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ABSTRACT

Exit from mitosis is as an important phase in the cell cycle. The molecular event

that triggers the cell cycle transition from anaphase into the G1 state involves the

inactivation of the cyclin-dependent kinase complex (Cdk) through multiple mechanisms

that lead to both destruction of the cyclin subunit co-activator and direct Cdk kinase

inhibition. These multiple mechanisms indicate the importance of regulating the

inactivation of Cdk to ensure proper cell cycle progression and cytokinesis. We set out to

examine the regulation of the protein phosphatase Cdc14. Cdc14 is thought to act through

reversal of phosphorylation on key Cdk substrates that promote mitotic exit by stimulating

the destruction and inactivation of Cdk. In Saccharomyces cerevisiae, activation of Cdc14

is achieved via release from its nucleolar inhibitor Net1/Cfi1. This activation is correlated

with multi-site phosphorylation of Net1 in cells where Cdc14 appears to be released from

the nucleolus. We set out to identify new components of the nucleolar complex known as

RENT (Regulator of Nucleolar Silencing and Teleophase) which holds Cdc14 in an

inactive state. This led to the identification of Casein Kinase II (CKII) as a new component

of RENT. CKII was verified to co-immunoprecipitate with Net1; and mutants in CKII

arrest in anaphase with unreleased Cdc14 and unsegregated rDNA. Interestingly, phospho-

peptide mapping experiments from in vivo Net1 samples revealed phosphorylation of a

CKII consensus sequence within Net1. In vivo mapping also revealed another subset of

sites that matched the consensus sequence established for Cdk phosphorylation. Mutational

analysis of these sites unveiled their involvement in Cdc14 release during early anaphase

and a role for a network of genetically interacting proteins involved in Fourteen Early

Anaphase Release (FEAR) in promoting these phosphorylations.
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         In summary, the regulation of Cdc14 release via phosphorylation of its nucleolar

inhibitor Net1 as demonstrated by this work highlights the importance of nucleolar

sequesteration and regulated release as a mechanism of controlling important cell cycle

factors and events. It also points to a fascinating role for Cdk in insuring its own destruction

at the end of the cell cycle, thus promoting transition back into the G1 state.



vii
TABLE OF CONTENTS

Acknowledgements........................................................................................... iii

Abstract ...............................................................................................................v

Table of Contents ............................................................................................ vii

Chapter I: The End of the Cell Cycle..............................................................1

Overview: The motor of the cell cycle; Cyclin-dependent kinase (Cdk). ...1

Exit from mitosis in Saccharomyces cerevisiae ...........................................2

   The Mitotic Exit Network (MEN) .............................................................2

   Fourteen Early Anaphase Release (FEAR) Network ...............................4

   Roles of FEAR............................................................................................6

FEAR and Mitotic Exit Networks in Meiosis and Mitosis...........................8

Thesis Overview ............................................................................................9

References ....................................................................................................10

Chapter II: Net1 Phosphorylation by Clb1,2–Cdk Regulates

Cdc14 Release from the Nucleolus during Exit from Mitosis ....................22

Summary ......................................................................................................22

Introduction..................................................................................................23

Results ..........................................................................................................26

    Net1 N-terminus mediates regulated localization of Cdc14

    and is highly phosphorylated in cdc14-1 cells........................................26

    Net1 phosphorylation is required for transient release of Cdc14

    in early anaphase and proper meiosis......................................................27

    Mitotic cyclin-Cdk phosphorylates sites on Net1 required for FEAR...29

    Over-expression of non-degradable Clb2 is sufficient to drive

    Cdc14 out of the nucleolus in metaphase-arrested cells.........................31

    Slk19, Spo12, and Cdc5 modulate phosphoryltion of Net1 on Thr212 32

Discussion ....................................................................................................33

    Phosphorylation if Net1 by Clb-cdk underlies FEAR............................33



viii
    FEAR network promotes phosphorylation of Net1 by Clb1,2-Cdk ......34

    Is Net1 phosphorylation by Clb-cdk sufficient for FEAR? ...................36

    On the roles of Cdc5 and Clb-Cdk protein Kinase activities in FEAR .37

Acknowledgements......................................................................................39

Experimental Procedures.............................................................................39

References ....................................................................................................44

Figure II-1 ....................................................................................................54

Figure II-2 ....................................................................................................56

Figure II-3 ....................................................................................................59

Figure II-4 ....................................................................................................62

Figure II-5 ....................................................................................................68

Figure II-6 ....................................................................................................71

Figure II-7 ....................................................................................................74

Figure II-8 ....................................................................................................77

Figure II-9 ....................................................................................................79

Figure II-10 ..................................................................................................81

Figure II-11 ..................................................................................................83

Table II-1......................................................................................................85

Table II-2......................................................................................................87

Chapter III: New Components of the RENT Complex...............................89

Introduction..................................................................................................89

    RNA Polymerase I (Pol I) .......................................................................90

    Casein Kinase II (CKII)...........................................................................91

Results ..........................................................................................................92

    RNA Polymerase I and Casein Kinase II Interact with Net1.................92

    Casein Kinase II Mutants Display Synthetic Interactions

    with MEN Mutants ..................................................................................93

    Casein Kinase II Mutants Arrest in Anaphase

    with Unsegregated rDNA........................................................................94



ix
Conclusions ..................................................................................................95

Acknowledgements......................................................................................96

Experimental Procedures.............................................................................96

References ....................................................................................................98

Figure III-1.................................................................................................104

Figure III-2.................................................................................................106

Figure III-3.................................................................................................108

Figure III-4.................................................................................................110

Figure III-5.................................................................................................112

Chapter IV: Future Directions.....................................................................114

Summary ....................................................................................................114

Future Questions ........................................................................................114



1
C h a p t e r  I -  T h e  E n d  o f  t h e  C e l l  C y c l e

Overview: The motor of the cell cycle; Cyclin-dependent kinase (Cdk)

The ability of cells to coordinate important events such as spindle disassembly (Li

and Cai, 1997), chromosomal condensation (Loidl, 2003), and DNA replication (Piatti,

1997) with cellular division rely on the activity of the cyclin-dependent kinase complex

(Amon et al., 1994; Holloway et al., 1993; Surana et al., 1993). The Cdk complex consists

of at least two components in Saccharomyces cerevisiae. The first is a cyclin subunit that

both activates and is thought to impart substrate specificity to the second component, the

kinase subunit.  The cyclin subunit appears to be interchangeable during various phases of

the cell cycle where G1 cyclins (Cln1,2,3) (Levine et al., 1995); S-phase cyclins (Clb5,6)

(Kuntzel et al., 1996; Toone et al., 1997); and G2 cyclins (Clb1,2,3,4) (Fitch et al., 1992)

activate the kinase subunit to effect phosphorylation on cell cycle-specific substrates.

Direct regulation of the kinase subunit in cis involves the post-translational

phosphorylation of key residues that lead to modification of enzymatic activity

(Mendenhall and Hodge, 1998).  Regulation of the Cdk complex in trans also plays a key

role in S. cerevisiae. This is achieved through the action of Cdk inhibitors (Sic1) (Donovan

et al., 1994) and (Cdc6) (Calzada et al., 2001) which directly bind to and inhibit Cdk

complexes.

This work focuses on the regulation of Cdk activity at the end of the cell cycle

during mitotic exit. Specifically, the regulation of the molecular trigger both in cis and in

trans that signals the cells to initiate Cdk inactivation via the various mechanisms listed

previously.  We will demonstrate the ability of the cell cycle motor Cdk to act as its own
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break, in effect, by regulating the activation of the molecular trigger that leads to the

ultimate extinction of Cdk activity, thus paving the road for the return back to the G1 state.

Exit from mitosis in Saccharomyces cerevisiae

The Mitotic Exit Network (MEN)

To achieve the goal of Cdk inactivation by the various mechanisms listed

previously, a signal transduction network has been identified to be involved in mitotic exit.

This group of proteins consists of at least 10 genetically interacting proteins collectively

known as the mitotic exit network (MEN) (Jaspersen et al., 1998; McCollum and Gould,

2001). They include 4 protein kinases (Cdc15, Cdc5, Dbf2, and Dbf20) (Johnston et al.,

1990; Kitada et al., 1993; Schweitzer and Philippsen, 1991; Toyn et al., 1991), a spindle

pole body (SPB) protein (Nud1) (Adams and Kilmartin, 1999), a protein phosphatase

(Cdc14) (Wan et al., 1992), a GTPase (Tem1) (Shirayama et al., 1994), a GTP/GDP

exchange protein (Lte1) (Shirayama et al., 1994), a negative regulator of Cdc15 (Amn1)

(Wang et al., 2003), and a protein of unknown function (Mob1) (Luca and Winey, 1998).

All of the MEN proteins, with the exception of Lte1, are essential in budding yeast and

many are found to be conserved between yeast and higher eukaryotic organisms (Li et al.,

1997; Li et al., 2000).

A model for how exit from mitosis is controlled involves the retention of Cdc14 in

an inactive form within the nucleolus while tethered to the nucleolar protein (Net1/Cfi1)

(Shou et al., 1999; Visintin et al., 1999).  Upon activation of the MEN, Cdc14 is released

from Net1, and diffuses throughout the cell. The active form of Cdc14 is thought to activate
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cyclin proteolysis by removing inhibitory phosphorylation from Hct1/Cdh1, an activator

of APC in late anaphase (Jaspersen et al., 1999; Visintin et al., 1998; Zachariae et al.,

1998). Cdc14 is also thought to be responsible for promoting Sic1 accumulation and

stability by reversal of Cdk phosphorylation events on Swi5 (a Sic1 transcriptional

activator) and Sic1, respectively (Moll et al., 1991; Toyn et al., 1991; Toyn et al., 1997;

Verma et al., 1997; Visintin et al., 1998).

Evidence suggests that the MEN acts as part of the Bub2-dependent spindle

positioning checkpoint that monitors spindle pole body (SPB) position with respect to the

bud neck (Bardin et al., 2000; Bloecher et al., 2000; Pereira et al., 2000).  Upon spindle

pole body duplication, the old spindle pole body is thought to contain the Tem1 GTPase

which migrates to the bud. Activation of Tem1 occurs as the SPB interacts with the Bud

cortex containing the GTP/GDP exchange protein Lte1 (Bardin et al., 2000; Bloecher et al.,

2000; Pereira et al., 2000).  Tem1 then in turn is thought to activate Cdc15 kinase

(Asakawa et al., 2001; Bardin et al., 2003) which in turn leads to the activation of the

Dbf2/Dbf20 kinase complex bound to the cyclin-like subunit Mob1 (Mah et al., 2001;

Visintin and Amon, 2001). It remains unclear how the Dbf2/Dbf20/Mob1 complex then

controls the activation of Cdc14 to promote mitotic exit. One possible role for the action of

MEN involves the control of Cdc14’s ability to transition between the nucleus and

cytoplasm where the majority of its identified substrates reside.  Indeed, genetic screens

have identified a few nuclear transporters as suppressors of MEN mutants such as SUP1,

KAP104, and MTR10 (Asakawa and Toh-e, 2002; Shou and Deshaies, 2002; Shou et al.,

2001; Shou et al., 1999), yet it remains unknown as to whether these transporter act directly

on Cdc14 or indirectly through general perturbation of nuclear/nucleolar architecture to
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allow precocious release of Cdc14 independently of MEN function. Indeed, Net1

mutations such as net1-1 have a significant impact on general nucleolar structure as judged

by localization of multiple nucleolar antigens and regulation of rDNA morphology (Shou et

al., 2001), which helps to explain this allele’s ability to bypass cdc15∆ cells (Shou et al.,

1999).  It is clear though that the cell cycle function of Net1 can be uncoupled from its

other nucleolar functions as demonstrated by the dominant mutation in CDC14 (TAB6)

(Shou et al., 1999).

Fourteen Early Anaphase Release (FEAR) Network

Recently, a new network of proteins has been identified in regulating the release of

Cdc14 from the nucleolus in early anaphase (Stegmeier et al., 2002).  This network consists

of a separase (Esp1), the polo-like kinase (Cdc5), Spo12, and Slk19 which have unknown

functions.

The first component of this network is a protease known as separase (Esp1)

(Uhlmann et al., 2000).  Esp1 is held inactive by securin (Pds1) (Cohen-Fix and Koshland,

1999; Yamamoto et al., 1996) until the metaphase to anaphase transition, at which point it

is activated to promote destruction of cohesin (Scc1) (Ciosk et al., 1998).  Cohesin holds

sister chromatids together after DNA replication and its enzymatic cleavage by separase

allows separation of the sister chromatids to the opposite SPB ends (Uhlmann et al., 2000).

Notably, the enzymatic activity of Esp1 does not appear to be required for its function in

the FEAR pathway as catalytically inactive Esp1 is still able to promote Cdc14 release in

metaphase-arrested cells (Sullivan and Uhlmann, 2003).   Also, over-expression of Esp1
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allows metaphase-arrested cells to complete mitosis and cycle to the next G1 phase but is

dependent on Spo12, Slk19, and to a lesser extent Cdc5 (Sullivan and Uhlmann, 2003).

The second component is (Cdc5), the only known homolog to the polo kinase in

Saccharomyces cerevisiae.  Cdc5 is interesting because it acts as both a component of the

MEN as well as the FEAR networks.  Cdc5 is thought to act in the MEN pathway through

inhibitory phosphorylations of the Bub2/Bfa1 complex which leads to the activation of

Tem1 (Hu et al., 2001).  Cdc5 is also thought to act on the RENT complex to promote

Cdc14 release from Net1, although this is thought to be primarily through an indirect

mechanism (Shou et al., 2002).  The function of Cdc5 in the FEAR pathway is less clear,

whereas over-expression of Cdc5 can promote Cdc14 release in metaphase-arrested cells, it

appears to be independent of the other FEAR network genes (Sullivan and Uhlmann, 2003;

Visintin et al., 2003).

The third component of the FEAR is Spo12, a protein of unknown function. Spo12

was originally identified as playing an important role in the proper progression of meiosis

(Klapholz and Esposito, 1980a; Klapholz and Esposito, 1980b).  Interestingly, Spo12 levels

appear to be cell-cycle regulated (Shah et al., 2001) and functions as a multi-copy

suppressor of cdc15-2 temperature sensitive strains (Jaspersen et al., 1998).  Also, the role

of Spo12 in promoting Cdc14 release appears to be in parallel to the other components of

the FEAR network, as over-expression of Spo12 still drives Cdc14 out of the nucleolus in

FEAR mutants (Visintin et al., 2003).  Recently, Spo12 has been suggested to antagonize

the function of the nucleolar protein (Fob1), thus promoting the premature release of Cdc14

from the RENT complex in metaphase-arrested cells (Stegmeier et al., 2004).
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The fourth component of this network is Slk19, another protein of unknown

function. Slk19 was originally identified and later confirmed to be required for the proper

maintenance of mitotic anaphase spindles (Sullivan et al., 2001; Zeng et al., 1999).  Slk19

localizes to kinetochores and the spindle mid-zone during anaphase and is a substrate of

Esp1, yet interestingly cleavage of Slk19 by Esp1 does not seem to be necessary for Cdc14

release from the nucleolus (Stegmeier et al., 2002).  The function of Slk19 in the FEAR

pathway could also be complicated by the fact that Slk19 appears to be required upstream

to promote Cdc14 release through the FEAR pathway yet also required for Cdc14 function

downstream to promote anaphase spindle integrity through Cdc14 mediated localization of

the INCENP-Aurora B complex to the spindle midzone (Pereira and Schiebel, 2003).

Roles of FEAR

In a relatively short amount of time, the FEAR network has been implicated to play

a key role in organizing multiple events during early anaphase.  FEAR was initially

identified as a group of proteins required for the timely progression through mitosis by

promoting the release of Cdc14 in early anaphase (Stegmeier et al., 2002).  Cdc14 is then

able to positively feed back and activate the kinase Cdc15 as part of the MEN pathway as

has been proposed previously (Jaspersen and Morgan, 2000).  FEAR mutants, in the

context of mitosis, displayed a delay in proper progression through mitosis, and synthetic

phenotypes when combined with MEN mutants (Stegmeier et al., 2002).

Recent studies have illuminated another role for FEAR in the coordination of MI

and MII phases during meiosis (Buonomo et al., 2003; Marston et al., 2003) and proper
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segregation of rDNA (Buonomo et al., 2003).  Anaphase I spindle disassembly is delayed

in cdc14-1, spo12∆, and slk19∆ mutants to the point where anaphase II equational division

occurs on meiosis I spindles (Marston et al., 2003).  Remarkably, meiosis II events still

take place and deletion of SPO11, preventing recombination, rescues the nuclear division

defect of these mutants (Marston et al., 2003). Both Spo12 and Slk19 appear to be critical

for executing meiosis than mitosis as judged by the sporulation and meiotic defects of

spo12∆ and slk19∆ mutant cells (Buonomo et al., 2003; Grether and Herskowitz, 1999;

Klapholz and Esposito, 1980b; Zeng et al., 1999). Mutant spo12∆ asci contain only two

spores and half of slk19∆ contain two and half three or four spores (unpublished

observations) (Marston et al., 2003). More so, Spo12 and Slk19 are required for the

division of the nucleolus (specifically, the segregation of newly replicated rDNA) and

release of Cdc14 during Anaphase I of meiosis implying that Cdc14 release and activation

is important for nucleolar segregation as has been suggested previously for cells exiting

mitosis (Granot and Snyder, 1991). The polo kinase Cdc5 has also been linked to

controlling chromosomal segregation during meiosis I (Lee and Amon, 2003).  Removal of

meiotic cohesin from chromosomes and sister-kinetochore co-orientation during meiosis I

are coupled through their dependence on Cdc5 (Lee and Amon, 2003).

More recently, a new function of FEAR has been attributed to the controlling the

proper transfer of the INCENP-Aurora B complex from the kinetochore to the spindle

midzone (Pereira and Schiebel, 2003).  Release of Cdc14 in early anaphase leads to the

dephosphorylation of Sli15, a component of the INCEP-Aurora complex composed of

Sli15-Ipl1. This dephosphorylation occurs on Cdk sites of Sli15 through Cdc14’s
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phosphatase activity in vitro (Pereira and Schiebel, 2003) which corresponds with Cdc14

being a proline-directed phosphatase (Gray et al., 2003).  Sli15 dephosphorylation is

sufficient to trigger microtubule binding of the INCEP-Aurora complex as demonstrated by

the Sli15-6A mutant which remarkably is able to rescue the spindle defect of cdc14-2

mutant cells. Mutant Sli15-6A cells also displayed a 1000-fold increase in chromosome loss

rate due to constitutive localization of Ipl1 and consequent stabilization of microtubules

(Pereira and Schiebel, 2003) again arguing that proper activation of Cdc14 in early

anaphase is important for timely progression through the cell cycle towards mitotic exit.

FEAR and Mitotic Exit Networks in Meiosis and Mitosis

Exit from anaphase is similar in meiosis and mitosis in that it requires the down-

regulation of Cdk1 activity.  However, in contrast to the exit from mitosis which is brought

about by a complete loss of M-phase Cdk activity, the exit from meiosis I is accompanied

by only a partial reduction perhaps because modest levels of Cdk1 activity appear to be

required in the interval between meiosis I and II to prevent DNA replication and origin

resetting (Iwabuchi et al., 2000; Noton and Diffley, 2000). Interestingly, the FEAR network

appears to perform similar functions in both M-phases: it creates a brief window of Cdc14

activity that antagonizes Clb-Cdk to initiate a collapse of the M-phase state.  In meiosis, the

transient reduction in the M-phase state appears to be brief and only necessary for partial

reversal of the M-phase state to allow for the remodeling of the microtubule spindle to

support equational segregation of sister chromosomes during meiosis II.  For this, the

FEAR appears to be both necessary and sufficient, and the MEN does not appear to play a

critical role (Buonomo et al., 2003; Marston et al., 2003).  However, in mitotic cycles, Clb-
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Cdk activity must be completely extinguished to enable an irreversible return to an

interphase state that can support DNA replication.  This requirement in turn may

necessitate a more extended release of Cdc14 from the nucleolus, which requires the MEN.

Positive feedback loops built into the MEN (Jaspersen and Morgan, 2000) may act to

ensure that once the MEN is switched on, Clb-Cdk activity will inevitably be extinguished

completely to allow the cell to divide and enter a subsequent S phase.  Owing to these

positive feedback loops, even a very modest initial stimulus could snowball into a complete

mobilization of Cdc14, which could explain why the FEAR is not essential in mitotic

cycles.

Conversely, the budding lifestyle of Saccharomyces cerevisiae offers a simple

explanation for why the FEAR may not be sufficient to drive exit from mitosis (in contrast

to the situation at the completion of meiosis I).  Accurate partitioning of sister

chromosomes to mother and daughter yeast cells is supported by a post-anaphase

checkpoint that monitors the position of the spindle relative to the bud neck (Bardin et al.,

2000; Pereira et al., 2000).  If the FEAR by itself could drive exit from mitosis, then the

cell would be irreversibly committed to exit mitosis upon activation of separase at the

metaphase-anaphase transition, regardless of whether the two sets of sister chromatids were

properly distributed to the two daughter cells.

Thesis Overview

Although the action of the FEAR network is not essential for mitotic cell cycles, its

activity helps to determine the timing of exit from mitosis (Stegmeier et al., 2002).  Chapter
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II describes how phosphorylation of Net1 by Clb-Cdk underlies disruption of the RENT

complex during anaphase and illustrates a fascinating aspect of the switch that governs the

return of mitotic cells to an interphase state.  Although Clb-Cdk initiates feedback loops

that help sustain a mitotic state with high Clb-Cdk activity (Deshaies, 1997), there must be

mechanisms for subverting the reign of Clb-Cdk to allow growing cells to continue to

cycle.  Fittingly, at least two of these mechanisms – activation of Cdc20 binding to APC

(Rudner et al., 2000; Rudner and Murray, 2000) and disruption of the Cdc14/Net1 complex

– are initiated directly by the very enzyme whose activity helps to specify the mitotic state

in the first place.  Chapter III describes the identification of new interactors with the RENT

complex such as Casein kinase II (CKII) and RNA polymerase I in mitotic cells.  Given

that a CKII site was identified and mapped from in vivo samples of Net1, and CKII was

found co-associated with RENT complexes by mass spectrometry and this association was

confirmed by co-immunoprecipitation; CKII could be playing an important role in

regulating Cdc14 release and possibly rDNA segregation. Also, given the location of the

RENT complex within the nucleolus, interactions of Net1 with RNA Pol I help explain the

multi-functionality displayed by net1-1 mutants.   Chapter IV will outline a potential line of

experiments that address how regulation of the FEAR and MEN pathways could be

investigated through the use of Clb2–Cdk phosphorylation assays on Net1 and how these

phosphorylations lead to the activation of Cdc14.
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Summary

The Cdc14 Early Anaphase Release (FEAR) network promotes a transition in the

M-phase state that demarcates meiosis I and II, and together with the mitotic exit network

enables timely exit from mitosis.  These functions derive from FEAR’s ability to promote

release of active Cdc14 from the nucleolar anchor Net1/Cfi1.  We report here a molecular

basis for the release of Cdc14 during early anaphase.  Mitotic cyclin Clb2–Cdk

complexes phosphorylate Net1 in vitro and in vivo.  Underscoring the relevance of these

phosphorylations, net1 phosphosite and clb1∆clb2∆ mutants are deficient in FEAR, and

net1 phosphosite mutants fail to execute proper meiosis.  Over-expression of non-

degradable Clb2 induces ectopic release of Cdc14 from the nucleolus, and purified Clb2-

Cdk dissociates Cdc14 from Net1 in vitro.  Finally, FEAR network components Spo12,

Slk19, and Cdc5 promote Net1 phosphorylation by Clb–Cdk.  These results suggest that

the FEAR network mobilizes Clb1,2-Cdk to phosphorylate Net1 and dislodge Cdc14,

which initiates a transient (meiosis I) or sustained (mitosis) departure from M-phase via

down-regulation of Clb-Cdk activity.  Thus, Clb-Cdk sows the seeds of its own demise.
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Introduction

Exit from mitosis is an essential step in the progression of cells through the cell

cycle.  In late mitosis, inactivation of mitotic cyclin–Cdk complexes causes mitotic

spindle disassembly (Li and Cai, 1997), chromosome decondensation, and return of cells

to G1 phase (Amon et al., 1994; Holloway et al., 1993; Surana et al., 1993).  In budding

yeast, this inactivation is achieved by accumulation of the Cdk inhibitor Sic1 (Donovan et

al., 1994; Schwab et al., 1997; Visintin et al., 1998), and destruction of the mitotic cyclins

by the Anaphase Promoting Complex (APC), a multi-subunit ubiquitin protein ligase that

catalyzes the ubiquitination of substrates containing a destruction-box sequence (Glotzer

et al., 1991; Irniger et al., 1995; King et al., 1995; Morgan, 1999).  Both of these

processes require a network of genetically interacting proteins collectively known as the

mitotic exit network (MEN) (Jaspersen et al., 1998; McCollum and Gould, 2001).  The

most upstream component is the spindle pole body (SPB) protein Nud1 (Adams and

Kilmartin, 1999), which tethers MEN components to the SPB.  Among those components

is the GTPase Tem1 (Shirayama et al., 1994b), which is activated by the guanine

nucleotide exchange factor Lte1 (Shirayama et al., 1994a).  The location of Lte1 in the

bud cortex is thought to render Tem1 activation dependent upon successful orientation of

the anaphase spindle along the mother-bud axis (Bardin et al., 2000; Pereira et al., 2000).

Activated Tem1 then promotes activation of the protein kinase Cdc15 (Schweitzer and

Philippsen, 1991), which in turn activates the homologous protein kinases Dbf2 and

Dbf20 (Johnston et al., 1990; Toyn et al., 1991).  Proper activation of Dbf2 requires its

association with its binding partner Mob1 (Luca and Winey, 1998; Mah et al., 2001).

MEN components Cdc15, Dbf2, Dbf20, and Mob1, like Tem1, localize to the SPB (Luca
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et al., 2001; Pereira et al., 2002; Visintin and Amon, 2001; Yoshida and Toh-e, 2001).

Activation of Cdc14, a protein phosphatase (Wan et al., 1992) that serves as a key

mediator of mitotic exit, appears to be the eventual target of the MEN, yet the mechanism

by which this activation occurs remains unknown.

During interphase, Cdc14 is retained in an inactive form within the nucleolus as a

component of the RENT complex, which comprises Cdc14 and Sir2 tethered to the

nucleolar protein Net1/Cfi1 (Shou et al., 1999; Straight et al., 1999; Visintin et al., 1999).

During anaphase, active Cdc14 is released from Net1, and diffuses throughout the cell.

Cdc14 is thought to activate cyclin proteolysis by removing inhibitory phosphate groups

from Hct1/Cdh1, an activator of APC in late anaphase (Jaspersen et al., 1999; Visintin et

al., 1998; Zachariae et al., 1998).  Cdc14 also promotes Sic1 accumulation and stability

by removal of Cdk phosphorylations on Swi5 (a Sic1 transcriptional activator) and Sic1,

respectively (Moll et al., 1991; Toyn et al., 1997; Verma et al., 1997; Visintin et al.,

1998).

Recently, Cdc5, Esp1, Spo12, and Slk19 have been proposed to comprise a

signaling network (dubbed the FEAR network for Fourteen Early Anaphase Release) that

instigates transient release of Cdc14 from Net1 at the onset of anaphase (Stegmeier et al.,

2002).  Cdc5 and Esp1 are, respectively, the polo kinase and separase orthologs of

budding yeast.  The biochemical functions of Spo12 and Slk19 are unknown.  The FEAR

network is required for proper coordination of chromosome segregation during meiosis I

and II (Buonomo et al., 2003; Marston et al., 2003) but is not essential for exit from

mitosis (Stegmeier et al., 2002).  Nevertheless, FEAR network mutants exhibit a modest

delay in exiting mitosis, and strong synergy with MEN mutants.
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Although the FEAR network plays a critical coordinating role in the M-phases of

mitosis and meiosis, the molecular mechanisms underpinning FEAR’s ability to promote

Cdc14 activation are not fully understood.  Investigations on the role of separase in this

process demonstrated that ectopic disassembly of RENT induced by over-expression of

separase is not affected by a point mutation that disrupts separase’s endoproteolytic

activity, but is blocked completely by deletion of SPO12 or SLK19, and partially in cdc5-1

temperature sensitive (ts) mutants (Sullivan and Uhlmann, 2003).  These observations

suggest that a novel activity of Esp1 stimulates Spo12, Slk19, and Cdc5 to promote release

of Cdc14 from Net1.  In contrast, over-expressed Cdc5 can promote ectopic release of

Cdc14 from the nucleolus in spo12∆, slk19∆, and esp1-1 mutants, and over-expressed

Spo12 accelerates the same event in slk19∆, esp1-1, and Cdc5-depleted cells.  These

observations suggest that Spo12 and Cdc5 collaborate on parallel pathways to dislodge

Cdc14 from Net1 (Visintin et al., 2003).  Interestingly, separase- and Cdc5-induced

disassembly of RENT correlates with hyper-phosphorylation of Net1 (Shou et al., 2002a;

Sullivan and Uhlmann, 2003; Visintin et al., 2003).  It has long been thought that

phosphorylation of Net1, Cdc14, or both underlies disassembly of the RENT complex

during early and late anaphase (Shou et al., 2002a; Shou et al., 1999; Sullivan and

Uhlmann, 2003; Visintin et al., 2003).  Among the protein kinases in the MEN, Cdc5 has

been implicated in controlling Net1 phosphorylation state and RENT disassembly (Shou et

al., 2002a; Visintin et al., 2003; Yoshida and Toh-e, 2002), and has been postulated to be

the direct effector of FEAR-induced Net1 phosphorylation (Ross and Cohen-Fix, 2003).

However, the identity of the relevant protein kinases that phosphorylate RENT and the sites

of in vivo phosphorylation remain uncertain.  Thus, it has not been possible to test directly
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the appealing hypothesis that phosphorylation underlies the release of Cdc14 from Net1

during anaphase.  We propose that mitotic Clb-Cdk phosphorylates Net1 to bring about

Cdc14 release and activation and that this phsophorylation is regulated by components of

the FEAR network.

Results

Net1 N-terminus mediates regulated localization of Cdc14 and is highly

phosphorylated in cdc14-1 cells.

To map determinants that sustain regulated disassembly of the RENT complex, we

examined a Net1 (1-621) truncation mutant along with a set of strains that contain

transposon insertions in NET1 (Burns et al., 1994; Ross-Macdonald et al., 1999).

Immuno-fluorescence analysis of asynchronous cell cultures using anti-Cdc14 antibodies

revealed that the N-terminal 621 amino acid fragment of Net1 was both sufficient and

necessary for proper nucleolar sequestration of Cdc14 in G1 phase and its release in

anaphase cells (Figure 1).  Net1 is heavily phosphorylated in cdc14-1 ts cells arrested in

anaphase (Shou et al., 1999), but less so in other MEN mutants (Shou et al., 2002b).  This

observation suggested that the MEN controls phosphorylation of Net1, which in turn

might underlie the release of Cdc14 during anaphase.  To test this hypothesis we purified

Net1 from cdc14-1 arrested cells, and mapped sites of phosphorylation as described (Shou

et al., 2002b).  Nineteen sites of phosphorylation were identified (Table 1).  Of these, we

focused our attention on the N-terminal phosphorylations because the corresponding

region was found to be necessary and sufficient to mediate proper cell cycle-regulated

localization of Cdc14 (Figure 1).
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Net1 phosphorylation is required for the transient release of Cdc14 in early

anaphase and proper meiosis.

Endogenous NET1 was substituted by a mutant (net1-13m) allele in which

thirteen, N-terminal, in vivo phosphorylation sites were converted to Alanine (Table1).

The mutant protein, designated Net1-13m, localized to the nucleolus (data not shown)

and directed the nucleolar localization of Cdc14 (Figure 7A).  However, net1-13m cells

were deficient in the transient release of Cdc14 from the nucleolus that occurs during

early anaphase (i.e., FEAR; compare Figure 7B to Figure 2B).  To determine which

phosphorylation sites were responsible for the phenotype of net1-13m, we constructed

mutants lacking subsets of sites.  This effort yielded a mutant lacking three CDK

consensus sites (hereafter referred to as net1-3Cdk) that almost completely recapitulated

the phenotypes of net1-13m (Figures 2A, 2B), whereas another mutant (net1-3Ax) lacking

the 3 non-Cdk consensus sites in the first 341 aa of Net1 displayed a very minor

reduction in FEAR (Figure 7C).  Upon further analysis of the phosphosite mapping data

(see Experimental Procedures), we constructed an additional mutant lacking all six Cdk

consensus sites in the first 341 aa of Net1 (hereafter referred to as net1-6Cdk).

Although FEAR is typically assayed in the context of a MEN mutant (e.g.,

cdc15ts), deletion of SPO12 in a wild-type background results in a delay in both release

of Cdc14 from the nucleolus and exit from mitosis (Stegmeier et al., 2002).  To evaluate

the role of Cdk phosphorylation on Net1 in an unperturbed cell cycle, we monitored

Cdc14 localization and spindle elongation in wild-type, spo12∆, and net1-6Cdk cells

released synchronously from α factor block in G1 phase.  There was a modest (10’) delay
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in Cdc14 release from the nucleolus in net1-6Cdk mutants similar to that seen for

spo12∆ cells (Figure 8 and (Visintin et al., 2003).  A third phenotype exhibited by FEAR

mutants is that they exhibit synthetic genetic phenotypes when combined with MEN

mutants (Stegmeier et al., 2002).  Likewise, the net1-3Cdk and net1-6Cdk mutants

showed synthetic-lethal interactions with the MEN mutants dbf2-2 (Figure 2C) and

cdc15-2 (Figure 2D), respectively.  For example, whereas cdc15-2 and net1-6Cdk

mutants were viable at 30.7°C, cdc15-2 net1-6Cdk double mutants were not.  Taken

together, these observations implicate net1-6Cdk as a FEAR mutant.

Recent work has implicated the FEAR network in proper segregation of rDNA

and cell cycle progression during meiosis (Buonomo et al., 2003; Lee and Amon, 2003;

Marston et al., 2003).  Given that net1-6Cdk mutants exhibited phenotypes reminiscent of

FEAR network mutants, we evaluated their ability to segregate rDNA and form meiotic

spores.  In parallel with the 10’ delay in Cdc14 release from the nucleolus, spo12∆ and

net1-6Cdk mutants exhibited a 10’ delay in rDNA segregation during mitosis (Figure 8).

Likewise, net1-6Cdk mutants exhibited a meiotic defect: whereas greater than 90% of

nitrogen-starved wild-type cells produced tri- or tetranucleate asci, net1-6Cdk mutants

produced 43% binucleate and 57% tri- or tetranucleate asci with the majority of those

being tri-nucleate (data not shown).  The meiotic defect of net1-6Cdk mutants is less

severe than seen for spo12∆, but closely resembles that previously reported for slk19∆

mutants undergoing meiosis (Buonomo et al., 2003).

Mitotic cyclin-Cdk phosphorylates sites on Net1 required for FEAR.
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Given the striking phenotypes of net1-3Cdk and net1-6Cdk cells, we prepared

phospho-specific antibodies using phosphorylated peptides corresponding to the three in

vivo phosphorylation sites that were mutated in net1-3Cdk (designated PP-A, PP-B, and

PP-C).  All three antibodies reacted with Net1 isolated from arrested cdc14-1 cells (when

Net1 is maximally phosphorylated) but not with Net1-3Cdk (Figure 3A).  Moreover, the

antibodies failed to detect Net1 from α factor-arrested cells (when Net1 is not detectably

phospho-shifted) (Figure 3B).  In many of the subsequent experiments we chose to focus

on the PP-B epitope (which is formed by phosphorylation on Threonine 212) because it

yielded a better signal in western blot analyses.

In vitro protein kinase assays provided the first concrete evidence that Net1 is a

specific Cdk substrate.  Recombinant Clb2–Cdk both generated the PP-B and PP-C

epitopes on (Figure 3C), and incorporated radiolabel from γ-32P-ATP into recombinant

Net1 (Figure 3D).  Remarkably, phosphorylation of Net1 by Clb2–Cdk was exquisitely

specific, in that an equivalent amount of Clb5–Cdk histone H1 kinase activity did not

phosphorylate Net1 (Figure 3D).

If Clb2-Cdk is indeed a physiological Net1 kinase, then Net1 phosphorylation

should be diminished and/or delayed in a clb2∆ mutant.  Indeed, in clb2∆ cells released

from a G1 cell cycle block, the timing of appearance of the PP-B antigen was delayed by

approximately 30-minutes as compared to wild-type cells, but the accumulation of Clb3

was not significantly affected (Figure 4A).  We speculated that in the absence of Clb2,

Clb1 compensated to phosphorylate Threonine 212 and promote FEAR, but both

processes were delayed.  To test this prediction, Threonine 212 phosphorylation was

evaluated in a clb1∆ mutant and in a clb1∆clb2∆ mutant kept alive by a glucose-
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repressible GAL1p-CLB2 construct.  Whereas the timing and level of PP-B epitope

formation were normal in clb1∆ cells (data not shown), clb1∆clb2∆ GAL1p-CLB2 cells

depleted of the majority of Clb2 by growth on glucose after centrifugal elutriation,

proceeded from G1 phase through anaphase but arrested in late anaphase/telophase

without undergoing either detectable phosphorylation on Threonine 212 (Figure 4B) or

release of Cdc14 from the nucleolus (Figures 4B, 4C, 4D).  This observation was further

corroborated by using an analog-sensitive version of the yeast Cdk (cdc28-as1) (Bishop

et al., 2000; Ubersax et al., 2003) to demonstrate that phosphorylation of Net1 on

Threonine 212 was dependent on Cdk activity as cells exited mitosis (Figure 9).

Moreover, CLB2 fulfilled the criteria established for FEAR network genes in that clb2∆

cdc15-2 cells failed to exhibit FEAR (Figures 4C and 4D), and clb2∆ enhanced the ts

phenotype of cdc15-2 (Figure 4F) and dbf2-2 mutants (data not shown).  Interestingly,

Cdc14 localization in both clb1∆clb2∆ and clb2∆ cdc15-2 cells appeared to remain

nucleolar despite arresting in late anaphase (Figure 4C, 2nd panel).  Moreover, upon

meiotic segregation we could not obtain viable colonies containing clb2∆ in combination

with cdc14-1, cdc5-1, or msd2-1 (data not shown) (Yuste-Rojas and Cross, 2000).

Importantly, the synthetic phenotype of clb2∆ MEN ts double mutants arose from an

exacerbation of the MEN defect because the terminal phenotype of cdc15-2 clb2∆

remained a late anaphase arrest (Figure 4C, data not shown), even though the double

mutant cells exhibited a 30-minute delay at metaphase, as expected for a clb2∆ mutant

(Figures 4C, 4E).
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Over-expression of non-degradable Clb2 is sufficient to drive Cdc14 out of the

nucleolus in metaphase-arrested cells.

Our results with cis mutations in sites of Net1 in vivo phosphorylation coupled

with trans mutations in CLB1 and CLB2 provide strong evidence that phosphorylation of

Net1 on a set of N-terminal CDK sites by Clb1/Clb2-Cdk is necessary for FEAR.  Over-

expression of a stable form of Clb2 (GAL1p-CLB2∆db) has been reported to arrest cells

in late anaphase with Cdc14 released from the nucleolus at the onset of anaphase

(Stegmeier et al., 2002; Surana et al., 1993).  To determine if regulation of Clb2-Cdk

activity might normally govern the timing of FEAR, we tested whether elevated levels of

Clb2 are sufficient to bring about ectopic release of Cdc14 from the nucleolus in cells

arrested in metaphase. Whereas endogenous levels of Clb2 did not sustain Threonine 212

phosphorylation in metaphase-arrested cells (Figure 5A, Lane 1), over-expression of a

hyper-stable form of Clb2 (CLB2C2DK100) (Hendrickson et al., 2001) was sufficient to

drive Net1 phosphorylation and release of Cdc14 into the nucleus (Figures 5A, 5B).  By

contrast, induction of stable Clb2 in cells arrested in G1 phase with alpha factor did not

bring about formation of the PP-B epitope on Net1 or disrupt association of Cdc14 with

Net1 (data not shown).

The ability of over-expressed Clb2 to induce premature Net1 phosphorylation and release

of Cdc14 from the nucleolus prompted us to test whether Clb2–Cdk activity is sufficient

to bring about disassembly of RENT in vitro.  Pre-phosphorylation of a 600 amino acid

N-terminal fragment of Net1 blocked its binding to Cdc14 (Figure 5C).  The 6 Cdk

consensus sites contained within the N-terminal region of Net1 were required for efficient

disruption of the assembled RENT complex in vitro in that complexes isolated from
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strains expressing wild-type Net1 were dismantled by Clb2–Cdk in a dose-dependent

manner, whereas complexes isolated from net1-6Cdk cells were not (Figure 5D).  Taken

together, the in vivo and in vitro data indicate that Cdk phosphorylation sites on Net1 can

drive RENT disassembly.

Slk19, Spo12, and Cdc5 modulate phosphorylation of Net1 on Threonine 212.

Analysis of Threonine 212 phosphorylation in synchronized cells revealed an

unexpected result: appearance of Clb2 antigen preceded appearance of PP-B epitope by

10-20 min (Figure 3B).  Because Clb2-associated protein kinase activity rises in parallel

with Clb2 antigen (Stegmeier et al., 2002), we concluded that the ability of Clb2–Cdk to

promote accumulation of phosphorylated Net1 must somehow be regulated.  Moreover,

because FEAR requires both the FEAR network genes and phosphorylation of Net1 by

Clb1 or Clb2–Cdk complexes, and because ectopic induction of FEAR with GAL1p-

ESP1 induces Net1 hyperphosphorylation (Sullivan and Uhlmann, 2003), we

hypothesized that the FEAR network acts, at least in part, through induction of Net1

phosphorylation by Clb2–Cdk.  To test this hypothesis, we examined the Threonine 212

phosphoepitope in synchronized wild-type, slk19∆ and spo12∆ strains.  The timing of

phosphorylation was delayed in both mutants for at least 10-minutes, and there was a

noticeable increase in duration of the phosphoepitope in the slk19∆ strain (Figure 6A).

To distinguish the effects of the FEAR network and MEN on Cdc14, FEAR is typically

monitored in a cdc15-2 background (Stegmeier et al., 2002).  Thus, we examined the

kinetics of phosphorylation of Threonine 212 in spo12∆ cdc15-2 and slk19∆ cdc15-2

cells released from an α factor block.  Both phosphorylation of Net1 on Threonine 212
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(Figure 6B) and FEAR (Figure 6C) were greatly diminished in the double mutant cells

compared to wild-type and cdc15-2 cells.

We have previously reported that Cdc5 influences the phosphorylation state of

Net1 and promotes the release of Cdc14 in vivo (Shou et al., 2002a).  This regulation

appears to operate at least in part through Clb-Cdk, because phosphorylation of

Threonine 212 was absent in cdc14-1 cdc5-1 double mutant cells (Figure 6D) and over-

expression of stable Cdc5 promoted phosphorylation of Threonine 212 in nocodazole-

arrested cells (Figure 6E). Thus, Cdc5, like Spo12 and Slk19, promotes the

phosphorylation of Net1, at least in part, through Clb-Cdk.

Discussion

Phosphorylation of Net1 by Clb-Cdk underlies FEAR

Protein phosphatase Cdc14 plays a critical role in promoting exit from the M-

phase state during both mitotic and meiotic cell cycles (Buonomo et al., 2003; Jaspersen

et al., 1998; Marston et al., 2003).  Cdc14 is kept under negative control during most of

the cell cycle by binding to its nucleolar partner Net1, but is released from Net1 during

anaphase through the actions of the FEAR and mitotic exit (MEN) networks (Shou et al.,

1999; Stegmeier et al., 2002; Visintin et al., 1999).  Because the transient release of

Cdc14 from Net1 during anaphase is a signature event that drives exit from M-phase, we

sought to investigate how this association is regulated in the context of the more well

defined pathway for mitotic exit.

Net1 is a phosphoprotein whose phosphorylation correlates inversely with the

activity of Cdc14 (Shou et al., 1999; Visintin et al., 2003).  Mapping and mutation of in
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vivo phosphorylation sites on Net1 (isolated from cdc14ts cells) revealed that a set of

Cdk sites in the N-terminal portion of Net1 were required for the proper release of Cdc14

in early anaphase (FEAR).  Phosphorylation of these Cdk sites in Net1 was catalyzed by

Cdk complexes formed by the late mitotic cyclins Clb1 and Clb2, in that they were

completely absent in clb1∆ clb2∆ and cdc28-as1 mutants and that Clb2–Cdk was

sufficient to bring about phosphorylation of Net1 and disassembly of the RENT complex

both in vivo and in vitro.  Interestingly, a proteomic screen by Morgan and colleagues

revealed that Net1 is one of the best substrates for Clb2-Cdk in vitro (Ubersax et al.,

2003).  In accordance with the observation that the FEAR network is important for proper

progression through meiosis, the FEAR-deficient net1-6Cdk mutant also displayed a

sporulation defect reminiscent of the slk19∆ FEAR mutant.  Net1 phosphorylation by

Clb-Cdk is likely to be a recurrent theme of M-phase progression in budding yeasts,

because the majority of the N-terminal Cdk phosphorylation sites in Net1 are highly

conserved among orthologs found in other fungal species (Figure 10).  A similar

phosphorylation-based mechanism may likewise control the transient association of

human Cdc14A with the nucleolus (Mailand et al., 2002).

FEAR network promotes phosphorylation of Net1 by Clb1,2-Cdk

Release of Cdc14 from Net1 during early anaphase requires the FEAR network

components Spo12, Slk19, Cdc5, and Esp1 in addition to phosphorylation of Net1 by

Clb1,2-Cdk.  Since the phosphorylation of Net1 by Clb-Cdk lagged behind the

accumulation of Clb2, we sought to test whether the FEAR network acts by switching on

the phosphorylation of Net1 by pre-formed Clb-Cdk.  Whereas phosphorylation of Net1
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was only moderately delayed in both spo12∆ and slk19∆ mutants, it was severely

impaired in cdc5-1 mutants.  We propose that either the FEAR network or the MEN can

dissociate Cdc14 from Net1, and they act by independent mechanisms.  FEAR network

brings about RENT complex disassembly by promoting the phosphorylation of Net1 by

Clb-Cdk.  In contrast, the mild phenotype of the net1-6Cdk mutant indicates that the

MEN can bring about release of Cdc14 from Net1 even in the absence of these same

phosphorylations.  Nevertheless, the MEN promotes phosphorylation of Net1 by Clb-

Cdk, but possibly as an indirect consequence of exposing phosphorylation sites on Net1

that are normally shielded by bound Cdc14.  Thus, whereas Net1 phosphorylation by

Clb-Cdk is required for FEAR, we propose the same phosphorylations can occur as a

passive consequence of Cdc14 release that is triggered by the MEN via a distinct

mechanism.  Consistent with this interpretation, in the absence of both the FEAR and

mitotic exit networks (spo12∆ cdc15-2, slk19∆ cdc15-2, and cdc5-1 mutants), Net1

phosphorylation on Cdk sites was drastically reduced.  It remains unknown how the

FEAR network promotes phosphorylation of Net1 by Clb-Cdk.  The putative ‘effector’

components of the FEAR network, Cdc5 and Spo12 (Sullivan and Uhlmann, 2003;

Visintin et al., 2003), may modulate Net1, Clb-Cdk, or a Net1 phosphatase to promote

accumulation of phosphate groups on Net1.

Is Net1 phosphorylation by Clb–Cdk sufficient for FEAR?

Our data indicate that FEAR components Spo12, Slk19, and Cdc5 act, at least in

part, through phosphorylation of Net1 by Clb–Cdk to promote disassembly of the RENT

complex.  This raises two important, related questions: is activation of Net1
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phosphorylation the only function of the FEAR, and is phosphorylation of Net1 on Cdk

sites sufficient to dislodge Cdc14? Mutant spo12∆ cells have a sporulation defect that is

more severe than that of net1-6Cdk mutants, suggestive of additional roles for Spo12 that

go beyond phosphorylation of Net1.  Moreover, the early anaphase release of Cdc14

promoted by the FEAR network in a cdc15-2 mutant is transient (Stegmeier et al., 2002),

whereas the phosphorylation of Net1 on Threonine 212 is not (Figure 6).   Thus, although

the FEAR network promotes phosphorylation of Net1 and dissociation of Cdc14 from

Net1, the former does not appear to be sufficient for the latter.  On the other hand,

Clb2–Cdk was sufficient to dislodge Cdc14 from Net1 in vitro, and over-expression of

Clb2 brought about release of Cdc14 from Net1 in nocodazole-arrested cells (in which

the FEAR network is inactive due to inhibition of Esp1 by securin).  One possible

explanation is that the FEAR network mobilizes Clb–Cdk to promote stable

phosphorylation of Net1 and labile phosphorylation of a second target (possibly Cdc14?),

and that both of these phosphorylations are needed to sustain release of Cdc14 from Net1

in vivo.  Attempts to resolve this issue through expression of NET1 mutants bearing

phosphomimetic substitutions have been thwarted by the apparent hypomorphic nature of

these alleles (data not shown).

Regardless of whether phosphorylation of Net1 by Clb2–Cdk is sufficient to

dismantle RENT in vivo, there clearly is yet another mysterious dimension to this

regulatory mechanism, in that Clb2 over-expressed in G1 phase promoted neither release

of Cdc14 from Net1 nor phosphorylation of Net1.  Thus, there appears to be at least one

cell cycle-regulated factor in addition to the FEAR network that controls the ability of

Clb2–Cdk to promote accumulation of phosphate on Net1.  Despite these unsolved
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issues, it is clear that phosphorylation of Net1 by Clb–Cdk is a key mechanism by

which the FEAR network instigates disassembly of the RENT complex during mitosis.

On the roles of Cdc5 and Clb-Cdk protein kinase activities in FEAR

In previous work, we reported that Cdc5 influences the phosphorylation of Net1

and disassembly of the RENT complex (Shou et al., 2002a).  Our current observations

that Cdc5 is necessary and sufficient for phosphorylation of Net1 by Clb–Cdk lead us to

propose that Cdc5 controls Net1 phosphorylation primarily through Clb–Cdk.  However,

to evaluate the relative role of Cdc5 in more detail requires careful consideration of our

prior findings.  To address the role of Cdc5 in RENT disassembly in vivo, we originally

constructed a mutant Net1 (net1-7m) lacking the 7 sites of in vitro phosphorylation that

contributed most prominently to the Cdc5-induced dissociation of recombinant

Cdc14–Net1 complexes (Shou et al, 2002).  Mutant net1-7m cells exhibited both the

FEAR and MEN components of Cdc14 release from the nucleus during mitosis, but the

former was diminished by approximately 25%.  Although this result could arise directly

from failure of Cdc5 to phosphorylate Net1, it could also be an indirect consequence of

mutating multiple sites in Net1, given that none of the sites mutated in net1-7m were

found in this study to be phosphorylated in vivo.  Interestingly, of the 17 sites on Net1

that were definitively identified as being phosphorylated by Cdc5 in vitro (Loughrey

Chen et al., 2002), only two (S231 and S259) were confirmed here to be modified in vivo.

A mutant lacking S169, S231 and S259 (net1-3Ax) (the non-Cdk sites mutated in net1-

6m) displayed an extremely modest (~20%) defect in FEAR (Figure 7C).  Thus, Cdc5

may promote FEAR both by enabling the action of Clb-Cdk, and by direct
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phosphorylation of Net1.  However, our cis mutant analysis of Net1 clearly indicates

that the former role is critical, and the latter role is, at best, minor.  We wish to note that

the putative Cdc5 phosphorylation sites (S231 and S259) do not lie in the recently

reported consensus for Cdc5/Polo kinases (Nakajima et al, 2003), and thus it remains

possible that these sites may normally be phosphorylated by an unknown protein kinase

in vivo, and Cdc5 may act solely through Clb–Cdk.

Although the action of the FEAR network is not essential for mitotic cell cycles, its

activity helps to determine the timing of exit from mitosis (Stegmeier et al., 2002).  Our

finding that phosphorylation of Net1 by Clb-Cdk underlies disruption of the RENT

complex during anaphase illustrates a fascinating aspect of the switch that governs the

return of mitotic cells to an interphase state.  Although Clb-Cdk initiates feedback loops

that help sustain a mitotic state with high Clb-Cdk activity (Deshaies, 1997), there must be

mechanisms for subverting the reign of Clb-Cdk to allow growing cells to continue to

cycle.  Fittingly, at least two of these mechanisms – activation of Cdc20 binding to APC

(Rudner et al., 2000; Rudner and Murray, 2000) and disruption of the Cdc14/Net1 complex

– are initiated directly by the very enzyme whose activity helps to specify the mitotic state

in the first place.  Given that clb1∆ clb2∆ mutants display an anaphase defect far more

severe than net1-6Cdk indicates that other aspects of this crucial switch await discovery.
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Experimental Procedures

Strain construction, materials, and Net1 mutagenesis

All strains used are in the W303 background (can1-100, leu2-3, his3-11, trp1-1,

ura3-1, ade2-1) except where noted in the strain table (Supplementary Table 1).  A strain

expressing a stable form of Clb2 lacking both the KEN and destruction boxes

(Clb2C2DK100)HA3 was used in over-expression experiments with Clb2 (Hendrickson et

al., 2001).

Net1 mutant constructs were created as previously described (Shou et al., 2002a).

Briefly, a wild-type NET1-myc9 epitope tagged construct was cloned into a modified

pRS304 vector containing 300bp upstream of the ATG translation start site using NcoI

and EagI.  Site-directed mutagenesis of Serine/Threonine to Alanine was carried out
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using QuikChange Site-Directed mutagenesis kit from Stratagene (La Jolla, CA).  The

indicated Serine/Threonine were mutated to Alanine in Net1-13m

(166,169,212,231,252,259,356,362,384,385,497,611,676), Net1-6m

(166,169,212,231,252,259), Net1-3-Cdk (166,212,252), and Net1-6Cdk (62*,

166,212,252,297,304) where * indicates that residue 62 was mutated to ensure complete

elimination of all Cdk consensus sites even though it was not determined to be

phosphorylated in vivo.  Mutagenesis was confirmed using restriction digests followed by

DNA sequencing.  All constructs were targeted by linearization with BstXI to the trp1

locus in a NET1/net1::his5+ heterozygous diploid.  The strains were sporulated and

tetrads were dissected to obtain a haploid isolate of the integrant over net1::his5+.  Copy

number of integrants was estimated by normalizing extract protein from transformed and

wild-type cells and blotting for Net1 levels.  Proper localization of all net1 phosphosite

mutants was confirmed by indirect immuno-fluorescence against the myc epitope (data

not shown).

Production and purification of antibodies made against phosphorylated peptides

were performed by Abgent (San Diego, CA).  A pair of peptides – phosphorylated or not

at the indicated, underlined residue – was synthesized to generate and purify each of the

following antibodies against Net1: anti-phosphopeptide A corresponding to aa 159-173

(RSKLNNGSPQSVQPQC); anti-phosphopeptide B corresponding to aa 205-219

(NGSMRVWTPLARQIYC); and anti-phosphopeptide C corresponding to aa 245-259

(PPPTQPQSPPIRISSC).  All peptides contained a Cysteine at the C-terminus, and anti-

phosphopeptide B was modified by replacing Serine with Tryptophan at the –1 position

relative to the underlined Threonine to optimize the phosphoepitope presentation.
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Antibodies specifically reactive against the phosphopeptides were positively selected

on a resin derivatized with the phosphopeptide immunogen and negatively selected by

passage through a resin derivatized with the unphosphorylated version of the peptide.

Anti-phosphopeptide B (α-PP-B) was used in all experiments described since it generated

the strongest signal against Phospho-Net1 (Figure 3A).

Cell Growth and Synchronization Procedures

Cells were grown in yeast extract-peptone (YP) or in yeast minimal (YM) media

containing 2% glucose (YPD,YMD), 2% raffinose (YPR,YMR) or 2% galactose

(YPG,YMG) as carbon source.  Where appropriate, minimal media were supplemented

with leucine, histidine, tryptophan, uracil, and adenine to complement auxotrophies.

Synchronization of cells in G1 phase was achieved with α-factor added at 10 µg/ml for

BAR1 cells and 0.1 µg/ml for bar1∆ cells for at least 3 hrs at 25°C.  Cells were judged to

be arrested when greater than 90% of cells displayed the elongated "shmoo" phenotype.

Cells were released from α factor by filtration through a 0.2 µm filter followed by a wash

with 150 ml of YP, then resuspended in the desired volume at a density of 1 O.D.600/ml.

For elutriation, cells were grown overnight in YP containing 2% raffinose and 2%

galactose and harvested at log phase.  Elutriation was performed as described (Amon,

2002; Johnston and Johnson, 1997; Walker, 1999) for the collection of small, unbudded

G1 cells; contamination with budded cells was measured to be no more than 2%.  For

galactose induction experiments, cells were grown overnight in either YMR or YPR until

an O.D.600 of 1.0 was reached, then induced with 2% galactose followed by time point

collection.
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Cell Extract Preparation and Western Blotting

Cells were grown to an O.D.600 of 1.0, and for every time point 2 ml of culture

was collected and TCA added to a final concentration of 20%.  Cells were collected by

centrifugation and washed with 2 ml of Tris-HCl (pH 7.5).  SDS loading buffer [70 µl of

100mM Tris-HCl (pH 7.5), 20% glycerol, 4% SDS, 2M Urea, 200mM DTT] was added,

tubes were boiled for 3-minutes, and 100 µl of acid-washed glass beads (500 µm) were

added to each tube followed by boiling for an additional 2-minutes.  Tubes were vortexed

for 45 sec using a Bio 101 multi-bead vortexer at setting 5.5.  Tubes were boiled again

for 2-minutes and 5 µl of sample was fractionated on a 10% SDS-PAGE gel followed by

transfer to a nitrocellulose membrane.  Western blot analysis was performed with the

following primary antibodies at the indicated dilutions: All anti-phospho Net1 antibodies

(α-PP-A, α-PP-B, α-PP-C) at 2 µg/ml; anti-Clb2 (1:3000), anti-Cdc28 (1:5000), anti-

Clb3 (1:2000), anti-myc (9E10) (1:5000), anti-His (1:250), anti-HA (1:5000), and anti-

Cdc14 (1:1000).

Immunoprecipitation and Clb2–Cdk release/kinase assay.

To prepare extracts for immunoprecipitation, 10 O.D.600 units of a log phase cell

culture was harvested and washed with 2 ml of Tris-HCl (pH 7.5).  Cells were re-

suspended in 500 µl lysis buffer [25 mM HEPES/KOH (pH7.5), 150 mM NaCl, 1 mM

DTT, 0.2% Triton, 1 mM EDTA, 1 mM PMSF, 1 mM Benzamidine, 1x Protease

Inhibitor Cocktail (Aprotinin, Chymostatin, Leupeptin, and PepstatinA all at 5 µg/ml in

90% DMSO)], transferred to a flat-bottom 2 ml tube and supplemented with 100µl of
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acid-washed glass beads (500 µm).  Samples were vortexed using a Bio 101 multi-

beads vortexer at setting 5.5 (speed) and 45sec (time).  Tubes were then centrifuged for

5-minutes at 14,000 rpm and the supernatant was collected.  Clarified extract (400 µl)

was incubated with 60 µl of 9E10-coupled protein A beads for 1 hour on a rotator at 4°C.

Beads were collected and washed ten times in wash buffer [25 mM HEPES/KOH

(pH7.5), 150 mM NaCl, 1 mM DTT, 0.2% Triton], and divided to approximately 15 µl

beads per reaction condition.  For protein kinase assays, 3 µl of either Clb2–Cdk or

Clb5–Cdk was used with either 1 µg of myc9-Net1 (purified from insect cells infected

with a recombinant baculovirus) (Shou et al., 2001), or 5 µg of Histone H1.  For assays

that monitored release of Cdc14 from bead-bound Net1-myc9, varying concentrations of

in vitro assembled Clb2–Cdk in 30µl kinase buffer [25 mM Tris-HCl (pH 7.5), 10 mM

MgCl2, 1 mM ATP, 1 mM DTT, 0.1 mg/ml BSA, 50 mM NaCl] were mixed with 15 µl

9E10 beads coated with RENT complex. Reactions were allowed to proceed for 30-

minutes on a rotator at 25°C.  Supernatant and beads were processed for Western blot

analysis as previously described (Shou et al., 2002a).  For in vitro assays with bacterially

expressed constructs, approximately 116 ng of Net1 per 20 µl of Ni+2-NTA beads, 10 ng

Cdc14, and 5 µl of roughly 30 ng/µl stock of Clb2–Cdk was used per reaction.

Immuno-fluorescence and Cdc14 release quantification

Immuno-fluorescence was performed as previously described (Shou et al., 2002a;

Shou et al., 1999).  The analysis of Cdc14 localization for (Figure 1) was performed in

haploid cells carrying the transposon-mutagenized net1 allele.  Rabbit anti-Cdc14

(1/3000) and rat anti-tubulin monoclonal antibody YL1/34 (1/1000) were used at the
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indicated dilutions.  Images of synchronized cells at 70 to 110 minutes following

release from α factor were collected on a Zeiss Axioskop or Axiovert 200M microscope

using a Hamamatsu CCD digital camera.  Spindle length measurements were performed

using Zeiss Axiovision software.
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Figure II-1:  Cell cycle-regulated binding site for Cdc14 resides in the

N-terminal half of Net1

Transposon insertion and truncation mutants of Net1 define a cell cycle-regulated

Cdc14–binding domain.  The numbers adjacent to each construct indicate where the

transposon insertion occurred in the NET1 locus with the exception of the aa 1-621 HA-

fragment of Net1 in which endogenous NET1 was replaced by the truncated allele

(RJD1783).  The localization of Cdc14 and the length of microtubule spindles in

asynchronous cell populations were determined by indirect immuno-fluorescence using

anti-Cdc14 and anti-tubulin antibodies, respectively.  Cell cycle position was estimated

from the length of the microtubule spindle.  The hatched bars indicate fragments of Net1

with proper nucleolar localization as reported in the TRIPLES database (Ross-Macdonald

et al., 1999).  ‘N+C’ refers to both nuclear and cytoplasmic staining.
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Figure II-2: Net1 phosphorylation site mutants display Cdc14 release

defects and synthetic interactions with MEN mutants.

(A) Net1 mutants are defective in Cdc14 release in early anaphase.  Mutant cdc15-2 cells

carrying either NET1 (WT) (RJD2617), net1-3Cdk (3Cdk) (RJD2613), or net1-6Cdk

(6Cdk) (RJD2614) alleles were synchronized with α factor at 25°C and released in YP

2% glucose at 37°C.  Cells were collected at 10 to15 minute time intervals for analysis by

indirect immuno-fluorescence.  Staining was performed with DAPI, anti-Cdc14 and anti-

tubulin antibodies for determination of nuclear position, Cdc14 localization, and

microtubule spindle length, respectively.  Cell outlines are indicated for comparison.

(B) Quantitation of Fourteen Early Anaphase Release (FEAR) defect of Net1

phosphorylation site mutants.  Synchronized cells collected at 70 to110 minutes after

release from α factor were double-labeled with anti-Cdc14 and anti-tubulin antibodies.

Spindle length was measured and localization of Cdc14 was determined to be either: 1,

full release (black boxes; complete release of Cdc14 from the nucleolus into the nucleus);

or 2, partial release (white boxes; Cdc14 was nuclear in one of the DAPI masses and

nucleolar in the other DAPI mass in the same cell, or Cdc14 was not completely

restricted to the nucleolus in either DAPI mass).  Over 350 cells were counted for each

panel.

(C) Mutant net1-3Cdk enhances the temperature-sensitive growth phenotype of dbf2-2.

Starting with 3000 cells, 3-fold serial dilutions of dbf2-2 (RJD2625) and dbf2-2 carrying

a net1-3Cdk allele (RJD2626) were spotted on YPD plates from right to left, and



58
incubated at the indicated temperature for 2-3 days before the picture was taken.  Two

independent isolates of each strain were used.  The first two isolates in the 33.5°C panel

were compiled from different sections of the same plate.

(D) Mutant net1-6Cdk exacerbates the temperature-sensitive growth phenotype of cdc15-

2.  Starting with 3000 cells, 3-fold serial dilutions of cdc15-2 (RJD2610) and cdc15-2

carrying a net1-6Cdk allele (RJD2614) were spotted on YPD plates as described for panel

(C).
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Figure II-3:  Net1 phosphorylation by Clb2–Cdk is cell cycle regulated

and sufficient for disruption of Cdc14 binding in vitro.

(A) Phospho-specific antibodies to Net1.  Three phospho-specific antibodies were raised

against peptides containing either phosphorylated Serine166 (α-PP-A), Threonine 212

(α-PP-B), or Serine 252 (α-PP-C).  Crude extracts from cdc14-1 strains carrying either a

wild-type (+) (RJD2615) or a mutant (3Cdk) NET1-myc9 allele (RJD2616) in which the

three sites were converted to Alanine were fractionated by SDS-PAGE and

immunoblotted with the different antibodies to evaluate specificity.  Anti-myc (9E10)

detection of Net1-myc9 was used as a loading control.

(B) Net1 phosphorylation on Threonine 212 is cell cycle regulated.  Cells arrested in α

factor were released from G1 block and samples were collected at the indicated time

points (min).  Phosphoepitope formation, Net1-myc9, and Clb2 levels were monitored by

fractionating crude cell extracts by SDS-PAGE and immunoblotting with α-PP-B, α-myc

(9E10), and α-Clb2 antibodies, respectively.  Cdc28 levels (α-Cdc28) were used as a

loading control.

(C) Clb2–Cdk generates the in vivo phosphoepitopes in vitro.  Net1-myc9 was

immunoprecipitated from α factor-arrested cells and the bead-bound protein was treated

with protein kinase Clb2–Cdk in the presence (+) or absence (-) of ATP.  The bead-bound

material was fractionated by SDS-PAGE and immunoblotted with α-PP-B and α-PP-C
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antibodies to monitor formation of the phosphoepitopes on Net1.  Anti-myc (9E10)

detection of Net1-myc9 was used as a loading control.

(D) Net1 is a substrate for Clb2–Cdk in vitro.  Clb2–Cdk and Clb5–Cdk protein kinase

complexes were incubated in vitro with Net1 and radiolabeled 32P (top panel).  The

amounts of each kinase complex used for this experiment were matched using histone H1

as a substrate (bottom panel).
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Figure II-4:  Clb1 and Clb2 control the timing and appearance of the

phosphoepitope on Net1.

(A) Mutant clb2∆ cells have a prolonged delay in phosphoepitope formation.  Isogenic

wild-type (RJD2617) and clb2∆ (RJD2623) strains were synchronized in α factor and

released.  Samples were collected at 10-minute intervals, analyzed by SDS-PAGE, and

immunoblotted with the indicated antibodies.  Alpha factor was added back after 70-

minutes to prevent cells from entering into a second cell cycle.  Phosphoepitope

formation was monitored by α-PP-B.  Appearance of Clb3 antigen (α-Clb3) was used as

a marker for cell cycle progression.  Cdc28 levels (α-Cdc28) were used as a loading

control.

(B) Phosphoepitope formation on Net1 is abolished in clb1∆ clb2∆ cells.  Wild-type or

clb1∆ clb2∆ GAL1p-CLB2 (clb1∆, clb2∆) (RJD2624) cells were grown overnight in YP

2% raffinose plus 2% galactose and harvested for elutriation.  Elutriation was performed

as described (Johnston and Johnson, 1997; Walker, 1999).  Elutriated G1 phase cells

were inoculated into YP 2% glucose.  Alpha factor was added to wild-type cells after

180-minutes in YP 2% glucose.  Alpha factor was also added to clb1∆, clb2∆ cells after

300-minutes in YP 2% glucose to prevent them from initiating a second cell cycle.  At

each indicated time point, cells were collected for Western blot analysis.

Phosphoepitope formation and levels of Clb2 were monitored by α-PP-B and α-

Clb2, respectively.  Cdc28 levels (α-Cdc28) were used as a loading control.  Cells were

also subjected to indirect immuno-fluorescence with anti-Cdc14 and anti-tubulin

antibodies as previously described.
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(C) Impaired release of Cdc14 in early anaphase in clb1∆ clb2∆ and cdc15-2 clb2∆

mutants.  Samples of clb1∆ clb2∆ GAL1p-CLB2 and cdc15-2 clb2∆ cells (RJD 2622)

were collected after elutriation/GAL-shutoff or α factor block/release, respectively, for

analysis by indirect immuno-fluorescence with DAPI, anti-Cdc14, and anti-tubulin

antibodies.  Two panels are shown for each mutant cell line, representing early anaphase

(1st panel) and late anaphase (2nd panel). Cell outlines are indicated for comparison.

(D) Fourteen Early Anaphase Release (FEAR) defect of clb1∆ clb2∆ and cdc15-2 clb2∆

cells.  Cells were collected after elutriation and GAL shutoff (clb1∆ clb2∆ GAL1p-CLB2)

or α factor release (clb2∆ cdc15-2) and double-labeled with anti-Cdc14 and anti-tubulin

antibodies.  Spindle length was measured and release of Cdc14 from the nucleolus was

determined to be either complete (black boxes) or partial (white boxes; see legend to Fig.

2B).  Over 350 cells were counted for each panel.

(E) Mutant cdc15-2 clb2∆ cells arrest in late anaphase.  Mutant cdc15-2 cells (open

squares) (RJD2630), cdc15-2 clb2∆ cells (closed diamonds) (RJD2631), and esp1-1 cells

(open circles) (RJD2629) containing a tetO112 array at the URA3 locus and expressing

3tetR-GFP from the HIS3 locus were synchronized in G1 phase with α factor and

released into YP 2% glucose at 37°C.  Samples were taken at the indicated time points to

determine the percentage of cells with unsegregated chromosomes (one GFP dot)

compared to cells that have segregated their chromosomes (two GFP dots).
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(F) Mutant clb2∆ exacerbates the temperature-sensitive growth phenotype of Mitotic

Exit Network (MEN) mutants.  Starting with 3000 cells, 3-fold serial dilutions of cdc15-2

(RJD602) and cdc15-2 clb2∆ cells (RJD2622) were spotted on YPD plates as described

in the legend of Fig. 2C.  Three independent isolates of each strain were used.
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Figure II-5:  Over-expression of Clb2 is sufficient to drive Cdc14 out

of the nucleolus in cells arrested in mitosis with microtubule poisons.

(A) Over-expression of a stable form of Clb2 promotes Net1 phosphorylation on

Threonine 212.  NET1-myc9 cells carrying a galactose-inducible cassette that encodes a

stabilized form of Clb2 that lacks both the destruction and KEN boxes (GAL1p-

CLB2C2DK100) (RJD2627) were arrested with 30µg/ml benomyl plus 15µg/ml

nocodazole at 23°C for 3 hours in YP 2% raffinose.  At various times after galactose was

added to induce expression of Clb2C2DK100, samples were withdrawn, fractionated by

SDS-PAGE, and immunoblotted with α-PP-B, α-Clb2, and α-Cdc28 as previously

described.

(B) Over-expression of a stable form of Clb2 promotes release of Cdc14 from the

nucleolus in cells arrested in mitosis.  Cells were arrested in mitosis with benomyl and

nocodazole as described for panel (A), and samples were collected at the indicated time

points for indirect immuno-fluorescence.  Staining was performed using DAPI together

with anti-Cdc14 and anti-tubulin antibodies as previously described. Cell outlines are

indicated for comparison.

(C) Phosphorylation of Net1 (aa 1-601) by Clb2–Cdk disrupts Cdc14 binding in vitro.

Proteins were expressed and purified from bacteria as described (Shou et al., 2002a).

His6-T7-Net1 was captured on Ni+2-NTA beads and either treated with Clb2–Cdk or

buffer prior to addition of GST-T7-Cdc14.  After a 30-minute incubation at 25°C, the

NTA beads were sedimented, washed 5 times with wash buffer, and processed for SDS-
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PAGE analysis and subsequent Western blotting.  Amounts of Net1 and Cdc14 bound

to NTA beads were determined by blotting with α-His and α-Cdc14, respectively.

(D) RENT complex containing phosphosite mutant Net1-6Cdk is refractory to

disassembly by Clb2–Cdk in vitro.  RENT complexes from isogenic NET1-myc9 and

net1-6Cdk-myc9 cells were immunoprecipitated on 9E10-coupled protein-A beads. Beads

were divided into equal portions, and treated with the indicated amounts of Clb2–Cdk

protein kinase (see Experimental Procedures).  Western blot analysis was performed with

anti-Cdc14 antibodies to as indicated.
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Figure II-6: Net1 phosphorylation on Threonine 212 is modulated by

Slk19, Spo12, and Cdc5.

(A) The dynamics of Threonine 212 phosphorylation are altered in slk19∆ and spo12∆

mutants.  Isogenic strains of wild-type (RJD2617), slk19∆ (RJD2618), and spo12∆

(RJD2619) carrying a NET1-myc9 allele were synchronized by addition of α factor.

Cells were released from α factor block and samples were collected at the indicated time

points (min).  Phosphoepitope formation, Net1-myc9, and Clb2 levels were monitored as

previously described.  Please refer to (Figure 11) for loading controls.

(B) Blockade of Cdc14 early anaphase release (FEAR) is accompanied by loss of Net1

phosphorylation on Threonine 212.  Isogenic strains of (i) wild-type (RJD2617), (ii) cdc15-

2 (RJD2610), (iii) cdc15-2 spo12∆ (RJD2620), and (iv) cdc15-2 slk19∆ (RJD2621) were

synchronized in α factor then released into pre-warmed YP 2% glucose at 36°C.  Aliquots

of each culture were collected at the indicated time points for analysis by Western blotting.

Phosphoepitope formation, Net1-myc9, and Clb2 levels were monitored as previously

described.  Please refer to (Figure 11) for loading controls.

(C) Cdc15 along with either Spo12 or Slk19 is required for proper release of Cdc14 from

the nucleolus during early anaphase.  The same aliquots collected for panel (B) were also

analyzed by indirect immuno-fluorescence with anti-Cdc14 and anti-tubulin antibodies as

previously described.
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(D) Net1 phosphorylation on Threonine 212 is dependent on Cdc5.  Wild-type (+)

(RJD1349), cdc5-1 (5) (RJD1417), cdc14-1 (14) (RJD1408), and cdc5-1 cdc14-1 (5,14)

(RJD2628) cells carrying a NET1-myc9 epitope tagged allele were grown logarithmically

at 25°C and samples for each culture collected.  Cultures were shifted to 37°C for 3 hours

and samples were collected again for analysis by Western blotting.  Phosphoepitope

formation, Net1-myc9 levels, Clb2, and Cdc28 levels were monitored as previously

described.

(E) Over-expressed Cdc5 lacking the destruction box (DB) motif promotes Net1

phosphorylation on Threonine 212 in metaphase-arrested cells. Wild-type (RJD2634),

and GAL1p-CDC5(∆DB) (RJD2635) cells carrying a  NET1myc9 epitope tagged allele

were grown logarithmically at 26°C and arrested with 30µg/ml benomyl plus 15µg/ml

nocodazole in YP 2% raffinose.  At various times after galactose was added to induce

expression, samples were withdrawn, fractionated by SDS-PAGE, and immunoblotted

with α-PP-B, α-Clb2, and α-Cdc28 as previously described.  Levels of Cdc5∆db

induction were determined by blotting for α-HA.
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Figure II-7:  Net1 mutants are defective in Cdc14 release in early

anaphase.

(A) Mutant cdc15-2 cells carrying either net1-13m (RJD2611) or net1-6m (RJD2612)

alleles were synchronized with α factor at 25°C and released in YP 2% glucose at 37°C.

Cells were collected for analysis by indirect immuno-fluorescence at 10 to15 minute time

intervals.  Staining was performed with DAPI, anti-Cdc14, and anti-tubulin antibodies for

determination of nuclear position, Cdc14 localization, and spindle length, respectively.

Cell outlines are indicated for comparison.

(B) Mutant cdc15-2 cells carrying either net1-13m, or net1-6m alleles were synchronized

with α factor 25°C and released in YP 2% glucose at 37°C.  Cells collected at 70 to110

minutes after α factor release were double-labeled with anti-Cdc14 and anti-tubulin

antibodies.  Release of Cdc14 from the nucleolus was determined to be either complete

(black boxes) or partial (white boxes; see legend to Fig. 2B) and was plotted against

spindle length.  Over 350 cells were counted for each panel.  The wild-type NET1 control

is shown in Figure 2B.

(C) Mutant cdc15-2 cells carrying net1-3Ax (an allele where the 3 non-Cdk sites S169,

S231, and S259 from the net1-6m were mutated to Alanine) were synchronized with α

factor 25°C and released in YP 2% glucose at 37°C.  Cells collected at 70 to 110 minutes

after α factor release were double-labeled with anti-Cdc14 and anti-tubulin antibodies.

Release of Cdc14 from the nucleolus was determined to be either complete (black boxes)
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or partial (white boxes; see legend to Fig. 2B) and was plotted against spindle length.

Over 350 cells were counted for each panel.  The wild-type NET1 control is shown in

Figure 2B.
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Figure II-8:  Mutants net1-6Cdk and spo12∆∆∆∆ exhibit a delay in Cdc14

release from the nucleolus and rDNA segregation.

Wild-type (RJD2617), net1-6Cdk (RJD2633), and spo12∆ (RJD 2619) cells were

synchronized in α factor then released into YP 2% glucose at 27°C. Alpha factor was

added back after 70-minutes to prevent cells from entering into a second cell cycle.

Aliquots of each culture were collected at the indicated time points for analysis by

indirect immuno-fluorescence with anti-Cdc14, anti-RPA190 (nucleolar marker), and

anti-tubulin antibodies to monitor Cdc14 release from the nucleolus, nucleolar

segregation and spindle length, respectively. Percent of stretched nucleoli was determined

by counting cells in which the nucleolus had stretched between mother and daughter cells

but had not segregated into 2 distinct masses divided by the total number of cells counted.

Over 200 cells were counted for each time point.
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Figure II-9:  Net1 Phosphorylation on Threonine 212 is dependent on

Cdk activity.

Cells carrying a wild-type NET1-myc9 allele in combination with the cdc28-as1

analog sensitive allele (RJD2632) were arrested at metaphase with 30µg/ml benomyl plus

15µg/ml nocodazole at 30°C for 3 hours in YP 2% glucose.  Cells were then washed with

and resuspended in pre-warmed YP 2% glucose and split into two flasks at 35°C either

containing 5µM NaPP1 (analog inhibitor) or DMSO (vehicle).  Aliquots of each culture

were collected at the indicated time points and prepared for Western blot analysis.

Phosphoepitope formation (α-PP-B), levels of Net1 antigen (α-myc), and levels of Clb2

(α-Clb2) were monitored by immunoblotting whole cell extracts with the indicated

antibodies.  Cdc28 levels (α-Cdc28) were used as a loading control.
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S. cerevisiae T62P S166P T212P S252P S297P T304P %identities %positives %Gaps
S. bayanus + + + + + + 5 6 6 3 4

S. mikatae + + + + + + 6 0 6 6 2

S. paradoxus + + + + + + 6 6 6 9 1
S. castellii - - + + + + 2 9 4 2 2 0

S. kudriavzevii + + + + + + 6 0 6 5 2

Candida glabrata + - + + + + 3 6 5 0 1 2

Kluyveromyces lactis - - + + + + 3 1 4 4 1 9

Figure II-10
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Figure II-10:  Cdk sites are conserved in Net1 orthologs from

different yeast species.

Sequence alignment of S. cerevisiae Net1 and its orthologs from various

sequenced species of yeast show a high degree of conservation of Cdk sites mapped in

vivo.  “Percent identities” refers to exact matches in amino acid alignment for both

sequences being compared divided by the total sequence length of S. cerevisiae Net1.

“Percent positives” refers to matches where an amino acid difference exists between the

two aligned sequences but both amino acids belong to the same family (acidic, basic,

uncharged polar, nonpolar) divided by the total sequence length of S. cerevisiae Net1.

“Percent gaps” refers to the number of spaces introduced into an alignment to

compensate for insertions and deletions in one sequence relative to another divided by the

total sequence length of S. cerevisiae Net1.  Each parameter is shown for each species

compared to Net1 from Saccharomyces cerevisiae.
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Figure II-11:  Cdc28 levels as loading controls.

(A) Cdc28 levels (α-Cdc28) were used as a loading controls for the indicated time points

and strains for Figure 6A.

(B) Cdc28 levels (α-Cdc28) were used as a loading controls for the indicated time points

for Figure 6B. Roman numerals refer to the following strain genotypes: (i) wild-type

(RJD2617), (ii) cdc15-2 (RJD2610), (iii) cdc15-2 spo12∆ (RJD2620), and (iv) cdc15-2

slk19∆ (RJD2621).
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Table II-1
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Table II-1: Net1 in vivo phosphorylation sites.
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Table II-2
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Table II-2:  Strains used in this study.
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C h a p t e r  I I I -  N e w  C o m p o n e n t s  o f  t h e  R E N T

C o m p l e x

Introduction

Given the ability of the RENT complex to regulate mitotic exit via controlling the

release and activation of Cdc14 (Shou et al., 1999; Visintin et al., 1999), we sought to

identify more components that might govern this unique interaction of a mitotic control

protein with its nucleolar inhibitor Net1. The RENT complex is composed of three

identified components: Net1 a nucleolar protein responsible for maintaining nucleolar

integrity and regulating the activation and release of Cdc14 (the protein phosphatase

responsible for reversal of Cdk phosphorylation at the end of mitosis) (Visintin et al.,

1998), and Sir2 (the histone deactylase responsible for maintaining transcriptional

silencing at the rDNA, mating type, and telomeric loci) (Gottschling, 2000; Shou et al.,

1999; Straight et al., 1999).  The RENT was initially identified using a unique approach

known as Sequential Epitope tagging/immunoAffinity chromatography/Mass

spectrometry (SEAM) (Shou et al., 1999). This new technique enabled us to identify new

protein interactors that co-immunoprecipitated with tagged subunits of the RENT

complex, specifically Net1. The first interactor to be identified was RPC40, a subunit of

RNA polymerase I holoenzyme which resides in the nucleolus and is responsible for

ribosomal RNA transcription. The second interactor identified was a catalytic subunit of

Casein Kinase II (CKII), a pleiotropic, multi-ubiquitous serine or threonine protein kinase

conserved throughout eukaryotes and implicated in a diverse range of cellular processes
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including ionic sensing (Glover, 1998), nuclear matrix regulation, cellular growth

(Ahmed, 1999; Ahmed et al., 2000), calmodulin regulation (Benaim and Villalobo,

2002), DNA damage, transcriptional regulation (Schultz, 2003), and cell-cycle

progression (Glover, 1998; Glover et al., 1994).

RNA Polymerase I (Pol I)

In Saccharomyces cerevisiae, the nucleolus contains 150-180 tandem repeats of a

9.1 kilobase segment of DNA known as the rDNA on the arm of Chromosome XII (Petes

and Botstein, 1977). The rDNA transcription product codes for a single 35S rRNA

precursor which is post-transcriptionally processed to yield a 25S and 5.8S RNA species

incorporated in the 60S ribosomal subunit and an 18S RNA species found in the 40S

ribosomal subunit (Warner et al., 1973). Transcription of the ribosomal DNA repeats is

carried out by RNA Polymerase I (Pol I), a holoenzyme composed of 14 proteins (Carles

et al., 1991; Huet et al., 1975) and accounts for at least 60% of total cellular transcript.

Pol I specificity for rDNA transcription is achieved through promoter specificity but little

else in known about the sites of initiation and termination. Transcription of rDNA by Pol

I has been linked to an interesting phenomenon known as gene silencing in which Pol II

normally transcribed-genes are transcriptionally repressed when inserted into the rDNA

tandem array (Smith and Boeke, 1997). Regulation of nucleolar silencing requires a

functional RENT complex as well as a functional Pol I as demonstrated by a recent

finding that silencing in addition to requiring a functional Sir2 protein also required

transcription by RNA polymerase I (Buck et al., 2002; Shou et al., 2001).  The direction

of spreading was surprisingly controlled by the direction of Pol I transcription (Buck et
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al., 2002). An intact nucleolus is also required for maintenance of proper silencing as

demonstrated by net1-1 and rDNA deletion mutants (Oakes et al., 1998; Shou et al.,

2001). Thus, Pol I transcription and proper nucleolar silencing play an important role in

maintaining cellular function and preventing senescence through the formation of rDNA

circles as has been demonstrated for silencing mutants (Defossez et al., 1998; Gershon

and Gershon, 2000; Shore, 1998).

Casein Kinase II (CKII)

Casein kinase II (CKII) is one of the most highly conserved Serine/Threonine

kinases from yeast to man (Guerra and Issinger, 1999). It consists of a tetrameric

holoenzyme (α2β2) made up of two regulatory subunits (β2) (Ckb1, Ckb2) and the more

evolutionally conserved two catalytic subunits (α2) (Cka1, Cka2). To date, more than 160

potential substrates have been identified for CKII (Pinna and Meggio, 1997) highlighting

the pleiotropic, yet surprisingly essential role for CKII is cell survival. Notably,

Nucleolin, a protein found in the nucleolus of mammalian cells has proved to be one of

the best substrates for CKII (Caizergues-Ferrer et al., 1987; Schneider and Issinger,

1988).   In Saccharomyces cerevisiae, CKII’s function is essential as deletion of both the

α-catalytic subunits is lethal yet, again surprisingly; deletion of one or both of the

regulatory β-subunits displays no obvious phenotype (Glover, 1998). The most obvious

phenotype arises when ckb1∆ ckb2∆ mutant cells are challenged on minimal media, and

any combination of cka1∆ or cka2∆ with either of the ckb1∆ or ckb2∆ display slow

growth and flocculation (Glover, 1998).  Over-expression analysis of either the catalytic

or regulatory subunits from Drosophila in Saccharomyces cerevisiae has had little impact
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on our understanding of CKII’s function (Rethinaswamy et al., 1998) even though

CKII kinase consensus motif  [(S/t)-X-X-(E/d)] has been determined and studied on a

large variety of its in vitro substrates (Guerra and Issinger, 1999). Interestingly,

temperature-sensitive alleles of Cka1 and Cka2 arrest in a mixed population of unbudded

and elongated-budded cells at the G2/M stage of the cell cycle (Glover, 1998). CKII

mutants in S. cerevisiae display another interesting ability in that they are required for

cells to undergo “adaptation” in response to DNA damage; a process by which cells

continue with the cell cycle after a prolonged delay at the DNA-damage checkpoint

(Toczyski et al., 1997). Subcellular localization of CKII has been shown to play an

important part in regulation in addition to post-translational modification (Faust and

Montenarh, 2000; Jans and Hubner, 1996; Tawfic et al., 2001). Thus, even though CKII

was one of the first kinases identified; preciously little is know about its molecular

functions given its pleiotropic nature.

Results

RNA Polymerase I and Casein Kinase II Interact with Net1

To look for new components of the RENT complex, we performed a series of

immuno-precipitation experiments with a myc9- immuno epitope tag on Net1 in various

MEN mutant backgrounds so as to find a MEN-dependent component to the RENT

complex. The epitope tag was additionally modified to include an engineered TEV

protease Cleavage site, thus facilitating a subsequent purification of Net1 complexes from

immuno-affinity beads (Figure 1). Immuno-affinity purification was also performed on
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other components of the Mitotic Exit Network (MEN) to try to identify new factors for

that pathway (Figure 1). Samples were then run on a 4-15% gradient gel with along with

the untagged control and banding patterns were observed via silver staining and

subsequently compared to identify new bands (Figure 1). In-gel sequencing analysis of

Net1 samples revealed no major differences in protein complexes from various MEN

mutants (R. Azzam, A. Shevchenko, and J. Graumann, unpublished observations). Two

new components were identified that associated with the RENT complex. The RNA

polymerase I subunit RPC40, and the Casein kinase II subunit CKA1. These results were

latter confirmed after performing Mud-PIT analysis with on the samples obtained from

the same MEN mutants and identifying all subunits of Casein Kinase II (CKII) (CKA1,

CKA2, CKB1, CKB2) as associating with the RENT complex (R. Azzam and J.

Graumann, unpublished observations).

To verify that the interaction we observed with RNA Polymerase I and Casein

Kinase II is reproducible, we performed co-immunoprecipitation experiments with Net1.

Purified Pol I holoenzyme with the A135 tagged-subunit interacts with Baculo-purified

Net1 in vitro as judged by Western blotting (Figure 2A) in an almost 1:1 ratio. Immuno-

tagging all four subunits of CKII and immuno-precipitating them also brings down Net1

(Figure 2B). Thus, both Pol I and CKII interact with Net1 as judged by mass

spectrometry and immunoprecipitation experiments from S. cerevisiae and in a semi-

purified system. Furthermore, Net1 has been definitively implicated in regulating

nucleolar structure and Pol I transcription (Shou et al., 2001).

Casein Kinase II Mutants Display Synthetic Interactions with MEN Mutants
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Casein Kinase II mutants arrest as a mixture of budded and unbudded cells in

G2/M (Glover, 1998). Thus, to further analyze the role of Casein Kinase II in regulating

mitotic exit, we sought to investigate how temperature sensitive mutants of CKII

(specifically mutants in CKA1 catalytic subunit) interact with MEN mutants. Double

mutants cka2-8 tem1-3, cka2-8 cdc15-2, cka2-8 cdc14-1, and cka2-8 dbf2-2 showed a

reduction in restrictive temperature compared to single mutants (Figure 3). Interestingly,

cka2-8 cdc5-1 double mutants appear to improve the temperature sensitivity of cdc5-1

cells (Figure 3).

Casein Kinase Mutants Arrest in Anaphase with Unsegregated rDNA

If Casein Kinase II activity is involved in late mitotic events, then CKII mutants

should display late mitotic phenotypes. A modified strain containing an integrated GFP

chromosomal marker was used to visualize chromosomal segregation in cka2-8, esp1-1,

and top2-1 mutants (Figure 4). Whereas esp1-1 and top2-1 mutants arrest with one visible

GFP dot indicating failure of chromosomal DNA segregation, cka2-8 mutants arrest with

two visible GFP dots at the opposite ends of the DAPI mass indicating proper segregation

of chromosomal DNA (Figure 4). Thus, cka2-8 mutants arrest in the anaphase stage of

the cell cycle, similar to MEN mutants.

It has been previously demonstrated that cdc14-1 mutants arrest in late anaphase

with unsegregated rDNA which differs from other MEN mutants (Granot and Snyder,

1991). To examine rDNA segregation in various mutant backgrounds, we chromosomally

tagged Net1- which is known to residue in the nucleolus for the entire duration of the cell

cycle (Shou et al., 1999)-with GFP in various strain backgrounds. Whereas cdc15-2 cells
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arrest with segregated nucleoli, cdc14-1 mutants arrested with an unsegregated

nucleolus, similar to that observed for cka2-8 cells, as judged by Net1-GFP immuno-

fluorescence (Figure 5A). Also, cka2-8 cells arrest with Cdc14 in the nucleolus in early

anaphase as judged by spindle length (Figure 5B). Thus, CKII activity appears to be

required for proper rDNA segregation similar to Cdc14.

Conclusions

The RENT complex, and especially Net1, appears to play a crucial role not only

in the regulation of mitotic exit and transcriptional silencing through the activation and

release of Cdc14 and sir2, respectively; but also regulation of nucleolar architecture and

RNA polymerase I transcription. The role of RNA polymerase I and its link to Net1 has

been clearly established through the subsequent studies by Shou and colleagues (Shou et

al., 1999). The role of Casein Kinase II is less clear but appears to a) interact with Net1,

b) display a genetic interaction with MEN mutants, and c) be involved in proper

segregation of rDNA. Interestingly, the arrest of cka2-8 mutants appears to be RAD9

dependent implicating a role for the DNA damage checkpoint (data not shown) in concert

with a previously identified role for CKII in the “adaptation” response to DNA damage

(Toczyski et al., 1997).

 Given the recently reported roles for Cdc14 and the FEAR pathway in regulating

proper nucleolar division during meiosis (Buonomo et al., 2003), and the fact that a CKII

consensus phosphorylation site has been mapped in vivo on Net1; it would be interesting

to further examine how CKII might be able to regulate Net1 function to insure proper

nucleolar division.
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Experimental Procedures

Cell Growth Procedures

Cells were grown in yeast extract-peptone (YP) or in yeast minimal (YM) media

containing 2% glucose (YPD,YMD), 2% raffinose (YPR,YMR) or 2% galactose

(YPG,YMG) as carbon source.  Where appropriate, minimal media were supplemented

with leucine, histidine, tryptophan, uracil, and adenine to complement auxotrophies.

Cell Extract Preparation and Western Blotting

Cells were grown to an O.D.600 of 1.0, and for every time point 2 ml of culture

was collected and TCA added to a final concentration of 20%.  Cells were collected by

centrifugation and washed with 2 ml of Tris-HCl (pH 7.5).  SDS loading buffer [70 µl of

100 mM Tris-HCl (pH 7.5), 20% glycerol, 4% SDS, 2 M Urea, 200 mM DTT] was

added, tubes were boiled for 3 minutes, and 100µl of acid-washed glass beads (500 µm)

were added to each tube followed by boiling for an additional 2-minutes.  Tubes were
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vortexed for 45 sec for 15 times with 1-minute cooling intervals.  Tubes were boiled

again for 2-minutes and 5 µl of sample was fractionated on a 10% SDS-PAGE gel

followed by transfer to a nitrocellulose membrane.  Western blot analysis was performed

with the following primary antibodies at the indicated dilutions: Anti-myc (9E10)

(1:5000), anti-Net1 (1:250), and anti-HA (1:5000).

Immunoprecipitation and Clb2–Cdk release/kinase assay.

To prepare extracts for immunoprecipitation, 10 O.D.600 units of a log phase cell

culture was harvested and washed with 2 ml of Tris-HCl (pH 7.5).  Cells were re-

suspended in 500µl lysis buffer [25 mM HEPES/KOH (pH7.5), 150 mM NaCl, 1 mM

DTT, 0.2% Triton, 1 mM EDTA, 1 mM PMSF, 1 mM Benzamidine, 1x Protease

Inhibitor Cocktail (Aprotinin, Chymostatin, Leupeptin, and PepstatinA all at 5 µg/ml in

90% DMSO)], transferred to a flat-bottom 2 ml tube and supplemented with 100 µl of

acid-washed glass beads (500 µm).  Samples were vortexed 15 times for 45 seconds each

with 1-minute cooling intervals. Tubes were then centrifuged for 5 minutes at 14,000 rpm

and the supernatant was collected.  Clarified extract (400 µl) was incubated with 60 µl of

9E10-coupled protein A beads for 1 hour on a rotator at 4°C. Beads were collected and

washed ten times in wash buffer [25 mM HEPES/KOH (pH7.5), 150 mM NaCl, 1 mM

DTT, 0.2% Triton], and divided to approximately 50 µl beads per reaction condition.

Myc9-Net1 (purified from insect cells infected with a recombinant baculovirus) was used

as indicated (Shou et al., 1999).

Immunofluorescence
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Immunofluorescence was performed as previously described in Chapter II with

direct immuno-fluorescence being performed on live cells after they have been arrested at

37°C for approximately 3 hours. Indirect-immunofluorescence was performed as

previously described (Shou et al., 2002; Shou et al., 1999). Rabbit anti-Cdc14 (1/3000)

and rat anti-tubulin monoclonal antibody YL1/34 (1/1000) were used at the indicated

dilutions. Images of cells were collected on a Zeiss Axioskop or Axiovert 200M

microscope.
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Figure III-1
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Figure III-1: Immunoprecipitation of Net1 and MEN components.

Silver stained 5-14% SDS-PAGE gel with Indicated amounts of extract used with

50µl of 9E10 coupled-agrose beads to immuno-precipitate (IP) Net1 from (cdc5-1, dbf2-

2, cdc15-2, and cdc14-1). IP’s of other MEN components (LTE1, TEM1, and MOB1)

were also preformed to look for associated proteins. (*) indicates the tagged protein and

its potential breakdown products, (•) indicate new bands in the IP lane that are not found

in the control untagged lanes. The intensely staining band found in all lanes around 30kD

is TEV protease used for the elution of the complex off the beads. 20 and 50 ng of

Bovine Serum Albumin (BSA) are included for comparison.
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Figure III-2: RNA Polymerase I and Casein Kinase II interact with

Net1 in vitro.

(A) Purified Pol I and Myc9-Net1 interact in vitro. Purified Pol I (150 ng = 0.26 pmol;

(Keener et al., 1998)) with its A135 subunit tagged with HA (+) or untagged (-) was

immunoprecipitated with 12CA5 antibodies (against the HA epitope). The antibody

beads were subsequently incubated with Myc9-Net1 (150 ng = 0.83 pmol) purified from

insect cells, and proteins bound to the beads (lanes 3 and 4) were immunoblotted with

antibodies against A190 and Myc9-Net1. To estimate the relative amount of Net1

complexed to Pol I, 3 ng (lane 1) and 1 ng (lane 2) of Pol I (top panel) and Myc9-Net1

(bottom panel) were immunoblotted with anti-A190 and 9E10 antibodies, respectively.

We estimate that almost all Pol I molecules bound Net1 in this assay.

(B) Net1 co-immunoprecipitates with all four tagged subunits of CKII. Myc9-tagged

subunits Cka1, Cka2, Ckb1, and Ckb2 are able to bring down varying amounts of Net1

compared to untagged (UT) control. Immunoprecipitation was performed as described in

experimental procedures and western blots were immunoblotted with polyclonal anti-

Net1 (gift from D. Moazed) and 9E10 antibodies to detect Net1 and the subunits of

Casein Kinase II.



108

Figure III-3
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Figure III-3: Casein Kinase II mutants genetically interact with MEN

mutants.

 Starting with 3000 cells, 3-fold serial dilutions of each the indicated strain (cka2-

8) alone or in combination with various MEN mutants (tem1-3, cdc15-2, cdc14-1, and

cdc5-1) were spotted on YPD plates from right to left, and incubated at the indicated

temperature for 2-3 days before the picture was taken.
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Figure III-4: Casein Kinase II mutants arrest in early anaphase.

Mutant esp1-1, top2-1, and cka2-8 cells containing a lacO array at the LEU2

locus and expressing LacI-GFP from the HIS3 locus were arrested in YP 2% glucose at

37°C.  Samples were taken and analyzed after the arrest to determine number of cells

with unsegregated chromosomes (one GFP dot) compared to cells that have segregated

their chromosomes (two GFP dots). DAPI staining was performed to determine nuclear

DNA content at the arrest point.
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Figure III-5: Casein Kinase II mutants arrest with unsegregated

rDNA and Cdc14 in the nucleolus.

(A) Mutant cdc14-1, cdc15-2, cka2-8, and top2-1 cells containing a Net1-GFP construct

were arrested in YP 2% glucose at 37°C.  Samples were taken and analyzed by immuno-

for determination of nucleolar segregation and position. DAPI staining was performed to

determine nuclear DNA content at the arrest point.

(B) Mutant cka2-8 cells were arrested in YP 2% glucose at 37°C.  Samples were taken

and analyzed by indirect immuno-fluorescence with DAPI, rabbit anti-Cdc14 (1/3000),

and rat anti-tubulin monoclonal antibody YL1/34 (1/1000) for determination of nuclear

position, Cdc14 localization, and microtubule spindle length, respectively.
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C h a p t e r  I V -  F u t u r e  D i r e c t i o n s

Summary

The nucleolus can no longer be thought of as just an assembly factory for

ribosomal proteins.  Nucleolar sequestration now offers a new modality of regulation for

important cellular proteins. Understanding the regulation of Cdc14 release and activation

from Net1 gives us insight into the global role phosphorylation plays in mediating

protein-protein interactions. Identification of bone fide kinase substrates for such kinases

as Clb-Cdk, Cdc5, and Casein Kinase II will aid us in further understanding how kinases

through modification of their substrates play a crucial role in regulating cellular survival

and function.

Future Questions

Some of the unresolved questions still remain to be addressed. I list them for

future reference:

1) How is regulation of Cdc14 activity achieved in higher and multi-cellular eukaryotes

achieved?

2) What is the molecular function of the Mitotic Exit Network (MEN)? Does nucleo-

cytoplasmic shuttling play a role in Cdc14 activation via the MEN?

3) How is the re-sequestration of Cdc14 achieved? What is the phosphatase that reverses

Clb-Cdk phosphorylation to allow Cdc14 to re-bind to Net1?
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4) What is the function of Clb-Cdk phosphorylation on other substrates in the

pathway (i.e., Spo12)? How is this phosphorylation regulated?

5) Does Net1 phosphorylation target the RENT complex to specific regions of rDNA? Do

they overlap with Fob1, Sir2, Cdc14?

6) Will phosphorylation of Net1 be sufficient to trigger release of Cdc14 in fob1∆ cells in

various stages of the cell cycle?

7) Are there other components to the RENT complex that bind to Net1 or Cdc14 when

it’s activated and released?




