
RETRIEVAL OF SOIL MOISTURE 
UNDER VEGETATION USING 

POLARIMETRIC RADAR 

 

 

Thesis by 

Motofumi Arii 

 

In Partial Fulfillment of the Requirements for the 

degree of 

Doctor of Philosophy 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

2009 

(Defended December 9, 2008)



 ii
 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2009 

Motofumi Arii 

All Rights Reserved



 iii
 

 

 

 

To Megumi and Raku 

 

 



 iv

Acknowledgements 

First of all, I would like to thank my advisors, Professor David Rutledge, Dr. Jakob 

van Zyl, and Yunjin Kim for their unlimited help and support. Their shrewd advice and 

guidance opened my eyes to the world of science and enabled me to achieve my Ph.D at 

Caltech. 

 I also would like to thank Mitsubishi Space Software Co. Ltd. for their kindness to 

give me a chance to study at Caltech. The opportunity definitely enhanced my life by 

letting me set my path to pursue this advanced degree. I am equally grateful to Prof. 

Yoshizumi Yasuoka for his encouragement to undertake this Ph.D course.  

Before coming Caltech, I had committed myself to designe a radar system at that 

company, and regularly referred to a book, Spaceborne RADAR-remote-sensing, which was 

written by Professor C. Elachi. This book led me to this school. I would thank not only him 

but also Professor P. P. Vaidyanathan and A. Emami for many helpful comments as 

committee members.  

I am thankful to all staff members in Moore building for giving us joyful work 

environments, and all the other members of the Caltech RF and Microwave Group,  Glenn 

Jones, Joe Bardin, Yu-lung Tang, Niklas Wadefalk, Ann Shen, Kent Potter, Hamdi Mani, 

Dr. Sangguen Jeon, Younkyu Chung, and Sander Weinreb, for sharing various things with 

me. I would like to extend a special thank to Dale Yee for giving my family many precious 

tips for life in the United States. 

I am deeply grateful to Yoji and Hisako Arii, my parents, and Shizumori and Kumiko 

Okutsu, my in-laws. Without their understanding, I would not have achieved this ultimate 

goal in my life. I would like to close by expressing my deepest gratitude to Megumi Arii, 

my wife, for her unconditional love and ungrudging support. She provides me harmonious 

home environments and soothes my fatigue from Ph.D work. This thesis is dedicated to her. 



 v
Motofumi Arii 

Pasadena, California 

December 2008 



 vi

Abstract 

The unique contributions of this thesis are: 1) a polarimetric classification algorithm 

that is a significant improvement over an existing algorithm and 2) introduction of a cube 

technique to retrieve soil moisture under vegetation. 

The most widely used classification algorithm is the three-component scattering 

technique. Even though it includes three dominant scattering mechanisms, the 

decomposition approach can cause a non-physical solution due to incorrect assumptions. 

The Adaptive Non Negative Eigenvalue Decomposition approach in this thesis produces 

correct solution. It appears that this new approach provides better classification results. It is 

a significant improvement over the existing technique.  

A cube technique is introduced to retrieve soil moisture under vegetation. Using this 

approach, we have evaluated the retrieval accuracy of several polarimetric combinations. 

The effects of the incorrect vegetation model and data noise were investigated. In addition, 

the proposed cube algorithm can be improved by applying the classification result. 
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C h a p t e r  I  

INTRODUCTION 

 

Soil moisture, a medium for interaction between atmosphere and land surface, plays an 

important role in understanding the global climate system. Once a local precipitation event 

occurs, typically 40% of input water forms runoff or infiltrates underground, and 60% of 

input water returns to atmosphere through evapotranspiration [1]. Radiation from the sun 

causes soil moisture to evaporate directly from the surface. On the other hand, vegetation 

absorbs soil moisture through the roots, and the radiation energy induces transpiration. 

These examples illustrate that a solid knowledge of the dynamics of soil moisture deepens 

our understanding of the global energy cycle as well as the global water cycle. Therefore, 

soil moisture is an essential physical parameter in understanding the complex hydrologic 

cycle and thus a systematic technique to measure soil moisture globally and temporally 

with reasonable accuracy is strongly required. 

Measuring soil moisture on bare surfaces has been studied for more than five decades. 

It is well known that radar scattering from bare soil is strongly related to surface roughness 

and dielectric constant, which is affected by soil moisture, and several theoretical models 

have been proposed and are widely used [2, 3]. Some researchers applied these models to 

infer the soil moisture [4, 5, 6], while others derived inversion models empirically, or semi-

empirically, using experimental data sets [7, 8, 9]. Even though these inversion techniques 

have achieved great accuracy, they are only applicable to bare surfaces or surfaces with a 

small amount of vegetation having a specific structure.   
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Table 1.1 shows land classification by vegetation types [10]. Since the desert and 

tundra are considered as bare surface, using 26.2 million km2 as the area covered by desert 

as given in [11], more than 76% of the total land surface is covered by vegetation. To 

understand our global climate system thoroughly, measuring soil moisture under vegetation 

is therefore absolutely necessary.   

Table 1.1: Land classification by vegetation types [10] 

Biome Area (million km2)
Tropical forests 17.6
Temperate zone forests 10.4
Boreal forests 13.7
Tropical savannnahs 22.5
Temperate grasslands 12.5
Deserts and semi-deserts 45.5
Tundra 9.5
Wetlands 3.5
Croplands 16

Total 151.2
 

One way to measure soil moisture from vegetated terrain would be to isolate that part 

of the radar return that was directly returned from the underlying soil surface. Though 

many researchers have tried to decompose polarimetric radar signals from vegetated terrain 

into several scattering mechanisms to isolate the ground scattering component [12, 13], 

these techniques still have not achieved practical accuracy and applicability yet due to the 

following difficulties. First, there are various types of vegetation (as in Table 1.1), and most 

of the decomposition algorithms assume a particular type of vegetation. In addition, the 

multiple scattering mechanisms from vegetated terrain −such as direct backscatter from the 

canopy, trunks, and ground; interaction between canopy and ground; and interaction 

between trunk and ground− are not all independent. For example, a dense canopy produces 

strong backscattering from the canopy while it significantly attenuates backscatter from the 

trunks and the ground, and all interactions between the vegetation layers and the ground.  
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However, using the European Remote Sensing (ERS) satellite scatterometer, Wagner 

et al. showed that the radar cross section from vegetated terrain at Beja in Portugal is highly 

sensitive to soil moisture even when using a higher frequency [14]. In Figure 1.1, monthly 

change in backscatter from Beja is shown with normalized differential vegetation index 

(NDVI) observed by the Advanced Very High Resolution Radiometer (AVHRR) and 

precipitation history. The NDVI indicates the amount of chlorophylls, which is equivalent 

to amount of vegetation covering the surface. It is obvious that backscatter cross section 

follows precipitation history. Hence this tells us that the radar backscatter is sensitive 

enough to see soil moisture under vegetation. 

 

Figure 1.1: Monthly changes of NDVI (top), precipitation history (second row), and 
radar backscatter cross section of vertical polarization (third row and 
bottom) at Beja in Portugal, which were reported in [14] 

The purpose of this research is to study in detail the scattering mechanisms of 

vegetated terrain to attempt to find a way to isolate surface scattering from other scattering 

mechanisms, and apply this knowledge to retrieve the soil moisture.  
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This thesis is organized as follows. In Chapter II, we define the coordinate systems 

used in this research, followed by the fundamental mathematical operations for the 

scattering and covariance matrices. 

We follow this introductory material with a discussion of polarimetric scattering 

decomposition as used in this thesis. We introduce a more general decomposition technique 

and show how this algorithm corrects some of the deficiencies of the current decomposition 

schemes. Our algorithm allows one to adaptively change the assumed vegetation structure 

on a pixel-by-pixel basis to find the best approximation to the observed scattering. 

In order to verify the decomposition algorithm, we use a numerical scattering model to 

simulate vegetation scattering. In Chapter IV, the forward simulation model called the 

Discrete Scatterer Model (DSM) [15, 16] is introduced with some modifications to the 

previous work. This model is then utilized to study the sensitivity of the polarimetric radar 

backscatter cross section to changes in the physical parameters of vegetated terrain. This 

provides us with a better physical understanding of the scattering in such a complicated 

system. In Chapter V, the proposed decomposition algorithms are applied to DSM so that 

we can quantitatively evaluate them. Finally, in Chapter VI, we discuss ideas for retrieving 

soil moisture from vegetated terrain.  
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C h a p t e r  I I 

Fundamentals 
 

In this chapter several fundamentals are introduced for later discussion. We start with 

coordinate systems and radar polarimetry techniques, and follow that with a discussion of 

observation. We also discuss the scattering and covariance matrices and the reciprocity 

theorem. 

2.1 Coordinate System 
Two types of coordinate systems are commonly used to express electromagnetic 

scattering problems [17] depending on the definition of propagation direction of the 

scattered wave: the forward scatter alignment (FSA) convention and the backscatter 

alignment (BSA) convention. Figure 2.1 shows both of them. FSA is generally used to 

describe bistatic scattering problems while BSA is used to describe backscattering 

problems.  
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Figure 2.1: Coordinate systems: Forward Scatter Alignment (FSA) (left), Backscatter 
Alignment (BSA) (right) 

There are several other definitions of the four angles, θi, θs, φi, and φs shown in the 

figure. For example, Ulaby et al. defines π-θi, θs, π+φi, and φs for θi, θs, φi, and φs, 

respectively [17]. To avoid further complexity using different angle definitions, we just 

choose simplest one, as in the figure. In a later chapter, we introduce another coordinate 

system to discuss natural vegetation where it makes better physical sense to define the 

angle from top to bottom. The definitions are exactly same as in the figure. Incidence and 

scattered vectors are mathematically expressed as follows. 
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  (2.2)

The coordinate systems are easily related to those in the Ulaby et al.’s book. To avoid any 

further confusion, the transformation matrices are defined here. 

πφφθπθ +=−= ElachiUlaby
ii

ElachiUlaby
ii

,, ,   (2.3)
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⎜
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Note that the inverse matrix of each transformation matrix is the same as the original one.  

2.2 Radar Polarimetry 
Typical radar observation geometry is shown in Figure 2.2. There are transmitting and 

receiving antennas which allow us to measure scattered power from a target located at a 

distance R1 from the transmitting antenna and R2 from the receiving antenna.  

Target

Prec
Aant

At

Rx

Ptr

Tx R1

R2  

Figure 2.2: Radar observation geometry 
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Received power is expressed in the well known radar equation, 

2
0

2 R
A

A
R
GPP ant

t

tr
rec

π
σ

π
=

21 44
  (2.6)

where G is the antenna gain, and Ptr and Prec are the transmitted power and received power, 

respectively. Aant and At are the antenna effective area and target effective area, respectively. 

σ0 is backscatter cross section. The radar system estimates the backscatter cross section 

based on the a priori knowledge of the other parameters in (2.6).  

Now the concept is extended to polarimetric radar observation. Maxwell’s equation 

tells us that polarization of an electromagnetic wave can be expressed using polarization 

bases. Horizontal and vertical linear polarizations are commonly used because they are 

easy to implement. These two polarization bases are physically realized by changing the 

antenna effective length, and the normalized antenna effective length is called the 

polarization state, 

p
pp

p
p

p norm
h

r
v

r
rr

=→⎟⎟
⎞

⎜⎜
⎛

=
⎠⎝

  (2.7)

where ph and pv are horizontal and vertical antenna effective length, respectively. This 

allows us to describe the backscatter cross section of single scatterer as 

[ ] 20 tr
norm

rec
norm pSp rr

⋅=σ   (2.8)

where tr
normpr  and rec

normpr  are normalized antenna effective lengths for transmitting and 

receiving, respectively. 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

vvvh

hvhh

SS
SS

S   (2.9)

The matrix S is called the scattering matrix and expresses a polarimetric scattering property 

of the target. Sxy means that a y-polarized wave is transmitted and a x-polarized wave is 
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received. So we can say that polarimetric radar observation is a way to measure the four 

elements of the scattering matrix and the target is considered as a polarimetric transformer. 

A simple calculation gives us the following expressions. 

[ ]

( )( ) ( ) *
0
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v
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h
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h
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h
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⎟
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⎟
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=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
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⎤
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⎣

⎡
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⋅

σ

 (2.10)

where superscript T and * denote transpose and complex conjugation, respectively. Note 

that the vector A
r

 consists only of antenna polarization parameters. As long as we are 

interested in observing natural terrain, the received diffuse scattering power is usually 

statistically averaged. This physical fact leads us to the following mathematical formulation, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

2***

*2**

**2*

***2

0 4

vvvvvhvvhvvvhh

vvvhvhvhhvvhhh

vvhvvhhvhvhvhh

vvhhvhhhhvhhhh

SSSSSSS

SSSSSSS

SSSSSSS

SSSSSSS

CC π   (2.11a)

where denotes ensemble averaging. C is the so called covariance matrix and is usually 

used to represent polarimetric radar data. Note that this is a Hermitian matrix not only for 

the monostatic case but also for the bistatic case. In this thesis, the matrix is also written as 

C =

σ hhhh
0 σ hhhv

0 σ hhvh
0 σ hhvv

0

σ hhhv
0* σ hvhv

0 σ hvvh
0 σ hvvv

0

σ hhvh
0* σ hvvh

0* σ vhvh
0 σ vhvv

0

σ 0* σ 0* σ 0* σ 0
hhvv hvvv vhvv vvvv

⎡ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

  (2.11b)
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Equation (2.11) is expressed from the antenna’s point of view. Now we try to express it 

from data user’s point of view. The scattering matrix in (2.9) now corresponds to one pixel 

of a scene. The covariance matrix for this one pixel is as follows. 

⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎡

=

2***

*2**

**2*

***2

0
vvvhvhvhhvvhhh

vvhvvhhvhvhvhh

vvhhvhhhhvhhhh

SSSSSSS
SSSSSSS
SSSSSSS
SSSSSSS

C

⎦⎣ vvvvvhvvhvvvhh

  (2.12)

In order to avoid speckle-like noise caused by signal fading, averaging of the pixels, which 

is also called multi-looking, is commonly used in practice. This simple operation is 

mathematically expressed as 

( )∑∑
= =

==
M

i

N

j
jiC

MN
CC

1 1
00 ,1   (2.12)

where M and N are numbers of pixels to average in either the along track direction or the 

cross track direction. The resulting image is also called the M by N looks image.  

If our observation can be done only in the backscattering situation, i.e. monostatic case, 

one can easily show that scattering symmetry gives us 

vhhv SS =   (2.13)

This is called the reciprocity theorem, which plays an important role in this thesis, and 

reduces our 4 by 4 covariance matrix to a 3 by 3 matrix as follows. 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=→⎥
⎦

⎤
⎢
⎣

⎡
=

2**

*2*

**2

0

2
222

2

vvvvhvvvhh

vvhvhvhvhh

vvhhhvhhhh

vvhv

hvhh

SSSSS
SSSSS

SSSSS
C

SS
SS

S   (2.14)
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C h a p t e r  I I I  

Polarimetric Decomposition 
 

Backscattering from a vegetated surface is typically a mixture of several scattering 

mechanisms such as backscattering from a canopy part, from the ground, or from 

interaction between the ground and trunk, as shown in Figure 3.1.  

Penetration

Canopy
reflection

Branch
reflection

Double bounce
(Ground-trunk, 
ground-canopy)

 

Figure 3.1: Backscattering from a vegetated terrain. 

We will discuss the details of each of these scattering mechanisms in the next chapter. 

Extracting parameters such as amount of biomass, type of vegetation, or soil moisture from 

measured data requires breaking the measured data into its original scattering mechanisms. 

In this chapter, we shall start by briefly introducing various decomposition techniques. 

One of the most popular decomposition techniques, the so-called three-component 

decomposition, and its potential deficiency are introduced. We propose an alternative 
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⎦⎣⎦⎣⎦⎣⎦⎣ vvhv

algorithm to improve it. Since the three-component decomposition algorithm assumes one 

specific type of vegetation structure, it is of limited applicability when applied to natural 

terrain, which usually covered by a wide variety of vegetation. In order to overcome this 

limitation, a generalization of the volume term is introduced and then applied. Finally some 

experimental results to validate those algorithms are discussed. This chapter covers only 

qualitative analysis; quantitative validation is deferred to Chapter V. 

 

3.1 Previous Techniques 
In order to introduce a concept of polarimetric decomposition, we shall start with the 

coherent case; the incoherent case will be discussed later.  

The coherent decomposition model allows us to express the scattering matrix of a 

single scatterer by the sum of several orthogonal bases. In the backscattering case, 

Krogager expressed the model as 

⎥
⎤

⎢
⎡

+⎥
⎤

⎢
⎡

−
+⎥

⎤
⎢
⎡

=⎥
⎤

⎢
⎡

01
10

10
01

10
01

cba
SS
SS hvhh  (3.1)

where these orthogonal components are called Pauli spin matrices [18]. Each of a, b, and c, 

is solved for using the measured scattering matrix. An advantage of the use of these 

matrices is that each basis has physical meaning so that it helps with the interpretation of 

the decomposition results. The first term corresponds to the scattering from a trihedral 

corner reflector, spherical scatterer, or an odd number of reflections [17]. The second term 

corresponds to an even number of reflections, including the so-called double bounce 

reflection, and the third term usually corresponds to the amount of biomass. The choice of 

basis, however, is totally dependent on the purpose. Since the model is basically designed 

for a single deterministic scatterer, applying it to distributed scatterers is not appropriate. 

More recently, this coherent decomposition technique has been applied to manmade 

structures like bridges in [19].  
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For distributed targets, i.e., the coherent case, a covariance matrix in (2.12) should be 

used to express our observation instead of the scattering matrix. Equation (2.12) is 

rewritten in the backscattering case as 

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

=
2**

*2*

**2

2

222

2

vvvvhvvvhh

vvhvhvhvhh

vvhhhvhhhh

SSSSS

SSSSS

SSSSS

C

⎦⎣

. (3.2)

Using this 3 by 3 expression, Cloude proposed an eigenvector based decomposition in [20]. 

His model is expressed in the form of 

T
i

i
ii eeC *

3

1
∑

=

= λ  (3.3)

where λ and e are the eigenvalue and associated eigenvector, respectively. Since the matrix 

is Hermitian, the eigenvectors are always an orthonormal basis, thus it provides a unique 

decomposition. These natural bases, however, are freely changed from pixel to pixel, thus 

making the interpretation more complicated because it is not guaranteed that the resulting 

eigenvectors always correspond to physical scatterers, as with Pauli spin matrices.  

To avoid this difficulty, model based decomposition is adopted as our baseline 

technique in this thesis. While this model does not guarantee orthogonality of its bases, 

meaning the result is not unique, it provides better physical understanding of its result.  

Details of this model are discussed in the next section. References [21] and [22] provide an 

excellent review of the decomposition models mentioned in this section. 

 

3.2 Freeman Decomposition 
Although many people have studied eigenvector based decomposition recently [23, 24] 

and shown reasonable results, the approach may not be reliable because a result based on 
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gdvm

purely mathematics does not provide sufficient physical insight. Therefore, it is very 

important to develop a decomposition technique from solid physical scattering principles. 

As a baseline, we start with Freeman and Durden’s physics based decomposition, described 

in this section, and then develop it using mathematical features including eigenvalue 

decomposition, so that we maintain physical sense while using mathematical operations. If 

the reader is not familiar with scattering from vegetated terrain, we recommend reading the 

first section of Chapter IV.  

Freeman’s decomposition model expresses the measured covariance matrix as the sum 

of three physical components: the volume, double-bounce, and ground components, 

zCyCxCC ++= . (3.4)

Each term is given as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
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⎢

⎣
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⎥
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⎡
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  (3.5)

where α and β are variables to be fixed. These terms will be thoroughly discussed later in 

this chapter. So far we have four equations with five unknowns.  
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  (3.6)

Obviously we need one more condition to solve for the parameters. Freeman et al. 

proposed to add a constraint using a characteristic of double-bounce scattering as shown in 

[25]. It is known that an additional reflection flips the phase of the correlation of the co-

polarizations. Van Zyl applied this characteristic to classify the scene into an odd number 

or even number of reflections, and obtained reasonable results. If the real part of hhvvσ ′  is 

positive, we determine that surface scattering is the dominant contribution and α  is fixed 

to -1. On the other hand, if the real part of hhvvσ ′  is negative, we determine that double 

bounce scattering is the dominant contribution and β  is fixed to 1. Using this condition, 

we can finally solve the equations as follows. If the real part of hhvvσ ′  is positive, 

( )
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z

z

hhhh

hhhhhhvv

hhvvvvvvhhhh

hhhhhhvv
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−
′+′
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=
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σ

σσ
β

σσσ
σσ

α

1

Re2

1
2

 . (3.7)

Also, if it is negative, 
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We shall apply the decomposition technique to a real image from the Black Forest in 

Germany, obtained by the NASA/JPL AIRSAR system in the summer of 1991. The L-band 

image is shown in Figure 3.2. The radar system illuminated from the top of the image to the 

bottom. 

Villingen

Rietheim

River

Forest (brighter)

Agriculture
(darker)

Road

Clearcut

Pfaffenweiler

 

Figure 3.2: L-band image of the Black Forest in Germany obtained by NASA/JPL 
AIRSAR system in the summer of 1991. The solid arrows indicate the name 
of city or area type. The dotted lines specify the direction of topographic 
change. The terrain slopes upward in the direction of the arrows. 

The image nicely shows urban area, agricultural area, and forested area with high contrast. 

There is also a river and a road from right to left. Note that the dotted lines in the forest 

show there is topography and the terrain slopes gradually upward from the center to the 

right. The forested area is a mixture of spruce, pine, and fir trees [26]. The observation was 

conducted at three different frequencies: C-band (6 cm), L-band (24 cm), and P-band (68 

cm), and these three components are shown in Figure 3.3.  
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C-Band L-Band P-Band

 

Figure 3.3: Results of the Freeman algorithm applied to three different wavelength 
images in Freiburg obtained by AIRSAR. From left to right, C-band (5 cm), 
L-band (24 cm) and P-band (68 cm) images are displayed. Green, red and 
blue are assigned to volume scattering, double-bounce scattering, and 
ground scattering, respectively. 

Green, red, and blue are assigned to normalized power of the volume, double-bounce, and 

surface scattering components, respectively. For all wavelengths, urban areas such as 

Villingen and Rietheim are clearly discriminated in the double bounce component. In the 

agricultural area, it is clear the longer wavelengths show good penetration of canopy layer, 

and double-bounce scattering appears instead of the volume component. Van Zyl pointed 

out in [26] that the double bounce component due to the trunk-surface interaction should be 

replaced by the volume component if the topography is not flat. In particular, you can see 

this effect in the P-band image. A river exists half way down the image from right to left, 

and there is a steep slope on both sides toward and away from the radar. The image clearly 

shows that the widely spread double-bounce components are suddenly replaced by the 

volume component around the river. Hence the results from Freeman’s model based 

decomposition show good agreement with our intuition. 
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⎠⎝

There can be negative power associated with the Freeman decomposition. In order to 

remove this nonphysical quantity, we propose a different decomposition technique. The 

power of the covariance matrix is expressed as the sum of each diagonal element. 

( ) ieaCP
ihg
fed
cba

C xx ++=⇒
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

=   (3.9)

If double bounce and surface scattering components are removed from (3.4), and an “other” 

component added, the equation becomes 

othervm CxCC +=   (3.10)

where x is a positive real number because the observation is the sum of scattering powers, 

which are positive definite as shown in (2.11). The additional component is utilized as a 

“catch all” to collect the other terms from the decomposition so that we can always keep 

both the left- and right-hand side exactly equal. The equation can be written as 

vmother xCCC −= . (3.11)

Conservation of energy forbids any component in (3.11) from having a negative power. 

Hence, we implicitly have the following conditions. 

( ) ( ) ( ) 0,0,0 ≥≥≥ vmother CPCPCP   (3.12)

Since Freeman’s decomposition determines the coefficient x directly from the cross 

polarization term of the measured covariance matrix, its value is uniquely determined. 

Applying (3.12) to the image, we can simply check if the decomposition is valid or not.  

Figure 3.4 shows the result of this validation test using the L-band Black Forest image. 
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White: all positive eigenvalues
Black: at least one negative eigenvalue

Original Image Result

 

Figure 3.4: Pixels with negative eigenvalue are displayed using the L-band Black 
Forest image. The left image is the total power image at L-band, and the left 
image is the result of the validation test. 

The result shows that the entire forest has negative power, which is physically unacceptable. 

Since Freeman’s algorithm assumes that whole cross polarization term is contributed by the 

volume component only, it may overestimate the contribution from other scattering 

mechanisms. For example, the double-bounce scattering may contribute to the cross 

polarization term due to the fact that one of the two reflections is caused by the volume 

layer. This deficiency was pointed out by van Zyl et al. in [49]. We introduce the algorithm 

which overcomes this fatal deficiency in the next section. 
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3.3 Non-Negative Eigenvalue Decomposition 
In order to avoid negative power, van Zyl et al. proposed an improved two-component 

(  and  in (3.11)) decomposition technique in [49]. In this section, the technique is 

first introduced. Then we expand to the technique to a four-component ( , , , and 

) decomposition for natural terrain.  For these algorithms the off-diagonal part of the 

measured covariance matrix in (3.11) will be set to zero, assuming scattering reflection 

symmetry [27]. 
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Similarly, the volume component in (3.11) can be written as 
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where p, q, and r are real and positive numbers while s is a complex number. Hence (3.11) 

is rewritten as follows. 
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It is well known that each eigenvalue of a Hermitian matrix is real. Moreover, they are all 

positive as long as the measured scattering power is positive, which is the usual case (see 

Appendix A). These two conditions place a constraint on x in (3.15). When x is zero, Cother 

is exactly equal to the measured covariance matrix, which means that each eigenvalue of 

Cother automatically satisfies the requirements. As x is increased, the power in the second 

term increases, so the power in the first term necessarily decreases, which in turn reduces 
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the eigenvalues of the first term. If one chooses too large of an x, it is obvious that the 

power in Cother becomes negative, and hence some of the eigenvalues also become negative. 

Therefore, x will be constrained such that both conditions hold. We can derive this 

mathematically as follows. 

From (3.15), each eigenvalue can be derived as 
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where, 
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Note that all values defined in (3.16b) are real, and all those values are positive except for d. 

Due to the fact that eigenvalues of a Hermitian matrix are always real no matter what its 

associated power is, we can find an implicit condition from (3.15) as follows.  Obviously, 

the third eigenvalue is always real. In the case of the first and second eigenvalues, both 

eigenvalues are always real only if the real number f(x) is positive so that  
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If this does not hold for measured data, it may imply that there is some problem with  the 

radar system. 

We can now constrain x as follows. The behavior of the third eigenvalue is shown in 

Figure 3.5. Note that the eigenvalue is straight line with negative slope. 

3λ

x
3x

hvhvσ
valid

 

Figure 3.5: Illustration of the third eigenvalue in (3.16a) 

From the figure, the x starts from σhvhv at x=0, and it decreases linearly with increase of x. It 

crosses the x axis at the point x3 in the figure, which can be solved for using the third 

equation of (3.16a), yielding 

q
x hvhvσ

=3  . (3.18)

Let’s move on to the first and second eigenvalues. One can easily recognize that the second 

one is always greater than the first one for any x. So we need only constrain the value of x 

from the second eigenvalue equation. The second eigenvalue in (3.16a) is rewritten as 
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bxfaxx ++−=λ . (3.19)

This is a monotonously decreasing function because the first term is always negative for 

any x because a and ( )xf  are always positive. Setting (3.19) equal to zero, the maximum 

value of x can be expressed as 
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The behaviors of these two eigenvalues in terms of x is illustrated in Figure 3.6. Note that 

this is one specific case where the x2 is smaller than the x3. 

2λ

x
3x2x

3λ

valid

 

Figure 3.6: Illustration of the second and third eigenvalues in (3.16a). This is a specific 
case where x2 is smaller than x3. 

In order to find the constraints on x to satisfy both conditions on the eigenvalues, we 

compare x2 and x3, and then choose the smaller one as 

( )32max ,min xxx = . (3.21)

This simple modification to Freeman’s model, namely, the addition of the Cother term, 

corrects the potential deficiency illustrated by Figure 3.3. Although we applied it to the 

two-component decomposition model in (3.11), this idea can be expanded beyond this 

simplest case. In particular, we will further modify the decomposition model to make it 
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othergdvm

applicable to various vegetated terrains by adding two more scattering components: double 

bounce scattering and ground scattering. Here again, we use the other component to ensure 

that the power conservation law holds. 

Equation (3.11) is modified by adding the two components as follows. 

CzCyCxCC +++=   (3.22)

If the two-component decomposition technique is applied, x is independently determined. 

The equation is then rewritten as 

othergdvmm CzCyCxCCC ++=−=′   (3.23)

where,  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′′
′

′′

=′

2*

2*

*

0
000

01

0
000

01

0
020

0

ββ

β

αα

α

σσ
σ

σσ

g

d

vvvvhhvv

hvhv

hhvvhhhh

m

C

C

C

 . (3.24)

Note that the (3.24) is exactly same as Freeman’s model in (3.5).  

Our discussion will focus on how to fix the parameters y, z, α, and β. In order to 

achieve this, we first introduce a similar mathematical model in which all parameters can 

be found, which is then combined with (3.23) to find its solutions. 

A 3 by 3 Hermitian matrix, such as our measured covariance matrix, can be expressed 

by three real eigenvalues and three orthonormal eigenvectors as 
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=1i

⎠⎝

. (3.25)

These eigenvectors can be freely chosen as long as they are orthonomal. In [28], van Zyl 

pointed out that the following is a possible decomposition under the scattering reflection 

symmetry. First, we change the form of the measured covariance matrix to 
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where 

hhvv

hhhhvvvv

hhhhhvhv

hhhhC

σρ
σσζ

σση
σ

′=

′′=

′′=

′=

/
/2

 . (3.27)

The measured covariance matrix is then decomposed as 
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where, 
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and, 



 

 

26

( ) 22

*

2

*

1

41

2
1

2
1

ρζ

ρ
ζ

ρ
ζ

+−=Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+−
=

x

x

 . 
(3.30)

Note that 

1* −=⋅ xx 21  . (3.31)

So far the model has been derived purely mathematically, i.e., no physical constraints 

exist. Figure 3.7 shows the geometrical relationship between x1 and x2 on unit circle. 

Equation (3.31) tells us that the complex numbers x1 and x2 are on the straight line through 

the origin. If one is in the left half plane, the other is in the right half plane. Also note that if 

one is inside the unit circle, the other has to be outside the unit circle.  

( )21 xx

( )12 xx
Re

Im

1

1

 

Figure 3.7: Geometrical property of x1 and x2 on unit circle. The property in equation 
(3.31) determines this relationship. 

The physical model (3.23) and mathematical model (3.28) becomes  
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Comparing these two equations, one can easily find the following relations by ignoring the 

third term of both equations. 
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α

  (3.33)

If the real part of x1 is positive, x1 and x2 can be interchanged so that α is always in the left 

half plane in Figure 3.7. This corresponds to Freeman’s decomposition criterion which 

states that the scattering is double bounce if the real part of hhvvσ ′  is negative. However, his 

decomposition model sets a fixed number to α or β depending on the sign of hhvvσ ′ . This 

operation provides clear contrast between double bounce and ground scattering. On the 

other hand, our approach is expected to have more natural discrimination between double 

bounce scattering and ground scattering since it allows both parameters to be complex 

numbers. In this thesis, we call the decomposition technique described above Non-Negative 

Eigenvalue Decomposition (NNED). 

 Figure 3.8 shows the decomposition results using NNED where green, red, and blue 

are assigned to volume, double bounce, and ground scattering as in Figure 3.3. Note that 

the volume scattering term here is the same as Freeman’s technique in (3.2), hence 
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C-Band L-Band P-Band

 

Figure 3.8: Decomposition result using NNED are shown. The original images with 
three different frequencies are the same as in Figure 3.2. Color assignments 
are the same as Figure 3.2 as well. 

You can easily see that the volume component is significantly suppressed. Instead, surface 

scattering and double bounce scattering are emphasized in the L-band and P-band images, 

respectively. We can see some faint red in the middle of the Black Forest in the L-band 

image. The agricultural and urban areas do not show a difference between the two 

techniques. Also the P-band image still shows the volume scattering contribution around 

the river half way down the image. In order to see more clearly the suppression of the 

volume component, we calculate the following index for each pixel. 

( ) [ ]%100×
−

freeman

NNEDfreeman

x
xx

  (3.35)
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This index indicates how much the volume scattering power decreased under our 

decomposition technique. In other words, the figure shows how much the volume power is 

overestimated by Freeman’s decomposition. The value of this index applied to the L-band 

image is shown in Figure 3.9. 

 

Figure 3.9: Difference between the Freeman decomposition and NNED at L-band. 
Most of the forested area shows higher values due to overestimation of 
Freeman’s decomposition. 

The entire forested area shows about a 30 to 40% drop in volume scattering power but this 

is not pronounced in agricultural area. Note that the map shows good correlation with 

Figure 3.3 as we expected.  

We have introduced two decomposition techniques: Freeman decomposition and non-

negative eigenvalue decomposition. As shown, both techniques use a fixed volume 

scattering term given by (3.5) for Freeman’s decomposition and by (3.34) for NNED. As 

described in the next chapter, both models assume a uniform distribution of thin cylinders, 

as in the canopy of a rainforest. Clearly, this limits their applicability to scenes with a 

specific type of vegetation. In addition, these models show how to find the maximum value 

of x but this value is not necessarily optimal. It is not easy to choose the optimal value of x 

from our limited information. However, we have shown a better way to estimate x using a 
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generalized volume component. In the next two chapters, we generalize our volume 

scattering component first, and then suggest an adaptive decomposition technique using 

this generalized volume scattering component.  

 

3.4 Generalization of the Volume Scattering Term 
In the previous chapter, we used the following covariance matrix for volume scattering. 
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103/1
03/20
3/101

vC   (3.36)

First, we discuss how to obtain this expression as a volume term. Suppose we have an 

infinitely thin cylinder on a polarization plane, H0-V0, as in Figure 3.10.  

0V

0H

 

Figure 3.10: An infinitely thin cylinder on H0-V0 plane. The cylinder follows the vertical 
axis. 

Note that the cylinder exists along the vertical polarization axis, V0. The scattering matrix 

and backscatter cross section of this cylinder are calculated as 

2
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where  and  are normalized antenna effective length for transmitting and receiving 

respectively. The polarization plane can then be rotated as in Figure 3.10. 

trp0
r recp0

r

V
H

0V

0H

θ  

Figure 3.11: An infinitely thin cylinder on rotated H0-V0 plane 

The antenna effective lengths are rewritten as 

rectripp ii ,
cossin
sincos

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
rr

θθ
θθ

. (3.38)

One can plug this into (3.37). 
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Of course, the situation in Figure 3.11 is exactly same as the case of an oriented cylinder on 

a fixed polarization plane, H-V, as shown in Figure 3.12. 

V

H

θ  

Figure 3.12: An oriented thin cylinder on a fixed H-V plane 
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We obtain a scattering matrix for an oriented infinitely thin cylinder as 
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The covariance matrix follows immediately  
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This matrix expresses scattering from a single oriented thin cylinder. However, scattering 

from a natural volume layer should be close to that from many randomly oriented cylinders. 

This covariance matrix is expressed as follows 

( )∫=
π

θθ
2

0
0 dpCC   (3.42)

where ( )θp  is a probability density function (pdf) in terms of orientation angle. Note that 

the matrix has a slightly different form from the one used in the discrete scatterer model in 

(4.8) in the next chapter because of the difference in angle definitions.  

Three specific cases of these equations are shown as follows. The first case is to derive a 

covariance matrix for uniformly distributed cylinders. 

( )
π

θ
2
1

=uniformp   (3.43)

Figure 3.13 shows an illustration of uniformly distributed cylinders and a plot of the pdf in 

terms of orientation angle. 
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Figure 3.13: Uniform distribution of oriented thin cylinders 

The covariance matrix becomes 
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The portion inside 3 by 3 matrix of (3.44) is exactly same as that of (3.5) and (3.4). This 

means that we have implicitly assumed that volume layer consists of uniformly distributed 

oriented cylinders. This assumption may work well for complicated vegetation as in a 

rainforest.  

The second case is a cloud of thin cylinders distributed with a cosine squared 

distribution. The fact that cosine squared function has two peaks with π radian interval 

leads us to apply it to as a pdf. This pdf is applicable to any symmetrical shape such as a 

cylinder because if you have a peak probability at a certain angle, another peak probability 

exists at π radians from the first angle. The pdf is given by 

( ) θ
π

θ 2
cos_ cos1

=sqp . (3.45)

The illustration and plot of the pdf is in Figure 3.14. 
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Figure 3.14: Cosine squared distribution of a cloud of oriented thin cylinders 

In this case, the covariance matrix becomes 
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This matrix shows that the backscatter cross section of the vertical co-polarization term is 

five times larger than the horizontal co-polarization term. This is reasonable because the 

cosine squared distribution assigns more probability to vertical orientation than to 

horizontal orientation.   

If one assumes that uniform distribution is an extreme case of volume scattering, there 

should also be an extremely narrow distribution. The pdf should be a delta function: 

( ) ( ) 1,0
2
1

=−= mmpdelta πθδθ . (3.47)

Figure 3.15 shows its illustration and a plot of the pdf. 
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Figure 3.15: Delta function distribution of a cloud of oriented thin cylinders 

The covariance matrix is 
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Since the pdf assigns the probability only to the vertical orientation angle, the matrix shows 

that the backscattering power exists only in vertical co-polarization term. 

These examples provide us two extreme cases and one intermediate case, which are 

illustrated in Figure 3.16. 
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Figure 3.16: Illustration of various randomness of vegetated area. Larger randomness, 
medium randomness, and smaller randomness correspond to terrain covered 
by rainforest, coniferous forest, and cornfield vegetation types, respectively. 

One might think that an n-th power cosine squared function could be used to model 

any type of deviation of randomly oriented cylinders between the extreme cases of a delta 

function and a uniform distribution. In this thesis, we use an n-th power cosine squared 

distribution function (pdf) for p as shown in Figure 3.16.  
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Figure 3.17: n-th power cosine squared probability density function 
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This pdf has two peaks separated by a π radian interval as mentioned before. Also we can 

easily specify any degree of randomness by changing n.  For example, if one chooses n=0, 

the pdf becomes uniform distribution which has same probability for all angles. If one 

chooses infinitely large n, the pdf gets close to delta function with two peaks. Therefore the 

n-th power cosine squared function allows us to model the natural statistical properties of a 

cloud of cylinders. Note that the pdf can be applied not only to cylinders but also to any 

symmetric scatterer.  

It is inconvenient to directly use n to specify the degree of randomness, because the 

range of the parameter is not finite. Therefore we replace it with a parameter having a 

limited range.  

Since the pdf has two peaks, the standard deviation of the pdf should be calculated 

from -π/2 to π/2 radian with zero mean, θ0=0, as in Figure 3.18, to correctly measure the 

width of each peak. 
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Figure 3.18: Definition of standard deviation of n-th power cosine squared probability 

Then the standard deviation is calculated as 

density function 

( ) ( )∫−
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π θθθσ dnpn . (3.51)

Using the definition, standard deviations of uniform and delta function are easily shown to 

be 
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We can also numerically calculate equation (3.49) for any n between 0 and infinity as 

plotted in Figure 3.19. 
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Figure 3.19: Standard deviation of n-th power cosine squared distribution in (3.51) in 
terms of index number, n. The standard deviation is uniquely related to the 
index. Also the standard deviation has a limited range between 0 and 0.91, 
while the index can be infinitely large number. 

It is obvious that the standard deviation by equation (3.49) continuously and uniquely 

covers from delta function distribution to uniform distribution. Therefore the index number, 

n, can be completely replaced by the standard deviation of cosine squared distribution. The 

advantage to using this is that the parameter has limited range from 0 to 0.91 instead of that 

from 0 to infinity. 

We shall use the standard deviation to specify the randomness of the n-th power cosine 

squared pdf in the rest of this thesis. Even though this does not change the mathematical 

property of the pdf at all, the idea plays an important role in deriving a generalized 

covariance matrix, which is an essential tool to adaptively decompose scattering from 
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vegetated terrain. We shall use the word “randomness” rather than “standard deviation” 

because the former word is more appropriate to express the statistical property of physical 

vegetation. 

Starting with the covariance matrices of a cloud of dipoles for three distributions: 

uniform, cosine squared, and delta-function distributions, we will now attempt to find a 

general expression to cover any type of vegetation.  To achieve this, we first modify our 

covariance matrices for the three cases by introducing the concept of mean orientation 

angle. We then try to find a hidden pattern between these covariance matrices, and extend it 

to cover any type of randomness and mean orientation angles.  

Let us rewrite three distributions (uniform, n-th power cosine squared (3.50), and delta 

function distributions) with a specific mean orientation angle, φ. 
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Using these pdfs in (3.53), each covariance matrix previously shown in (3.44), (3.46), and 

(3.48) can be rewritten as follows. First, the case of uniform distribution in (3.44) becomes 
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where uniformσ means uniform distribution and comes from (3.52). Obviously, this is exactly 

same as (3.44) since the uniform distribution does not have any specific mean orientation 

angle. Next, we derive the case of the cosine squared distribution.  Note that this 

corresponds to a specific case of the second equation in (3.53) with n=1. So the pdf 

function has the form 
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The covariance matrix then becomes 
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(3.56)

where ( 1cos_ =nsqnσ  means standard deviations of n-th power cosine squared distribution 

with n=1. One can easily verify the matrix with two special cases: horizontal orientation 

angle and vertical orientation angle. 

( )( )

( )( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
===

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
===

101
020
105

8
11deg90

501
020
101

8
11deg0

cos_

cos_

nC

nC

sqn

sqn

σφ

σφ

  (3.57)

As we expected, each result shows a biased weight depending on a specified mean 

orientation angle. Note that the first one is exactly same as (3.46). Finally the case of delta 

function distribution is shown. 
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(3.58)

⎝

where σ  represents the standard deviations of the delta function distribution. We can 

verify this equation with the same special cases as for the cosine squared distribution in 

(3.57).  
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Both cases are physically acceptable. 

In order to find a hidden relationship between these three covariance matrices, (3.54), 

(3.56), and (3.58), they are summarized here after applying some trigonometric 

simplifications. 
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By defining, 
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the three covariance matrices can be compactly rewritten as 
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+==
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α

Remember that the first (uniform distribution) and the third (delta function 

distribution) equations are two extreme cases, and the second (cosine squared distribution) 

is one specific point between those two extreme cases, as in Figure 3.15. These equations 

suggest to us that it may be possible to express any type of distribution using only the third 

equation. It may be easier to understand this idea by first considering the delta function 

distribution, which corresponds to zero randomness. The second and third components of 

the delta function distribution decrease gradually as the randomness increases. When the 

randomness becomes equivalent to cosine squared distribution, the covariance matrix is the 

same as the second equation. The third component is gone and the second component is 

just half of that in the third equation. As the randomness continues to increase, the second 

component decreases further until finally it is also gone, which then corresponds to the 

uniform distribution as given by the first equation. Note that the component of uniform 

distribution, , is common to all cases. We have already shown that the randomness of 

the two extreme cases, the uniform distribution and delta function distribution, can be 

expressed as special cases of the cosine squared distribution as in (3.18). 

C

( )
( ) uniform

delta

n
n

σσ
σσ

==
=∞=

0
  (3.62)

where we indicate the randomness by ( )nσ . (3.61) is then rewritten as 

( )( )
( )( )
( )( ) γβα
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α

σ

σ
σ

CCCnC
CCnC

CnC

++==

+==
=∞=

20
1  . (3.63)

The idea described above is mathematically represented by 

( ) ( ) ( ) γβα σσσ CqCpCC ++=   (3.64)

where ( )σp  and ( )σq  are some functions of the randomness. The function p has a value 

between 0 and 2, and the function q has a value between 0 and 1. Next we try to identify 

those functions. Some values of ( )σp  and ( )σq  are shown in Table 3.1.  
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Table 3.1: Standard deviation, ( )σp , and ( )σq  in (3.64) for various n’s 

n 0 0.5 1 2 4 8 16 infinity
σ 0.9069 0.6837 0.5679 0.4444 0.3327 0.2424 0.1741 0.0000

p( σ ) 0.0000 0.6667 1.0000 1.3333 1.6000 1.7778 1.8824 2.0000
q( σ ) 0.0000 -0.0667 0.0000 0.1667 0.4000 0.6222 0.7843 1.0000

 

Red points of the Figure 3.20 show the plots of samples in Table 3.1. Since they vary 

smoothly with respect to randomness, we can fit polynomials to these calculated points.  
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Figure 3.20: Plot of two coefficients in (3.64), ( )σp  (blue line) and ( )σq  (green line). 
These curves are obtained by fitting analytically calculated points which are 
displayed by red asterisks. 

The following are 6th order polynomials which provide accuracy around 1e-13 on given n’s. 
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Figure 3.20 shows a plot of the fitted curves with given points. 

Using these two fitted curves, (3.64) can be used to model any type of vegetation in 

between the uniform and delta function distribution with any mean orientation angle. It  can 

easily be shown that the following more organized expressions are exactly same as (3.64). 

( ) ( ) VqpCdipole

rrrr
⋅++= γβασ   (3.66)

where  
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where T means transpose. Since the covariance matrix was derived for thin cylinders 

(dipoles), it is explicitly named as so. Note that each element of V
r

 is orthogonal each other.  

We have developed an expression for a cloud of thin cylinders with various 

randomness and mean orientation angles. The expression will now be generalized to any 

elementary scatterer.  

Our derivation of (3.66) starts from the scattering matrix of dipole, given in (3.69) 

⎟⎟
⎞
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⎛

=
10
00

dipoleS
⎠⎝

. (3.69)
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There are several more known scattering matrices as in Figure 3.21 [17]. 
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Figure 3.21: Scattering matrices for various elemental scatterers: Dipole (left and top); 
sphere, trihedral, or odd number of scattering (right and top); dihedral or 
even number of scattering (right and bottom); and circular (left and bottom) 
are displayed [17]. 

In order to encompass any type of elementally scatterers, we try to replace the 

scattering matrix (3.69) with a general scattering matrix 

⎟⎟
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⎛
=

bc
ca

S   (3.70)

where a, b, and c are any complex number. The only limitation is that the matrix still obeys 

the reciprocity theorem in which vhhv SS = . Starting with this generalized covariance matrix 

one can derive an equivalent expression to (3.70), which has the same  basic form as (3.66), 

( ) ( ) VqpC
rrrr

⋅++= γβασ   (3.71)

where p and q are exactly same as (3.65). However, (3.67) is modified as 
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(3.72)

The vector of orthogonal matrices in (3.68) becomes 
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These are still an orthogonal basis. The equations from (3.71) to (3.73) can be applied not 

only to scattering from a cloud of dipoles but also to that from a cloud of any type of 

scatterer.  As a way to validate the equation, we tried to derive its characteristic equation 

(see Appendix B). We eventually found that the eigenvalues are not affected by mean 

orientation angle, i.e., rotation regarding line of sight. Eigenvector based decomposition 

shown earlier in this chapter takes advantage of this property to remove the one dimension 

(the orientation angle) which is not related to intrinsic characteristics of the target.  

A way to determine unknown parameters directly from measured data is given in 

Appendix C. The derivation, however, is purely mathematical, so further verification is 

needed for solid interpretation. 

In the next section, the equation (3.66) will be added to our decomposition model, and 

a method of implementing the decomposition process will be shown with some results.  

 

3.5 Adaptive Non-Negative Eigenvalue 

omposition 
In this section, we add a generalized volume scattering model (3.66) to the NNED 

model, and explain how to find the optimal coefficients to decompose the scattering power 

from natural terrain. 
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Our decomposition model is still the same as (3.22). However, the volume scattering 

term in (3.14) should be replaced by the new one given in (3.66). Though we have ignored 

off-diagonal terms such as hhhvσ  and hvvvσ  in the previous model, they have to be taken 

into account here since the generalized model consists of all elements of the 3 by 3 matrix. 

Equation (3.22) can be explicitly rewritten as 

( ) ( ) ( ) othergdvm CzCyCxCC +++= βασφ,   (3.74)

where measured covariance matrix has a form 
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Once the mean orientation angle, φ , and randomness, σ , are given, the maximum limit for 

x is found as described previously. The double bounce and surface scattering terms do not 

affect the maximum value of x.  However, since the covariance matrices for the measured 

data and the volume layer are full 3 by 3 matrices, (3.20) cannot be used to derive the 

maximum value of x. If we can assume that the correlation terms between the co- and 

cross-polarizations are small relative to the other elements, the eigenvalues in terms of x 

still follow the same trend as shown in Figure 3.6. This is true in practice due to scattering 

symmetry. The eigenvalues decrease monotonically, so there exists some maximum value 

of x which minimizes all three eigenvalues subject to the constraint that they remain non-

negative. An analytical expression of the three eigenvalues derived from the full 3 by 3 

covariance matrix is extremely complicated, so we directly calculate them for various 

values of x and then numerically find the maximum value of x which makes all of them 

non-negative. The covariance matrix for eigenvalue decomposition then becomes 
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We have shown how to derive the maximum x as in (3.21) so far. However, it is not 

necessary that the x in (3.74) is always the maximum x. Here we try to find the best x in the 

range between 0 and the maximum x. From (3.32) and (3.16a), a power of  can be 

derived as follows.  
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where, xbest means the best x in the range. The best x makes the power minimize so that the 

condition for the x becomes 

( ) 30 x
q

xCP hvhv
bestother ==⇒=

σ
 . (3.78)

To avoid the negative eigenvalue, the best fit x should be 

maxxxbest =  . (3.79)

This means that our best fit x for this type of decomposition is exactly same as the 

maximum x. 

Equation (3.74) tells us that if the parameters perfectly match the measured data, the power 

in  will be zero. This implies that in reality we can find the optimal parameter set 

which minimizes the power in . The optimization is performed by varying the values 

of the randomness and orientation angle. A new algorithm, named adaptive NNED 

(ANNED), is proposed here and summarized in Figure 3.22.  

otherC

otherC
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Figure 3.22: Flowchart of adaptive NNED algorithm 

 

3.6 Experimental Results and Analysis 
To see how the ANNED algorithm shown in Figure 3.22 adjusts to various types of 

vegetation, its results will be compared with those obtained from NNED shown in Figure 

3.8. There is a difference between these two algorithms which might add complexity to the 
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⎠⎝

discussion. It exists in the operation (3.13). By assuming scattering reflection symmetry, 

we can drop the four off-diagonal elements as in (3.13).  The NNED algorithm uses this 

assumption as shown in Section 3.5.  ANNED, however, uses the full matrix to derive the 

maximum x, and then it drops those four elements to obtain parameters for double-bounce 

and surface scattering. This difference is illustrated here with an example. We have the 

following covariance matrix from the Black Forest image. 
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This becomes an input to the maximum x determination processing in ANNED in (3.80). 

When we assume that the randomness is cosine squared distribution and the orientation 

angle is zero, the covariance matrix component is 
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Then the maximum x for ANNED is calculated as 0.0156. On the other hand, assuming 

scattering symmetry the (3.80) is approximated for NNED as 
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Using the same volume component in (3.81), the obtained maximum value of x is 

calculated to be 0.0165. The maximum value of x from ANNED is 0.0009 smaller than 

from NNED. Thus the off-diagonal elements in (3.82) add extra constraints to the 

decomposition so that the range of x is constrained. It is important to note that the 

maximum x by NNED is not allowed in ANNED because of the difference arising from the 

symmetry approximation. To avoid this difference, we turn ANNED one step back to 
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where the orientation angle and randomness are simply fixed. We call this NNED’ (dash), 

and use this modified algorithm only to explore the applicability of ANNED. 

Figures 3.23 and 3.24 show the decomposition results given by NNED’ and ANNED, 

respectively. Green, red, and blue are assigned to volume, double bounce, and ground 

component, respectively.  

C-Band L-Band P-Band

 

Figure 3.23: Results of the NNED’ (dash) algorithm assuming a uniform distribution 
applied to three different wavelength images in Freiburg obtained by 
AIRSAR. Green, red, and blue are assigned to the volume, double bounce, 
and ground components. 
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C-Band P-BandL-Band

 

Figure 3.24: Results of the ANNED algorithm applied to three different wavelength 
images in Freiburg obtained by AIRSAR. Green, red, and blue are assigned 
to the volume, double bounce, and ground components. 

From the L-band results, one can easily recognize that much more of the volume 

component appears in the forested area in ANNED than in NNED’. The P-band results also 

show a similar tendency. Focusing on the river halfway down the image, ANNED assigns 

more volume component than NNED’ which means the effect of trunk-surface interaction 

due to topographic change shown in section 3.2 is less pronounced in ANNED. To more 

closely examine the applicability of ANNED, the remainder term of (3.74), Cother, is 

mapped in Figures 3.25 to 3.27 for the different wavelengths. In each figure, the result of 

ANNED is compared with those of NNED’, assuming two distributions: uniform and 

cosine squared with zero orientation angle. From the model, the smaller pixel value is 

interpreted as the better fit to the chosen parameters of the model.  
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ANNED NNED’ (cos2) NNED’ (uniform)

-35 dB -5 dB  

Figure 3.25: Cother of ANNED (left) for the C-band Black Forest image compared with 
those of NNED’ (dash) using two distributions: cosine squared (center) and 
uniform (right) distribution. Note that the cosine squared distribution has 
zero orientation angle. 
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ANNED NNED’ (cos2) NNED’ (uniform)

-35 dB -5 dB  

Figure 3.26: Cother of ANNED (left) for the L-band Black Forest image compared with 
those of NNED’ (dash) using two distributions: cosine squared (center) and 
uniform (right) distribution. Note that the cosine squared distribution has 
zero orientation angle. 
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ANNED NNED’ (cos2) NNED’ (uniform)

-35 dB -5 dB  

Figure 3.27: Cother of ANNED (left) for the P-band Black Forest image compared with 
those of NNED’ (dash) using two distributions: cosine squared (center) and 
uniform (right) distribution. Note that cosine squared distribution has zero 
orientation angle. 

This clearly shows that ANNED can find the best fit parameter set, and the effect is 

significant in the forested area. Hence, we can conclude that ANNED has good 

applicability to the variation of vegetated area, as we expected. However we still have some 

mismatch area in the urban and some in the forest. The mismatch in the urban area is 

expected because our decomposition model was developed for vegetated terrain. The two 

thick reddish lines from the top to the bottom in P-band image might be topography under 

the forest. Because our ground scattering term only assumes a slightly rough surface 

(which will be thoroughly discussed in the next chapter) the other scattering mechanisms 

from the terrain degrade the parameter estimation. Even though the L-band shows 

significantly better parameter fits than the other wavelengths, there are points with 

relatively high mismatch widely distributed in the forest. This mismatch leads us to suspect 

that the thin cylinder approximation in (3.69) may not be appropriate for L-band. However, 

further investigation is required to be sure.   
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Finally, we analyze randomness and mean orientation angle obtained from the 

ANNED decomposition process. Figure 3.28 shows the maps of these two parameters with 

their histograms from the C-band AIRSAR data.  
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Figure 3.28: Orientation angle (upper left) and randomness (upper right) maps derived 
from the C-band AIRSAR image. Histograms for each parameter are also 
displayed. 

Orientation angle is displayed from vertical (blue) to horizontal (red) orientation angle. 

Randomness varies from a delta function distribution (blue) to a uniform distribution (red). 

Since the randomness map shows mostly reddish pixels, the vegetation distribution of the 

corresponding area is estimated to be close to a uniform distribution. Since the forested 
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area of the image is widely covered with spruce, pine, and fir trees, the C-band wave may 

interact more strongly with their leaves and twigs, which usually have more complicated 

distribution than the other elements in a forested area. Even though the orientation angle 

map indicates mostly vertical orientation (blue pixels) in that area, this does not have 

physical meaning because the uniform distribution has no mean orientation angle. On the 

other hand, the agricultural area shows less randomness (yellowish color). This means that 

the incident wave interacts with crops which are expected to be more methodically 

distributed (less randomness) than the forested area. Results at L-band and P-band are 

shown in Figures 3.29 and 3.30, respectively. 
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Figure 3.29: Orientation angle (upper left) and randomness (upper right) maps derived 
from the L-band AIRSAR image. Histograms for each parameter are also 
displayed. 
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Figure 3.30: Orientation angle (upper left) and randomness (upper right) maps derived 
from the P-band AIRSAR image. Histograms for each parameter are also 
displayed. 

Both wavelengths show that the randomness in the forested area is higher than that in 

the urban or agricultural area for all bands. This agrees with our interpretation for C-band. 

Focusing on the forested area, randomness decreases with increasing wavelength. The 

histograms numerically show that the peak in the forested area goes down from 0.9 at C-

band to 0.8 at L-band, and finally reaches to around 0.7 at P-band. This is because the 

longer wavelengths can penetrate the volume layer, and are scattered by thick branches, 

trunks or the ground. Since the randomness at L-band and P-band are smaller than for a 

uniform distribution, the mean orientation angles are meaningful. Since the orientation 
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butes to that area. We need to further investigate the scattering mechanism in this 

area. 

 

xt chapter, and the decomposition techniques will be 

applied using the DSM in Chapter V. 

angles are mostly horizontal with some amount of randomness at L-band, the 24 cm 

wavelength signal mainly interacts with the branches. However, the interpretation of P-

band image in the forested area is not straightforward. Its randomness is significantly lower 

than L-band, while the orientation angle is almost identical to that of L-band image. If the 

orientation angle were vertical, we could conclude that the trunk-ground interaction 

contri

In this chapter, several decomposition techniques were introduced, and qualitatively 

verified. Due to insufficient ground truth data for the decomposition models, quantitative 

validation has not been done so far. However, we will attempt the quantitative validation of 

the models by introducing the Discrete Scatterer Model (DSM) in this thesis. The DSM 

will be thoroughly discussed in the ne
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C h a p t e r  I V  

Scattering Mechanisms of a Vegetated 

Surface 
 

This chapter will discuss modeling the scattering from a vegetated area. Each 

scattering mechanism occurring from natural terrain will be thoroughly discussed with the 

mathematical model for numerical simulations. This will be used for the quantitative 

validation of the decomposition models shown in the previous chapter. 

 

4.1 Overview of Modeling 
In order to express scattering from a vegetated terrain, two models are widely used. 

One is a radiative transfer model, and the other is a discrete scatterer model. Let us assume 

that there is a typical forest consisting of three components: the canopy, trunk, and ground.  
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Canopy

Trunk

Ground  

Figure 4.1: Illustration of a typical forest consisting of three components: the canopy, 
trunk, and ground. 

The radiative transfer theory was originally introduced by Chandrasekhar [29]. Ulaby 

et al. then successfully applied the concept to scattering from vegetated terrain [30]. The 

model is the so called Michigan Microwave Canopy Scattering (MIMICS) model, and 

assumes that a typical forest has a three-layer structure as shown in Figure 4.2. 

Canopy Layer

Trunk Layer

Ground Layer

0=z

dz −=

( )tHdz +−=

z
dz
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Figure 4.2: Three-layer structure for the MIMICS vegetation model 
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Based on the law of conservation of energy for the infinitely thin slab dz shown in the 

figure, we can form the following differential equations to express the net intensity for each 

of the upward and downward directions.  

( ) ( ) ( )

( ) ( ) ( )zFzIzId

zFzIzI
dz
d

mm
m

m

mm
m

m

,,,,,,

,,,,,,

φμφμ
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−−
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dz

  (4.1)

where 

( )θπμ
θμ

−=−
=

cos
cos

  (4.2)

m is either of the canopy or trunk, and + and – indicate the upward and downward 

components, respectively. I represents the intensity, and F is the source function. κ is the 

attenuation coefficient which will be discussed in later in this chapter. θ and φ are angles 

corresponding to those in Figure 2.1. The second term on the right-hand side expresses the 

total incident intensity from all directions onto the slab in the specific direction, and is 

reduced by its attenuated intensity. The left-hand side shows the net intensity. These 

differential equations are integrated in terms of z with four boundary conditions: canopy 

top, canopy bottom (upward), canopy bottom (downward), and ground level. 
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where, 
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Rv and Rh are the well-known Fresnel coefficients which will be discussed in (4.38). I0 is 

the total incident wave with incidence direction of θ0 and φ0. The backscatter cross section 

is then obtained as 

( ) 000
0 cos,4 θφθπσ pqpq T=  (4.5)

where p and q are either h or v, and the 2 by 2 transformation matrix ( 00 , )φθT   is obtained 

from 

( ) 000 , ITI s φθ= . (4.6)

The equations are iteratively solved depending upon the number of times that the incident 

wave changes its direction due to particle interaction. The zero-th-order solution has no 

change direction so the solution only takes into account extinction. This is then employed 

to solve for the first-order solution in which the scattered wave is a sum of the five cases: 

direct particle scattering, direct ground scattering, particle-ground scattering, ground- 

particle scattering, and ground-particle-ground scattering. Though there is no limitation of 

this order, the calculation complexity is generally reasonable only up to the second order, 

which corresponds to two changes of direction by particle interaction. The advantage of 

using MIMICS is that taking into account multiple scattering leads to higher accuracy than 

using the discrete scatterer model. Conversely, it does not provide physical insight because 

of its complexity.  

Durden et al. proposed the Discrete Scatterer Model (DSM) in 1989 [16]. The model 

assumes the model for vegetated terrain as shown in Figure 4.3. 
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Canopy

Trunk

Ground  

Figure 4.3: Illustration of the discrete scatterers of a forested terrain 

The model does not have a layer structure, instead discrete scatterers. The multiple 

scattering is ignored by assuming that the scatterers inside the vegetation are usually 

sparsely distributed so that the scattered wave is well attenuated through multiple 

scatterings. With this assumption, the model is expressed by the only five distinct scattering 

mechanisms as illustrated in Figure 4.4: the backscatter from canopy, backscatter from 

trunk, backscatter from the ground, interaction between the ground and trunk, and 

interaction between the ground and canopy.  

Canopy

Trunk

Ground

1C 2C 3C 4C 5C

 

Figure 4.4: Scattering mechanisms for DSM 

The total power at the receiver is simply expressed as a sum of the power from each 

scattering mechanism. The model is significantly simpler than the MIMICS model and 
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yields physical insights. However, the accuracy is not as good as that of MIMICS because 

it ignores multiple scatterings.  

In this thesis, we introduce a scattering model for vegetated terrain to validate our 

proposed algorithms, such as decomposition technique shown in the previous chapter and 

the soil moisture inversion algorithms shown in Chapter IV. It is required that the model be 

simple enough but with reasonable accuracy so that we can easily understand the behavior 

of our algorithms. Therefore, DSM is adopted for the baseline scatter model for the 

vegetated terrain. 

 Specific characteristics of the scatter from the canopy part are highly dependent upon 

the wavelength of the incident wave. For example, if one uses the shorter wavelength C-

band (6 cm), the wave interacts with leaves and twigs, whereas longer wavelengths such as 

L-band (24 cm) penetrate the canopy layer for the most part. At L-band, the wave interacts 

mostly with branches [31].  

Many shapes, such as a disc or blade, have been proposed for the discrete scatterer in 

[32, 17]. However, in this thesis, a dielectric cylinder in various sizes is used to present 

natural properties of the scatterers due to the simplicity in the scattering calculation. There 

are two reasons. First, a simple cylindrical shape avoids additional complexity. Secondly, 

the shape should be a good model for a trunk, branch, and twig [16]. So the cylinder is 

good enough for the calculation. The model may not be appropriate for shorter wavelength 

such as C-band or X-band (3 cm) if the targeted terrain includes round-shape leaves. If this 

is the case, one may need to add a disk-shape elemental scatterer. Nonetheless, the model is 

still valid for these shorter wavelengths if the leaves have a thinner shape.  

 

4.2 Scattering from an Oriented Cylinder 
There are many publications describing scattering from an arbitrarily oriented cylinder, 

as in [33, 34, 35]. They usually start by solving Maxwell’s equation for scatter from an 
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oriented infinitely long cylinder, and then move onto a case of a finite cylinder. The 

scattering from this is derived using Huygen’s principle, in which the infinite cylinder is 

considered as a cluster of many small antennas, and each contribution is then synthesized. 

The idea uses exactly the same principle as an antenna array. In this thesis, the cylinder 

scattering model given in [17] is adopted as a baseline model because it is widely used and 

more rigorous, including edge contributions, the surface wave, and the interaction between 

them. 

We will use two different coordinate systems to treat the scattering problem. One is a 

global coordinate system used to describe the incident and scattered wave vectors. The 

other is a local coordinate system to describe the scattering matrix of the cylinder. Once 

these wave vectors and the orientation angle of the cylinder are defined in the global 

coordinate system and transformed to the local coordinate system, the scattering matrix of 

an oriented cylinder can be calculated in its own local coordinate system. Then the power at 

the receiver is transformed back to the global coordinate system.  

The global coordinate system can be shown using the FSA convention of Figure 2.1. 

The local coordinate system is defined in Figure 4.5. The z’ axis is along the cylinder’s 

length direction.  
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Figure 4.5: Local coordinate system x’y’z’ of an oriented cylinder 

It is mathematically expressed as 
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prr  is  where 
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Since the incident wave is defined in x’-z’ plane, prr  and y’ have to be orthogonal.  
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0=′⋅ yrp
r   (4.9)

pζ  can be calculated under this condition. 
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With these definitions, the scattering matrix from an oriented cylinder can be expressed as 
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where a and l are the radius and length of a cylinder, respectively, and ε is the dielectric 

constant. Also ˜ φ  is the angle shown in Figure 4.3. 
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Figure 4.6: Geometry of the angle φ~ defined in (4.11) 

This can be calculated as 

is ζζφ −=
~ . (4.12)

Bessel functions are calculated for a positive integer v. 
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Since the scattering matrix above is stated using the coordinate system defined in Ulaby et 

al.’s book, backscattering and forward scattering in our coordinate system should be 

transformed using the transformation matrices defined in section 2.1. 
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Using the scattering matrices in (4.11), simulation results with different orientation angles 

and different wavelengths are demonstrated as follows. Fixed simulation parameters are 

shown in Table 4.1. 

Table 4.1: Fixed simulation parameters of scattering from an oriented cylinder 

θ i  (deg.) φ i  (deg.) a  (cm) l  (m) ε
40 0 10 1 13+j5

 

Also Table 4.2 shows specific simulation cases. 

Table 4.2: Cases for simulations of scattering from an oriented cylinder 

case ψ (deg.) δ (deg.) λ  (cm)
4-1-1 0 0 24
4-1-2 10 180 24
4-1-3 0 0 67
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Figure 4.7: Scattering from an oriented cylinder for the case 4-1-1: the 3D plot (left) 
and cross section at φs =0 (right) 

Figure 4.7 has a maximum reflection at θs=140 degrees and φs=0 degrees. This 

corresponds to a specular reflection from the incidence angle θi =40 degrees. Similarly, the 

maximum reflection occurs at θs=140 degrees and φs=180 degrees. The scattering 

corresponds to transmission, and is important when considering the attenuation effect as 

shown in the next chapter. Comparing the power at θs = 40 degrees and φs=0 degrees with 

that at θs =140 and φs=0, it is clear that the forward scattering is much stronger than 

backscattering. This characteristic plays an important role understanding a contribution to 

double bounce scattering in a forested area, as shown in a later chapter. 
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Figure 4.8: Scattering from an oriented cylinder for the case 4-1-2: the 3D plot (left) 
and cross section at φs =0 (right) 

Figure 4.8 shows the results with the same parameters as the previous simulation but 

with varying the orientation angle of the cylinder. The orientation angle makes the 

incidence angle to the cylinder close to orthogonal. So the incidence angle to the cylinder 

becomes 50 degrees instead of 40 degrees. Therefore the specular angle for this oriented 

cylinder is now θs=120 degrees and φs=0 degrees, as shown in the figure. 
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Figure 4.9: Scattering from an oriented cylinder for the case 4-1-3: the 3D plot (left) 
and cross section at φs =0 (right) 

The last case is shown in Figure 4.9. The same parameters are used as in the first case 

except with varying wavelength. The longer wavelength makes the total scattering power 

much less than that in the previous case. This is because the 67 cm wavelength penetrates 

the cylinder (10 cm radius and 1 m length).  

 

4.3 Scattering from a Cloud of Cylinders 
In the previous section, we discussed how to calculate a scattering from arbitrarily 

oriented cylinder. Now we move on to scattering from a cloud of cylinders, as in Figure 

4.10. 
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Figure 4.10: Scattering from a cloud of cylinders 

We consider a layer filled with cloud cylinders that are oriented following a statistical 

distribution, p(ψ,δ). Each cylinder reflects back to the receiver so that the total receiving 

power is obtained by averaging all of them. A mathematical expression of the model can be 

derived from equation (2.11). 
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where ρ is the density of cylinders. As discussed in 3.4, we use the n-th power cosine 

squared distribution, and apply it to express the two-dimensional pdf, p(ψ,δ), as 

( ) ( ) ( )

 

δψδψ 00, ppp . (4.16)=
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Note that multiplying by sinψ is important. This works as a regulator of the scatterer 

population to keep the same density on any part of the surface of a virtual sphere. One 

might think that there is no backscatter when all cylinders stand up perfectly (any ψ=0). 

However, the equation guarantees that there will be the backscatter, no matter what ψ is, 

because the pdf becomes delta function. 

Now attenuation of the electromagnetic waves by the volume layer should be 

considered. As in many textbooks, such as [35, 36, 17], this is based on the optical theorem. 

Let us assume a layer with statistically distributed cylinders as shown in Figure 4.11.  
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Figure 4.11: Illustration of extinction by a cloud of cylinders 

The coefficients can be described in a form of the following scattering matrix. 
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The incident wave is disturbed by the cylinders, but some of the incident power 

survives and exits the layer. The optical theorem derives the attenuation coefficient using 

the scattering in the incidence direction. Therefore more interaction between the wave and 

cylinders causes a higher extinction rate . Using this idea,  is given by pp
extα fwd

ppS

( ) ( ) δψψδψδψπφθρ
π π

∫ ∫ ==
2

0 0
sin,,,, ddpSS sipp

fwd
pp . (4.18)

To apply the theory to our physical layer structure, we can categorize the five 

scatterings in Figure 4.3 into the following three types.  

Type I: Scattering from the branch layer (C1) 

Type II: Scattering from the trunk layer (C2) 

Type III: Double bounce and surface scattering (C3, C4, and C5) 

Each type has distinguishing characteristics for their calculations as follows. 

 

4.3.1 Attenuation Type I: Scattering from the Branch Layer 
From (2.8), the voltage measured by a polarimetric radar system for a single branch in 

a layer is expressed as 

( )T
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where  and are the electric fields of transmitting and receiving, respectively.   is 

the scattering matrix of the branch layer. The attenuation coefficient in (4.17) affects not 

only the incident wave but also the scattered wave so that 

trE0

r
recE0

r
bS0

0E
r

should be replaced by 
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Then the voltage can be rewritten as 
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The updated scattering matrix with attenuation and the associated covariance matrix are 
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Finally the covariance matrix from the branch layer with the attenuation is obtained with 

the layer height Hb. 
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This is also written as 
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Since the radar cross section is not a function of z, hhhh component, for example, can be 

expressed as 

∫∫ =
bb H

b
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H
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b
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σσ . (4.25)

Each term is then calculated using 
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These equations tell us that the covariance matrix can be obtained by calculating the radar 

scatter cross section portion and the attenuation coefficient separately. 

4.3.2 Attenuation Type II: Scattering from the Trunk Layer 
The attenuated incident wave from the branch layer now reaches to the trunk layer, and 

this layer also attenuates the wave power. From the scattering geometry in Figure 4.12, the 

attenuation matrix of the branch and trunk layers are expressed as 
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Figure 4.12: Scattering geometry from the trunk layer with extinction 

The extinction by the trunk layer is a function of the layer depth. The covariance matrix of 

a scatterer from the trunk layer is derived from its scattering matrix with attenuation. 
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The covariance matrix of the trunk layer is 
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Scatt

Since the attenuation coefficient of the branch layer is a constant, the calculation for hhhh 

polarization is as follows. 
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While Type I has only  as a constant, Type II has one more constant, . The full 

covariance matrix is obtained similarly using (4.26). 
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4.3.3 Attenuation Type III: Double Bounce and Surface 

ering 
The scatterings of this type penetrate both the branch and trunk layers. Now the 

attenuation matrix for each layer is expressed as 
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The covariance matrix of a single element is expressed as 
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where x is double bounce or surface. The covariance matrix for a cloud of scatterers 

becomes 
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4.4 Scattering from a Surface 
Surface scattering is characterized by two parameters: dielectric constant and 

roughness.  The dielectric constant is strongly related to soil moisture (see 4.6). If a bare 

surface is observed and its roughness property is known, we can directly infer the dielectric 

constant from the backscatter cross section. However, it is difficult to have accurate 

knowledge about roughness for a specific area in practice so that the estimation will be 

degraded depending on the degree of accuracy. The roughness is characterized by height 

deviation and correlation length, as shown in Figure 4.13.  
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Figure 4.13: Parameters characterizing surface roughness 
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The figure shows that there are two local areas separated in the distance of r. Both 

areas have the same height deviation, which is also called root mean square (RMS) height. 

The height is mathematically written as 

( ) ( )yxyxh ′′′== ,, 22 ξξ  (4.35)

where  denotes an ensemble average. Also the surface correlation function is defined by 

the separation r between two independent local areas. This characterizes the similarity of 

the surface pattern of different two areas. 
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Instead of the correlation function, the following roughness spectrum function is also used. 

It is just a Fourier transform of (4.36) as 
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where the 0th order Bessel function is as given in (4.14), and the other parameters are 
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kx and ky are the wave numbers in the x direction and y direction, respectively. The 

following Gaussian and exponential spectrum functions are most commonly used for the 

roughness spectrum function. 
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where l is the correlation length. A rougher surface generally has higher RMS height and 

shorter correlation length.  

There are the two popular surface scattering models: the small perturbation model 

(SPM) [2] and the integral equation model (IEM) [3]. The SPM appeared in 1957 and has 

been widely validated by many researchers [37]. A mathematical expression of the first-

order SPM is shown below. 
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where p and q are either of h or v.  

The IEM came about more recently in 1991, and is expressed as follows. 
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where μ is the permeability and kz is a wave number in z direction. Fresnel coefficients are 

given as 
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Under the small perturbation approximation where kh is much less than 1, the model 

becomes identical to the SPM. Also with a rougher surface (kh>3 reported in [3]) the 

scattering is dominated by the Kirchoff term (shown in the next section) and is in 

agreement with the geometric optics model. Clearly, one of the main advantages of the 

model is its wider applicability than that of SPM. We, however, adopt SPM as the surface 

scattering model for DSM because the full covariance matrix of IEM has not been derived 

yet. In order to expand the applicability of SPM to higher roughness, we may introduce the 

concept of statistical surface tilt. However, all numerical calculations in this thesis use SPM 

for a surface scattering component 
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Topographical undulation affects the incidence and scattered angles of the surface 

scattering, and makes the backscatter cross section change drastically. The frequency of the 

surface undulation is assumed to be much lower than the limitation of SPM. As with the 

angle definitions for an oriented cylinder, the surface orientation angle is defined in Figure 

4.14. 
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Figure 4.14: Surface undulation and its statistical definition. A Gaussian distribution is 
assigned to the range angle, ψ, while a uniform distribution is assigned to 
azimuth angle, δ. 

Note that the pdf for angle ψ is a Gaussian distribution instead of a cosine squared 

distribution used for the cylinder. From these angle definitions, a tilted SPM, also known as 

a tilted Bragg surface model, can be expressed as follows. First, the voltage of nontilted 

surface scattering is written in scattering matrix form. 
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Then the transmitted and received electric fields are transformed with the surface tilt. These 

coordinate transformations are derived from the geometry in Figure 4.5 and Figure 4.14. 
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(4.46)

ζ  comes from equation (4.10) and θ ′ is obtained by 

ψδψδψθ cossinsincossincos zyx rrr ++=′ . (4.47)

The voltage from the tilted surface should be 

( ) trgTrecTtrgTrec EDSDEEDSEDV isistilt 0000

rrrr
== . (4.48)

Then the scattering matrix and covariance matrix for the tilted surface become 
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Finally the covariance matrix with the attenuation effect is derived using (4.31) as 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

attnotiltg
vvvv

t
vv

b
vv

attnotiltg
vhvv

t
vv

t
hh

b
vv

b
hh

attnotiltg
vhvv

t
vv

t
hh

b
vv

b
hh

attnotiltg
vhvh

t
vv

t
hh

b
vv

b
hh

attnotiltg
hvvv

t
vv

t
hh

b
vv

b
hh

attnotiltg
hvvh

t
vv

t
hh

b
vv

b
hh

attnotiltg
hhvv

t
vv

t
hh

b
vv

b
hh

attnotiltg
hhvh

t
vv

t
hh

b
vv

b
hh

attnotiltg
hvvv

t
vv

t
hh

b
vv

b
hh

attnotiltg
hhvv

t
vv

t
hh

b
vv

b
hh

attnotiltg
hvvh

t
vv

t
hh

b
vv

b
hh

attnotiltg
hhvh

t
vv

t
hh

b
vv

b
hh

attnotiltg
hvhv

t
vv

t
hh

b
vv

b
hh

attnotiltg
hhhv

t
vv

t
hh

b
vv

b
hh

attnotiltg
hhhv

t
vv

t
hh

b
vv

b
hh

attnotiltg
hhhh

t
hh

b
hh

g
tilt

TTTTTT
TTTTTTTT
TTTTTTTT
TTTTTTTT

TTTTTTTT
TTTTTTTT
TTTTTTTT
TTTTTT

C

__44*__33

__33__2222

__33__2222

__2222__33

*__33*__2222

*__2222*__33

__2222*__33

__33__44

σσ
σσ
σσ
σσ

σσ
σσ
σσ

σσ

. (4.50)

This equation tells us that the covariance matrix is obtained by calculating surface 

backscattering first and then multiplying by the attenuation coefficients. However, there are 

some cases where (4.40) cannot be applied such as an oriented cylinder. For physically 

realizable cases, the dot product of a vector expressed by ir
r  in (4.8) and a vector grr  in 

Figure 4.15 has to always be positive. 
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Figure 4.15: Vector normal to the tilted plane 

The condition is  

0≥⋅ gi rr rr . (4.51)

Therefore, the integration in (4.49) is only valid when equation (4.51) is satisfied. 

 

4.5 Interaction between the Cylinders and the 

Surface 
The interaction between the cylinders and a surface is also known as the double 

bounce reflection. For this type of scattering, we are interested in forward scattering instead 

of backscattering. It is well known that rough surface scattering consists of coherent and 

incoherent parts [31]. The coherent part is equivalent to the specular reflection from a 

smooth surface, also called facets scattering. The incoherent part is equivalent to the Bragg 

scattering, as discussed in the previous section. Using the surface parameters shown in 

Table 4.3, Figure 4.16 shows these two types of scatterings. 
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Table 4.3: Surface parameters for Facets and Bragg scatterings 

θ i

(deg.)
λ

 (m)
h
(m)

l
(m) ε

40 0.06 0.001 0.01 16+j1  
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Figure 4.16: Facet (left) and Bragg (right) scatterings. Facet scattering has an obvious 
peak around its specular angle (140 deg). 

Facet scattering clearly shows a peak at specular reflection around 140 degrees while 

the Bragg scattering does not have a similar peak. It is reasonable for the double bounce 

scattering to take into account only specular scattering. This drastically reduces our 

computational cost compared with calculating for over all scattering angles. In addition, the 

simulation results of the cylinder scatterings in Figures 4.7, 4.8, and 4.9 clearly show that 

the maximum scattering occurs at the specular angle. Therefore we treat the following four 

cases shown in Figure 4.17. Note that the surface tilt is just ignored for simplicity. 
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Figure 4.17: Assumed double bounce scattering cases: bistatic at cylinder followed by 
specular on the ground (upper left), specular on the ground followed by 
bistatic at cylinder (upper right), specular at cylinder followed by bistatic on 
the ground (bottom left), and bistatic on the ground followed by specular at 
cylinder (bottom right) 

There are two commonly used facets scattering models: the Kirchoff model [16] and 

the physical optics (PO) model [17]. Since an infinitely large scattering area on the ground 

is assumed by PO, the Kirchoff model will be used for the double bounce scattering model 

in this thesis. The scattering area from the vegetated terrain is usually so limited by various 

plants such as trunks or grasses. The model is expressed in [26, 36] as 
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where Rx is the Fresnel reflection coefficient in (4.44). α is an angle difference between θi 

and θs in the incidence plane as in Figure 4.18, and β is an angle in the out-of-incidence 

plane.  

sθ
iθ

iθ

α

x

z

b  

Figure 4.18: Definition of the angle α 

Note that the incidence angle always lies in x-z plane. In this thesis, we ignore 

scattering out of the incidence plane to avoid further complexity. As in [26], this is a 

reasonable approximation for a first-order model. Therefore β is set to zero. The last 

parameter to be considered is the facet width b. We assume that the optimal b maximizes 

multiple scatterings between a cylinder and the ground. To find this solution, a top-hat 

reflector (as in [38]) should be taken into account. The geometry of a top-hat reflector is 

shown in Figure 4.19,  
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Figure 4.19: Geometry of the top-hat reflector 

and the backscatter cross section is obtained in the following form. 

2

2

sin8tan
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sin8tan
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L
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L
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⋅=<
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⎞
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θ
λ
πσθ

θ
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λ
πσθ

  (4.53)

We are interested in a condition on the facet width that maximizes scattering. 

θtanLb =   (4.54)

Finally the surface scattering matrix is 
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. (4.55)

Note that this matrix is expressed in the FSA convention. 

To express the double bounce scattering matrix between a cylinder and the ground, 

two parts of the wave propagation should be considered. Figure 4.20 shows one path of the 

wave propagation from cylinder to ground. 
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Figure 4.20: Geometry of double bounce scattering from a cylinder to the ground 

The scattering matrix for this case is 
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On the other hand, Figure 4.21 shows another path of wave propagation from the ground to 

a cylinder. 
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Figure 4.21: Geometry of double bounce scattering from the ground to a cylinder 

The scattering matrix for this path is 

⎟
⎟

⎠
⎜
⎜

⎝

=
⎟
⎟

⎠
⎜
⎜

⎝
⎟
⎟

⎠
⎜
⎜

⎝

−=
⎟
⎟

⎠
⎜
⎜

⎝ i

i

i

igBcB

s

s

v
hS

v
hSS

v
h

100
010

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛−

⎟
⎞

⎜
⎛ i

cg
i

db
s nnn

2

001

dbcggcdb CSSS 0
22

0 ⇒+=

. (4.57)

The scattering and covariance matrices between a cylinder and the ground can be found by 

taking an average of these two scattering matrices. 

  (4.58)
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Now the total covariance matrix without the attenuation coefficients is obtained by the 

following operation. 
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Finally the expression becomes  
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However, we cannot achieve a complete specular scattering at the cylinder at some 

orientation angles. There is a possible range for the incidence and orientation angles, so we 

conduct the operation only in that range. The cylinder orientation angle, ψ’, within the 

incidence plane (x-z plane) is shown in Figure 4.22. 
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Figure 4.22: Orientation angle, ψ’, within the incidence plane 

It is defined as 

ψδψ tancostan ==′
z

x

r
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r

. (4.61)

For the calculation of the specular scattering at cylinder (Case2A and 2B in the Figure 

4.17), there are two cases we need to consider as shown in Figure 4.23. 
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Figure 4.23: Two cases for the different azimuth orientation angle ranges 
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k

In the Case I(a), for example, if the orientation angle, ψ’, is slightly larger than the 

incidence angle, θi, the specular scattering happens behind the cylinder so that it does not 

come back to the sensor. We also take into account only the forward scattering on the 

ground. The angle, θ , for each case in the figure is expressed as 

Case I(a): ( )ψθπθ ′−−= ik 2
 

Case I(b): ( ){ }ψπθπθ ′−+−= ik 2
 

Case II(a): ( )ψθπθ ′+−= ik 2
 

Case II(b): ( ){ }ψπθπθ ′−−−= ik 2
. 

(4.62)

For all cases, the scattered angles become 

 0,2 =+= siks φθθθ . (4.63)

The possible incidence and scattered angle ranges are  

Case I(a): πθπθψ ≤<<′ si 2
,  

Case I(b): πθππθψ ≤<+<′ si 2
,

2
 

Case II(a): πθππθψ ≤<<+′ si 2
,

2
 

Case II(b): πθππθψ ≤<>+′ si 2
, . 

(4.64)

(4.59) and (4.60) are calculated with angles satisfying these conditions. 
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4.6 Sensitivity Study  
Using DSM, we will see how the backscatter cross section is affected by various 

physical parameters: the soil moisture, surface roughness, and vegetation water content. In 

this section, σhhhh, σhvhv, and σvvvv are simply called HH, HV, and VV, respectively. 

There are several fixed parameters in Table 4.4. To make the situation simple, we 

assume the surface has no topography. 

Table 4.4: Fixed parameters for the sensitivity simulation 

θ i

(deg.)
λ

 (m)
L

 (m)
h layer

 (m)
a

 (m)
l

(cm)
ψ 0

(deg.)
σ δ

ρ
(cylinders/m3)

0-90 0.24 0.5 0.5 0.002 5 0 0.91 900
 

hlayer is a layer height, ψ0  is a mean orientation angle, and σδ is the randomness in the angle 

δ. 0.91 corresponding to a uniform distribution. The variables such as the soil moisture Mv, 

vegetation water content Wc, surface roughness kh, and randomness of the vegetation are 

assigned in Table 4.5. 

Table 4.5: Cases of the sensitivity simulation 

case M v  (%) W c  (kg/m2) kh σ ψ

baseline 10 1.24 0.26 0.56
4-6-1 30 1.24 0.26 0.56
4-6-2 60 1.24 0.26 0.56
4-6-3 10 0 0.26 0.56
4-6-4 10 2.54 0.26 0.56
4-6-5 10 1.24 0.50 0.56
4-6-6 10 1.24 1.00 0.56
4-6-7 10 1.24 0.26 0.30
4-6-8 10 1.24 0.26 0.91
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⎩ vv

vvsoil

Note that σψ is assumed to have a small randomness distribution (σψ=0.30), cosine squared 

distribution (σψ=0.56), or uniform distribution (σψ=0.91). 

The real part of the dielectric constant of dry sand is about 3, while it is 80 for water. 

Soil moisture is clearly related to its dielectric constant, and generally they are 

characterized by a nonlinear relationship.  Wang et al. proposed an empirical model in [39]. 

The model was derived based on measurements at 1.4 and 5 GHz. If we assume a typical 

loam soil, the expression is given by 

⎨
⎧

>+−
<++

=
%225.788216.6

%2205.1472.225.3 2
vvv

MforM
MforMM

ε .  (4.65)

Hallikainen found a relationship between the real part of the dielectric constant of the soil 

and its moisture in percentage [40] as  

28015.1019925.222575.2 MM ++=ε . (4.66)

This empirical model assumes a typical loam soil, and is derived from measurements from 

1.4 to 18 GHz. The expression is applicable at 1.4 GHz. Dobson et al. also reported a semi-

empirical model with a more complicated form [41, 42]. The model takes into account a 

relationship between the relaxation time for the water and temperature. These algorithms 

are expressions of the dielectric constant for the given soil moisture. Conversely, the soil 

moisture can be calculated from a measured dielectric constant [43] as follows.  

32 00000503.0000586.00280.00278.0 soilsoilsoilvM εεε +−+−=   (4.67)

In this thesis, we use the model proposed by Hallikainen to relate the dielectric constant to 

the soil moisture, and also use Brisco’s model for the reverse case because they have 

similar characteristics between the dielectric constant and soil moisture, as pointed out in 

[22]. 
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We also have an expression to relate the dielectric constant of the vegetation to its 

water content percentage [44] by 
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where f is the frequency in GHz, and  
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where S is the salinity of the vegetation. It is defined as the total mass of solid salt in grams 

dissolved in 1 kg of solution and is expressed in parts per thousand on a weight basis. In 

this chapter, the salinity is assumed to be zero for the simple calculation. 

Once vegetation water content percentage is obtained, it can be transformed to the 

weight per area as follows. 

[ ] [ ]%1000/ 22
clayerc WLhamkgW ρπ=   (4.70)

 

First, the soil moisture contribution to the radar backscatter cross section in terms of 

the incidence angle is shown in Figures 4.24, 4.25, and 4.26. In each legend, DB_xy means 

a double bounce scattering for the xy polarization. 
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Figure 4.24: Result of the baseline parameters with Mv=10%, Wc=1.24 kg, kh=0.26, 
σψ=0.56 
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Figure 4.25: Result of the case 4-6-1 with Mv=30%, Wc=1.24 kg, kh=0.26, σψ=0.56 
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Figure 4.26: Result of the case 4-6-2 with Mv=60%, Wc=1.24 kg, kh=0.26, σψ=0.56 

Both the backscattering from the surface and double bounce increase with soil 

moisture, while the backscattering from the volume stays the same. Since the soil moisture 

raises the scattering power from the ground, it also increases the double bounce scattering 

within the same volume layer. The co-polarization responses of the total power are a 

mixture of the three scattering mechanisms depending on the incidence angle. The cross 

polarized response, however, comes from contributions by the volume scattering only. This 

implies to us that the cross polarization can be used to estimate the biomass. Another 

important feature is the double bounce scattering in Figure 4.24. Its VV polarization 

response shows a distinct drop at around 65 degrees, while HH does not. This is due to the 

well known Brewster’s angle of the ground [45]. 10, 30, and 60% of soil moisture 

correspond to 67, 76, and 82 degree Brewster’s angles, respectively, as shown in Figures 

4.24 to 4.26. At the smaller incidence angle, we have another drop of around 20 degrees, 

even though it is not as clear. This is due to the Brewster’s angle of the cloud of the 
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cylinders. The important thing is that VV is affected by two Brewster’s angles, and as a 

consequence VV can be much smaller than the HH at the incidence angle between the two 

Brewster’s angles. This becomes a critical issue on the dry surface. For example, at 40 

degrees in Figures 4.24 and 4.26, VV on the wet surface (Figure 4.26) is about 2dB while 

the one on dry surface (Figure 4.24) is around 6 dB. The dry surface is more affected by the 

Brewster’s angles.  

Figures 4.24, 4.27, and 4.28 show the contribution of the vegetation water content to 

the backscatter cross section in terms of the incidence angle. 
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Figure 4.27: Result of the case 4-6-3 with Mv=10%, Wc=0 kg, kh=0.26, σψ=0.56 
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Figure 4.28: Result of the case 4-6-4 with Mv=10%, Wc=2.54 kg, kh=0.26, σψ=0.56 

As expected, the volume scattering is dominant at the higher vegetation water content, 

and the total scattering increases as the amount of vegetation increases. The surface 

scattering is diminished due to the higher extinction caused by strong interaction with the 

volume component. Though the attenuation coefficient also affects the double bounce 

scattering, it is not clearly shown, since the strong volume scattering increases the double 

bounce contribution.  

Figures 4.24, 4.29, and 4.30 show the contribution of the surface roughness to the 

backscatter cross section. 
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Figure 4.29: Result of the case 4-6-5 with Mv=10%, Wc=1.24 kg, kh=0.5, σψ=0.56 
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Figure 4.30: Result of the case 4-6-6 with Mv=10%, Wc=1.24 kg, kh=1, σψ=0.56 
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The surface roughness variation does not affect the volume scattering, but the surface 

scattering is increased. The tendency is similar to the results in terms of the soil moisture. 

However, the double bounce scattering decreses even though the surface scattering is raised. 

The Kirckhoff model in (4.47) clearly shows that the forward scattering power is attenuated 

by the higher value of the surface roughness, kh. 

Finally, the scattering power in terms of the cylinder’s distribution is shown in Figures 

4.24, 4.31, and 4.32. 
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Figure 4.31: Result of the case 4-6-7 with Mv=10%, Wc=1.24 kg, kh=0.26, σψ=0.30 
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Figure 4.32: Result of the case 4-6-8 with Mv=10%, Wc=1.24 kg, kh=0.26, σψ=0.91 

These plots show that the backscatter cross section does not change much at an 

incidence angle larger than 50 degrees. On the other hand, scattering from the volume layer 

at incidence angle smaller than 50 degrees is significantly increased in terms of the 

vegetation randomness. This is because the higher randomness of the volume component 

provides more chances that the incident wave is orthogonal to the cylinder. The 

backscattering from the oriented cylinder is maximized when the incident wave direction is 

orthogonal to the length direction of the cylinder. Also the chances are increased more with 

higher randomness than with lower randomness when the mean orientation angle is close to 

zero. Conversely, the chances are decreased when the mean angle is close to 90 degrees.  

As in [46], DSM allows us to see how the backscattering from vegetated terrain is 

sensitive to soil moisture with various physical conditions, such as the amount of 

vegetation. Van Zyl defined the slope of backscattering from a vegetated area with a 
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specific soil moisture. For example, a plot of the total backscatter cross sections for HH, 

HV, and VV at Wc=1.24 kg is shown in Figure 4.33. Note that the incidence angle is fixed 

at 40 degrees. 
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Figure 4.33: Backscatter cross section with Mv=10~30%, Wc=1.24 kg, kh=0.26, 
σψ=0.56 

Ulaby et al. points out that the backscatter cross section can be related to the soil moisture 

using the following expression in [37]. 

σ xy[dB] = Axy Mv + Bxy   (4.71)

where x and y are h or v. Note that the backscatter cross section is in dB (decibels). The 

slope A expresses how the radar reflection is sensitive to the soil moisture. In the example 

in Figure 4.33, they are calculated to be 
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You can see the sensitivity of the slope to the vegetation water content in Figure 4.34. 
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Figure 4.34: Slope with Mv=10~30%, kh=0.26, σψ=0.56 at θι=40 deg 

This result shows that the sensitivities for both co-polarization ratios gradually 

decrease, while the one for cross polarization suddenly drops and is then close to zero after 

Wc=1 kg/m2. This implies that the cross polarization may not be appropriate to infer the soil 

moisture because the effective range is quite narrow between 0 and 0.5 kg/m2. Another 

feature of the plot is that the slope of VV is larger than HH at first, and then becomes 

smaller than VV after around Wc=1.3 kg/m2. With the lower vegetation water content, the 

surface scattering mechanism is the main contributor to the total scattering, so that VV is 
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more sensitive than HH. The vegetation component decreases both contributions in terms 

of the amount of the vegetation. The cosine squared distribution with zero mean orientation 

angle is biased to the vertical direction on the ground. Since such vegetation interacts with 

the vertically polarized wave more than the horizontal one, it eventually attenuates the 

vertically polarized wave more. The effect of the vegetation becomes pronounced with 

higher vegetation water content. Therefore VV achieves higher sensitivity at lower levels 

of vegetation water content and is then flipped after a certain amount of the vegetation 

water content. 

Similarly, Figure 4.35 provides the sensitivity plot in terms of the surface roughness. 
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Figure 4.35: Slope with Mv=10~30%, Wc=1.24 kg, σψ=0.56 at θι=40 deg 

HV is significantly lower over the entire range of roughness, since the first-order 

surface scattering model tells that the cross polarized response is zero. The co-polarizations 

increase in sensitivity in terms of roughness until kh=1, and they do not change much 
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afterward. In addition, VV is lower than HH at kh less than 0.1. Due to the distribution of 

the vegetation, VV scattering is more attenuated than HH at kh lower than 0.1. At higher 

values of kh, VV increases in sensitivity in terms of roughness. HH also grows in 

sensitivity but the rate is much less than VV. This is because vegetation with a cosine 

squared distribution does not affect HH much, so that the increase in sensitivity is not as 

pronounced as that of VV. Above kh =1 most of the interference from the vegetation is 

gone, and the slopes for both co-polarizations are affected primarily by surface roughness. 
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C h a p t e r  V  

Quantitative Analysis of the 

Decomposition Techniques 
 

Two decomposition techniques and the discrete scatterer model have been thoroughly 

discussed. In this chapter, NNED and ANNED will be applied to various types of vegetated 

terrains generated by DSM, and the effectiveness of each decomposition algorithm will be 

evaluated quantitatively. A cube technique, which will be used to retrieve soil moisture in 

Chapter VI, is also used to display the results. 

 

5.1 Test Scenario 
Backscattering from a bare surface can be expressed as a function of the surface 

roughness and dielectric constant (i.e., soil moisture), as shown in Section 4.4. If a surface 

is covered by vegetation, the backscattering from it is affected by this structure and the 

statistical distribution of branches or leaves. In this chapter, we will model such a vegetated 

terrain by varying four of the influential parameters: the soil moisture, surface roughness, 

vegetation water content, and randomness of the volume component. For simplicity, we use 

a grassland model for the baseline parameters as shown in Table 5.1. 
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Table 5.1: Baseline parameters for the test scenario 

θ i

(deg.)
λ

 (m)
L

 (m)
h layer

 (m)
a

 (m)
l

(cm)
ψ 0

(deg.)
σ δ

ρ
(cylinders/m3)

40 0.24 0.5 0.5 0.002 5 0 0.91 900
 

The four variables are given in Table 5.2. 

Table 5.2: Variables for the test scenario 

Μ v

(%)
W c

 (kg/m2)
kh σ

0-60 0-2.54 0.1-2 0.30, 0.56, 0.91
 

Note that σψ=0.56 and 0.91 correspond to a cosine squared distribution and uniform 

distribution, respectively.  

The cube in Figure 5.1 neatly displays the backscatter cross section in terms of the 

three variables. The axes are assigned to the soil moisture (Mv), surface roughness (kh), and 

vegetation water content (Wc). The figure also defines three view angles covering all 

dimensions of the cube. One of these view angles (A, B, or C) will be specified to indicate 

the view angle used to display the data. 
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kh

Mv

cW

(A)
(B)

(C)  

Figure 5.1: Cube to express the backscatter cross section in terms of the three physical 
parameters: the soil moisture (Mv), surface roughness (kh), and vegetation 
water content (Wc). The three view angles (A, B, C) are also shown. 

The backscatter cross sections for the co- and cross polarizations are shown in Figures 

5.2 (σψ=0.30), 5.3 (σψ=0.56), and 5.4 (σψ=0.91). The columns and rows show the different 

polarizations and different view angles, respectively. Note that the color range for each 

cube is shown in the associated color bar. 
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Figure 5.2: Input data from DSM with the given test scenario: σψ=0.30. Each row 
corresponds to one of the view angles defined in Figure 5.1, while each 
column corresponds to the backscatter cross section of σhhhh (right), σhvhv 
(center), and σvvvv (right), respectively. 
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Figure 5.3: Input data from DSM with the given test scenario: σψ=0.56. Each row 
corresponds to one of the view angles defined in Figure 5.1, while each 
column corresponds to the backscatter cross section of σhhhh (right), σhvhv 
(center), and σvvvv (right), respectively. 
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Figure 5.4: Input data from DSM with the given test scenario: σψ=0.91. Each row 
corresponds to one of the view angles defined in Figure 5.1, while each 
column corresponds to the backscatter cross section of σhhhh (right), σhvhv 
(center), and σvvvv (right), respectively. 

It is clear that the cross polarization is highly sensitive to the amount of vegetation, but 

is not sensitive to the other two variables. This implies that the polarization is a key 

parameter to estimate the amount of vegetation, as pointed out in [12]. The results from the 

view angle (A) of the co-polarizations show that the lowest power occurs at their origin, 

and it spherically increases in terms of each variable. This follows from the characteristics 

of SPM, which is strongly a function of the surface roughness and soil moisture, and also 
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demonstrates the properties discussed in Section 4.6 (Figures 4.27 and 4.28). However, 

results from the view angles (B) and (C) exhibit the opposite behavior, where the maximum 

power occurs at the center (the maxima of the roughness and soil moisture and the 

minimum of the vegetation water content), and spherically decreases as the roughness and 

soil moisture decrease and the vegetation water content increases. The maximum scattering 

occurs when both the soil moisture and surface roughness are maximized. One may also 

expect to have the maximum scattering occur with maximum vegetation water content as in 

view angle (A), but it does not. The reason lies in attenuation of the volume layer. We 

know the scattering from the volume layer increases as the vegetation water content 

increases. At the same time, the strong interaction between the incoming wave and the 

volume layer increases the attenuation coefficient, as discussed in Section 4.3.1. At middle 

values of vegetation water content and the maximum of the surface roughness and soil 

moisture, the scatterings from the surface and double bounce are still larger than the 

backscattering from the volume layer. However, at the maximum vegetation water content, 

the volume scattering is significant compared to scattering from the other scattering 

mechanisms, so the volume layer attenuates much of the scattering from the surface and 

double bounce.  

Another important feature exists at the top of the cubes. The case with the uniform 

distribution in Figure 5.4 does not show a specific texture in the area, and the case of the 

cosine squared distribution in Figure 5.3 shows some texture but it is vague. However, the 

case with lower roughness in Figure 5.2 shows the clear pattern on the top of the horizontal 

polarization. The pattern is almost the same as that at the bottom, so the scattering at the top 

is contributed by the scattering from the surface and double bounce.  Due to its statistical 

properties (zero orientation angle and the narrower distribution), most of the vertically 

polarized response from the surface and double bounce are significantly attenuated while 

the horizontally polarized response survives. This fact is important because we can see the 

ground scattering well even with significant vegetation, depending on the randomness. 
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5.2 Simulation Results and Analysis 
First, the randomness and mean orientation angle of the volume component estimated 

by ANNED are shown. Figures 5.5, 5.6, and 5.7 correspond to the cases of σψ=0.30, cosine 

squared distribution, and uniform distribution, respectively. Each orientation angle cube 

has a range between 0 and 90 degrees, which correspond to vertical (φψ=0) and horizontal 

orientation angles (φψ=90), respectively. Also the minimum and maximum values on the 

randomness cubes are related to the delta function (σψ=0) and uniform distributions 

(σψ=0.91), respectively. 
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Figure 5.5: Estimated randomness and mean orientation angle: σψ=0.30. Each row 
corresponds to each view angle defined in Figure 5.1 while each column 
corresponds to the orientation angle (right) and the randomness (right), 
respectively. 
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Figure 5.6: Estimated randomness and mean orientation angle: σψ=0.56. Each row 
corresponds to each view angle defined in Figure 5.1 while each column 
corresponds to the orientation angle (right) and the randomness (right), 
respectively. 
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Figure 5.7: Estimated randomness and mean orientation angle: σψ=0.91. Each row 
corresponds to each view angle defined in Figure 5.1 while each column 
corresponds to the orientation angle (right) and the randomness (right), 
respectively. 

The result of the lower randomness in Figure 5.5 is highly unstable, due to the small 

amount of power from the volume component. As discussed in Section 4.6 (Figures 4.31 

and 4.32), the lower randomness with the zero orientation angle of the volume component 

causes lower backscattering. On the other hand, the results from the cosine squared 

distribution in Figure 5.6 seem stable. The region dominated by volume scattering yields 
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m

zero as the mean orientation angle and around 0.75 as the randomness. One may expect the 

randomness should be around 0.56, as defined in the scenario. This discrepancy comes 

from the fact that the angle definition on the ground is different from the one at the receiver, 

as shown in Figure D.2, which shows that the randomness 0.56 on the ground corresponds 

to 0.75 at the receiver at θi=40 deg. For the case of the uniform distribution in Figure 5.7, 

the randomness cube is at around 0.9, as we expected. The mean orientation angle cube is 

unstable because the uniform distribution has no mean orientation angle. 

Both NNED and ANNED are expressed as 

C = xCv + yCd + zCg  (5.1)

and the power in each component normalized by the total power is defined as follows. 
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Figures 5.8, 5.9, and 5.10 correspond to the estimated power for the volume, double bounce 

and surface components, respectively, at σψ=0.30. Four cubes are shown for each view 

angle: the true data, two results from NNED assuming cosine squared and uniform 

distributions, and result from  ANNED. 
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Figure 5.8: Estimated power for the volume component: σψ=0.30. Each row 
corresponds to each view angle defined in Figure 5.1 while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 
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Figure 5.9: Estimated power for the double bounce component: σψ=0.30. Each row 
corresponds to each view angle defined in Figure 5.1 while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 
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Figure 5.10: Estimated power for the surface component: σψ=0.30. Each row 
corresponds to each view angle defined in Figure 5.1 while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 

The true data in Figure 5.8 tells that a strong volume contribution occurs only in the 

limited area around the center of view angle (A). This causes oscillations shown in the 

result from ANNED. The ANNED estimation of the volume component is disturbed by the 

strong scattering from the surface and double bounce even at higher vegetation water 

content. Nonetheless, ANNED can extract a relatively strong volume contribution 

compared to the others.  
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The true data in Figure 5.9 shows that the primary double bounce contribution occurs 

at only lower roughness. This is because the surface scattering model, the Kirchoff 

approximation, attenuates scattering as the surface roughness increases as shown in (4.52). 

All three techniques fail to extract this double bounce contribution. The criterion to 

determine the double bounce component is that the phase of σhhvv should be more than 90 

degrees or less than -90 degrees, as discussed in Section 3.3. Figure 5.11 shows the phase 

history of the double bounce component in terms of the radius of the cylinder. The 

simulation parameters are the same as above with a variable number of cylinders used to 

keep Wc=1.7 kg/m2 so that the dielectric constants of the cylinders stay the same. The other 

variables are fixed at Mv=60 % and kh=0.13.  
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Figure 5.11: Magnitude of the phase of σhhvv from the double bounce component in terms 
of cylinder radius 

The phase is unstable, and it is often out of the angle range that we expected. The 

radius 2 mm is close to zero so that the criterion cannot be used to judge the signal to be 

double bounce scattering. Figure 5.12 shows the backscatter cross sections of the co-
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polarizations from a single cylinder with the ratio of the two co-polarizations. Note that it 

displays the result from direct backscattering, not double bounce. 
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Figure 5.12:  Backscatter cross section of the co-polarized responses and their ratio of 
them. All values are in dB. 

Clearly, the phase history shows a strong correlation to the ratio of the co-polarizations. 

This tells us two important things. First, the radius of the cylinder strongly affects the phase 

of σhhvv. Second, a large difference between the two co-polarized responses may not flip the 

phase. This is shown at radii between 0 and 0.01 m in the figure. Remember that the 

Brewster’s angle pulls the vertical polarized scattering down, as discussed in Section 4.6, 

and causes the larger gap between the two co-polarizations as seen for radii between 0 and 

0.01 m. We need further investigation to determine the best criteria to discriminate the 

double bounce and ground scatterings. The three techniques do not show much difference 

because they use the same criterion for this discrimination. 
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Figures 5.13, 5.14, and 5.15 correspond to the estimated power for the volume, double 

bounce, and surface, respectively, in the case of σψ=0.56. 
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Figure 5.13: Estimated power for the volume component: σψ=0.56. Each row 
corresponds to each view angle defined in Figure 5.1, while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 
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Figure 5.14: Estimated power for the double bounce component: σψ=0.56. Each row 
corresponds to each view angle defined in Figure 5.1, while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 
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Figure 5.15: Estimated power for the surface component: σψ=0.56. Each row 
corresponds to each view angle defined in Figure 5.1, while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 

ANNED extracts the volume component very well compared to the other algorithms as 

shown in Figure 5.13. NNED, assuming a cosine squared distribution, also shows a 

reasonable texture match, but the contrast is lower than in the true data. NNED, assuming a 

uniform distribution, fails to extract the contribution. For the double bounce component in 

Figure 5.14, ANNED seems better than the others.  Thus, the adaptive technique is the best 

way to extract the surface scattering component, as shown in Figure 5.15, while there is 

some blurriness at lower roughness due to the double bounce criterion discussed before. 
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Figure 5.16, 5.17 and 5.18 correspond to the estimated power for the volume, double 

bounce and surface, respectively, in the case of σψ=0.91. 
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Figure 5.16: Estimated power for the volume component: σψ=0.91. Each row 
corresponds to each view angle defined in Figure 5.1, while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 
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Figure 5.17: Estimated power for the double bounce component: σψ=0.91. Each row 
corresponds to each view angle defined in Figure 5.1, while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 
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Figure 5.18: Estimated power for the surface component: σψ=0.91. Each row 
corresponds to each view angle defined in Figure 5.1, while the columns 
correspond to the true data, results from NNED assuming the cosine 
squared and uniform distributions, and results from ANNED, respectively 
from left to right. 

NNED, assuming a cosine squared distribution, is clearly inappropriate for this case. 

For the volume component, NNED, assuming a uniform distribution, is slightly better than 

ANNED, which shows some oscillations while the texture and contrast are almost same. 

Figure 5.17 shows that ANNED extracts the double bounce contribution in the view angle 

(A) slightly better than NNED, assuming a uniform distribution.   
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From the results presented in this section, ANNED clearly shows better applicability 

than the other techniques. 
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C h a p t e r  V I  

Soil Moisture Retrieval 
 

In this chapter, we will apply the decomposition techniques to retrieve the soil 

moisture from measured data. We shall start by introducing Dubois et al.’s inversion 

algorithm [8] as a representative of previous algorithms. This algorithm will then be 

applied to DSM to see how vegetation degrades our inversion accuracy. We will attempt to 

combine the algorithm with the decomposition technique, and verify the effectiveness. This 

quantitative simulation, however, reveals a potential deficiency of the decomposition 

technique. To overcome this problem, a brand new inversion technique will be introduced 

with simulation results. 

 

6.1 Previous Algorithms 
Several previous algorithms for soil moisture retrieval will be briefly introduced, along 

with a discussion of their applicability to vegetated terrain in this section.  

Suppose we have a flat surface having a specific dielectric property. One transmits a 

light at specific incidence angle, and another receives scattered light in the specular 

direction. Since the surface is perfectly flat, the scattered power is dictated by the Fresnel 

coefficient, and so one can easily invert the dielectric constant. Next, consider the case of a 

surface with some roughness. The scattered power in the specular direction, which is called 

the coherent component, is decreased, and the rest of the power in the other directions, 

which is called the incoherent component, is increased as the surface roughness increases. 

Therefore the scattering from a bare surface is strongly related to dielectric constant and 
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roughness. In other words, the roughness is a noise source in the inversion of the dielectric 

constant. Vegetation is also a noise source. Therefore, a key point of the soil moisture 

inversion algorithms focuses on how to suppress the effects of the surface roughness and 

vegetation. Several theoretical and empirical models have been proposed as follows. 

The first-order small perturbation model [2] in (4.28) can be a soil moisture estimator 

by taking the ratio of co-polarized responses as 
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where θi and ε are the incidence angle and dielectric constant, respectively. This simple 

operation reduces the dependency on roughness. However, the applicability is limited to 

only small roughness compared with the wavelength. The co-polarizations approach each 

other at larger roughness, and equation (6.1) then underestimates the dielectric constant. 

More recently Kim et al. expanded the applicability by taking into account an undulation of 

the local topography (see [6]).  

Oh et al. proposed an empirical model in [9]. This model relates both the co-

polarization and cross polarization ratios to the dielectric constant, surface roughness, and 

wavelength. 
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where k is a wave number. The authors found this using data sets from the bare surfaces 

with different roughness measured by the University of Michigan’s truck-mounted 

network-analyzer-based scatterometer [47], which operates fully polarimetrically over L-, 

C-, and X-bands. With respect to surface roughness, wider applicability is expected 

compared to SPM. Note that the cross polarization term is significantly sensitive to the 

existence of vegetation, as discussed in 5.1. So the use of the cross polarization term may 

degrade the inversion accuracy.  

To minimize the effect of vegetation, Dubois et al. reported the following model in [8]. 

σ hhhh =10−2.75 cos1.5 θi

sin5 θi

100.028ε tanθ i khsinθi( )1.4 λ[cm]0.7

σ vvvv =10−2.35 cos3 θi

sin3 θi

100.046ε tanθ i khsinθi( )1.1λ[cm]0.7

  (6.3)

This model relates co-polarized backscatter cross sections to dielectric constant and surface 

roughness, and ignores the cross-polarization. This ignorance gives the algorithm 

robustness to a certain amount of vegetation. This empirical model was derived by the 

same data set with Oh et al. and data sets measured by The University of Berne’s truck-

mounted radiometer-scatterometer [8], which operates fully polarimetrically at six 

frequencies between 2.5 and 11 GHz. One can rewrite (6.3) to solve for the dielectric 

constant and surface roughness as 
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where we assume that θi = 40 degrees and λ = 24 cm (L-band). The first equation shows 

that not only the ratio σ vvvv

σ hhhh

 but also the absolute value σ hhhh   affect the soil moisture 

inversion. One of the main advantages of this algorithm is the simple implementation of the 

inversion procedure. 

There are three parameters to characterize surface roughness: the RMS height, 

correlation length, and roughness spectrum function, as discussed in 4.4. Both algorithms 

consider only RMS height. Shi et al. proposed an algorithm taking into account the rest of 

the parameters [4]. Their algorithm was developed by fitting single scattering IEM –based 

numerical simulations (described in (4.42)) for a wide range of surface roughness and soil 

moisture conditions. After considering various combinations of the polarizations, he found 

the following two co-polarization sets to show reasonable agreement with the Little 

Washita watershed images measured by AIRSAR and Shuttle Imaging Radar C (SIR-C).  
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Pro

where W is a roughness spectrum function in (4.37). 

In this chapter, we choose an algorithm proposed by Dubois et al. as a representative of 

the previous algorithms because of its simple implementation with reasonable robustness to 

the effect of vegetation.  

[48] and [22] also provide excellent reviews and comparison of the soil moisture 

inversion algorithms. 

 

6.2 Soil Moisture Retrieval Using an Algorithm 

posed by Dubois et al. 
As discussed in the previous section, the algorithm proposed by Dubois et al. in (6.4) is 

chosen as a representative of current algorithms. Note that we directly evaluate the 

dielectric constant in this section, instead of transforming to soil moisture as discussed in 

Section 4.6. Because each model shown in Section 4.6 is not simple linear function, this 

may add further complication. Since the algorithm is basically valid for bare surface, we 

use bareε̂  for the estimated dielectric constant. 

Table 6.1 shows simulation parameters. Note that the vegetation structure corresponds 

to a cosine squared distribution. 

Table 6.1: Baseline parameters for the test scenario 

θ i

(deg.)
λ

 (m)
L

 (m)
h layer

 (m)
a

 (m)
h

(cm)
l

(cm)
ψ 0

(deg.)
σ ψ σ δ

ρ
(cylinders/m3)

40 0.24 0.5 0.5 0.002 1 5 0 0.56 0.91 900
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Soil moisture is in range between 10 and 60%, and vegetation water content is varied from 

0 to 2.54 kg/m2. The inversion result is shown in Figure 6.1. εtrue is a dielectric constant 

corresponding to the true soil moisture. To emphasize the effect of vegetation, the dielectric 

constant of a dry surface (Wc=0) is subtracted from the inverted dielectric constant. 
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Figure 6.1: Inversion result using Dubois et al.’s algorithm without polarimetric 
decomposition 

As we expected, the estimation error increases as the vegetation water content 

increases. However, it begins to decrease above a certain amount of vegetation, depending 

on the soil moisture. For example, the 30% soil moisture line gradually increases up to 

Wc=3 kg/m2, and it then starts to decrease. Due to the vegetation type (cosine squared 

distribution with the zero orientation angle), the vertically polarized returns from the 

surface and double bounce are more attenuated than the horizontally polarized one. So the 

vertical returns from the surface and double bounce continue to decrease as the vegetation 

increases. From the first term of (6.4a), the smaller vertically polarized response results in 

the underestimation of the dielectric constant. On the other hand, the horizontal double 

bounce scattering increases as the vegetation water content increases, as shown in Figures 

4.27, 4.24, and 4.28. From the second term of (6.4a), the larger horizontally polarized 
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response causes an overestimation of the dielectric constant. For the vegetation water 

content up to Wc=1.5 kg/m2, the vertical response from the surface and double bounce 

dominates the total scattering power due to the lower level of vegetation water content. 

However, at higher values of Wc, the horizontal double bounce scattering dominates the 

vertical scattering so that the estimated dielectric constant increases. 

Next, the polarimetric decomposition technique is combined with the inversion 

algorithm. In this section, NNED assuming a cosine-squared distribution is used instead of 

ANNED to make our interpretation simpler. The dielectric constant is inverted from the 

decomposed surface data. Figure 6.2 shows the results. 
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Figure 6.2: Inversion result using Dubois et al.’s algorithm with the polarimetric 
decomposition (NNED assuming a cosine squared distribution). The 
decomposition makes the accuracy worse than the result without 
decomposition. 

First, an advantage of the use of the polarimetric decomposition is shown in the 

narrower variation of the estimated lines in Figure 6.2. The technique removes the 

vegetation effect which changes the total backscattering depending on soil moisture. 

Secondly, the inversion curves are monotonically decreasing functions. From the first term 
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vvvvvvvv

of (6.4a), the underestimation of the dielectric constant comes from the smaller vertical 

polarization. To see the detail analytically, suppose we have received signals attenuated by 

the volume as in (4.17). 
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Then the expressions are plugged into (6.4a) as 
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For simplicity, let us take logarithm natural and assume the same attenuation coefficients 

between co-polarizations. 

i
hh
ext H θαεε cos/235469.3ˆˆ ⋅⋅−≈′   (6.8)

This clearly tells us that the inferred dielectric constant decreases with an increase of the 

amount of vegetation. This estimation error comes from ignorance of the attenuation 

coefficients in the decomposition technique. What we can do with the decomposition 

technique is to estimate the attenuated surface scattering power. This is a potential 

deficiency of the decomposition technique. Freeman proposed a decomposition technique 

taking into account attenuation coefficients in [45]. The technique, however, requires a 

priori knowledge, such as the forest height which is one of the most difficult parameters to 

estimate from the measured data.  

To overcome this fatal problem, we propose a brand new technique in the next section. 
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Pol

6.3 A New Inversion Algorithm Using the 

arimetric Scattering Cube 
 The forward scattering model (DSM), which already takes into account the volume 

attenuation, can be utilized for a new inversion algorithm. As mentioned in the previous 

chapter, we can make a polarimetric scattering cube for each element of the covariance 

matrix, as shown in Figure 6.3.  

kh

Mv

cW

 

Figure 6.3: A reference cube for the soil moisture retrieval. The soil moisture, surface 
roughness, and vegetation water content correspond to the x, y and z axes, 
respectively. 

The value on the cube is obtained by taking natural logarithm instead of expressing the 

value on dB. This operation allows us to express a complex number by splitting it into the 

magnitude part and the phase part. 

σ pqrs
cube = lnσ pqrs = lnσ pqrs + φpqrs   (6.9)

p, q, r, and s correspond to either h or v. Each off-diagonal element consists of a pair of 

cubes in (6.9). Therefore nine independent cubes are obtained as follows.  
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x, y, and z are the axes of soil moisture, surface roughness, and vegetation water content, 

respectively. Similarly, the measured covariance matrix is calculated as 

σ m =
σ hhhh
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Using these descriptions, we can calculate a distance between the measured data and any 

specific point in the cubes as 
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where i is either hhhh, hvhv, or vvvv, and  j and k are either hhhv, hhvv or hvvv. Also, wi, wj 

and wk are weighting functions that you can change sensitivity of each polarization. You 

can arbitrarly choose the combination of polarizations. After calculating the distance for all 

x, y, and z of the referential cubes, one can find a set of (x, y, z) which minimizes the 

distance. If a combination (x0 y0 z0) achieves the minimum distance, x0, y0, and z0 
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correspond to the inversion results for the soil moisture, surface roughness, and vegetation 

water content, respectively. This simple operation is one of the main advantages. Now the 

technique will be applied to the case of the grassland. 

First, the reference cubes are calculated using DSM with baseline parameters and 

variables shown in Tables 6.1 and 6.2, respectively. 

Table 6.2: Variables for the reference cubes 

Μ v

(%)
W c

 (kg/m2)
kh

0-60 0-2.54 0.1-2
 

For this demonstration, 20 samples for each axis of the cube (8000 samples in total) 

are calculated. The resulting five cubes are displayed in Figure 6.4. Due to the gradual 

change of the textures on the cube surfaces, we can increase the number of samples by 

simple interpolation techniques. In this case the number of samples is increased from 20 to 

280 samples for each axis (21,952,000 samples in total) using cubic spline interpolation. 

Note that hhhv and hvvv are small compared with the other elements, due to the scattering 

reflection symmetry, and so we ignore them. 
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Figure 6.4: Calculated five independent cubes (20 samples for each axis). Note that 
hhhv and hvvv terms are small due to the scattering reflection symmetry. 

For simplicity, the test data sets are assumed to have the same parameters as in Table 

6.1, and the variables (soil moisture, surface roughness, and vegetation water content) are 

randomly chosen in the range shown in Table 6.2. In this simulation, we use two different 

combinations for the distance calculation: (hhhh, hvhv, vvvv) and (hhhh, hvhv, vvvv, hhvv). 

Figure 6.5 shows inversion results for the three parameters. In each case the y-axis is the 

Root Mean Squared Error (RMSE) of each parameter. The x-axis shows the amount of 

vegetation water content between 0 and the specified value on the axis. For example, if you 

pick Wc=1.5 kg/m2, the data samples are generated from uniformly distributed vegetation 

water contents between 0 and 1.5 kg/m2. Note that the error comes from the number of 

samples of the cubes.  
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Figure 6.5: Inversion results using the cube technique. Inversions of soil moisture (left), 
roughness (center), and vegetation water content (right) are displayed. 

The error source of this inversion is the limited sample number of the cube. The 

inversion result of the vegetation water content shows both lines are identical so that hhvv 

term does not affect this inversion process at all. As discussed in Section 5.2, the cross-

polarization term plays an important role in inverting the vegetation water content. The 

results of the soil moisture and roughness share similar characteristics. Both lines are 

identical up to Wc=0.5 kg/m2, and then they diverge and the results using the hhvv term 

achieve significantly better accuracy in both cases. Since Figure 4.34 shows the cross 

polarized response has effective sensitivity only up to 0.5 kg/m2, this term contributes to 

the inversion of the soil moisture and surface roughness at the lower level of vegetation 

water content. Another feature is that the inversion accuracies of the soil moisture and 

surface roughness increase as the vegetation water content increases. This tendency is 

opposite to that of Dubois et al.’s algorithm which ignores hhvv. Hence, the proposed cube 

inversion algorithm shows strong robustness to scattering from vegetated terrain. 
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Next, the inversion accuracy will be shown by varying the vegetation structure. The 

test data is generated with various radii of cylinders between 2 and 3 mm. The inversion 

results are shown in Figure 6.6. 
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Figure 6.6: Inversion results using cube technique for various radii of cylinders. 
Inversions of soil moisture (left), roughness (center), and vegetation water 
content (right) are displayed. 

Due to the existence of dried plants with various radii, the estimation at Wc=0 has some 

variation. In each case the error increases as the radius range increases. At smaller ranges of 

radii, the effect of the vegetation is suppressed. This implies that different reference cubes 

depending on the vegetation structure should be prepared to achieve the best accuracy. 

Since the implementation of the algorithm is simple, a large number of cubes is not a 

problem. Further investigation is needed to choose the most appropriate cube for a given 

data set a priori.   
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To see an effect of the weighting function, thermal noise (-40 dB) is added to the test 

data. The inversion is operated by varying the weighting function of cross-polarization. The 

results are shown in Figure 6.7. 
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Figure 6.7: Inversion results using the cube technique. The -40 dB thermal noise is 
added to the test data in Figure 6.5. Inversions of soil moisture (left), 
roughness (center), and vegetation water content (right) are displayed. 

Significantly lower accuracy is achieved in a range of smaller vegetation water content 

around 0 to 0.5 kg/m2. The surface scattering is dominant in this range, and the cross-

polarized scattering from the surface is close to zero without any topographic undulation as 

you can see in the analytical models (4.41) or (4.42). This means that our cross-polarized 

data is only contributed by thermal noise, and the use of the term degrades the accuracy. 

Therefore, you can perform better estimation without using the cross-polarized term in the 

range of smaller vegetation water content. The change of weighting function improves the 

results for not only soil moisture but also roughness and vegetation water content. However, 

the ignorance of the term does not work in the range of higher vegetation water content 

since the surface scattering is not dominant any more. This implies us that the sensitivity to 

each polarization should be determined by the class of vegetation.  
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From the results above, we can propose the following inversion strategy in Figure 6.8. 
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Figure 6.8: Proposed inversion strategy 

Once we obtain the measured polarimetric radar data, the vegetation type and 

weighting functions should be identified using the decomposition technique shown in 

Chapter III. Here the various cube sets are developed by DSM in the Cube Library in 

advance so that a cube set corresponding to the estimated vegetation type can be chosen for 

the inversion process. Finally, the inversion for soil moisture, surface roughness or 

vegetation water content can be performed by (6.12). The advantages of this strategy are as 

follows. 

 Easy implementation 

 Including the attenuation effect 

 Easy to achieve higher applicability by increasing the number of different cube sets.  
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C h a p t e r  V I I  

Conclusions and Suggestions 
 

In this thesis, we conducted a detailed study of the scattering mechanisms of vegetated 

terrain to attempt to find a way to isolate surface scattering from other scattering 

mechanisms, and to apply this knowledge to the retrieval of soil moisture. 

We started by pointing out a deficiency in the Freeman decomposition model [12] 

regarding energy conservation. An improved algorithm, Non-Negative Eigenvalue 

Decomposition (NNED), revealed that Freeman decomposition overestimated the volume 

scattering power by 30 to 40% more than that estimated by NNED. These numbers were 

obtained from an image of Black Forest, Germany, acquired by L-band AIRSAR. The 

NNED is only applicable to a specific type of vegetation due to the limitation of the 

volume scattering component. To overcome this limitation, the following scattering 

component was generalized by introducing two parameters: the randomness and the mean 

orientation angle. This generalized component was then applied to create the adaptive 

NNED (ANNED) technique. We qualitatively verified the decomposition techniques by 

showing how they react to various types of vegetation using the Black Forest image. 

ANNED proved to be most applicable. 

In order to validate the decomposition models quantitatively, we introduced the 

Discrete Scatterer Model (DSM) [15, 16] with some modifications. Prior to applying the 

decomposition model, DSM was employed to study the sensitivity of the physical 

parameters characterizing vegetated terrain. Soil moisture, surface roughness, and 

vegetation water content were chosen as the variables. Through the simulation in the case 

of grassland, we demonstrated how the vegetation and surface roughness affect the 
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backscatter cross section. In particular, the attenuation coefficients derived from the 

vegetation structure had an important effect on the sensitivity. 

Quantitative analysis of the decomposition models was conducted. Three different 

types of vegetations were generated using DSM. The adaptive decomposition technique 

showed the best applicability compared to others.  

Separating the double bounce and ground scattering, however, is still an open problem. 

In the case of very regular vegetation structure, the criterion that the real part of HHVV be 

negative for double bounce scattering sometimes failed.  

We attempted to employ the decomposition technique to the inversion algorithm 

proposed by Dubois et al. in [8]. The data was generated by DSM so that the result could 

be quantitatively validated. The decomposition technique did not improve the inversion 

accuracy due to ignorance of the attenuation effect by the volume layer. To overcome this 

difficulty, a new soil moisture inversion technique utilizing polarimetric scattering cubes 

was proposed. Each cube is calculated using DSM. The simulations with various radii of 

cylinders showed its effect on inversion accuracy, and implied that multiple cubes for 

various vegetation structures are needed. One of the main advantages of the algorithm is its 

easy implementation, so that having a large number of cubes does not affect the efficiency.  

In the framework of the retrieval of soil moisture we are convinced that the proposed 

cube algorithm can achieve higher accuracy and applicability than other algorithms and is 

easily implemented. However, further investigations will be needed to fully demonstrate it. 

The dependence of the accuracy on various vegetation parameters such as the cylinder 

radius or distribution function has to be studied. This may help to determine what type of 

cube is needed for particular observation. The algorithm should be validated with 

numerical simulation data under various noise situations. Finally, and most importantly, it 

should be validated using sufficient reliable data. 
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A p p e n d i x  A  

Positive Eigenvalues of the Measured 

Covariance Matrix 
 

In this section, we will prove all eigenvalues of a measured covariance matrix are 

always non-negative. The power of the measured covariance matrix is always non-negative, 

( ) 0≥CP m . (A.1)

 

 From equation (2.10), the backscatter cross section is  

*0 ACA m
T

rr
=σ   (A.2)

where the vector A
r

 consists of antenna polarization parameters. We can diagonalize the 

covariance matrix by finding its eigenvalues and associated eigenvectors as 

( )4321

11

4

3

2

1

000
000
000

vvvvQ

QCQCQCQC mmmm
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⎟
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⎜⎜
⎜
⎜
⎜

⎝

=′ −−

λ
λ

λ
000 ⎞⎛λ

  (A.3)

where iλ  and ivr  are eigenvalues and associated orthonormal eigenvectors, respectively. 

Note that the Q  has the following characteristic. 



 
1** −=⇒= QQIQQ TT
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  (A.4)

We can project A
r

 into the same space of mC′  using . Q

AQAAQA ′=⇒=′ −
rrrr

1   (A.5)

By substituting (A.3), (A.4)、 and (A.5) into (A.2), the backscatter cross section can be 

rewritten as 

( ) ( ) **10 ACAAQQCQAQ m
T

m
T

′′′=′′′= −
rrrr

σ 。 (A.6)

Since the backscatter cross section, i.e., the power, has to be positive for any A′
r

, each 

eigenvalue of a measured covariance matrix has to be positive. 
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A p p e n d i x  B  

Eigenvalues of the General Covariance 

Matrix 
 

In this section, it is shown that the eigenvalues of the general covariance matrix in 

(3.71) are not affected by mean orientation angle, i.e., rotation angle of the target about the 

line of sight.  

As a first step, the form of equation (3.71) is simply rewritten as 

( )
( ) ( )

( ) TTTTTT
TTTTT

TTTTTT
VTC

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−
−−

+++
=⋅=

419672

96385

728541

2
222

2
rr

T

 (B.1)

where 

( ) [ ]TTTTTTTTTTqpT 987654321 22222=++= γβα
rrrr

. (B.2)

The characteristic equation becomes  

3322
2

1
3

888
det fffIC +++−=− λλλλ 111  (B.3)

where 
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We also know that the covariance matrix is obtained from a scattering matrix, as shown in 

Chapter II. 

0
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0 C
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S →⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   (B.5)

This equation is then rewritten by factoring out b0. 
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We are interested only in C in (B.6). Ignoring the scale factor 2
0b , the updated scattering 

matrix is rewritten as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1c
ca

S   (B.7)

where 

00

00 ,
b
c

c
b
a

a == . (B.8)

From (B.3), the coefficient of each term, f1, f2, and f3, is not a function of orientation angle. 
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where, 
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This means that all three eigenvalues of the general covariance matrix are not a function of 

the rotation angle about the line of sight.  
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CC

A p p e n d i x  C  

Direct Inversion of the General 

Covariance Matrix 
 

In this section, the direct inversion technique is mathematically derived and applied. 

We shall assume that the observed area is covered by only a single type of scatterers 

with a single scattering mechanism, so that the measured covariance matrix is expressed by 

a general covariance matrix in (3.71) as 

genm =   (C.1)

where  is a general covariance matrix, and is calculated from the following scattering 

matrix. 

genC

gen
gengen

gengen
gen C

bc
ca

S →⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   (C.2)

As discussed in equation (B.6) in Appendix B, the scale factor is explicitly expressed as 

CbC genm =
2

  (C.3)

where 
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Then we can rewrite (C.1) as 

( )caC
b

C
C

gen

m
m ,,,2 φσ==′  . (C.5)

Our tentative goal is to find a way to determine four unknown parameters: the randomness 

σ, mean orientation angle φ, and two elements of the simplified scattering matrix, a and c. 

After determining these parameters, the scaling factor 
2

genb  will be considered. Note that 

both a and c are complex numbers, so that there are 6 unknown real numbers: 
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where subscripts r and i are real and imaginary parts, respectively. If  is expressed as mC ′
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the following known parameters are defined. 
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To simplify the equations, the following unknown parameters are defined. 
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By substituting them into (3.71), we have 
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(C.10)

Using equations (C.8) and (C10), U, V, and W are rewritten as 
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By defining X as 

2aX =   (C.12)

V in (C.11) becomes 
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( ) ( ) 222 2121 cXcaV ++=++=  . (C.13)

 

the following expressions are then obtained. 
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Since U can also be written as 
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two polynomials involving the complex number c are derived. 
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Hence, 
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From these expressions, we have 
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Equations (C.8) and (C.10) provide the following expressions regarding the phase 2φ. 
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Considering equation (C.19) and  
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equation (C.20) provides two parameters. 
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Equation (C.21) also provides the same parameters in different forms. 
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Note that p is always real, as in Figure 3.20, and varies between 0 and 2. Since equations 

(C.23) and (C.24) have to be equal, the following two important expressions are obtained. 
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Equation (C.26) is an 8th-order polynomial in X, so there are 8 possible values of X. For 

each solution to equation (C.26), we can fix unknown parameters in (C.5) as follows. Using 

(C.25) with (C.19), the imaginary part of a is expressed as a function of . J±
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Given X and (C.15), the complex number a is 

( )Jjaaa ir ±+=  . (C.28)

The sign of J can be determined by comparing each of ( ) 2Ja +  and ( ) 2Ja −  with (C.12). 

Once the sign is determined, the complex number a is fixed. We then move on to find c. 

From equation (C.9), we can obtain the following expressions. 
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(C.18) allows us to calculate 

( ) ( ) ( ) ( ) JcacacccaacLL ±=−+−=+−+=− ***** 11bcac ReRe . (C.30)

From (C.29) and (C.30), the following two equations involving c are obtained. 
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Now we can solve them for c as 
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Note that we already determined the sign of J. 

Using the obtained values of a and c, the mean orientation angle φ and the coefficient p can 

be calculated from (C.23) and are denoted 12tan φ  and . Equation (C.24) also provides a 

solution for φ and p denoted 

1p

22tan φ  and . Finally, we have to choose a best parameter 

set from the eight possible combinations. 
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There are several conditions to achieve this as follows. Several combinations of parameters 

can be eliminated because they violate some constraints on the parameters. For example, if 

the calculated orientation angle φ is a complex number, the candidate parameter set should 

be eliminated. 

Ideally, the two methods of calculating φ2tan and p  should be consistent for a candidate 

parameter set yielding 

11

21 2tan2tan
pp =

= φφ
 . (C.34)

However, in practice this will not be the case. Thus we define two indices as follows. 
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The parameter set which minimizes these indices should be chosen as the optimal solution. 

In Appendix B, the characteristic equation of (C.5) is derived in (B.3). This provides 

another criterion for choosing the optimal parameter set. Specifically, the correct parameter 

set should make the characteristic equation zero. This implies the following evaluation 

function, which should be minimized to select the optimal parameter set. 
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Unfortunately, these mathematical conditions may not be enough to uniquely 

determine the parameter set in practice. In this case, additional physical conditions should 

be used. For example, if it is already known that the observed area is covered by cylinder-

like scatterers, the scattering matrix should have the form 
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Or, as shown in (3.69), 
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As an application of this direct inversion theory, the following two-component 

decomposition technique is proposed. Suppose we add another scatterer to the observation 

described in (C.3), then we have 

othergenm CCbC +=
2

 . (C.39)
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There are 5 unknown parameters to be fixed as 

φσ ,,
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,
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⎛
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c
ca

Sbgen  . (C.40)

By determining 
2

genb , the rest of the parameters are immediately found using the direct 

inversion technique.  A similar approach to ANNED can be used, as shown in Figure C.1. 
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Figure C.1: Flowchart of the two-component decomposition using the direct inversion 
technique of the general covariance matrix 

An algorithm is applied to the Black Forest image which was used in Chapter 3. Figure 

C.2 displays pixels at which the algorithm cannot find solution. Since the generalized 

volume scattering component is valid only for a cloud of symmetrical scatterers, the model 

has no solution when the area is dominated by other scatterers such as bare surface. 
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C-Band L-Band P-Band

 

Figure C.2: Pixels with no solution are displayed at the three wavelengths: C-band (left), 
L-band (center), and P-band (right). Black: no solution, white: with solution. 
The results are obtained from the Black Forest image used in Chapter 3. 

It is clear that the pixels without solution correspond to cropland, and the contrast of 

this area is increased as the wavelength increases. This tells us that the most of the pixels 

without solution are found at the places where the ground scattering is dominant.  

Figures C.3, C.4, and C.5 show maps of the mean orientation angle and randomness at 

C-band, L-band, and P-band, respectively. 
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Figure C.3: Maps of the mean orientation angle (left) and randomness (right) using the 
two component decomposition model for the C-band Black Forest image 
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Figure C.4: Maps of mean orientation angle (left) and randomness (right) the two 
component decomposition model for the L-band Black Forest image 
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Figure C.5: Maps of mean orientation angle (left) and randomness (right) the two 
component decomposition model for the P-band Black Forest image 

Comparing these images with the results in Chapter 3 using ANNED, the orientation 

angle map shows more variation, and the randomness map shows similar texture in the 

forested area. We do not discuss these results in this thesis, and further investigation is 

needed to physically interpret the results obtained from this purely mathematical algorithm. 

To avoid pixels without solution, one may add another component to (C.39) as 

othern
n
gengengenm CCbCbCbC +++=

2

2

22
1

21 L  . (C.41)

As you see, the ANNED model in (3.74) is just one specific form of (C.41). 
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A p p e n d i x  D  

The Appearance of a Cloud of 

Randomly Oriented Dipoles 
 

In this section, we will discuss how randomly oriented thin cylinders on the ground 

appear at the receiver. 

The geometry of a single oriented dipole on the ground and a definition of this 

orientation angle at the receiver are shown in Figure D.1. 
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Figure D.1: Geometry of an oriented dipole on the ground and a definition of the mean 
orientation angle at the receiver 

The α can be interpreted as the rotation angle of the target about the line of sight. From the 

geometry, the orientation angle at the receiver is mathematically expressed as 
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α = tan−1 h
v

  (D.1)

where h and v are given by 
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The orientation angle at the receiver depends on the incidence angle. From these 

expressions, we can numerically generate a cloud of dipoles with a specific distribution on 

the ground σground, and then project them to the polarimetric plane at the receiver. The 

randomness at the receiver σrec can be obtained by examining the standard deviation of the 

projected cylinders in terms of orientation angle α.  The results, with various incidence 

angles, are shown in Figure D.2, with the mean orientation angle fixed at zero (ψ0=0).  
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Figure D.2: Randomness at the receiver corresponding to that on the ground with 
various incidence angles 
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