
Multiple-scale Dynamics in Neural Systems:

Learning, Synchronization and Network

Oscillations

Thesis by

Valentin P. Zhigulin

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2004

(Defended May 12, 2004)



ii

c© 2004

Valentin P. Zhigulin

All Rights Reserved



iii

Acknowledgements

This work would not have been possible without the help and support of many people.

I would like to thank Mikhail Rabinovich for constant encouragement and support.

His scientific advice and, even more importantly, worldly wisdom were and will always

be invaluable to me. I am thankful to Gilles Laurent for inspiring much of the research

presented in this thesis and for giving me the freedom to pursue it. Many thanks

go to Michael Cross for his advice and for raising questions that have led to the

improvement of this thesis. I would also like to thank Pietro Perona for giving the

impetus to my studies of chaotic dynamics in neural networks. I thank all members

of Gilles Laurent’s lab and especially Vivek Jayaraman, Roni Jortner, Rachel Wilson

and Ofer Mazor for keeping me grounded and aware of the latest experimental data

and of the pitfalls of my models, and a former lab member Alex Bäcker for letting
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Abstract

Many dynamical processes that take place in neural systems involve interactions be-

tween multiple temporal and/or spatial scales which lead to the emergence of new

dynamical phenomena. Two of them are studied in this thesis: learning-induced ro-

bustness and enhancement of synchronization in small neural circuits; and emergence

of global spatio-temporal dynamics from local interactions in neural networks.

Chapter 2 presents the study of synchronization of two model neurons coupled

through a synapse with spike-timing-dependent plasticity (STDP). It shows that this

form of learning leads to the enlargement of frequency locking zones and makes syn-

chronization much more robust to noise than classical synchronization mediated by

non-plastic synapses. A simple discrete-time map model is presented that enables

deep understanding of this phenomenon and demonstrates its generality. Chapter 3

extends these results by demonstrating enhancement of synchronization in a hybrid

circuit with living postsynaptic neuron. The robustness of STDP-mediated synchro-

nization is further confirmed with simulations of stochastic plasticity.

Chapter 4 studies the entrainment of a heterogeneous network of electrically cou-

pled neurons by periodic stimulation. It demonstrates that, when compared to the

case of non-plastic input synapses, inputs with STDP enhance coherence of network

oscillations and improve robustness of synchronization to the variability of network

properties. The observed mechanism may play a role in synchronization of hippocam-

pal neural ensembles.

Chapter 5 proposes a new type of artificial synaptic connection that combines fast

reaction of an electrical synapse with plasticity of a chemical synapse. It shows that

such synapse mediates regularization of chaos in a circuit of two chaotic bursting neu-
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rons and leads to structural stability of the regularized state. Such plastic electrical

synapse may be used in the development of robust neural prosthetics.

Chapter 6 suggests a new approach to the study of spatio-temporal network dy-

namics. The approach is based on the analysis of dynamical motifs – small subnet-

works with periodic and chaotic dynamics. It is used to explain the transition from

quiescence to periodic and chaotic dynamics in simulations of randomly connected

neural networks and the domination of periodic dynamics in simulations of spatially

distributed networks with local connectivity.
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Chapter 1

Introduction

1.1 The brain as a complex, multiscale system

Our brain is arguably one of the most complex dynamical systems in the Universe. It

consists of more than 1011 neurons that are connected by approximately 1015 chemical

and electrical synaptic connections. Each neuron in itself is an elaborate dynamical el-

ement with a number of diverse dynamical processes occurring on different timescales

ranging from sub-milliseconds (opening and closing of single ionic channels) to sec-

onds (flow of ‘slow’ ionic currents), minutes (changes in synaptic conductances), days

(growth and development of new synaptic connections) and decades (death of neu-

rons). The range of spatial scales on which these dynamical processes take place is

also enormous – from micrometers (molecular and biochemical processes inside neu-

rons) to millimeters (synaptic interactions in localized neuronal ensembles) and tens

of centimeters (interactions between different areas of the brain).

One of the reasons for the spectacular progress of physics in the study of non-

living matter is the presence of the so-called ‘separation of scales’ between funda-

mental forces of Nature. This separation has allowed physicists to split the study of

the Universe into the separate analysis of the building blocks and the rules of their

interaction at each ‘scale.’ However, when compared to its success in physics, the

‘separation of scales’ approach has had limited success so far when applied to com-

plex living matter such as the brain. One of the stumbling blocks for this approach

is the fact that many spatio-temporal dynamical processes in the brain operate on
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several spatial and/or temporal scales, thus providing strong interactions between

the scales. For example, neurons produce spikes (very short electrical pulses that

carry information from neuron to neuron) whose timing is in some cases up to one

millisecond precise [57, 102, 10]. On the other hand, there are examples showing that

a lot of information is transmitted between neurons in the variations of the average

firing rate [37, 15]. Those variations occur on the timescale of hundreds of millisec-

onds. The debate still rages among neuroscientists as to what is most important in

the ‘neural code’ – precise spike timing or average firing rate? The emerging answer

seems to indicate that both of them are essential and that their relative importance

may depend on the situation and context [100, 63, 23, 55]. It is therefore impossible

to separate temporal scales in this case and the dynamical processes with timescales

from 1 ms to 100 ms should be analyzed simultaneously. This and other examples

demonstrate that in most cases the proper way to harness the power of the ‘separation

of scales’ approach to neural systems was not yet found. Moreover, it may turn out

that it can not in principle be found and that scientists may have to deal with the

problem of understanding the brain in its full integrity. It is not yet known when and

how to ‘coarse-grain’ in order to move from one ‘scale’ to another, as well as if this

procedure is applicable at all.

As just described, the brain is a very complex high-dimensional dynamical sys-

tem with mixed spatial and temporal scales and, probably, has to be studied as such.

However, the paradox of the situation is in the fact that it is difficult for us to proceed

with studying the brain as a whole. Present theoretical and experimental tools are in

most cases not inadequate for such an approach to be practical. Hence, in many cases

we have to resort to the tried-and-true reductionist approach of physics and mathe-

matics. The purpose then is to learn as much as possible about the workings of the

brain at each ‘scale’ and to develop new experimental techniques and theoretical tools

that would help bridge the scales. The hope is that with the help of these connecting

tools it will be possible one day to combine the wealth of collected information into

one unified ‘Theory of the brain.’
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1.2 Thesis overview

Today, while still in its infancy, theoretical neuroscience presents many exciting prob-

lems for an aspiring theorist to tackle. For the reasons described above, most of these

problems are limited to a specific ‘scale’ and are rather ‘narrow’ and non-general from

a point of view of a typical physicist. Luckily, a lot of progress had been made in

understanding of the building blocks at each ‘scale,’ be it ionic channels, single neu-

rons, or brain areas. This progress allows theorists to start addressing more general

questions about interactions between the scales and about structures and dynamical

processes that emerge as a result of these interactions.

This thesis is focused on addressing questions about the emergence of two of the

most intriguing properties of neural systems. The first one is the question about

the origin of the robustness of the dynamical phenomena such as synchronization

and regularization of oscillations in neural circuits. The second one is the question

about the nature of the connection between the structure of local neural connectivity

and the properties of global dynamics of neural networks. As it turns out, answers to

both of these questions require the study of the mechanisms that mediate interactions

between the processes occurring on different temporal (in the first case) and spatial

(in the second case) scales.

In Chapters 2-5 the influence of slow synaptic learning mechanisms on the fast

dynamical processes in neural circuits such as synchronization of spikes and bursts

of spikes is studied. Unlike in the usual studies of dynamical systems in which sys-

tems’ parameters are kept fixed, some parameters of the model dynamical systems

describing these neural circuits are changing on slow timescales according to biologi-

cally inspired learning rules. The unexpected result of these studies is that learning

may greatly improve robustness of the dynamical processes such as synchronization

of oscillations and regularization of chaos in model neural circuits. Even more unex-

pectedly, as Chapter 5 indicates, natural learning mechanisms are able to transform

structurally unstable (in the sense of the theory of bifurcations) and sensitive to

parameter perturbations dynamical systems into structurally stable ones. This oc-
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curs when the parameters to the values of which the system is very sensitive are

allowed to change slowly according to appropriate learning rules. Another example

of this phenomenon was recently experimentally demonstrated by David Tank and

his collaborators in the study of the oculomotor integrator of goldfish. Oculomotor

integrator is a neural circuit that was found to be structurally unstable in the mod-

eling studies as it required very precise tuning of the feedback. Experimental studies

in the Tank’s group have shown that the circuit is indeed very sensitive and can be

induced to become unstable. Experiments showed, however, that through the ‘slow

timescale’ feedback-mediated learning mechanism the integrator usually returns from

the perturbed unstable regime to the stable operational regime [58].

At present, the lack of understanding of the connection between the ‘scale’ of

single neurons and the ‘scale’ of neuronal networks appears to be one of the major

bottlenecks in our understanding of the brain. Brain networks are usually very dense

and highly connected, with thousands and sometimes millions neurons talking to

each other simultaneously inside a localized network. And while a lot is known and

understood about the properties and functions of single neurons and brain areas, the

way in which the neurons ‘combine their efforts’ when connected in networks and

brain areas is in many cases not well understood. There are at least several reasons

for this lack of understanding. First, experimental techniques that would allow one

to measure all that activity with an adequate temporal and spatial resolution are

still present only in very remote dreams of neuroscientists. Second, there is a lack

of theoretical methods that would allow a meaningful analysis of high-dimensional

spatio-temporal dynamics in neural networks to be carried out. In Chapter 6 of the

thesis an attempt is made to address the latter problem through the development of a

new theoretical tool that may be used to improve our understanding of the connection

between local structure and overall dynamics of large neural networks.
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1.3 Summary of work

In Chapter 2 we study the synchronization of two model neurons coupled through

a synapse having an activity-dependent strength. This synapse follows the rules

of spike-timing-dependent plasticity (STDP). We show that this plasticity of the

coupling between neurons produces enlarged frequency locking zones and results in

synchronization that is more rapid and much more robust against noise than classical

synchronization arising from connections with constant strength. We also present a

simple discrete map model that enables deep understanding of this phenomenon and

demonstrates its generality. A concise presentation of the material of this chapter

had been published in [110].

In Chapter 3 we demonstrate that spike-timing-dependent plasticity enhances

synchronization (entrainment) in a hybrid circuit composed of a spike generator, a

dynamic clamp emulating an excitatory, plastic synapse, and a chemically isolated

neuron from the Aplysia abdominal ganglion. Fixed phase entrainment of the Aplysia

neuron to the spike generator is possible for a much wider range of frequency ratios,

and is more precise and more robust with the plastic synapse, than with a non-

plastic synapse of comparable strength. Further analysis in a computational model

of Hodgkin-Huxley type neurons reveals the mechanism behind this significant en-

hancement in synchronization. The experimentally observed STDP plasticity curve

appears to be designed to adjust synaptic strength to a value suitable for stable en-

trainment of the postsynaptic neuron. We argue that one functional role of STDP

might therefore be to facilitate synchronization or entrainment of non-identical neu-

rons. Biological experiments described in this chapter were performed by Thomas

Nowotny. Most of its material had been published in [69].

In Chapter 4 we study the entrainment of a heterogeneous network of electrically

coupled neurons by synaptically mediated periodic stimulation. We demonstrate

by computer simulations that input synapses with spike-timing-dependent plasticity

greatly enhance the coherence of spiking activity in the network as compared to

the case of input with constant strength. We also show that synchronization in the
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network stimulated through STDP synapses is much more robust to the variability

of network properties. We speculate that the observed mechanism may play a role

in synchronizing the activity of a hippocampal network. Most of the material of this

chapter had been published in [108].

In Chapter 5 we suggest a new type of artificial synaptic connection that combines

the best properties of electrical and chemical synapses: the fast reaction of a gap

junction and the plasticity of a chemical synapse. Based on the mathematical analysis

and computer simulations we show that such plastic electrical synapse regularizes

chaos in the minimal neural circuit consisting of two chaotic bursting neurons and

leads to structural stability of the regularized state. A concise presentation of the

material of this chapter will be published shortly [109].

In Chapter 6 we suggest a new approach to the study of spatio-temporal network

dynamics which is based on the analysis of dynamical motifs – small subnetworks with

periodic and chaotic dynamics. We simulate randomly connected neural networks

and, with increasing density of connections, observe the transition from quiescence

to periodic and chaotic dynamics. This transition is explained by the appearance

of dynamical motifs in the structure of these networks. We also observe domina-

tion of periodic dynamics in simulations of spatially distributed networks with local

connectivity and explain it by the absence of chaotic and the presence of periodic

motifs in their structure. A concise presentation of the material of this chapter will

be published shortly [107].
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Chapter 2

Robustness and enhancement of
neural synchronization by
activity-dependent coupling

2.1 Introduction

Synchronous activity among neurons or neuronal ensembles is a robust phenomenon

observed in many regions of the brain, in sensory systems and in other neural net-

works. With constant synaptic connections, the regions of parameter space in which

neural synchronization arises are quite narrow and the origin of the observed robust-

ness of synchronization is not clear. It is known that many neurons in the cortex,

in the cerebellum and in other neural systems are coupled through excitatory synap-

tic connections whose strength can be altered through activity-dependent plasticity.

Indeed, this plasticity is widely thought to underlie learning processes, and in it-

self constitutes a broadly interesting phenomenon. Here we discuss its role in the

synchronization of neurons in a network.

There have been recent experimental advances in the understanding of such plas-

ticity, and, in particular, of the critical dependence on timing in presynaptic and

postsynaptic signaling. Two manifestations of this kind of synaptic plasticity are

spike-timing-dependent plasticity (STDP) [61, 11] seen in excitatory connections be-

tween neurons, and its inverse, observed, for example, in the connections between

excitatory and inhibitory neurons in the electrosensory lobe of fish [9]. The con-
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nections between excitatory neurons through inhibitory interneurons are typical in

sensory systems [52, 77] and cerebral cortex [7]. These also express synaptic plas-

ticity [71] and play an important role in the control and synchronization of neural

ensembles in hippocampus.

We report here on the synchronization of two model neurons coupled through

a synapse with STDP or inverse STDP. We demonstrate that such coupling leads

to neural synchronization which is more rapid, more flexible and much more robust

against noise than synchronization mediated by constant strength connections. (For

reviews, see [30, 24, 19]). We also build a simple discrete map that illustrates the

enhancement of synchronization by activity-dependent coupling. The map allows us

to speculate about the general applicability of learning-enhanced synchronization.

2.2 Description of the model

We consider here the simplest neural network: two neurons with unidirectional,

activity-dependent excitatory synaptic coupling. Each neuron is described by Hodgkin-

Huxley equations [40] with sodium (INa), potassium (IK) and leak (Ileak) currents:

C
dVi(t)

dt
= −INa(t)− IK(t)− Ileak(t)− Isyn(t) + Istim, (2.1)

where i = 1, 2, the leak current is given by Ileak(t) = gL(Vi(t)−EL), INa(t) and IK(t)

are taken from [94]:

INa(t) = gNami(t)
3hi(t)(Vi(t)− ENa), (2.2a)

IK(t) = gKni(t)
4(Vi(t)− EK), (2.2b)

with each of the activation and inactivation variables yi(t) = {ni(t), mi(t), hi(t)}

satisfying first-order kinetics

dyi(t)

dt
= αy(Vi(t))(1− yi(t))− βy(Vi(t))yi(t), (2.3)
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Figure 2.1: Dependence of spiking frequency F on the input current Istim for the
model neuron (dots). Solid line represents its fit given by equation (2.5).

where

αn = 0.032(−50− V )/(exp((−50− V )/5)− 1), (2.4a)

βn = 0.5 exp((−55− V )/40), (2.4b)

αm = 0.32(−52− V )/(exp((−52− V )/4)− 1), (2.4c)

βm = 0.28(25 + V )/(exp((25 + V )/5)− 1), (2.4d)

αh = 0.128 exp((−48− V )/18), (2.4e)

βh = 4/(exp((−25− V )/5) + 1). (2.4f)

The following values of the parameters were used in the model: membrane ca-

pacitance C = 1.43 · 10−4 µF , leak conductance gL = 0.0267 µS, leak potential

EL = −63.55 mV , conductance of sodium channels gNa = 7.15 µS, reversal potential

of sodium channels ENa = 50 mV , conductance of potassium channels gK = 1.43 µS,

reversal potential of potassium channels EK = −95 mV .

In this model each neuron receives a constant input current Istim that forces it to

spike with a constant, Istim–dependent frequency (see Fig. 2.1). This dependence can
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be approximated by

f = 5.4
√

Istim − 50.8− 0.146, (2.5)

which was inverted and used to control spiking frequencies by injecting input currents

of appropriate strength.

The second neuron is synaptically driven by the first via an excitatory current

that is dependent on the postsynaptic V2(t) and presynaptic V1(t) membrane voltages

(reversal potential is taken to be zero):

Isyn(t) = g(t)S(t)V2(t), (2.6)

where S(t) is the fraction of open synaptic channels. We describe its dynamics by

a typical first-order kinetic scheme with rates of synaptic binding and unbinding

α = 10 ms−1 and β = 0.2 ms−1:

dS(t)

dt
= α(1− S(t))H(V1(t))− βS(t), (2.7)

where H(V1(t)) = (1 + tanh(10V1(t)))/4.

The time-dependent synaptic conductance g(t) is conditioned by the dynamics

of the pre- and postsynaptic neurons. We consider two types of activity-dependent

couplings: (1) an excitatory synapse with STDP, and (2) an excitatory synapse with

inverse STDP. Through STDP g(t) changes by ∆g(t) which is a function of the time

difference ∆t = tpost− tpre between the times of post- and presynaptic spikes. We use

the additive update rule

∆g(t) = G(∆t) = A sign(∆t) exp (−γ|∆t|) (2.8)

for STDP, and ∆g(t) = −G(∆t) for inverse STDP (see Fig. 2.2). The following values

of parameters were used: A = 4 nS and γ = 0.15ms−1.



11

-30 -20 -10 10 20 30
Dt HmsL

-4

-2

2

4
Dg HnSL

-30 -20 -10 10 20 30
Dt HmsL

-4

-2

2

4
Dg HnSL

Figure 2.2: Plots of the update rule (2.8) in the cases of (top) STDP and (bottom)
inverse STDP. Only pairs of the nearest pre- and postsynaptic spikes are taken for
calculation of ∆g.

2.3 Results

2.3.1 Enhancement of synchronization

We studied the synchronization properties of the system coupled through an inverse

STDP synapse by setting the autonomous period of the postsynaptic neuron to 15
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Figure 2.3: Synchronization of the neurons with inverse STDP coupling. (top) Mem-
brane voltages of presynaptic (dotted line) and postsynaptic (solid line) neurons.
Postsynaptic neuron was initially spiking faster that the presynaptic one due to rel-
atively strong coupling between them. Coupling strength decreased (bottom) and
synchronized state was reached.

ms and then evaluating the actual period of its oscillation T2 as a function of the

imposed autonomous oscillation period T1 of the presynaptic neuron. Figures 2.3

and 2.4 illustrate typical examples of such simulations. In these examples the initial

coupling strength g(0) was set to 0.005 µS. In the example that is presented in Fig. 2.3

the period of the driving neuron T1 was set to 13 ms. Because of the mismatch

in spiking periods the neurons were not initially synchronized. Even though their

autonomous spiking periods were very similar, the postsynaptic neuron was in fact

driven too strongly for 1:1 frequency locking to occur. Surprisingly, as the bottom

panel of Fig. 2.3 illustrates, dynamic interplay between potentiation and depression of

synaptic strength led to its overall decrease and stabilization around 0.001 µS. As the

top panel of the plot indicates, such strength was appropriate for 1:1 synchronization.
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Figure 2.4: Same as in Fig. 2.3, but with postsynaptic neuron initially spiking slower
that the presynaptic one (top) due to relatively weak coupling between them. Cou-
pling strength increased (bottom) and synchronized state was reached.

In another example, presented in Fig. 2.4, the period of the driving neuron T1 was

set to 8.5 ms. In this case the postsynaptic neuron was not driven strongly enough

for synchronization to occur. As in the previous example, STDP dynamics led to a

change in synaptic strength (increase), necessary for synchronization to occur.

The above examples indicate that STDP-mediated learning may induce adapta-

tion of synaptic strength to the level that is appropriate for synchronization of neurons

with different intrinsic spiking frequencies. To study this phenomenon in more detail

series of simulations were performed for the range of presynaptic periods T1 and the

steady-state values of synaptic strength and postsynaptic periods T2 were recorded.

Fig. 2.5 shows the ratio of pre- and postsynaptic periods T1/T2 as a function of T1

in two cases: (a) synaptic coupling with constant strength 0.008 µS and (b) synap-

tic coupling with inverse STDP. In the later case the steady-state coupling strength

depends on the ratio of neuronal frequencies (c). Its average over all T1 values is
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0.002 µS, which is much lower than the strength in the case of constant coupling.

In Fig. 2.5(a) we see the usual ‘Devil’s Staircase’ associated with frequency locking

domains of a driven nonlinear oscillator. Only frequency locking with ratios 1:1, 2:1,

3:1, and 4:1 leads to synchronization plateaus with significant width. In Fig. 2.5(b)

we see that the synchronization domains are substantially broadened due to activity-

dependent coupling, especially for T1/T2 = 1. Some synchronization plateaus exhibit

multistability, which we confirmed by observing the associated hysteresis. These re-

sults show that even a weak, but adaptive connection with strength that is determined

dynamically is able to greatly enhance and enrich synchronization.

Close to the boundary of every synchronization zone the transition from quasi-

periodic oscillations to complete frequency locking was observed. This phenomenon

is related to the strong nonlinearity of the neuronal oscillations and is illustrated in

Fig. 2.6, where projections of the phase portrait of the system for the cases of (a)

absence, (b,c) non-exact and (d) exact 2:1 frequency locking are plotted.

Our simulations show that synchronization with an STDP synapse is not as stable

as with the inverse STDP. If the periodic spike sequence is long enough, the strength

of the STDP synapse shows instability and starts to grow without limit, which is

consistent with the discussion in [81].

2.3.2 Robustness of synchronization

The robustness of the enhanced synchronization in the presence of noise was studied

by adding zero mean Gaussian white noise to the membrane currents of each neuron.

The behavior of the system with RMS noise amplitudes σ = 0.01, 0.05, 0.1, and 0.5

nA was examined.

For σ = 0.01 nA no phase-locking plateaus were destroyed. At σ = 0.05 nA

the 4:1 plateau became distorted. Larger σ sequentially eliminated synchronization

plateaus until only the 1:1 plateau remained. The 1:1 plateau was seen for all σ.

Fig. 2.7 illustrates the effect of the noise on synchronization when σ = 0.1 nA with

(a) constant and (b) inverse STDP coupling. While in (a) most of the plateaus
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Figure 2.5: Devil’s Staircase for (a) constant synaptic strength and (b) synaptic
strength varying according to inverse STDP coupling. T1 and T2 are the observed
periods of the presynaptic (driving) neuron and postsynaptic (driven) neuron respec-
tively. In (c) the final value of synaptic strength is displayed.

have disappeared, in (b) the 1:1, the 2:1 and even the 3:1 frequency locking regimes

remained. In sharp distinction to classical synchronization, frequency locking through

activity-dependent coupling is significantly more robust in the presence of noise.

2.3.3 Phase diffusion

To understand the mechanisms behind such a remarkable robustness noise-induced

diffusion of oscillation phase was studied. For σ = 0.5 nA Fig. 2.8(a) shows that in
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Figure 2.6: Two-dimensional projections of the phase portraits of the system for
different values of T1: (a) 24.2 ms, (b) 24.33 ms, (c) 27 ms, and (d) 29 ms. The
autonomous oscillation period of the postsynaptic neuron was 15 ms.

the case of 1:1 synchronization and coupling with constant strength 0.008 µS noise-

induced phase diffusion results in 2π phase slips that destroy synchronized state.

Quite contrary, Fig. 2.8(b) shows that in the case of activity-dependent coupling

phase slips are absent and the phase difference does not increase. In this particular

case the strength of coupling varied around the mean of 0.0064 µS with standard

deviation of 0.0026 µS.

In Fig. 2.9 the average rate of phase slips for different amplitudes of the noise

is plotted. In line with the above observation we see that in the case of activity-

dependent coupling (dashed line) phase slips are suppressed in a wide range of noise

amplitudes. This suppression of phase slips is the primary mechanism responsible

for robustness of synchronization mediated by activity-dependent coupling. After the

introduction of a discrete map model this mechanism will be discussed in more detail.
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Figure 2.7: Same as Fig. 2.5, but with zero mean, Gaussian, white noise with σ = 0.1
nA added to the membrane currents.

2.3.4 Synchronization of bursts

Fig. 2.10 shows an example of synchronization through an activity-dependent synapse

in the realistic case when the first neuron produces bursts of spikes and the au-

tonomous postsynaptic neuron spikes irregularly. It illustrates that synchronization

through an STDP synapse is very fast; even a few spikes are enough for the frequency

locking to establish itself. Neurons in the same setup but with constant coupling syn-

chronize much slower and only if the strength of the connection is appropriate for the

given ratio of their frequencies. Hence, activity-dependent synapses allow adaptation
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Figure 2.8: The difference of oscillation phases of two neurons as a function of time
in the cases of (a) constant and (b) activity-dependent coupling.

‘on the run,’ synching a postsynaptic neuron to the firing properties of its presynaptic

partner.

2.3.5 Discrete time map model

To understand the above results in a general way a discrete time map model of

periodic spike generators with STDP-like coupling that accounts for the dependence

of the coupling strength on the activity of generators was constructed in the following

way. Take T 0
1 and T 0

2 as the autonomous periods of the first and second generators.

As a result of unidirectional coupling, the period of the second generator will change

by some amount ∆T each time it receives a spike from the first generator. Assuming

initial phases to be 0, the time of the n+1-st spike of the first generator and m+1-st
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Figure 2.9: Average rate of phase slips as a function of RMS noise amplitude for the
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Figure 2.10: Out-of-phase rapid locking of the postsynaptic neuron membrane voltage
(solid line) to a burst of spikes from the presynaptic neuron (dotted line). The
frequency of the second neuron changes significantly and the transient period before
complete synchronization is short.

spike of the second generator are taken to satisfy

t
(1)
n+1 = t(1)

n + T 0
1 , (2.9a)

t
(2)
m+1 = t(2)

m + T 0
2 −∆Tm,n, (2.9b)
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Figure 2.11: Phase response curve of the model neuron that was rescaled by synaptic
conductance, g = 3.6 · 10−9 S in this case (dots). Solid line represents its approxima-
tion by Eq. (2.11).

where n and m are such that t
(2)
m ≤ t

(1)
n ≤ t

(2)
m+1. In general, ∆Tm,n would be a

function of T 0
1 , T 0

2 , t
(1)
n , t

(2)
m , and the coupling strength gm,n. We argue that the two

main variables here are t
(1)
n − t

(2)
m , and gm,n. In the case of weak coupling ∆Tm,n can

be approximated by

∆Tm,n = gm,nF (t(1)
n − t(2)m ), (2.10)

where the function F (x) is the rescaled phase response curve [104] of the model

Hodgkin-Huxley neuron. To obtain results quantitatively comparable with our neu-

ronal model, it was fitted by a non-negative quadratic function that describes phase

response of our model neurons:

F (x) = 835 + 63x− 9x2 (2.11)
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Figure 2.12: Arnol’d Tongues calculated for the discrete map model with (a) constant
and (b) activity-dependent coupling. T 0

2 = 13 ms.

for 0 ≤ x ≤ T 0
2 and 0 otherwise (see Fig. 2.11). gm,n in equation (2.10) obeys the

inverse STDP update rules (see Eq. (2.8)):

gm+1,n = gm,n −G(t
(2)
m+1 − t(1)n ), (2.12a)

gm,n = gm,n−1 −G(t(2)
m − t(1)n ), (2.12b)

where, as before, n and m are such that t
(2)
m ≤ t

(1)
n ≤ t

(2)
m+1. Fig. 2.12 shows the Arnol’d

Tongues calculated for the map (2.9-2.12) in the cases of (a) constant and (b) inverse

STDP coupling. As with the model neurons, we see that activity-dependent coupling

greatly enlarges the zones of synchronization.

This discrete map can be further analyzed to find its fixed points corresponding

to n : m synchronization and to examine their stability. We present here the case
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of 1:1 synchronization. Then m = n, and the system of equations (2.9-2.12) can be

written in the following simple form:

τn+1 = τn + T 0
1 − T 0

2 + gnF (τn), (2.13a)

gn+1 = gn −G(T 0
1 − τn+1)−G(−τn+1), (2.13b)

where τn = t
(1)
n − t

(2)
n . The fixed points gf and τf of (2.13) are given by

gf = (T 0
2 − T 0

1 )/F (τf ), (2.14a)

0 = G(T 0
1 − τf ) + G(−τf ). (2.14b)

In order to calculate stability of these fixed points let us follow the dynamics of small

variations (δτ, δg) around the equilibrium (τf , gf ). From (2.13) we obtain

δτn+1 = δτn + F (τf )δgn + gf
dF (τ)

dτ

∣∣∣∣
τf

δτn, (2.15a)

δgn+1 = δgn +

(
dG(τ)

dτ

∣∣∣∣
T 0
1−τf

+
dG(τ)

dτ

∣∣∣∣
−τf

)
δτn+1. (2.15b)

Substituting (2.15a) into (2.15b) and rewriting (2.15) in matrix form we get

 δτn+1

δgn+1

 =

 1 + gfA F (τf )

(1 + gfA)B 1 + F (τf )B

 δτn

δgn

 , (2.16)

where

A =
dF (τ)

dτ

∣∣∣∣
τf

and B =

(
dG(τ)

dτ

∣∣∣∣
T 0
1−τf

+
dG(τ)

dτ

∣∣∣∣
−τf

)
. (2.17)

As it is well known from the theory of stability, the equilibrium (τf , gf ) of (2.13) is

stable if and only if

−1 < λ1,2 < 1, (2.18)
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where λ1,2 are the eigenvalues of the Jacobian in (2.16). They are given by

λ1,2 =
1

2

(
2 + gfA + F (τf )B ±

√
(2 + gfA + F (τf )B)2 − 4(1 + gfA)

)
. (2.19)

Clearly, λ1 > λ2 and, hence, Eq. (2.18) implies that

gfA + F (τf )B +
√

(2 + gfA + F (τf )B)2 − 4(1 + gfA) < 0, and (2.20a)

gfA + F (τf )B −
√

(2 + gfA + F (τf )B)2 − 4(1 + gfA) > −4. (2.20b)

Solving (2.20b) we obtain the following conditions:

gfA + F (τf )B + 4 > 0 and 3gfA + F (τf )B + 6 > 0, (2.21)

which are always satisfied since both gfA and F (τf )B are of the order 10−3. Mean-

while, the condition (2.20a) is equivalent to

F (τf )B > 0, (2.22a)

gfA + F (τf )B < 0. (2.22b)

Recalling (2.17) we see that stability of the synchronized state depends crucially on

the forms of the STDP curve G(t) and of the scaled phase response curve F (τ).

Substituting the value of B we see that (2.22a) is equivalent to

F (τf )

(
dG(τ)

dτ

∣∣∣∣
T 0
1−τf

+
dG(τ)

dτ

∣∣∣∣
−τf

)
> 0, (2.23)

which for the STDP curve (2.8) gives

−γF (τf )A(e−γ(T 0
1−τf ) + e−γτf ) > 0. (2.24)

This condition will be satisfied in the following cases:

(a) F (τf ) > 0 (type I neurons) and A < 0 (inverse STDP),
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(b) F (τf ) < 0 (type II neurons) and A > 0 (normal STDP).

Hence, stable synchronization of the considered in this chapter type I neurons (for

which F (τ) is non-negative) is only possible with inverse STDP. This explains men-

tioned above observations from the simulations showing that stable synchronization

was not possible with the STDP curve of the form given by Eq. (2.8). However,

condition (b) indicates that synapses with such an STDP curve may mediate stable

synchronization of type II neurons (for which F (τ) takes on both positive and negative

values). Moreover, as it was shown with abstract models [45] and confirmed through

our own research with biologically realistic models STDP leads to the learning of

in-phase synchronization in networks of type II neurons.

As is discussed in the next chapter, the data from which the STDP curve has to

be derived is very noisy [8, 11, 106, 27]. There is no unique way of doing so and other

shapes of the curve were proposed along with (2.8). Biophysical models of STDP

predict that the curve should be continuous [1, 103, 46], e.g., of the following form:

∆g(t) = G(∆t) = A∆t exp (−γ|∆t|). (2.25)

As it will be shown in the following chapter, introduction of such a curve allows one

to solve the problem of instability that was just described.

Finally, in somewhat general terms, I would like to emphasize the difference be-

tween the regimes of synchronization that are mediated by couplings with constant

and activity-dependent strength. While absent in the case of constant coupling, pres-

ence of the second fixed point (2.14b) in the case of activity-dependent coupling

introduces a new limitation on the relationship between the phases of two oscillators.

It is this limitation that causes the suppression of phase slips under the influence of

noise. Since this fixed point is stable, in the course of noise-affected synchronization

the strength of activity-dependent coupling adjusts dynamically to keep this phase

relationship close to satisfaction and, hence, suppresses phase slips. This, it turn,

leads to the improved robustness of the synchronized state.
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2.4 Discussion

In this chapter the effects of activity-dependent coupling on synchronization proper-

ties of coupled type I neurons was analyzed. It was shown that such coupling results

in a substantial extension of the temporal synchronization zones, leads to more rapid

synchronization and makes it much more robust against noise. The enlargement of

synchronization zones means that with STDP-like learning rules the number of syn-

chronized neurons in a large heterogeneous population must increase. In fact, this

is an aspect of the popular idea due to Hebb [36]. It is supported by the results

in [67, 28] which indicate that the coherence of fast EEG activity in the gamma band

increases in a process of associative learning.

Based on the results from the discrete map model, it can be argued that the

particular details of the signal-generating devices (e.g., neurons) and their connections

(e.g., synapses) are not essential and the obtained results have general applicability.

In fact, similar phenomena of robust and enhanced synchronization were observed in

computer simulations of other types of periodic generators (such as Van-der-Pol and

θ-oscillators) with STDP-like activity-dependent coupling.
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Chapter 3

Plasticity-mediated enhancement
of synchronization in a hybrid
neural circuit

3.1 Introduction

The synchronization of oscillatory neural activity is a general mechanism underly-

ing transient functional coupling of neurons, the formation of neural ensembles and

large-scale neural integration [53, 25, 99]. Two recent examples illustrate this: Simul-

taneous recordings in the primary motor cortex of monkeys during task performance

demonstrate accurate spike synchronization [79]. Fell et al. [28] showed that human

memory formation is accompanied by rhinal-hippocampal gamma synchronization

followed by a later desynchronization. The observed synchronization becomes more

effective and robust as a result of learning (see, for example, [101]).

These observations lead to the key questions:

• What are the mechanisms that synchronize neurons with different intrinsic dy-

namics and frequencies?

• Why is neural synchronization so robust against noise?

• Which synaptic features and which features of the postsynaptic neuron are

really important for stable synchronization (or entrainment) with fixed phase

shift?
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To answer these questions it is necessary to consider both the cooperative dynam-

ics of large neural ensembles with diverse interconnections and the primary mecha-

nisms of synchronization in minimal neural circuits. In this paper we investigate the

second issue preparatory to the large-scale computations required for the first.

The mathematical description of neural synchronization or entrainment has a long

history but starting in the late eighties to the present the role of synaptic dynam-

ics and in particular synaptic plasticity in neural synchronization has increasingly

attracted the attention of neuroscientists [22, 26, 96, 16, 60, 54, 91, 45]. Another re-

cent development is the characterization of spike-timing-dependent plasticity (STDP)

[11, 12, 1, 61]. In this type of plasticity, a synapse is depressed or potentiated accord-

ing to the timing of pre- and postsynaptic spikes. This led us to the hypothesis that

STDP might allow a synapse to adjust to an optimal strength for synchronization.

Our previous modeling with the type of STDP found in the mormyrid electrosen-

sory lobe [9] has shown [110] that STDP allows synchronization over a much wider

range of frequency mismatches and makes it much more robust to noise. These results

encouraged us to explore the role of the more common and substantially different

type of STDP found, e.g., in rat hippocampus [11, 61]. In an independent inves-

tigation Karbowski and Ermentrout (2002) showed within the framework of phase

oscillators that this type of STDP allows stable and robust synchronization both in

minimal circuits and in large heterogeneous networks. In the present work, we ana-

lyze the stability and robustness of synchronization in a hybrid neural network (spike

generator - dynamic clamp (STDP synapse) - living neuron). In parallel numerical

experiments we simulated two Hodgkin-Huxley type model neurons connected by an

excitatory STDP synapse. Using both the hybrid circuit and a fully computational

model we were able to explore the role in synchronization of various properties of

the STDP synapse, and of the postsynaptic neuron, separately. Full control of the

synapse allowed us to probe the role of the specific learning mechanism, whereas the

computational model allowed us to test the influence of the properties of the post-

synaptic neuron. The hybrid experiment and the model system demonstrate robust

fixed phase entrainment through a STDP synapse.
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3.2 Materials and methods

The experiments were carried out on Aplysia californica [44] weighing approximately

50-75 g supplied by the Aplysia Resource Facility, University of Miami, Florida. The

animals were kept in a small artificial seawater tank at a temperature of 12◦C.

3.2.1 Preparation

The animals were anesthetized with a high concentration Mg2+ solution injected into

the body cavity of the animal at several points. The animal was then opened on

the ventral side and the abdominal ganglion was taken out and pinned to a Sylgard

coated Petri dish. The ganglion was de-sheathed in the dish on the dorsal side with

fine forceps after 5 min application of a few crystals of protease (Type XIV, Sigma),

washing and 30 min rest in a hypertonic Mg2+ solution.

The experiments were conducted in a high Mg2+, low Ca2+ saline (330 mM NaCl,

10 mM KCl, 90 mM MgCl2, 20 mM MgSO4, 2 mM CaCl2 and 10 mM Hepes) which

blocks synaptic interaction such that the neurons are effectively isolated.

3.2.2 Experimental setup

Two sharp glass electrodes filled with 3M KCl with ca. 10 MΩ resistance were inserted

into one tonic spiking neuron on the left side (dorsal side up) of the abdominal

ganglion, typically the identified cells L7 or L8. These electrodes were connected

to intracellular amplifiers (A-M Systems). One of the electrodes was used to pass

the current calculated by a dynamic clamp program and converted by a Digidata

1200 D/A converter (Axon, CA) into the neuron. The other electrode was used

to record the membrane potential via an A/D converter (PCI-MIO-16E-4, National

Instruments) and the DasyLab (DATALOG - A National Instruments Company) data

acquisition software.

The combined spike generator and dynamic clamp software with plastic synapses

was developed from a simpler version developed by R. D. Pinto [72] after the original
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ideas of Sharp [83, 84]. It was interfaced with Digidata 1200 board and was run on

a Pentium III, 450 MHz system using Microsoft Windows NT 4.0. The presynaptic

neuron was simulated by the dynamic clamp software as a simple spike generator with

a given generic spike form. The calculated membrane potential of the presynaptic

neuron was converted with the Digidata 1200 board as well and recorded on the data

acquisition computer simultaneously with the membrane potential of the postsynaptic

biological neuron and the injected synaptic current. The setup is summarized in

Figure 3.1.

3.2.3 Spike generator and synapse model

The combined spike generator and dynamic clamp software generates the presynaptic

membrane potential and the synaptic current. The presynaptic membrane potential

V1 is calculated from a list of predetermined spike times ti.

V1(t) =
∑

i

Vs((t− ti)/τs). (3.1)

The sum is taken over all spike times ti before the present time t. The spike width

used in the experiments was τs = 0.6 ms. The normalized spike potential Vs(t) for a

spike with maximum at ti = 0 is given by

Vs(t) = Vspike
xa(t) + xb(t)

xnorm

+ Vrest (3.2)

xa(t) =
1

2
(tanh(2(t0 − t)) + 1) exp((t− t0)/4) (3.3)

xb(t) = 2(tanh(2(t− t0)) + 1) exp((t0 − t)/4). (3.4)

The variables xa(t) and xb(t) model the rising and falling flank of the spike. The

parameter t0 = −0.576 ms was chosen such that the maximum of the potential Vs(t)

occurs exactly at t = 0 and xnorm = 3.25394 guarantees that the maximum of Vs(t)

is Vspike. In the experiments this spike amplitude was chosen to be Vspike = 60 mV

and the resting potential was Vrest = −40 mV . These are typical values observed
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Figure 3.1: Experimental setup for the hybrid circuit of a simulated presynaptic
neuron, a simulated synapse and a postsynaptic biological neuron from the Aplysia
abdominal ganglion. The presynaptic neuron is a spike generator eliciting spikes of
predetermined form at predetermined times which are read from a file. The synapse
is simulated by the same software. The calculated synaptic current is injected into
the postsynaptic neuron by means of a D/A converter (Digidata 1200, Axon, CA)
and intracellular amplifier (A-M systems). The postsynaptic membrane potential
is made available to the combined spike generator/ dynamic clamp software in the
reverse direction. All relevant variables, the pre- and postsynaptic potentials and
the injected synaptic current, are recorded by a separate data acquisition computer
using DasyLab 5.6 (DATALOG - A National Instruments Company). Note that the
calculated synaptic current as well as the plastic synapse conductance depend on both
the pre- and postsynaptic voltages. Through the dependencies on the postsynaptic
membrane potential, an effective feedback loop is formed between the synapse and
the postsynaptic neuron. This feedback allows the STDP synapse to adjust to the
intrinsic properties of the postsynaptic neuron

in molluscan preparations (compare to the data from the Aplysia neuron shown in

figure 3.2).

The synaptic current is a function of the presynaptic and postsynaptic potentials

of the spike generator, V1(t), and the biological neuron, V2(t), respectively. It is

calculated according to the following model. The synaptic current depends linearly
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on the difference between the postsynaptic potential V2 and its reversal potential Vrev,

on an activation variable S(t), and its maximal conductance g(t),

Isyn(t) = g(t)S(t)
(
V2(t)− Vrev

)
. (3.5)

The activation variable S(t) is a non-linear function of the presynaptic membrane

potential V1 and has an intrinsic activation timescale τsyn,

dS(t)

dt
=

S∞(V1(t))− S(t)

τsyn(1− S∞(V1(t))
, (3.6)

where S∞(V ) is a sigmoid function, in particular

S∞(V ) =

 tanh((V − Vth)/Vslope) for V > Vth

0 otherwise
. (3.7)

The reversal potential was chosen to be Vrev = 20 mV , the threshold potential Vth =

−20 mV , the inverse slope of the sigmoid function Vslope = 10 mV and the synaptic

timescale τsyn = 25 ms or sometimes τsyn = 40 ms. The maximal conductance g(t) is

determined by the learning rule discussed below. The synaptic current is updated at

about 5-10 KHz depending on how fast the computer is able to evaluate the equations.

Figure 3.2 shows a typical example for the resulting spike forms and synaptic currents.

3.2.4 Learning rule

To determine the maximal synaptic conductance g of the simulated STDP synapse, an

additive STDP learning rule with shift was used. To avoid run-away behavior (and

resulting damage to the neuron) the additive rule was applied to an intermediate

variable graw which then was filtered through a sigmoid function. In particular the
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Figure 3.2: Episode of the uncoupled (left) and coupled (right) dynamics of the
simulated and the biological neuron. The coupled dynamics are shown for a situation
of stable 1:1 synchronization. The upper two panels show the membrane potentials
of the simulated presynaptic and the biological postsynaptic cells, respectively. The
lowest panel shows the synaptic current injected into the postsynaptic neuron. Note
the pre- and postsynaptic spike forms and the typical EPSCs in the synaptic current.
The synaptic strength in this example is comparably weak and clearly stabilized below
the allowed maximum gmax.

change ∆graw in (raw) synaptic strength is given by

∆graw =

 A+
∆t−τ0

τ+
e−(∆t−τ0)/τ+ for ∆t > τ0

A−
∆t−τ0

τ−
e(∆t−τ0)/τ− for ∆t < τ0

, (3.8)

where ∆t = tpost − tpre is the difference in post- and presynaptic spike times. The

parameters τ+ and τ− determine the width of the learning windows for potentiation
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# τsyn g0 A+ A− τ+ τ− τ0 gmax gstatic

1 20 ms 10 nS 8 nS 4 nS 80 ms 120 ms 30 ms 100 nS 50 nS
2 25 ms 15 nS 8 nS 4 nS 60 ms 90 ms 30 ms 150 nS 75 nS
3 25 ms 15 nS 8 nS 4 nS 80 ms 120 ms 30 ms 150 nS 75 nS

4 & 5 40 ms 15 nS 10 nS 6 nS 100 ms 200 ms 30 ms 50 nS 25 nS

Table 3.1: Parameters for the learning and static synapse.

and depression respectively and the amplitudes A+ and A− determine the magnitude

of synaptic change per spike pair. The shift τ0 reflects the finite time of informa-

tion transport through the synapse. The left panel of Figure 3.3 shows the learning

curve for the raw synaptic strength prescribed by equation (3.8) for a typical set of

parameters.

The raw synaptic strength is then filtered according to

g =
gmax

2

(
tanh

(graw − gmid

gslope

)
+ 1
)
. (3.9)

The maximally allowed value gmax for g(t) varies in the individual experiments whereas

gmid = 1
2
gmax and gslope = gmid were used in all the experiments. By this filtering

mechanism it is guaranteed that the maximal conductance g(t) will always have values

between 0 nS and gmax. It turns out that the raw synaptic strength graw(t) is already

bounded by the dynamics, if the neurons are synchronized, such that this mechanism

often is not necessary. For frequency ratios in which entrainment did not occur,

however, the bound imposed on g(t) is important to avoid unrealistically high synaptic

conductances and possible damage to the postsynaptic neuron. The shape of the

filtering function (3.9) is shown in the right panel of Figure 3.3. Note that in the

vicinity of gmid the filtering function is close to the identity function, such that it has

no serious impact on g and changes in g in this range, i.e., g ≈ graw and ∆g ≈ ∆graw

in the vicinity of g ≈ gmid. This type of bounding mechanism was chosen over a

threshold filter to avoid artifacts arising from positive STDP changes that reach such

a threshold and are suppressed followed by negative changes that are not suppressed

thereby destroying the balance between potentiation and depression.
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Figure 3.3: STDP learning curve (left panel) and filtering curve (right panel). The
synaptic conductance g(t) is enhanced if a postsynaptic spike occurs sufficiently long
after a presynaptic spike, i.e., ∆t is greater than the shift parameter τ0. Otherwise
the synaptic strength is depressed. Note that the maximal changes in synaptic con-
ductance occur at τ− + τ0 for depression and τ+ + τ0 for potentiation. The maximally
possible changes are A−/e and A+/e. The specific parameters used in the experiments
are given in the methods section. Usually τ− = 1.5 τ+ and A+ = 1.5 A− were used as
shown in the figure. The filtering is used to prevent damage to the postsynaptic neu-
ron if synchronization is not achieved and the synaptic strength could grow without
bounds. The filter curve shown in the right panel was generated with the typically
used values gmax, gmid = 1/2 gmax and gslope = gmid. For details of the parameters used
in the experiments see Table 3.1.

Synaptic changes occur whenever a pre- or postsynaptic spike is elicited. The

dynamic clamp program continuously detects spikes and memorizes the most recent

spike time of each pre- and postsynaptic neuron. For each new spike in either of

the neurons, the synaptic strength is adjusted according to equations (3.8) and (3.9),

immediately taking effect in the next time step of the calculation.

Our implementation of the STDP rule assumes that the experimentally observed

rules for isolated spike pairs can be linearly superimposed. Recent results on spike-

timing-dependent plasticity induced by triplets or quadruplets of spikes [29, 13] in-

dicate that a simple superposition of the spike pair based rule might not always be

appropriate. In numerical simulations we therefore also tested a non-linear superposi-

tion scheme based on the suppression model in [29]. For more complex spike patterns

with very short inter-spike intervals and therefore a high degree of non-linear inter-
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actions between multiple spikes, a dynamical model of STDP like the one suggested

in [1] might be necessary.

3.2.5 Experimental protocol

For each presynaptic frequency the artificial neuron and the biological neuron were

coupled and their membrane potentials as well as the synaptic currents were recorded

for later analysis. In particular, we first took a 100 s recording of the uncoupled

biological neuron and then coupled it to the presynaptic spike generator with an

initial coupling strength g0 (this parameter varies over different trials; see results

below). The coupling with the plastic synapse was maintained for 100 s in most of

the experiments. As the intrinsic frequencies of the tonic spiking neurons can vary

with the individual preparation we sometimes also used a shorter coupling period of

50 s for intrinsically faster neurons. After another 100 s period of uncoupled recording,

we repeated the coupling at a similar frequency but with static synapse strength gstat.

Again, we recorded the coupled neurons for 100 s (50 s). This procedure was repeated

for a set of various presynaptic frequencies. Figure 3.4 shows an example of a recording

from one of the STDP coupling sessions. Table 3.2 shows the two experimental

protocols used for slow neurons (protocol A) and faster neurons (protocol B). To

obtain a sufficient number of trials with different frequency ratios, a stable two-

electrode recording had to be maintained for 2-3 hours. Not uncommonly, however,

one of the micro-electrodes slipped or the neuron lost its spontaneous activity. In

these cases reinserting the electrode or hyperpolarizing the neuron for a considerable

time allowed us to continue the experiment, but it changed the properties of the

neuron too much to allow a direct comparison between data collected before and

after the adjustments. For analysis, we therefore only included data from ‘successful’

experiments, i.e., experiments in which a full sweep of the relevant frequencies was

possible without interruption or loss of stationarity.
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Figure 3.4: Example of a synchronization experiment. The upper panel shows the
ISIs of the postsynaptic biological neuron and the lower panel the synapse strength
g. Before coupling with the presynaptic spike generator the biological neuron spikes
tonically at its intrinsic ISI of approx. 330 ms. Coupling was switched on with g0 =
15 nS at time t = 6100 s. As one can see the postsynaptic neuron quickly synchronizes
to the presynaptic spike generator with ISI 255 ms (dashed line in the upper panel).
The synaptic strength continuously adapts to the state of the postsynaptic neuron
effectively counteracting adaptation and other modulations of the system. This leads
to a very precise and robust synchronization at a non-zero phase lag. The precision of
the synchronization manifests itself in the very small fluctuations of the postsynaptic
ISIs in the synchronized state. Robustness and phase lag can not be seen directly in
this figure.

3.2.6 Data analysis

To detect synchronization we first used a simple spike detection algorithm within

the DasyLab data acquisition protocol to convert the membrane potential data into

inter-spike interval data. Then we took the ratio of the average inter-spike intervals

of the artificial and biological neuron during the 30 s before coupling and this ratio

for the last 30 s of the coupled time and plotted these against each other. The choice

of averaging over 30 s was guided by the trade-off between obtaining good statistics

while, at the same time, not averaging over transient dynamics at the beginning of
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Figure 3.5: Two examples of synchronization windows. A, D show the ratios of
coupled periods against the ratios of uncoupled periods for the static coupling and B,
E display these data for the plastic synapse. Note the much larger synchronization
windows and the very small error bars in the synchronized states in the experiments
with the STDP synapse. The two experiments shown here correspond to numbers 4
and 5 in Figure 7. C, F show the average synaptic strength of the STDP synapse
during the last 30 s of coupling (triangles) and the constant synaptic strength of the
static synapse (circles).

the coupled phase. The coupled ratio as a function of the uncoupled ratio has a

form typically obtained for coupled oscillators, cf. Figure 3.5. The plateaus in this

function correspond to synchronized behavior at the last 30 s of the coupling phase.

The vertical error bars in Figure 3.5 show the precision of the synchronization whereas

the horizontal error bars show how constant the tonic spiking of the postsynaptic
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A B
time [s] coupling T1 [ms] time [s] coupling T1 [ms]
100-200 STDP 500 100-150 STDP 500
300-400 static 495 250-300 static 495
500-600 STDP 490 400-450 STDP 490
700-800 static 485 550-600 static 485

Table 3.2: Experimental protocol for the synchronization assessment experiment. The
neurons were recorded when uncoupled, coupled with a STDP synapse, uncoupled
again and then coupled with a static synapse. Then we started over with a different
presynaptic period T1 and so on. Note that it is not important to use exactly the
same presynaptic periods for STDP and static coupling as the postsynaptic neuron
varies its intrinsic frequency over time anyways. Most experiments were done with the
protocol A of full 100 s coupling. Protocol B was used for intrinsically faster neurons
to save experiment time and avoid damage to the preparation due to excessive forcing
of the postsynaptic neuron.

neuron was before coupling. For large variations in ISIs of the uncoupled postsynaptic

neuron, stable synchronization to the perfectly periodic artificial neuron cannot be

expected.

3.2.7 Computational model

To analyze in greater detail how STDP influences the interaction between the pre- and

postsynaptic neurons we simulated two Hodgkin-Huxley type model neurons coupled

by an excitatory synapse with STDP. Each neuron was modeled using the standard

formalism with sodium (INa), potassium (IK) and leak (Ileak) currents:

C
dVi(t)

dt
= −INa(t)− IK(t)− Ileak(t)− Isyn(t) + Istim, (3.10)

where i = 1, 2 denotes the number of the pre- and postsynaptic neuron respectively,

the leak current is given by Ileak(t) = gleak(Vi(t) − Eleak), and INa(t) and IK(t) were

[94]

INa(t) = gNami(t)
3hi(t)(Vi(t)− ENa),

IK(t) = gKni(t)
4(Vi(t)− EK). (3.11)
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Istim is a constant input current forcing each neuron to spike with a constant, Istim–

dependent frequency, and the second neuron was driven by the first via the excitatory

synaptic current Isyn given by equation (3.5). Each of the activation and inactivation

variables yi(t) = {ni(t), mi(t), hi(t)} satisfied first-order kinetics

dyi(t)

dt
= αy(Vi(t))(1− yi(t))− βy(Vi(t))yi(t). (3.12)

The equations for the non-linear functions αy(V ) and βy(V ) were

αn = 0.032(−50− V )/(exp((−5− V )/5)− 1),

βn = 0.5 exp((−55− V )/40),

αm = 0.32(−52− V )/(exp((−52− V )/4)− 1),

βm = 0.28(25 + V )/(exp((25 + V )/5)− 1),

αh = 0.128 exp((−48− V )/18),

βh = 4/(exp((−25− V )/5) + 1) (3.13)

and the parameter values were C = 0.03 µF , gL = 1 µS, EL = −64 mV , gNa =

360 µS, ENa = 50 mV , gK = 70 µS, EK = −95 mV , τSyn = 40 ms.

The time dependent synaptic coupling strength g(t) was determined by the spike

timing of pre- and postsynaptic neurons. For each pair of nearest pre- and post-

synaptic spikes, g(t) changes by ∆g(t) which is a function of the time difference

∆t = tpost − tpre between the spikes. In the first simulations we used the additive

update rule already discussed (Figure 3.3 and equations (3.8) and (3.9)) with a linear

superposition of synaptic weight changes. The following values of learning curve pa-

rameters were used in the simulations: A+ = 9 nS, A− = 6 nS, τ+ = 100 ms, τ− =

200 ms, τ0 = 30 ms. The initial synaptic conductance was taken to be g0 = 20 nS.

The parameters were chosen in a way that makes the model neurons to some extent

similar to the Aplysia neurons used in the hybrid circuit experiments. Figure 3.6 shows

a typical example of the dynamics of the membrane potentials (top) and the synaptic

conductance (bottom). Note the onset of the synchronized state around t = 4000 ms,
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manifested by the stabilization of the phase difference and of the synaptic strength.

In a second set of simulations we repeated the investigation of synchronization with

a non-linear superposition rule, adapted from the results of recent experiments with

spike triplets and quadruplets [29, 13]. In this scheme the changes in synaptic strength

depend on the history of previous spike times as well as the relative timing of spike

pairs. In particular the simple rule of equation (3.8) is replaced by

∆graw = e1e2

 A+
∆t−τ0

τ+
e−(∆t−τ0)/τ+ for ∆t > τ0

A−
∆t−τ0

τ−
e(∆t−τ0)/τ− for ∆t < τ0

, (3.14)

where the total efficacies e1 and e2 are products of efficacies due to all previous pairs

of spikes:

ek =
n−1∏
i=1

Ek(t
n
k − tik), (3.15)

where n is the number of the most recent spike of the neuron k and

Ek(x) = 1− exp(−x/τk) (3.16)

is the ‘efficacy function.’ The index k = 1 denotes the pre- and the index k = 2 the

postsynaptic neuron. We used τ1 = 200 ms, τ2 = 500 ms and the amplitudes A+ =

15 nS and A− = 10 nS. All other parameters are chosen as for the linear superposition

rule above. The idea behind this type of non-linear superposition of changes in graw is

that the earlier spike pairs dominate and suppress contributions of later pairs. This

suppression decays exponentially in time. The underlying assumption in generalizing

this rule from spike triplets and quadruplets to continuous spike trains was that the

suppression is combined by simple multiplication.
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Figure 3.6: Example of a synchronization experiment in the computational model.
The upper panel shows the membrane potential of the presynaptic HH neuron (black
line) and of the postsynaptic HH neuron (gray line). The lower panel shows the
synaptic conductance. The synchronized state is entered around 4000 ms. Note how
the synaptic conductance stabilizes at a low value in the synchronized state and that
there is a non-zero phase lag of about 90◦ in this example.

3.3 Results

3.3.1 Frequency synchronization in the hybrid circuit

To detect synchronization we plot the average ratio of the periods of the pre- and

postsynaptic neuron during the last 30 s of coupling, 〈(T1/T2)coupled〉, against the

average ratio 〈(T1/T2)uncoupled〉 during the last 30 s before coupling as explained in

the data analysis subsection. (T2)uncoupled is the starting period of the postsynaptic

neuron. The period of the driving (presynaptic) neuron (T1)uncoupled = (T1)coupled

is unchanged when the neurons are coupled as the coupling is unidirectional. The

period of the postsynaptic neuron is (T2)coupled when it is driven by the presynaptic

neuron. Figure 3.5 shows two examples.

To compare the quality and range of synchronization in all 5 successful experiments

we calculate three characteristics:
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• Synchronization window:

Synchronization of pre- and postsynaptic neurons occurs when (T1/T2)coupled =

1. A postsynaptic neuron with a frequency mismatch (T1/T2)uncoupled 6= 1 was

more likely to be entrained by a plastic synapse than a static synapse, as shown

by the greater number of points with (T1/T2)coupled = 1 in Figure 3.5B and E. To

assess the relative success of the static and the plastic synapses, we measured

the size of the region in which (T1/T2)coupled = 1. We define the synchro-

nization window W as the largest contiguous set of (T1/T2)uncoupled, for which

σ((T1/T2)coupled)W = 〈(T1/T2)coupled−〈(T1/T2)coupled〉W 〉W is less than 0.01. The

width of this set is denoted by |W |. Note that the data points (T1/T2)coupled

are already averages over 30 s observation time each. We do not propagate

the standard deviation of the time average to the average over data points be-

cause it is rather a measure of synchronization quality than of synchronization

in principle. The quality of synchronization is discussed below. The results for

the synchronization window size are shown in Figure 3.7 in the left panel. The

synchronization windows for the plastic synapse are always larger than those

for the static synapse.

• Precision of synchronization:

The average ratio 〈〈(T1/T2)coupled〉T 〉W over all points within the synchronization

window should be exactly one for perfect synchronization. Figure 3.7, middle

panel, shows this average ratio. Note that the values for the plastic synapse are

much closer to 1 than the ones for the static case.

• Quality of synchronization:

The average standard deviation 〈σ(T1/T2)T 〉W shows how precisely the neurons

were synchronized over the observed time of 30 s. The right panel in Figure 3.7

displays this quantity. The quality of synchronization is significantly higher for

the STDP synapse.

The parameter values used during the experiments are summarized in Table 3.1.

The strength of the static synapse was chosen to be of the order of the average station-
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Figure 3.7: Three characteristics of the synchronization windows observed in 5 experi-
ments. The left panel shows the width of the synchronization windows, W , the middle
panel the averaged average ratio 〈〈T1/T2〉T 〉W within the synchronization window and
the right panel the averaged standard deviation of the period ratios 〈σ(T1/T2)T 〉W .
The squares are the data obtained with a STDP synapse and the circles correspond
to a static synapse. Note that synchronization windows are always larger and syn-
chronization is always more precise and more robust for the STDP synapse than for
the static synapse.

ary strength of the STDP synapse to allow a fair comparison. One might be tempted

to argue that the synchronization window for the STDP synapse is larger because

the static synapse is weaker than the maximally possible value of the STDP synapse.

This is not true, as the numerical simulations show (see below). A stronger static

synapse shifts the synchronization window toward smaller values of (T1/T2)uncoupled,

but does not enlarge it (see Figure 3.8). It would be desirable to demonstrate this ef-

fect in the hybrid circuit as well. Unfortunately it is not possible to keep Aplysia cells

in a stable condition sufficiently long while driving them extremely hard. Therefore

we cannot evaluate static synapses of a strength comparable to the maximal strength

of the STDP synapse in the hybrid circuit experiments.

Note that the synaptic strengths for synchronized states, i.e., for points in the

synchronization window, are typically weaker than the experimentally allowed maxi-

mum gmax. The synaptic strength is bounded by the dynamics alone. As the filtering

function is close to unity for values of g close to gmid, this statement also applies to

the raw synaptic strength graw. For frequency ratios which the plastic synapse cannot

synchronize, however, the raw synaptic strength typically either grows infinitely or

goes to 0 resulting in g being close to gmax or 0 respectively, cf Figure 3.8E and J.

The relationship between the average strength of the STDP synapse within the
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synchronization window and the presynaptic period T1, cf Figure 3.8E, J, can be easily

explained. As the frequency mismatch between uncoupled pre- and postsynaptic

frequency is larger on the left side of the synchronization window, the synapse needs

to be stronger in order to entrain the postsynaptic neuron. On the right hand side of

the synchronization window the frequencies are already very similar in the uncoupled

state such that only a very weak synaptic connection is needed for synchronization.

Overly strong forcing diminishes the synchrony, as the results for the strong static

synapse show (see below).

3.3.2 Numerical results

We studied the synchronization properties of simulated neurons by setting the au-

tonomous (uncoupled) period of the postsynaptic neuron to T2=300 ms, then evaluat-

ing the average ratio of the periods in the coupled state 〈(T1/T2)coupled〉 as a function of

the period ratio before coupling 〈(T1/T2)uncoupled〉. Figure 3.8 shows 〈(T1/T2)coupled〉

as a function of 〈(T1/T2)uncoupled〉 for the cases of synaptic coupling with constant

strength 12.5 nS (A, F) and 25 nS (B, G), synaptic coupling with STDP using the

linear superposition rule (C, H) and for the coupling with STDP using the non-linear

superposition scheme (D, I). In the STDP cases the steady-state synaptic conduc-

tance 〈g〉 depends on the ratio of neuronal frequencies (C, F, triangles). Its average

over all T1/T2 values is ≈ 13 nS for both STDP superposition schemes.

Figure 3.8A and B show the function associated with the 1:1 synchronization

domain of a neuron driven by a static synapse. Contrary to naive expectation, the

synchronization window is not substantially wider for a stronger synaptic connection;

it merely moves further to the left. This is due to over-excitation by the overly strong

synapse, on the right side of the synchronization window. Figure 3.8C and D show

that the window of synchronization is substantially widened due to the plasticity of the

STDP synapse. There does not seem to be a great difference between the two different

superposition methods we used in the STDP rule: both mechanisms show the same

widening of the synchronization window. Note that the steady-state conductance of
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Figure 3.8: Numerical results. Synchronization window for 1:1 frequency synchro-
nization of the simulated neurons for the cases of a static synapse (A, D) and (B, G)
and of a STDP synapse (C, H) and (D, I). Linear superposition of synaptic changes
was used in (C, H) and the non-linear suppression model in (D, I). Note that the
results do not differ significantly. In (E, J) the average steady-state value of the
synaptic strength g for the STDP synapses and the constant synaptic strength of the
static synapses are displayed. The maximal synaptic strength of the STDP synapses
was 25 nS in this study. The plots in the right column correspond to simulations
with noise. Note the clear enlargement of the synchronization windows for both of
the learning schemes and both in presence and absence of noise. The error bars in
(A - D) and (F-I) indicate the standard deviation of the ratio 〈(T1/T2)coupled〉. They
show the precision of the frequency synchronization. There is a clear dependence of
the equilibrium synaptic strength of the STDP synapse in the synchronization regime
on the initial frequency mismatch.
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the STDP synapse shown in Figure 3.8E depends on the mismatch of the presynaptic

and postsynaptic frequencies and in most cases is less than its initial value of 20 nS.

These results indicate that a plastic synapse enhances neural synchronization by self-

adjusting its conductance to the level that is appropriate for a given initial mismatch

of the frequencies.

3.3.3 Robustness

We also studied the robustness of this enhanced synchronization in the presence of

additive membrane noise and multiplicative synaptic noise. We simulated noise in the

membrane potential of the postsynaptic neuron by adding Gaussian white noise to

its membrane currents. Multiplicative synaptic noise was implemented by using the

following stochastic update rule for the strength g(t) of the STDP synapse. During

each update g(t) was changed by ∆gstoch = (1 + R) · ∆graw, where R is a uniformly

distributed random number between −0.5 and 0.5. In such a way we ensured that

synaptic changes due to each event were stochastic, satisfying the learning curve

depicted in Figure 3.3 only on average. This stochastic rule was again implemented

both with linear superposition of changes ∆g and the non-linear suppression model.

In the case of the static synapse we added noise with root mean square amplitude

σ = 3 nA (for comparison, peaks of the EPSCs were 0.75 nA in Figure 3.8F and 1.5 nA

in Figure 3.8G) to the postsynaptic membrane and plotted the resulting staircases

in Figure 3.8F and G. With the STDP synapse we used both membrane noise of

the same strength and multiplicative synaptic noise as explained above. Note that

the perturbations by additive noise on the membrane potential and the unreliable

learning together should have more effect than the pure membrane noise applied to

the static synapses. The results are shown in Figure 3.8H and I. The synchronization

steps in the case of the static synapses are almost completely destroyed by noise,

whereas the STDP-mediated synchronization is robust to both membrane noise and

synaptic noise.
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3.3.4 The mechanism

It is important to understand the mechanisms behind the enhancement of neural

synchronization by a STDP synapse. The major factor is that the plastic synapse

dynamically adjusts its conductance to a level that is well suited for synchronizing

neurons with a given mismatch of intrinsic frequencies. This adjustment is an intrinsic

property of the synaptic plasticity which can be understood by a simple stability

argument.

A necessary condition for a stationary synchronized state is that the synaptic

conductance is stationary as well. In the situation of two synchronized periodic spike

trains with synchronization ratio 1 : 1 there are two types of contributions to changes

in synaptic strength. One stems from the spike pairs comprised of a presynaptic spike

followed by the next postsynaptic spike. The other is the change determined by the

spike pair of the postsynaptic spike and the next presynaptic one (see Figure 3.9).

The synaptic conductance is stationary if these contributions cancel each other such

that the total change in synaptic strength after one period is 0.

The corresponding time lags ∆t1 and ∆t2, where ∆t1 + ∆t2 = T1 = T2, can easily

be deduced directly from the learning curve, see Figure 3.9. To understand why this

fixed point for the synaptic strength determines a stable synchronized state for the

full system, consider the thought experiment illustrated in Figure 3.9B. Assume that

the neurons are synchronized but the postsynaptic neuron’s next spike is delayed, as it

tries to break out of the synchronized state. This results in a net increase in synaptic

strength driving the neuron back into synchronization. The other direction works in

the same way. If the postsynaptic neuron advances its next spike, the net change

in synaptic strength is negative; the neuron is less excited and goes back into the

synchronized state (see Figure 3.9C). This analysis assumes a positive phase response

curve for the postsynaptic neuron in the relevant phase regions. This condition is

true for both the Aplysia neurons [44] used in experiments and the HH type model

neurons used in the numerical work.

The time lag of the postsynaptic neuron with respect to the presynaptic neuron
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Figure 3.9: Mechanism of stable synchronization. Panel A shows the stable fixed point
for the synaptic conductance for a period T1 = T2 = ∆t1+∆t2. The two contributions
∆g1 and ∆g2 cancel each other and the net change of synaptic strength is 0. If the
postsynaptic neuron is too slow as shown in panel B, the synaptic changes do not
cancel such that there is a net increase in synaptic strength and the postsynaptic
neuron is driven stronger forcing it back into the synchronized state. On the other
hand, if the postsynaptic neuron is too fast as depicted in panel C, the net change
in synaptic strength is negative and the postsynaptic neuron is driven less strong
bringing it back into synchronization as well.
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Figure 3.10: Time lags in the synchronized state. Panel A shows the spike time dif-
ference between each presynaptic and the next postsynaptic spike in the synchronized
state. The solid line corresponds to the time difference predicted by the fixed point
analysis of the learning rule. There is a perfect correspondence in the 1:1 synchro-
nization region. The on average stronger forcing through the static synapse causes
on average shorter time delays (right panel). The dependence of the average time
delays on the presynaptic period T1 in the case of the static synapse comes about
because the mismatch of frequencies is higher on the left side than on the right side
of the synchronization step. Therefore, stronger forcing would be needed to obtain
the same small delays on the left side as on the right side which can not be provided
by the synapse of constant strength.

resulting from the above analysis is shown as the solid line in panel A of Figure 3.10 in

comparison to the observed lags in numerical simulations (triangles). The match be-

tween theory and simulation confirms the validity of our analysis; note that the simple

HH type model used in the computational work was, apart from overall timescales,

not specifically adjusted to match characteristics of the Aplysia neurons. This clearly

shows that the particular spike form of the postsynaptic neuron does not play a major

role for this type of synchronization. The effect of slow currents and adaptation in

the postsynaptic neuron might merit further investigation, however.

3.4 Discussion

Spike-timing-dependent plasticity is a mechanism that enables synchronization of

neurons with significantly different intrinsic frequencies. This is a quite unexpected
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result from our experiments with hybrid circuits and from the computational analysis.

These results have yet to be confirmed with real biological synapses that exhibit

STDP such as synapses found between hippocampal cells in rats. We will address

this question in further work.

Furthermore, STDP - mediated synchronization is a remarkably robust phenomenon.

We showed that it is stable against strong noise in the membrane potentials and

synaptic processes as well as against a wide variability of the membrane properties

of the coupled neurons. This robustness is a result of the dynamic modifications of

the synaptic conductance that allow the system to continuously adapt to an optimal

state for synchronization. As shown above, the modifications in synaptic conductance

arise as a result of the interplay between potentiation and depression. The form of

the plasticity curve is such that the resulting synaptic changes keep the postsynaptic

neuron stably entrained by the presynaptic neuron at all times. The details of the

fast intrinsic dynamics of the postsynaptic neuron do not seem to play a major role

in this mechanism. The main characteristics necessary for the successful synchroniza-

tion are a positive phase response curve and stationary dynamics. Neurons with slow

timescales due to slow currents or adaptation will need further analysis.

Another consequence of the interplay between potentiation and depression is a

dynamic stabilization of the synaptic conductance. It has been shown by several

groups that additive STDP learning rules, by themselves, lead to either an unbounded

growth or an unbound decay of synaptic strength [89, 90, 97, 80, 47]. To achieve

stability of the learning dynamics, multiplicative rules [81, 91], learning curves with

a negative total integral [47] or, most commonly, artificial bounds on the strength of

the synapse [89, 90, 97] have been used. In contrast to these approaches, we were

able to show that the additive STDP learning rule of the type described here results

in a self-limitation of synaptic strength that does not require artificial bounds or a

negative integral of the learning curve. This is already a quite interesting result on

its own.

The main functional role of STDP in neural systems is still not completely clear.

In this work we investigated its importance for correlating rhythmic activity of neu-
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rons. Because the details of the temporal dynamics of STDP synapses are not known

we have used a phenomenological, instantaneous and deterministic model which is

inspired by the experiments of [11, 61]. The changes of synaptic strength that de-

pend on the pre- and postsynaptic spiking have been measured in such experiments

by averaging over the action of many events that are well separated in time. As a

result of such processing one might think that STDP is a slow process and character-

ized by a long transient time. On the contrary we think that because the results of

individual events can be recognized even after long times (on the order of minutes)

it seems evident that information about the timing of spikes needs to be kept in the

synaptic dynamics immediately after the event (i.e., after tens of milliseconds). The

averaged statistical results just tell us that not all single events are successful such

that the average might change on a slower timescale only. Because in our experiment

we are interested in the temporally local adaptivity of the synapse, and not in long-

term plasticity, this is not important and the use of instantaneous STDP updates is

justified.

The learning curve used in this work is slightly different from those used in most

computational studies of STDP [89, 90, 97]. The curve typically used consists of

two exponentials (on the left and on the right from ∆t = 0) and is discontinuous at

∆t = 0. We however used a curve which is continuous everywhere. While available

experimental data [8, 11, 106, 27] are not conclusive as to which type is correct,

we would like to argue that a continuous curve appears to be more reasonable from

a biophysical point of view. In fact, recent biophysical models of STDP [1, 103,

46] predict a continuous learning curve and such curves have been used extensively

in a number of phenomenological models [78, 47]. It turns out that this type of

learning curve is also more suitable for the mechanism of stable neural synchronization

investigated here.

In addition to being continuous the learning curve used in this study also was

shifted to the right by a constant time shift τ0. The necessity for this time shift

arose from the finite transmission time of the STDP synapse. Because of this finite

transmission time the action of a presynaptic spike onto the postsynaptic activity is
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delayed. As a result the postsynaptic neuron can not be driven with a zero phase

lag. The learning rule therefore needs to allow a stable synchronized state with an

appropriate non-zero phase lag. This was achieved through the shift τ0. We are not

aware of hard experimental evidence for such a shift but as we are injecting currents

and measuring potentials at the soma we would like to argue that the time shift

in the learning curve merely reflects the back-propagation time of the postsynaptic

action potential into the dendrite such that an unshifted learning curve applies at

the synapse itself. Note that the shift is comparatively small, see Figure 3.3, and

therefore hard to detect in noisy experimental data.

The comparison between a simple linear superposition of synaptic changes and the

non-linear depression model adapted from [29, 13] showed no major differences for

synchronization. For continuous periodic spike trains like those used in this study, the

non-linear superposition model results mainly in a frequency-dependent depression

of the plasticity. The balance between potentiation and depression, which is the

important factor for the synchronization mechanism, is not very affected by this

depression of plasticity. Therefore it is not unexpected that the impact of the non-

linear superposition scheme on the synchronization results is not significant.

The synchronization observed in this work in both the experiments with a hybrid

circuit and in computer simulations always occurs with non-zero time lag between

pre- and postsynaptic spikes as mentioned above (see also Figure 10). This time lag

is solely determined by the STDP learning curve as that time lag that produces no

net change in synaptic conductance. It therefore is the same for both the experiments

and the numerical work and does not depend on the details of the fast dynamics of

the postsynaptic neuron. Its magnitude as compared to the period of oscillations is

usually quite substantial; thus the synchronization discussed here is not to be confused

with a zero-time lag frequency locking. It has, in different contexts, also been referred

to as entrainment of the postsynaptic neuron by the presynaptic one.

Our results are in agreement with the earlier theoretical results on heterogeneous

networks of phase oscillators mentioned in the introduction [45]. It is however worth-

while to note some differences in the details. Whereas synchronization in the sym-
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metrically connected phase oscillator networks shows zero phase locking, we always

observe a non-zero phase lag stemming from the finite timescale of the synapse dy-

namics and the unidirectional coupling. The other main difference is the automatic

adjustment of synaptic coupling strength to a suitable value for any frequency mis-

match. The coupling strength needed to some extent be adjusted by hand to the

frequency mismatch in the earlier work [45].

While concentrating on a minimal neural circuit of two neurons in the present

work, the results we have obtained have profound implications for larger networks

of neurons as well. We expect that in the context of larger neuron groups we will

be able to observe even more striking effects. We expect that only a few STDP

synapses from a ‘command neuron’ might be enough to entrain large ensembles of

quite heterogeneous and only weakly coupled neurons. Similar effects have already

been observed in the aforementioned work on phase oscillator networks [45]. Our own

preliminary numerical results also confirm this speculation. It may have implications

for the binding problem and even might play a role in epilepsy. In the context of

propagating waves in neural networks with STDP synapses such as so-called synfire

chains [3] in the hippocampus we can predict that the non-zero time lag will determine

the properties of the wave, especially its propagation speed.
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Chapter 4

Entrainment of electrically coupled
neural ensembles by
STDP-mediated periodic inputs

4.1 Introduction

Synchronous neural activity plays an important role in the functioning of the brain.

It is a robust phenomenon, frequently observed across populations of neurons with

diverse membrane properties and intrinsic frequencies. In the light of such diversity

it remains unclear how can precise synchronization be achieved in heterogeneous net-

works. Several mechanisms were suggested and many of them require unreasonably

high degree of network homogeneity or very strong connectivity to achieve coherent

neural activity. Recently, it was demonstrated in computer simulations and in ex-

periments with hybrid neural circuits that in a network of two synaptically coupled

neurons spike-timing-dependent plasticity of the synapse leads to the dynamic self-

adaptation of synaptic conductance to the value that is optimal for the entrainment of

the postsynaptic neuron [110, 69]. In this chapter we study the entrainment of a het-

erogeneous network of electrically coupled neurons by periodic external stimulation.

Only a fraction of neurons in the network receive stimulation. We show by computer

simulations that such network oscillates with much higher degree of coherence when

it is subject to the stimulation that is mediated by STDP synapses as compared to

the case of stimulation through non-plastic synapses. We also study how the observed
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Figure 4.1: (A) Configuration of the model: heterogeneous network of tonically spik-
ing pyramidal neurons stimulated by external periodic input through a set of STDP
synapses. (B) The curve illustrating the learning rule used in simulations of STDP.

phenomenon is influenced by the number of stimulated neurons, strength of electrical

coupling and the degree of heterogeneity.

4.2 Description of the model

Our computational model consists of 50 one-compartmental pyramidal neurons [94]

randomly connected by 1750 gap junctions (Fig. 4.1(A)). The neurons are described

by Eqs. (2.1)-(2.4) and currents through gap junctions follow Ohm’s law:

Igj
syn(t) = ggj(t)(Vi(t)− Vj(t)). (4.1)

Conductances of gap junctions are taken to be relatively small and chosen randomly

from the interval ggj ± 50% with ggj = 0.1 nS. Each neuron is spiking tonically with

a period randomly chosen from the interval T2 ± 30% with T2 = 35 ms. The network

receives periodic input (T1 = 25 ms) through a number of excitatory STDP synapses.

Initial conductances of the input synapses are chosen at random from the interval

gin ± 50% with gin = 2.5 nS.

The time-dependent conductance of STDP synapses g(t) is influenced by the spike

timings of pre- and postsynaptic neurons. For each pair of nearest pre- and postsy-
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Figure 4.2: Time series of the local field potential in networks with constant (top)
and STDP-mediated (bottom) inputs.

naptic spikes, g(t) is changed by ∆g(t) which is a function of the time difference

∆t = tpost − tpre between the spikes. We use additive update rule with a linear

superposition of conductance changes and a small shift of the curve, τ0 (Fig. 4.1(B)):

∆g = G(∆t) =

 A+
∆t−τ0

τ+
e−(∆t−τ0)/τ+ for ∆t > τ0

A−
∆t−τ0

τ−
e(∆t−τ0)/τ− for ∆t < τ0

(4.2)

with the following values of parameters: A+ = 2 nS, A− = 1 nS, τ+ = 10 ms, τ− =

20 ms, τ0 = 3 ms.

4.3 Results

We simulated dynamics in the described above network and evaluated the coherence

of its oscillations by calculating an average membrane voltage which served as a proxy

of the local field potential (LFP). As Fig. 4.2 illustrates, the amplitude of network

oscillations remains constant throughout the response in the case of constant input

conductances and exhibits growth and saturation at much higher values in the case

of input synapses with STDP. The explanation for such behavior of LFP amplitudes
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Figure 4.3: Dynamics of conductances of input synapses with STDP.

is evident from Fig. 4.3 where the dynamics of synaptic conductances in the case

of STDP-mediated inputs is plotted. As one can see, these conductances change

dynamically at the beginning of the response and in a relatively short time reach

location-specific steady-state values. So, as it was shown in [110, 69] for the case of

two neurons, at each site of the network input synapses provide forcing of the strength

which is appropriate for synchronization of presynaptic and postsynaptic spike trains.

Let us investigate the role of different parameters of the model. In order to

quantify the ability of STDP synapses to mediate an efficient entrainment of the

postsynaptic network we compare the coherence of network oscillations (as measured

by the amplitude of LFP) for the cases of constant and STDP-mediated inputs. First,

let us see how the coherence of oscillations is influenced by the number of inputs. To

account for the role of parameter heterogeneity we simulate 5 random networks for

each data point. As one can see in Fig. 4.4, the coherence in STDP-stimulated

networks growth much faster with the number of input synapses. Interestingly, the

network without STDP shows a relatively low degree of coherence even when each

neuron in the network is stimulated. This is because in this case conductances of

input synapses do not depend on the differences of presynaptic and postsynaptic

frequencies and hence provide inadequate forcing strengths.
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Figure 4.4: Dependence of the amplitude of network’s local field potential on the
number of input synapses.

Let us now look at the role of ggj - average conductance of gap junctions. In Fig. 4.5

we plot the LFP amplitudes for different values of ggj obtained in simulations of a

network with 50 input synapses. Note that in the case of STDP-mediated stimulation

the amplitude of LFP is almost independent of ggj. The difference between the

amplitudes is especially profound in weakly coupled networks in which gap junctions

play almost no role in synchronization.

Finally, we investigate the role of network heterogeneity by simulating networks

with 50 input synapses and varying the range of variability for the conductances of

gap junctions, conductances of input synapses and spiking periods of the neurons. As

Fig. 4.6 illustrates, coherent oscillations in STDP-stimulated networks are much more

robust to the variability of network properties. They are robust because conductances

of STDP synapses reach optimal for synchronization values regardless of the mismatch

in neuronal properties.
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Figure 4.6: Dependence of the amplitude of network’s local field potential on the
variability of network parameters.

4.4 Discussion

As we have shown, due to the heterogeneity of the network, stimulations of different

strengths are needed at different sites of the network in order to bring it into the

synchronized state. We have demonstrated that STDP leads to such specificity of
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stimulation by dynamically adjusting the strength of each synapse to the value that

is optimal for entrainment. On the other hand, stimulation through static synapses

is, in general, not site specific and can not provide adaptive levels of stimulation.

As a result, coherence of network oscillations is much higher when it is stimulated

by STDP synapses as compared to the case of stimulation by static synapses. The

difference in coherence is maximal for weakly coupled networks. Also, as we have

shown, coherent oscillations in STDP-stimulated network are much more robust to

the variability of network properties.

Recent experiments with connexin36 knock out mice [17, 42] and modeling stud-

ies [95] suggest that electrical coupling between hippocampal pyramidal cells is re-

sponsible for the formation of synchronized gamma-band activity in hippocampus,

with gap junctions between interneurons exerting modulatory effect only. Taking

into account the fact that processes that synapse onto pyramidal cells exhibit STDP,

we suggest that the described above mechanism may play a role in effective entrain-

ment of the hippocampal network by the input from upstream areas of the brain.
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Chapter 5

Regularization of chaos in neural
circuits with plastic electrical
synapses

5.1 Introduction

Traditional in neurophysiology intracellular recordings of membrane potentials have

produced long, statistically stationary time series that unambiguously demonstrated

presence of chaotic dynamics at the level of an individual cell. In particular, inferior

olivary neurons [59], some pacemaker neurons [34] and neurons from central pattern

generators [2] were found to be chaotic. Reconstructions of their phase portraits and

analysis of bifurcations has indicated that neural chaos can be described by determin-

istic models with weak noise [2]. Functional role of the neural chaos is not absolutely

clear. Reasonable hypothesis is the following: chaotic neural dynamics can be easily

transformed into regular oscillations with wide range of frequencies due to the exis-

tence of saddle cycles with different periods in the strange attractor of the dynamics.

Thus chaotic neural systems are potentially very flexible [74]. The regularization or

control of neural chaos in cells with irregular dynamics can occur as a result of their

coupling through chemical or electrical synapses [75, 24, 76, 50, 82, 18]. However,

such regularization is neither robust nor adaptive. In this paper we suggest the use

of electrical plastic synapses in order to improve the robustness of regularization and

make its range much wider. Such synapses would be important for the creation of
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Figure 5.1: Largest Lyapunov exponent λ calculated for the stimulated Hindmarsh-
Rose neuron as a function of stimulating current I. Dynamics of this model neuron
is periodic for I . 2.75 (see insert (a) and Fig. 5.2(a)) and I & 3.25 (see insert (c)
and Fig. 5.2(c)), and is chaotic for 2.75 . I . 3.25 (see insert(b) and Fig. 5.2(b)).

electronic neural networks and for the development of neural prosthetics.

The chapter is organized in the following way. We start by presenting the dy-

namical equations that describe chaotic spiking-bursting neurons, we then formulate

the dynamical model of an electrical plastic synapse and after that we present the

results of mathematical analysis and computer simulations of chaos regularization in

the system. Finally, we compare our approach with the well known methods of chaos

control.
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Figure 5.2: Time series of the membrane potential x(t) during (a) periodic burst-
ing, (b) chaotic spiking-bursting and (c) periodic spiking dynamics of the uncoupled
(g = 0) Hindmarsh-Rose neuron (5.1) stimulated by a DC current with the following
strength: (a) I = 2.6, (b) I = 3.1 and (c) I = 3.4.

5.2 Description of the model

Let us consider two diffusively coupled chaotic Hindmarsh-Rose (HR) neurons [39]:

dxi(t)

dt
= yi(t)− axi(t)

3 + bxi(t)
2 − zi(t) + I + ID

i (t),

dyi(t)

dt
= c− dxi(t)

2 − yi(t), (5.1)

dzi(t)

dt
= r[S(xi(t)− χ)− zi(t)],

where i = 1, 2 and xi(t), yi(t), zi(t) represent scaled membrane potential, recovery

variable and slow adaptation current of each neuron respectively. We use the standard

set of parameters: a = 1.0, b = 3.0, c = 1.0, d = 5.0, S = 4.0, r = 0.006, χ = −1.56.

Depending on the strength of constant stimulating current I each neuron in isolation

is capable of exhibiting both periodic and chaotic dynamics (see Fig. 5.1). The neuron

produces: periodic bursts of spikes for I . 2.75, as in the example on Fig. 5.2(a) where
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I = 2.6; chaotic bursts of spikes for 2.75 . I . 3.25 as in the example on Fig. 5.2(b)

where I = 3.1; and periodic spikes for I & 3.25, as in the example on Fig. 5.2(c)

where I = 3.4. For the rest of this study stimulating current I was set to 3.07 that

put each neuron into chaotic spiking-bursting regime similar to the one depicted in

Fig. 5.2(b).

In this model electric synaptic coupling mediates the flow of a diffusive current

between the neurons:

ID
i (t) = 2g(t)[xi(mod 2)+1(t)− xi(t)], (5.2)

with g(t) being the time-dependent conductance of the synapse. Let us consider the

case when g(t) is a slow dynamical variable which depends on the activities P1(t), P2(t)

of both neurons according to the dynamical model of spike-timing-dependent plastic-

ity [1]:
dg(t)

dt
= γ(P1(t)P2(t)

N − P1(t)
NP2(t)). (5.3)

Here γ = 7 · 10−5 is a small parameter that provides separation of the timescales

between dynamics of the neurons and dynamics of the coupling, exponent N equals

8, auxiliary variables P1(t) and P2(t) describe activities of the neurons according to

the following dynamical equations:

dPi(t)

dt
= F (xi(t))− βPi(t), (5.4)

where β = 0.2 and F (x) = (1 + exp[−40(x − 0.5)])−1 is a sigmoid function that is

used to threshold neuronal spikes. One can see that P1(t) and P2(t) approximately

represent low-path filtered membrane potentials x1(t) and x2(t). We note here that

the exact values of parameters γ, N, β and the shape of the function F (x) are not

crucial to obtain the results presented in our study. Different, but properly chosen

values of these parameters would lead to very similar results and identical conclusions,

meaning that this type of coupling induces ‘structurally robust’ phenomenon of chaos

suppression.
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Figure 5.3: Largest Lyapunov exponent λ of a coupled system (5.1)-(5.2) as a function
of coupling strength g. Letters A, B, C, D and E indicate windows with different
periodic dynamics (see Fig. 5.4).

5.3 Results

Let us first consider the dynamics of the system (5.1) under the assumption of constant

coupling strength g. It turns out that this system is chaotic for most values of g from

the interval (0;0.18]. In Fig. 5.3 we show the result of numerical calculations of its

largest Lyapunov exponent (LLE) λ for different values of g from the interval. As one

can see, there are several narrow windows (A-E) in which LLE is close to zero within

the limits of numerical accuracy. As it was recently discovered [105], these windows

correspond to the cases when the neurons interact in such a way that unstable periodic

orbits that are present in chaotic dynamics become stable due to so-called mutual

resonant interactions. In Fig. 5.4 we illustrate corresponding periodic regimes, which

are analogous to the generalized splay states [35, 105]. In these periodic states x1(t)

and x2(t) follow each other with some delay along very similar, but not identical

trajectories in the phase space of the system.

Since the dynamical timescales of the system (5.1) and of the coupling strength
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Figure 5.4: Examples of periodic dynamics each corresponding to a window with zero
LLE in Fig. 5.3. The following values of synaptic conductance g were used: A – 0.005,
B – 0.021, C – 0.042, D – 0.084, E – 0.102.

(5.3) are vastly different, let us now consider the evolution of g under the assumption

that it does not influence the dynamics of (5.1) on short time intervals. There are

two possible dynamical regimes of the coupled system: periodic and chaotic. As

Fig. 5.5(a) illustrates, in the case of periodic dynamics inside the window A the

dynamics of g is slaved and is also periodic. To the contrary, g exhibits random walk

– like dynamics when the system is in chaotic state (see Fig. 5.5(b)).

Let us understand the origin of such behaviors of the synaptic conductance g.

First, let us calculate the change of synaptic conductance ∆g(t1, t2) due to synaptic

plasticity that is induced by the interaction of a spike from neuron 1 at time t1 and

a spike from neuron 2 at time t2. According to (5.3), this change is given by

∆g(t1, t2) = γ

∫ ∞

0

dt
[
P1(t)P2(t)

N − P1(t)
NP2(t)

]
, (5.5)

where the values of variables P1(t) and P2(t) can be determined by integrating
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Eq. (5.4):

Pi(t) =

∫ t

0

dt′e−β(t−t′)F (xi(t
′)). (5.6)

Assuming that the duration of spikes is very short as compared to other timescales

in the system we can approximate F (xi(t)) by δ-functions:

F (xi(t)) ≈ δ(t− ti). (5.7)

Combining (5.6) and (5.7) and integrating over time we obtain

Pi(t) ≈ H(t− ti)e
−β(t−ti), (5.8)

where H(x) is the Heaviside function. We are now in the position to calculate

∆g(t1, t2). By substituting (5.8) into (5.5) we obtain

∆g(t1, t2) = γ

∫ ∞

0

dt
[
H(t− t1)e

−β(t−t1)H(t− t2)e
−βN(t−t2)

− H(t− t1)e
−βN(t−t1)H(t− t2)e

−β(t−t2)
]
. (5.9)

Let tm = min (t1, t2). Then H(t− t1)H(t− t2) equals to 0 for t ≤ tm and equals to 1

otherwise. Eq. (5.9) then becomes

∆g(t1, t2) = γ
[
eβ(t1+Nt2) − eβ(Nt1+t2)

] ∫ ∞

tm

e−β(1+N)tdt

= γ
[
eβ(t1+Nt2) − eβ(Nt1+t2)

]e−β(1+N)tm

β(1 + N)
. (5.10)

Now, if t1 > t2 then tm = t1 and

∆g(t1 > t2) =
γ

β(1 + N)

[
e−βN(t1−t2) − e−β(t1−t2)

]
. (5.11)

If t2 > t1 then tm = t2 and

∆g(t2 > t1) =
γ

β(1 + N)

[
e−β(t2−t1) − e−βN(t2−t1)

]
. (5.12)
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Let τ = t1 − t2, then (5.11) and (5.12) can be written as

∆g(τ) = sign (τ)
γ

β(1 + N)

[
e−β|τ | − e−βN |τ |

]
. (5.13)

According to Eq. (5.13), g changes by ∆g(τ) due to each pair of spikes that are

separated by a time interval τ . Therefore, in the case of chaotic spiking of both

neurons the sequence of interspike intervals τi is also chaotic and g changes in a

chaotic way that is approximately described by (5.13). In the case of periodic spiking

of both neurons the sequence of interspike intervals is such that it results in no net

change in g after one burst (see, e.g., Fig. 5.5(c)).

In Fig. 5.6 we show typical evolution of the slow variable g over an extended

period of time. Initially coupling strength demonstrates random-like variations and

then it gets on the limit cycle close to g = 0.022 which corresponds to the boundary

of a periodic window B in Fig. 5.3. As soon as this periodic state is reached g stays

on the limit cycle indefinitely. In such a way the system with plastic coupling (5.1-

5.3) reaches periodic state by means of its own dynamics. Hence the system exhibits

self-control and suppression of chaotic dynamics. One can also interpret this process

as a self-adaptation of the system to the edge of chaotic region in its state space.

By performing extensive simulations we tested the described above mechanism of

chaos regularization for different initial values of coupling strength g0. After running

several rounds of simulations for each g0 we have found that this mechanism is robust

and the system consistently and independently of the initial conditions and initial

coupling strength g0 reaches one of the stable periodic states. Interestingly, states A,

B and D are stable while states C and E are unstable, meaning that we have never

observed a limit cycle behavior of g in windows C and E. The identity of the periodic

stable state that is reached by the system depends on g0 and can vary from trial to

trial. Periodic state A is usually reached for g0 . 0.02, either A or B can be reached

for 0.02 . g0 . 0.08 and either B or D can be reached for 0.08 . g0 . 0.18. We

confirmed the observation of robust adaptation to periodic states by calculating the

largest Lyapunov exponent of the system (5.1-5.3) λ as a function of g0 (see Fig. 5.7).
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Figure 5.5: Dynamics of the scaled membrane potentials x1 and x2 (top) and of
the coupling strength g (bottom) in the cases of (a),(c) periodic and (b),(d) chaotic
dynamics of the coupled system.

The calculation was done at uniformly distributed points on g0 axis with a fixed step

size of 0.002. Within the numerical accuracy we found λ to be zero regardless of the

initial conditions and the value of g0 from the interval (0;0.18]. Hence, regularization

of chaos by plastic electrical coupling is robust in the considered region of parameter

space.
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Figure 5.6: Example of the typical slow dynamics of the coupling strength. After the
initial random-like behavior g gets on the stable limit cycle.
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Figure 5.7: Largest Lyapunov exponent λ as a function of the initial conductance g0

of the plastic synapse.

5.4 Discussion

As we have illustrated above, the described coupled system adapts to periodic states

on the boundary of chaotic region or so-called edge of chaos (EOC). Systems that are

able to adapt its state to the edge of chaos have recently attracted a lot of interest

because this state is believed to be optimal for the system to exhibit determinis-

tic, but at the same time flexible dynamics. For example, it was found that EOC

state is beneficial for information transmission in neural networks [33]. Also, at the

point of order-chaos transition ‘statistical complexity’ of chaotic systems reaches its

maximum [20].
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In the recent work by Melby et al. [64] a phenomenon similar to the one that is

described here was observed. They have studied the dynamics of the logistic map with

its parameter being controlled by a feedback mechanism involving low-path filtered

dynamics of the map. One can argue that a similar mechanism is at work here since

the variables P1 and P2 are close to being low-path filtered membrane potentials of

the neurons and coupling strength g is a slow function of P1 and P2.

In conclusion, we would like to emphasize the differences between the traditional

methods of chaos control and the methods discussed above. Most of the traditional

approaches are based on either one of the following two ideas. The first one is the

algorithm of Ott, Grebogi and Yorke [70], i.e., suppression of chaos by occasional

application of small, well calculated perturbations to parameters of the system and

thus stabilization of one of the embedded unstable periodic orbits. The second one is

the method of continuous-time control [73] that uses recovery of the unstable periodic

behavior by delay coordinated method. Our method also achieves control by contin-

uously perturbing an intrinsic parameter of the system, e.g., the strength of synaptic

coupling, but in a different way. In our case strength of the coupling between chaotic

subsystems depends nonlinearly on the distance between their output signals. Peri-

odic activity is then generated by chaotic subsystems themselves due to the control

of coupling strength through nonlinear filtering of their signals. We suggest that such

mechanism can be used in other coupled chaotic systems as well.
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Chapter 6

Dynamical motifs: Building blocks
of complex dynamics in neural
networks

6.1 Introduction

Dynamics in networks underlie functioning of many complex systems such as the

brain [48], cellular regulatory machinery [32], ecosystems [49] and many others. These

systems exhibit a wide repertoire of dynamics, ranging from periodic oscillations in

cell cycle and brain rhythms to chaos in food webs and chemical reactions. Recently,

rapid advancements had been made in our understanding of statistical properties of

natural and artificial networks (for reviews, see [4, 21, 68]), and of traffic dynamics [93]

and transport processes [92, 87] on them. However, still very little is understood about

oscillatory dynamics in such networks. This is due to several reasons, in particular,

inadequacy of the methods of nonequilibrium statistical mechanics in the domain of

heterogeneous mesoscopic systems and inability of the dynamical systems theory to

deal with systems having more than order-1 dimensions.

Fundamental problem which one faces while trying to understand dynamics in

complex networks is the strong influence of their structure on their non-Hamiltonian

dynamics. This influence induces long-term connectivity-dependent spatio-temporal

correlations which present formidable problem for understanding of the dynamics.

Statistical methods allow us to solve this problem in the limit of infinite-size net-
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works [88], but they are not applicable to the study of realistic networks with non-

uniform connectivity and a relatively small size.

It was recently found that many real networks include statistically significant

subnetworks, so-called motifs, in their structure [66]. Here we suggest the use of dy-

namical motifs – small subnetworks with non-trivial dynamics – as a new approach to

the study of oscillatory dynamics in complex networks. In this approach we combine

dynamical and statistical methods to identify dynamical motifs and evaluate proba-

bility of their occurrence in the structure of networks. We show that the emergence

of periodic and chaotic dynamics in networks of increasing structural complexity is

linked to the appearance of periodic and chaotic motifs in their connectivity. We also

consider spatially distributed networks with local connectivity and show that chaotic

motifs are absent in their structure. We suggest that this approach may be useful for

studies of oscillatory dynamics in networks of arbitrary structure and size.

6.2 Description of the model

In many complex systems the dynamics of individual elements and the rules of their

interaction are relatively simple and the resulting complex behavior is an emergent

consequence of these interactions. Hence, in order to study the influence of the struc-

ture on the dynamics of networks let us focus on models with simplest interactions

and dynamics at each node. Let xi(t) ∈ [0; 1], i = 1, . . . , N be a set of variables

describing properly scaled states of N elements connected in a network. Consider the

time evolution of network’s state vector X(t) = {x1(t), x2(t), . . . , xN(t)} described by

the following set of first order differential equations

dX(t)

dt
= −X(t) + F (X(t)), (6.1)

where F (X) = {f1(X), f2(X), . . . , fN(X)} is a set of sigmoid nonlinearities with

[0; 1] value ranges. This general class of models includes continuous version of random

Boolean (genetic) networks (cRBN) [65, 31], in which fi(X) are randomly chosen
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Boolean functions of their arguments, and continuous-time artificial neural networks

(cANN) [41], in which fi(X) = f((Ŵ ·X)i+σi), where Ŵ is the coupling matrix and

σi are thresholds. Both of these models were shown to exhibit complex periodic and

chaotic dynamics in the biologically relevant cases of intermediate probabilities of gene

expression in cRBN [31] and non-symmetric interactions in cANN [88]. Corresponding

discrete-time, two-state models also exhibit disordered dynamics (see, e.g., [5] for

RBN and [6] for ANN models).

To illustrate the use of dynamical motifs we employ a simple cANN model

dxi(t)

dt
= −xi(t) + f((Ŵ ·X(t))i + σi), (6.2)

with f(x) = (1 + exp(−20 x))−1, uniform external excitation σi = σ = 0.5 and

inhibitory interactions of the same strength: Ŵ = −Ĝw, where w = 5 and Ĝ is

the adjacency matrix of the directed graph on which the network is defined. In this

setting the model is similar to the simplified version of a balanced network model [98]

with excitatory connections replaced by a uniform excitatory field and can be viewed

as a simple model of a cortical microcircuit. It is also an extension of the concept of

winnerless competitive networks [77] to the case of random connectivity. However,

methods presented in this Letter can be used for other models of the dynamics, such

as Lotka-Volterra competition, etc.

6.3 Results

6.3.1 Dynamics in Erdős-Rényi networks

We have performed Monte Carlo simulations of the described above cANN model

defined on an ensemble of random networks with N = 200 nodes and uniform proba-

bility p of node-to-node connections, i.e., an Erdős-Rényi (ER) ensemble. A sample

of 2 ·104p random networks was generated for each considered p and cANN dynamics

was simulated 100 times on each of the networks, each time starting with different

initial condition taken at random from the hypercube R200
(0;1). Sets of initial condi-
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tions were considered in order to eliminate the influence of the basins of attraction in

multistable networks which in itself is a very complicated issue.

Simulations of cANN dynamics in networks with different realizations of connec-

tivity Ĝ revealed different dynamical behaviors of these networks, such as fixed point

dynamics (examples are presented in Figs. 6.1 and 6.2), periodic dynamics (Figs. 6.3

and 6.4) and chaotic dynamics (Figs. 6.5 and 6.6). In some cases, such as the one

depicted in Fig. 6.2, long chaotic transients were observed before the settling of the

dynamics on fixed point or periodic attractor. It is well known that transients may be

very long in high-dimensional chaotic dynamical systems such as the one under study.

While observing chaos in such systems, there is no way to tell the difference between

long chaotic transients and genuinely chaotic dynamics. Hence, to maximally dimin-

ish the influence of chaotic transients on the results of this study, each simulation was

run for 2000 time units. This time was determined as being long enough by observing

that most transients die out after several hundred time units of simulations.

Some of the networks exhibited the same type of dynamics regardless of initial

conditions, while others demonstrated multistability, with different initial conditions

leading to different types of dynamics. Usually only two types of dynamics out of

three were observed in multistable networks. In order to perform automatic classifi-

cation of networks according to their dynamical behavior largest Lyapunov exponent

λ was calculated in each simulation. Networks with at least one initial condition lead-

ing to λ ∈ (−0.005; 0.005), typically λ ∼ 10−4 were classified as having limit cycle

dynamics and with λ > 0.005, typically λ ∼ 10−1 as having chaotic dynamics. The

relative frequency with which each type of dynamics was observed in the ensemble

of networks was dependent on the density of connections p. In Fig. 6.7 we plot the

fraction of networks in the ensemble with given type of dynamics as a function of p.

Mostly periodic dynamics was observed in networks with p < 0.02. As the density of

connection increased above 0.02, networks with chaotic dynamics began to dominate.
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Figure 6.1: Time series of fixed point dynamics in a network. Time goes along the
horizontal axis while identity of the neuron - along the vertical. Each horizontal line
represents activity of one neuron. Level of neuronal activity is coded by grayscale
with black corresponding to the quiet state (xi(t) = 0) and white - to the maximally
active state (xi(t) = 1).
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Figure 6.2: Another example of a network with fixed point dynamics. In this case the
period of transient chaotic dynamics was rather long. Time series are represented is
the same way as in Fig. 6.1.
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Figure 6.3: Example of a network with periodic dynamics. Time series are represented
is the same way as in Fig. 6.1.
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Figure 6.4: Another example of a network with periodic dynamics. In this case
periodic dynamics was more complicated and had longer period. Time series are
represented is the same way as in Fig. 6.1.
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Figure 6.5: Example of a network with chaotic dynamics. Time series are represented
is the same way as in Fig. 6.1.
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Figure 6.6: Another example of a network with chaotic dynamics. Time series are
represented is the same way as in Fig. 6.1.
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Figure 6.7: Fraction of networks F with periodic (stars) or chaotic (squares) dynamics
in simulations of 200-node cANN networks with node-to-node connection probability
p.

6.3.2 Dynamical motifs

Let us now apply the concept of dynamical motifs in order to explain these obser-

vations and make further predictions about oscillatory dynamics in networks. The

main idea behind this approach is that the transition to periodic or chaotic over-

all dynamics in a given network occurs due to appearance in its structure of small,

not necessary isolated, dynamical motifs which have the same type of dynamics. Of

course many of them may be present in a given dynamical network, but at least one is

needed in order for the network to exhibit a given type of dynamics. The dynamical

phase transitions that are observed in models of complex networks are then identified

with proliferation of dynamical motifs, i.e., 0-to-1 transitions in the probability of

their occurrence.

Let us consider an ER network with the probability of node-to-node connection

p. The probability pn that some n nodes of this network form a given motif with l

links and no self-loops is given by

pn = pl(1− p)n(n−1)−l. (6.3)
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Figure 6.8: Smallest dynamical motifs with periodic (a) and chaotic (b-d) dynamics.
Triangles indicate direction of the inhibitory connections.

It is possible that dynamics of some of the nodes in the motif could be permanently

suppressed by inhibitory connections from the nodes outside of a motif that are frozen

in the ‘+1’ state. The fraction pf of such frozen nodes in the network can be approx-

imated in the following way. Assume that pf is well represented by the probability

Prob (xi = 1) for an arbitrary node i to be frozen in the ‘+1’ state. Then from (6.2)

it follows that

pf = Prob (xi = 1) = Prob (
N∑

j=1

Ĝijxj = 0). (6.4)

Since the sum of these non-negative terms has to be equal to zero, each of the terms

is required to be zero as well:

Prob (
N∑

j=1

Ĝijxj = 0) =
N∏

j=1

Prob (Ĝijxj = 0). (6.5)
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Now, let us assume that correlations in the dynamics of different nodes of the network

are very weak. We expect this assumption to hold in the limit of sparse connectivity

(p � 1). Under this assumption we can suppose that Prob (xj = 1) = Prob (xi = 1)

and that the products Ĝijxj are independent random variables satisfying the same

statistics. Then

N∏
j=1

Prob (Ĝijxj = 0) ≈ (Prob (Ĝijxj = 0))N . (6.6)

Let us further assume that xi can only take on two values: 0 or 1. This assumption is

close to satisfaction when the sigmoid function f(x) in (6.2) has a steep slope which

is indeed the case here. Then, since Ĝ is the adjacency matrix and is composed of

zeros and ones, the product Ĝijxj is also limited in its values to 0 and 1. Hence,

Prob (Ĝijxj = 0) ≈ 1− Prob (Ĝijxj = 1) = 1− Prob (Ĝij = 1)Prob (xj = 1). (6.7)

Remembering that any connection in the network is present with probability p, i.e.,

Prob (Ĝij = 1) = p and that Prob (xj = 1) = Prob (xi = 1), we obtain

1− Prob (Ĝij = 1)Prob (xj = 1) = 1− p pf . (6.8)

Combining equations (6.4) through (6.8) we finally arrive at the following self-consistent

equation for the fraction of frozen nodes:

pf = (1− p pf )
N . (6.9)

Numerical solution of this equation for N = 200 is plotted in Fig. 6.9 by a solid

line. As one can see, the agreement with the data from our simulations of cANN

dynamics (represented by squares) is good while connectivity is very sparse (p < 0.01).

Above p = 0.01 the difference between our theoretical approximation and the data

increases with increasing p. This occurs because our assumption about the weakness

of correlations in the dynamics of nodes starts to break as density of connections p
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Figure 6.9: Theoretical estimation of the dependence of fraction of frozen nodes pf

in the network on the density of connections p (solid line) and its values that were
calculated from simulations (squares).

increases above 0.01. In what follows we are going to use the interpolation of pf that

was calculated from its numerical estimation (Fig. 6.9, squares).

Let us now turn back to the calculation of the probability of motif occurrence in

ER networks. We have found that the probability for any n nodes of the network to

form a motif with l links is given by (6.3). Inputs from any of the frozen nodes (of

which there are Nf = pfN) would suppress dynamics in the motif and hence should

be excluded. By doing so we obtain the corrected probability

pnf = pl(1− p)n(n+Nf−1)−l. (6.10)

It is difficult to calculate exactly the probability to find a given number of such

motifs in a network. However, an approximate calculation of the probability P(n;l) to

encounter one or more motifs is relatively straight forward and is expected to work

well in the case of sparsely connected networks (p << 1). This probability can be

written as

P(n;l) = 1− p(N(n;l) = 0), (6.11)



86

where the probability p(N(n;l) = 0) of not finding any such motifs in a sparsely con-

nected network can be approximated by treating each set of n nodes independently

and requiring the absence of the motif in each such set of nodes. Under this approx-

imation,

p(N(n;l) = 0) ≈ (1− pnf )
N !

A(N−n)! ≈ exp

(
− pnfN !

A(N − n)!

)
, (6.12)

where N !/(A(N − n)!) is the number of ways to pick n nodes of the motif from the

N -node network multiplied by n!/A – number of ways to label a motif, with A being

the order of motif’s automorphism group. Hence, combining (6.11) and (6.12) we

obtain

P(n;l) ≈ 1− exp

(
− pnfN !

A(N − n)!

)
. (6.13)

This formula predicts proliferation of motifs with n nodes and l links at some inter-

mediate value of p which depends on n and l. We are interested in the values of n

and l for which proliferation occurs at the smallest p = pc. Let us define it by the

point where P(n;l) = 1/2. Then

N !

(N − n)! A
pl

c(1− pc)
n(n+f−1)−l = log 2. (6.14)

Assuming N � n and pc � 1 we get

Nnpl
c ≈ A log 2, (6.15)

and, hence,

pc ∼ A1/lN−n/l. (6.16)

This result indicates that in order to minimize pc, n/l should be maximized and hence

subnetworks with most nodes and least links will appear first as p is increased from

0.

Subnetworks with limit cycle dynamics include 3-loop (Fig. 6.8(a)), 4-loop and

other, more complicated, structures. Since for the n-loop l = n and A = n, 3-loop
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Figure 6.10: Fraction of networks F with either periodic or chaotic (triangles) and
only chaotic (squares) dynamics in simulations of 200-node cANN networks with node-
to-node connection probability p. Lines represent predictions based on the probability
of occurrence of periodic (dashed line, Eq. (6.17)) and chaotic (solid line, Eq. (6.18))
motifs.

has smallest pc. According to (6.13), its probability of occurrence is given by

P(3;3) ≈ 1− exp

(
−N3

3
p3(1− p)3(1+f)

)
(6.17)

and is plotted in Fig. 6.10 by a dashed line (with f evaluated numerically from

simulations). This estimate predicts the appearance of dynamics in ER networks

very accurately.

In order to find chaotic motifs we used the nauty package [62] to generate all

possible non-isomorphic directed graphs with up to 8 nodes and 11 links. Even though

the total number of n-node directed graphs growth like 2n2
, which is approximately

6.8·1010 for n = 6, the number of non-isomorphic directed graphs growth much slower,

there are, for example, approximately 1.5 · 106 of them for n = 6. This fact made

it feasible to study all non-isomorphic digraphs with up to 8 nodes. We simulated

the cANN dynamics on them and calculated the largest Lyapunov exponent λ for

each. Digraphs with λ > 0.005, typically λ ∼ 10−1 were classified as chaotic. Not
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surprisingly, most of these small digraphs were found to have no dynamics, quite a

few had periodic dynamics and very few exhibited chaotic dynamics. In Fig. 6.8(b-d)

we show the first three chaotic motifs in the order of increasing number of nodes (5,

6 and 7 nodes) and minimal number of links (9, 10 and 10 links). Also, we found six

non-isomorphic chaotic motifs with 8 nodes and 11 links, four of them with A = 2

and two with A = 1. Numerical evaluations of pc according to (6.14) indicate that

the latter motifs have smallest pc ≈ 0.025. Probability to find one or more of them

in an ER network is given by

P(8;11) ≈ 1− exp
(
−4N8p11(1− p)45+8f

)
(6.18)

and is plotted in Fig. 6.10 by a solid line (with f evaluated from simulations of

chaotic networks). As can be seen from the plot, this prediction is reasonably good.

The discrepancy may be caused by the approximate nature of the estimate (6.13),

severe undersampling of the network space in simulations and disregard of the fact

that not only frozen, but also periodically oscillating external nodes suppress chaos

in these motifs.

While the origin of periodic dynamics in n-loops is obvious as they merely are

negative feedback loops, the nature of chaos in chaotic motifs is not self-evident. As

one can see from Figs. 6.8(b-d), these chaotic motifs consist of multiple interconnected

feedback loops of different lengths – configuration that frequently leads to chaotic

dynamics. We have traced the route to chaos in the first chaotic motif by lowering w

to 0.5 and then gradually increasing it. In Fig. 6.11 the bifurcation diagram of the

local maxima of x1(t) oscillations is plotted. This diagram reveals two period doubling

cascades, one starting around w = 0.7 and another one around w = 2.5. In order to

confirm presence of these cascades in Fig. 6.12 we plot projections of the phase space

on the (x2(t), x3(t)) plane which were calculated for w = {2.4, 2.6, 2.7, 2.8}. These

projections illustrate that at w = 2.4 dynamics consisted of a simple limit cycle. Its

period doubled before w = 2.6 and quadrupled before w = 2.7. Fully developed

chaotic dynamics was already seen at w = 2.8. Similar period doubling cascades were
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Figure 6.11: Bifurcation diagram depicting local maxima of x1(t) oscillations for
a range of strengths w of the inhibitory connections in the first chaotic motif
(Fig. 6.10(b)). Period doubling cascades start around w = 0.7 and w = 2.5.

observed when strength of each of the links was varied separately while the rest were

kept fixed.

6.3.3 Dynamics in spatial networks

However, there are no conclusive experimental observations of chaotic dynamics in

either genetic or neuronal networks. Recently performed careful analyzes of the meth-

ods used in works that have claimed to observe chaos in EEG data concluded that

these methods are not reliable enough to support such claims [14, 51]. Also, presence

of chaotic dynamics would be inconsistent with the requirements of robustness and re-

producibility of the response imposed on the living organisms by the environment. On

the other hand, periodic dynamics in these networks are very common. Hence, some

of the assumptions that were used in these simplified models must be wrong. As we

show below, one of them is the assumption of ER connectivity. Recent experimental

data suggest that metabolic networks possess scale-free structure [43] while neuronal
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Figure 6.12: Projections of the five-dimensional phase space onto two-dimensional
plane calculated for different strengths w of the inhibitory connections in the first
chaotic motif (Fig. 6.10(b)). Period doubling bifurcations of the limit cycle are clearly
seen.

networks are highly clustered on both small [85] and large [38] spatial scales. More-

over, neurons in the brain frequently form ordered spatial structures with distance-

dependent probabilities of connections, so-called cortical microcircuits [86, 56].

To illustrate the influence of spatial structure on the dynamical properties of

networks we simulated the cANN model on the 12-by-12 two-dimensional square
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lattice with neuron-to-neuron connection probabilities obeying Gaussian distribution

and forbidden self-connections:

p(dij) = KN(1− δij)e
−

(
dij
γ

)2

/
N∑

m,n=1

(1− δmn)e−( dmn
γ )

2

, (6.19)

where dij is a metric distance between neurons i and j, γ is the length scale of the

distribution, K is the average number of connections per neuron and δij is the Kro-

necker delta. In effect, γ controls clustering of the connectivity, with values close to 1

corresponding to networks with mostly local connectivity and large values effectively

diminishing the role of spatial structure and corresponding to ER-like connectivity.

We generated a random sample of 1000 such networks with γ = 2 and K = 14.

As in the case of an ER sample, cANN dynamics was simulated in each of the net-

works for 100 different random initial conditions and the largest Lyapunov exponent

was calculated in each simulation. An average connectivity K = 14 corresponds to

p ≈ 0.1 which has led to approximately 99% of chaotic networks in a sample of ER

ensemble (Fig. 6.10). On the contrary, around 99% of the networks with γ = 2 ex-

hibited periodic dynamics and only about 1% were chaotic. This result indicates that

clustering plays an important role in defining dynamical properties of neural networks

and supports an observation that many real neuronal networks are locally clustered.

We now show how the idea of dynamical motifs may be used to understand these

observations. Let us enumerate grid nodes by 1, . . . , N and consider a motif with

n nodes and l links placed on the grid. We label its nodes by i1, i2, . . . , in and its

links by ia1ib1 , ia2ib2 , . . . , ial
ibl

with ajbj, j = i . . . l denoting ordered pairs of nodes

that are connected. Probability Piaib for the grid nodes ia and ib to be connected is

distance-dependent and is given by (6.19). Then the average probability that n nodes

of a network form this motif is obtained by averaging over all possible placements of

its nodes on a grid:

pn ≈
1

Nn

N∑
i1,...,in=1

(
l∏

j=1

Piaj ibj

s∏
k=1

(1− Piuk
ivk

)

)
, (6.20)
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where s = n(n− 1)− l and ukvk are all the pairs of unconnected nodes. For example,

an average probability for a 3-loop (Fig. 6.8(a)) is p3 = 1
N3

∑N
i1,i2,i3=1 Pi1i2Pi2i3Pi3i1(1−

Pi2i1)(1−Pi3i2)(1−Pi1i3). As expected, in the limit of distance-independent probabil-

ities expression (6.20) becomes equivalent to the ER case. Probability of occurrence

of one or more motifs in a network can again be approximated by (6.13). It is approx-

imately 1 for 3- and 4-loops and Pm ≈ 0 for the (5; 9) motif in networks with γ = 2.

Other chaotic motifs would be even less probable because connection probability falls

off quickly with distance in these networks. Also, Pm ≈ 1 for the (5; 9) motif in net-

works with γ = 12. Hence, periodic motifs are present and chaotic motifs are absent

in spatial networks with local connectivity (γ = 2), but chaotic motifs are present in

non-local networks with γ = 12. These calculations may also explain recent observa-

tions of periodic and chaotic dynamics in models of cortical neural microcircuits with

local and non-local spatial organization of connectivity [56]. Eq. (6.20) may also be

applied in the study of networks with other distributions of connectivity, such as, e.g.,

networks with scale-free degree distributions. Our analysis of oscillatory dynamics on

such networks will be presented elsewhere.

6.4 Discussion

In conclusion, a method to study dynamical behavior of networks by examining min-

imal building blocks of the dynamics was suggested. Calculations of abundance of

dynamical motifs in networks with different structure allow to study and control dy-

namics in these networks by choosing connectivity that maximizes the probability of

motifs with desirable dynamics and minimizes probability of motifs with unaccept-

able dynamics. Using this method we predict that connectivity of cortical networks

might be such that it minimizes the occurrence of chaotic motifs in their structure.

In some real networks average node degree is high compared to K ∼ 10 considered

here. However, many of the connections are weak and were excluded from the model as

they play minor role in the dynamics. Hence, only the number of strong connections

should be compared. In the brain, for example, although a given neuron may be
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receiving on the order of 103 inputs, typically only about 10 of them are strong.

It was shown in [66] that many real networks have 3-loops in their structure. In

most cases there are very few of such loops and it was argued that their presence

is not statistically significant. However, we suggest that such dynamical motifs are

important because presence of even one or two of them may profoundly influence

dynamical behavior of the whole network by slaving dynamics of many adjacent

nodes.
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