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Abstract 

 

 Polyamides composed of N-methylpyrrole (Py), N-methylimidazole (Im), and 

3-hydroxy-N-methylpyrrole (Hp) are crescent-shaped ligands that bind 

predetermined DNA sequences with affinities and specificities rivaling naturally 

occurring proteins.  Inherent limitations of the thymine-selective Hp residue, 

including reduced affinity, diminished stability in aqueous solution, and loss of 

specificity in N-terminal pairings, have restricted the array of DNA sequences that 

can be specifically targeted with polyamides.  The work described in this thesis 

addresses two major areas of research:  the development of fluorescent conjugates 

of minor groove-binding polyamides as tools for genomic analysis and expansion of 

the minor groove recognition code by designing internal and N-terminal 

replacements for Hp. 

 Fluorophore-polyamide conjugates were designed using different fluorescent 

probes, different sites of probe attachment with respect to the polyamide, and 

different chemical linkers separating the above moieties.  Ring conjugates, 

connecting tetramethylrhodamine or cyanine probes to the N-methyl position of Py 

rings exhibited reasonable affinities and specificities for the cognate DNA 

sequences, and displayed fluorescent enhancement upon association with the minor 

groove.  The cyanine conjugates, though less quenched than their TMR 

counterparts, also demonstrated the capacity for fluorescence resonance energy 

transfer (FRET).  The advantages offered by polyamides relative to oligonucleotide-
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based probes for DNA detection suggest that polyamides might be useful tools for 

genomic analysis. 

 The utility of polyamides as diagnostic tools or as therapeutic agents would 

be greatly enhanced by the development of novel thymine-specific residues.  Efforts 

toward this end have employed two general design strategies for Hp replacement.  

One approach has sought to remove the hydroxyl recognition element in favor of 

purely shape selective discrimination of the T•A base pair, while other efforts have 

examined alternative hydroxy-substituted aromatic scaffolds that possess greater 

stability than Hp.  Both of these approaches are discussed in the context of N-

terminal, internal, and multiple recognition of T•A base pairs. 
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