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Abstract

The unique contributions of this thesis are: 1) a polarimetric classification algorithm
that is a significant improvement over an existing algorithm and 2) introduction of a cube

technique to retrieve soil moisture under vegetation.

The most widely used classification algorithm is the three-component scattering
technique. Even though it includes three dominant scattering mechanisms, the
decomposition approach can cause a non-physical solution due to incorrect assumptions.
The Adaptive Non Negative Eigenvalue Decomposition approach in this thesis produces
correct solution. It appears that this new approach provides better classification results. It is

a significant improvement over the existing technique.

A cube technique is introduced to retrieve soil moisture under vegetation. Using this
approach, we have evaluated the retrieval accuracy of several polarimetric combinations.
The effects of the incorrect vegetation model and data noise were investigated. In addition,

the proposed cube algorithm can be improved by applying the classification result.
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Chapter |

INTRODUCTION

Soil moisture, a medium for interaction between atmosphere and land surface, plays an
important role in understanding the global climate system. Once a local precipitation event
occurs, typically 40% of input water forms runoff or infiltrates underground, and 60% of
input water returns to atmosphere through evapotranspiration [1]. Radiation from the sun
causes soil moisture to evaporate directly from the surface. On the other hand, vegetation
absorbs soil moisture through the roots, and the radiation energy induces transpiration.
These examples illustrate that a solid knowledge of the dynamics of soil moisture deepens
our understanding of the global energy cycle as well as the global water cycle. Therefore,
soil moisture is an essential physical parameter in understanding the complex hydrologic
cycle and thus a systematic technique to measure soil moisture globally and temporally

with reasonable accuracy is strongly required.

Measuring soil moisture on bare surfaces has been studied for more than five decades.
It is well known that radar scattering from bare soil is strongly related to surface roughness
and dielectric constant, which is affected by soil moisture, and several theoretical models
have been proposed and are widely used [2, 3]. Some researchers applied these models to
infer the soil moisture [4, 5, 6], while others derived inversion models empirically, or semi-
empirically, using experimental data sets [7, 8, 9]. Even though these inversion techniques
have achieved great accuracy, they are only applicable to bare surfaces or surfaces with a

small amount of vegetation having a specific structure.



2
Table 1.1 shows land classification by vegetation types [10]. Since the desert and

tundra are considered as bare surface, using 26.2 million km? as the area covered by desert
as given in [11], more than 76% of the total land surface is covered by vegetation. To
understand our global climate system thoroughly, measuring soil moisture under vegetation

is therefore absolutely necessary.

Table 1.1: Land classification by vegetation types [10]

Biome Area (million km®)
Tropical forests 17.6
Temperate zone forests 10.4
Boreal forests 13.7
Tropical savannnahs 22.5
Temperate grasslands 125
Deserts and semi-deserts 455
Tundra 9.5
Wetlands 3.5
Croplands 16
Total 151.2

One way to measure soil moisture from vegetated terrain would be to isolate that part
of the radar return that was directly returned from the underlying soil surface. Though
many researchers have tried to decompose polarimetric radar signals from vegetated terrain
into several scattering mechanisms to isolate the ground scattering component [12, 13],
these techniques still have not achieved practical accuracy and applicability yet due to the
following difficulties. First, there are various types of vegetation (as in Table 1.1), and most
of the decomposition algorithms assume a particular type of vegetation. In addition, the
multiple scattering mechanisms from vegetated terrain —such as direct backscatter from the
canopy, trunks, and ground; interaction between canopy and ground; and interaction
between trunk and ground- are not all independent. For example, a dense canopy produces
strong backscattering from the canopy while it significantly attenuates backscatter from the

trunks and the ground, and all interactions between the vegetation layers and the ground.
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However, using the European Remote Sensing (ERS) satellite scatterometer, \Wagner

et al. showed that the radar cross section from vegetated terrain at Beja in Portugal is highly
sensitive to soil moisture even when using a higher frequency [14]. In Figure 1.1, monthly
change in backscatter from Beja is shown with normalized differential vegetation index
(NDVI) observed by the Advanced Very High Resolution Radiometer (AVHRR) and
precipitation history. The NDVI indicates the amount of chlorophylls, which is equivalent
to amount of vegetation covering the surface. It is obvious that backscatter cross section
follows precipitation history. Hence this tells us that the radar backscatter is sensitive

enough to see soil moisture under vegetation.

~ NDVI(AVHRR)

i PPN, e Mﬁ%@f%

[ |

991

| Precipitation

| | M

.FJ.J.E..:LJ LIJ .l - l._d:.l_l. ‘.t‘i‘\ﬂl‘._ ._ml‘; ol ';L‘lltru.. 1 !.H.li;:...ﬂl_L ] 1:I!A|Um J'. |
2 %o 1 £ & (P UOW

4 o Tiee
g W0 pqoh L BB teogy, | OGNS W gpdeneca iy

*
| 1 o ~ . ';?;ﬁﬁ P
bl g % [ R Al

>9 & e 07( * X
A % > B, @ I i |&® 7\'0-'. &
o Soof M WA

Fig. 3. Temporal evolution of the NDVI, ramfall observations, and the normalized backscattenng coefficient #” (40) over an agncultural region around Beja
in southern Portugal. (a) Daily NDVI values degraded to match the resolution of the ERS scatterometer. (b) rainfall recorded at the synoptic station “Beja
(c) @ (40) time series over Beja: the dotted lines show the backscattering coefficient for dry soil conditions. «, (40, t). and the backscattering coefficient

for wet soil conditions, o}, (40), and (d) 0" (40) series over a region about 150 km east of Beja. the dotted lines represent o), (40, t) and o'}, , (40)

Figure 1.1: Monthly changes of NDVI (top), precipitation history (second row), and
radar backscatter cross section of vertical polarization (third row and
bottom) at Beja in Portugal, which were reported in [14]

The purpose of this research is to study in detail the scattering mechanisms of
vegetated terrain to attempt to find a way to isolate surface scattering from other scattering

mechanisms, and apply this knowledge to retrieve the soil moisture.
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This thesis is organized as follows. In Chapter Il, we define the coordinate systems

used in this research, followed by the fundamental mathematical operations for the

scattering and covariance matrices.

We follow this introductory material with a discussion of polarimetric scattering
decomposition as used in this thesis. We introduce a more general decomposition technique
and show how this algorithm corrects some of the deficiencies of the current decomposition
schemes. Our algorithm allows one to adaptively change the assumed vegetation structure

on a pixel-by-pixel basis to find the best approximation to the observed scattering.

In order to verify the decomposition algorithm, we use a numerical scattering model to
simulate vegetation scattering. In Chapter IV, the forward simulation model called the
Discrete Scatterer Model (DSM) [15, 16] is introduced with some modifications to the
previous work. This model is then utilized to study the sensitivity of the polarimetric radar
backscatter cross section to changes in the physical parameters of vegetated terrain. This
provides us with a better physical understanding of the scattering in such a complicated
system. In Chapter V, the proposed decomposition algorithms are applied to DSM so that
we can quantitatively evaluate them. Finally, in Chapter VI, we discuss ideas for retrieving

soil moisture from vegetated terrain.



Chapter I

Fundamentals

In this chapter several fundamentals are introduced for later discussion. We start with
coordinate systems and radar polarimetry techniques, and follow that with a discussion of
observation. We also discuss the scattering and covariance matrices and the reciprocity

theorem.

2.1 Coordinate System

Two types of coordinate systems are commonly used to express electromagnetic
scattering problems [17] depending on the definition of propagation direction of the
scattered wave: the forward scatter alignment (FSA) convention and the backscatter
alignment (BSA) convention. Figure 2.1 shows both of them. FSA is generally used to
describe bistatic scattering problems while BSA is used to describe backscattering

problems.



FSA BSA

Figure 2.1: Coordinate systems: Forward Scatter Alignment (FSA) (left), Backscatter
Alignment (BSA) (right)

There are several other definitions of the four angles, &, &, ¢, and ¢ shown in the
figure. For example, Ulaby et al. defines n-&, &, n+¢, and ¢ for &, &, &, and &,
respectively [17]. To avoid further complexity using different angle definitions, we just
choose simplest one, as in the figure. In a later chapter, we introduce another coordinate
system to discuss natural vegetation where it makes better physical sense to define the
angle from top to bottom. The definitions are exactly same as in the figure. Incidence and

scattered vectors are mathematically expressed as follows.

k)™ sing, 0 cosd,| cosg, sing, 0| X

h = 0 1 0 |-sing, cosg, O|y (2.1)
v —cosd, 0 sing, 0 0 1Az



k1™ (sing 0 —cosdY—cosg —sing. OYx
h = 0 1 0 sing. —cosg, 0|y (2.2)
v cosd 0 sing, 0 0 1Nz

The coordinate systems are easily related to those in the Ulaby et al.’s book. To avoid any

further confusion, the transformation matrices are defined here.

ei — ﬂ_eiulaby,Elachi, ¢i — ¢iUIaby,EIachi +7 (23)
“ (1 0 0YkY
=0 1 0 x = BSA, FSA (2.4)
v 0 0 -1\v Ulaby, Elachi

X

kY (-1 0 oYk
h| =| 0 -1 0 |h (x,y) = (BSA,FSA),(FSA, BSA) (2.5)
Vv 0 0 -1)v

Ulaby, Elachi

Note that the inverse matrix of each transformation matrix is the same as the original one.

2.2 Radar Polarimetry

Typical radar observation geometry is shown in Figure 2.2. There are transmitting and
receiving antennas which allow us to measure scattered power from a target located at a

distance R; from the transmitting antenna and R, from the receiving antenna.

Figure 2.2: Radar observation geometry



Received power is expressed in the well known radar equation,

PtrG Aa
Prec — 00 nt 26
4R, A4ﬁg2 26)

where G is the antenna gain, and P" and P™ are the transmitted power and received power,
respectively. Aqne and A; are the antenna effective area and target effective area, respectively.
o is backscatter cross section. The radar system estimates the backscatter cross section

based on the a priori knowledge of the other parameters in (2.6).

Now the concept is extended to polarimetric radar observation. Maxwell’s equation
tells us that polarization of an electromagnetic wave can be expressed using polarization
bases. Horizontal and vertical linear polarizations are commonly used because they are
easy to implement. These two polarization bases are physically realized by changing the
antenna effective length, and the normalized antenna effective length is called the

polarization state,

|'Ol

i phj _
p = —> pnorm = (2'7)
(pv I

where p, and p, are horizontal and vertical antenna effective length, respectively. This

=l

allows us to describe the backscatter cross section of single scatterer as

0 2

O =

(2.8)

Breen *[SBrorm

tr
norm

R rec
pnorm

where p and are normalized antenna effective lengths for transmitting and

receiving, respectively.

Shh ShV
[S]{SVh SW} 2.9)

The matrix S is called the scattering matrix and expresses a polarimetric scattering property

of the target. Sy, means that a y-polarized wave is transmitted and a x-polarized wave is
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received. So we can say that polarimetric radar observation is a way to measure the four

elements of the scattering matrix and the target is considered as a polarimetric transformer.

A simple calculation gives us the following expressions.

P P ) (S
’—jrec [S]ptr — p;‘fC ' Shh Shv pr:r _ p\t,f p}:eC Shv _ AT§ _ §TA
norm norm rec S S tr tr . rec S
Py v 2w [\ Py Pn Py vh (2.10)
o) Sy

o =(ATS)ATS) = AT(SST)A = ATC A"
where superscript T and * denote transpose and complex conjugation, respectively. Note

that the vector A consists only of antenna polarization parameters. As long as we are
interested in observing natural terrain, the received diffuse scattering power is usually
statistically averaged. This physical fact leads us to the following mathematical formulation,

(S} (SwS) (SwSin) (SwSu)
e ey —an TS (5} {SuSh) (5u85) o
’ <S;hsvh> <S,:sth> <|Svh|2> <SvhS:V> .
(SiSw) (SSw) (SSw) QSWF>

where ( )denotes ensemble averaging. C is the so called covariance matrix and is usually

used to represent polarimetric radar data. Note that this is a Hermitian matrix not only for

the monostatic case but also for the bistatic case. In this thesis, the matrix is also written as

0 0 0 0
Ombh Ohhtv Oniwh - Onhw

0* 0 0 0
C _ O-hhhv O-hvhv Uhvvh O-hvvv
o 0 (2.11b)
O-hhvh Uhvvh thvh O-vhvv
0* 0* 0* 0
O-hhw Uhvvv thvv O-vvvv
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Equation (2.11) is expressed from the antenna’s point of view. Now we try to express it

from data user’s point of view. The scattering matrix in (2.9) now corresponds to one pixel

of a scene. The covariance matrix for this one pixel is as follows.

* *

B 2 *
|Shh| ShhShv Shthh Shthv

s‘s.  Is.|> s.S% S .S
Co — hh~hv | hv| hv ;h hv ~w (212)

Sr,:thh SrTvSvh |Svh| SvhS\,:v
S

*

S1Sw SnSu  SiS

hv~w

|2
In order to avoid speckle-like noise caused by signal fading, averaging of the pixels, which

is also called multi-looking, is commonly used in practice. This simple operation is

mathematically expressed as

- D) XA ) (2.12)

where M and N are numbers of pixels to average in either the along track direction or the

cross track direction. The resulting image is also called the M by N looks image.

If our observation can be done only in the backscattering situation, i.e. monostatic case,

one can easily show that scattering symmetry gives us

Shv = Svh (213)

This is called the reciprocity theorem, which plays an important role in this thesis, and

reduces our 4 by 4 covariance matrix to a 3 by 3 matrix as follows.

S S |Shh|2 \/Eshhst:v ShhS:v
[s]:[ ““ “V} - Co=|28,S,  2S.|°  +2s,S, (2.14)
SI:hsvv \/ES;vva |SW|2
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Chapter Il

Polarimetric Decomposition

Backscattering from a vegetated surface is typically a mixture of several scattering
mechanisms such as backscattering from a canopy part, from the ground, or from

interaction between the ground and trunk, as shown in Figure 3.1.

Canopy
reflection

Penetration

Double bounce
(Ground-trunk, w
ground-canopy)

Figure 3.1: Backscattering from a vegetated terrain.

We will discuss the details of each of these scattering mechanisms in the next chapter.
Extracting parameters such as amount of biomass, type of vegetation, or soil moisture from

measured data requires breaking the measured data into its original scattering mechanisms.

In this chapter, we shall start by briefly introducing various decomposition techniques.
One of the most popular decomposition techniques, the so-called three-component
decomposition, and its potential deficiency are introduced. We propose an alternative
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algorithm to improve it. Since the three-component decomposition algorithm assumes one

specific type of vegetation structure, it is of limited applicability when applied to natural
terrain, which usually covered by a wide variety of vegetation. In order to overcome this
limitation, a generalization of the volume term is introduced and then applied. Finally some
experimental results to validate those algorithms are discussed. This chapter covers only

qualitative analysis; quantitative validation is deferred to Chapter V.

3.1 Previous Techniques

In order to introduce a concept of polarimetric decomposition, we shall start with the

coherent case; the incoherent case will be discussed later.

The coherent decomposition model allows us to express the scattering matrix of a
single scatterer by the sum of several orthogonal bases. In the backscattering case,

Krogager expressed the model as

S Shy 10 1 0 01
=a +b +C (3.1)
S Su 01 0 -1 10

where these orthogonal components are called Pauli spin matrices [18]. Each of a, b, and c,
is solved for using the measured scattering matrix. An advantage of the use of these
matrices is that each basis has physical meaning so that it helps with the interpretation of
the decomposition results. The first term corresponds to the scattering from a trihedral
corner reflector, spherical scatterer, or an odd number of reflections [17]. The second term
corresponds to an even number of reflections, including the so-called double bounce
reflection, and the third term usually corresponds to the amount of biomass. The choice of
basis, however, is totally dependent on the purpose. Since the model is basically designed
for a single deterministic scatterer, applying it to distributed scatterers is not appropriate.
More recently, this coherent decomposition technique has been applied to manmade
structures like bridges in [19].
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For distributed targets, i.e., the coherent case, a covariance matrix in (2.12) should be

used to express our observation instead of the scattering matrix. Equation (2.12) is

rewritten in the backscattering case as

(s} v2(suSh)  (SmS0)
C=(V2(sn8n)  2(sul)  V2(snS0)| (32)
(sisa) N2(sisn)  (suf)

Using this 3 by 3 expression, Cloude proposed an eigenvector based decomposition in [20].

His model is expressed in the form of

3
C= Z:;tieiei*T (3.3)
i=1l

where A and e are the eigenvalue and associated eigenvector, respectively. Since the matrix
iIs Hermitian, the eigenvectors are always an orthonormal basis, thus it provides a unique
decomposition. These natural bases, however, are freely changed from pixel to pixel, thus
making the interpretation more complicated because it is not guaranteed that the resulting

eigenvectors always correspond to physical scatterers, as with Pauli spin matrices.

To avoid this difficulty, model based decomposition is adopted as our baseline
technique in this thesis. While this model does not guarantee orthogonality of its bases,
meaning the result is not unique, it provides better physical understanding of its result.
Details of this model are discussed in the next section. References [21] and [22] provide an

excellent review of the decomposition models mentioned in this section.

3.2 Freeman Decomposition

Although many people have studied eigenvector based decomposition recently [23, 24]

and shown reasonable results, the approach may not be reliable because a result based on
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purely mathematics does not provide sufficient physical insight. Therefore, it is very

important to develop a decomposition technique from solid physical scattering principles.
As a baseline, we start with Freeman and Durden’s physics based decomposition, described
in this section, and then develop it using mathematical features including eigenvalue
decomposition, so that we maintain physical sense while using mathematical operations. If
the reader is not familiar with scattering from vegetated terrain, we recommend reading the

first section of Chapter 1V.

Freeman’s decomposition model expresses the measured covariance matrix as the sum

of three physical components: the volume, double-bounce, and ground components,

C,=xC,+yC, + ng . (3.4)
Each term is given as
1 0 1/3
C,=| 0 2/3 0
1/3 0 1
1 0 «
C,=|/0 0 O (3.5)
_a* 0 |cx|2
1 0 §
C,={0 0 0
Ao

where o and g are variables to be fixed. These terms will be thoroughly discussed later in

this chapter. So far we have four equations with five unknowns.



X= 3O-hvhv
!
Ohnnh = O ~ X =Y + 2

!

1
'
Ohhw = Ohhw _EX =Yya+ Zﬂ

O-VVVV = O-VVVV -X= )/|a|2 + Z|ﬂ|2
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(3.6)

Obviously we need one more condition to solve for the parameters. Freeman et al.

proposed to add a constraint using a characteristic of double-bounce scattering as shown in

[25]. It is known that an additional reflection flips the phase of the correlation of the co-

polarizations. Van Zyl applied this characteristic to classify the scene into an odd number

or even number of reflections, and obtained reasonable results. If the real part of oy, IS

positive, we determine that surface scattering is the dominant contribution and « is fixed

to -1. On the other hand, if the real part of oy, IS negative, we determine that double

bounce scattering is the dominant contribution and £ is fixed to 1. Using this condition,

we can finally solve the equations as follows. If the real part of oy,,, is positive,

Also, if it is negative,

a=-1

’ 1 2
- |O-hhw + Jhhhh|

’ ! ’
ot T Ty + 2RE(T1) .

! !
_ Ohhw + O i

B
z

— 4 _
Y =0ppn — 2

-1

p=1

r 2
Ohtwv ~ Ohhbh

) Oiin + O —ZRe(Géhw) .

VVVWW
ol —0
_ Obnw ~Fhinth ¢
y

_ !
Z=0Opwm —Y

a

3.7)

(3.8)
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We shall apply the decomposition technique to a real image from the Black Forest in

Germany, obtained by the NASA/JPL AIRSAR system in the summer of 1991. The L-band

image is shown in Figure 3.2. The radar system illuminated from the top of the image to the

bottom.
™ -_ g
Agriculture B L I
(darker) ol ‘?'
vy Forest (brighter)
Rietheim -
F Pfaffenweiler
River
Villingen Clearcut

Road

Figure 3.2: L-band image of the Black Forest in Germany obtained by NASA/JPL
AIRSAR system in the summer of 1991. The solid arrows indicate the name
of city or area type. The dotted lines specify the direction of topographic
change. The terrain slopes upward in the direction of the arrows.

The image nicely shows urban area, agricultural area, and forested area with high contrast.
There is also a river and a road from right to left. Note that the dotted lines in the forest
show there is topography and the terrain slopes gradually upward from the center to the
right. The forested area is a mixture of spruce, pine, and fir trees [26]. The observation was
conducted at three different frequencies: C-band (6 cm), L-band (24 cm), and P-band (68

cm), and these three components are shown in Figure 3.3.



C-Band

Figure 3.3: Results of the Freeman algorithm applied to three different wavelength
images in Freiburg obtained by AIRSAR. From left to right, C-band (5 cm),
L-band (24 cm) and P-band (68 cm) images are displayed. Green, red and
blue are assigned to volume scattering, double-bounce scattering, and
ground scattering, respectively.

Green, red, and blue are assigned to normalized power of the volume, double-bounce, and
surface scattering components, respectively. For all wavelengths, urban areas such as
Villingen and Rietheim are clearly discriminated in the double bounce component. In the
agricultural area, it is clear the longer wavelengths show good penetration of canopy layer,
and double-bounce scattering appears instead of the volume component. Van Zyl pointed
out in [26] that the double bounce component due to the trunk-surface interaction should be
replaced by the volume component if the topography is not flat. In particular, you can see
this effect in the P-band image. A river exists half way down the image from right to left,
and there is a steep slope on both sides toward and away from the radar. The image clearly
shows that the widely spread double-bounce components are suddenly replaced by the
volume component around the river. Hence the results from Freeman’s model based

decomposition show good agreement with our intuition.
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There can be negative power associated with the Freeman decomposition. In order to

remove this nonphysical quantity, we propose a different decomposition technique. The

power of the covariance matrix is expressed as the sum of each diagonal element.

b c
e f|=>P(C,)=a+e+i (3.9)
h i

O
Il
@ o o

If double bounce and surface scattering components are removed from (3.4), and an “other”

component added, the equation becomes

C, =XC, +C_ e (3.10)
where X is a positive real number because the observation is the sum of scattering powers,
which are positive definite as shown in (2.11). The additional component is utilized as a
“catch all” to collect the other terms from the decomposition so that we can always keep
both the left- and right-hand side exactly equal. The equation can be written as

Coter =C,, —XC, . (3.11)
Conservation of energy forbids any component in (3.11) from having a negative power.
Hence, we implicitly have the following conditions.

P(C,. )=0, P(C,)>0, P(C,)>0 (3.12)

other

Since Freeman’s decomposition determines the coefficient x directly from the cross
polarization term of the measured covariance matrix, its value is uniquely determined.
Applying (3.12) to the image, we can simply check if the decomposition is valid or not.

Figure 3.4 shows the result of this validation test using the L-band Black Forest image.
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Original Image Result

White: all positive eigenvalues
Black: at least one negative eigenvalue

Figure 3.4: Pixels with negative eigenvalue are displayed using the L-band Black
Forest image. The left image is the total power image at L-band, and the left
image is the result of the validation test.

The result shows that the entire forest has negative power, which is physically unacceptable.
Since Freeman’s algorithm assumes that whole cross polarization term is contributed by the
volume component only, it may overestimate the contribution from other scattering
mechanisms. For example, the double-bounce scattering may contribute to the cross
polarization term due to the fact that one of the two reflections is caused by the volume
layer. This deficiency was pointed out by van Zyl et al. in [49]. We introduce the algorithm
which overcomes this fatal deficiency in the next section.
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3.3 Non-Negative Eigenvalue Decomposition

In order to avoid negative power, van Zyl et al. proposed an improved two-component

(C, and C,., in (3.11)) decomposition technique in [49]. In this section, the technique is

other

first introduced. Then we expand to the technique to a four-component (C,,C,,C_, and

Cier ) decomposition for natural terrain. For these algorithms the off-diagonal part of the

measured covariance matrix in (3.11) will be set to zero, assuming scattering reflection

symmetry [27].
O hhnh \/EG hhhy Oy O hhnh 0 O hhw
Cm = \/Eo-fjhhv 2O-hvhv \/Eahvw ~ 0 2thhv 0 (3 13)
O-;hw \/EGI‘TVVV vav G:hvv 0 vavv

Similarly, the volume component in (3.11) can be written as

p 0 s
C,=|0 2q 0 (3.14)
s 0 r

where p, g, and r are real and positive numbers while s is a complex number. Hence (3.11)

is rewritten as follows.

O hihhh 0 O hhw p 0 s
Cother = 0 20-hvhv 0 -X 0 2q 0 (315)
O-;hvv 0 O-vvvv 5* O r

It is well known that each eigenvalue of a Hermitian matrix is real. Moreover, they are all
positive as long as the measured scattering power is positive, which is the usual case (see
Appendix A). These two conditions place a constraint on x in (3.15). When X is zero, Cother
is exactly equal to the measured covariance matrix, which means that each eigenvalue of
Cother automatically satisfies the requirements. As x is increased, the power in the second

term increases, so the power in the first term necessarily decreases, which in turn reduces
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the eigenvalues of the first term. If one chooses too large of an x, it is obvious that the

power in Cymer becomes negative, and hence some of the eigenvalues also become negative.
Therefore, x will be constrained such that both conditions hold. We can derive this

mathematically as follows.

From (3.15), each eigenvalue can be derived as

A (x)= %{(— ax+b)+./f (x)}
ﬂz(x):%{(— ax+b)— T(x)} (3.162)

A (X) = Z(thhv - qx)

where,

f(x)=cx? - 2dx +e
a=p+r
b:O-hhhh +O—vvvv
c=(p-r) +4s

d :(p_ r)(o-hhhh _vav)+4Re(thvvs*)

e:(ahhhh _wa)z +4|O-hhvv|

(3.16b)

Note that all values defined in (3.16b) are real, and all those values are positive except for d.
Due to the fact that eigenvalues of a Hermitian matrix are always real no matter what its
associated power is, we can find an implicit condition from (3.15) as follows. Obviously,
the third eigenvalue is always real. In the case of the first and second eigenvalues, both

eigenvalues are always real only if the real number f(x) is positive so that
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2 2
f(x)zc(x—gj _4 es0

c c

2
:>—dT+e20 (-c>0) . (3.17)

= |(O-hh —Oy )S - (p - r)o_hhvv|2 2 4{Im(o-hhws*)}
If this does not hold for measured data, it may imply that there is some problem with the

radar system.

We can now constrain x as follows. The behavior of the third eigenvalue is shown in

Figure 3.5. Note that the eigenvalue is straight line with negative slope.

A
4k
valid

Uhvhv

Figure 3.5: Illustration of the third eigenvalue in (3.16a)

From the figure, the x starts from onyy at Xx=0, and it decreases linearly with increase of x. It
crosses the x axis at the point X3 in the figure, which can be solved for using the third

equation of (3.16a), yielding

Ghvhv
X, = —whv 3.18
I (3.18)

Let’s move on to the first and second eigenvalues. One can easily recognize that the second
one is always greater than the first one for any x. So we need only constrain the value of x

from the second eigenvalue equation. The second eigenvalue in (3.16a) is rewritten as
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1 b
Az(x):—E(axh/ f(x))+§. (3.19)
This is a monotonously decreasing function because the first term is always negative for

any x because a and ./ f(x) are always positive. Setting (3.19) equal to zero, the maximum

value of x can be expressed as

X, = . (3.20)

2
u (aZ—CZO)

The behaviors of these two eigenvalues in terms of x is illustrated in Figure 3.6. Note that

this is one specific case where the X, is smaller than the xs.

A

valid

Figure 3.6: Illustration of the second and third eigenvalues in (3.16a). This is a specific
case where X, is smaller than Xs.

In order to find the constraints on x to satisfy both conditions on the eigenvalues, we

compare xz and xs, and then choose the smaller one as

X = MIN(X,, X, ). (3.21)
This simple modification to Freeman’s model, namely, the addition of the Coper term,
corrects the potential deficiency illustrated by Figure 3.3. Although we applied it to the
two-component decomposition model in (3.11), this idea can be expanded beyond this

simplest case. In particular, we will further modify the decomposition model to make it
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applicable to various vegetated terrains by adding two more scattering components: double

bounce scattering and ground scattering. Here again, we use the other component to ensure

that the power conservation law holds.
Equation (3.11) is modified by adding the two components as follows.

C, =XC, +YC; +2C, +C (3.22)

If the two-component decomposition technique is applied, x is independently determined.

The equation is then rewritten as

C,=C,—xC,=yC, + 2Cy + Copper (3.23)
where,
o-r:hhh 0 O'r:hvv
Cr,n = O 20-r’whv 0
O 0 Ol
1 0 «
Ci={0 0 O : (3.24)
* 2
a 0 |a|
1 0 P
C,=[0 0 0
B0 |

Note that the (3.24) is exactly same as Freeman’s model in (3.5).

Our discussion will focus on how to fix the parameters y, z, «, and £. In order to
achieve this, we first introduce a similar mathematical model in which all parameters can

be found, which is then combined with (3.23) to find its solutions.

A 3 by 3 Hermitian matrix, such as our measured covariance matrix, can be expressed

by three real eigenvalues and three orthonormal eigenvectors as
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Ch=> 46 -&". (3.25)

These eigenvectors can be freely chosen as long as they are orthonomal. In [28], van Zyl
pointed out that the following is a possible decomposition under the scattering reflection

symmetry. First, we change the form of the measured covariance matrix to

1 0 p
C.=Cl0 n O (3.26)
p 0 ¢
where
C = Ohn
200, 1 O
n ,hh ’hhhh (3.27)
= O | O
p:O-tllhvv
The measured covariance matrix is then decomposed as
1 0 x 1 0 x 0 00O
Cho=A)0 0 0 [+A,]0 0 0 |+A,]0 1 O (3.28)
X, 0 x| X; 0 x| 000

where,

RN 2 (3.29)
e o e

and,
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L _[¢-1eda )
1~ 20
o _(¢-1-va) (3:30)
2= 2p '
A=(¢ -1+ 4"

Note that

X, X, =—1. (3.31)

So far the model has been derived purely mathematically, i.e., no physical constraints
exist. Figure 3.7 shows the geometrical relationship between x; and X, on unit circle.
Equation (3.31) tells us that the complex numbers x; and x; are on the straight line through
the origin. If one is in the left half plane, the other is in the right half plane. Also note that if

one is inside the unit circle, the other has to be outside the unit circle.

Figure 3.7: Geometrical property of x; and x, on unit circle. The property in equation
(3.31) determines this relationship.

The physical model (3.23) and mathematical model (3.28) becomes
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1 0 « 1 0 A
C'=y0 0 0 |+200 0 0 |+C
a0 |of g o |g

other

(3.32)
1 0 x 1 0 x 000
Ch=Aj0 0 0 [+A,/0 0 0 |[+A,[0 1 0
x© 0 || X; 0 |x,[ 000

Comparing these two equations, one can easily find the following relations by ignoring the

third term of both equations.

X
X

S}

(3.33)

=

N\<%Q
Il

A
AZ
If the real part of x; is positive, x; and X, can be interchanged so that « is always in the left

half plane in Figure 3.7. This corresponds to Freeman’s decomposition criterion which

states that the scattering is double bounce if the real part of o, is negative. However, his
decomposition model sets a fixed number to « or g depending on the sign of o}, . This

operation provides clear contrast between double bounce and ground scattering. On the
other hand, our approach is expected to have more natural discrimination between double
bounce scattering and ground scattering since it allows both parameters to be complex
numbers. In this thesis, we call the decomposition technique described above Non-Negative

Eigenvalue Decomposition (NNED).

Figure 3.8 shows the decomposition results using NNED where green, red, and blue
are assigned to volume, double bounce, and ground scattering as in Figure 3.3. Note that

the volume scattering term here is the same as Freeman’s technique in (3.2), hence
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p 0 s
C,=|0 29 0| p=r=1 gq=s=1/3. (3.34)
s 0 r
C-Band L-Band P-Band

Figure 3.8: Decomposition result using NNED are shown. The original images with

three different frequencies are the same as in Figure 3.2. Color assignments
are the same as Figure 3.2 as well.

You can easily see that the volume component is significantly suppressed. Instead, surface
scattering and double bounce scattering are emphasized in the L-band and P-band images,
respectively. We can see some faint red in the middle of the Black Forest in the L-band
image. The agricultural and urban areas do not show a difference between the two
techniques. Also the P-band image still shows the volume scattering contribution around
the river half way down the image. In order to see more clearly the suppression of the

volume component, we calculate the following index for each pixel.

(X freeman — XNNED )Xloo[%] (335)

X freeman
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This index indicates how much the volume scattering power decreased under our

decomposition technique. In other words, the figure shows how much the volume power is
overestimated by Freeman’s decomposition. The value of this index applied to the L-band

image is shown in Figure 3.9.

Figure 3.9: Difference between the Freeman decomposition and NNED at L-band.
Most of the forested area shows higher values due to overestimation of
Freeman’s decomposition.

The entire forested area shows about a 30 to 40% drop in volume scattering power but this
IS not pronounced in agricultural area. Note that the map shows good correlation with

Figure 3.3 as we expected.

We have introduced two decomposition techniques: Freeman decomposition and non-
negative eigenvalue decomposition. As shown, both techniques use a fixed volume
scattering term given by (3.5) for Freeman’s decomposition and by (3.34) for NNED. As
described in the next chapter, both models assume a uniform distribution of thin cylinders,
as in the canopy of a rainforest. Clearly, this limits their applicability to scenes with a
specific type of vegetation. In addition, these models show how to find the maximum value
of x but this value is not necessarily optimal. It is not easy to choose the optimal value of x

from our limited information. However, we have shown a better way to estimate x using a
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generalized volume component. In the next two chapters, we generalize our volume

scattering component first, and then suggest an adaptive decomposition technique using

this generalized volume scattering component.

3.4 Generalization of the Volume Scattering Term

In the previous chapter, we used the following covariance matrix for volume scattering.

1 0 1/3
C,=| 0 2/3 0 (3.36)
/3 0 1

First, we discuss how to obtain this expression as a volume term. Suppose we have an

infinitely thin cylinder on a polarization plane, Ho-Vo, as in Figure 3.10.

Vo

A

——.'_|0

Figure 3.10: An infinitely thin cylinder on Ho-V plane. The cylinder follows the vertical
axis.

Note that the cylinder exists along the vertical polarization axis, Vo. The scattering matrix

and backscatter cross section of this cylinder are calculated as

(0 0] o
Sdipole = - o =

(3.37)

.
= Trec =tr
Po Saipote Po

01
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are normalized antenna effective length for transmitting and receiving

R_tr

where p,

R rec

and p,

respectively. The polarization plane can then be rotated as in Figure 3.10.

V A

wH
AY i
g
N P
——F——H
el N 0
N

Figure 3.11: An infinitely thin cylinder on rotated Ho-V, plane

The antenna effective lengths are rewritten as

gi=| €080 SO e 3.38
P =\ Zsing coso)™ T 3

One can plug this into (3.37).

0
O =

2
T COSO  sind cosd sing)" .
p Sdipole p (339)

—singd cos@ —-sin@ cosd

Of course, the situation in Figure 3.11 is exactly same as the case of an oriented cylinder on

a fixed polarization plane, H-V, as shown in Figure 3.12.
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Figure 3.12: An oriented thin cylinder on a fixed H-V plane
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We obtain a scattering matrix for an oriented infinitely thin cylinder as

cosd sind cosd sin@\" sind  sin@cosd
S (9) = H Sdipole . = . 2 ' (340)
—sin@ cosé@ —-sin@ cosd singcosd cos‘ @

The covariance matrix follows immediately

sin“ @ J2sin®0cosd  sin2@cos’ O
C,(0)=|~/2sin*Gcos® 2sin?Hcos?d ~/2sindcos’ o |. (3.41)
sin?@cos’ @ /2sin@cos’ cos* @

This matrix expresses scattering from a single oriented thin cylinder. However, scattering
from a natural volume layer should be close to that from many randomly oriented cylinders.

This covariance matrix is expressed as follows

C= j C,p(0)de (3.42)

where p(<9) Is a probability density function (pdf) in terms of orientation angle. Note that

the matrix has a slightly different form from the one used in the discrete scatterer model in

(4.8) in the next chapter because of the difference in angle definitions.

Three specific cases of these equations are shown as follows. The first case is to derive a

covariance matrix for uniformly distributed cylinders.

1
puniform (9) = 2 (343)
T

Figure 3.13 shows an illustration of uniformly distributed cylinders and a plot of the pdf in

terms of orientation angle.
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Figure 3.13: Uniform distribution of oriented thin cylinders
The covariance matrix becomes
o 3 01 1 0 1/3
1 3
Cuniform = J.CO puniform (e)de g O 2 O :g O 2/3 0 : (344)
0 1 0 3 1/3 0 1

The portion inside 3 by 3 matrix of (3.44) is exactly same as that of (3.5) and (3.4). This
means that we have implicitly assumed that volume layer consists of uniformly distributed
oriented cylinders. This assumption may work well for complicated vegetation as in a

rainforest.

The second case is a cloud of thin cylinders distributed with a cosine squared
distribution. The fact that cosine squared function has two peaks with 7 radian interval
leads us to apply it to as a pdf. This pdf is applicable to any symmetrical shape such as a
cylinder because if you have a peak probability at a certain angle, another peak probability

exists at zzradians from the first angle. The pdf is given by

pcos_ sq (0) = %COSZ 0. (345)

The illustration and plot of the pdf is in Figure 3.14.
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Figure 3.14: Cosine squared distribution of a cloud of oriented thin cylinders

In this case, the covariance matrix becomes

, 1 0 1
4 1

Ccos_sq=J.C0pcos_sq(0)d0=§ 0 2 0 (346)
0 1 05

This matrix shows that the backscatter cross section of the vertical co-polarization term is
five times larger than the horizontal co-polarization term. This is reasonable because the
cosine squared distribution assigns more probability to vertical orientation than to
horizontal orientation.

If one assumes that uniform distribution is an extreme case of volume scattering, there

should also be an extremely narrow distribution. The pdf should be a delta function:

Pas (0)=30(0-mz)  m=041. .47

Figure 3.15 shows its illustration and a plot of the pdf.
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Figure 3.15: Delta function distribution of a cloud of oriented thin cylinders

The covariance matrix is

2z
Ceta = ICO Pdetta (9)d9 = (3.48)
0

o O O
o O O
= O O

Since the pdf assigns the probability only to the vertical orientation angle, the matrix shows

that the backscattering power exists only in vertical co-polarization term.

These examples provide us two extreme cases and one intermediate case, which are

illustrated in Figure 3.16.
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Figure 3.16: Illlustration of various randomness of vegetated area. Larger randomness,
medium randomness, and smaller randomness correspond to terrain covered
by rainforest, coniferous forest, and cornfield vegetation types, respectively.

One might think that an n-th power cosine squared function could be used to model
any type of deviation of randomly oriented cylinders between the extreme cases of a delta
function and a uniform distribution. In this thesis, we use an n-th power cosine squared
distribution function (pdf) for p as shown in Figure 3.16.
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Figure 3.17: n-th power cosine squared probability density function
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p,(4,n)= %{cos2 (6-6, )}n

2 (3.49)
A= J'O”(cos2 0) do

This pdf has two peaks separated by a = radian interval as mentioned before. Also we can
easily specify any degree of randomness by changing n. For example, if one chooses n=0,
the pdf becomes uniform distribution which has same probability for all angles. If one
chooses infinitely large n, the pdf gets close to delta function with two peaks. Therefore the
n-th power cosine squared function allows us to model the natural statistical properties of a
cloud of cylinders. Note that the pdf can be applied not only to cylinders but also to any

symmetric scatterer.

It is inconvenient to directly use n to specify the degree of randomness, because the
range of the parameter is not finite. Therefore we replace it with a parameter having a

limited range.

Since the pdf has two peaks, the standard deviation of the pdf should be calculated
from -2 to 12 radian with zero mean, &=0, as in Figure 3.18, to correctly measure the

width of each peak.

py(6,n)= %(cos2 o)
. (3.50)
A’ = [2 cos® 6)' do

2
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Figure 3.18: Definition of standard deviation of n-th power cosine squared probability
density function

Then the standard deviation is calculated as

o(n)= \/ j_;;ez p,(6,n)d6. (3.51)

Using the definition, standard deviations of uniform and delta function are easily shown to
be

O ot = 1| | 2075(0)d0 =0

r
2

z [ 2 '
O uniform = ij‘zﬂ HZdH = 7[_ ~0.91
Ty 12

We can also numerically calculate equation (3.49) for any n between 0 and infinity as

(3.52)

plotted in Figure 3.19.
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Figure 3.19: Standard deviation of n-th power cosine squared distribution in (3.51) in
terms of index number, n. The standard deviation is uniquely related to the
index. Also the standard deviation has a limited range between 0 and 0.91,
while the index can be infinitely large number.

It is obvious that the standard deviation by equation (3.49) continuously and uniquely
covers from delta function distribution to uniform distribution. Therefore the index number,
n, can be completely replaced by the standard deviation of cosine squared distribution. The
advantage to using this is that the parameter has limited range from 0 to 0.91 instead of that

from 0 to infinity.

We shall use the standard deviation to specify the randomness of the n-th power cosine
squared pdf in the rest of this thesis. Even though this does not change the mathematical
property of the pdf at all, the idea plays an important role in deriving a generalized
covariance matrix, which is an essential tool to adaptively decompose scattering from
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vegetated terrain. We shall use the word “randomness” rather than *“standard deviation”

because the former word is more appropriate to express the statistical property of physical

vegetation.

Starting with the covariance matrices of a cloud of dipoles for three distributions:
uniform, cosine squared, and delta-function distributions, we will now attempt to find a
general expression to cover any type of vegetation. To achieve this, we first modify our
covariance matrices for the three cases by introducing the concept of mean orientation
angle. We then try to find a hidden pattern between these covariance matrices, and extend it

to cover any type of randomness and mean orientation angles.

Let us rewrite three distributions (uniform, n-th power cosine squared (3.50), and delta

function distributions) with a specific mean orientation angle, ¢.

1
- (9)=—
punlform ( ) 272_

Peos san (0, 4,1)= % lcos?(6-9)f", A= '[_72; (cos?0)'do (3.53)

pdelta(gi ¢):%5(6—(¢+mﬂ')) m=01

Using these pdfs in (3.53), each covariance matrix previously shown in (3.44), (3.46), and

(3.48) can be rewritten as follows. First, the case of uniform distribution in (3.44) becomes

(3.54)

0|~
R O w

2z
C(O-uniform ) = J-CO puniform (e)d 0 =
0

o N O
w O -

where o means uniform distribution and comes from (3.52). Obviously, this is exactly

uniform
same as (3.44) since the uniform distribution does not have any specific mean orientation
angle. Next, we derive the case of the cosine squared distribution. Note that this
corresponds to a specific case of the second equation in (3.53) with n=1. So the pdf

function has the form
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Pr s (0.1)= 0050 ). 359

The covariance matrix then becomes

2z
C(Gcos_sqn (n = 1)) = ICO pcos_sqn d 0
0

{ sin‘e J2sin®*@cos®  sin?Hcos? O .
= sin® @#cos sin® @cos sindcos® 0 |—cos?(6 -
J2sin*@cosd  2sin?@cos’ O 2sinfcos® @ 2(0-¢)d6
ol sin®@cos’® /2sin@cos®o cos* @ d (3.56)

5-4cos’¢  2+/2singcosg 1
=§ 2/2sin gcos g 2 2+/2sin gcos g
1 2\2singcosg  1+4cos? ¢

where o (n=1) means standard deviations of n-th power cosine squared distribution

with n=1. One can easily verify the matrix with two special cases: horizontal orientation

angle and vertical orientation angle.

¢:0 deg C( cos sqn(n l)):%

o N O

(3.57)

$=90 deg Clo - =%

cos_ sqn

oo K
, o =, __—

1
0
1
5
[o
1

As we expected, each result shows a biased weight depending on a specified mean

o N O

orientation angle. Note that the first one is exactly same as (3.46). Finally the case of delta

function distribution is shown.



42
C O-delta _[CO pdeltad 9

, sin“ @ J2sin®@cos®  sin?Gcos? 0
:J' J2sin®@cosd  2sin?@cos’d ~/2sinfcos @ 15(0—(¢5+m7z))d9
ol sin2@cos’® ~/2sin@cos® O cos* @ 2 (3.58)
sin® ¢ J2sin®gcosg  sin? geos? ¢
=| +/2singcosg 2sin?gcos’g ~2singcos’ ¢
sin?gcos?¢  /2singcos® ¢ cos* ¢

where o, represents the standard deviations of the delta function distribution. We can

verify this equation with the same special cases as for the cosine squared distribution in
(3.57).

¢ = Odeg C(O-delta)=

o O O

(3.59)

= O O
O O O ~—M_

o O O

0

0

0
1
¢ =90deg. C(Oga) [0
0

Both cases are physically acceptable.

In order to find a hidden relationship between these three covariance matrices, (3.54),
(3.56), and (3.58), they are summarized here after applying some trigonometric

simplifications.
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. 3 01
C(O-uniform)zg 020
1 0 3
. 301 . —2c0s2¢ ~/2sin2¢ 0
c:(aws_sqn(nzl))zg 0 2 0+3 J2sin2g 0 /2sin2¢
10 3 0 V2sin2¢  2cos2¢
3.59
(30 1) [~2c0s2 J2sin2¢ 0 (3.59)
C(O'de,ta)=§ 02 0+22 J2sin2¢ 0 J2sin2¢
10 3 0 J2sin2¢  2cos2¢
. cosdp  —~/2sindg —cosdg
+g —x/Esin4¢ —2c0s4¢ \/Esin4¢
—C0s4¢ J2sin 4¢ cos4g
By defining,
. 301
Ca=§ 020
1 0 3
. —2¢0s2¢ /2sin2¢ 0
Cﬂ=§ \/Esin2¢ 0 \/Esin2¢ (3.60)
0 J2sin2g  2cos2¢
1 cosdg —x/Esin4¢ —C0S4¢p
Cyzg —2sind¢ —2cosdg 2sindg
—C0s4¢ x/Esin4¢ cosdg
the three covariance matrices can be compactly rewritten as
C(O-uniform ): Ca
C(O-cos_sqn(nzl)):Ca+Cﬂ ' (361)

C(Ogea)=C, +2C, +C,
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Remember that the first (uniform distribution) and the third (delta function

distribution) equations are two extreme cases, and the second (cosine squared distribution)
is one specific point between those two extreme cases, as in Figure 3.15. These equations
suggest to us that it may be possible to express any type of distribution using only the third
equation. It may be easier to understand this idea by first considering the delta function
distribution, which corresponds to zero randomness. The second and third components of
the delta function distribution decrease gradually as the randomness increases. When the
randomness becomes equivalent to cosine squared distribution, the covariance matrix is the
same as the second equation. The third component is gone and the second component is
just half of that in the third equation. As the randomness continues to increase, the second
component decreases further until finally it is also gone, which then corresponds to the
uniform distribution as given by the first equation. Note that the component of uniform

distribution, C_, is common to all cases. We have already shown that the randomness of

the two extreme cases, the uniform distribution and delta function distribution, can be

expressed as special cases of the cosine squared distribution as in (3.18).

O_(n = oo) = O gelta

O'(n = O) =0 (3.62)

uniform

where we indicate the randomness by a(n). (3.61) is then rewritten as

Clo(n=))=C,
C(o(n=1))=C,+C, : (3.63)
C(e(n=0))=C,+2C,+C,

The idea described above is mathematically represented by

C(o)=C, +plo)C, +alo)C, (364)
where p(o) and g(o) are some functions of the randomness. The function p has a value

between 0 and 2, and the function g has a value between 0 and 1. Next we try to identify

those functions. Some values of p(c) and (o) are shown in Table 3.1.
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Table 3.1: Standard deviation, p(c), and g(o) in (3.64) for various n’s

n 0 0.5 1 2 4 8 16 infinity
o 0.9069 | 0.6837 | 0.5679 | 0.4444 | 0.3327 | 0.2424 | 0.1741 | 0.0000
p(o) 0.0000 | 0.6667 | 1.0000 | 1.3333 | 1.6000 | 1.7778 | 1.8824 | 2.0000
q( o) 0.0000 | -0.0667 | 0.0000 | 0.1667 | 0.4000 | 0.6222 | 0.7843 [ 1.0000

Red points of the Figure 3.20 show the plots of samples in Table 3.1. Since they vary

smoothly with respect to randomness, we can fit polynomials to these calculated points.

2.00 4 n=16

1.50

Analytically
derilved points

1.00 W< L

0.50 N
~
a(c ) = _
0.00
-0.50
0.0 0.2 0.4 0.6 0.8

Figure 3.20: Plot of two coefficients in (3.64), p(c) (blue line) and q(co) (green ling).

These curves are obtained by fitting analytically calculated points which are
displayed by red asterisks.

The following are 6™ order polynomials which provide accuracy around 1e-13 on given n’s.

p(c)=2.08060° —6.33500° + 6.38645*

—0.44310° —3.96385° —0.00080 + 2.000
q(c)=9.01665° —18.77900° + 4.9590c"*

+14.56295°% —10.80345% +0.19025 +1.000

(3.65)
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Figure 3.20 shows a plot of the fitted curves with given points.

Using these two fitted curves, (3.64) can be used to model any type of vegetation in
between the uniform and delta function distribution with any mean orientation angle. It can

easily be shown that the following more organized expressions are exactly same as (3.64).

Cdipole (O-): (O_E + pB+ qj;)\?. (366)

where

.1 T

a=§(3 120 0 0

3:%(0 0 0 -2c0s2¢ 2sin2g 2sin2g) (3.67)

;7=%(cos4¢ —cosd¢ —2c0sdp O —+/2sindg \/Esin4¢5)T
and

1 00 0 01 0 0O 1 0 O 010 000T
V=llo ool|oool|o1o0]|oo o0o|100|]|0o01 (3.68)

0 01 1 00 0 0O 0 0 -1 0 0O 010

where T means transpose. Since the covariance matrix was derived for thin cylinders

(dipoles), it is explicitly named as so. Note that each element of VV is orthogonal each other.

We have developed an expression for a cloud of thin cylinders with various
randomness and mean orientation angles. The expression will now be generalized to any

elementary scatterer.

Our derivation of (3.66) starts from the scattering matrix of dipole, given in (3.69)

0 0
Sdipole = (0 ]J (369)
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There are several more known scattering matrices as in Figure 3.21 [17].

v LD

01 01
Dipole Sphereand trihedral
(Surface)

o

-1 0 1l

0 1 -1 -]

_j 1
Dihedral Left/right —handed

Helix (Circular)

Figure 3.21: Scattering matrices for various elemental scatterers: Dipole (left and top);
sphere, trihedral, or odd number of scattering (right and top); dihedral or
even number of scattering (right and bottom); and circular (left and bottom)
are displayed [17].

In order to encompass any type of elementally scatterers, we try to replace the

scattering matrix (3.69) with a general scattering matrix

- a C
=l b (3.70)

where @, b, and c are any complex number. The only limitation is that the matrix still obeys

the reciprocity theorem in whichS,, =S, . Starting with this generalized covariance matrix

one can derive an equivalent expression to (3.70), which has the same basic form as (3.66),

C(o)=(@+pB+a7)V (3.71)

where p and g are exactly same as (3.65). However, (3.67) is modified as



a =é{K+ab071 + LReabO_ZZ + 4Kc&3 + 2(leac - lebC)

- 1 - - -
ﬂzg{K—abﬂl + leabﬂz + 2(LReac + LRebc )ﬂs
- 2(leac + lebc )ﬁA + LachS + LcabﬁG}

77 :_{(K+ab - LReab _4Kc)771 + 2(I-Reac - LRebc )772

(ool

~
Il
o

abc = (a + b)C*
cab — C(a + b)*
reay =ab” +ba’”
=ab” —ba’
rene =DC +Cb”
=bc” —cb”

—ac +ca’

E]
QD
o

Imbc

Reac

r--r - - - — —

imae =AC —ca’
@=B3120000 00
d,=1 3 -2 0 0 0 0 0 0)

a@,=1 -1 2 0000 0 0

g,=0 000000 2 -2

f,=(0 0 0 2cos2p —+2sin2g —+2sin2g 0 0 0)

B, =00 0 0 0 0 0 2cos29 2sin2g 2sin2g)

B,=(0 0 0 sin2¢ 0 0 0 0 0)

f,=(0 0 0 0 0 0 sin2¢g 0 0)

fo=(0 0 0 0 V2cos2p Zcos2p 0 2cos2g ~/2cos2g)
,56:(0 0 0 0 +2c0s2p +2cos2¢ 0 —~/2cos2¢ —ﬁcoszqﬁ)

7. =(cosdp —cosdp —2cosdp O —+2sinag 2sindg 0 0 0
7,=(sinagp —sinap —2sindp 0 2cosdp —~2cos4p 0 0 0)

The vector of orthogonal matrices in (3.68) becomes

—

on

j

48

(3.72)
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1 0 0Y0O O 1yY0 O OYy1 O 0O0Y)YyO0 1 O
V=0 0 0jO 0 0[O0 1 0[O0 O Of1 0 O
0 0 1f12 0 OO O OAO O -1 0 O O
L (3.73)
0 0 OYO O 1Yy0 1 0yYyo o O
0 010 O Of|-1 000 0 -1
01 of-1 0000 O ONO 1 O

These are still an orthogonal basis. The equations from (3.71) to (3.73) can be applied not
only to scattering from a cloud of dipoles but also to that from a cloud of any type of
scatterer. As a way to validate the equation, we tried to derive its characteristic equation
(see Appendix B). We eventually found that the eigenvalues are not affected by mean
orientation angle, i.e., rotation regarding line of sight. Eigenvector based decomposition
shown earlier in this chapter takes advantage of this property to remove the one dimension
(the orientation angle) which is not related to intrinsic characteristics of the target.

A way to determine unknown parameters directly from measured data is given in
Appendix C. The derivation, however, is purely mathematical, so further verification is

needed for solid interpretation.

In the next section, the equation (3.66) will be added to our decomposition model, and

a method of implementing the decomposition process will be shown with some results.

3.5 Adaptive Non-Negative Eigenvalue

Decomposition

In this section, we add a generalized volume scattering model (3.66) to the NNED
model, and explain how to find the optimal coefficients to decompose the scattering power

from natural terrain.
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Our decomposition model is still the same as (3.22). However, the volume scattering

term in (3.14) should be replaced by the new one given in (3.66). Though we have ignored

off-diagonal terms such as o, and o,,,, in the previous model, they have to be taken

into account here since the generalized model consists of all elements of the 3 by 3 matrix.

Equation (3.22) can be explicitly rewritten as

Cm = XCv (¢’ O-)+ yCd (O!)-l— ZCg (ﬂ)+ Cother (374)

where measured covariance matrix has a form

Ohhhnh \/EG v Ohhw
Cm = \/Egkthhv 2Ghvhv \/Eo-hwv ' (375)
O-;hw \/EO-;WV O-ww

Once the mean orientation angle, ¢, and randomness, o, are given, the maximum limit for

x is found as described previously. The double bounce and surface scattering terms do not
affect the maximum value of x. However, since the covariance matrices for the measured
data and the volume layer are full 3 by 3 matrices, (3.20) cannot be used to derive the
maximum value of x. If we can assume that the correlation terms between the co- and
cross-polarizations are small relative to the other elements, the eigenvalues in terms of x
still follow the same trend as shown in Figure 3.6. This is true in practice due to scattering
symmetry. The eigenvalues decrease monotonically, so there exists some maximum value
of x which minimizes all three eigenvalues subject to the constraint that they remain non-
negative. An analytical expression of the three eigenvalues derived from the full 3 by 3
covariance matrix is extremely complicated, so we directly calculate them for various
values of x and then numerically find the maximum value of x which makes all of them

non-negative. The covariance matrix for eigenvalue decomposition then becomes
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O hhhh \/Eahhhv O hhwy O hnhh 0 O hhwy
Cm - XCV (¢’ G) = \/Eo-hhhv 2Ghvhv \/Eahvvv ~ 0 2O-hvhv 0 . (376)
O-hhvv \/Eo-hvvv O-ww O-hhw 0 vavv

We have shown how to derive the maximum x as in (3.21) so far. However, it is not

necessary that the x in (3.74) is always the maximum x. Here we try to find the best x in the

range between 0 and the maximum x. From (3.32) and (3.16a), a power of C ., can be
derived as follows.
00O
P(Cother)= P A3 010 = ﬂs = 2(O-hvhv - qxbest) (377)
00O

where, Xpest means the best x in the range. The best x makes the power minimize so that the

condition for the x becomes

P(Cother ) = O = Xbest = % = X3 ' (378)

To avoid the negative eigenvalue, the best fit x should be

Xbest = Xmax : (379)

This means that our best fit x for this type of decomposition is exactly same as the

maximum X.

Equation (3.74) tells us that if the parameters perfectly match the measured data, the power

in C_,.. Will be zero. This implies that in reality we can find the optimal parameter set

which minimizes the power in C The optimization is performed by varying the values

other *
of the randomness and orientation angle. A new algorithm, named adaptive NNED

(ANNED), is proposed here and summarized in Figure 3.22.
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Do Eigenvalue decomposition

mi,j _ ij ij ij
Cm _yi,de +Z C +Cother
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Find the best parameter set

min P(C
i=1..N;,
j=L..N;

Cai

other

other

Figure 3.22: Flowchart of adaptive NNED algorithm

3.6 Experimental Results and Analysis

To see how the ANNED algorithm shown in Figure 3.22 adjusts to various types of
vegetation, its results will be compared with those obtained from NNED shown in Figure

3.8. There is a difference between these two algorithms which might add complexity to the
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discussion. It exists in the operation (3.13). By assuming scattering reflection symmetry,

we can drop the four off-diagonal elements as in (3.13). The NNED algorithm uses this
assumption as shown in Section 3.5. ANNED, however, uses the full matrix to derive the
maximum X, and then it drops those four elements to obtain parameters for double-bounce
and surface scattering. This difference is illustrated here with an example. We have the

following covariance matrix from the Black Forest image.

0.0278 0.003+ j0.007 0.0083 - j0.0032
C, =| 0.003-j0.007 0.0041 —0.0009 + j0.0006 (3.80)
0.0083+ j0.0032 —0.0009 + j0.0006 0.0188

This becomes an input to the maximum x determination processing in ANNED in (3.80).
When we assume that the randomness is cosine squared distribution and the orientation

angle is zero, the covariance matrix component is

(@]

I
|
R O K
o N O

1
0. (3.81)
5

Then the maximum x for ANNED is calculated as 0.0156. On the other hand, assuming

scattering symmetry the (3.80) is approximated for NNED as

0.0278 0 0.0083 - j0.0032
C,~ 0 0.0041 0 : (3.82)
0.0083+ j0.0032 0 0.0188

Using the same volume component in (3.81), the obtained maximum value of X is
calculated to be 0.0165. The maximum value of x from ANNED is 0.0009 smaller than
from NNED. Thus the off-diagonal elements in (3.82) add extra constraints to the
decomposition so that the range of x is constrained. It is important to note that the
maximum x by NNED is not allowed in ANNED because of the difference arising from the

symmetry approximation. To avoid this difference, we turn ANNED one step back to
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where the orientation angle and randomness are simply fixed. We call this NNED” (dash),

and use this modified algorithm only to explore the applicability of ANNED.

Figures 3.23 and 3.24 show the decomposition results given by NNED’ and ANNED,
respectively. Green, red, and blue are assigned to volume, double bounce, and ground

component, respectively.

C-Band L-Band P-Band

Figure 3.23: Results of the NNED’ (dash) algorithm assuming a uniform distribution
applied to three different wavelength images in Freiburg obtained by
AIRSAR. Green, red, and blue are assigned to the volume, double bounce,
and ground components.
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C-Band L-Band P-Band

Figure 3.24: Results of the ANNED algorithm applied to three different wavelength
images in Freiburg obtained by AIRSAR. Green, red, and blue are assigned
to the volume, double bounce, and ground components.

From the L-band results, one can easily recognize that much more of the volume
component appears in the forested area in ANNED than in NNED’. The P-band results also
show a similar tendency. Focusing on the river halfway down the image, ANNED assigns
more volume component than NNED’ which means the effect of trunk-surface interaction
due to topographic change shown in section 3.2 is less pronounced in ANNED. To more
closely examine the applicability of ANNED, the remainder term of (3.74), Cotner, IS
mapped in Figures 3.25 to 3.27 for the different wavelengths. In each figure, the result of
ANNED is compared with those of NNED’, assuming two distributions: uniform and
cosine squared with zero orientation angle. From the model, the smaller pixel value is

interpreted as the better fit to the chosen parameters of the model.



Figure 3.25:

NNED’ (cos2) NNED’ (uniform)

Cother 0f ANNED (left) for the C-band Black Forest image compared with
those of NNED’ (dash) using two distributions: cosine squared (center) and
uniform (right) distribution. Note that the cosine squared distribution has
zero orientation angle.



NNED’ (cos2) NNED’ (uniform)

Figure 3.26: Comer 0f ANNED (left) for the L-band Black Forest image compared with
those of NNED’ (dash) using two distributions: cosine squared (center) and
uniform (right) distribution. Note that the cosine squared distribution has
zero orientation angle.
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NNED’ (cos2) NNED’ (uniform)

Figure 3.27: Comer 0f ANNED (left) for the P-band Black Forest image compared with
those of NNED’ (dash) using two distributions: cosine squared (center) and
uniform (right) distribution. Note that cosine squared distribution has zero
orientation angle.

This clearly shows that ANNED can find the best fit parameter set, and the effect is
significant in the forested area. Hence, we can conclude that ANNED has good
applicability to the variation of vegetated area, as we expected. However we still have some
mismatch area in the urban and some in the forest. The mismatch in the urban area is
expected because our decomposition model was developed for vegetated terrain. The two
thick reddish lines from the top to the bottom in P-band image might be topography under
the forest. Because our ground scattering term only assumes a slightly rough surface
(which will be thoroughly discussed in the next chapter) the other scattering mechanisms
from the terrain degrade the parameter estimation. Even though the L-band shows
significantly better parameter fits than the other wavelengths, there are points with
relatively high mismatch widely distributed in the forest. This mismatch leads us to suspect
that the thin cylinder approximation in (3.69) may not be appropriate for L-band. However,

further investigation is required to be sure.
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Finally, we analyze randomness and mean orientation angle obtained from the
ANNED decomposition process. Figure 3.28 shows the maps of these two parameters with
their histograms from the C-band AIRSAR data.

Orientation Angle Randomness

wiv i

Horizontal g Uniform

Cos sq.

| ' i l i i
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Vertical k. N | Delta

Histogram
Histogram

Vertical Horizontal Delta Cos sq. Uniform

Figure 3.28: Orientation angle (upper left) and randomness (upper right) maps derived
from the C-band AIRSAR image. Histograms for each parameter are also
displayed.

Orientation angle is displayed from vertical (blue) to horizontal (red) orientation angle.
Randomness varies from a delta function distribution (blue) to a uniform distribution (red).
Since the randomness map shows mostly reddish pixels, the vegetation distribution of the

corresponding area is estimated to be close to a uniform distribution. Since the forested



60
area of the image is widely covered with spruce, pine, and fir trees, the C-band wave may

interact more strongly with their leaves and twigs, which usually have more complicated
distribution than the other elements in a forested area. Even though the orientation angle
map indicates mostly vertical orientation (blue pixels) in that area, this does not have
physical meaning because the uniform distribution has no mean orientation angle. On the
other hand, the agricultural area shows less randomness (yellowish color). This means that
the incident wave interacts with crops which are expected to be more methodically
distributed (less randomness) than the forested area. Results at L-band and P-band are
shown in Figures 3.29 and 3.30, respectively.

Orientation Angle Randomness
G P ; m Horizontal 7 ; 2

g Uniform

1 Cossq.

Vertical

Histogram
Histogram

z = B - = - B - “r -l r - -1 . . - - L

Vertical Horizontal Delta Cos sq. Uniform

Figure 3.29: Orientation angle (upper left) and randomness (upper right) maps derived
from the L-band AIRSAR image. Histograms for each parameter are also
displayed.
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Orientation Angle Randomness
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Figure 3.30: Orientation angle (upper left) and randomness (upper right) maps derived
from the P-band AIRSAR image. Histograms for each parameter are also
displayed.

Both wavelengths show that the randomness in the forested area is higher than that in
the urban or agricultural area for all bands. This agrees with our interpretation for C-band.
Focusing on the forested area, randomness decreases with increasing wavelength. The
histograms numerically show that the peak in the forested area goes down from 0.9 at C-
band to 0.8 at L-band, and finally reaches to around 0.7 at P-band. This is because the
longer wavelengths can penetrate the volume layer, and are scattered by thick branches,
trunks or the ground. Since the randomness at L-band and P-band are smaller than for a

uniform distribution, the mean orientation angles are meaningful. Since the orientation
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angles are mostly horizontal with some amount of randomness at L-band, the 24 cm

wavelength signal mainly interacts with the branches. However, the interpretation of P-
band image in the forested area is not straightforward. Its randomness is significantly lower
than L-band, while the orientation angle is almost identical to that of L-band image. If the
orientation angle were vertical, we could conclude that the trunk-ground interaction
contributes to that area. We need to further investigate the scattering mechanism in this

area.

In this chapter, several decomposition techniques were introduced, and qualitatively
verified. Due to insufficient ground truth data for the decomposition models, quantitative
validation has not been done so far. However, we will attempt the quantitative validation of
the models by introducing the Discrete Scatterer Model (DSM) in this thesis. The DSM
will be thoroughly discussed in the next chapter, and the decomposition techniques will be
applied using the DSM in Chapter V.
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Chapter IV

Scattering Mechanisms of a Vegetated

Surface

This chapter will discuss modeling the scattering from a vegetated area. Each
scattering mechanism occurring from natural terrain will be thoroughly discussed with the
mathematical model for numerical simulations. This will be used for the quantitative

validation of the decomposition models shown in the previous chapter.

4.1 Overview of Modeling

In order to express scattering from a vegetated terrain, two models are widely used.
One is a radiative transfer model, and the other is a discrete scatterer model. Let us assume

that there is a typical forest consisting of three components: the canopy, trunk, and ground.
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ARV
- A
T
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Figure 4.1: Illustration of a typical forest consisting of three components: the canopy,
trunk, and ground.

The radiative transfer theory was originally introduced by Chandrasekhar [29]. Ulaby
et al. then successfully applied the concept to scattering from vegetated terrain [30]. The
model is the so called Michigan Microwave Canopy Scattering (MIMICS) model, and

assumes that a typical forest has a three-layer structure as shown in Figure 4.2.

z=0
Canopy Layer ,
Z ;—d (/\\ &
Trunk Layer Thin slab
(d+H,)
Ground Layer

Figure 4.2: Three-layer structure for the MIMICS vegetation model
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Based on the law of conservation of energy for the infinitely thin slab dz shown in the

figure, we can form the following differential equations to express the net intensity for each

of the upward and downward directions.

S 2)= =21 . 2)+ i (002)
) (4.1)
d,_ Koo o _
—d—Im(—u,¢,2)=——m|m(—ﬂ1¢,z)+ l:m (—,Ll,¢, Z)
z H
where
U =Ccosf
— 1 =cos(rz - 0) “2

m is either of the canopy or trunk, and + and - indicate the upward and downward
components, respectively. | represents the intensity, and F is the source function. x is the
attenuation coefficient which will be discussed in later in this chapter. & and ¢ are angles
corresponding to those in Figure 2.1. The second term on the right-hand side expresses the
total incident intensity from all directions onto the slab in the specific direction, and is
reduced by its attenuated intensity. The left-hand side shows the net intensity. These
differential equations are integrated in terms of z with four boundary conditions: canopy

top, canopy bottom (upward), canopy bottom (downward), and ground level.

| cancpy (= £,9,0) = 1061t = 11,)5(¢ — ;)

| oy (12,0-0) = Ly (12, 4,~d)

e (= 12 6,=0) = 1 2 (= 12, 4,~dl)

o (1, 6,~(d + H,)) = R(u)l i (= 21,6~(d + H, )

(4.3

where,
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0 0 0

0 0

0 0 ReRR;) -ImRR)|
0 0 ImRR;) ReRR)

(4.4)

Ry and Ry, are the well-known Fresnel coefficients which will be discussed in (4.38). lg is
the total incident wave with incidence direction of 6, and ¢, The backscatter cross section

is then obtained as

o0y = 4T, (6, ¢, )cos b, (4.5)

where p and q are either h or v, and the 2 by 2 transformation matrix T(60,¢0) is obtained

from

I, =T(8,.4,)1,. (4.6)
The equations are iteratively solved depending upon the number of times that the incident
wave changes its direction due to particle interaction. The zero-th-order solution has no
change direction so the solution only takes into account extinction. This is then employed
to solve for the first-order solution in which the scattered wave is a sum of the five cases:
direct particle scattering, direct ground scattering, particle-ground scattering, ground-
particle scattering, and ground-particle-ground scattering. Though there is no limitation of
this order, the calculation complexity is generally reasonable only up to the second order,
which corresponds to two changes of direction by particle interaction. The advantage of
using MIMICS is that taking into account multiple scattering leads to higher accuracy than
using the discrete scatterer model. Conversely, it does not provide physical insight because

of its complexity.

Durden et al. proposed the Discrete Scatterer Model (DSM) in 1989 [16]. The model

assumes the model for vegetated terrain as shown in Figure 4.3.
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Figure 4.3: Illustration of the discrete scatterers of a forested terrain

The model does not have a layer structure, instead discrete scatterers. The multiple
scattering is ignored by assuming that the scatterers inside the vegetation are usually
sparsely distributed so that the scattered wave is well attenuated through multiple
scatterings. With this assumption, the model is expressed by the only five distinct scattering
mechanisms as illustrated in Figure 4.4: the backscatter from canopy, backscatter from
trunk, backscatter from the ground, interaction between the ground and trunk, and

interaction between the ground and canopy.

DGR,
canow\\\\\w
m Y

Ground

Figure 4.4: Scattering mechanisms for DSM

The total power at the receiver is simply expressed as a sum of the power from each

scattering mechanism. The model is significantly simpler than the MIMICS model and
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yields physical insights. However, the accuracy is not as good as that of MIMICS because

it ignores multiple scatterings.

In this thesis, we introduce a scattering model for vegetated terrain to validate our
proposed algorithms, such as decomposition technique shown in the previous chapter and
the soil moisture inversion algorithms shown in Chapter IV. It is required that the model be
simple enough but with reasonable accuracy so that we can easily understand the behavior
of our algorithms. Therefore, DSM is adopted for the baseline scatter model for the

vegetated terrain.

Specific characteristics of the scatter from the canopy part are highly dependent upon
the wavelength of the incident wave. For example, if one uses the shorter wavelength C-
band (6 cm), the wave interacts with leaves and twigs, whereas longer wavelengths such as
L-band (24 cm) penetrate the canopy layer for the most part. At L-band, the wave interacts

mostly with branches [31].

Many shapes, such as a disc or blade, have been proposed for the discrete scatterer in
[32, 17]. However, in this thesis, a dielectric cylinder in various sizes is used to present
natural properties of the scatterers due to the simplicity in the scattering calculation. There
are two reasons. First, a simple cylindrical shape avoids additional complexity. Secondly,
the shape should be a good model for a trunk, branch, and twig [16]. So the cylinder is
good enough for the calculation. The model may not be appropriate for shorter wavelength
such as C-band or X-band (3 cm) if the targeted terrain includes round-shape leaves. If this
is the case, one may need to add a disk-shape elemental scatterer. Nonetheless, the model is

still valid for these shorter wavelengths if the leaves have a thinner shape.

4.2 Scattering from an Oriented Cylinder

There are many publications describing scattering from an arbitrarily oriented cylinder,

as in [33, 34, 35]. They usually start by solving Maxwell’s equation for scatter from an
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oriented infinitely long cylinder, and then move onto a case of a finite cylinder. The

scattering from this is derived using Huygen’s principle, in which the infinite cylinder is
considered as a cluster of many small antennas, and each contribution is then synthesized.
The idea uses exactly the same principle as an antenna array. In this thesis, the cylinder
scattering model given in [17] is adopted as a baseline model because it is widely used and
more rigorous, including edge contributions, the surface wave, and the interaction between

them.

We will use two different coordinate systems to treat the scattering problem. One is a
global coordinate system used to describe the incident and scattered wave vectors. The
other is a local coordinate system to describe the scattering matrix of the cylinder. Once
these wave vectors and the orientation angle of the cylinder are defined in the global
coordinate system and transformed to the local coordinate system, the scattering matrix of
an oriented cylinder can be calculated in its own local coordinate system. Then the power at

the receiver is transformed back to the global coordinate system.

The global coordinate system can be shown using the FSA convention of Figure 2.1.
The local coordinate system is defined in Figure 4.5. The z’ axis is along the cylinder’s

length direction.



70

Figure 4.5: Local coordinate system x’y’z’ of an oriented cylinder

It is mathematically expressed as

x\* (cos¢, —sing, O)cosy O -—siny) coss sing 0)x
y'| =|sing, cosg, O 0 1 0 —sing coso Oy @)
7' 0 0 1)\siny 0 cosy 0 0 1)z '
p=1i,s
where ¥ is
r, sind, cosg,
r,=|r, |=|sing,sin =1,s
p y p SING, P . (4.8)
r, cosd,
rr=-k, =k

1 1 S S

Since the incident wave is defined in x’-z’ plane, r;, andy’ have to be orthogonal.
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-y =0 (4.9)

¢, can be calculated under this condition.

r,sind —r, coso
tan g =

I, COSy COSO + I, COSy sing —r, siny (4.10)

With these definitions, the scattering matrix from an oriented cylinder can be expressed as

S — Sr?h St?v =_i I Sinv Ahh Ahv )
’ S\?h S\(/)v ”Sinz(”_g) Vi (A Ay

= (4.11)
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CTE — |\/ImNm qri‘]m(XO)Hr(r:]L) XO ‘]ri(xl)_CTE
i PmNm _[quml)(XO Jm(xl)]z -

c_: :l 2 qm‘]ri(xl) :_6
" 7Z'XO Sin(ﬂ._e,) I:>mNm _[qur(nl)(xo)‘]m(xl)]2 ;

!
1

% :%kol(ki —k,)-z', cos(z—8')=k,-2', sin(z—-8')=-k, -x

, =k,ay/e —cos?(z - 0')

X, = koasin(z — "), x
q,, =mk,acos(z — 9’{% —izj
1

X, X,
1 , 1,

M, =koa{—Jm(xo)Jm<xl>——am<xo)am<xl>}
X, X,

where a and | are the radius and length of a cylinder, respectively, and & is the dielectric

constant. Also j is the angle shown in Figure 4.3.
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Figure 4.6: Geometry of the angle ; defined in (4.11)

This can be calculated as

~

¢ =C—6i- (4.12)

Bessel functions are calculated for a positive integer v.

(4.13)
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Since the scattering matrix above is stated using the coordinate system defined in Ulaby et
al.’s book, backscattering and forward scattering in our coordinate system should be

transformed using the transformation matrices defined in section 2.1.

-1 0 1 0
Sback: O _ SOO _

s [t 0t O
forward_o -1 00 -1

(4.14)

Using the scattering matrices in (4.11), simulation results with different orientation angles

and different wavelengths are demonstrated as follows. Fixed simulation parameters are

shown in Table 4.1.

Table 4.1: Fixed simulation parameters of scattering from an oriented cylinder

I (m) £

0; (deg.)| ¢; (deg.)| a (cm)
13+j5

40 0 10 1

Also Table 4.2 shows specific simulation cases.

Table 4.2: Cases for simulations of scattering from an oriented cylinder

case w(deg.) | 6 (deg.) | A (cm)
4-1-1 0 0 24
4-1-2 10 180 24
4-1-3 0 0 67
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Figure 4.7: Scattering from an oriented cylinder for the case 4-1-1: the 3D plot (left)
and cross section at ¢ =0 (right)

Figure 4.7 has a maximum reflection at =140 degrees and =0 degrees. This
corresponds to a specular reflection from the incidence angle & =40 degrees. Similarly, the
maximum reflection occurs at €=140 degrees and ¢=180 degrees. The scattering
corresponds to transmission, and is important when considering the attenuation effect as
shown in the next chapter. Comparing the power at & = 40 degrees and ¢=0 degrees with
that at € =140 and #=0, it is clear that the forward scattering is much stronger than
backscattering. This characteristic plays an important role understanding a contribution to

double bounce scattering in a forested area, as shown in a later chapter.
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Figure 4.8: Scattering from an oriented cylinder for the case 4-1-2: the 3D plot (left)
and cross section at ¢ =0 (right)

Figure 4.8 shows the results with the same parameters as the previous simulation but
with varying the orientation angle of the cylinder. The orientation angle makes the
incidence angle to the cylinder close to orthogonal. So the incidence angle to the cylinder
becomes 50 degrees instead of 40 degrees. Therefore the specular angle for this oriented

cylinder is now 6=120 degrees and ¢=0 degrees, as shown in the figure.
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Figure 4.9: Scattering from an oriented cylinder for the case 4-1-3: the 3D plot (left)
and cross section at ¢ =0 (right)

The last case is shown in Figure 4.9. The same parameters are used as in the first case
except with varying wavelength. The longer wavelength makes the total scattering power
much less than that in the previous case. This is because the 67 cm wavelength penetrates
the cylinder (10 cm radius and 1 m length).

4.3 Scattering from a Cloud of Cylinders

In the previous section, we discussed how to calculate a scattering from arbitrarily
oriented cylinder. Now we move on to scattering from a cloud of cylinders, as in Figure
4.10.
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Figure 4.10: Scattering from a cloud of cylinders

We consider a layer filled with cloud cylinders that are oriented following a statistical
distribution, p(w,0). Each cylinder reflects back to the receiver so that the total receiving

power is obtained by averaging all of them. A mathematical expression of the model can be

derived from equation (2.11).

2rm

Cro_an = PH J-jco p(y/,5)8in ydyds
00

no_ att no_ att no_ att no_ att

O hhhn O phhv O hhwh hhv (4.15)
no_ att* no_att no _att no _att ’
_ | Onhhv hvhv hwh O hwy
- no_ att* no_ att* no_ att no_ att
hhvh hwvh vhvh Vhw
no_att* no_att* no_att* no_att
hhvv hvw O-vhvV GW

where p is the density of cylinders. As discussed in 3.4, we use the n-th power cosine

squared distribution, and apply it to express the two-dimensional pdf, p(y,6), as

p(l//, 5) = Po (W)po(é)' (4.16)
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Note that multiplying by siny is important. This works as a regulator of the scatterer

population to keep the same density on any part of the surface of a virtual sphere. One
might think that there is no backscatter when all cylinders stand up perfectly (any y=0).
However, the equation guarantees that there will be the backscatter, no matter what  is,

because the pdf becomes delta function.

Now attenuation of the electromagnetic waves by the volume layer should be
considered. As in many textbooks, such as [35, 36, 17], this is based on the optical theorem.

Let us assume a layer with statistically distributed cylinders as shown in Figure 4.11.

Figure 4.11: lllustration of extinction by a cloud of cylinders

The coefficients can be described in a form of the following scattering matrix.

1 v z
N R P ——— 0
T, O J_ p( 2 %o Cos 0, ]

1 Z
0 exp| — = gy —— 4.17
p[ 2% cosg, ] il
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The incident wave is disturbed by the cylinders, but some of the incident power

survives and exits the layer. The optical theorem derives the attenuation coefficient using

the scattering in the incidence direction. Therefore more interaction between the wave and

fwd

cylinders causes a higher extinction rate «jy . Using this idea, S

ext

IS given by

(55 = o[ 75,0610, = 7.0, 5)ply, 6 )sinyed ydl5 (4.18)

To apply the theory to our physical layer structure, we can categorize the five

scatterings in Figure 4.3 into the following three types.
Type I: Scattering from the branch layer (C1)
Type II: Scattering from the trunk layer (C2)
Type 111: Double bounce and surface scattering (C3, C4, and C5)

Each type has distinguishing characteristics for their calculations as follows.

4.3.1 Attenuation Type I: Scattering from the Branch Layer

From (2.8), the voltage measured by a polarimetric radar system for a single branch in

a layer is expressed as

V = E’recTSbE'tr
IR (4.19)
E,=(E, E)
where E!" and E.*are the electric fields of transmitting and receiving, respectively. S? is
the scattering matrix of the branch layer. The attenuation coefficient in (4.17) affects not

only the incident wave but also the scattered wave so that Eshould be replaced by
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Tw(z) 0 JEO . (4.20)

Then the voltage can be rewritten as

V(2)= ETsE, (2)sist 2)ET [ 5t =sb) @.21)
The updated scattering matrix with attenuation and the associated covariance matrix are
S =85SeSe > Co(2), (4.22)

ext

Finally the covariance matrix from the branch layer with the attenuation is obtained with

the layer height H,.

Hp2zm
Ch- = pIHC(’j—e“ p(w,S)sinypd yd &z (4.23)
000
This is also written as
b4 _no_att b3+b _no_att b34+b _no_att b2+b2 _no_att
Tin Chiin Tih TwOhhhy Tin TwOhin Tin Tw O
no_att

b3T+b _no_att* b2+b2 _no_att b2+b2 _no_att bb3
Tin TwOhnny Tih Tw O Tin Tw O TinTw Ty dz (4.24)

Hp
Cb_eXt — J- wW
b3—b no_ att* b2+Db2 no_ att* b2+p2 no_att bb3 no_att
o| Tih TwOhnin Ton T Ohi Ton T Ovni TonTw Ovna
b2—+b2 no_ att* b b3 no_ att* b b3 no_ att* b4 no_ att
Thh Tvv thvv ThhT \ O-hvvv Ththv O-vhvv Tvv O-ww

Since the radar cross section is not a function of z, hhhh component, for example, can be

expressed as
Hy

no_ att J.Th?14dz . (425)
0

Hyp

b4 no_ att _
J.Thh O 02 = Oy
0

Each term is then calculated using
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J-he(a:;t +ady )@ dr— cos & L e*(aé’xht +al )ﬁ
ext

O oy +
0w z _9,,W Hb
zae“‘cogsé’i d7 = COS l9i 1—e 20 cos 6 (4 26)
w ' '
2aext
(5 z L(30m H
2(3aext+ag’;{1)@dz 2C050i 1 e—§(3aex1+a:>\</t cosl;i
- hh w -
3aext T ey
1 w) 2 ! w ) H
—letisag) 5 iy 20086, [, e—g(awsaw s
= hh 7
aext + 3aext

These equations tell us that the covariance matrix can be obtained by calculating the radar

scatter cross section portion and the attenuation coefficient separately.

4.3.2 Attenuation Type I1: Scattering from the Trunk Layer

The attenuated incident wave from the branch layer now reaches to the trunk layer, and

this layer also attenuates the wave power. From the scattering geometry in Figure 4.12, the

attenuation matrix of the branch and trunk layers are expressed as

(4.27)
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Figure 4.12: Scattering geometry from the trunk layer with extinction

The extinction by the trunk layer is a function of the layer depth. The covariance matrix of

a scatterer from the trunk layer is derived from its scattering matrix with attenuation.

Sé_m = S;xtS:xtS(;S:xtSéxt - C(;_en(z) (4.28)
The covariance matrix of the trunk layer is
Hi2z7
C-" = p [ [[Ci- ply, 8)sinyd yd oz (4.29)
000
This can be rewritten as
Th?w 4Thth ‘o i Th?] sTvt\)/Thth STvtv T

coen = | Ton Tl Too™” T T T Toy ™
0 Tht; Tvt\)/Thth Tvtv it e Th?\ Tv?/ Thth Tvtv ol o
Th?\ ZT\:/ zThth vatv 20' r?r?v_vatt* Tht;1 Tv?/ 3Thth Tvtv 30'(1]3\/7/ e (4.30)
Thk; 3Tvk\)/Thth 3Tvtv 0O rr:r?\/ﬁatt Tha 2-I-vk\)/ZThth vatv ZUEr?v_vau
T To T T op ™ T Tw T T oo™
Thk; 2Tvt\)/ 2Thth 2Tvtv i O-Cr?v_h o Th?l Tvk\)/ 3Thth Tvtv ’ O-\r/]f?vT/ o
ToTo TaTo oma™ To'Ty ol



84
Since the attenuation coefficient of the branch layer is a constant, the calculation for hhhh

polarization is as follows.

Ht Hl

b4t 4 no_ att ____no_att b4 t4
IThh Toh Oonin 92 = o™ T J.Thh dz. (4.31)
0 0

While Type | has only o/°-*" as a constant, Type 1l has one more constant, T, . The full

covariance matrix is obtained similarly using (4.26).

4.3.3 Attenuation Type I11: Double Bounce and Surface

Scattering

The scatterings of this type penetrate both the branch and trunk layers. Now the

attenuation matrix for each layer is expressed as

(4.32)
St (Z _ H ): Thth(H'[)
“ET 0 )
The covariance matrix of a single element is expressed as
Sg_m = S;xtsgxtsgsgxtséxt - Cg_m (4-33)

where X is double bounce or surface. The covariance matrix for a cloud of scatterers

becomes
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b4t 4 no_ att b3r+brt 3t no_ att
Ton Thh Cnin Ton T Ton TwOni

b3—brt 3Tt _no_att* b2+b24t 2+t2 no_att
Ton T T TwOniw Ton T Ton T O

Cx_ext _ w
- b3b-t 3Tt _no_att* b2rb2rt 2+t2 no_att*
Ton T T TG Ton T Ton T O
b2eb2rt 2t 2 _no_att* brb3—t +t3 _no_att*
Ton T Toh T O TonTw Ton T O

3 3 2 h2+ 22 (4'34)
b bt t _no_att b beTt t no_ att
Ton T Ton Tw O Ton T Toh T O

b24b24t 2t 2 no_ att bgb3tt3 no_ att
Ton T Ton T O TonTw Ton T O

w w w hvwv
b24b24t 2t 2 no_ att bgb3tt3 no_ att
Thh Tvv Thh Tvv thvh Ththv ThhTW thvv
bb3TtTt3 no_att* b4—t4 no_att
ThhTW ThhTw O-vhw Tvv Tvv O-WVV

4.4 Scattering from a Surface

Surface scattering is characterized by two parameters: dielectric constant and
roughness. The dielectric constant is strongly related to soil moisture (see 4.6). If a bare
surface is observed and its roughness property is known, we can directly infer the dielectric
constant from the backscatter cross section. However, it is difficult to have accurate
knowledge about roughness for a specific area in practice so that the estimation will be
degraded depending on the degree of accuracy. The roughness is characterized by height

deviation and correlation length, as shown in Figure 4.13.

/\AA\M N, AX
|\//‘\/ AVAR| \/\/

Figure 4.13: Parameters characterizing surface roughness
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The figure shows that there are two local areas separated in the distance of r. Both

areas have the same height deviation, which is also called root mean square (RMS) height.

The height is mathematically written as

h=(&2(xy))=(&2(x\y) (4.35)
where < > denotes an ensemble average. Also the surface correlation function is defined by

the separation r between two independent local areas. This characterizes the similarity of
the surface pattern of different two areas.

X, y [ X', yr
p(r)= (el )fz( ) (4.36)
Instead of the correlation function, the following roughness spectrum function is also used.
It is just a Fourier transform of (4.36) as

1 o0 0
_E I jp X, y exp jk, x)exp( ik, y)dxdy
o (4.37)
= J'rp(r)JO(kr)dr
0
where the 0" order Bessel function is as given in (4.14), and the other parameters are

X =rcosa
y=rsina . (4.38)

r=yx?+y’
k« and ky are the wave numbers in the x direction and y direction, respectively. The

following Gaussian and exponential spectrum functions are most commonly used for the

roughness spectrum function.

e 439
Wg(p,q)=3e ‘ (4.39)
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and

|2

p.q)= -
L+ (p?+ a2 )2 f

where | is the correlation length. A rougher surface generally has higher RMS height and

A

(4.40)

shorter correlation length.

There are the two popular surface scattering models: the small perturbation model
(SPM) [2] and the integral equation model (IEM) [3]. The SPM appeared in 1957 and has
been widely validated by many researchers [37]. A mathematical expression of the first-

order SPM is shown below.

o =8k*h?cos* 6, («,, -l W(2ksin 6,,0)

ppaq
1-¢
Ty = 2
(cos@i +4/& —sin? ei) (4.41)
Ho Ho
o, :(1_8)(S|n 0, —g(1+5|n 49i)

2
£C0S0, ++/& —sin? Hi)

where p and g are either of h or v.

The IEM came about more recently in 1991, and is expressed as follows.

2 " n(_
oq :k?exp(— 2kfh2)2h2” Lo Zw

(4.42)

where,
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n kzn {qu (_ kx’0)+ qu (kx ’0)}

12 =(2k, )" f,, exp(-k2h?)

2
fon =— Ry
cos o,
2R,
v cos b,
fo = fn =0
Fo(-k..0)+F,(k,.0) (4.43)
_2sin’ 6,(1+R, )’ [(1_3j+ e —sin? 6, — ecos? ﬂ
cos 6, £ g% cos’ 6,

Fon (- k,,0)+ Fy (k,.0)
_2sin’g(1+R,)’ Hl_£J+ e —sin? 6, — 11cos® 6, }

cos 6, 7 u’ cos’ 6
l:hv (_ kx 1O)+ I:hv (kx 10) = th (_ kx ’0)+ th (kx ’0) =0

where p is the permeability and k; is a wave number in z direction. Fresnel coefficients are

given as

m=+e, 0, :sin‘l(sinei j
" (4.44)

R = cosd, —mcosd, R, = mcosé, —cosd,
cosé, +mcosd, mcosé, +cosé,
Under the small perturbation approximation where kh is much less than 1, the model
becomes identical to the SPM. Also with a rougher surface (kh>3 reported in [3]) the
scattering is dominated by the Kirchoff term (shown in the next section) and is in
agreement with the geometric optics model. Clearly, one of the main advantages of the
model is its wider applicability than that of SPM. We, however, adopt SPM as the surface
scattering model for DSM because the full covariance matrix of IEM has not been derived
yet. In order to expand the applicability of SPM to higher roughness, we may introduce the
concept of statistical surface tilt. However, all numerical calculations in this thesis use SPM

for a surface scattering component
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Topographical undulation affects the incidence and scattered angles of the surface

scattering, and makes the backscatter cross section change drastically. The frequency of the
surface undulation is assumed to be much lower than the limitation of SPM. As with the
angle definitions for an oriented cylinder, the surface orientation angle is defined in Figure
4.14.

ol ~

v

Figure 4.14: Surface undulation and its statistical definition. A Gaussian distribution is
assigned to the range angle, v, while a uniform distribution is assigned to
azimuth angle, o.

Note that the pdf for angle y is a Gaussian distribution instead of a cosine squared
distribution used for the cylinder. From these angle definitions, a tilted SPM, also known as
a tilted Bragg surface model, can be expressed as follows. First, the voltage of nontilted

surface scattering is written in scattering matrix form.
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V ZErTSIEY
0 O 0
s9=0 S5 S
0 S5 S

(4.45)

Then the transmitted and received electric fields are transformed with the surface tilt. These

coordinate transformations are derived from the geometry in Figure 4.5 and Figure 4.14.

E" =D,E}
—cos¢ -—sing 0Y sing 0 cos@)| ‘(cosy O —siny
D, =4| sing —cosg 0 0 0 1 0

0 —-cosd; 0 siné/ siny 0 cosy

coso sino 0)-cosg, sing 0) sing, 0 cosé
—-sing coso 0 —sm¢ —cosg, O 0 1 0
0 1)\ —cosg 0 sing,
- - (4.46)
E rec — DS EOI’eC
—cos¢ —sing 0} sin 9’ 0 cosé, B cosy 0 -—siny
D, =4| sing - cos; 0 1 0 0 1 0
0 —cose’ 0 sing, singy 0 cosy
coso sing 0) —cosg, sing, O0) sing, 0 cosé,
—sing coso 0| —sing, —cosg, O 0 1 0
0 0 1 0 0 1)\—-cosd, 0 sing,
¢ comes from equation (4.10) and &'is obtained by
cosd' =r,siny cosd +r,sinysind +r, cosy . (4.47)
The voltage from the tilted surface should be
Vo = (0.6 SUD,EY = ErTD,"S°DEY (4.48)

Then the scattering matrix and covariance matrix for the tilted surface become
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Stllt D SgD = Ctllt ng_att

Clr™-* = j I Cac's-* ply, 8)sin ydyds

-0
tiltg _no _att thltg no _ att tiltg _no _ att tiltg _no _ att (4_49)
hhhh hhhv hhvh hhvv
tiltg _ no _ att* tiltg _ no _ att tiltg _ no _ att tiltg _ no _ att

_ | Onhhv Oy~ hwh hvw

tiltg _ no _ att* tiltg _no _ att* tiltg _ no _ att tiltg _ no _ att

O-hhvh O-hvvh O-vhvh O-vhvv
tiltg _ no _ att* tiltg _no _ att* tiltg _no _ att™ tiltg _no _ att
hhvv hvwv vhw VW

Finally the covariance matrix with the attenuation effect is derived using (4.31) as

b4t 4 tlltg no _att b3—+b t _tiltg _no_att
T T O hhnh Thh T T T O hhhy
b t_tilt tt> b2 b2 t 2 t2 _tily it
CY = T T T T hlhr?v o-e Thh T Ton Ty hlvh% -t
tilt — 2 2 2 *
b t tilt tt> b t t tilt tt
Thh Tva T hlhvgh o-e T T Tin T hlvv% -
b 24?2 t 2 tiltg _no_ att* b3 t3 tlltg_no_att*
Thh Tvv Thh Tvv O-hhvv ThhT T Tvv hvwv

b3 t __tiltg _no_att b2+ph2—1t 21t 2 tllt no_att (450)
Thh ToT, TW O~ oA LA LA L2 it
Thh TW Thh Tvt\lzdrt]i\if/gh— no_at Ththv Ththtv?’o.rt]Ith\;I_no_att
2 2 2 2 . 3 3
T b T b Tt T t \t'r:flgh_n()_att Th?]T b ThthTt \tllr::/%_no_att

b3 t3 o titg_no_att* b4t 4 o litg_no_att
ThhT T T vhw T T va

This equation tells us that the covariance matrix is obtained by calculating surface
backscattering first and then multiplying by the attenuation coefficients. However, there are
some cases where (4.40) cannot be applied such as an oriented cylinder. For physically

realizable cases, the dot product of a vector expressed by F; in (4.8) and a vector r; in

Figure 4.15 has to always be positive.
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Figure 4.15: Vector normal to the tilted plane

The condition is

F-F, >0. (4.51)

Therefore, the integration in (4.49) is only valid when equation (4.51) is satisfied.

4.5 Interaction between the Cylinders and the

Surface

The interaction between the cylinders and a surface is also known as the double
bounce reflection. For this type of scattering, we are interested in forward scattering instead
of backscattering. It is well known that rough surface scattering consists of coherent and
incoherent parts [31]. The coherent part is equivalent to the specular reflection from a
smooth surface, also called facets scattering. The incoherent part is equivalent to the Bragg
scattering, as discussed in the previous section. Using the surface parameters shown in

Table 4.3, Figure 4.16 shows these two types of scatterings.
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Table 4.3: Surface parameters for Facets and Bragg scatterings

0, A h I ;
(deg) | (M) [ (m) [ (m)
40 0.06 | 0.001 | 0.01 | 16+j1
Facets Scattering Bragg Scattering

— 0f —— 10 ——
[a1] [a1]
S, S,
c ot c 0
2 S
=t =t
& -t & -}
3 2
(SR O 20+
(@] (@]
£ £
3 -3 o -t
g g
L w0 £ w0
© ©
o o

=50 -50

6,[deg.]

. . L I ; :
20 40 & an 100 120 140 160 180

20 40 60 80 100 120 140 160 18C

6,[deg.]

Figure 4.16: Facet (left) and Bragg (right) scatterings. Facet scattering has an obvious
peak around its specular angle (140 deg).

Facet scattering clearly shows a peak at specular reflection around 140 degrees while

the Bragg scattering does not have a similar peak. It is reasonable for the double bounce

scattering to take into account only specular scattering. This drastically reduces our

computational cost compared with calculating for over all scattering angles. In addition, the

simulation results of the cylinder scatterings in Figures 4.7, 4.8, and 4.9 clearly show that

the maximum scattering occurs at the specular angle. Therefore we treat the following four

cases shown in Figure 4.17. Note that the surface tilt is just ignored for simplicity.
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CaselA CaselB

Bistatic Bistatic

Specdlar Specu]ar

Case2A Case2B

Specular

Bistaitic B istaiic

Figure 4.17: Assumed double bounce scattering cases: bistatic at cylinder followed by
specular on the ground (upper left), specular on the ground followed by
bistatic at cylinder (upper right), specular at cylinder followed by bistatic on
the ground (bottom left), and bistatic on the ground followed by specular at
cylinder (bottom right)

There are two commonly used facets scattering models: the Kirchoff model [16] and
the physical optics (PO) model [17]. Since an infinitely large scattering area on the ground
is assumed by PO, the Kirchoff model will be used for the double bounce scattering model
in this thesis. The scattering area from the vegetated terrain is usually so limited by various

plants such as trunks or grasses. The model is expressed in [26, 36] as
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r.=R, exp(— 2h’k?* cos® ei)smu sinW , Xx=h,v
u W

u =%kbsina, w =%kbsinﬂ

(4.52)

where Ry is the Fresnel reflection coefficient in (4.44). « is an angle difference between &
and & in the incidence plane as in Figure 4.18, and £ is an angle in the out-of-incidence

plane.

Figure 4.18: Definition of the angle

Note that the incidence angle always lies in x-z plane. In this thesis, we ignore
scattering out of the incidence plane to avoid further complexity. As in [26], this is a
reasonable approximation for a first-order model. Therefore £ is set to zero. The last
parameter to be considered is the facet width b. We assume that the optimal b maximizes
multiple scatterings between a cylinder and the ground. To find this solution, a top-hat
reflector (as in [38]) should be taken into account. The geometry of a top-hat reflector is

shown in Figure 4.19,
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Figure 4.19: Geometry of the top-hat reflector

and the backscatter cross section is obtained in the following form.

2
tanez% a:8ﬂasin6’-( b j

A tan @ (4.53)
tan6’<E J:B—ﬂaSinH-L2
L A
We are interested in a condition on the facet width that maximizes scattering.
b=Ltand (4.54)
Finally the surface scattering matrix is
0 0 O
S ={0 r, 0 (4.55)
0 0

\

Note that this matrix is expressed in the FSA convention.

To express the double bounce scattering matrix between a cylinder and the ground,
two parts of the wave propagation should be considered. Figure 4.20 shows one path of the

wave propagation from cylinder to ground.
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Figure 4.20: Geometry of double bounce scattering from a cylinder to the ground

The scattering matrix for this case is

n, -1 0 0 n; n;
he [=] 0 =1 0[SRScalh [=Sh; |. (4.56)
V, 0 0 1 v, 7

On the other hand, Figure 4.21 shows another path of wave propagation from the ground to

a cylinder.
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Figure 4.21: Geometry of double bounce scattering from the ground to a cylinder

The scattering matrix for this path is

n, -1 0 0 n; n;
hs =10 -10 SCBSgg hi = ngc hi ' (457)
V, 0 0 1 v, v,

The scattering and covariance matrices between a cylinder and the ground can be found by

taking an average of these two scattering matrices.

S =8 489 = CP (4.58)
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Now the total covariance matrix without the attenuation coefficients is obtained by the

following operation.

2r
db_no_att
C™-"- p_”C pt,// 5)Slnwdt//d5

db_no_att db_no_att db_no_att db_no_att
hhhh O hhhv hhvh hhw
db_no_ att* db_no_att db_no_att db_no_att

_ | Onntw O hvhv O hwh O hwy

- db_no_att* db_no_ att* db_no_ att db_no_ att
hhvh O hwh vhvh vhw
db_no_ att* db_no_ att* db_no_ att* db_no_att
hhvwv hvwv vhwv VW

Finally the expression becomes

b4t 4 db_no_att db no_ att
Ton T T TT wOhhi

hhhh
3 * 2 2 2

t t db no_ att b b t t db__no__an

T T T TW hhhv Thh Tvv Thh T hvhv
3 * 2 2 2 *
t t db no_ att b t t db no_ att

T T T TW hhvh Thh T Thh Tvv hwh
b2 b2 t2 t2 o _no_att* b t3 oo _no_att*

T T T T hhvv ThhT ThhT hvvv

Cdb —

t 3+t _db_no_att b24b2t 24t 2 o _no_att
T T T T O hivh Thh T Thh T Ohhw

b2 t2 t2 o _no_att b3 t3 ordb_no_att
TTThhT TT TTW iy

hvvh

b2+b24t 2+t 2 tlt tt b3 t3 _db tt
ThhTTT 119_no_a TT TT Vhwnoa

vhvh
t3 db _no_att* b4 t4 db_no_att
ThhT ThhT vhvv TW Tvv Gwvv

(4.59)

(4.60)

However, we cannot achieve a complete specular scattering at the cylinder at some

orientation angles. There is a possible range for the incidence and orientation angles, so we

conduct the operation only in that range. The cylinder orientation angle, ’, within the

incidence plane (x-z plane) is shown in Figure 4.22.
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Figure 4.22: Orientation angle, y/, within the incidence plane

It is defined as

tany' =2 =cosdtany . (4.61)

=i |;11

N

For the calculation of the specular scattering at cylinder (Case2A and 2B in the Figure

4.17), there are two cases we need to consider as shown in Figure 4.23.

Case | Case 1

—££5<Z —7[S5<—£,£S5<7z
2 2 2 2

(@) (b)

A

Figure 4.23: Two cases for the different azimuth orientation angle ranges
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In the Case I(a), for example, if the orientation angle, v/, is slightly larger than the

incidence angle, @&, the specular scattering happens behind the cylinder so that it does not
come back to the sensor. We also take into account only the forward scattering on the

ground. The angle, 6, , for each case in the figure is expressed as

Case I(a): 6, :%—(6?i —y')

Case I(b): 6, :%_{gi ()}
(4.62)
Case 1(a): 6, :%_(gi L)

Case l1(b): 6, = %— 0.~ (r—y').
For all cases, the scattered angles become

0. =20, +6., ¢, =0. (4.63)

The possible incidence and scattered angle ranges are
Case I(a): v' <6, % <O, <rx
Case I(b): v' <6, +%% <O <rxm
(4.64)

Case l1(a): '+ 6, <%,%<6’5 <z

Case ll(b): w'+6. >7r,%<<95 <r.

(4.59) and (4.60) are calculated with angles satisfying these conditions.
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4.6 Sensitivity Study

Using DSM, we will see how the backscatter cross section is affected by various
physical parameters: the soil moisture, surface roughness, and vegetation water content. In

this section, ohnnh, Shviv, aNd oy are simply called HH, HV, and VVV, respectively.

There are several fixed parameters in Table 4.4. To make the situation simple, we

assume the surface has no topography.

Table 4.4: Fixed parameters for the sensitivity simulation

0 A L h layer a | Vo P
(deg)| (m) | (m) | (m) [ (m) [ (cm) [ (deg.) (cylinders/m®)
0-90 0.24 0.5 0.5 0.002 5 0 0.91 900

hiayer 1S @ layer height, v, is a mean orientation angle, and oy is the randomness in the angle

0. 0.91 corresponding to a uniform distribution. The variables such as the soil moisture M,,
vegetation water content W, surface roughness kh, and randomness of the vegetation are

assigned in Table 4.5.

Table 4.5: Cases of the sensitivity simulation

case M, (%) W, (kg/m?) kh o,
baseline 10 1.24 0.26 0.56
4-6-1 30 1.24 0.26 0.56
4-6-2 60 1.24 0.26 0.56
4-6-3 10 0 0.26 0.56
4-6-4 10 2.54 0.26 0.56
4-6-5 10 1.24 0.50 0.56
4-6-6 10 1.24 1.00 0.56
4-6-7 10 1.24 0.26 0.30
4-6-8 10 1.24 0.26 0.91
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Note that o, is assumed to have a small randomness distribution (o,~0.30), cosine squared

distribution (,=~0.56), or uniform distribution (,=0.91).

The real part of the dielectric constant of dry sand is about 3, while it is 80 for water.
Soil moisture is clearly related to its dielectric constant, and generally they are
characterized by a nonlinear relationship. Wang et al. proposed an empirical model in [39].
The model was derived based on measurements at 1.4 and 5 GHz. If we assume a typical

loam soil, the expression is given by

3.25+2.2M, +147.05M2  for M, <22%
. (4.65)

~6.8216+785M, for M, >22%

Hallikainen found a relationship between the real part of the dielectric constant of the soil

and its moisture in percentage [40] as

£y = 2.2575+22.9925M , +101.8015M 2, (4.66)

This empirical model assumes a typical loam soil, and is derived from measurements from
1.4 to 18 GHz. The expression is applicable at 1.4 GHz. Dobson et al. also reported a semi-
empirical model with a more complicated form [41, 42]. The model takes into account a
relationship between the relaxation time for the water and temperature. These algorithms
are expressions of the dielectric constant for the given soil moisture. Conversely, the soil

moisture can be calculated from a measured dielectric constant [43] as follows.

—0.000586¢

M, =—0.0278 + 0.0280¢ 2 +0.00000503¢3 (4.67)

soil
In this thesis, we use the model proposed by Hallikainen to relate the dielectric constant to
the soil moisture, and also use Brisco’s model for the reverse case because they have
similar characteristics between the dielectric constant and soil moisture, as pointed out in
[22].
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We also have an expression to relate the dielectric constant of the vegetation to its

water content percentage [44] by

£, =& +vfw(4.9+ >0 jlgUVJ+Vb[2-9+l

Jif70.18

1+jf/18 ~ f

where f is the frequency in GHz, and

o, =0.16S —0.0013S°

g, =17+3.2W, +6.5W/

V,, = (0.82W, +0.166 W .
31.4W/

T 145950

Vb

55.0 ] @68)

(4.69)

where S is the salinity of the vegetation. It is defined as the total mass of solid salt in grams

dissolved in 1 kg of solution and is expressed in parts per thousand on a weight basis. In

this chapter, the salinity is assumed to be zero for the simple calculation.

Once vegetation water content percentage is obtained, it can be transformed to the

weight per area as follows.

W, [kg /m? |=1000pma2Lh,, ., W, [%]

(4.70)

First, the soil moisture contribution to the radar backscatter cross section in terms of

the incidence angle is shown in Figures 4.24, 4.25, and 4.26. In each legend, DB_xy means

a double bounce scattering for the xy polarization.
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Backscattering Cross Section [dB]

0 20 40 60 80
Incidence Angle [deg]

Figure 4.24: Result of the baseline parameters with M,=10%, W.=1.24 kg, kh=0.26,
0,~0.56

Backscattering Cross Section [dB]

80

4
Incidgnce Angle [de%?

Figure 4.25: Result of the case 4-6-1 with M,=30%, W.=1.24 kg, kh=0.26, ¢,,~0.56
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Volume HH

Volume HV

Volume VV
—&-Surface HH
—-Surface HV
—A—Surface VV

DB HH

DB HV

DBVV
—&-TotalHH
—&-Total HV
—Total VV

| |
\
)
-60 *‘

0 20 40 60
Incidence Angle [deg]

Backscattering Cross Section [dB]

Figure 4.26: Result of the case 4-6-2 with M,=60%, W.=1.24 kg, kh=0.26, ¢,,~0.56

Both the backscattering from the surface and double bounce increase with soil
moisture, while the backscattering from the volume stays the same. Since the soil moisture
raises the scattering power from the ground, it also increases the double bounce scattering
within the same volume layer. The co-polarization responses of the total power are a
mixture of the three scattering mechanisms depending on the incidence angle. The cross
polarized response, however, comes from contributions by the volume scattering only. This
implies to us that the cross polarization can be used to estimate the biomass. Another
important feature is the double bounce scattering in Figure 4.24. Its VVV polarization
response shows a distinct drop at around 65 degrees, while HH does not. This is due to the
well known Brewster’s angle of the ground [45]. 10, 30, and 60% of soil moisture
correspond to 67, 76, and 82 degree Brewster’s angles, respectively, as shown in Figures
4.24 to 4.26. At the smaller incidence angle, we have another drop of around 20 degrees,

even though it is not as clear. This is due to the Brewster’s angle of the cloud of the
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cylinders. The important thing is that V'V is affected by two Brewster’s angles, and as a

consequence VV can be much smaller than the HH at the incidence angle between the two
Brewster’s angles. This becomes a critical issue on the dry surface. For example, at 40
degrees in Figures 4.24 and 4.26, VV on the wet surface (Figure 4.26) is about 2dB while

the one on dry surface (Figure 4.24) is around 6 dB. The dry surface is more affected by the
Brewster’s angles.

Figures 4.24, 4.27, and 4.28 show the contribution of the vegetation water content to

the backscatter cross section in terms of the incidence angle.

Volume HH

Volume HV

Volume VV
& Surface HH
—&-Surface HV
—&-Surface VV

DB HH

DB HV

DBVV
—&-Total HH
—-Total HV
——Total VV

Backscattering Cross Section [dB]

-40 / /\\/\/\ \r |
1
-60 \
20 40 60 80

Incidence Angle [deg]

Figure 4.27: Result of the case 4-6-3 with M,=10%, W.=0 kg, kh=0.26, 5,~0.56
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Volume HH

Volume HV

Volume VV
—&-Surface HH
—-Surface HV
—&—Surface VV

DB HH

DB HV

DB VvV
—&Total HH
—-Total HV
—&Total VV

Backscattering Cross Section [dB]

A

0 20 40 60 80
Incidence Angle [deg]

Figure 4.28: Result of the case 4-6-4 with My=10%, W.=2.54 kg, kh=0.26, 0,=0.56

As expected, the volume scattering is dominant at the higher vegetation water content,
and the total scattering increases as the amount of vegetation increases. The surface
scattering is diminished due to the higher extinction caused by strong interaction with the
volume component. Though the attenuation coefficient also affects the double bounce
scattering, it is not clearly shown, since the strong volume scattering increases the double
bounce contribution.

Figures 4.24, 4.29, and 4.30 show the contribution of the surface roughness to the
backscatter cross section.
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Backscattering Cross Section [dB]

0 20 40 60 80
Incidence Angle [deg]

Figure 4.29: Result of the case 4-6-5 with M,=10%, W.=1.24 kg, kh=0.5, 0,,=0.56

Backscattering Cross Section [dB]

0 20 40 60 80
Incidence Angle [deg]

Figure 4.30: Result of the case 4-6-6 with M,=10%, W.=1.24 kg, kh=1, 5,~0.56
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The surface roughness variation does not affect the volume scattering, but the surface

scattering is increased. The tendency is similar to the results in terms of the soil moisture.
However, the double bounce scattering decreses even though the surface scattering is raised.
The Kirckhoff model in (4.47) clearly shows that the forward scattering power is attenuated

by the higher value of the surface roughness, kh.

Finally, the scattering power in terms of the cylinder’s distribution is shown in Figures
4.24,4.31, and 4.32.

Volume HH

Volume HV

Volume VV
—-&Surface HH
—-Surface HV

——Surface VV
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Figure 4.31: Result of the case 4-6-7 with My=10%, W.=1.24 kg, kh=0.26, ¢,,=0.30
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Figure 4.32: Result of the case 4-6-8 with M,=10%, W.=1.24 kg, kh=0.26, ,~0.91

These plots show that the backscatter cross section does not change much at an
incidence angle larger than 50 degrees. On the other hand, scattering from the volume layer
at incidence angle smaller than 50 degrees is significantly increased in terms of the
vegetation randomness. This is because the higher randomness of the volume component
provides more chances that the incident wave is orthogonal to the cylinder. The
backscattering from the oriented cylinder is maximized when the incident wave direction is
orthogonal to the length direction of the cylinder. Also the chances are increased more with
higher randomness than with lower randomness when the mean orientation angle is close to

zero. Conversely, the chances are decreased when the mean angle is close to 90 degrees.

As in [46], DSM allows us to see how the backscattering from vegetated terrain is
sensitive to soil moisture with various physical conditions, such as the amount of

vegetation. Van Zyl defined the slope of backscattering from a vegetated area with a
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specific soil moisture. For example, a plot of the total backscatter cross sections for HH,

HV, and VV at W.=1.24 kg is shown in Figure 4.33. Note that the incidence angle is fixed
at 40 degrees.
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Figure 4.33: Backscatter cross section with M,=10~30%, W.=1.24 kg, kh=0.26,
0,~0.56

Ulaby et al. points out that the backscatter cross section can be related to the soil moisture

using the following expression in [37].

o,[dB]=AyM, +B,, (4.71)

where x and y are h or v. Note that the backscatter cross section is in dB (decibels). The
slope A expresses how the radar reflection is sensitive to the soil moisture. In the example

in Figure 4.33, they are calculated to be



113

A, =118
A,, =0.49 . (4.72)
A, =12.8

You can see the sensitivity of the slope to the vegetation water content in Figure 4.34.

-+HH &VV-HV
4
[}
o
o
)
10
0 ‘ *———0—0—0—¢
0 1 2 3 4 5
W, [kg/m?]

Figure 4.34: Slope with M,=10~30%, kh=0.26, 5,~0.56 at 6,=40 deg

This result shows that the sensitivities for both co-polarization ratios gradually
decrease, while the one for cross polarization suddenly drops and is then close to zero after
Wc=1 kg/m?. This implies that the cross polarization may not be appropriate to infer the soil
moisture because the effective range is quite narrow between 0 and 0.5 kg/m2 Another
feature of the plot is that the slope of VV is larger than HH at first, and then becomes
smaller than VV after around W=1.3 kg/m?. With the lower vegetation water content, the

surface scattering mechanism is the main contributor to the total scattering, so that VV is
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more sensitive than HH. The vegetation component decreases both contributions in terms

of the amount of the vegetation. The cosine squared distribution with zero mean orientation
angle is biased to the vertical direction on the ground. Since such vegetation interacts with
the vertically polarized wave more than the horizontal one, it eventually attenuates the
vertically polarized wave more. The effect of the vegetation becomes pronounced with
higher vegetation water content. Therefore VV achieves higher sensitivity at lower levels
of vegetation water content and is then flipped after a certain amount of the vegetation

water content.

Similarly, Figure 4.35 provides the sensitivity plot in terms of the surface roughness.
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Figure 4.35: Slope with My=10~30%, W.=1.24 kg, 0,~0.56 at §=40 deg

HV is significantly lower over the entire range of roughness, since the first-order
surface scattering model tells that the cross polarized response is zero. The co-polarizations

increase in sensitivity in terms of roughness until kh=1, and they do not change much
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afterward. In addition, VVV is lower than HH at kh less than 0.1. Due to the distribution of

the vegetation, VV scattering is more attenuated than HH at kh lower than 0.1. At higher
values of kh, VV increases in sensitivity in terms of roughness. HH also grows in
sensitivity but the rate is much less than VV. This is because vegetation with a cosine
squared distribution does not affect HH much, so that the increase in sensitivity is not as
pronounced as that of VV. Above kh =1 most of the interference from the vegetation is

gone, and the slopes for both co-polarizations are affected primarily by surface roughness.
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Chapter V

Quantitative Analysis of the

Decomposition Techniques

Two decomposition techniques and the discrete scatterer model have been thoroughly
discussed. In this chapter, NNED and ANNED will be applied to various types of vegetated
terrains generated by DSM, and the effectiveness of each decomposition algorithm will be
evaluated quantitatively. A cube technique, which will be used to retrieve soil moisture in

Chapter VI, is also used to display the results.

5.1 Test Scenario

Backscattering from a bare surface can be expressed as a function of the surface
roughness and dielectric constant (i.e., soil moisture), as shown in Section 4.4. If a surface
is covered by vegetation, the backscattering from it is affected by this structure and the
statistical distribution of branches or leaves. In this chapter, we will model such a vegetated
terrain by varying four of the influential parameters: the soil moisture, surface roughness,
vegetation water content, and randomness of the volume component. For simplicity, we use

a grassland model for the baseline parameters as shown in Table 5.1.
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Table 5.1: Baseline parameters for the test scenario

ei A L h layer a I Vo o P
(deg) | (M) | (m) | (m) | (m) | (cm) | (deg.) ° | (cylinders/m?)
420 | 024 | 05 | 05 [o0002| 5 0 | 091 900

The four variables are given in Table 5.2.

Table 5.2: Variables for the test scenario

M, W,
) kh o
(%) | (kg/m%)
0-60 0-2.54 0.1-2 10.30, 0.56, 0.91

Note that ¢,=0.56 and 0.91 correspond to a cosine squared distribution and uniform

distribution, respectively.

The cube in Figure 5.1 neatly displays the backscatter cross section in terms of the

three variables. The axes are assigned to the soil moisture (M,), surface roughness (kh), and

vegetation water content (W;). The figure also defines three view angles covering all

dimensions of the cube. One of these view angles (A, B, or C) will be specified to indicate

the view angle used to display the data.
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A

radli~%

ar

Figure 5.1: Cube to express the backscatter cross section in terms of the three physical
parameters: the soil moisture (M), surface roughness (kh), and vegetation
water content (W;). The three view angles (A, B, C) are also shown.

The backscatter cross sections for the co- and cross polarizations are shown in Figures
5.2 (0,~0.30), 5.3 (0,~0.56), and 5.4 (¢,~0.91). The columns and rows show the different
polarizations and different view angles, respectively. Note that the color range for each

cube is shown in the associated color bar.
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Figure 5.2:

Input data from DSM with the given test scenario: ¢,=0.30. Each row
corresponds to one of the view angles defined in Figure 5.1, while each
column corresponds to the backscatter cross section of opnnn (right), ohvhy

(center), and oww (right), respectively.



120

Figure 5.3: Input data from DSM with the given test scenario: ¢,,=0.56. Each row
corresponds to one of the view angles defined in Figure 5.1, while each
column corresponds to the backscatter cross section of onnnn (right), ohvhy

(center), and oww (right), respectively.



Figure 5.4: Input data from DSM with the given test scenario: ¢,=0.91. Each row
corresponds to one of the view angles defined in Figure 5.1, while each

column corresponds to the backscatter cross section of opnnn (right), ohvhy
(center), and oww (right), respectively.

It is clear that the cross polarization is highly sensitive to the amount of vegetation, but
is not sensitive to the other two variables. This implies that the polarization is a key
parameter to estimate the amount of vegetation, as pointed out in [12]. The results from the
view angle (A) of the co-polarizations show that the lowest power occurs at their origin,
and it spherically increases in terms of each variable. This follows from the characteristics

of SPM, which is strongly a function of the surface roughness and soil moisture, and also
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demonstrates the properties discussed in Section 4.6 (Figures 4.27 and 4.28). However,

results from the view angles (B) and (C) exhibit the opposite behavior, where the maximum
power occurs at the center (the maxima of the roughness and soil moisture and the
minimum of the vegetation water content), and spherically decreases as the roughness and
soil moisture decrease and the vegetation water content increases. The maximum scattering
occurs when both the soil moisture and surface roughness are maximized. One may also
expect to have the maximum scattering occur with maximum vegetation water content as in
view angle (A), but it does not. The reason lies in attenuation of the volume layer. We
know the scattering from the volume layer increases as the vegetation water content
increases. At the same time, the strong interaction between the incoming wave and the
volume layer increases the attenuation coefficient, as discussed in Section 4.3.1. At middle
values of vegetation water content and the maximum of the surface roughness and soil
moisture, the scatterings from the surface and double bounce are still larger than the
backscattering from the volume layer. However, at the maximum vegetation water content,
the volume scattering is significant compared to scattering from the other scattering
mechanisms, so the volume layer attenuates much of the scattering from the surface and

double bounce.

Another important feature exists at the top of the cubes. The case with the uniform
distribution in Figure 5.4 does not show a specific texture in the area, and the case of the
cosine squared distribution in Figure 5.3 shows some texture but it is vague. However, the
case with lower roughness in Figure 5.2 shows the clear pattern on the top of the horizontal
polarization. The pattern is almost the same as that at the bottom, so the scattering at the top
is contributed by the scattering from the surface and double bounce. Due to its statistical
properties (zero orientation angle and the narrower distribution), most of the vertically
polarized response from the surface and double bounce are significantly attenuated while
the horizontally polarized response survives. This fact is important because we can see the

ground scattering well even with significant vegetation, depending on the randomness.
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5.2 Simulation Results and Analysis

First, the randomness and mean orientation angle of the volume component estimated
by ANNED are shown. Figures 5.5, 5.6, and 5.7 correspond to the cases of ¢,,~0.30, cosine
squared distribution, and uniform distribution, respectively. Each orientation angle cube
has a range between 0 and 90 degrees, which correspond to vertical (4,~0) and horizontal
orientation angles (¢,~90), respectively. Also the minimum and maximum values on the
randomness cubes are related to the delta function (0,=0) and uniform distributions

(0,~0.91), respectively.
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Figure 5.5: Estimated randomness and mean orientation angle: ¢,,=0.30. Each row
corresponds to each view angle defined in Figure 5.1 while each column
corresponds to the orientation angle (right) and the randomness (right),
respectively.
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Orientation Angle Randomness
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Figure 5.6: Estimated randomness and mean orientation angle: ¢,,=0.56. Each row
corresponds to each view angle defined in Figure 5.1 while each column
corresponds to the orientation angle (right) and the randomness (right),
respectively.
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Orientation Angle Randomness
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Figure 5.7: Estimated randomness and mean orientation angle: ¢,=0.91. Each row
corresponds to each view angle defined in Figure 5.1 while each column
corresponds to the orientation angle (right) and the randomness (right),
respectively.

The result of the lower randomness in Figure 5.5 is highly unstable, due to the small
amount of power from the volume component. As discussed in Section 4.6 (Figures 4.31
and 4.32), the lower randomness with the zero orientation angle of the volume component
causes lower backscattering. On the other hand, the results from the cosine squared
distribution in Figure 5.6 seem stable. The region dominated by volume scattering yields
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zero as the mean orientation angle and around 0.75 as the randomness. One may expect the

randomness should be around 0.56, as defined in the scenario. This discrepancy comes
from the fact that the angle definition on the ground is different from the one at the receiver,
as shown in Figure D.2, which shows that the randomness 0.56 on the ground corresponds
to 0.75 at the receiver at =40 deg. For the case of the uniform distribution in Figure 5.7,
the randomness cube is at around 0.9, as we expected. The mean orientation angle cube is

unstable because the uniform distribution has no mean orientation angle.

Both NNED and ANNED are expressed as

C,=xC,+yC, +2C, (5.1)

and the power in each component normalized by the total power is defined as follows.

P :m :M :icg) (5.2)
© PC,)" " PEC,)" " PE,) |

Figures 5.8, 5.9, and 5.10 correspond to the estimated power for the volume, double bounce
and surface components, respectively, at ¢,~0.30. Four cubes are shown for each view
angle: the true data, two results from NNED assuming cosine squared and uniform

distributions, and result from ANNED.
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NNED NNED
(cos? dist.) (Uniform dist.)

Figure 5.8: Estimated power for the volume component: ¢,,~0.30. Each row
corresponds to each view angle defined in Figure 5.1 while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively

from left to right.
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True NNED NNED
(cos? dist.) (Uniform dist.)

ANNED

Figure 5.9: Estimated power for the double bounce component: ¢,,~0.30. Each row
corresponds to each view angle defined in Figure 5.1 while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively

from left to right.
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NNED NNED
(cos? dist.) (Uniform dist.)

Figure 5.10: Estimated power for the surface component: ¢,,=0.30. Each row
corresponds to each view angle defined in Figure 5.1 while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively
from left to right.

The true data in Figure 5.8 tells that a strong volume contribution occurs only in the
limited area around the center of view angle (A). This causes oscillations shown in the
result from ANNED. The ANNED estimation of the volume component is disturbed by the
strong scattering from the surface and double bounce even at higher vegetation water
content. Nonetheless, ANNED can extract a relatively strong volume contribution

compared to the others.
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The true data in Figure 5.9 shows that the primary double bounce contribution occurs

at only lower roughness. This is because the surface scattering model, the Kirchoff
approximation, attenuates scattering as the surface roughness increases as shown in (4.52).
All three techniques fail to extract this double bounce contribution. The criterion to
determine the double bounce component is that the phase of onnw Should be more than 90
degrees or less than -90 degrees, as discussed in Section 3.3. Figure 5.11 shows the phase
history of the double bounce component in terms of the radius of the cylinder. The
simulation parameters are the same as above with a variable number of cylinders used to
keep W¢=1.7 kg/m? so that the dielectric constants of the cylinders stay the same. The other
variables are fixed at M,=60 % and kh=0.13.
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Figure 5.11: Magnitude of the phase of opnw from the double bounce component in terms
of cylinder radius

The phase is unstable, and it is often out of the angle range that we expected. The
radius 2 mm is close to zero so that the criterion cannot be used to judge the signal to be

double bounce scattering. Figure 5.12 shows the backscatter cross sections of the co-
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polarizations from a single cylinder with the ratio of the two co-polarizations. Note that it

displays the result from direct backscattering, not double bounce.
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Figure 5.12: Backscatter cross section of the co-polarized responses and their ratio of
them. All values are in dB.

Clearly, the phase history shows a strong correlation to the ratio of the co-polarizations.
This tells us two important things. First, the radius of the cylinder strongly affects the phase
of annw. Second, a large difference between the two co-polarized responses may not flip the
phase. This is shown at radii between 0 and 0.01 m in the figure. Remember that the
Brewster’s angle pulls the vertical polarized scattering down, as discussed in Section 4.6,
and causes the larger gap between the two co-polarizations as seen for radii between 0 and
0.01 m. We need further investigation to determine the best criteria to discriminate the
double bounce and ground scatterings. The three techniques do not show much difference

because they use the same criterion for this discrimination.
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Figures 5.13, 5.14, and 5.15 correspond to the estimated power for the volume, double

bounce, and surface, respectively, in the case of ¢,~0.56.

NNED NNED
True (cos? dist.) (Uniform dist.) ANNED

Figure 5.13: Estimated power for the volume component: ¢,~0.56. Each row
corresponds to each view angle defined in Figure 5.1, while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively

from left to right.
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True NNED NNED
(cos? dist.) (Uniform dist.)

ANNED

Figure 5.14: Estimated power for the double bounce component: ¢,,~0.56. Each row
corresponds to each view angle defined in Figure 5.1, while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively

from left to right.
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NNED NNED
(cos? dist.) (Uniform dist.)

True ANNED

Figure 5.15: Estimated power for the surface component: ¢,=0.56. Each row
corresponds to each view angle defined in Figure 5.1, while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively
from left to right.

ANNED extracts the volume component very well compared to the other algorithms as
shown in Figure 5.13. NNED, assuming a cosine squared distribution, also shows a
reasonable texture match, but the contrast is lower than in the true data. NNED, assuming a
uniform distribution, fails to extract the contribution. For the double bounce component in
Figure 5.14, ANNED seems better than the others. Thus, the adaptive technique is the best
way to extract the surface scattering component, as shown in Figure 5.15, while there is

some blurriness at lower roughness due to the double bounce criterion discussed before.
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Figure 5.16, 5.17 and 5.18 correspond to the estimated power for the volume, double

bounce and surface, respectively, in the case of ¢,,=0.91.

NNED NNED

True (cos? dist.) (Uniform dist.) ANNED

Figure 5.16: Estimated power for the volume component: ¢,,~0.91. Each row
corresponds to each view angle defined in Figure 5.1, while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively

from left to right.
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NNED NNED

True (cos? dist.) (Uniform dist.) ANNED

Figure 5.17: Estimated power for the double bounce component: ¢,=0.91. Each row
corresponds to each view angle defined in Figure 5.1, while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively

from left to right.
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NNED NNED

(cos? dist.) (Uniform dist.) ANNED

True

Figure 5.18: Estimated power for the surface component: ¢,=0.91. Each row
corresponds to each view angle defined in Figure 5.1, while the columns
correspond to the true data, results from NNED assuming the cosine
squared and uniform distributions, and results from ANNED, respectively
from left to right.

NNED, assuming a cosine squared distribution, is clearly inappropriate for this case.
For the volume component, NNED, assuming a uniform distribution, is slightly better than
ANNED, which shows some oscillations while the texture and contrast are almost same.
Figure 5.17 shows that ANNED extracts the double bounce contribution in the view angle

(A) slightly better than NNED, assuming a uniform distribution.
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From the results presented in this section, ANNED clearly shows better applicability

than the other techniques.
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Chapter VI

Soil Moisture Retrieval

In this chapter, we will apply the decomposition techniques to retrieve the soil
moisture from measured data. We shall start by introducing Dubois et al.’s inversion
algorithm [8] as a representative of previous algorithms. This algorithm will then be
applied to DSM to see how vegetation degrades our inversion accuracy. We will attempt to
combine the algorithm with the decomposition technique, and verify the effectiveness. This
quantitative simulation, however, reveals a potential deficiency of the decomposition
technique. To overcome this problem, a brand new inversion technique will be introduced

with simulation results.

6.1 Previous Algorithms

Several previous algorithms for soil moisture retrieval will be briefly introduced, along

with a discussion of their applicability to vegetated terrain in this section.

Suppose we have a flat surface having a specific dielectric property. One transmits a
light at specific incidence angle, and another receives scattered light in the specular
direction. Since the surface is perfectly flat, the scattered power is dictated by the Fresnel
coefficient, and so one can easily invert the dielectric constant. Next, consider the case of a
surface with some roughness. The scattered power in the specular direction, which is called
the coherent component, is decreased, and the rest of the power in the other directions,
which is called the incoherent component, is increased as the surface roughness increases.
Therefore the scattering from a bare surface is strongly related to dielectric constant and
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roughness. In other words, the roughness is a noise source in the inversion of the dielectric

constant. Vegetation is also a noise source. Therefore, a key point of the soil moisture
inversion algorithms focuses on how to suppress the effects of the surface roughness and

vegetation. Several theoretical and empirical models have been proposed as follows.

The first-order small perturbation model [2] in (4.28) can be a soil moisture estimator

by taking the ratio of co-polarized responses as

| (s cos6, + e —sin?4, |
‘(cosé?i +4&—sin® g, )2 {sin2 0, — el +sin? 6, )}‘

1-¢
Ay = >
(cos.é?i +4/& —sin’® Hi)
29 in2
aw:(l_g)(sm o, g(1+sm 0,)

2
£C0S 0, ++/&—sin’ ei)

where & and ¢ are the incidence angle and dielectric constant, respectively. This simple

_ ||
O ww aw‘

(6.1)

operation reduces the dependency on roughness. However, the applicability is limited to
only small roughness compared with the wavelength. The co-polarizations approach each
other at larger roughness, and equation (6.1) then underestimates the dielectric constant.
More recently Kim et al. expanded the applicability by taking into account an undulation of
the local topography (see [6]).

Oh et al. proposed an empirical model in [9]. This model relates both the co-
polarization and cross polarization ratios to the dielectric constant, surface roughness, and

wavelength.
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1/31, 2
T _ {1_ (ﬁj exp(~ kh)}
G T
P _ 0,23/, f1—exp(~ kh)} (6.2)

1-e
1+\/Z

where k is a wave number. The authors found this using data sets from the bare surfaces

2

I,=

with different roughness measured by the University of Michigan’s truck-mounted
network-analyzer-based scatterometer [47], which operates fully polarimetrically over L-,
C-, and X-bands. With respect to surface roughness, wider applicability is expected
compared to SPM. Note that the cross polarization term is significantly sensitive to the
existence of vegetation, as discussed in 5.1. So the use of the cross polarization term may

degrade the inversion accuracy.

To minimize the effect of vegetation, Dubois et al. reported the following model in [8].

027 cos" 9
sin° O

Gy =107 = 110°9% 0% (khsin 6,)* A[cm]®

(6.3)

Oy =1072% Z?r? 31000465“"‘”‘9 (khsing,)"* A[em]®”’

i
This model relates co-polarized backscatter cross sections to dielectric constant and surface
roughness, and ignores the cross-polarization. This ignorance gives the algorithm
robustness to a certain amount of vegetation. This empirical model was derived by the
same data set with Oh et al. and data sets measured by The University of Berne’s truck-
mounted radiometer-scatterometer [8], which operates fully polarimetrically at six
frequencies between 2.5 and 11 GHz. One can rewrite (6.3) to solve for the dielectric

constant and surface roughness as
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= 3.5469{14 Iog( T j +310g 0, } +18.4374 (6.4)
O hhhh
0_1.37
log(kh)= Iog(%] +1.9854 (6.4b)
ey

where we assume that & = 40 degrees and A = 24 cm (L-band). The first equation shows
that not only the ratio Fwe byt also the absolute value Oy affect the soil moisture

Ohhhnh

inversion. One of the main advantages of this algorithm is the simple implementation of the

inversion procedure.

There are three parameters to characterize surface roughness: the RMS height,
correlation length, and roughness spectrum function, as discussed in 4.4. Both algorithms
consider only RMS height. Shi et al. proposed an algorithm taking into account the rest of
the parameters [4]. Their algorithm was developed by fitting single scattering IEM —based
numerical simulations (described in (4.42)) for a wide range of surface roughness and soil
moisture conditions. After considering various combinations of the polarizations, he found
the following two co-polarization sets to show reasonable agreement with the Little
Washita watershed images measured by AIRSAR and Shuttle Imaging Radar C (SIR-C).

1010g, | % |=a. (040, (0 potog, & |

O\ R
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S, = (kh)*'W

a,,(6,)=6.901+5.492tan g, —1.051log(sin 6, )

b,,(6,)=0.515+0.8965in §, —0.475sin? &),

#(6,)=exp(~12.37 +37.206sin 6, —41.187sin? 6, +18.898sin° 6, )
): 0.649+0.659cosd, —0.306cos” &,
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where W is a roughness spectrum function in (4.37).

In this chapter, we choose an algorithm proposed by Dubois et al. as a representative of
the previous algorithms because of its simple implementation with reasonable robustness to

the effect of vegetation.

[48] and [22] also provide excellent reviews and comparison of the soil moisture

inversion algorithms.

6.2 Soil Moisture Retrieval Using an Algorithm
Proposed by Dubois et al.

As discussed in the previous section, the algorithm proposed by Dubois et al. in (6.4) is
chosen as a representative of current algorithms. Note that we directly evaluate the
dielectric constant in this section, instead of transforming to soil moisture as discussed in
Section 4.6. Because each model shown in Section 4.6 is not simple linear function, this
may add further complication. Since the algorithm is basically valid for bare surface, we

use &,,, for the estimated dielectric constant.

Table 6.1 shows simulation parameters. Note that the vegetation structure corresponds

to a cosine squared distribution.

Table 6.1: Baseline parameters for the test scenario

0 A L N tayer a h I Yo P
(deg) | (m) | (m) | (m) | (m) [ (cm) [ (cm) | (deg.) v (cylinders/m®)
40 | 024 | o5 | 05 0002 1 5 0 056 | 0.91 900
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Soil moisture is in range between 10 and 60%, and vegetation water content is varied from

0 to 2.54 kg/m?. The inversion result is shown in Figure 6.1. &me is a dielectric constant
corresponding to the true soil moisture. To emphasize the effect of vegetation, the dielectric

constant of a dry surface (W.=0) is subtracted from the inverted dielectric constant.

10

A /
W
| ] -
£ M, [%]
o 10
.30 -=20
30
=40
=50
60
-50
0 0.5 1 1.5 2 25

W, [kg/m?]

Figure 6.1: Inversion result using Dubois et al.’s algorithm without polarimetric
decomposition

As we expected, the estimation error increases as the vegetation water content
increases. However, it begins to decrease above a certain amount of vegetation, depending
on the soil moisture. For example, the 30% soil moisture line gradually increases up to
Wc=3 kg/m? and it then starts to decrease. Due to the vegetation type (cosine squared
distribution with the zero orientation angle), the vertically polarized returns from the
surface and double bounce are more attenuated than the horizontally polarized one. So the
vertical returns from the surface and double bounce continue to decrease as the vegetation
increases. From the first term of (6.4a), the smaller vertically polarized response results in
the underestimation of the dielectric constant. On the other hand, the horizontal double
bounce scattering increases as the vegetation water content increases, as shown in Figures

4.27, 4.24, and 4.28. From the second term of (6.4a), the larger horizontally polarized



146

response causes an overestimation of the dielectric constant. For the vegetation water
content up to W,=1.5 kg/m? the vertical response from the surface and double bounce
dominates the total scattering power due to the lower level of vegetation water content.
However, at higher values of W, the horizontal double bounce scattering dominates the

vertical scattering so that the estimated dielectric constant increases.

Next, the polarimetric decomposition technique is combined with the inversion
algorithm. In this section, NNED assuming a cosine-squared distribution is used instead of
ANNED to make our interpretation simpler. The dielectric constant is inverted from the

decomposed surface data. Figure 6.2 shows the results.

10
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=40
=50
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-50
0 0.5 1 1.5 2 2.5
W, [kg/m?3]

Figure 6.2: Inversion result using Dubois et al.’s algorithm with the polarimetric
decomposition (NNED assuming a cosine squared distribution). The
decomposition makes the accuracy worse than the result without
decomposition.

First, an advantage of the use of the polarimetric decomposition is shown in the
narrower variation of the estimated lines in Figure 6.2. The technique removes the
vegetation effect which changes the total backscattering depending on soil moisture.

Secondly, the inversion curves are monotonically decreasing functions. From the first term
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of (6.4a), the underestimation of the dielectric constant comes from the smaller vertical

polarization. To see the detail analytically, suppose we have received signals attenuated by

the volume as in (4.17).

___no_att ,—2a/MH /cosé;
Opnoh = Opnin - ©

o — O_no_a’(te—Z%VZIH/cos&i (66)
Then the expressions are plugged into (6.4a) as
e—Zag’;’[H /cosé, )
NI —20agqH /c0s6;
=¢+3.5469 14'09 m +3|Oge (67)

For simplicity, let us take logarithm natural and assume the same attenuation coefficients

between co-polarizations.

¢ ~ £ —3.5469-3-2a."

ext

H /cosé, (6.8)

This clearly tells us that the inferred dielectric constant decreases with an increase of the
amount of vegetation. This estimation error comes from ignorance of the attenuation
coefficients in the decomposition technique. What we can do with the decomposition
technique is to estimate the attenuated surface scattering power. This is a potential
deficiency of the decomposition technique. Freeman proposed a decomposition technique
taking into account attenuation coefficients in [45]. The technique, however, requires a
priori knowledge, such as the forest height which is one of the most difficult parameters to
estimate from the measured data.

To overcome this fatal problem, we propose a brand new technique in the next section.
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6.3 A New Inversion Algorithm Using the

Polarimetric Scattering Cube

The forward scattering model (DSM), which already takes into account the volume
attenuation, can be utilized for a new inversion algorithm. As mentioned in the previous
chapter, we can make a polarimetric scattering cube for each element of the covariance

matrix, as shown in Figure 6.3.

"/

Figure 6.3: A reference cube for the soil moisture retrieval. The soil moisture, surface
roughness, and vegetation water content correspond to the x, y and z axes,
respectively.

The value on the cube is obtained by taking natural logarithm instead of expressing the
value on dB. This operation allows us to express a complex number by splitting it into the

magnitude part and the phase part.

b
oo =N 0 s = 10| + B (6.9)

pars

p, g, I, and s correspond to either h or v. Each off-diagonal element consists of a pair of
cubes in (6.9). Therefore nine independent cubes are obtained as follows.
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ref

ref
hhhh 1) hhhv X’ ' f:ﬁfvv P
oon (% Y,2) o (X, Y,2) o (X,Y,2)
o™ (%Y,2)=| O (% ¥,2) O (X,¥,2) G (X, Y,2)

ref ref *

thw(xiy’z) thv (X y Z) \:\e/\f/v(xiyiz)

Inofh, (y.2) Inlot, (cy.2) |

f
o, (x.Y,2)

= Ina"™ (x,y,2)=| Inoyy, (X.Y, z)‘ InagiLv(x,y,z) agifw(x,y,zj (6.10)
Injotet, (x.y,2) o, (x.y,2) Nl (%,y,2)
0 i (0 Y12) B (%,Y,2)
~ P (%Y:2) 0 o (X Y12)

- r:f]i/v(x1y1z) _¢r:${/v(x’y1z) 0
X, Y, and z are the axes of soil moisture, surface roughness, and vegetation water content,

respectively. Similarly, the measured covariance matrix is calculated as

m m m
Ohnth -~ Ohhv Ohhw

m_| _m* m m
o = O-hhhv O-hvhv o-hvvv
m* m* m
O-hhvv o-hvvv O-vvvv
. (6.11)
m m m m
IN G In‘a hhhv 0 Drine P
m_ m m m m
=Ino" = In‘ahhhv INGin, +| = Porny 0 P
m m m m m
In‘thvv In‘(Thwv In O _¢hhvv _¢hvw 0

Using these descriptions, we can calculate a distance between the measured data and any

specific point in the cubes as

(x,v,2) ZW\/(Ina{“ ~Ino (x,y,2)f
+;ij( oyl Tl - Gy

where i is either hhhh, hvhv, or vwwv, and j and k are either hhhv, hhvv or hvwv. Also, w;, w;

(6.12)

and wy are weighting functions that you can change sensitivity of each polarization. You
can arbitrarly choose the combination of polarizations. After calculating the distance for all
X, Yy, and z of the referential cubes, one can find a set of (x, y, z) which minimizes the

distance. If a combination (xo Yo Zo) achieves the minimum distance, xo, Yo, and zp
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correspond to the inversion results for the soil moisture, surface roughness, and vegetation

water content, respectively. This simple operation is one of the main advantages. Now the

technique will be applied to the case of the grassland.

First, the reference cubes are calculated using DSM with baseline parameters and

variables shown in Tables 6.1 and 6.2, respectively.

Table 6.2: Variables for the reference cubes

M, W,
@) | (kg/m?)
0-60 0-2.54 0.1-2

kh

For this demonstration, 20 samples for each axis of the cube (8000 samples in total)
are calculated. The resulting five cubes are displayed in Figure 6.4. Due to the gradual
change of the textures on the cube surfaces, we can increase the number of samples by
simple interpolation techniques. In this case the number of samples is increased from 20 to
280 samples for each axis (21,952,000 samples in total) using cubic spline interpolation.
Note that hhhv and hvvv are small compared with the other elements, due to the scattering

reflection symmetry, and so we ignore them.
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Figure 6.4: Calculated five independent cubes (20 samples for each axis). Note that
hhhv and hvvv terms are small due to the scattering reflection symmetry.

For simplicity, the test data sets are assumed to have the same parameters as in Table
6.1, and the variables (soil moisture, surface roughness, and vegetation water content) are
randomly chosen in the range shown in Table 6.2. In this simulation, we use two different
combinations for the distance calculation: (hhhh, hvhv, vwwv) and (hhhh, hvhv, vwvv, hhvv).
Figure 6.5 shows inversion results for the three parameters. In each case the y-axis is the
Root Mean Squared Error (RMSE) of each parameter. The x-axis shows the amount of
vegetation water content between 0 and the specified value on the axis. For example, if you
pick W.=1.5 kg/m?, the data samples are generated from uniformly distributed vegetation
water contents between 0 and 1.5 kg/m®. Note that the error comes from the number of

samples of the cubes.
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Figure 6.5: Inversion results using the cube technique. Inversions of soil moisture (left),
roughness (center), and vegetation water content (right) are displayed.

The error source of this inversion is the limited sample number of the cube. The
inversion result of the vegetation water content shows both lines are identical so that hhvv
term does not affect this inversion process at all. As discussed in Section 5.2, the cross-
polarization term plays an important role in inverting the vegetation water content. The
results of the soil moisture and roughness share similar characteristics. Both lines are
identical up to Wc=0.5 kg/m? and then they diverge and the results using the hhvv term
achieve significantly better accuracy in both cases. Since Figure 4.34 shows the cross
polarized response has effective sensitivity only up to 0.5 kg/m?, this term contributes to
the inversion of the soil moisture and surface roughness at the lower level of vegetation
water content. Another feature is that the inversion accuracies of the soil moisture and
surface roughness increase as the vegetation water content increases. This tendency is
opposite to that of Dubois et al.’s algorithm which ignores hhvv. Hence, the proposed cube

inversion algorithm shows strong robustness to scattering from vegetated terrain.
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Next, the inversion accuracy will be shown by varying the vegetation structure. The

test data is generated with various radii of cylinders between 2 and 3 mm. The inversion

results are shown in Figure 6.6.
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Figure 6.6: Inversion results using cube technique for various radii of cylinders.
Inversions of soil moisture (left), roughness (center), and vegetation water
content (right) are displayed.

Due to the existence of dried plants with various radii, the estimation at W.=0 has some

variation. In each case the error increases as the radius range increases. At smaller ranges of

radii, the effect of the vegetation is suppressed. This implies that different reference cubes

depending on the vegetation structure should be prepared to achieve the best accuracy.

Since the implementation of the algorithm is simple, a large number of cubes is not a

problem. Further investigation is needed to choose the most appropriate cube for a given

data set a priori.
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To see an effect of the weighting function, thermal noise (-40 dB) is added to the test

data. The inversion is operated by varying the weighting function of cross-polarization. The

results are shown in Figure 6.7.
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Inversion results using the cube technique. The -40 dB thermal noise is

added to the test data in Figure 6.5. Inversions of soil moisture (left),
roughness (center), and vegetation water content (right) are displayed.

Significantly lower accuracy is achieved in a range of smaller vegetation water content

around 0 to 0.5 kg/m? The surface scattering is dominant in this range, and the cross-

polarized scattering from the surface is close to zero without any topographic undulation as

you can see in the analytical models (4.41) or (4.42). This means that our cross-polarized

data is only contributed by thermal noise, and the use of the term degrades the accuracy.

Therefore, you can perform better estimation without using the cross-polarized term in the

range of smaller vegetation water content. The change of weighting function improves the

results for not only soil moisture but also roughness and vegetation water content. However,

the ignorance of the term does not work in the range of higher vegetation water content

since the surface scattering is not dominant any more. This implies us that the sensitivity to

each polarization should be determined by the class of vegetation.
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From the results above, we can propose the following inversion strategy in Figure 6.8.
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Figure 6.8: Proposed inversi

| Cube Technique \

on strategy

Once we obtain the measured polarimetric radar data, the vegetation type and

weighting functions should be identified using the decomposition technique shown in

Chapter Ill. Here the various
advance so that a cube set corr

cube sets are developed by DSM in the Cube Library in
esponding to the estimated vegetation type can be chosen for

the inversion process. Finally, the inversion for soil moisture, surface roughness or

vegetation water content can b

follows.

e Easy implementation

e performed by (6.12). The advantages of this strategy are as

¢ Including the attenuation effect

e Easy to achieve higher

applicability by increasing the number of different cube sets.
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Chapter VII

Conclusions and Suggestions

In this thesis, we conducted a detailed study of the scattering mechanisms of vegetated
terrain to attempt to find a way to isolate surface scattering from other scattering

mechanisms, and to apply this knowledge to the retrieval of soil moisture.

We started by pointing out a deficiency in the Freeman decomposition model [12]
regarding energy conservation. An improved algorithm, Non-Negative Eigenvalue
Decomposition (NNED), revealed that Freeman decomposition overestimated the volume
scattering power by 30 to 40% more than that estimated by NNED. These numbers were
obtained from an image of Black Forest, Germany, acquired by L-band AIRSAR. The
NNED is only applicable to a specific type of vegetation due to the limitation of the
volume scattering component. To overcome this limitation, the following scattering
component was generalized by introducing two parameters: the randomness and the mean
orientation angle. This generalized component was then applied to create the adaptive
NNED (ANNED) technique. We qualitatively verified the decomposition techniques by
showing how they react to various types of vegetation using the Black Forest image.

ANNED proved to be most applicable.

In order to validate the decomposition models quantitatively, we introduced the
Discrete Scatterer Model (DSM) [15, 16] with some modifications. Prior to applying the
decomposition model, DSM was employed to study the sensitivity of the physical
parameters characterizing vegetated terrain. Soil moisture, surface roughness, and
vegetation water content were chosen as the variables. Through the simulation in the case

of grassland, we demonstrated how the vegetation and surface roughness affect the
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backscatter cross section. In particular, the attenuation coefficients derived from the

vegetation structure had an important effect on the sensitivity.

Quantitative analysis of the decomposition models was conducted. Three different
types of vegetations were generated using DSM. The adaptive decomposition technique

showed the best applicability compared to others.

Separating the double bounce and ground scattering, however, is still an open problem.
In the case of very regular vegetation structure, the criterion that the real part of HHVV be

negative for double bounce scattering sometimes failed.

We attempted to employ the decomposition technique to the inversion algorithm
proposed by Dubois et al. in [8]. The data was generated by DSM so that the result could
be quantitatively validated. The decomposition technique did not improve the inversion
accuracy due to ignorance of the attenuation effect by the volume layer. To overcome this
difficulty, a new soil moisture inversion technique utilizing polarimetric scattering cubes
was proposed. Each cube is calculated using DSM. The simulations with various radii of
cylinders showed its effect on inversion accuracy, and implied that multiple cubes for
various vegetation structures are needed. One of the main advantages of the algorithm is its

easy implementation, so that having a large number of cubes does not affect the efficiency.

In the framework of the retrieval of soil moisture we are convinced that the proposed
cube algorithm can achieve higher accuracy and applicability than other algorithms and is
easily implemented. However, further investigations will be needed to fully demonstrate it.
The dependence of the accuracy on various vegetation parameters such as the cylinder
radius or distribution function has to be studied. This may help to determine what type of
cube is needed for particular observation. The algorithm should be validated with
numerical simulation data under various noise situations. Finally, and most importantly, it

should be validated using sufficient reliable data.
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Appendix A

Positive Eigenvalues of the Measured

Covariance Matrix

In this section, we will prove all eigenvalues of a measured covariance matrix are

always non-negative. The power of the measured covariance matrix is always non-negative,

)>0. (A1)

From equation (2.10), the backscatter cross section is

o’=A"C A (A.2)

where the vector A consists of antenna polarization parameters. We can diagonalize the

covariance matrix by finding its eigenvalues and associated eigenvectors as

-Q'C,Q=C,=QC,Q"
Q°C,Q=C,=QC,Q A3)

where A, and v, are eigenvalues and associated orthonormal eigenvectors, respectively.

Note that the Q has the following characteristic.
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Q"Q=1=Q" =Q" (A.4)

We can project A into the same space of C,, usingQ.

A'=Q'A= A=QA' (A5)
By substituting (A.3), (A.4). and (A.5) into (A.2), the backscatter cross section can be

rewritten as

o =(QA") QclQ QA = ATcr A", (A6)

Since the backscatter cross section, i.e., the power, has to be positive for any A’, each

eigenvalue of a measured covariance matrix has to be positive.
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Appendix B

Eigenvalues of the General Covariance

Matrix

In this section, it is shown that the eigenvalues of the general covariance matrix in
(3.71) are not affected by mean orientation angle, i.e., rotation angle of the target about the

line of sight.

As a first step, the form of equation (3.71) is simply rewritten as

T

T,+T, N2(T,+T), T,+T,
C=T-V=[2(T,-T), 2T, J2(T, -T,) (B.1)
Tz _T7 \/E(Ts +T9) T1 _T4

where

T=la+pB+ap)=fr, T, 21, T, Jar, V2, T, V2T, Jor]. (B2

The characteristic equation becomes

1 1

det/C — Al|=-2° +% W ter f,A te f, (B.3)

where
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f,=8-2-(T,+T,)
f, =82 [(T, =T, T, + T, )+ 2{(Ts =Ty (T + T )+ (T, =T (T + T, )}
- {(Tl +T4 )(Tl _T4)+ 4T1T3 }]
f, =8 2{(T, + T (T, —T UT, =T, )+ (Ts =T T, + T, T, +T,)
~T,(T,-T, )T, +T,) - (T, - T, (T, + T, )T, - T,)
_(TG _Tg)(Ts +T9 )(Tl +T4)+T3(T1 +T4)(T1 _T4)}

(B.4)

We also know that the covariance matrix is obtained from a scattering matrix, as shown in
Chapter II.

8 G
Sy = ( j - G (B.5)

Co by

This equation is then rewritten by factoring out by.

% G
S, = b, SZ %l_bs > c,=[bic (B.6)
%

0

We are interested only in C in (B.6). Ignoring the scale factor |b0 2, the updated scattering

matrix is rewritten as

s=[ 7 B.7
where
aO CO
a=—, c=—. ,
b, b, (B.8)

From (B.3), the coefficient of each term, f;, f,, and fs, is not a function of orientation angle.
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8(K o +2K,)
[ 4(K Ly Loy +4K, NEK py +3Laugy +4K, ) ~16(L i — Ly )
+4p2(K-2ab —Lina + 4L Leao )+4q2 {(K+ab —Lgea _4Kc)2 +4(LReac ~Liese )2 }]
fy = 28K+ Lo MK iy = Lo +4K, ) + 4L = Lins
~4p*(K 3 ~ Liea +4Kc)(K—2ab ~Linay + 4Ll Lcab) (B.9)
~16P (Limac = Limbe WK e (Limac * Limoe )+ Limas (Lgeac + Lrene )}
+4p2q[(K—2ab - L?mab _4Labc Lcab XK+ab - LReab _4Kc)
+ 4K oy (Lreae + Lreve )+ Limas (Limae + Limoe M(Lreac = Lrene )]
_8q2(K+ab + Lgeas ){(K+ab ~Lgeab _4Kc)2 +4(LReac ~ Lgebe )2 }]

f, =
f, =

where,

K, =[a)" +1,
K. =[d -1
K. =,

Labc = (a + 1)C*’
Lo, = c(a* + 1),

Reab — a+ a*’ (BlO)

L

Limap =8~ a’,
Lehe =C +C,
Limbe = _(C - C*)'
Lo =acC +ca’,
L. =ac —ca’

This means that all three eigenvalues of the general covariance matrix are not a function of

the rotation angle about the line of sight.
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Appendix C

Direct Inversion of the General

Covariance Matrix

In this section, the direct inversion technique is mathematically derived and applied.

We shall assume that the observed area is covered by only a single type of scatterers
with a single scattering mechanism, so that the measured covariance matrix is expressed by

a general covariance matrix in (3.71) as

Ch =Cgn (C.1)

where C,, is a general covariance matrix, and is calculated from the following scattering

n

matrix.

agen (:gen
Sgen = b - Cg, (C.2)

gen gen

As discussed in equation (B.6) in Appendix B, the scale factor is explicitly expressed as

2

C. =b.|C (C.3)

gen

where
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(C4)
a= a'gen c= Cgen
bgen bgen
Then we can rewrite (C.1) as
o Co
Cn= b " =C(o.4.a,) . (C5)
gen

Our tentative goal is to find a way to determine four unknown parameters: the randomness

o, mean orientation angle ¢, and two elements of the simplified scattering matrix, a and c.

After determining these parameters, the scaling factor ‘b * will be considered. Note that

gen

both a and ¢ are complex numbers, so that there are 6 unknown real numbers:

. (C.6)

_ [a C} _ {Ial(ar +ia) [elle, + je)

- cl(c, + ic;) 1

where subscripts r and i are real and imaginary parts, respectively. If C/ is expressed as

! ! !
O'hnhh \/EO' v Ohhw
ro_ r ' '
Cm - \/Eo-hhhv 2O-hvhv \/Eo-hvvv (C7)
!

r* / ™
O-hhvv 2O-hvvv O-vvvv

the following known parameters are defined.
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. C*+D?
~ A’+B?
BD - AC
P = ap+BC
(ahhhv thhv) (U b — Gr::w)
= (O-hhvv O-hhvv) (C.8)

' il
(thhv + thhv )+ (O-hvvv + Oy )
(ahhhh vv)

! [l
(O-hhhv O-hhhv ) (thv - O-hvw)

V =G + 2000 + O

! _ ’ r*
W= O-hhvv 2O-hvhv + O-hhvv

To simplify the equations, the following unknown parameters are defined.

K. =[a]” +1

K . =lal” -1

K, =l*

Q=(a-1)a" -1

J=4’Q+u?

=(a+1)”

_c(a* +1)

ey =@ +2 =28,

(C.9)

=a-a = j2a

Imab
=C +Cc=2c,
—c-c")=-jzc,

Rebc —

Imbc —

L.ie
L.
L
L
L
L
L

=ac” +ca”

Re ac

L =ac —ca”

Imac

By substituting them into (3.71), we have
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@+ pp+a7)V
3K+ab + LRe ab T 4K Zﬁ(le ac le bc) K+aLb + 3I-Re ab 4Kc

a=—|- 2\/_( Imac Imbc) 2(K+ab - LReab + 4Kc) 2\/E(le ac lebc)
K+ab + 3I-Reab - 4Kc - 2\/§(le ac le bc) 3K+ab + LRe ab T 4Kc

Clo)

- 2 abc le ab
p= § 0 \/E L., [cOS2¢
Im ab \/_Labc - K—ab
Labc + Lcab) - \/E(K—ab - le ab) - 2(Labc - Lcab)
1 _ (C.10)
+— _\/E(K—ab + leab) 0 _\/E(K ab + leab) sin 2¢
2(Labc - Lcab) - \/E(K—ab - le ab) 2(Labc + Lcab)
. cos4g¢ —J2sindg  —cosdg
;7:§(K+ab—LReab—4Kc —J2sin4gp —2cos4p ~/2sin4g
—C0s4¢ J2sin 4¢ cos4g
) sindg x/§0054¢ —sin4g
+§(LReac — Loy ) V2c0s4¢  —2sindg  —+/2cosdgp
—sindg —ﬁcos4¢ sind¢
Using equations (C.8) and (C10), U, V, and W are rewritten as
U= leac - lebc
V=K +2K; : (C.11)
W = Le,,, — 2K, = 2a, —2[c[*
By defining X as
X =|a* (C.12)

Vin (C.11) becomes



V = (al? +12)+ 20 = (X +1)+ 2] .

the following expressions are then obtained.

c* = —%(x -V +1)

Since U can also be written as

U=(a-1c" -(a" -1k

two polynomials involving the complex number c are derived.

C"+— cC—
a-1 a-1
*2 U * a*_l
C —— c —
a -1 a-1

(e =ec')

2 U a*—1|c|2:o

i =0

Hence,

From these expressions, we have
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(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)



168

cab ImabU + K—ab (¢ J )}

Lo + Lo = (@a+1)c" +c(a” +1)= —é{L
(C.19)

Lo — Lo =(a+2)c" —cla’ +1)=é{|<_abu + Ly (FI)

abc ¢

Equations (C.8) and (C.10) provide the following expressions regarding the phase 24.

L..—L._ )cos2¢+ pL, . Sin2¢4=A
p( abc cab) ¢ p Imab ¢ (C20)

pLImab Cos 2¢_ p(Labc - Lcab )Sin 2¢ =B
L., +L.,)cos2¢—pK_, sin2¢=C
p( abc cab) ¢ p —ab - ¢ (CZl)
pK_,, cos2¢+ p(L,, + L, )sin2¢ =D
Considering equation (C.19) and
K%, =(X -1)°
2 b ( 2 ) 2 ) (C.22)
L2, =—4a’=X2-2W +V +1)X +(W +V -1)* (. (C.15))
equation (C.20) provides two parameters.
L...A-(L, —L_)B
tan 2¢ — Im ab ( abc cab )
(Labc - Lcab )A+ leabB
(C.23)

o A? + B?
Lfmab + (Labc B Lcab )2

Equation (C.21) also provides the same parameters in different forms.

B K—abC + (Labc + Lcab )D
(Labc + Lcab )C + K—ab D
C.24
\/ C?+D? (C24)
(

L + Lcab )2 + K—Zab

abc

tan 2¢ =

Note that p is always real, as in Figure 3.20, and varies between 0 and 2. Since equations

(C.23) and (C.24) have to be equal, the following two important expressions are obtained.
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Linas A= (Lype = Loy B —K_,,C + (Lo + Loy )D
t 2 — Imab abc cab — ab abc cab
an 2¢ (Labc — L )A+ L man B (|_ + Lcab)C +K_,D (C.25)

abc

p:\/ A? + B? :\/ C2+D?
Lfmab + (Labc B Lcab )2 (Labc + Lcab )2 + K—Zab (C26)
= (L + Lcab )2 + K—zab = a{"fmab + (Labc - Lcab )2}

abc
Equation (C.26) is an 8™-order polynomial in X, so there are 8 possible values of X. For
each solution to equation (C.26), we can fix unknown parameters in (C.5) as follows. Using
(C.25) with (C.19), the imaginary part of a is expressed as a function of +J .

ai (i J): leab _ IB(K—Zab B L?mabbu _(K—zab + L?mab)‘J '(i ‘])

— = . C.27
2j 2jK Q7 +U?+37) (c.27)

Given X and (C.15), the complex number a is
a=a, + ja,(+J). (C.28)

The sign of J can be determined by comparing each of [a(+ J)* and [a(~ J) with (C.12).

Once the sign is determined, the complex number a is fixed. We then move on to find c.

From equation (C.9), we can obtain the following expressions.

LReac = aC* + Ca* = (a + a*kr - J(a - a* ):i = Cr LReab - jCi leab
= LR*eac - I:Rebc = Crl‘Reab _. jCi le*ab - 2Cr = Cr(LR?ab - 2)_ jCi leab (C29)
leac =ac —ca = (a_ a }:r - J(a+ a ki = Cr leab - JCi LReab
= leac - lebc = CrLImab - jCi (LReab - 2): U
(C.18) allows us to calculate
Lreee — Luene = (ac”+ca’)=(c+c")=(a" ~1k+(a-1)c" =+J. (C.30)

From (C.29) and (C.30), the following two equations involving c are obtained.
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Cr(LReab _2)_ jC L =1J

i —Ilmab

. C.31
Cr leab - JCi(LReab _2)=U ( )
Now we can solve them for ¢ as
c=c, + C
c = UI‘Imab + (LReab B 2)(1 ‘])
r L?mab - (LReab - 2)2 (C32)
C. = —i U (LReab B 2)+ leab(-T_ ‘])

- L2 (LReab - 2)2

Imab

Note that we already determined the sign of J.

Using the obtained values of a and c, the mean orientation angle ¢ and the coefficient p can
be calculated from (C.23) and are denoted tan 2¢, and p,. Equation (C.24) also provides a
solution for ¢ and p denoted tan 2¢, and p,. Finally, we have to choose a best parameter

set from the eight possible combinations.

s =% © i=1..8
i_[c. 1} oo Q=1 (C.33)

There are several conditions to achieve this as follows. Several combinations of parameters
can be eliminated because they violate some constraints on the parameters. For example, if
the calculated orientation angle ¢ is a complex number, the candidate parameter set should

be eliminated.

Ideally, the two methods of calculating tan2¢and p should be consistent for a candidate

parameter set yielding

tan 2¢, = tan 24,

C.34
P =P ( )

However, in practice this will not be the case. Thus we define two indices as follows.
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Atan2¢ = /(tan 24, — tan 2¢, ) (C.35)

Ap =~/(p; - p.)’
The parameter set which minimizes these indices should be chosen as the optimal solution.
In Appendix B, the characteristic equation of (C.5) is derived in (B.3). This provides
another criterion for choosing the optimal parameter set. Specifically, the correct parameter
set should make the characteristic equation zero. This implies the following evaluation

function, which should be minimized to select the optimal parameter set.

3 1 1 1 ?
AL = \/Z{— /,Li3 +§' fl/liz +8—2' f2/1i +8—3' f3} (C36)

i=1
Unfortunately, these mathematical conditions may not be enough to uniquely
determine the parameter set in practice. In this case, additional physical conditions should
be used. For example, if it is already known that the observed area is covered by cylinder-

like scatterers, the scattering matrix should have the form

S= a0 a<lc=0 C.37
o1 T (C37)
Or, as shown in (3.69),
S= 00 a=0,c=0 C.38
lo 1 CoT (C.38)

As an application of this direct inversion theory, the following two-component
decomposition technique is proposed. Suppose we add another scatterer to the observation

described in (C.3), then we have

c =b IFc+c

m

b

other * (C39)

gen
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There are 5 unknown parameters to be fixed as

h

gen

28_ a C
S=l 1,0,¢. (C.40)

2, the rest of the parameters are immediately found using the direct

By determining ‘bgen

inversion technique. A similar approach to ANNED can be used, as shown in Figure C.1.

[ START ’
'
| i=0 |
I
— i=i+1 |
!

Calculate residue

=C, —|bl,

: 2 .
C! C'

other

<>

Find the best parameter set

|£T1"rl\]l, P(Cother )

!
)

Figure C.1: Flowchart of the two-component decomposition using the direct inversion
technique of the general covariance matrix

An algorithm is applied to the Black Forest image which was used in Chapter 3. Figure
C.2 displays pixels at which the algorithm cannot find solution. Since the generalized
volume scattering component is valid only for a cloud of symmetrical scatterers, the model

has no solution when the area is dominated by other scatterers such as bare surface.
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Figure C.2: Pixels with no solution are displayed at the three wavelengths: C-band (left),
L-band (center), and P-band (right). Black: no solution, white: with solution.
The results are obtained from the Black Forest image used in Chapter 3.

It is clear that the pixels without solution correspond to cropland, and the contrast of
this area is increased as the wavelength increases. This tells us that the most of the pixels

without solution are found at the places where the ground scattering is dominant.

Figures C.3, C.4, and C.5 show maps of the mean orientation angle and randomness at

C-band, L-band, and P-band, respectively.
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Figure C.3: Maps of the mean orientation angle (left) and randomness (right) using the
two component decomposition model for the C-band Black Forest image
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Figure C.4: Maps of mean orientation angle (left) and randomness (right) the two
component decomposition model for the L-band Black Forest image
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Figure C.5: Maps of mean orientation angle (left) and randomness (right) the two
component decomposition model for the P-band Black Forest image

Comparing these images with the results in Chapter 3 using ANNED, the orientation
angle map shows more variation, and the randomness map shows similar texture in the
forested area. We do not discuss these results in this thesis, and further investigation is

needed to physically interpret the results obtained from this purely mathematical algorithm.

To avoid pixels without solution, one may add another component to (C.39) as

“c,+-pnlc,+C (C.41)

2
_ |kt 2
Cm - ‘bgen Cl + ‘bgen other *

As you see, the ANNED model in (3.74) is just one specific form of (C.41).
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Appendix D

The Appearance of a Cloud of
Randomly Oriented Dipoles

In this section, we will discuss how randomly oriented thin cylinders on the ground

appear at the receiver.

The geometry of a single oriented dipole on the ground and a definition of this

orientation angle at the receiver are shown in Figure D.1.

Receiver
Vv Sy Z
(04 t S h\A‘

Ground

Figure D.1: Geometry of an oriented dipole on the ground and a definition of the mean
orientation angle at the receiver

The « can be interpreted as the rotation angle of the target about the line of sight. From the

geometry, the orientation angle at the receiver is mathematically expressed as
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a=tan (D.1)
v
where h and v are given by
n sing, 0 —cosé \—cosg, —sing. O
hij=| 0 1 0 sing —cosg. O
v cosd. 0 siné 0 0 1
. (D.2)
siny coso
r=|sinysino
cosy

The orientation angle at the receiver depends on the incidence angle. From these
expressions, we can numerically generate a cloud of dipoles with a specific distribution on
the ground oground, and then project them to the polarimetric plane at the receiver. The
randomness at the receiver oy can be obtained by examining the standard deviation of the
projected cylinders in terms of orientation angle «. The results, with various incidence

angles, are shown in Figure D.2, with the mean orientation angle fixed at zero (y,=0).

o

ground

Figure D.2: Randomness at the receiver corresponding to that on the ground with
various incidence angles
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