.2 A communication primitive

We first present an LHV model augmented by five bits of communication that does not reproduce

the correct correlations, but which we shall use as a primitive in a protocol that does.

Protocol 6.2.1. (Random Variables) Alice and Bob share unit vectors λ̂i ∈ Rn for i = 1, 2, . . . , 5,

chosen independently and uniformly at random from the unit sphere, together with a bit c chosen

uniformly at random from {−1,+1}.
(Alice) Let αi = sgn(â · λ̂i) for i = 1, 2, . . . , 5. Alice outputs c and sends to Bob the five bits αi

(i = 1, 2, . . . , 5).

(Bob) Let βi = sgn(b̂ · λ̂i) for i = 1, 2, . . . , 5. Let γ = MAJ(α1β1, α2β2, . . . , α5β5) where MAJ is

the majority function. Bob outputs β = γc.



56

It is useful to define some functions. Let f : [−1, 1] → [0, 1] be defined by

f(x) =
1
π

cos−1 x. (6.2)

Let g : [0, 1] → [−1,+1] be defined by

g(y) = 1 − 20y3 + 30y4 − 12y5. (6.3)

Let h(x) = g ◦ f(x).

Lemma 6.2.2. Protocol 6.2.1 gives correlations

〈αβ〉 = h
(
â · b̂
)

(6.4)

Proof. Because the unit vectors λ̂i are chosen independently, the events αi = βi are independent

for different i. Let p = Pr(αi �= βi) = (1 − 〈αiβi〉) /2, which is independent of i. By Lemma 3.2.2,

p = f(â · b̂). Thus

Pr(γ = −1) = p5 + 5p4(1 − p) + 10p3(1 − p)2. (6.5)

Noting that 〈αβ〉 = 1 − 2 Pr(γ = −1) completes the proof.

6.3 Simulation of the joint correlation using five bits of com-

munication

Just as in Chapter 3, we need to do some preliminary work before we can state the protocol.

Lemma 6.3.1. Let c2k+1 be the coefficients in a series expansion of h(x) about x = 0, i.e.,

h(x) =
∞∑
k=0

c2k+1x
2k+1. (6.6)

Then c1 > 0 and c2k+1 < 0 for all k > 0.

We prove this lemma in Appendix B.

Let d2k+1 be the coefficients in a series expansion of h−1(x) about x = 0, i.e.,

h−1(x) =
∞∑
k=0

d2k+1x
2k+1. (6.7)

We note that
∑

k d2k+1 = h−1(1) = 1. In fact, all the d2k+1 are positive. This follows from
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Lemma 6.3.2. Let f : [−1,+1] → [−1,+1] be a function and let f−1 be its inverse. Suppose that

f(x) =
∑∞

k=1 ckx
k and f−1(y) =

∑∞
k=1 dky

k, with c1 > 0 and ck ≤ 0 for all k > 1. Then dk > 0 for

all k.

Proof. There is an explicit formula for dk (see, e.g., Ref. [72]):

dk =
1
ncn1

∑
s,t,u,...

(−1)s+t+u+···n(n+ 1) · · · (n− 1 + s+ t+ u+ · · · )
s!t!u! · · ·

(
c2
c1

)s(
c3
c1

)t
· · · , (6.8)

where s+ 2t+ 3u+ · · · = n− 1. Then every term in the sum is nonnegative, from which it follows

that dk ≥ 0 for all k.

Our simulation procedure will be as follows: We map â and b̂ to new vectors, C(â) and C(b̂),

respectively, which live in a much larger space. We then run Protocol 6.2.1 on C(â) and C(b̂). The

trick is in choosing an appropriate function C.

To this end, let C : Rn →⊕∞
k=0(R

n)⊗(2k+1). The range of C a direct sum of tensor products of

Rn. We write C(�v) =
⊕∞

k=0 C
2k+1(�v), and term the functions C2k+1(�v) “coordinates” of C(�v).

Define

C2k+1(�v) =
√
d2k+1 �v

⊗(2k+1), (6.9)

where �v ⊗(2k+1) denotes the vector �v ⊗ �v ⊗ · · · ⊗ �v with 2k + 1 tensor factors. Note that this is well

defined, since d2k+1 ≥ 0 for all k.

The LHV model is as follows:

Protocol 6.3.3. (Random Variables) Alice and Bob share an infinite sequence λ1, λ2, . . . of real

numbers, where each λi is drawn from a normal distribution with mean 0 and standard deviation

1. They also share a bit c chosen uniformly at random from {−1,+1}. For i = 1, 2, . . . , 5, we write

�λi = (λi, λi+5, λi+10 . . .) ∈ l∞.

(Alice) Let αi = sgn(C(â) · λ̂i) for i = 1, 2, . . . , 5. Alice outputs c and sends to Bob the five bits

αi (i = 1, 2, . . . , 5).

(Bob) Let βi = sgn(C(b̂) · λ̂i) for i = 1, 2, . . . , 5. Let γ = MAJ(α1β1, α2β2, . . . , α5β5) where

MAJ is the majority function. Bob outputs β = γc.

Theorem 6.3.4. Protocol 6.3.3 results in correlations

〈αβ〉 = â · b̂. (6.10)

Proof. In order to apply Lemma 6.2.2, we have to check that C(v̂) is a unit vector whenever â is.
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This is straightforward:

C(v̂) · C(v̂) =
∞∑
k=0

d2k+1v̂
⊗(2k+1) · v̂⊗(2k+1) =

∞∑
k=0

d2k+1 = h−1(1) = 1. (6.11)

Lemma 6.2.2 now implies that Protocol 6.3.3 results in correlations

〈αβ〉 = h
(
C(â) · C(b̂)

)
. (6.12)

But

C(â) · C(b̂) =
∞∑
k=0

d2k+1â
⊗(2k+1) · b̂⊗(2k+1) =

∞∑
k=0

d2k+1

(
â · b̂
)2k+1

= h−1
(
â · b̂
)
. (6.13)

It follows that Protocol 3.4.1 results in correlations

〈αβ〉 = h
(
C(â) · C(b̂)

)
= h ◦ h−1

(
â · b̂
)

= â · b̂, (6.14)

which concludes the proof.

6.4 Discussion

The protocol presented above made use of 5 bits of communication. We have another protocol that

only requires two bits of communication, which we shall present at a later date. In the previous

chapter, we saw that one bit of communication sufficed in the case n = 3. We suspect that one bit

is insufficient in the limit n→ ∞.

We have yet to explore other applications of this technique. For example, Alon and Naor have

presented an approximation algorithm for the cut-norm of a matrix that is based on Krivine’s

proof of Grothendieck’s inequality [41]. Perhaps this extension of Krivine’s technique has a similar

application.
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Part II

Monogamy of Nonlocal

Correlations
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Chapter 7

Monogamy of nonlocal no-signaling
correlations

7.1 Introduction

One of the remarkable properties of quantum entanglement is that it is monogamous: If Alice (A),

Bob (B), and Charlie (C) each have a qubit, and A and B are maximally entangled, then C’s qubit

is completely uncorrelated with either A’s or B’s. This property is inherently nonclassical: If A,

B, and C have bits instead of qubits, and A’s bit is always the same as B’s bit, then there is no

restriction on how A’s bit is correlated with C’s bit. In this work, we consider the correlations that

result from making local measurements on a multipartite quantum system. Some such quantum

correlations violate Bell inequalities [7]. We show how these correlations, termed nonlocal, can also

be monogamous.

Consider, for example, the well-known Clauser-Horne-Shimony-Holt (CHSH) inequality [25].

Two parties, A and B, share a quantum state ρ, and each chooses one of two observables to measure

on their component of the state. Define the CHSH operator

BCHSH = A1 ⊗ (B1 + B2) + A2 ⊗ (B1 − B2) , (7.1)

where A1 and A2 (B1 and B2) are A’s (B’s) observables and are Hermitian operators with spectrum

in [−1,+1]. Then the CHSH inequality states that |〈BCHSH〉LHV| ≤ 2, for all local hidden variable

(LHV) models, but there are observables on the singlet state of two qubits |ψ−〉 = (|01〉 − |10〉) /√2,

such that 〈BCHSH〉QM = tr (BCHSH|ψ−〉〈ψ−|) = 2
√

2. Thus these correlations cannot be described

by an LHV model. In fact, it is true that |tr (BCHSHρ)| ≤ 2
√

2 for all observables A1, A2, B1,

B2, and all states ρ. Such a bound on the maximum quantum value of a Bell inequality is termed

a Tsirelson bound [28]. Although we do not know how to calculate the best such bound for an

arbitrary Bell inequality, a number of ad hoc techniques have been developed [28, 29, 31].
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In this chapter, we introduce a new technique for obtaining Tsirelson bounds. Since local mea-

surements on spatially separated components of a multipartite quantum system can be carried out

simultaneously, such measurements cannot be used to send a signal from one party to another. The

outcomes of local measurements on an entangled quantum state are therefore described by a no-

signaling probability distribution. Maximization over no-signaling probability distributions can be

cast as a linear program, and so we obtain an upper bound by solving this linear program. (For the

CHSH inequality there is a no-signaling probability distribution such that 〈BCHSH〉NS = 4, so this

technique is not useful [17]).

Suppose three parties, A, B, and C, share an entangled quantum state of arbitrary dimension.

We use this technique to (i) bound the trade-off between (A and B) and (A and C)’s violation of the

CHSH inequality, and (ii) demonstrate that forcing B and C to be classically correlated prevents A

and B from violating the odd cycle Bell inequality of Ref. [29].

7.2 Framework

We cast our results in the language of cooperative games of incomplete information, also called

nonlocal games [29]. Let V : Zm2 × Zmn → [0, 1] be a function and let π be a probability distribution

on Zmn . (A game defined in this way can be converted to a “standard” game (where V is a predicate)

by adding questions.) Then V and π define a m-player nonlocal game G(V, π) as follows: A referee

chooses a set of questions (q1, q2, . . . , qm) ∈ Zmn randomly, according to π, and sends question qi to

player i. Each player must answer with a bit ai. The players are not permitted to communicate after

receiving the questions, but they may agree on a strategy before receiving them. They win with

probability V (a1, a2, . . . , am|q1, q2, . . . , qm) (where the | in V (·|·) separates answers from questions).

The classical value of a game G(V, π), denoted ωc(G), is the maximum probability with which the

players can win, assuming they use purely classical strategies. The quantum value, denoted ωq(G),

is the maximum winning probability, assuming they are allowed to share entanglement. The no-

signaling value, denoted ωns(G), is the maximum winning probability, assuming the players are

allowed (black box) access to any no-signaling probability distribution. It is clear that ωc(G) ≤
ωq(G) ≤ ωns(G).

7.2.1 The CHSH game

We describe how to interpret the CHSH inequality within this framework. The CHSH game

GCHSH is defined by setting n = 2, letting π be the uniform distribution on Z2 × Z2 and letting

V (a1, a2|q1, q2) = [a1 ⊕ a2 = q1 ∧ q2], where a1 ⊕ a2 is the “exclusive-or” of bits a1 and a2, q1 ∧ q2
is the “and” of bits q1 and q2, and [φ] is 1 if φ is true and 0 otherwise. Then the winning proba-

bility of a particular strategy is 1/2 + 〈BCHSH〉 /8, where BCHSH is the CHSH operator of Eq. (7.1)
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and 〈 · 〉 is the appropriate expectation value for the strategy. It follows that ωc(GCHSH) = 3/4,

ωq(GCHSH) = 1/2 + 1/(2
√

2) ≈ 0.85, and ωns(GCHSH) = 1.

7.3 Main technique

An m-party no-signaling probability distribution is a set of probabilities p({ai}mi=1|{qi}mi=1), subject

to

1. Positivity: p({ai}|{qi}) ≥ 0;

2. Normalization: For all {qi},
∑

{ai} p({ai}|{qi}) = 1;

3. No-signaling: For each subset S ⊂ Zm of the m parties, the marginal probability distri-

bution on Zm − S must be independent of the inputs of the parties in S. In particular,∑
{ai:i∈S} p({ai}|{qi}) must be independent of {qi : i ∈ S} for all {ai : i �∈ S} and for all

{qi : i �∈ S}.

The no-signaling value of G is given by

ωns(G) = max
p

∑
{ai},{qi}

π({qi})V ({ai}|{qi})p({ai}|{qi}),

subject to the three sets of linear constraints enumerated above. We observe that ωns(G) is the

solution to a linear program in variables p({ai}|{qi}). Solving this program for ωns(G) gives an

upper bound on ωq(G). Moreover, even if we cannot solve the linear program, we can obtain

an upper bound on ωns(G) by constructing a solution to the dual program (see Ref. [73] for an

introduction to convex optimization).

7.4 Applications

7.4.1 An analogue of the CKW theorem for nonlocal quantum correla-

tions

Suppose three parties, A, B, and C, each have a qubit. There is a well-known theorem of Coffman,

Kundu, and Wootters (CKW) that describes the trade-off between how entangled A is with B, and

how entangled A is with C. It states that C2
AB + C2

AC ≤ 4 detρA, where CAB is the concurrence

between A and B, CAC is the concurrence between A and C, and ρA is the reduced density matrix

of A [74].

To derive a similar expression for correlations, we consider a generalization of the CHSH game

to three players, suggested by Michael Nielsen (see also [75]). In the game G′
CHSH, the referee sends
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bits chosen uniformly at random to each of the three players, and with probability 1/2 checks if

a1 ⊕ a2 = q1 ∧ q2 and with probability 1/2 checks if a1 ⊕ a3 = q1 ∧ q3. Formally, π is uniform on

Z
3
2 and V (a1, a2, a3|q1, q2, q3) = [a1 ⊕ a2 = q1 ∧ q2]/2 + [a1 ⊕ a3 = q1 ∧ q3]/2. Then the winning

probability of a particular strategy is 1/2 +
〈BAB

CHSH

〉
/16 +

〈BAC
CHSH

〉
/16, where the superscripts

denote on which parties the CHSH operator acts. It is easy to see that ωc(G′
CHSH) = 3/4 (a strategy

where everyone always answers 0 achieves this, and this strategy is the best possible, by the CHSH

inequality applied to AB and BC separately). It turns out that ωns(G′
CHSH) = 3/4 too, as is easily

verified using linear programming software, which implies the following:

Theorem 7.4.1. Suppose three parties, A, B, and C, share no-signaling correlations, where each

chooses to measure one of two observables. Then

∣∣〈BAB
CHSH

〉∣∣+ ∣∣〈BAC
CHSH

〉∣∣ ≤ 4. (7.2)

Theorem 7.4.1 establishes a trade-off between AB’s and AC’s violation of the CHSH inequality. In

particular, CHSH correlations are monogamous: If AB violate the CHSH inequality, then AC cannot,

as has been shown independently for no-signaling correlations by Masanes, Aćın, and Gisin [76]. (In

fact, Theorem 7.4.1 may be obtained easily from Result 3 of Ref. [76] by symmetrization of B and

C.) Note that if AB and AC each share an EPR pair, there are measurements such that either

tr
(BAB

CHSHρ
)

or tr
(BAC

CHSHρ
)

is 2
√

2, which at first appears to contradict Theorem 1. It does not: In

Theorem 1 we insist that A’s observables are the same in tr
(BAB

CHSHρ
)

and tr
(BAC

CHSHρ
)
. This is in

the same spirit as the requirement of CKW that B and C are entangled with the same qubit of A.

One can generalize this result:

Corollary 7.4.2. Suppose N+2 parties A, B0, B1,. . . , BN share a quantum state and each chooses

to measure one of two observables. Then A violates the CHSH inequality with at most one of the Bi.

Proof. Suppose A violates the CHSH inequality with both Bj and Bk, j �= k. Trace out the rest of

the Bi’s. We obtain a contradiction with Theorem 7.4.1.

For no-signaling probability distributions, we also have a converse of Theorem 7.4.1: For any pair(〈BAB
CHSH

〉
,
〈BAC

CHSH

〉)
consistent with Ineq. (7.2), there is a no-signaling probability distribution with

these expectation values. This is because we can write
(〈BAB

CHSH

〉
,
〈BAC

CHSH

〉)
as a convex combination

of (4, 0), (0, 4) and (0, 0), each of which is achieved by a no-signaling probability distribution. Thus

Ineq. (7.2) establishes precisely which
(〈BAB

CHSH

〉
,
〈BAC

CHSH

〉)
are allowed. For quantum theory, it

turns out that the allowed region is described by
〈BAB

CHSH

〉2 +
〈BAC

CHSH

〉2 ≤ 8, as we shall see in the

next chapter.
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7.4.2 Classical correlation restricts Bell inequality violation

Consider a two-player game G(V, π) being played by A and B0. We show that forcing B0 to be

classically correlated with additional players B1, B2, . . . , and BN restricts the advantage that A and

B0 can gain by sharing entanglement. For N ≥ 1, define the Nth extension of a two-player game

G(V, π) to be the N + 2 player game GN (VN , πN ), with πN defined by choosing (q1, q2) according

to π and setting q2 = q3 = q4 = · · · = qN+2; and VN ({ai}|{qi}) = V (a1, a2|q1, q2) × [a2 = a3 = a4 =

· · · = aN+2]. We also set G0 = G. The idea is that we send B0’s question to the other Bi’s and the

players win if (i) the answers A and B0 give satisfy the winning condition of G(V, π) and (ii) all the

Bi’s agree.

Theorem 7.4.3. Let G(V, π) be a two-player game. Then the values of its extensions satisfy (i)

ωc(GN ) = ωc(G) for all N , and (ii) ωns(GN ) is a nonincreasing sequence in N , with ωns(Gn−1) =

ωc(G), where n is the number of questions for B0 in G.

Proof. To prove (i), we observe that we can assume an optimal classical strategy for G is deter-

ministic, which immediately gives a strategy for GN with the same value. Conversely, we may

convert a strategy for GN to one for G by ignoring B1 through BN . Hence ωc(GN ) = ωc(G).

To prove (ii), it is clear that ωns(GN ) is a nonincreasing sequence in N , because any strategy

for GN gives a strategy for GM , M < N , by ignoring BM+1 through BN . Finally, consider

a no-signaling strategy for Gn−1, with probabilities p ({ai}|{qi}). We define a classical strat-

egy for G as follows: A and B0 share bits c0, c2, . . . , cn−1, drawn according to the distribution∑
a1
p(a1, a2 = c0, a3 = c1, . . . , an+1 = cn−1|q1, q2 = 0, q3 = 1, . . . , qn+1 = n − 1), which is guaran-

teed to be independent of q1 because p is no-signaling. Then if A and B0 are asked questions q1 and

q2, B0 answers cq2 and A answers with a bit a1 drawn from the distribution

pA(a1) =
p(a1, c0, c1, . . . , cn−1|q1, 0, 1, . . . , n− 1)∑
a′1
p(a′1, c0, c1, . . . , cn−1|q1, 0, 1, . . . , n− 1)

.

One can check that this classical strategy for G wins at least as often as that of the no-signaling

strategy for Gn−1. Hence ωns(Gn−1) = ωc(G).

A similar result was already known for ωq(GN ), and the proof is analogous [77]. Theorem 7.4.3

places a limit on how polygamous the no-signaling violation of a Bell inequality can be.

7.4.3 The odd cycle game

Our final example is taken from Ref. [29], and illustrates how violation of a Bell inequality can

preclude classical correlation with another party. We start with a two-player game based on an

interactive proof for graph colorability. Imagine that the two players, A and B, are trying to
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convince the referee that an odd cycle of length n is two-colorable (which it is not, as n is odd).

The referee sends them each the name of a vertex, such that the two vertices are either the same or

adjacent. A and B each send one of two colors back to the referee. The referee requires that, when

the vertices are the same, the two colors should agree and, when the vertices are adjacent, the colors

should differ. Formally, we define a two-player game GOC as follows: Let n ≥ 3 be an odd integer,

let π be uniform over the set {(q1, q2) ∈ Zn × Zn : q1 = q2 or q1 + 1 ≡ q2 (modn)} and let V be

defined by V (a1, a2|q, q) = [a1 = a2], V (a1, a2|q, q+ 1) = [a1 �= a2]. It is established in Refs. [78, 29]

that ωc(GOC) = 1 − 1/2n and ωq(GOC) = cos2(π/4n).

Now consider the first extension of this game, which we denote G′
OC. Formally, G′

OC is defined

by using the same distribution as GOC on (q1, q2), and setting q2 = q3. The function V is defined

by V (a1, a2, a3|q, q, q) = [a1 = a2 = a3], V (a1, a2, a3|q, q + 1, q + 1) = [a1 �= a2 = a2]. Theorem 7.4.3

implies that ωc(G′
OC) = ωc(GOC) = 1 − 1/2n. We shall show that ωns(G′

OC) = 1 − 1/2n also.

This result is remarkable because it establishes that adding just one additional player is sufficient to

prevent A and B from gaining advantage by sharing entanglement, rather than the n− 1 additional

players required in Theorem 7.4.3.

There are a number of symmetries we can use to simplify the problem. Without changing the

probability of winning: (i) all parties can flip their outputs, or (ii) all parties can add (modn) an

integer m to their inputs, or (iii) B and C can exchange roles. For a given no-signaling strategy, let

p(a, b, c|i, j, k) be the probability that (A,B,C) answer (a, b, c) when asked (i, j, k). Then we can take

p(a, b, c|i, j, k) to be symmetric under these three symmetries. In particular, symmetry (i) implies we

can restrict attention to a = 0, symmetry (ii) to i = 0. Therefore, let r(b, c|j, k) = p(0, b, c|0, j, k). We

shall use symmetry (iii) to give extra constraints, rather than to reduce the number of parameters.

We rewrite the primary linear program in these variables, labeling the constraints. Our goal is

to maximize

ωns(G′
OC) =

1
2

max
r

[r(0, 0|0, 0) + r(1, 1|1, 1)] , (7.3)

subject to:

• (Normalization) n(j, k):
∑
b,c r(b, c|j, k) = 1, for 0 ≤ j, k < n.

• (Symmetry) s(b, c|j, k): r(b, c|j, k) = r(c, b|k, j), for b, c ∈ {0, 1}, 0 ≤ j, k < n. Note that when

b = c and j = k this constraint is trivial.

• (No-signaling conditions, A to BC) y(d|j, k): p(0, d|j, j + k) + p(1, d̄|j, j + k) = p(0, d|0, k) +

p(1, d̄|0, k), for d ∈ {0, 1}, 1 ≤ j < n, 0 ≤ k < n, where the sum j + k is taken mod n.

• (No-signaling conditions, B to AC) z(d|j, k): p(0, d|j, k)+p(1, d|j, k) = p(0, d|0, k)+p(1, d|0, k),
for d ∈ {0, 1}, 1 ≤ j < n, 0 ≤ k < n, where the sum j + k is taken mod n.
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We omit the no-signaling conditions in the other directions (BC to A and AC to B), which do not

further constrain the solution.

Each constraint in the primary linear program corresponds to a variable in the dual, as labeled

above. The objective of the dual program is to minimize

1
2n

∑
j,k

n(j, k), (7.4)

subject to the constraints μ(0, 0|0, 0), μ(1, 1|1, 1) ≥ n, μ(b, c|j, k) ≥ 0, for all b, c ∈ {0, 1}, 0 ≤ j, k <

n, where

μ(b, c|j, k) = n(j, k) + s(b, c|j, k) − s(c, b|k, j)

+ [j = 0]
n−1∑
j′=1

(
y

(
1 − bc

2

∣∣∣∣j′, k
)

+ z(c|j′, k)
)

− [j �= 0]
(
y

(
1 − bc

2

∣∣∣∣j, k − j

)
+ z(c|j, k)

)
. (7.5)

We now give an explicit solution to the dual. The nonzero variables are:

n(0, 0) = 2n− 1;

s(0, 1|0, 0) = 3n/2,

s(0, 1|1, 0) = −n+ 1,

s(0, 0|0, 1) = −n+ 1,

s(0, 1|1, 1) = −n/2,
s(0, 0|j, j + 1) = (−1)j for j = 1, 2, . . . , n− 1;

s(0, 1|j, j + 1) = −(−1)j for j = 1, 2, . . . , n− 1;

y(0|1, 0) = −2n+ 3,

y(0|1, k) = −n+ k + 5/2 + (−1)k/2

for k = 1, 2, . . . , n− 1;

y(1|1, 0) = 3 − 3n/2,

y(1|1, 1) = −n+ 4,

y(1|j, 1) = −(−1)j for j = 2, 3, . . . , n− 1,

y(1|1, k) = −n+ k + 5/2 + (−1)k/2

for k = 2, 3, . . . , n− 2,
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y(1|1, n− 1) = −n+ 3,

y(1|j, n− 1) = 1 − (−1)j for j = 2, 3, . . . , n− 1;

z(0|1, 0) = n− 3,

z(0|1, 1) = 2n− 3,

z(0|1, 2) = n− 4,

z(0|j, j − 1) = −1 for j = 2, 3, . . . , n− 1,

z(0|j, j + 1) = (−1)j for j = 2, 3, . . . , n− 1,

z(0|1, k) = n− k − 3/2 + (−1)k/2

for k = 3, 4, . . . , n− 1;

z(1|j, j − 1) = −1 + (−1)j for j = 1, 2, . . . , n− 1,

z(1|1, k) = n− k − 3/2 + (−1)k/2

for k = 1, 2, . . . , n− 1.

All other variables are zero.

For this solution, it’s tedious but straightforward to establish that μ(0, 0|0, 0) = μ(1, 1|1, 1) =

n, μ(0, 1|0, 0) = 2n, μ(1, 0|0, 1) = 2n − 2, μ(0, 0|j, j − 1) = 1 + (−1)j for j = 1, 2, . . . , n − 1,

μ(1, 1|k+1, k) = 1+ (−1)k for k = 1, 2, . . . , n− 1, and μ(b, c|j, k) = 0, otherwise. Thus our solution

satisfies the constraints. This solution was constructed by solving the linear program for small n,

finding a consistent set of equality conditions by generalizing from the small n case, and inverting

these constraints to yield the solution. Substituting into Eq. (7.4), we find that ωns(G′
OC) ≤ 1−1/2n,

which proves the following theorem:

Theorem 7.4.4. For the first extension of the odd cycle game, ωc(G′
OC) = ωq(G′

OC) = ωns(G′
OC) =

1 − 1/2n.

Thus sharing entanglement (or indeed no-signaling correlations) gives no advantage for G′
OC.

In the context of interactive proof systems, we can interpret the fact that ωq(GOC) > ωc(GOC)

in the two-player game as saying that sharing entanglement allows the provers to cheat, because

it increases the probability with which they are able to convince the referee that the odd cycle is

two-colorable. Theorem 7.4.4 shows that we can counter this by adding an extra prover, and forcing

B to be classically correlated with her. This placed no extra burden on classical provers, because

an optimal classical strategy is deterministic, but it prevents quantum provers from gaining any

advantage by sharing entanglement. We hope that a similar approach will help in determining the

power of the complexity classes QMIP and MIP∗ [29].
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This result also has applications to cryptography [79, 80]. Suppose that A and B are trying

to share a secret key, and that C is eavesdropping on them. If A and B observe correlations that

would cause them to win the two-player odd cycle game with probability greater than 1 − 1/2n,

then this limits how correlated C can be with B. Indeed, Barrett, Hardy, and Kent have presented

a key distribution protocol along these lines [79], which is provably secure against no-signaling

eavesdroppers.
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Chapter 8

Monogamy of nonlocal quantum
correlations

8.1 Introduction

Suppose three parties, A, B, and C, share any quantum state ρ (of arbitrary dimension) and each

chooses to measure one of two observables. In the previous chapter, we proved Theorem 7.4.1, which

established a trade-off between AB and AC’s violation of the CHSH inequality, viz.:

∣∣〈BAB
CHSH

〉∣∣+ ∣∣〈BAC
CHSH

〉∣∣ ≤ 4. (8.1)

The proof of Theorem 7.4.1 only required that the correlations be no-signaling. In this chapter, we

prove a stronger monogamy trade-off relationship for correlations that are realizable with quantum

resources. This chapter is joint work with Frank Verstraete.

We shall only be concerned with the CHSH inequality in this chapter, so we drop the subscript

indicating the Bell inequality: 〈BAB〉 ≡
〈BAB

CHSH

〉
. We establish the following monogamy trade-off

relation:

Theorem 8.1.1. Suppose that three parties, A, B, and C, share a quantum state (of arbitrary

dimension) and each chooses to measure one of two observables. Then

〈BAB〉2 + 〈BAC〉2 ≤ 8. (8.2)

The important point is that we obtain Tsirelson’s bound, 〈BAB〉2 ≤ 8, as a simple corollary.

Eq. (8.2) is the best possible bound: There are states and measurements achieving any values of

〈BAB〉 and 〈BAC〉 that satisfy it. We illustrate the monogamy trade-offs for various theories in

Fig. 8.1.

We prove Theorem 8.1.1 in two parts. We first show that is sufficient to restrict to states with
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support on a qubit at each site. We can then relax the requirement that A’s measurements be the

same in 〈BAB〉 and 〈BAC〉, maximizing over the measurements in 〈BAB〉 and 〈BAC〉 separately, but

keeping the state fixed.

8.2 Dimensional reduction

We start by establishing a bound on the dimension of the quantum state required to maximally

violate certain Bell inequalities. This result was originally proved by Masanes [81]. The main

ingredient—a canonical decomposition for a pair of subspaces of C
n—is described in more detail in,

e.g., Ref. [82].

Lemma 8.2.1. Consider any Bell inequality in the setting where m parties each choose from two

two-outcome measurements. Then the maximum quantum value of the Bell inequality is achieved

by a state that has support on a qubit at each site. Furthermore, we can assume this state has real

coefficients and that the observables are real and traceless.

Proof. For i ∈ {1, 2}, assume party k has observables Mk,i, acting on a Hilbert space Hk. By

extending the local Hilbert spaces Hk, we can assume for all k and for all i = 1, 2 that (i) Hk = C2d

for some fixed d, (ii) Mk,i has eigenvalues ±1, and (iii) trMk,i = 0. The first condition states

that all local spaces have the same dimension 2d, the latter two that each observable corresponds

to a projective measurement onto a d-dimensional subspace and its complement. We also define

Mk,0 = 112d, the identity operator on Hk. We can write a generic Bell operator in the setting stated

in the lemma as

B =
2∑

i1=0

2∑
i2=0

· · ·
2∑

im=0

ci1i2···im
m⊗
k=1

Mk,ik , (8.3)

where the coefficients ci1i2···im are arbitrary real numbers. Our goal is find the quantum value of

this Bell operator, which is maximum of B ≡ 〈ψ|B|ψ〉 over states |ψ〉 and measurements Mk,i.

We now choose a local basis for each Hk such that party k’s observables have a simple form. We

start by taking Mk,1 =
[

11d 0
0 −11d

]
. This leaves us the freedom to specify the basis within the two

d× d blocks on which Mk,1 is constant. Let Mk,2 = 2PP †− 112d (we suppress the dependence on k),

where P is a 2d×d matrix with orthonormal columns, which span the +1–eigenspace of Mk,2. Write

P =
[
P1

P2

]
, where P1 and P2 are d × d matrices. The rows of P are orthonormal, which implies

P †P = P †
1P1 + P †

2P2 = 11d, so P †
1P1 and P †

2P2 are simultaneously diagonalizable. This means there

is a singular value decomposition of the form

P1 = U †
1D1V, (8.4)

P2 = U †
2D2V, (8.5)
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where U1, U2 and V are d × d unitary matrices and D1 and D2 =
√

11d −D2
1 are nonnegative

(real) diagonal matrices. Changing basis according to the unitary U1 ⊕ U2, which leaves Mk,1

invariant, it follows that Mk,2 =

⎡
⎣2D2

1 − 11d 2D1D2

2D1D2 2D2
2 − 11d

⎤
⎦, where each of the d× d blocks is diagonal.

We relabel our basis vectors so that Mk,1 =
⊕d

j=1 Z, Mk,2 =
⊕d

j=1 (cos θjZ + sin θjX), where

2D2
1 − 11d = diag(cos θ1, cos θ2, . . . , cos θd) and X and Z are the usual Pauli operators. Hence our

operators are real and preserve a ⊕dj=1C2 subspace of Hk. They are traceless on each C2 space.

We wish to maximize B = 〈ψ|B|ψ〉 over the state |ψ〉 and the measurements Mk,i. Fix k, and let

ρk,j be the reduced density matrix obtained by projecting |ψ〉 onto the j’th C2 factor of the ⊕dj=1C2

subspace induced by Mk,1 and Mk,2 at site k. Then B =
∑d
j=1 trBρk,j is a convex sum over the

C2 factors, whereupon it follows that the maximum is achieved by a state with support on a qubit

at site k. Since this argument works for all k, the maximum of B is achieved by a state that has

support on a qubit on each site.

Finally, write |ψ〉 = |ψ1〉 + i|ψ2〉, where |ψ1〉 and |ψ2〉 are real. Then 〈ψ|B|ψ〉 = 〈ψ1|B|ψ1〉 +

〈ψ2|B|ψ2〉 since B is real, which is the same expression we would obtain if the state were a real

mixture of |ψ1〉 and |ψ2〉. Hence the maximum of B is achieved by a state with real coefficients.

8.3 Monogamy trade-off relation

The region R of allowed values of (〈BAB〉, 〈BAC〉) is convex and can therefore be described by an

(infinite) family of half-space inequalities,

cAB〈BAB〉 + cAC〈BAC〉 ≤ d, (8.6)

with cAB, cAC, d ∈ R. The left-hand side of Eq. (8.6) is a Bell operator, as defined in Eq. (8.3), which

means we can apply Lemma 8.2.1 to conclude that extreme points of R are achieved by real states

on three qubits, with measurements of the form M = cos θZ + sin θX . Theorem 8.1.1 will emerge

as a corollary of:

Lemma 8.3.1. Let |ψ〉 be a pure state in C
2 ⊗ C

2 ⊗ C
2 with real coefficients. Then the maximum

of 〈BAB〉 = 〈ψ|BAB|ψ〉 over real traceless observables A1, A2, B1, B2 is

max
Ai,Bj

〈BAB〉 = 2
√

1 + 〈YAYB〉2 − 〈YAYC〉2 − 〈YBYC〉2, (8.7)

where Y is the usual Pauli operator, 〈YAYB〉 = tr (YA ⊗ YB ⊗ 11 ρ), and so on. Cyclic permutations

of Eq. (8.7) hold for 〈BAC〉 and 〈BBC〉.

Proof. We consider ρAB = trC |ψ〉〈ψ|, which is a real state on C
2 ⊗ C

2. Horodecki and family have
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calculated the maximum quantum value of the CHSH operator for a state on C2 ⊗ C2 [37]. Their

analysis simplifies in our case because the state and measurements are real. Define

TAB =

⎡
⎣〈XAXB〉 〈XAZB〉
〈ZAXB〉 〈ZAZB〉

⎤
⎦ . (8.8)

For i = 1, 2, write Ai = âi · �σr, Bi = b̂i · �σr , where âi and b̂i are two-dimensional unit vectors and

�σr = (X,Z). Define

b̂1 + b̂2 = 2 cos θd̂1, b̂1 − b̂2 = 2 sin θd̂2, (8.9)

where θ ∈ [0, π/2] and d̂1 and d̂1 are orthogonal unit vectors. Then

1
2

max
Ai,Bj

〈BAB〉 = max
d̂i,θ,âi

cos θât1TABd̂1 + sin θât2TABd̂2 (8.10)

= max
d̂i,θ

cos θ
∥∥∥TABd̂1

∥∥∥+ sin θ
∥∥∥TABd̂2

∥∥∥ (8.11)

= max
d̂i

√∥∥∥TABd̂1

∥∥∥2

+
∥∥∥TABd̂2

∥∥∥2

(8.12)

=
√

tr
(
TABTAB

t
)
. (8.13)

This is just the Frobenius norm of TAB and it is straightforward to check that, for pure states on

C
2 ⊗ C

2 ⊗ C
2 with real coefficients, it is equal to half the right-hand side of Eq. (8.7).

Lemma 8.3.2. For a pure state |ψ〉 with real coefficients in C2 ⊗ C2 ⊗ C2,

max
Ai,Bj ,Ck

〈BAB〉2 + 〈BAC〉2 = 8
(
1 − 〈YBYC〉2

)
. (8.14)

Proof. Lemma 8.3.1, applied to 〈BAB〉 and 〈BAC〉 separately, immediately implies:

max
Ai,Bj ,Ck

〈BAB〉2 + 〈BAC〉2 ≤ max
Ai,Bj

〈BAB〉2 + max
Ai,Ck

〈BAC〉2

= 8
(
1 − 〈YBYC〉2

)
. (8.15)

The reason we do not have equality is that the measurements Ai achieving the maximum in 〈BAB〉
and 〈BAC〉 may be different. We have to show they can be chosen to be the same. Define TAC in

analogy with Eq. (8.8) and write the vectors corresponding to C’s measurements as

ĉ1 + ĉ2 = 2 cos θê1, ĉ1 − ĉ2 = 2 sin θê2, (8.16)

in analogy with Eq. (8.9) for B’s observables. One can check that [TABT
t
AB, TACT

t
AC] = 0 for all
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pure states |ψ〉 with real coefficients. Hence there are orthonormal vectors a′1 and a′2 that are

simultaneous eigenvectors of TABT
t
AB and TACT

t
AC. Next, note that the term being maximized in

Eq. (8.12), ‖TABd̂1‖2 + ‖TABd̂2‖2, is actually independent of the d̂i (recall that d̂1 · d̂2 = 0), so we

are free to choose the d̂i as we please. Take d̂i = T tABâ
′
i for i = 1, 2 and, similarly, take êi = T tACâ

′
i.

Alice’s measurement vector âi in the AB maximization of the previous lemma was taken to be the

unit vector along TABd̂i, but this is TABT
t
ABâ

′
i ∝ â′i so âi = â′i. The same will hold in the AC

maximization. Hence we can choose A’s measurement vectors to be the same in both cases, and we

have equality in Eq. (8.14).

Combining Lemmas 8.2.1 and 8.3.2, we obtain Theorem 8.1.1. Lemma 8.3.2 also implies that

any 〈BAB〉 and 〈BAC〉 compatible with Eq. (8.14) are achievable. In particular, the state

|ψ〉 = c− (|010〉 + |011〉) + c+ (|100〉 + |101〉) , (8.17)

where

c± =
1
2

√
1 ±√

2 sin t, (8.18)

and 0 ≤ t ≤ π/4, gives 〈BAB〉 = 2
√

2 cos t, 〈BAC〉 = 2
√

2 sin t.
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Figure 8.1: Accessible values of 〈BAB〉 and 〈BAC〉 for classical theories (interior of square), quantum
theory (interior of circle), and no-signaling theories (interior of diamond).
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Appendix A

Calculation of the constant c3

In Section 3.5, we left the identity in Eq. (3.37),

I =
√

π

2x

∞∑
k=0

(4k + 3)J2k+3/2(x) =
√
x

2

∫ x

0

t−3/2 sin t dt, (A.1)

unproven. We now prove it. Although this identity would follow from Krivine’s Theorem 3.6.8,

we choose to prove the identity directly, so that our analysis of the three-dimensional case is self-

contained.

Our starting point is the series representation of Jν(x):

Jν(x) =
∞∑
n=0

(−1)n

n! Γ(n+ ν + 1)

(x
2

)2n+ν

. (A.2)

Substituting into Eq. (A.1),

I =
√
π

2

∞∑
k=0

∞∑
n=0

(4k + 3)
(−1)n

n! Γ(n+ 2k + 5/2)

(x
2

)2n+2k+1

(A.3)

=
∞∑
l=0

(−1)l
√
π

22(l+1)

(
l∑

k=0

(4k + 3)(−1)k

(l − k)!Γ(l + k + 5/2)

)
x2l+1, (A.4)

where we have reordered the sums and substituted l = n+ k.

To calculate the coefficient of x2l+1 we note that

2F1(1,−l; 5/2 + l; t) = l! Γ(l+ 5/2)
l∑

k=0

(−1)k

(l − k)! Γ(k + l + 5/2)
tk, (A.5)
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where 2F1(a, b; c; t) is the hypergeometric function. Differentiating Eq. (A.5) w.r.t. t, we obtain

l! Γ(l+ 5/2)
l∑

k=0

(4k + 3)(−1)k

(l − k)!Γ(l + k + 5/2)
xk (A.6)

= 4t 2F
′
1(1,−l; 5/2 + l; t) + 3 2F1(1,−l; 5/2 + l; t) (A.7)

= 4t
−l

5/2 + l
2F1(2,−l+ 1; 7/2 + l; t) + 3 2F1(1,−l; 5/2 + l; t). (A.8)

Substituting t = 1 and using Gauss’s hypergeometric theorem

2F1(a, b; c; 1) = Γ(c)Γ(c− a− b)/Γ(c− a)Γ(c− b) (A.9)

yields

I =
∞∑
l=0

(−1)l

(2l + 1)!(4l+ 1)
x2l+1. (A.10)

To convert this into the integral representation given in Eq. (A.1), we start with the power series

expression for sin t, multiply by t−3/2, then integrate term by term.
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Appendix B

Signs of the derivatives of h(x)

Here we prove Lemma 6.3.1:

Lemma B.0.3 (6.3.1). Let c2k+1 be the coefficients in a series expansion of

h(x) = 1 − 2
(
cos−1 x

)3
π5

(
10π2 − 15π cos−1 x+ 6

(
cos−1 x

)2)
. (B.1)

about x = 0, i.e.,

h(x) =
∞∑
k=0

c2k+1x
2k+1. (B.2)

Then c1 > 0 and c2k+1 < 0 for all k > 0.

Proof. We calculate c1 = h′(0) = 15/4π > 0. For the other coefficients, consider the second

derivative

h′′(x) = −60
π5
h1(x)h2(x), (B.3)

where

h1(x) =
π2

4 − (sin−1 x
)2

√
1 − x2

, (B.4)

h2(x) = 4
sin−1 x√
1 − x2

− x√
1 − x2

h1(x). (B.5)

In Lemma B.0.5 we show that h1(x) =
∑

k a2kx
2k with a2k > 0 for all k, and in Lemma B.0.6 that

h2(x) =
∑
k b2k+1x

2k+1 with b2k+1 > 0 for all k. This implies that all the coefficients in the series

expansion of h′′(x) are negative, i.e., c2k+1 < 0 for all k > 0.
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Lemma B.0.4 (Some series expansions). The following are valid for |x| < 1:

1
1 − x2

=
∞∑
k=0

x2k, (B.6)

1√
1 − x2

=
∞∑
k=0

d2kx
2k =

∞∑
k=0

(2k − 1)!!
(2k)!!

x2k, (B.7)

(
sin−1 x

)2
=

∞∑
k=0

f2k+2x
2k+2 =

∞∑
k=0

(2k)!!
(2k + 1)!!(k + 1)

x2k+2, (B.8)

(
sin−1 x

)3
=

∞∑
k=0

g2k+3x
2k+3 = 6

∞∑
k=0

(2k + 1)!!2

(2k + 3)!

⎛
⎝ k∑
j=0

1
(2j + 1)2

⎞
⎠x2k+3. (B.9)

The third and fourth series expansions are Eqs. (1.645.2) and (1.645.3) of Ref. [83].

Lemma B.0.5. Let h1(x) =
∑

k a2kx
2k. Then a2k > 0 for all k.

Proof. We write

h1(x) =
π2

4
1√

1 − x2
− 1

3
d

dx

(
sin−1 x

)3
(B.10)

=
π2

4
d0 +

∞∑
k=1

(
π2

4
d2k − 2k + 1

3
g2k+1

)
x2k, (B.11)

which immediately gives a0 = π2d0/4 > 0. For k > 0,

a2k =
π2

4
d2k − 2k + 1

3
g2k+1 (B.12)

=
2(2k − 1)!!

(2k)!!

⎛
⎝π2

8
−
k−1∑
j=0

1
(2j + 1)2

⎞
⎠ (B.13)

>
2(2k − 1)!!

(2k)!!

⎛
⎝π2

8
−

∞∑
j=0

1
(2j + 1)2

⎞
⎠ (B.14)

= 0. (B.15)

Thus all the coefficients in the series expansion of h1(x) are positive.

Lemma B.0.6. Let h2(x) =
∑

k b2k+1x
2k+1. Then b2k+1 > 0 for all k.
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Proof. We have

h2(x) = −π
2

4
x

1 − x2
+
x
(
sin−1 x

)2
1 − x2

+ 2
d

dx

(
sin−1 x

)2
(B.16)

= −π
2

4

∞∑
k=0

x2k+1 +
∞∑
k=0

∞∑
j=0

f2k+2x
2(k+j)+3 + 2

∞∑
k=0

(2k + 2)f2k+2x
2k+1 (B.17)

=
∞∑
k=0

⎡
⎣4(k + 1)f2k+2 − π2

4
+
k−1∑
j=0

f2j+2

⎤
⎦x2k+1, (B.18)

so that for all k ≥ 0,

b2k+1 = 4(k + 1)f2k+2 − π2

4
+
k−1∑
j=0

f2j+2 (B.19)

= 4(k + 1)f2k+2 −
∞∑
j=k

f2j+2 (since
π2

4
=
(
sin−1 1

)2
) (B.20)

=
4(2k)!!

(2k + 1)!!
−

∞∑
j=k

(2j)!!
(2j + 1)!!(j + 1)

. (B.21)

Let

Sk =
∞∑
j=k

sk,j =
(2k + 1)!!

(2k)!!

∞∑
j=k

(2j)!!
(2j + 1)!!(j + 1)

. (B.22)

Then S0 = π2/4 < 4 and sk,j = sk−1,j(1 + 2k)/(2k). Summing this over j = k, k + 1, . . . , we obtain

the recurrence

Sk =
1 + 2k

2k

(
Sk−1 − 1

k

)
. (B.23)

We need to show that Sk < 4 for all k > 0. To this end, suppose Sk−1 > 3 + 1/k for some k. Then

Sk − Sk−1 =
Sk−1

2k
− 1 + 2k

2k2
>

1
2k
, (B.24)

which implies that Sk is unbounded as k → ∞. We obtain a contradiction by calculating the limit

of Sk as k → ∞. This is straightforward: For large j,

(2j)!!
(2j + 1)!!

∼ 1
2

√
π

j
, (B.25)

so that

lim
k→∞

Sk =
√
k

∫ ∞

x=k

1
x3/2

dx = 2. (B.26)

Hence Sk < 4 for all k, which implies b2k+1 > 0 for all k.
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