DEVELOPMENT, CHARACTERIZATION, AND APPLICATIONS OF GOLD AND PLATINUM BULK METALLIC GLASSES

Thesis by

Boonrat Lohwongwatana

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended May 2nd, 2007)

To My Parents

© 2007

Boonrat Lohwongwatana

All Rights Reserved

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to Prof. Johnson for his continuous support, advice, and encouragement. His genuine enthusiasm and optimism in science has created the best research atmosphere I could ever dream of. Our Keck Lab's roof-top discussions have always been my endless supply of energy, optimism, inspiration and ideas. My special thanks go to Prof. Jan Schroers, Dr. Donghua Xu, and Jin-yoo Suh for the research collaboration, discussions, encouragement, and life-long friendship. I am grateful to my thesis committee—Prof. Haile, Prof. Fultz, Prof. Ravichandran, and Prof. Johnson—for spending the time on my past candidacy, this thesis, and the thesis defense.

I would like to acknowledge many wonderful people who make my Caltech experience an extraordinary one—Prof. Marc Nicolet, Prof. Konrad Samwer, Prof. Ursan Ustundag, Prof. Dale Conners, Mike Vondrus, Carol Garland, Channing Ahn, Pamela Albertson, Robin Hanan, Sven Bossuyt, Haein Choi-Yim, Andy Waniuk, Paul Kim, Marios Demetriou, Hyon Jee Lee, Sun-Yub Lee, Can Aydiner, Alex Papandrew, Robert Rogan, Olivier Delaire, Gang Duan, Greg Welsh, Chris Veazey, Mary Laura Lind, Joe Schramm, Rebecca Stevens, John Harmon, Aaron Weise, Jim Endrizzi, Athena Trentin, Tracy Kidd, and, of course, Ernie. I also thank Stefan Tatarowski who is my landlord, my American culture counselor, my proofreader, and my friend.

Last, but certainly not least, I thank my parents, my grandmother, and my sister for sending me their unconditional love and support from half-way around the globe for twelve straight years that I have been away from home. I thank Peer, my wife and my

iii

life-long friend, who has always been supportive and patient. I could not have done this without you.

This thesis work is financially supported by the Royal Thai Government, Defense Advanced Research Projects Agency (DARPA), Liquidmetal Technologies, and the Intel Corporation.

ABSTRACT

The development of bulk metallic glass alloys is presented with various elemental selection criteria, design strategies, and experimental techniques. The focus was later drawn towards the development of noble bulk metallic glasses based on gold and platinum. To formulate a good bulk glass forming composition, we found that the gold alloys had to be optimized using uncommon approaches. One strategy was to primarily increase the glass transition temperature of the alloy, instead of lowering the melting temperature. The resulting gold bulk metallic glass alloy could be cast fully amorphous up to 5 mm thick. However, the best gold glass former also exhibited many anomalous behaviors; for example, a very high strain rate could induce phase separation in the bulk glass forming liquid. A detail study on the strain rate induced crystallization was carried out systematically to pinpoint the exact conditions that would cause an anomaly.

Additionally, a variety of comparative studies were conducted on the gold and platinum bulk metallic glass alloys, including elastic constants measurement, heat capacity measurement, viscosity measurement using three-point beam bending, and time to crystallization study in order to construct a Time-Temperature Transformation diagram.

The last chapter switches gears to the engineering and technology aspect of gold and platinum bulk metallic glasses. The thermoplastic soldering technique is introduced as a novel method for joining any two materials at temperatures lower than that of brazing or welding processes. The proposed technique is a new alternative to the leadfree soldering process available to the electronic industry.

V

TABLE OF CONTENTS

Chapt	r I Introduction, Motivation, and Key Contributions	
	Abstract I-	-1
	. Background I	-2
	2. Quest for BMGs as Lightweight Structural Materials	-5
	3. Relationship between Poisson's Ratio and Desired	
	Mechanical Properties I-	-11
	Anomalous Behaviors of Gold-Based BMG	-13
	5. Gold and Platinum BMGs as an Alternative to Lead-Free	
	Solders – Novel Approach for Metal-to-Metal Joining	-14
	5. Summary I	-16
	References	-17
Chapt	r II Alloy Development by Design	
	Abstract	I-1
	. Introduction	I-1
	2. Locating the Glass Forming Region – the Theoretical Design	I-2
	2.1 The Reduced Glass Transition as a Quick Screening Tool	I-3
	2.2 Glass Forming Region as the Reciprocity of Solid Solubility	I-4
	2.3 Glass Forming Region at the Stability Limit of	
	Crystalline Material	I-8
	2.4 Experimental Results to Verify Theories	I-9
	B. Locating the Glass Forming Region – the Practical Approaches	I-12

3.1 Phase Diagrams	II-12
3.2 Thermo-Calc TM	II-15
3.3 Multi-Component Alloy Design Based on Two Eutectics	II-21
3.4 Alloy Processing	II-25
3.4.1 Rapid Quenching Stage	II-25
3.4.2 Slow Quenching Studies – Stage II Development	II-28
3.5 SEM / EDS Analysis	II-29
3.5.1 Locating the Low Melting Liquid and	
Finding its Composition	II-29
3.5.2 Locating the Competing Phase(s)	II-30
4. Summary	II-33
References	II-35
Chapter III Gold-Based Bulk Metallic Glass	
Abstract	III-1
1. Introduction	III-2
2. Background and Motivation	III-3
2.1 Scientific Motivation	III-3
2.2 Commercial Motivation and Key Objectives	III-4
3. Fundamental Study of Gold Bulk Metallic Glass	III-4
3.1 Experimental	III-4
3.2 Results and Discussion	III-5
3.3 Validity of ΔT and Trg Parameters	III-8
3.4 Validity of Atomic Size Ratio Using Topological Model	III-11

	4. Elas	stic Constants Study	III-12
		4.1 Experimental	III-12
		4.2 Results and Discussion	III-13
	5. Oxy	gen Impurity Study	III-16
	6. Sun	nmary	III-17
	Refere	ences	III-20
Chapt	er IV	Characterization Studies of High Poisson's Ratio BMGs	
	Abstra	ict	IV-1
	1. Intre	oduction	IV-2
	2. Pois	sson's Ratios Study	IV-4
	3. Den	sity Study	IV-8
	4. The	rmodynamic Study	IV-12
		4.1 Heat Capacity Measurements	IV-12
		4.2 Thermodynamic Functions Calculation	IV-13
		4.3 Generalized Sinusoidal Random Field Model	IV-18
		4.4 Gibbs Free Energy Comparison	IV-25
	5. Dise	cussion	IV-31
		5.1 Heat Capacity and Its Relationship to Energy Landscape	IV-31
	6. Sun	nmary	IV-34
	Refere	ences	IV-36
Chapt	er V	Strain Rate Induced Crystallization in Bulk Metallic Glass	
		Forming Liquid	

Abstract

1. Intro	oduction	V-2
2. Exp	erimental	V-3
3. Exp	erimental Results	V-4
4. Disc	cussions	V-9
5. Con	clusion	V-16
Refere	nce	V-17
Chapter VI	Novel Methods for Joining Materials Using Metallic Glasses	
	– an Alternative to Lead-Free Soldering	
Abstra	ct	VI-1
1. Bac	kground	VI-2
	1.1 The Urge for a New Technology	VI-2
	1.2 Problems of Current Lead-Free Solder Technology	VI-3
	1.2.1 Higher Temperature Requirement	VI-3
	1.2.2 Wetting, Spreading, and Bonding	VI-4
	1.2.3 Thermal, Mechanical, and Electrical reliability	VI-4
2. Bull	c Metallic Glass as Solder Joints	VI-6
3. Exp	erimental Setup	VI-10
4. Figu	ire of Merit	VI-13
5. Exp	erimental Results of Flat-Surface Soldering	VI-16
	5.1 Solder Materials	VI-16
	5.2 Processing Temperatures	VI-17
	5.3 Shape of Feedstock Solder	VI-18
	5.4 Surface Treatment	VI-20

5.5 Crystallization Effect	VI-23
5.6 Compressive Load and Flat-Surface Soldering Summary	VI-23
6. Modifying the Pressure Distribution	VI-27
7. Mechanical Interlocking	VI-30
8. Summary	VI-35
Reference List	VI-39
Appendix A Volume-Weighted Average Density Approximation	A-1
Appendix B Critical Cooling Rate & Specimen Thickness Correlation	B-1

LIST OF FIGURES

Chapter I Introduction, Motivation and Key Contributions		
Figure	e I-1 Number of publications per year based on bulk metallic glass	I-3
Figur	e I-2 Schematics showing kinetics of metallic glass formation:	
	nucleation control vs. growth control	I-7
Figur	e I-3 DSC curves of melt spun Al ₉₃ Ti ₄ V ₃ , Al ₉₃ Ti ₄ Fe ₃ , Al ₉₃ Ti ₅ Co ₂	
	and Al ₉₂ Ti ₄ Ni ₄ alloys showing no supercooled liquid region	I-8
Figure	e I-4 DSC curve of Al ₈₆ La ₅ Ni ₉ alloy during 20 K/min heating	I-9
Figur	e I-5 DSC thermal profiles for $Al_{67}Fe_{20}Ce_3B_{10}$ and	
	$(Al_{\frac{1}{2}}Ti_{\frac{1}{2}})_{55}Zr_{12.5}Ni_{32.5}$ splat quenched samples	I-10
Figur	e I-6 Correlation between Tg and V(B+4.3G) (unit = au cm ³ GPa/g)	I-14
Chapter II	Alloy Development by Design	
Figur	e II-1 Darken-Gurry map for Mg	II-5
Figur	e II-2 Atomic radii of elements measured in amorphous alloys	II-7
Figur	e II-3 Comparison of relative atomic size and concentrations	II-7
Figur	e II-4 Calculated polymorphous phase diagram of Ni-Zr system	II-8
Figur	e II-5 The maximum bounds of a glass forming region are	
	predicted for Ti-Ni binary phase diagram using different	
	approaches.	II-11
Figur	e II-6 Liquidus projections are plotted by extrapolation of pure	
	gold's melting temperature to the eutectic compositions.	II-13
Figure	e II-7 Liquidus projection of Au-Ge-Si ternary diagram	II-14

Figure II-8 Isothermal cross sections for Au-Sn-Sb ternary system	II-16
Figure II-9 1000 K, 950 K, and 900 K (top to bottom) isothermal	
cross sections for Au-Cu-Si ternary system	II-18
Figure II-10 The experimental liquidus temperatures of the different	
eutectic alloys are plotted against Thermo-Calc predictions	II-20
Figure II-11 Eutectic temperatures of selected Au-based binary and	
ternary systems	II-22
Figure II-12 Symbiotic lowering temperature effect	II-23
Figure II-13 Temperatures of (Au ₇₁ Sn ₂₉)(100-X%) (Au ₆₇ Ge ₁₅ Sb ₁₈)(X%)	II-24
Figure II-14 The effect of copper addition in Au-Cu-Si ternary alloys	II-27
Figure II-15 Thermo-Calc prediction of the liquidus for $Au_XCu_{80-X}Si_{20}$	II-27
Figure II-16 BSE images of $Au_{65}Sn_{24}Sb_{11}$ cast strip (0.5 mm thick)	II-29
Figure II-17 BSE image of Au ₅₅ Cu ₂₅ Si ₂₀ cast strip (1 mm thick)	II-31
Figure II-18 BSE image of as-cast Au ₄₃ Ag ₁₀ Pd ₆ Cu ₂₂ Si ₁₉ alloy	II-32
Figure II-19 Flow chart showing systematic alloy development	II-34
Chapter III Gold-Based Bulk Metallic Glass	
Figure III-1 DSC thermograms determined by heating with 20 K/min	III-5
Figure III-2 X-ray diffraction diagrams of gold based alloys	III-7
Figure III-3 Composition dependence of ΔT and d_c for	
$(Au_{58.5}Ag_{6.6}Pd_{2.8}Cu_{32.1})_{86-x}Si_{14+x}$ for x = 0-6%	III-9
Figure III-4 Composition dependence of ΔT and d_c for	
$(Au_{60.1}Ag_{6.8}Cu_{33.1})_{83.7-y}Pd_ySi_{16.3}$ for y = 0-5%	III-10
Figure III-5 Composition dependence of ΔT and Trg for $Cu_{100-X}Zr_X$	III-10

Figure III-6 Comparison of relative atomic size and concentrations	
for Ca-based BMGs	III-11
Figure III-7 Comparison of relative atomic size and concentrations	
for high Poisson's ratio BMGs	III-12
Figure III-8 Au content in Au ₄₉ Ag _{5.5} Pd _{2.3} Cu _{26.9} Si _{16.3} was altered	
to check the correlation between Au content and $\boldsymbol{\upsilon}$	III-14
Figure III-9 Cu content in the original Au ₄₉ Ag _{5.5} Pd _{2.3} Cu _{26.9} Si _{16.3} was	
altered slightly to check its correlation with G and υ	III-15
Figure III-10 Au content in the Be-bearing gold BMGs	
$(Au_{49}Ag_{5.5}Pd_{2.3}Cu_{26.9}Si_{16.3})_{95}Be_5$ was altered slightly to	
check its correlation with G and v	III-15
Figure III-11 A jewelry article is made by thermoplastic stamping	
Technique	III-19
Chapter IV Characterization Studies of High Poisson's Ratio BMGs	
Figure IV-1 Poisson's ratios values are plotted for different alloying	
elements and different compositions.	IV-5
Figure IV-2 The differences between the Poisson's ratios of BMGs	
and pure metals are calculated using $\Delta v = v(BMG) - v(pure)$.	IV-7
Figure IV-3 Calculated density of 25 BMGs were plotted against	
the experimental values.	IV-10
Figure IV-4 Calculated density of 31 BMGs were plotted against	
the experimental values (includes Pt-based and Pd-based).	IV-11

Figure IV-5 Specific heat capacities measured for	
Au ₄₉ Ag _{5.5} Pd _{2.3} Cu _{26.9} Si _{16.3} (circles) and Pt _{57.3} Cu _{14.6} Ni _{5.3} P _{22.8}	
(squares)	IV-13
Figure IV-6 Δ H for Au ₄₉ Ag _{5.5} Pd _{2.3} Cu _{26.9} Si _{16.3} is plotted using	
Kubaschewski Fit (solid thin line) and	
Gaussian fit (dashed line).	IV-16
Figure IV-7 ΔS for Au ₄₉ Ag _{5.5} Pd _{2.3} Cu _{26.9} Si _{16.3} and Pt _{57.3} Cu _{14.6} Ni _{5.3} P _{22.8}	IV-17
Figure IV-8 The Generalized Sinusoidal Random Field (GSRF) model	
offers good prediction of ΔH over all temperatures.	IV-20
Figure IV-9 Δ H from GSRF model plotted with experimental data points	
selected between 550-750K. Compared with Gaussian and	
Kubaschewski models	IV-21
Figure IV-10 The derivative of $\langle e \rangle = \frac{d \langle e \rangle}{dT}\Big _{V} = Cv$ is the specific heat	
which takes the form $Cv = (V_oW/T^2)sech^2(-W/T)$.	IV-23
Figure IV-11 Δ S calculated using GSFR and Kubaschewski models	
are plotted against temperature.	IV-24
Figure IV-12 Gibbs free energy difference between the supercooled	
liquid and the crystalline mixture for different glass	
forming liquids	IV-26
Figure IV-13 The Gibbs free energy differences are plotted using	
Turnbull's free energy approximation.	IV-28
Figure IV-14 Normalized $\Delta G/\Delta H_m$ function plotted against normalized	
temperature (T/T _m)	IV-30

Figure IV-15 Sections through the 3N+1 dimensional energy	
hypersurface and corresponding entropy and Cp	
of a strong (a) and fragile (b) liquids	IV-33
Chapter V Strain Rate Induced Crystallization in BMG Forming Liquid	
Figure V-1 Splat-quencher apparatus is schematically shown.	V-4
Figure V-2 X-ray diffraction spectrum for (A) 50 microns splat-cooled	
sample process at ~900K, (B) 300 microns splat-cooled	
sample process at ~900K, and (C) 5 mm cast rod processed	
at ~900K	V-5
Figure V-3 Differential scanning calorimetry thermograms determined	
at 0.33 K/s heating rate for (A) 50 microns splat-cooled	
sample process at ~900K, (B) 300 microns splat-cooled	
sample process at ~900K, and (C) 5 mm cast rod	
processed at ~900K	V-6
Figure V-4 Sketch of the approach to explain the influence of	
strain rate on the crystallization	V-12
Figure V-5: Transmission electron micrograph image of partially amorpho	ous
splatted sample	V-15
Chapter VI Novel Methods for Joining Materials Using Metallic Glasses	
– an Alternative to Lead-Free Soldering	
Figure VI-1 Solder thermal-mechanical fatigue failure during	

temperature cycling

VI-5

Figure VI-2 Solder electromigration failure during operation	VI-5
Figure VI-3 Schematic showing possible BMGs processing pathways	
as solder	VI-7
Figure VI-4 Volume and temperature diagram of a solder cooling process	VI-9
Figure VI-5 Cuboid-shape solder is placed on copper slug substrate	
with flux applied as a cleaning agent.	VI-10
Figure VI-6 Solder balls of 1 mm diameter can be obtained by	
remelting the alloy in an arc-melter.	VI-11
Figure VI-7 Copper-solder-copper stack is loaded into Perkin Elmer	
TMA7 for accurate control of temperature and load during	
thermoplastic soldering.	VI-12
Figure VI-8 Figures of merit for Pt-BMG and Au-BMG	VI-14
Figure VI-9 The figure of merit (achievable strain at certain temperature)	
is plotted against the actual probe displacement (mm).	VI-15
Figure VI-10 Top view of the debonded solder on copper slug.	
The original feedstock solder is in cuboid shape.	VI-19
Figure VI-11 Intimate contact is demonstrated between Pt-BMG solder	
(top) and copper substrate (bottom).	VI-21
Figure VI-12 BSE image of Pt-solder w/ Cu particles embedded inside	VI-22
Figure VI-13 At point A near the free flowing front, there is negligible	
normal force contribution that presses the fresh solder	
material against the substrate.	VI-24

Figure VI-14 Cross section of solder-substrate interface is shown.

The interface near the free flowing front does not have	
enough normal force to press the material against	
the substrate.	VI-25
Figure VI-15 The top view of the solder surface shows less than 100%	
contact area with the substrate, as outlined by the solid line.	VI-26
Figure VI-16 Special copper slugs were prepared by drilling	
500-micron holes perpendicular to the surface.	VI-27
Figure VI-17 Analog pressure profile of solder during the reflow process.	
Drop in pressure is observed near the free flowing	
solder front.	VI-28
Figure VI-18 By introducing 45° surface to the substrate, the solder	
front is no longer free flowing.	VI-29
Figure VI-19 New copper substrate design aiming to utilize the strength	
of Pt-BMG	VI-31
Figure VI-20 Front section of the COSMOSWorks analysis showing	
the deformed copper substrate before fracture.	VI-32
Figure VI-21 Top view of the copper substrate. COSMOSWorks	
analysis shows the stress experienced by different areas	
of the copper substrate right before fracture.	VI-33
Figure VI-22 Cross-section view of the copper substrate showing	
the recessed neck region. COSMOSWorks analysis shows	
that the highest stress is located around the edge of	

the recessed neck.	VI-34
Figure VI-23 A summary of experimented materials preparation	
techniques are shown in the diagram.	VI-36
Figure VI-24 A summary of experimented processing techniques are show	/n
in the diagram.	VI-37
Figure VI-25: Debonding strength (in tension) of a thermoplastically form	ed
solder joint showing 47.7 MPa strength before failure.	VI-38
Appendix A Volume-Weighted Average Density Approximations	
Figure A-1 Actual BMG alloy densities are plotted against density	
calculated using molar volume weighted average method.	A-2
Figure A-2 Similar to Figure A-1 above. Phosphorus containing alloys	
are included (Pt- and Pd- alloys).	A-3
Appendix B Critical Cooling Rate & Specimen Thickness Correlation	

Figure B-3 Critical cooling rate approximation Rc=1600/d² B-3

LIST OF TABLES

Chapter II Alloy Development by Design

Table II-1 Summary of critical Ti atomic percents in the Ti-Ni system	II-10
Table II-2 Comparison between experiment results and Thermo-Calc	
Predictions	II-17
Table II-3 Selected alloy compositions based on Au-Cu-Si system are	
tabulated with the experimental values of Tl, Tg, Tx, and Trg.	II-19
Chapter III Gold-Based Bulk Metallic Glass	
Table III-1 Summary of the properties of the various gold-based alloys.	III-6
Table III-2 Summary of characteristic temperatures and mechanical	
Properties of 18 karat gold BMG and its 18 karat crystalline	
Alloy counterpart.	III-18
Chapter IV Characterization Studies of High Poisson's Ratio BMGs	
Table IV-1 Poisson's ratio for Au, Pt, and Pd BMGs and	
crystalline alloys	IV-4
Table IV-2 Values of the key parameters for Cp fittings and calculations	
Of enthalpies, entropies, and Gibbs free energies	IV-14
Table IV-3 Summary of key fitting parameters used in GSRF model	
and Gaussian model	IV-22
Chapter V Strain Rate Induced Crystallization in BMG Forming Liquid	
Table V-1 Summary of processing parameters for	

Table V-2 Processing Conditions Showing the Effect of Critical	
Cooling rate (Rc) and Strain Rate	V-8
Table V-3 Processing Conditions Showing the effect of processing	
temperatures and strain rates	V-8