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ABSTRACT 

 

 The development of bulk metallic glass alloys is presented with various elemental 

selection criteria, design strategies, and experimental techniques. The focus was later 

drawn towards the development of noble bulk metallic glasses based on gold and 

platinum. To formulate a good bulk glass forming composition, we found that the gold 

alloys had to be optimized using uncommon approaches. One strategy was to primarily 

increase the glass transition temperature of the alloy, instead of lowering the melting 

temperature. The resulting gold bulk metallic glass alloy could be cast fully amorphous 

up to 5 mm thick. However, the best gold glass former also exhibited many anomalous 

behaviors; for example, a very high strain rate could induce phase separation in the bulk 

glass forming liquid. A detail study on the strain rate induced crystallization was carried 

out systematically to pinpoint the exact conditions that would cause an anomaly.      

Additionally, a variety of comparative studies were conducted on the gold and 

platinum bulk metallic glass alloys, including elastic constants measurement, heat 

capacity measurement, viscosity measurement using three-point beam bending, and time 

to crystallization study in order to construct a Time-Temperature Transformation diagram. 

The last chapter switches gears to the engineering and technology aspect of gold 

and platinum bulk metallic glasses. The thermoplastic soldering technique is introduced 

as a novel method for joining any two materials at temperatures lower than that of 

brazing or welding processes. The proposed technique is a new alternative to the lead-

free soldering process available to the electronic industry.  
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