Shape Selective Recognition of the DNA

Minor Groove by Hairpin Polyamides

Thesis by

Shane Foister

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2003

(Defended Sept. 19, 2003)

© 2003

Shane Foister

All Rights Reserved

For my Parents

Acknowledgements

No man is an island and no one gets to graduate school or finishes it alone. For all the telescopes, computers, chemistry sets, and science fair projects, which often caused irreparable damage to carpets and furniture, I'd like to thank my parents.

Certainly, I would not have had the opportunity to pursue doctoral research at Caltech were it not for the undergraduate education I received at the University of Kentucky. I'd like to thank the Otis Singletary Foundation for financial support and for creating a stimulating academic environment, and I must acknowledge the Kentucky Wildcats for bringing home two more national titles during my stay in Lexington. Special thanks to Prof. Art Cammers-Goodwin and Prof. Carolyn Brock, my research and academic advisors at UK, who taught me to question everything in science but to never doubt myself. I'd also like to thank Prof. Mark Meier and Prof. Bob Grossman, organic instructors who first showed me the ballet of electrons on the first day of class and challenged me with them everyday thereafter.

I am also grateful to the incredibly supportive faculty here at Caltech. The members of my thesis committee have always been available for advice or assistance and more distinguished group of scientists or people would be hard to assemble anywhere else. For their counsel, I sincerely thank Prof. Harry Gray, Prof. Bob Grubbs, and Prof. Steve Quake. Prof. Rich Roberts has been a second advisor

iv

to me in many ways and for his encouragement and interest in my ideas, I am especially grateful.

It has been a real privilege to work under the direction of Prof. Peter Dervan here at Caltech. For giving me the freedom to chase every windmill, for tempering my enthusiasm with scientific vigor, and for teaching me that the worst of days means nothing in the course of a career, I am truly thankful. Working in the Dervan group over the last five years has also allowed me to work with a tremendous group of scientists. I will always be indebted to the post-docs of the Beckman Institute who helped me through my first years of graduate school—Dr. Roland Bürli, Dr. Bobby Arora, and Dr. Bogdan Olyenuk. Bobby and Bogdan deserve extra credit for being tolerant labmates for more than two years. I'd also like to thank Dr. Dorte Rennenberg, a former post-doc and labmate, for useful discussions and advice on hydroxybenzimidazole.

Among the former graduate students in the Dervan group, I'm glad to have known Dave Herman, a great scientist and a better guy, reknown for his cupcakes. Thanks also to Nick Wurtz, Clay Wang, and Jason Belitsky for advice and for doing what senior graduate students do. In this regard, I must thank Adam Urbach for stimulating scientific debates and for talks that helped me keep graduate school in perspective. I was fortunate to have worked with Victor Rucker on two projects, since joining the group at the same time. Among current members of the group, my thanks to Tim Best and Ben Edelson, "team uptake," for their assistance in localization studies. Thanks to Eric Fechter and Cheyene Brindle, also former labmates who put up with me. I am also glad to have worked with Ryan Stafford, the next generation on the third floor. In particular, I thank Ray Doss and Mike Marques for incredibly productive collaborations over the last year, for their friendship, and for their now notorious lab antics and practical jokes that make chemistry on the third floor an adventure, not just a job. Witnesses to these shenanigans include a valuable support staff here at Caltech, including Joe and Moses in the stockroom and Steve Gould who has arguably the toughest job on campus. Thanks also to Dian Buchness, Anne Penney, Lynne Martinez, and Margot Hoyt for keeping things running.

I would also like to acknowledge collaborators for their efforts on projects that worked and on those that didn't. In the Quake group (Caltech), thanks to Ido Braslavsky, Mark Unger, and Steve Quake for teaching a chemist a few tricks from applied physics. In the Waring group (Cambridge), thanks to Chris Martin and thanks to Ed Ramos in the Trask group (Washington).

Finally, I want to thank the friends I've made here at Caltech for the occasional kind ear or cup of coffee that make tough days bearable. Thanks to Ali Husain, Shelley Starck, Arnab Chatterjee, and Sara Klamo. In this regard, I'd like to acknowledge Ramez El Gammal and George Zamanakos, remarkable scientists and even better friends.

Abstract

Polyamides composed of N-methylpyrrole (Py), N-methylimidazole (Im), and 3-hydroxy-N-methylpyrrole (Hp) crescent-shaped ligands are that bind predetermined DNA sequences with affinities and specificities rivaling naturally Inherent limitations of the thymine-selective Hp residue, occurring proteins. including reduced affinity, diminished stability in aqueous solution, and loss of specificity in N-terminal pairings, have restricted the array of DNA sequences that can be specifically targeted with polyamides. The work described in this thesis addresses two major areas of research: the development of fluorescent conjugates of minor groove-binding polyamides as tools for genomic analysis and expansion of the minor groove recognition code by designing internal and N-terminal replacements for Hp.

Fluorophore-polyamide conjugates were designed using different fluorescent probes, different sites of probe attachment with respect to the polyamide, and different chemical linkers separating the above moieties. Ring conjugates, connecting tetramethylrhodamine or cyanine probes to the N-methyl position of Py rings exhibited reasonable affinities and specificities for the cognate DNA sequences, and displayed fluorescent enhancement upon association with the minor groove. The cyanine conjugates, though less quenched than their TMR counterparts, also demonstrated the capacity for fluorescence resonance energy transfer (FRET). The advantages offered by polyamides relative to oligonucleotidebased probes for DNA detection suggest that polyamides might be useful tools for genomic analysis.

The utility of polyamides as diagnostic tools or as therapeutic agents would be greatly enhanced by the development of novel thymine-specific residues. Efforts toward this end have employed two general design strategies for Hp replacement. One approach has sought to remove the hydroxyl recognition element in favor of purely shape selective discrimination of the T•A base pair, while other efforts have examined alternative hydroxy-substituted aromatic scaffolds that possess greater stability than Hp. Both of these approaches are discussed in the context of Nterminal, internal, and multiple recognition of T•A base pairs.

Table of Contents

		Page
Acknowledge	ements	iv
Abstract		vii
Table of Cor	ntents	ix
List of Figure	es and Tables	xi
Chapter 1	Introduction to DNA Recognition by Minor Groove-Binding Polyamides	1
Chapter 2	Design and Synthesis of Fluorophore-Polyamide Conjugates	20
Chapter 3	Sequence Specific Detection of DNA Using Self-Quenched Fluorophore-Polyamide Conjugates	56
Chapter 3A	Sequence Specific Fluorescence Detection of Double Strand DNA	58
Chapter 3B	Progress towards Applications Using Fluorophore- Polyamide Conjugates in Genomic Analysis	81
Chapter 4	Fluorescence Resonance Energy Transfer (FRET) by Minor Groove-Associated Cyanine-Polyamide Conjugates	108

Chapter 5	Shape Selective Recognition of T•A Base Pairs by Hairpin	
	Polyamides Containing Novel N-Terminal Pairings1	28

Chapter 5A	Shape Selective Recognition of T•A Base Pairs by
	Hairpin Polyamides Containing N-Terminal 3-Methoxy
	(and 3-Chloro) Thiophene Residues131
Chapter 5B	Further Progress toward the Development of Novel

N-Terminal Recognition Motifs	15	56
	10	

Chapter 6	Internal Residues for Thymine Discrimination by Minor	
	Groove-Binding Polyamides	169

List of Figures and Tables

Chapter 1		page
Figure 1.1	Structural features of the DNA double helix	3
Figure 1.2	Naturally occurring ligands for DNA	5
Figure 1.3	The molecular details of minor groove recognition by	
	polyamides	6
Figure 1.4	Hydrogen-bonding model of the hairpin motif illustrating the	
	pairing rules	8
Figure 1.5	Biological applications and implications for polyamide motifs	10
Figure 1.6	N-Terminal aromatic residues for specific DNA recognition	11
Figure 1.7	Novel heterocycles for thymine-selective recognition of the	
	minor groove	12
Figure 1.8	Bicyclic aromatic heterocycles for minor groove discrimination	13

Figure 2.1	Applications of polyamide conjugates	23
Figure 2.2	Modification strategies for synthesis of hairpin polyamide	
	conjugates	24
Figure 2.3	Synthesis of N-(Fmocaminopropyl)pyrrole building block	25
Figure 2.4	Synthesis of N-(Phthalimidopropyl)pyrrole building bock	27
Figure 2.5	Synthesis of cyanine-hairpin polyamide conjugates	28
Figure 2.6	Synthesis of fluorophore conjugates containing C-terminal	
	β -tails using PAM resin	30

Figure 2.7	Synthesis of C-terminal fluorophore conjugates using	
	Oxime resin	.32
Figure 2.8	Synthesis of tail fluorophore conjugates using hydrazine resin	34
Figure 2.9	Synthesis of self-quenched TMR-hairpin polyamide conjugates	.36
Figure 2.10	Chemical structures of self-quenched TMR-polyamide	
	Conjugates	.37

Figure 3.1	Binding models for self-quenched TMR-hairpin conjugates	60
Figure 3.2	Chemical structures of TMR-hairpin polyamide conjugates	
	and control compounds	61
Figure 3.3	Ball-and-stick representations of hairpin conjugates bound to	
	match duplex DNA sequences	62
Figure 3.4	Spectroscopic properties of TMR-hairpin conjugates	65
Figure 3.5	TMR-polyamide conjugate microplate experiments	67
Figure 3.6	Non-Watson-Crick base pair recognition by TMR-polyamide	
	conjugates	71
Figure 3.7	X-ray co-crystal structure of nucleosome core particle-	
	polyamide complex	82
Figure 3.8	DNA recognition properties of TMR-hairpin polyamide	
	conjugates	83
Figure 3.9	Chemical structures of different classes of fluorophore-	
	polyamide conjugates	84

0 1
0
0
)1
)1
3
6
7
) 9
1
3
63
3
6
5

Table 3.4	Trinucleotide repeat sequences associated with	
	human diseases	89
Table 3.5	Properties of TMR- and fluorescein-hairpin polyamide conjugates	
	examined in microplate titrations with λ DNA	96

Figure 4.1	Molecular processes underlying FRET illustrated for fluorophore-
	polyamide conjugates111
Figure 4.2	Previous efforts to demonstrate polyamide-based FRET114
Figure 4.3	Model systems for examination of FRET by polyamide
	conjugates116
Figure 4.4	Chemical structures of cyanine-polyamide conjugates117
Figure 4.5	Normalized absorption emission spectra for cyanine-
	polyamide conjugates118
Figure 4.6	Cyanine-polyamide conjugates exhibit fluorescent
	enhancement when bound to DNA120
Figure 4.7	Demonstration of FRET by minor groove-associated cyanine-
	polyamide conjugates122
Figure 4.8	Optimization of condition for polyamide-based FRET123

Table 4.1Physical properties of cyanine-hairpin polyamide conjugates......119

Figure 5.1	Proposed binding models for hairpin polyamides with
	5'-TXTACA-3' site134
Figure 5.2	Experimental design for evaluation of novel N-terminal residues135
Figure 5.3	Synthesis of N-terminal thiophene building blocks
Figure 5.4	Synthesis of hairpin polyamides137
Figure 5.5	Quantitative DNase I footprint titration experiments for polyamides
	1 , 2 , 6 , and 8 on pCW15 PCR product139
Figure 5.6	Hypothetical binding model explaining T•A selectivity for
	3-methoxythiophene-2-carboxamide residue143
Figure 5.7	The development of a second sequence specific N-terminal
	pairing expands the repertoire of sequences that can be targeted
	by hairpin polyamides158
Figure 5.8	Molecular models of N-terminal Hp replacements160
Figure 5.9	DNase I footprinting gels for 5- and 3-methylthiophene-2-
	carboxamide N-terminal residues162
Figure 5.10	3-Cyanothiophene-2-carboxamide residues and derivatives
	as N-terminal recognition elements163
Figure 5.11	Synthesis of 3-cyano and 3-amidino-thiophene cap building
	blocks and polyamides165
Figure 5.12	Nuclear localization of 3-chlorothiophene-containing
	polyamides166

Table 5.1	Equilibrium association constants	140
Table 5.2	Physical properties determined by molecular modeling	.141
Table 5.3	Comprehensive summary of equilibrium association constants	161
Table 5.4	Cellular localization of Ct-containing hairpin polyamides in a	
	panel of cell lines	167

Figure 6.1	Designed plasmids used to assess DNA binding properties of	
	hairpin polyamides targeting internal or multiple thymine bases17	73
Figure 6.2	Molecular rendering of a 3-fluoropyrrole-containing polyamide	
	bound in the minor groove of DNA17	74
Figure 6.3	Retrosynthetic analyses of 3-fluoropyrrole building block17	'6
Figure 6.4	Attempted routes to 3-fluoropyrrole building block using	
	nucleophilic methods of aromatic fluorination17	77
Figure 6.5	Synthetic schemes to fluoropyrrole using electrophilic	
	methods of aromatic fluorination18	30
Figure 6.6	Design of novel internal thiophene residues based upon	
	leads from <i>N-terminal</i> studies18	32
Figure 6.7	Molecular rendering of unfavorable backbone interactions that	
	could occur between internal 3-chloro- and 3-methoxy-thiophene	
	residues when bound in the minor groove of DNA18	34
Figure 6.8	Benzimidazole scaffolds as internal Hp replacements18	36

Table 6.1A	Observed association constants for N-terminal 3-substituted-	
	thiophene residues	183
Table 6.1B	Observed association constants for internal 3-substituted-	
	thiophene residues	183
Table 6.2	Observed association constants for Hp-, Tn-, and Hz-containing	
	hairpin polyamides	.187
Table 6.3	Observed association constants for multiple Hp-, Tn-, and Hz-	
	containing hairpin polyamides	188

Figure 7.1	Design of N-terminal dimers using "chimeric" mode of
	thymine recognition198
Figure 7.2	Plasmid design and model hairpin polyamides for
	characterization of novel N-terminal dimers196
Figure 7.3	Synthesis of novel N-terminal Ct-Hz dimeric building blocks197
Figure 7.4	Solid phase synthesis of hairpin polyamides containing novel
	N-terminal dimers198
Figure 7.5	Representative DNase I footprinting gels for hairpin
	polyamides containing novel N-terminal dimers
Figure 7.6	Inherent structural and geometric differences between
	classic five-member heterocycles for minor groove recognition
	and next generation bicyclic heterocycles20

Figure 7.7	Molecular overlays comparing Im-Hz and 3-Cyanothiophene-
	Hz terminal dimers to Im-Py202
Figure 7.8	New classes of N-terminal dimers for specific recognition of
	dinucleotide sequences within the context of hairpin polyamides204