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Abstract

The best way to study dynamic fluctuations in single molecules or nanoparticles is to look at

only one particle at a time, and to look for as long as possible. Brownian motion makes this

difficult, as molecules move along random trajectories that carry them out of any fixed field

of view. We developed an instrument that tracks the Brownian motion of single fluorescent

molecules in three dimensions and in real-time while measuring fluorescence with nanosecond

time resolution and single-photon sensitivity. The apparatus increases observation times by

approximately three orders of magnitude while improving data-collecting efficiency by locking

tracked objects to a high-intensity region of the excitation laser.

As a first application of our technique, we tracked and studied the fluorescence statistics

of semiconductor quantum dots. Our measurements were well resolved at 10ns correlation

times, allowing measurement of photon anti-bunching on single particles in solution for the

first time. We observed variations of (34± 16)% in the fluorescence lifetimes and (23± 18)% in

the absorption cross-sections within an aqueous quantum dot sample, confirming that these

variations are real, not artifacts of the immobilization methods previously used to study them.

Additionally, we studied quantum dot fluorescence intermittency and its dependence on 2-

mercaptoethanol, finding evidence that the chemical suppresses blinking on short time-scales

(< 1s) by reducing the lifetime of the dark state.

Finally, we studied the translational and intramolecular Brownian motion of λ-phage DNA

molecules. Our apparatus decouples these motions almost completely, and yielded a transla-

tional diffusion coefficient estimate D = (0.71± 0.05)µm2/s lying between previous measure-

ments for this molecule under identical solution conditions but with less precise techniques.

Our measurements show clear evidence of intramolecular motion of the polymer chain in the

form of statistical correlations on time-scales up to 1s, but we have not yet been able to deter-

mine the influence of solvent interactions on these dynamics.
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Chapter 1

Introduction

We are only beginning to understand the degree to which biology is influenced by consequences

of the size of its basic building blocks. Nucleic acids and proteins are special in that they are

big, but not too big, relative to the size of the water molecules that surround them. Under

constant bombardment by surrounding fluid, biological molecules bend, stretch, vibrate, fold

and unfold, break apart and recombine; these dynamics almost certainly influence the way

in which they interact with each other. Small molecules do not behave like this because the

stiffness of their chemical bonds prevents such structural fluctuations; nor do large objects,

because viscous drag quickly dampens any acceleration due to small collisional forces. These

types of motions are uniquely the domain of large molecules, most often biological molecules,

and their exact characteristics and the extent of their consequences are still widely unknown.

Dynamic fluctuations in the shapes of molecules are hard to detect because no two molecules

experience the same sequence of collisions, so no two molecules exhibit the same fluctuations.

Any attempt to study such fluctuations among large numbers of molecules will fail, because

the motion of each molecule is drowned out by the motion of all the others. For most of

the history of science, we have therefore been limited to the measurement of the average,

equilibrium properties of microscopic biological systems.

The first successful measurement of nonequilibrium molecular dynamics occurred in 1972[1].

Incredible technological development enabled the detection of single fluorescent molecules in

solution in 1990[2] and single-molecule detection has since exploded in popularity, with new

applications and techniques under constant development. Single-molecule measurements have

revealed, for example, dynamic variations in the shapes and orientations of proteins, both spon-

taneously and as a result of interactions with small molecules[3]; directed motion of small “mo-

tor” proteins along larger ones[4, 5]; nanosecond-scale reconfiguration dynamics in unfolded

proteins[6]; and proteins that undergo entire folding transitions on microsecond time-scales[7].

The most popular methods for single-molecule detection are based on laser-induced flu-

orescence; a basic schematic of a typical experiment is shown in Fig. 1.1. A laser beam is
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Figure 1.1: Example single-molecule fluorescence experiment. The pinhole reduces background
from out-of-focus fluorescence emitters.

focused by a high power microscope objective to a small, intense spot within a liquid sample.

Fluorescent molecules — or molecules labeled by a fluorescent probe — drift into and out of

the beam as they move by Brownian motion, the translational motion due to collisions with

solvent molecules. The fluorescence emitted by the molecules is collected by the objective and

focused onto a sensitive detector. The resulting signal is either a high time-resolution sequence

of fluorescence bursts, like that illustrated in Fig. 1.2, or a lower time-resolution but spatially

resolved image of the molecule and its surroundings.

Single-molecule fluorescence measurements have some limitations that are apparent just

from the appearance of the data in Fig. 1.2. The duration of each burst is determined by the

molecule’s motion, and typically limited to less than 10ms (longer for imaging methods, but still

limited). This places restrictions on the time-scales that can be probed using these methods.

Many biological molecules have interesting dynamics that are on time-scales as long as or

longer than this, and therefore that cannot be resolved by these measurements. In addition,

we only collect a finite number of photons from each molecule, and this number determines

how well the molecule’s dynamics can be resolved: the fewer pairs of photons are detected

with time-spacing ∆t, the larger the measurement uncertainty becomes on that time-scale.

This fundamental type of noise arises any time a process is described by a continuous rate

but mediated by discrete events[8, e.g.]. We could try to reduce this noise by increasing the

intensity of the excitation laser, but dye saturation and bleaching will always limit our ability

to do this.

In order to make high time-resolution or long-duration measurements on a single molecule,

we must look at it for a long period of time. The simplest way to do this is by attaching it to

something that prevents it from moving out of the focus of the microscope. However, if our goal
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Figure 1.2: Example single-molecule fluorescence signal. Molecules emit bursts as they drift
through the focus of the excitation laser.

is to understand biology then we should be concerned about the influence of the attachment

surface on the molecule stuck to it. At the very least we expect it to perturb the molecule’s

structure by concentrating at the point of attachment all of the forces incident on the molecule

due to solvent collisions. The chemistry of the attachment surface can influence the molecule

as well: glass surfaces, for example, often carry an electrical charge that will affect the molecule

through electrostatic forces.

Over the last few years, several groups[9–15] have begun to develop a new technology for

extending single-molecule observation times using feedback control. These approaches allow

the molecule to move freely in solution while active hardware moves some combination of

the microscope optics or sample stage in order to keep the molecule in focus at all times.

These techniques in principle would allow for the completely passive observation of individual

molecules often for times that are orders of magnitude longer than they would be in the absence

of feedback. This thesis documents my work, primarily over the past 18 months, in developing

what is arguably the most capable of these techniques yet developed.

1.1 Personal history

My path to Caltech resembled the random trajectories of the molecules described in this thesis.

As an undergraduate I had difficulty focusing my ambition, and this resulted in having two

major subjects, a minor subject, complete pre-medical preparation and in applying to four

different types of graduate programs. I came to Caltech less than two months after deciding

that I did not want to be an academic physician, and I did not have any concrete plans for what
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I would do once I arrived.

I knew when I committed to Caltech that I would be a part of a very young Bioengineering

program, but I failed to fully anticipate the extent to which this would affect me. Fortunately I

had a good group of friends in my classmates, and by supporting each other we made it through

the rough times and — I hope — helped improve the program for those that succeeded us.

I began doing research in my second term, when I worked with Demetri Psaltis on a project

comparing the imaging properties of insect-inspired compound lens systems with more tradi-

tional simple lens systems. My goal in this project was to determine applications for which

a synthetic version of such an imaging system might be particularly useful. Over the course

of the term I — with the help of insightful discussions with Michael Dickinson at Caltech and

Simon Laughlin at the University of Cambridge — came to the conclusion that compound eyes

did not evolve for their imaging properties, and that a compound lens system would likely only

be favored in applications in which imaging performance was not the primary design parame-

ter. Demetri’s guidance on this project kept me excited about doing research, and the project

itself sparked an early interest in optics that would develop through the remainder of my time

in grad school.

I attribute my meeting of Hideo Mabuchi to serendipity alone. In my first term at Caltech I

registered for a course in control theory, a subject I had never previously studied. One com-

ponent of that course was a weekly guest lecture on applications of control theory in Caltech

labs. I did not attend those lectures regularly, but happened to attend one that Hideo gave

about laser stabilization, Michael Armen’s adaptive homodyne experiment and the early stages

of John Stockton’s magnetometry experiment. I thought it was interesting, and a few months

later I found myself emailing Hideo about doing a research rotation in his lab.

Hideo answered my email almost immediately, we met, and he suggested I talk to Andrew

Berglund about some of the recursive estimation algorithms he had been working on for his

FRET microscopy experiment. I began working with Andy on a statistical method for identifying

molecules based on individual fluorescence bursts in single-molecule experiments, and over the

course of that term I wrote code to simulate fluorescence data and implement the identification

algorithm. I officially joined Hideo’s lab over the summer, and we submitted a paper on my

work in December 2003[16].

Over the next year, I bounced between a few different projects both in and out of the lab.

Early on I taught myself to build basic feedback electronics, with the goal of temperature-

stabilizing Andy’s microscope. The stage that I built worked fairly well, but we never ended up

using it because the timing did not work out: I had more theoretical projects I was interested

in, and Andy began to redesign the apparatus for particle tracking experiments. I spent some

time studying diffusion-limited chemical kinetics, focusing in particular on ideas born from
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discussions with Hideo, Andy and Igor Mezic at UCSB about the relationship between mixing

and reaction statistics in extremely dilute solutions. This work, combined with some comments

from a referee of my first paper, motivated me to write a paper about the effects of counting

noise on estimates of the concentration of dilute solutions.

While working on concentration estimation, I took a bit of a detour to work with John Au on

his application of convex optimization techniques to the design of photonic bandgap crystal

structures. I had studied convex optimization during my first year at Caltech, and I was glad

to be able to revisit the subject with a real application to work on. For a few months, John and

I worked in parallel: he developed the physical theory and I wrote optimization software that

was custom-tailored to his problem. In the end my code became a fairly robust interior-point

solver, we both learned a lot about optimization, and John went on to develop an iterative

method for designing photonic crystal structures with optical properties that are potentially

useful for atomic physics experiments.

I finished my candidacy exam in November 2005, proposing to apply my identification and

concentration estimation algorithms to problems in molecular biophysics. Almost immediately

afterward, I began working on something very different and never turned back. As an apology

to my candidacy committee, this was truly not my intention — I distinctly remember a conver-

sation with Megan Eckart about the fluorescence microscopy experiment in which she asked

why we needed so many optics and I replied that those were for the tracking apparatus, and

that I “had no interest” in that. Andy and I began working together under the premise that

he would teach me to use his microscope so that I could work on my proposed experiments

while he was working on the tracking apparatus. Literally within hours we had taken the entire

apparatus apart, and so began my work on particle tracking.

1.2 Experimental history

The apparatus described in this thesis is the third (or fourth, depending on what counts) gen-

eration of the fluorescence microscopy experiment in Hideo Mabuchi’s lab at Caltech (now

Stanford University). The original apparatus was a standard single-molecule fluorescence mi-

croscope built by Andrew Berglund to study fast dynamics of resonant energy transfer between

fluorescent dyes[17]. Motivated by a closed-loop tracking proposal by Jörg Enderlein[9, 10],

Andy began modifying his microscope to enable feedback tracking of fluorescent particles late

in 2003[12]. Over the years that followed, he developed a theoretical framework for describing

the statistics and limitations of feedback particle tracking systems and demonstrated his first

experimental success in a paper in 2005[18], in which he tracked 60nm fluorescent spheres in

solution and accurately characterized the tracking statistics that he measured.



6

I began working on the apparatus with Andy in late 2005 and we quickly realized that it

needed to be rebuilt as a dedicated tracking microscope in order to optimize its performance.

Over the next 6 months, through improvements of the mechanical and electronic components,

beam and detector alignment, background noise rejection, beam intensity control and general

experimental technique, we developed an apparatus that was capable of tracking 60nm and

210nm fluorescent nanospheres in two dimensions with accuracy limited almost entirely by

photon-counting noise (with a signal size of about 4500 photons/sec)[19]. With our experiments

complete, Andy began writing his thesis while I set out to completely rebuild the apparatus once

again.

I began constructing an apparatus for tracking single fluorescent particles in three dimen-

sions during the summer of 2006, basing it on Hideo’s ideas for using a pair of laser beams

to track particles along the optic axis of the microscope. That apparatus began operating in

November 2006, and with it I demonstrated tracking of individual semiconductor quantum dots

freely-diffusing in water[20]. I was able to resolve fluorescence anti-bunching on single quantum

dots in solution, allowing me to characterize heterogeneity in quantum dot fluorescence statis-

tics as well as fluorescence intermittency on time-scales as long as 1s. These measurements

highlighted the importance of tracking techniques for making new types of measurements on

single fluorescent objects, and also represented a technological advance in that no comparable

technique had yet tracked objects that moved this quickly.

More recently, I have focused on tracking single DNA molecules for the evaluation of theo-

retical predictions for the internal Brownian dynamics of polymers in solution. While several

measurements of this type have been made over the past few years[21–25], it is my view that

none combines sufficient theoretical rigor with experimental data that can provide conclusive

arguments for or against particular predictions. This is the motivation for my work in this area.

1.3 Organization of the thesis

I have made an effort to make this thesis entirely self-contained, which applies primarily to

its theoretical components. In the first two chapters, this means including detailed reviews

of relevant work in particle-tracking experiments before introducing my own work that is ei-

ther specifically relevant to tracking in three dimensions or just an aspect of particle tracking

dynamics that I find interesting. The last two chapters deal with applications of the tracking

apparatus that themselves require a bit of theory, and those theories are reviewed with a level

of detail dictated by the applications.

Chapter 2 provides the basic ideas behind the most important part of the apparatus —

the method for sensing the position of fluorescent particles in three dimensions. The chapter
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begins with a review of the theory behind two-dimensional localization, most of which was

developed by Andy Berglund. The chapter continues by extending the discussion to three-

dimensional localization, in which I derive the basic properties of the localization method that

we developed.

Chapter 3 reviews the dynamics of the tracking system. I discuss the feedback loop that

the tracking system is based on, and review the linearized theory developed by Andy Berglund

for describing the statistics of the tracking system in a “good” tracking limit. I conclude the

chapter by deriving some of consequences of position estimation nonlinearity on the tracking

statistics — in particular, I find nearly exact expressions for the statistics of particle escape

from a tracking system by using a first-passage time approach.

Chapter 4 begins with a basic review of Fluorescence Correlation Spectroscopy (FCS)[1, 26],

a single-molecule technique that we apply to our measured fluorescence signals. Next, I derive

in a very general way the statistics of FCS for a tracked particle with internal degrees of transla-

tional freedom in preparation for the study of the intramolecular dynamics of DNA molecules.

Chapter 5 describes the experimental apparatus in detail.

Chapter 6 discusses the application of the tracking apparatus to the study of semiconduc-

tor quantum dots. The chapter begins with a background discussion on quantum dots, and

develops a theoretical model for describing the basic properties of their fluorescence statistics.

Next I present my measurements of photon anti-bunching in freely-diffusing quantum dots,

and a detailed analysis of those measurements. I conclude with a basic theoretical description

of quantum dot blinking statistics, and present our measurements in this area.

Chapter 7 describes the application of the apparatus to the study of the dynamics of the

motion of λ-phage DNA. This chapter begins with a detailed discussion of the basic polymer

dynamics theories that are necessary for understanding some of the arguments, mostly against

the validity of certain approaches taken in the literature, later in the chapter. It concludes with

a set of measurements on both the translational and intramolecular dynamics of the DNA

molecules. This work remains ongoing.

Chapter 8 is a brief conclusion and discussion.

I include the two papers that I wrote before starting work on the tracking experiments as

Appendices A and B. The former describes an approach by which the fluorescence signal from

single-molecule experiments is analyzed in the time domain using a recursive Bayesian estima-

tor, and was published in 2004[16]. The latter is a detailed study of the statistics of concentra-

tion fluctuations in the context of concentration measurement via single-molecule detection. In

it I derive an information bound on the uncertainty in concentration estimates that is primarily

applicable to single-molecule detection experiments, though holds true for all concentration

measurements. Next I develop a time-domain concentration estimation technique based on the
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statistics of the waiting times between single-molecule detections, and evaluate its performance

on simulated data and in comparison to alternative methods. It will be published eventually,

but likely in a less-detailed form.

1.4 Publications resulting from graduate work

While at Caltech my work resulted, at least in part, in several publications that have either

appeared in peer-reviewed journals or are almost ready to be submitted.

1. K. McHale, A. J. Berglund and H. Mabuchi. “Bayesian estimation for species identification

in single-molecule fluorescence spectroscopy.” Biophys. J. 86, 3409 (2004).

2. K. McHale, A. J. Berglund and H. Mabuchi. “Near-optimal dilute concentration estimation

via single-molecule detection.” In preparation.

3. J. K. Au, K. McHale and H. Mabuchi. “Inverse problem based design of photonic crystal

devices — Part II.” In preparation.

4. A. J. Berglund, K. McHale and H. Mabuchi. “Feedback localization of fluorescent particles

near the optical shot-noise limit.” Opt. Lett. 32, 145 (2007).

5. A. J. Berglund, K. McHale and H. Mabuchi. “Fluctuations in closed-loop fluorescent particle

tracking.” Opt. Express 15, 7752 (2007).

6. K. McHale, A. J. Berglund and H. Mabuchi. “Quantum dot photon statistics measured by

three-dimensional particle tracking.” Nano Lett. 7, 3535 (2007).

In addition, we filed for a provisional United States patent for the three-dimensional tracking

apparatus.
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Chapter 2

Three-dimensional localization of a
fluorescent particle

Both the most difficult and the most important task in closed-loop particle tracking is the esti-

mation of the position of the particle being tracked. Tracking errors must be sensed accurately

and quickly in order for the feedback system to correct them before the particle escapes. Any

noise intrinsic to the localization method will limit its accuracy; any latency in the localiza-

tion estimate will limit the tracking bandwidth. Furthermore, the sensitivity of the localization

method will often determine the amount of time for which particles can be tracked: the more

photons are needed for localization, the faster the tracked particle bleaches and the sooner it

becomes invisible to the apparatus.

We begin this chapter with a discussion of the symmetry-breaking requirements necessary

for measuring three-dimensional position estimates for a single fluorescent particle, and we

discuss several methods that involve symmetry-breaking in the fluorescence detector. We next

introduce temporal symmetry breaking using spatial beam modulation, discussing the method

used by several groups, including ours, for two-dimensional localization and tracking. Finally,

we present the method that we have developed for three-dimensional localization and conclude

with a derivation of the localization noise statistics intrinsic to this method.

2.1 Beam symmetry and DC symmetry breaking

Traditional single-molecule fluorescence microscopes, such as that depicted in Fig. 1.1, employ

non-imaging detectors that do not provide enough information to determine the positions of

detected particles because both the excitation laser beam and the collection and detection

optics are highly symmetric. A focused TEM00 Gaussian laser beam has the intensity profile[27]

I(x,y, z) = 2P
πw2(z)

exp

[
−2
x2 +y2

w2(z)

]
, (2.1)
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Figure 2.1: Contour plot of a diffraction-limited 532nm Gaussian beam.

where P is the total optical power in the beam, z is the axis of beam propagation, the z−dependent

waist is given by

w2(z) = w2
0

1+
(
zλ
πw2

0

)2
 , (2.2)

and we have allowed the beam centroid to lie at the coordinate origin. We sometimes define

the Rayleigh range zR = πw2
0/λ for notational simplicity in later sections. Figure 2.1 shows a

cross-section of this profile for a beam with λ = 532nm that is focused to its diffraction limit

(w0 = λ/2). The consequences of the beam symmetry, as it relates to tracking, are obvious

from the contour plot: because the only measurement available to us is the fluorescence rate,

we cannot distinguish between any points that lie on the same contour surface. In order to

track, something must be done to break this symmetry.

Symmetry-breaking approaches tend to fall into two categories: either the symmetry of the

beam is broken while the detection optics are unchanged, or vice-versa. Outside of our group,

most methods rely on breaking symmetry in the detection optics using imaging detectors,

such as quadrant photodiodes or charge-coupled device (CCD) cameras. These detectors have

good two-dimensional spatial resolution (along the x and y axes) and have been used for

localization in several closed-loop particle tracking experiments[13–15, 28–31]. However, no

optical detector technologies offer three-dimensional position sensitivity, so additional work

is necessary to localize particles in three dimensions.

One way to determine the z position of a tracked particle is to use a cylindrical lens to

create an optical aberration in which the fluorescence from a point emitter creates an elliptical



11

image, and the relationship between the sizes of the ellipse axes is determined by the particle’s

displacement from the focal plane of the laser beam[32]. A CCD records images of the fluores-

cence, and computer software computes position estimates in real time based on the shape of

the fluorescence ellipse. A second method tracks the particle along the x and y axes using a

quadrant detector and locks the particle’s z position in a plane either above or below the xy

plane. The combination of the laser beam’s divergence and the decaying detection efficiency

along the z axis induced by the use of a confocal pinhole creates a steep enough intensity gra-

dient to estimate the particle’s position directly from the detected fluorescence intensity: if the

intensity is too high (low), the tracking system should move the particle further from (closer

to) the beam centroid[15, 31]. These approaches have been used to track fluorescent particles

in viscous solutions, with diffusion coefficients as high as 0.6µm2/s, roughly corresponding to

a 700nm diameter sphere in water.

The localization techniques described in this section all encode position information in

low-frequency components of the fluorescence — either as the size of the differential signal

between pixels in an imaging detector or simply as the absolute fluorescence intensity. Such

position estimates are subject to systematic low-frequency noise sources that limit their track-

ing fidelity. The sensitive photodetectors necessary for detecting single molecules will always

detect a background signal from scattering and auto-fluorescence in the glass coverslides, am-

bient scattered laser light, room lighting in the laboratory, power LEDs on equipment, etc. Any

fluctuations in the size of these background signals — due to, for example, spatially nonuni-

form impurities in coverslides or 60Hz noise from AC power lines — feed into the position

estimates and cause tracking errors. Even more importantly, any internal dynamics of the

particles being tracked — blinking of dyes or quantum dots, or conformational motion of a

polymer, for example — also couple into the localization estimates. Imaging methods tend to

be less sensitive to these types of noise than intensity-based methods because they are bal-

anced : such noise is correlated across all pixels on the detector, but only differential signals

appear in the position estimates. This may explain why two-dimensional tracking methods us-

ing imaging detectors have greatly outperformed three-dimensional methods that incorporate

intensity-based z localization[30, 31]. However, no detector is perfectly balanced and even the

detectors themselves, in the absence of incident light, produce low-frequency noise that can

have a significant impact on the localization signals. For more information on the ubiquity of

low-frequency noise, see [33, 34].

A final commonality among the localization methods described in this section is the high

cost and complexity involved in their implementation. An electron-multiplying CCD camera can

cost as much as $40,000, and five avalanche photodiode modules, each costing $8000, were

needed for tracking based on an axial intensity gradient[31]. In the next section we transition to
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Figure 2.2: Beam rotation and resulting frequency modulation of the fluorescence intensity.

breaking the symmetry of the excitation beam while using a very simple detector arrangement.

This method is both insensitive to low-frequency noise and much less expensive.

2.2 Particle localization in two dimensions via spatial beam mod-

ulation

In 2000, Jörg Enderlein proposed using a laser beam, deflected rapidly in a circular orbit, for

the two-dimensional localization of single fluorescent particles[9, 10]. The idea is actually quite

simple: the fluorescence is brightest whenever the beam is closest to the particle, and dimmest

whenever the beam is furthest away. The resulting fluorescence intensity varies sinusoidally at

the rotation frequency; its amplitude is proportional to the particle’s distance from the rotation

axis, and its phase relative to the circular deflection is precisely the angle corresponding to

the particle’s position in polar coordinates. By determining the magnitude and phase of the

oscillating fluorescence signal, we can derive two-dimensional position estimates. Figure 2.2

illustrates this approach.

The first experimental realization of this idea was made by Enrico Gratton’s group[11, 35],

and Andy Berglund in our group followed suit shortly afterward[18]. Andy followed his exper-

imental work with theoretical work describing localization noise and tracking limits [36]. This

section serves as a simplified review of that work, in preparation for our discussion in the next

section of the three-dimensional localization method that we have developed. The calculations

in that section are essentially the same as in this, though their details are complicated by the

additional beam modulation necessary for making three-dimensional position estimates.
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2.2.1 Position-dependent fluorescence rate modulation

As illustrated in Fig. 2.2, we let xs(t) be the position of the tracking stage and xp(t) be the

position of the tracked particle at time t. For a Gaussian laser beam, the fluorescence intensity

depends only on the relative coordinate e(t) = xp(t)−xs(t). If the beam is rotating at frequency

ωxy with rotation radius r , and we define the focused waist w(0) = w0, we calculate the

fluorescence intensity from Eq. 2.1:

Γ(e, t) = χI(e, t) = Γ0 exp

{
− 2

w2
0

[
(ex(t)− r cosωxyt)2 + (ey(t)− r sinωxyt)2

]}
, (2.3)

where χ is the fluorescence scattering coefficient of the particle and Γ0 = 2Pχ/πw2
0 is the

fluorescence intensity of a particle located at the origin. We can express this simply in polar

coordinates as

Γ(e, t) = Γ0 exp

{
− 2

w2
0

[
ρ2 + r 2 − 2rρ cos(ωxyt −φ)

]}
, (2.4)

where, as usual, ρ ≡ ‖e‖ and φ ≡ tan−1[ey/ex].

Equation 2.4 gives us the quantitative form of the intuitive fluorescence rate modulation

that we described earlier and illustrated in Figure 2.2. The size of the oscillating term in the

exponent is proportional to ρ, and φ is exactly the phase angle of the oscillation. Before we

try to make quantitative sense out of it, however, we first discuss the very general problem

of demodulation of AC signals. This topic deserves its own sub-section because it is very

important to the functioning of our apparatus.

2.2.2 Lock-in detection: demodulation of AC signals

In the previous section we derived Eq. 2.4, which we know contains information describing the

two-dimensional position xp in the magnitude and phase of its ωxy oscillation. The question

now is how to extract that information efficiently. Here we solve the general problem, where

our signal consists of a superposition of N sinusoidal terms at distinct frequencies and we

must measure the magnitude and phase of one of them. This procedure is referred to as

phase-sensitive or lock-in detection, and is exactly how laboratory lock-in amplifiers work.

Specifically, if u(t) is a signal that can be written as a finite sum of sine waves,

u(t) =
N∑
n=0

an cos (ωnt −φn) , (2.5)

then we can extract the amplitude aj and phase φj of any frequency component ωj by multi-
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plying by a sine wave with frequency ωj and averaging over bandwidth B:

v(B) = AVB
∫ 1/B

0
dt cos

(
ωjt

)
u(t)

= AVB
2

∫ 1/B

0
dt

N∑
n=0

an
{
cos

[(
ωn −ωj

)
t −φn

]
+ cos

[(
ωn +ωj

)
t −φn

]}
, (2.6)

where AV is a gain that translates from the signal’s units (Volts) to the units of v .

The frequency-difference term for which ωn = ωj has no t dependence and contributes

a value of AVaj cos(φj)/2 to the integral. For other frequencies ωn, if |ωn −ωj|/B � 2π

then the cosine terms oscillate very quickly and their contribution to the average scales as

B/|ωn −ωj|. Any reasonable choice of B will ensure that this is always true for the terms

containing ωn +ωj , so those terms average out of the calculation; furthermore, we can make

the contribution due to the ωn terms arbitrarily small simply by making B smaller, and this

has no impact on our measurement of the fixed value φj . In practical applications such as

our tracking experiment, the information encoded by φj fluctuates fairly rapidly and these

fluctuations serve, in effect, to broaden the linewidth of the ωj frequency component of the

signal. If B is set too small relative to this broadened linewidth these fluctuations will also

average out of the integral.

The procedure that we have just described is useful when only one of aj and φj contains

information that we need to recover, because it is impossible to extract both terms simultane-

ously from the average

v(B) ≈ AVaj
2

cos(φj). (2.7)

This is called single-phase detection because it returns only the cosine quadrature of φj . For

our tracking application, information is simultaneously encoded in both aj andφj , so we must

perform lock-in detection on both quadratures (dual-phase detection) using

v(B) = AVB
2

∫ 1/B

0
dt e−iωjtu(t) ≈ AVaj

2
eiφj . (2.8)

This average is sufficient to independently recover both aj and φj .

The most important result of this section is the fact that we can extract information from a

single frequency out of a superposition of an any number of frequencies, with contamination

from other frequencies scaling as B/|ωn −ωj|. In our tracking experiment, the amount of

noise present in the fluorescence signal at exactly the rotation frequencyωxy (which is typically

several tens of kHz) is generally very small. Contributions to our estimate due to low-frequency

noise sources discussed in Section 2.1 are attenuated by a factor of B/ωxy , which is very small

as we have already discussed. This implies that we can make position estimates that are almost
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completely free of systematic noise (although laser intensity noise appears in the aj term, as we

will discuss in the next section). Furthermore, we may encode additional information — such

as the z position of the particle for three-dimensional tracking — at other high frequencies,

and there will be hardly any cross-talk between the demodulated signals if those frequencies

are sufficiently separated from ωxy .

2.2.3 The two-dimensional localization signal

Before actually calculating what the localization signal is, we should consider what we want it

to be. The output of our lock-in amplifiers will consist of a separate analog electronic signal

for each Cartesian axis. Those signals should equal zero when the particle is on the axis of the

beam rotation, and should vary linearly with the particle’s distance from the origin so that it

is easy to translate the electronic signals to real position estimates. Of course, this linearity

must break down at some point, because we cannot localize the particle when it is far from the

rotation axis since it will be only very weakly illuminated by the laser beam.

The fluorescence signal collected by our detector consists of a stream of photons

ξ(t) =
N∑
j
δ(t − tj), (2.9)

where the arrival times tj are random variables drawn from a point process[8] with modulated

rate given in Eq. 2.4 and δ is the Dirac delta function. Each photon produces an electronic

pulse h(t) on the output of the detector that is then used for localization measurements.

The complete electronic signal u(t) is the convolution of ξ(t) and h(t), but for simplicity we

assume that h(t) is itself a sharply-peaked function that integrates to V0. This way, on time-

scales relevant to our localization estimate (time-scales comparable to or longer than ω−1
xy ),

h(t) ≈ V0δ(t) and we have

u(t) ≈ V0 ξ(t). (2.10)

We use lock-in detection to extract the magnitude and phase of the ωxy component of

u(t); due to the stochastic nature of the detected fluorescence signal, this output is a random

process. We must characterize this random process by computing its expected value, which

will tell us the average value of the position estimate for a particle at position e. For this we

must use the statistics of rate-modulated Poisson processes[8, 37]: if ξ(t) is the derivative of

a Poisson counting process (as defined in Eq. 2.9) and the rate of this process is Γ(t), then

〈ξ(t)〉 = Γ(t) (2.11)

〈ξ(s)ξ(t)〉 = Γ(s)Γ(t)+ Γ(t)δ(t − s). (2.12)
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Figure 2.3: Beam intensity (black) and localization signals (red) for the specified rotation radii,
with the beam waist w0 fixed at 1µm.

Using Eq. 2.11 and the rate Γ(e, t) from Eq. 2.4, the expected value of the estimate ê is

〈ê〉 = AVBV0Γ0 exp

[
− 2

w2
0
(ρ2 + r 2)

]∫ 1/B

0
dt e−iωxy t exp

[
4rρ
w2

0
cos(ωxyt −φ)

]

≈ AVV0Γ0 exp

[
− 2

w2
0
(ρ2 + r 2)

]
I1

[
4rρ
w2

0

]
eiφ, (2.13)

where I1 is the modified Bessel function and the approximation is made by assuming that

B � ωxy/2π . It is clear from the phase of Eq. 2.13 that the direction of ê is, on average,

correct; to see that the magnitude of ê is proportional to ρ, we compute the Taylor expansion

of Eq. 2.13 and get

|〈ê〉| = 2AVV0Γ0r
w2

0
exp

(
−2r 2

w2
0

)[
ρ + 2r

w4
0

(
r 2

w2
0
− 1

)
ρ3 +O(ρ4)

]
(2.14)

so that for ρ < w0 (assuming w0 ∼ r ), the linear term is dominant. This proportionality does

not give us calibrated position estimates unless we carefully tune AV so that

AV =
w2

0

2V0Γ0r
exp

(
2r 2

w2
0

)
, (2.15)

but a well-designed feedback system should not depend on such calibration: our tracking

system seeks simply to lock ê = 0, without any regard for the size of the displacements needed

to do so. However, calibration is necessary for relating the size of electronic noise to the size

of position estimate fluctuations, as will be done in the next Section.

In Figure 2.3 we show a cross-section of the localization signal from Eq. 2.13 for a few

different values of the rotation radius. If the radius is too big, the intensity profile has a donut
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shape and the slope of the localization signal is reduced at the origin. The approximately linear

form of the signal near the origin as predicted in Eq. 2.14 is apparent in all three plots, as is

the fall-off of the localization signal for large ex due to the decaying Gaussian beam intensity.

We should note that the linearity criterion ρ < w0 defines what is considered the “good”

regime for localization; most of the analysis in this and the next chapter assumes that this

inequality holds while tracking. However, if a particle moves too quickly for our localization

optics to track it or for our tracking stage to follow it, we must consider the consequences of

the nonlinear terms. We do so in Section 3.3 of the next chapter.

We should also note that laser intensity noise will cause fluctuations in Γ0, creating a multi-

plicative noise term in Eq. 2.14. Provided that certain assumptions are true — that the noise

is a small fraction of Γ0 and is not at the rotation frequency of the laser beam — the noise can

never displace the location of the zero in the localization signal or cause it to point in the wrong

direction. Instead, these fluctuations feed into the loop bandwidth of the tracking system, caus-

ing fluctuations in the tracking error statistics. However, such fluctuations will average out on

time-scales much shorter than the tracking system bandwidth, and can be suppressed using

feedback to control the intensity on time-scales typically extending well beyond the feedback

bandwidth.

2.2.4 Two-dimensional localization noise

We can only collect relatively small numbers of photons from single fluorescent nanoparticles

in any finite time 1/B, and as a result there will always be photon-counting shot noise on

our position estimates. In the previous section we showed that our estimator ê will always

approximate the position e of a stationary particle if we average for a long time. However, to

track a moving particle we would like to be able to average for as short a time as possible. In

general, a compromise must be reached in setting the tracking bandwidth, because averaging

for too long will prevent us from tracking fast-moving particles, but not averaging for long

enough will inject excess shot noise into the position estimates. We will now compute the

position estimation noise on 〈ê〉 resulting from photon-counting statistics.

Using Eqs. 2.4 and 2.12 we can calculate the variance

〈
|ê− 〈ê〉|2

〉
= A2

VB
2
∫ 1/B

0
ds
∫ 1/B

0
dt eiωxy (t−s)〈u(s)u(t)〉 − 〈ê〉†〈ê〉

≈ A2
VBV

2
0 Γ0 exp

[
− 2

w2
0

(
ρ2 + r 2

)]
I0

[
4rρ
w2

0

]
(2.16)

which tells us, as a function of B, the degree of uncertainty in our position estimate due simply

to the fact that we collect a finite number of photons in the averaging interval B−1. Since Eq.



18

2.16 is independent ofφ, it represents the localization noise density along each Cartesian axis.

In the regime ρ < r where the tracking error signal is a linear function of ρ we have

〈
|ê− 〈ê〉|2

〉
≈ A2

VBV
2
0 Γ0 exp

[
−2r 2

w2
0

]
(2.17)

= w4
0

4r 2

B
Γ0

exp

[
2r 2

w2

]
, (2.18)

where Eq. 2.18 gives us the variance in terms of the position estimate rather than an electronic

signal, and comes from inserting Eq. 2.15 into Eq. 2.17. We may go one step further and

compute the signal-to-noise ratio

|〈ê〉|√〈
|ê− 〈ê〉|2

〉 = 2r
w2

0

√
Γ0
B

exp

(
− r

2

w2
0

)
ρ. (2.19)

This expression indicates that the signal-to-noise ratio depends only on the beam and rotation

geometry, the fluorescence rate and integration bandwidth, and the position of the particle

from the center of the rotation. At a fixed fluorescence rate and integration bandwidth, we can

maximize the signal-to-noise ratio by setting r = w0/
√

2. As shown in Fig. 2.3, this is the largest

radius possible before a donut-shaped hole appears in the center of the excitation profile. This

gives us a guideline to follow in constructing the apparatus: for a given beam waist, we would

like our rotation radius to be close to w0/
√

2 in order to make the best possible localization

estimates. It may seem tempting to try to intuit the relationship between r and w0 in the

optimal configuration. For example, we might guess that r and w0 might maximize the slope

of the localization signal in Eq. 2.14, or position the beam so that the most sensitive spot

in its Gaussian profile is always at the center of the rotation. The former of these occurs at

r = w0
√

3/2, however, and the latter at r = w0/2. This is not to say that there is no intuitive

explanation for the optimal geometry, I just do not know what it is.

The noise figure given in Eq. 2.18 represents an absolute limit to how well we may localize

any fixed fluorescent particle while averaging for time 1/B. It contributes an estimation error

that feeds into our tracking stage positions and reduces tracking accuracy. In order to reduce

this noise, we would ideally choose smaller averaging bandwidths; however, doing this while

tracking a moving particle allows the particle to travel further, adding more uncertainty to the

position estimate. We do not discuss this here, but Andy Berglund’s work [36, 37] contains a

thorough discussion on this topic.



19

ω
xy

ω
xy

ω
z

FP1

FP2

z

x

z Beam 1

y

Beam 2

~1μm

z=0

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time x ω
z

 

 

 

ω
z
 reference signal

Fluorescence intensity

(A
rb

it
ra

ry
 u

n
it

s)

Figure 2.4: Left: Modulated beam geometry for three-dimensional localization. Two rotating
laser beams are focused in two different focal planes (FP1 and FP2), and the optical power in
the two beams is modulated 180◦ out of phase at frequency ωz. Right: Exaggerated fluores-
cence intensity modulation due to particle’s offset along the z axis. Under typical experimental
conditions, even for large displacements on the z axis, this size of this modulation is usually
about 1% what is shown, or 0.1% of the DC fluorescence intensity.

2.3 Three-dimensional localization

In the previous section, we overcame the symmetry of the excitation beam by rotating it, in-

ducing temporal asymmetry that we then used to extract two-dimensional position estimates

from the fluorescence signal. By itself, this procedure does nothing to help us estimate the

position of the particle along the z axis, but essentially the same idea can be used to solve this

problem. By moving the rotating beam up and down at a frequencyωz ≠ωxy , we can encode

the z position of the particle in a separate frequency component of the fluorescence signal and

recover it using a second lock-in detector.

Enrico Gratton’s group [11, 32, 35] was the first to implement an approach like this. They

used a piezoelectric nanopositioner stage to move their microscope objective up and down at a

frequency of about 100Hz, and they extracted position estimates using an algorithm based on

FFT. Using this method they demonstrated tracking of fluorescent spheres inside of living cells,

with an axial tracking bandwidth of 3Hz. The tracking bandwidth in their case was limited by

the relatively low modulation frequency: as we showed in Section 2.2.2, the averaging band-

width B must be smaller than the modulation frequency, but B also sets the maximum tracking

bandwidth. This relatively slow bandwidth is not sufficient for tracking fast-moving objects

such as single molecules, but it is difficult to precisely move a heavy microscope objective

much faster than 100Hz; an alternative approach is needed.

Figure 2.4 illustrates the axial localization method that we have developed. Two laser beams
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rotating at frequencyωxy are focused at different depths inside the sample, separated by about

1µm, and the total excitation power is alternated between the beams at frequencyωz. As in two-

dimensional localization, the particle’s position in the xy plane is encoded in the magnitude

and phase of theωxy frequency component of the fluorescence signal. The particle’s position

in z is encoded in the signal in a similar way: as shown in the plot in Fig. 2.4, theωz frequency

component of the fluorescence signal is either in-phase or 180◦ out-of-phase with theωz drive

signal, depending on whether the particle is above or below z = 0. The magnitude of the ωz

component is proportional to the particle’s distance to the origin. Optical power modulation

can easily be done at high frequencies: we typically useωz = 2π×100kHz, with a demodulation

bandwidth B ∼ 1kHz. This bandwidth will almost never be the limiting factor in single-particle

tracking applications, because photon-counting noise will typically place a much lower limit on

the localization bandwidth.

Using a pair of beams in three dimensions introduces several free parameters describing

the beam geometry that are not present in two dimensions: each beam is focused in a different

plane, with a different minimum waist. In addition to the waist of the beam, the rotation radius

r also depends on z, forming a cone that focuses down so that r(z0) = 0 at some depth z0.

Before characterizing the localization statistics of this method quantitatively, we will describe

the beam geometry in further detail.

2.3.1 More on beam geometry

To generally describe the two localization beams we must keep track of the z-dependent waist

and rotation radius of both beams separately, but this would produce extremely complicated

mathematical descriptions that, in practical terms, are unnecessary. Instead, we will assume

that the focused waists w0 of the two beams are identical and that the angle of divergence

of the cone of rotation is identical for the two beams. They are then allowed to differ only in

whether the beam waist focuses to its minimum above or below the rotation cone. In practice, it

should be possible to create a pair of beams that are very close to identical, so this assumption

is not overly restrictive.

Figure 2.5 illustrates two beam geometries that fit within these specifications. In the first

geometry, the rotation cone of beam 1 focuses below its beam waist, and the rotation cone of

beam 2 focuses above its beam waist. Because of its symmetry about z = 0, this geometry

produces a localization signal that is symmetric and goes to zero at exactly z = 0. In the

second geometry, the waists of both beams focus on the same side of the rotation cone foci.

The asymmetry of this geometry about z = 0 translates to asymmetry in the localization signal

and causes the zero of the localization estimate to occur in a plane z ≠ 0. In both geometries,
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Figure 2.5: Cross-sections of the three-dimensional excitation profiles for two modulated beam
geometries. a: geometry symmetric about the tracking plane. b: an asymmetric geometry.
Different colors are used to clearly distinguish between the two beams, which are the same
color in the experiment. Each beam appears twice, on either side of the rotation orbit. In both
figures, z = 0 indicates the plane that is half-way between the focal planes of the waists of the
two beams. Both figures are drawn to an exaggerated scale for clarity; in the actual apparatus,
the divergence of the rotation cone is much smaller. Note that the beam rotation is shifted by
180◦ on opposite sides of the plane r(z) = 0, as suggested by the differently-oriented arrows.
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the distance between the planes in which the beam waists are focused is denoted 2z0, and the

distance between the foci of the beam waist and rotation radii for either beam is denoted z1.

In either geometry the time-dependent fluorescence intensity distribution is given by

Γ(e, t) = w2
0 Γ0

2w(ez + z0)2
(1− cosωzt) exp

[
−2
ρ2 + r1(ez)2 − 2ρr1(ez) cos(ωxyt −φ)

w(ez + z0)2

]

+ w2
0 Γ0

2w(ez − z0)2
(1+ cosωzt) exp

[
−2
ρ2 + r2(ez)2 − 2ρr2(ez) cos(ωxyt −φ)

w(ez − z0)2

]
, (2.20)

where the beam waistsw(z) are given by Eq. 2.2. The radii of rotation r1(z) and r2(z) are linear

functions of z and can, in principle, be varied independently of z0 by appropriate alignment of

the experimental apparatus. The exact expressions for the radii depend on the beam geometry

and will be provided for the geometries we have discussed in the next sections.

To extract an axial localization signal êz from this general expression for the fluorescence

intensity we use single-quadrature lock-in detection, which we evaluate just as we did in Section

2.2.3 to get

〈êz〉 =
AVV0Γ0w2

0

4

{
1

w(ez − z0)2
exp

[
−2
ρ2 + r2(ez)2

w(ez − z0)2

]
I0

[
4ρr2(ez)2

w(ez − z0)2

]

− 1
w(ez + z0)2

exp

[
−2
ρ2 + r1(ez)2

w(ez + z0)2

]
I0
[

4ρr1(ez)
w(ez + z0)2

]}
. (2.21)

If we now take the Taylor expansion about ρ = 0, since we assume that the tracking system

keeps the particle close to the origin in those coordinates, we get

〈êz〉 =
AVV0Γ0w2

0

4

{
1

w(ez − z0)2
exp

[
− 2r2(ez)2

w(ez − z0)2

]

− 1
w(ez + z0)2

exp

[
− 2r1(ez)2

w(ez + z0)2

]}
+O(ρ2), (2.22)

which is an important result: small displacements along the x and y axes do not couple into

the position estimates for the z axis. This general form of the z position estimate can be further

simplified if we now parameterize the beam geometry more specifically.

2.3.2 Localization signal for the symmetric geometry

In the case of the symmetric focal volume geometry shown in Fig. 2.5, the rotation radii of the

two beams are given by r1(ez) = r0|ez + z0 + z1|/z1 and r2(ez) = r0|ez − z0 − z1|/z1. In both

cases, we have defined r0 as the rotation radius of the beam in the planes z = ±z0. Using these
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w0 [µm] r0 [µm] z0 [µm] z1 [µm]
a 0.5 0.35 2 5
b 0.5 0.35 2 2
c 0.5 0.5 5 5
d 0.5 0.35 2 ∞
e 2 1.414 2 5
f 0.5 0.7 2 5

Table 2.1: Parameters used in the plots in Fig. 2.6

expressions, we approximate Eq. 2.22 to first order in ez to get

〈êz〉 ≈
AVV0Γ0w4

0

w(z0)4z2
R

exp

[
−2r1(0)2

w(z0)2

]{
z0 +

2r0r1(0)
w(z0)2z1

[
z2
R − z0z1

]}
ez, (2.23)

which has the linearity in ez that makes for a good axial localization signal. However, it is not

generally true that 〈êz〉/ez > 0 for all z0, z1, zR, w0 and r0 because the underlined term in Eq.

2.23 is not bounded from below. This means that for some combinations of these parameters,

êz will point in the wrong direction. It is easy to see how this can happen if we take imagine

a rotation radius that does not depend on z (equivalent to taking z1 → ∞). In such a case,

if w0 < r0
√

2, then a particle located on the optic axis experiences a donut-shaped excitation

intensity near z0. The central hole in the donut gets smaller with distance from either beam’s

focal plane because of expansion of the beam waist. Thus, for a particle near, but not at, ez = 0,

the beam that illuminates it most brightly may be that which has the smaller central hole, not

the smaller waist. Fortunately, this problem is limited to a pathological case: we can show

using SOSTOOLS[38] that for r0 ≤ w0/
√

2, the underlined term is a sum-of-squares and hence

nonnegative for all nonnegative z0, z1 and zR.

2.3.3 Localization signal for the asymmetric geometry

In the asymmetric geometry of Figure 2.5, the rotation radii are given by r1(ez) = r0|ez + z1 +
z0|/z1 and r2(ez) = r0|ez − z0 + z1|/z1. As we discussed previously, the localization signal

is generally nonzero at z = 0, rather going to zero in some other plane that is the solution to

Eq. 2.22 with these rotation radii. It is not easy to derive an expression for the location of this

plane, and therefore we cannot easily compute a Taylor expansion of 〈êz〉 to show that it is

proportional to ez. Instead, we compute the localization signal numerically for several values

of the parameters w0, r0, z0 and z1, and we show the results in Fig. 2.6. The values of the

parameters used in the figure are given in Table 2.1.

Figure 2.6 shows that the localization signals for the asymmetric geometry appear very

similar to those for the symmetric geometry for most choices of parameters. We show the

localization signals for a range of parameter values, in order to illustrate the effects of the
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Figure 2.6: Localization signals for the axial position estimate from Eq. 2.22 for the symmetric
(red) and asymmetric (black) beam geometries. We used AVV0Γ0 = 1 in all plots; the remaining
parameters are given in Table 2.1.
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parameters — including when their values are chosen poorly. Plots a-c show the effect of

varying z0 and z1: when z1 is made small, resulting in wider divergence of the rotation cone,

or z0 is made large, the localization signal loses sensitivity at the origin. Plot d illustrates the

equivalence of the two geometries when z1 →∞, meaning the rotation radius does not depend

on z. Plot e shows that increasingw0 (and, in proportion, r0) yields a greater difference between

geometries, and for both geometries it yields error signals over a wider range in z (the difference

in the size of the error signals is an artifact of the factor of w−2
0 hidden inside Γ0). Plot f is an

example of a pathological configuration, in which the rotation radius is too large. Here both

signals are small and misshapen, and the symmetric geometry yields a signal that points in the

wrong direction at the origin.

2.3.4 Radial localization with three-dimensional modulation

We have not yet considered what happens to the two-dimensional localization signal as a con-

sequence of our three-dimensional modulation. The simple cosine dependence of Eq. 2.20 on

ωz makes it clear that dual-phase lock-in detection on the ωxy component returns (as in Eq.

2.13)

〈
êxy

〉
= AVV0Γ0w2

0

2

{
1

w(ez + z0)2
exp

[
− 2

(
ρ2 + r1(ez)2

)
w(ez + z0)2

]
I1
[

4r1(ez)ρ
w(ez + z0)2

]
+ 1
w(ez − z0)2

exp
[
− 2

(
ρ2 + r2(ez)2

)
w(ez − z0)2

]
I1
[

4r2(ez)ρ
w(ez − z0)2

]}
eiφ. (2.24)

We know that the derivative of
〈

êxy
〉

must equal zero in the symmetric beam geometry. In-

serting the expressions for the beam waist and rotation radii we get

〈
êxy

〉
= AVV0Γ0
w(z0)2

exp
[
− 2
w(z0)2

(
r1(0)2 + ρ2

)]
I1
[

4
r1(0)ρ
w(z0)2

]
eiφ +O(e2

z). (2.25)

This result is identical to the localization signal with two-dimensional modulation given in Eq.

2.13; our additional modulation along the z-axis has no effect on the localization signal.

For the asymmetric geometry it will generally not be the case that the estimate of êxy

is identical to Eq. 2.13. Explicit calculation of this dependence is horribly messy and not

particularly informative, so we will not offer it here. However, due to the similarity between

the localization signals for the symmetric and asymmetric geometries as shown in Fig. 2.6, we

suspect that this ez dependence will be very small for most combinations of beam parameters.
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2.3.5 Three-dimensional localization noise

In Section 2.2.4 we discussed Andy Berglund’s calculations of the statistical uncertainty in two-

dimensional localization estimates arising from the counting noise present when working with

small numbers of photons. Here we evaluate the size of this noise on our localization estimates

in three-dimensions. The approach taken in this section is identical to that in Section 2.2.4, so

we move quickly through the calculations. More detail can be found in that section.

Considering our results in the previous section, it is not surprising that the noise on the

radial localization estimate
〈

êxy
〉

with symmetric beam geometry is the same as that with

two-dimensional modulation (Eq. 2.17):

〈∣∣∣êxy −
〈

êxy
〉∣∣∣2

�
= A

2
VBV

2
0 Γ0w

2
0

w(z0)2
exp

[
−2r1(0)2

w(z0)2

]
+O(ρ2)+O(e2

z). (2.26)

This tells us that the radial localization noise is optimized by the same combination of beam

geometry parameters as in two dimensions. Specifically, we should aim to set r(0) = w(z0)/
√

2

in aligning our apparatus.

The noise on the estimate for ez, for either of the beam geometries we have discussed, can

be written as

〈
(êz − 〈êz〉)2

〉
= A

2
VBΓ0V

2
0w

2
0

4

{
1

w(ez + z0)2
exp

[
− 2r1(ez)2

w(ez + z0)2

]

+ 1
w(ez − z0)2

exp

[
− 2r2(ez)2

w(ez − z0)2

]}
+O(ρ2). (2.27)

We can expand this expression to first order in ez if we insert the parameters for the symmetric

geometry. This gives us

〈
(êz − 〈êz〉)2

〉
= A

2
VBΓ0V

2
0w

2
0

2w(z0)2
exp

[
−2r1(0)2

w(z0)2

]
+O(ρ2)+O(e2

z). (2.28)

Ignoring the second-order dependence on ρ and ez, we finally compute the signal-to-noise ratio

for the z-axis localization, accurate to first order in ez and ρ:

〈êz〉√〈
(êz − 〈êz〉)2

〉 ≈ w3
0

w(z0)3z2
R

√
2Γ0
B

exp

[
− r1(0)2

w(z0)2

]{
z0 +

2r0r1(0)
w(z0)2z1

[
z2
R − z0z1

]}
ez. (2.29)

The general problem of finding the optimal geometry to maximize the signal-to-noise ratio for

z-axis localization is difficult because of the complicated form of Eq. 2.29. In principle, we

can fix certain parameters in order to first optimize the signal-to-noise ratio along the x and

y axes, leaving fewer free parameters and a simpler optimization problem; however, precise
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control of the beam geometry is difficult, so such calculations would have little practical value.
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Chapter 3

Tracking system dynamics

In the last chapter we discussed the optical method that we use to compute estimates of a

fluorescent particle’s position. This discussion focused entirely on static properties of the

localization system; we did not consider the fact that the particle is moving and the tracking

stage is following it. This chapter takes a very general result from the previous chapter — the

fact that we have a well-characterized, accurate method to estimate the position of a fluorescent

particle — and builds a feedback loop around it. We account for the dynamics of the particle’s

motion and the statistical properties of the localization estimate, showing how they affect the

statistics of the tracking stage. In particular, we concern ourselves with the statistics of tracking

errors — the deviations between the stage and particle positions. When these errors are small

relative to the laser beam rotation radius, we are able to characterize them analytically in almost

exact detail. When the errors are not so small — typically due to a particle that moves too fast

for the feedback system to keep up — the localization estimates lose fidelity and the resultant

tracking statistics are much more complicated. The chapter concludes with a discussion of

some of the consequences of these larger errors and strategies that may be used to avoid them.

3.1 The feedback loop

Figure 3.1 shows a block diagram representation of the closed-loop feedback system. The

particle’s position xp is the primary input. The position of the tracking stages is denoted by

the variable xs , which corresponds precisely to the origin of the localization system described

in Chapter 2. The displacement of the particle from the tracking stage (the error, e = xp − xs )

is the relevant input to the localization estimation method. We group all of the localization

machinery — the laser beams, detectors, and lock-in amplifiers — conveniently into a single

block that maps e, which we cannot directly measure, into the estimate ê based on the measured

fluorescence signal. As discussed in Section 2.2.4, ê is a noisy estimate, the inaccuracy of which

is due to photon counting statistics. Rather than grouping this noise into the localization block,
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Figure 3.1: Tracking system feedback loop. The tracking error e(t) — the difference between
the particle’s position xp(t) and stage position xs(t) — causes fluorescence rate modulation
that is used to estimate e(t). The error estimate ê(t) is fed into the feedback controller (with
transfer function C(s)), and this drives the tracking stages (which have transfer function P(s))
in order to cancel the tracking error.

we feature it as an additive input N(t) to ê so that we can compute its effects on the tracking

system dynamics later in this chapter.

Once ê has been constructed it is fed into a feedback controller, denoted by the C(s) block

in the diagram. The output of this controller is fed into the “plant” P(s), consisting of the

combination of the tracking stages and the electronic amplifiers that drive them. The stage

positions feed back subtractively into e, hence closing the loop.

The feedback loop is designed to drive ê to zero; since ê is an unbiased estimate of e, this

implies that e is, on average, zero as well. However, since ê is related to e by the addition

of noise, enforcing ê(t) = 0 corresponds to e(t) = N(t), so that the localization noise feeds

directly into tracking errors. Of course, all tracking systems have finite bandwidth so it is not

possible to achieve ê(t) = 0; as a result, both the localization noise and the motion of the

particle contribute to the tracking error.

Figure 3.2 illustrates a simulated trajectory of a single particle and the corresponding trajec-

tories of the tracking stage with varied feedback bandwidths. We hope this figure motivates the

need to understand the statistics of the tracking errors. The trajectory taken by our tracking

stage is a coarse approximation to the particle’s actual trajectory; exactly how coarse depends

on a variety of factors. An understanding of the fluctuations of xp about xs is necessary for

describing fluorescence statistics in the next chapter and for determining the performance lim-

its (in terms of how fast-moving a particle may be tracked) of the apparatus. It is our goal in

the remainder of this chapter to provide a complete description of these statistics.
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Figure 3.2: Top: Simulation of a diffusing particle (black circles) with diffusion coefficient
D = 10µm2/s. We compute the trajectories of the tracking stage that are exact up to a random
value for the initial state of the stage. The parameters describing the tracking system are
defined in later sections; we used a second-order system with γp = 100Hz and controller
bandwidth γc = 1Hz (blue), 2Hz (green), 5Hz (red) and 20Hz (cyan). Bottom: tracking error
e = xp − xs .

3.1.1 Brownian motion

Before we go on to characterize the tracking system, we must have an adequate description

of its inputs and constituent blocks. We begin with xp, following the Langevin derivation of

the Brownian motion. For more information about this approach, see [8, 39, 40]. An excellent

historical discussion of Brownian motion can be found in [40].

As discussed in Chapter 1, the particle’s motion is caused by collisions between it and the

molecules in the solvent surrounding it. All of the solvent molecules are in constant motion

due to their thermal energy. Each time one of these molecules collides with the particle, the

particle experiences a very small impulsive force pushing it in the direction the molecule was

moving in. The thermal motion is uncorrelated between different solvent molecules, so that

each collision pushes the particle in a different direction. We assume that the liquid molecules

are very small relative to the particle, and that the mean free path between the molecules and

the particle is very small. Therefore, the particle experiences a very large number of collisions

in any short period of time.

There is no natural coordinate system for xp because of the symmetry of the collisions with

the solvent: all directions of those collisions are equally likely due to the equipartition of energy

among the three translational degrees of freedom of the solvent molecules. Once a coordinate
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system is chosen, the particle’s motion all three axes may be treated independently; there is no

correlation between motion along orthogonal axes. As a result, henceforth we deal only with

the scalar xp representing any of the three components of xp.

The force exerted on the particle along xp is a rapidly-fluctuating function that we denote

B(t). We write the particle’s equation of motion as

mp
d2

dt2
xp = −γ

d
dt
xp + B(t), (3.1)

wheremp is the mass of the particle and the γ term represents the Stokes drag on the particle

due to the viscosity of the solution. We must specify B(t) in order to make any sense out

of Eq. 3.1. The only tractable description of B(t) is as a stochastic process — anything else

would require that we keep track of the dynamics of all of the molecules in the solvent — so we

characterize B(t) by its statistical properties. First, 〈B(t)〉 = 0 because we assume that there

is no convective drift in the particle’s position. Second, we let B(t) be delta-correlated because

each collision is very short:

〈B(t1)B(t2)〉 = Υδ(t2 − t1), (3.2)

where Υ is a constant that we will determine by physical arguments once we solve Eq. 3.1. This

correlation time of zero characterizes B(t) as white noise, because it implies (via the Wiener-

Khinchin theorem) that B(t) has a constant power spectral density. Finally, we assume that the

distribution of B(t) is Gaussian with zero mean and variance Υ . Figure 3.3a illustrates a real-

ization of the process B(t) simulated according to this description, with physical parameters

chosen to correspond to a polystyrene sphere in water.

We may integrate Eq. 3.1 easily because it is linear, and we do so to get

vp(t) ≡
d
dt
xp = e−γt/mpvp(0)+

1
mp

e−γt/mp

∫ t
0

dτ eγτ/mpB(τ), (3.3)

where we defined the velocity vp for notational convenience. Figure 3.3b shows the particle’s

velocity computed from the simulated B(t). Using Eq. 3.3, we may compute the mean and

correlation function of the velocity:

〈vp(t)〉 = e−γt/mpvp(0) (3.4)

〈〈vp(t1)vp(t2)〉〉 =
Υ

2γmp

[
e−γ|t1−t2|/mp − e−γ(t1+t2)/mp

]
, (3.5)

where we have used van Kampen’s notation for the covariance[8], 〈〈vp(t1)vp(t2)〉〉 ≡ 〈vp(t1)vp(t2)〉−
〈vp(t1)〉〈vp(t2)〉. Statistical thermodynamics gives us physical grounds for determining the

steady-state variance of the velocity. It tells us that the probability distribution for the steady-
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Figure 3.3: Simulated Brownian motion of a 1µm polystyrene sphere in water. We simulated
the random force B(t) (a, top) and computed the resulting particle velocity vp(t) (b, middle)
and position xp(t) (c, bottom). Simulation parameters: r = 0.5µm, η = 10−3 Pa·s (water),
ρp = 1.005g/cm3 (polystyrene), T = 298K.

state energy of the particle is exponential, with mean kBT where kB is Boltzmann’s constant

and T is the temperature of the liquid. It is simple to show that this implies that vp, related to

the energy by E =mpv2
p/2, obeys

lim
t→∞

〈vp(t)2〉 =
kBT
mp

. (3.6)

We use this to determine the size of the fluctuations in B(t) from Eq. 3.5:

Υ = 2kBTγ. (3.7)

Due to our assumption that B(t) is Gaussian, the higher cumulants of vp all vanish. In other

words, vp is itself Gaussian, so that it is fully characterized by its mean and variance.

We may simplify Eqs. 3.4 and 3.5 considerably if we are only interested in times much longer

than the correlation time τc = mp/γ. The Stokes drag coefficient for a spherical particle of

radius r is given by γ = 6πrη, where η is the viscosity of the solvent[41]. This implies that

τc scales as r 2, and we compute mp/γ ≈ 30ns for a 1µm polystyrene sphere in water. With

the exception of the DNA molecules discussed in Chapter 7, all of the particles that we study

in this thesis are much smaller than 1µm so the relaxation of their velocity was too fast to be

resolved by our apparatus. The apparatus could potentially resolve this time-scale on the DNA

molecules, but not in the configuration that we used for making those measurements. As a
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result, the long-time approximation

〈vp(t)〉 = 0

〈vp(t1)vp(t2)〉 = 2Dδ(t2 − t1),
(3.8)

where D = kBT/γ is the particle’s diffusion coefficient, is always sufficient to describe the

dynamics we observe in this thesis.

Given the random process vp, all that remains is the integration

xp(t) =
∫ t

0
dτ vp(t) (3.9)

from which we compute the statistical properties of xp. Using Eq. 3.8, we get

〈xp(t)〉 = 0 (3.10)

〈xp(t1)xp(t2)〉 = 2Dmin {t1, t2} , (3.11)

which illustrates an important characteristic of the mean-squared displacement: it scales in

proportion to t for Brownian motion, while it usually scales as t2 for objects that move deter-

ministically.

3.1.2 Localization noise process

The second input to the feedback loop is the localization noise N(t). Arising due to photon-

counting noise as described in Section 2.2.4, N(t) is a zero-mean random process with variance

determined by the beam geometry, averaging bandwidth B, electronic gain V0AV and photon

counting rate Γ . Because the correlation time of the photon-counting fluctuations is very short

(see Eq. 2.12), the correlation time of N(t) is set by the averaging as approximately B−1. B is

typically much larger than the tracking bandwidth, so B−1 is much shorter than the time-scales

of the motion of the tracking stages. Therefore we may approximate the statistics

〈N(t)〉 = 0 (3.12)

〈N(t1)N(t2)T 〉 ≈ n2 Idδ(t1 − t2), (3.13)

where n2 is given by Eq. 2.17 or 2.28 and, by allowing the correlation matrix to be proportional

to the identity, we have assumed that N(t) is not correlated along orthogonal axes. We may,

as with xp, deal only with the scalar noise process N(t) along any single axis. Because it is

an average, we may approximate the distribution of N(t) as Gaussian by invoking the Central

Limit theorem[8, e.g.], so that Eqs. 3.12 and 3.13 fully specify the process N(t).
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3.1.3 Controller and plant dynamics

We assume that both the controller and the plant respond linearly to their inputs. While this

may seem restrictive, most control electronics and many stage actuators — in particular, our

piezoelectric actuators — are very nearly linear. Given this assumption, the inputs (generically

denoted u(t)) and outputs (y(t)) of both blocks satisfy a dynamical system of the form

d
dt

q(t) = Aq(t)+ Bu(t)

y(t) = Cq(t),
(3.14)

where q is an internal state vector and the matrices A, B and C are together referred to as the

state-space representation of the system. An alternative representation of the system that is

often useful is found by taking the Laplace transform of Eq. 3.14, giving

ỹ(s) = C(s Id−A)−1Bũ(s). (3.15)

The quotient ỹ(s)/ũ(s) is known as the transfer function from u to y . The notations C(s) and

P(s) from Fig. 3.1 represent the transfer functions of the controller and plant, respectively.

Their combined transfer function is simply the product C(s)P(s) which, if not for the presence

of the localization block, would be referred to as the loop transfer function because it maps the

input to the output of the feedback loop.

3.1.4 Localization estimate

We let the localization estimation block be composed of a single function L[e] that maps e into

〈ê〉. Then

ê(t) = L[e]+N(t). (3.16)

In Sections 2.2.3 and 2.3.1 we calculated the exact expressions for L along the three axes of

the localization coordinate system, showing that it is, in general, nonlinear. This nonlinearity

can potentially make analysis quite difficult because nonlinear differential equations are hard

to solve. Fortunately, L[e] is dominated by its linear component when e is small relative to the

laser beam geometry. For closely-tracked particles we may write L[e] ≈ e, provided that the

electronic gain is set appropriately to calibrate the position estimate. In the next section, we

derive the statistics of the localization error when L is approximated in this way.
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3.2 Linearized tracking dynamics

If the localization estimate is a linear function of the tracking error, then all of the dynamics in

the feedback loop are linear and we may study the statistics of the tracking error using ideas

from linear stochastic control theory. This section is a review of Andy Berglund’s work in this

area[37, 42]. Those references are far more complete, as we only derive what we will need for

the remainder of the work in this thesis. We take a different approach than those references,

however, deriving all of the relevant statistics using the Langevin equation rather than the

equivalent Fokker-Planck equation. In this section we deal only with the scalar variables xp,

xs , e, ê and N ; as discussed in the previous section, the statistics of the corresponding vector

variables are just vectors and diagonal matrices of the statistics of these scalars.

3.2.1 Input-output statistics

Given our input variables xp(t) and N(t), the statistics of the remaining variables in the feed-

back loop are determined by input-output relationships that can be found by simple block-

diagram algebra[43]. In terms of the controller and plant transfer functions, we have

ẽ(s)
x̃p(s)

= 1
1+ C(s)P(s) ≡ T1(s)

ẽ(s)
Ñ(s)

= x̃s(s)
x̃p(s)

= x̃s(s)
Ñ(s)

= C(s)P(s)
1+ C(s)P(s) ≡ T2(s).

(3.17)

All of these relationships have corresponding state-space realizations. Since our inputs were

characterized in the time domain, we use the expressions in Eq. 3.17 as a means of determining

the appropriate (A,B,C) for each relevant transfer function. We then express the statistics of

the output signals in terms of these matrices.

The exact solution to the generic dynamical system in Eq. 3.14 for a particular realization

of the random input process u(t) is given by

y(t) = CeAtq0 + CeAt
∫ t

0
dτ e−AτBu(τ). (3.18)

We are interested not in particular realizations, but rather in the statistics of the random pro-

cess y(t). We may compute the moments directly from Eq. 3.18 in the same manner as we did

in Section 3.1.1:

〈y(t)〉 = CeAtq0 (3.19)

〈〈
y(t1)y(t2)

〉〉
= C

∫ t1
0

dτ1

∫ t2
0

dτ2 eA(t1−τ1)B〈〈u(τ1)u(τ2)〉〉BTeAT (t2−τ2)CT . (3.20)
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Special consideration must be given to the two cases u(t) = N(t) and u(t) = xp(t) due to

fundamental differences arising from the forms of their correlation functions (Eqs. 3.11 and

3.13). In particular, N(t) is a delta-correlated stationary process and xp(t) is not, and this

difference has a major effect on the statistics of the output signals.

3.2.1.1 The case u(t) = N(t)

Since N(t) is delta-correlated, the integrals in Eq. 3.20 collapse into the single integral

〈〈yN(t1)yN(t2)〉〉 = n2C
∫min{t1,t2}

0
dτ eA(t1−τ)BBTeAT (t2−τ)CT , (3.21)

where the subscript notation is used to keep track of the input signal. The explicit dependence

of this expression on t1 and t2 is a consequence of our derivation of it by solving an initial

value problem. This is clear from the fact that 〈y(0)〉 = Cq0 and 〈〈y(0)2〉〉 = 0. This transient

artifact is eliminated by setting t2 = t1 + τ and taking the limit t1 →∞. The resulting integral

Σ∞ ≡ lim
t1→∞

∫ t1
0

dτ eA(t1−τ)BBTeA(t1−τ) (3.22)

converges when the eigenvalues of A are all negative, which is a prerequisite for stability of the

feedback system[43]. We are left with the simple expression

〈〈
yN(t + τ)yN(t)

〉〉
= n2CeAτΣ∞CT . (3.23)

3.2.1.2 The case u(t) = xp(t)

Things get complicated when u(t) = xp(t) because xp is not delta-correlated. Neither integral

in Eq. 3.20 disappears, and the minimum function in Eq. 3.11 requires us to divide the inte-

gration region into three parts based on the relationship between t1 and t2 in each part. The

integral does not converge as t →∞, making matters even worse.

The calculation is simplified somewhat if we consider the transfer function from vp(t),

rather than xp(t), to y(t). The integral relating vp(t) to xp(t) gives us

ỹ(s)
ṽp(s)

= 1
s
ỹ(s)
x̃p(s)

, (3.24)

which says that using vp(t) as our input to the system produces precisely the time derivative

ẏ(t) = dy(t)/dt. The statistics of ẏ(t) are much simpler than those of y(t) because vp(t) is

delta-correlated. In fact, they are given exactly by Eq. 3.23, with 2D in place of n2. We may
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now compute the statistics of y(t) by integrating a much simpler expression; we get

〈〈yxp(t + τ)yxp(t)〉〉 =
∫ t+τ

0
dt1

∫ t
0

dt2〈〈ẏ(t1)ẏ(t2)〉〉

= 2DCA−2
(
eAt + eA(t+τ) − eAτ − 2At − Id

)
Σ∞CT . (3.25)

3.2.2 Second-order dynamics

So far, the expressions we have derived for the input-output statistics of the feedback loop

allow for the controller and plant transfer functions to be chosen arbitrarily. This flexibility

provides a general tool for describing the dynamics of particle-tracking systems, but in our

case we are interested in only one particular controller and plant pair.

We use a purely integrating feedback controller, C(s) = γc/s. We choose this primarily

because of its simplicity, but it can also be shown that it is optimal in the sense that it minimizes

the least-squared tracking error for a fixed localization noise density and a plant with a flat

frequency response[37, 42]. The factor of γc is a gain term; actually, γc is the entire loop

gain of the tracking system and is the product of the fluorescence rate, lock-in amplifier gain,

integrator gain, and the voltage-to-position conversion factor of the tracking stages. In this

sense γc is the only adjustable parameter in the model; we typically adjust it by varying the

excitation laser power (and consequently the fluorescence rate) and the lock-in amplifier gain.

The plant dynamics are generally fairly complicated, with multiple resonances that are dif-

ficult to model accurately. However, the amplifier that drives the stages has a built-in low-pass

filter, and the choice P(s) = γp/(s+γp), where γp is the roll-off frequency of the filter, provides

a rich enough model to describe the dynamics we usually observe[37, 42].

Given these choices for C(s) and P(s), a valid state-space representation for the transfer

function T2(s) from Eq. 3.17 is

T2(s) =
γcγp

s2 + γps + γcγp
⇒ A2 =

 −γp −γp
γc 0

 ,B2 =

 1

0

 ,C2 =
(

0 γp
)
. (3.26)

T2(s) is stable because it is nonzero at all finite values of s[44]. This fact is further supported

by the fact that A2 has no nonnegative eigenvalues; this means that Σ∞ as defined in Eq. 3.22

does indeed converge.

In contrast, T1(s) is not stable because it has a zero at s = 0[44]. This fact applies generally

for any integrating controller, since an integrator has infinite gain at s = 0. We are fortu-

nate enough to be able to avoid any difficulties arising from this instability through a slight

manipulation of T1(s). Since T1(s) is a transfer function from xp only, we may convert it to

a transfer function from vp by incorporating the integral relating these two signals into the
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transfer function rather than the input. We get

1
s
T1(s) =

s + γp
s2 + sγp + γcγp

⇒ Ā1 = A2, B̄1 = B2, C̄1 =
(

1
γp
γc

)
, (3.27)

where the¯indicates that this realization corresponds to the modified transfer function T1(s)/s,

not T1(s). The integral canceled the zero at s = 0 exactly, giving a stable relationship between

vp(t) and the output e(t). Such cancellation is sometimes risky because it implies that the

feedback system is not internally stable[44] — a very large signal is used to cancel a very small

signal, but very large signals often cause problems. For example, in electronics this cancellation

would require that the large signal is not allowed to saturate, but that is never the case. In our

tracking application the internal instability corresponds to the fact that xp(t) is allowed to get

very big because we do not limit the particle’s motion. The only practical problem with this is

that xp(t) will eventually exceed the limits imposed by our tracking stages, so that the tracking

system fails to continue tracking the particle.

We must be sure to calculate the output statistics for the modified system T1(s)/s using Eq.

3.23, with 2D in place of n2. We do not use Eq. 3.25 because the integration of vp is already

incorporated into the realization. For both T2(s) and T1(s)/s, we compute the same expression

for Σ∞:

Σ∞ =

 1
2γp 0

0 γc
2γ2
p

 . (3.28)

3.2.2.1 Tracking error statistics

For our work in the next chapter we will compute the contribution to the fluorescence signal

made by the statistics of the tracking error. To do this we require the covariance matrix of the

joint probability density p(et+τ ,et). We use Eq. 3.23 to compute the elements of this matrix.

Defining στα =
[
〈exp(t + τ)exp(t)〉 + 〈eN(t + τ)eN(t)〉

]1/2
, where the subscript α ∈ {x,y, z}

denotes a particular Cartesian axis, we have

στα =
√

2DC̄1eĀ1τΣ∞C̄T1 +n2C2eA2τΣ∞CT2 . (3.29)

This expresses the correlation function of the total tracking error, arising from both the parti-

cle’s motion and the localization noise. With this definition, we write the covariance matrix for

p(et+τα ,etα) as

Στeα =

 (
σ 0
α
)2 (

στα
)2(

στα
)2 (

σ 0
α
)2

 . (3.30)
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Since there is no correlation of the error between different Cartesian axes, the covariance matrix

Στe for the joint vector probability density p(et+τ ,et) is block-diagonal with Σex , Σey and Σez

along the diagonal.

The symbolic expression in Eq. 3.29 can be evaluated by computing the matrix exponentials;

the result is given in [37, 42] and is fairly complicated, so we do not include it here. One inter-

esting quantity that is not overly complicated is that for the steady-state root-mean-squared

tracking error:

σ 0
α =

√√√√D( 1
γc
+ 1
γp

)
+ n

2γc
2
. (3.31)

This expression provides insight into how the parameters of the model, localization noise and

Brownian motion affect the error statistics. As discussed above, γc is easily adjustable, so we

consider what happens when we vary it. Increasing γc reduces the first term under the radicand

because it improves the ability to track the particle’s motion, but simultaneously increases the

size of the error induced by the localization noise. Even for very small n, however, increasing

γc is only effective to an extent. Returns diminish when γc compares to or exceeds γp because

at this point the response of the tracking stage limits tracking accuracy, while the localization

noise fed into the tracking error continues to grow. The optimal value occurs at γc =
√

2D/n2,

independent of γp, giving

min
γc
σ 0
α =

√√
2n2D + D

γp
. (3.32)

This result illustrates the existence of a bandwidth-limited tracking regime — even in the ab-

sence of localization noise, nothing within our control can improve the localization to better

than
√
D/γp. This has serious implications, requiring consideration of the nonlinearity in the

localization estimate if this optimal error is too large. We discuss this more in Section 3.3.

3.2.2.2 Stage position increment statistics

A final topic we have yet to discuss is the determination of the parameters in our model. While

we can measure certain parameters directly — γp is easy to measure, and γc is not too difficult —

we require a systematic approach to the estimation of the diffusion coefficient and localization

noise density. One approach uses fluctuations in the fluorescence signal induced by the tracking

errors we just discussed; that approach is presented in Chapter 4. The accuracy with which

this can be done depends on the size of the fluctuations, however, and the fluctuations become

smaller as the particle is tracked better. On the z axis in particular, it is often impossible to

infer the tracking statistics from the fluorescence signal.

Our tracking stages contain capacitive sensors that allow us to monitor their positions over

time. We can therefore directly measure the statistics of xs and use these to infer the model
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Figure 3.4: MSD(∆t) with varied second-order system parameters. a: γc varied with fixed
γp = 100Hz, D = 10µm2/s and n = 0.01µm/

√
Hz. b: n varied with fixed γc = 20Hz, γp =

100Hz, D = 10µm2/s. c: D varied with fixed γc = 50Hz, γp = 100Hz, D = 10µm2/s and
n = 0.01µm/

√
Hz.

parameters. We compute the mean-squared deviation of the stage position increment as a

function of the increment time ∆t,

MSD(∆t) ≡ 1
2∆t

〈
[xs(t +∆t)− xs(t)]2

〉
, (3.33)

which is defined in this way so that lim∆t→∞MSD(∆t) = D. As with the tracking error,MSD(∆t)

is found by adding the contributions to it from both the particle’s motion and the localization

noise. In terms of the state-space realization for T2(s), we have

MSD(∆t) = 2D
∆t

C2A−2
2

[
eA2∆t −A2∆t − Id

]
Σ∞CT2 +

n2

∆t
C2

[
Id−eA2∆t

]
Σ∞CT2 . (3.34)

This symbolic expression can also be written in terms of the individual parameters γc and γp

by directly computing the matrix exponentials. Unlike Eq. 3.29, this less abstract form is not

given in other references. It is particularly useful because we often compute numerical fits to

MSD(∆t), so efficient calculation is important. We give the simplified expression here, because

it would be a shame for a third person (after Andy Berglund and, now, me) to have to compute

this complicated quantity:

MSD(∆t) = D − D
∆t
e−γp∆t/2

{
2
ν

sinh
(
ν∆t

2

)
+
(

1
γp

− 1
γc
+ γcn

2

2D

)

×
[

cosh
(
ν∆t

2

)
+ γp
ν

sinh
(
ν∆t

2

)
− eγp∆t/2

]}
, (3.35)

where we have defined ν =
√
γ2
p − 4γcγp.

Figure 3.4 illustrates the MSD(∆t) curves predicted by Eq. 3.35 for several sets of second-
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order system parameters. All curves shareMSD(0) = 0 because the tracking stage moves with

a finite bandwidth and MSD(∞) = D because the dynamics of the tracking stage become iden-

tical to those of the particle at long times. The rise time and overshoot, and more specifically

the functional form of MSD(∆t) on intermediate time-scales, are consequences of the system

parameters. Plot a shows that the rise times decrease with increasing loop gain but that there

is significant overshoot when γc is too large due to the phase lag in the plant dynamics. The

curve at γc = 71Hz represents the optimal value for this parameter. Plot b shows that local-

ization noise can have a dramatic effect on the stage dynamics at short time-scales, but must

be suppressed on longer time-scales because otherwise the tracking system would not follow

the particle. Plot c shows that the effect of N(t) on MSD(∆t) depends in part on D: it is more

noticeable when D is small compared to n.

3.3 Nonlinear limitations in real tracking systems

The previous section illustrated the importance of the simplification of the tracking system

dynamics resulting from setting L[e] = e. We were able to fully characterize the statistics

of all relevant variables in the feedback loop. In doing this we showed the existence of a

bandwidth-limited tracking regime (see Eq. 3.32) in which our localization statistics cannot be

improved by adjusting the gain in the feedback loop and depend on the diffusion coefficient D.

This means that for any real tracking system with finite actuation bandwidth γp, the linearity

approximation is guaranteed to fail for sufficiently small particles (with sufficiently large D).

In this section, we consider this fundamental limit to tracking system performance.

The standard deviation of the tracking error under the linear approximation (with optimal

γc) is given by Eq. 3.32. As shown in Section 2.2.3, the linear localization region in two dimen-

sions is the disk bounded by the rotation radius r , related to the beam waist w0 by w0 ≈ r
√

2.

This allows us to calculate the diffusion coefficient threshold for remaining within the linear

regime with 95% probability:

D . n2γ2
p +

w2
0γp
8

−
nγ2

p

2

√√√√4n2 + w
2
0

γp
. (3.36)

It is important to remember that this provides an overestimate of the actual threshold; any

calculations that use the linear approximation to compute properties of the outer bounds of

that region will be influenced by the breakdown of the approximation near those bounds. The

nonlinear terms detract from the localization estimate (|L[e]| ≤ |e|), and this implies that the

values we calculate are always optimistic in terms of the size of the tracking error. Despite this,

it may be argued that the ease with which such calculations are made offsets their imprecision.
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When D is greater than the threshold in Eq. 3.36, the tracked particle spends some of its

time at the fringes of the localization signal. The linearity approximation breaks down, making

it very difficult to analytically compute statistics such as στα and MSD(∆t). In fact, since L[e]

decays to zero for large e the particle will, with probability 1, eventually escape the tracking

apparatus so that our entire model of the tracking system breaks down. We take an approach

in this section that is meant to characterize this phenomenon — to determine some simple

statistics of escape.

Throughout the remainder of this section we setn = 0 — this just means that we are capable

of collecting enough photons from the particle so that localization noise does not limit our

tracking fidelity. Our concern is therefore strictly with tracking inaccuracy due to the particle’s

movement, although it is just a generalization of our approach here to incorporate localization

noise into our model. For a complete discussion of localization noise-limited tracking see

[36, 37].

3.3.1 Bandwidth-limited steady-state error

We may evaluate just how the nonlinear position estimate affects the tracking statistics by

considering the steady-state distribution of the particle relative to tracking stage. For simplicity,

we will approximate P(s) = 1, so that the tracking system has first-order dynamics. While this

model does not actually exhibit bandwidth-limited feedback because taking γc →∞ (withn = 0)

reduces the tracking error to zero, any finite γc yields the tracking error σ 0
α =

√
D/γc and the

diffusion coefficient threshold D . w2
0γc/8.

We may write a stochastic differential equation for the error:

d
dt
e(t) = vp(t)− γcL[e(t)]. (3.37)

This nonlinear equation is difficult to solve exactly, but it can be shown that it is equivalent to

the Fokker-Planck equation for the probability density function p(e, t)[8],

∂
∂t
p = γc

∂
∂e
(
L[e]p

)
+D ∂

2

∂e2
p, (3.38)

which we can use relatively easily to analyze the statistics of e because it is a linear partial

differential equation. We know that there is a nonzero probability that the particle will escape

from the tracking system because L decays to zero for large tracking errors. As an extreme

example, as γc → 0 the particle is not tracked at all and the statistics of the error are those of

pure, unconstrained Brownian motion. Therefore, e(t) is not a stationary process unless we

impose boundary conditions on it; for the sake of analysis, we introduce the arbitrary bound
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Figure 3.5: Steady-state tracking error due to nonlinear L[e] (black) compared to that predicted
by the linearized theory (red). γc/D = {a: 10; b: 2.5; c: 1; d: 0.2} [µm−2]. Both curves in each
plot are normalized so that their peaks have value 1. In all plots we used the calibrated L[e]
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−a < e < a, so that
∂
∂e
p
∣∣∣∣
e=±a

= 0. (3.39)

Solving this boundary value problem exactly would require a series solution. However, we find

that L[e] nearly imposes the boundary condition itself for large enough a: solving Eq. 3.38

without regard for the boundary condition gives

ps(e)∝ exp
(
−γc
D

∫ e
0

de′L[e′]
)
, (3.40)

and the derivative dps(e)/de contains a multiplicative factor of L[e]. If we choose a so that

L[a] ≈ 0, then this ps(e) approximately solves the boundary value problem.

Figure 3.5 shows the stationary distribution ps(e) for a particle confined so that |e| < 5µm.

The flatness of the (nonlinear) curves at the boundaries indicates that the boundary conditions

in Eq. 3.39 are approximately satisfied. We find close agreement between the predictions of the

nonlinear and linearized theory for large γc/D, but the theory breaks down dramatically when

the particle is tracked poorly. The nonlinear model predicts that confinement only occurs

near the linear region |e| < r , while the linear model predicts that the width of the error

distribution may increase arbitrarily as γc/D decreases. The failure of the tracking system in

the badly-localized cases is reflected by the increased probability density outside the linear

region.

Figure 3.6 shows the steady-state probability integrated over the linear region as a func-

tion of γc/D. At small γc/D, the linear region’s occupancy is roughly equal to the value 0.2,

corresponding to a completely unconfined particle. A sharp transition occurs between about

1 and 10µm−2: for γc/D > 10µm−2, the particle almost never exits the linear region. This
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abrupt transition suggests that there is not much room for a “nonlinear tracking” regime — the

particle is apparently either tracked well, with a stationary distribution that closely resembles

the predictions of the linearized theory, or it is not tracked at all. We consider this idea more

thoroughly in the next section.

3.3.2 Escape time statistics

As shown in the last section, the effect of the nonlinearity in L[e] on the steady-state distri-

bution of the tracking error is fairly dramatic. There is a sharp transition from apparently not

tracking at all to tracking perfectly over an order of magnitude increase in the tracking band-

width. However, it is not obvious how to interpret this in a dynamic context; a given steady-state

distribution tells us nothing about the rate at which the particle transitions from being tracked

to not being tracked. Such dynamic properties are most appropriately studied using the statis-

tics of first passage times[8, 45], in which we treat the amount of time that a particular particle

is tracked for as a random variable and compute the statistics of that variable.

A slight ambiguity exists in our description of the duration of a tracking trajectory: there

is no obvious way to determine precisely when tracking begins or ends, because the transition

between the two is very smooth. The untracked particle simply drifts away from the tracking

stage; it is not pulled away or frozen in place or changed in any way that would provide a

good criterion for being lost by the apparatus. Our only option is to choose a threshold value

ε and posit that the apparatus loses the tracked particle if |e| reaches or exceeds ε. While
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setting thresholds is usually an ambiguous process itself, we can approach this problem in a

systematic way and find a solution that yields consistent threshold values.

We again require that the particle reside in a box of length a, so that |e| < a. We define the

splitting probability π0
a(e0) representing the probability that the tracking error, initially e = e0,

reaches e = a before reaching e = 0. We may likewise define πa0 (e0) = 1 − π0
a(e0). It may be

shown that π0
a(e0) obeys the adjoint differential equation to that obeyed by the steady-state

distribution ps(e)[8]. This gives

− γcL[e0]
d

de0
π0
a(e0)+D

d2

de2
0
π0
a(e0) = 0 (3.41)

with the boundary conditions π0
a(a) = 1, π0

a(0) = 0. This boundary value problem is solved

exactly by

π0
a(e0)∝

∫ e0

0
de′ exp

(
γc
D

∫ e′
0

de′′ L[e′′]
)
, (3.42)

where the proportionality constant is found simply by enforcing the boundary condition at

e0 = a.

Figure 3.7 shows π0
a(e0) for various values of γc/D with fixed r and w0. All of the curves

show a clear transition between a tracked regime — in which the exit probabilityπ0
a was extraor-

dinarily small — to an untracked regime in which the exit probability became an approximately

linear function of position. In the absence of any feedback (L[e] = 0), the splitting probability

is exactly linear; the linearity we observe therefore implies that in the untracked region the

particle’s motion is not much different than it would be if the particle were freely diffusing.
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computed ε for fixed γc/D = 50µm−2 by extrapolating the linear part of π0

a(e0) to zero. Inset
shows π0

a(e0) resulting from variations in a. Both plots used r = 1µm, w = r
√

2.

There is one caveat to choosing ε based on the splitting probability that we must consider:

the choice of a is arbitrary, but π0
a(e0) depends strongly on it. For example, we could choose

to assign ε based on an absolute value for the splitting probability — say, the point at which

π0
a(ε) = 1%. The choice of a biases this approach because εmoves farther from 0 as a increases

simply because it is less likely for the particle to first reach a more distant point. Instead, we

choose ε by computing a linear fit π̂0
a(e0) to π0

a(e0) near e0 = a and extrapolating the fit to

satisfy π̂0
a(ε) = 0.

Figure 3.8 shows the choice of ε as a is varied. Once a is sufficiently large, ε chosen by

extrapolation does not depend at all on a. It is important to remember that the choice does

depend on the ratio γc/D; for example, a fast-moving particle is more likely to escape when

it reaches a particular e0 than a slow-moving particle is at the same e0. Interestingly, our

extrapolation method produces values of ε that are larger than r by almost a factor of 3. These

values will of course depend on γc , but nonetheless suggest that the tracking system is capable

of significantly suppressing tracking errors well beyond the linear localization regime.

Now that we have a systematic means of defining when a particle escapes the tracking

apparatus, we may compute the statistics of escape events. We bound the tracking error by |e| <
ε, and compute the mean time required for the error to first reach ±ε if it starts at a particular

e0. We denote the probability density function for the particle’s escape time, depending on the
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initial error e0, by pεe0
(τ). Since the particle escapes at either e = ε or e = −ε, we may write

pεe0
(τ) = p(τ|ε)π−εε (ε)+ p(τ| − ε)πε−ε(e0), (3.43)

where the conditional probability notation indicates which boundary the particle exited from

and the splitting probabilities are defined as before but for the boundaries ±ε. We define the

conditional mean first passage time

ϑ−εε (e0) =
∫∞

0
dτ τ p(τ|ε)π−εε (e0). (3.44)

It can be shown that ϑ−εε (e0) also satisfies a differential equation adjoint to that for ps(e)[8]:

− γcL[e0]
d

de0
ϑ−εε (e0)+D

d2

de2
0
ϑ−εε (e0) = −π−εε (e0) (3.45)

with the boundary conditions ϑ−εε (−ε) = 0 = ϑ−εε (ε). The solution to this boundary value

problem can be found explicitly just as it was for π0
a(e0) in Eq. 3.42. Its form, however, is

fairly complicated and given in [8], so we do not provide it here. Due to the symmetry of the

localization signal, we know ϑ−εε (e0) = ϑε−ε(−e0). Therefore, we need to solve for just one of

these functions. We define the mean escape time T as the time it takes for a particle, beginning

at the origin, to escape through either boundary: T = 2ϑ−εε (0).
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Figure 3.9 shows T as a function of γc/D, for varied rotation radii. Due to the form of Eq.

3.45, T depends explicitly on D (not just on γc/D), so we generated the curves in the plot both

by varying γc with fixed D and by varying D with fixed γc . The curves suggest that the explicit

dependence of T on D is most significant for poorly-tracked particles (with small γc/D). All

curves show T increasing linearly on the log-log plot at small γc/D with a slope corresponding

to a T ∼ (γc/D)2 scaling as is predicted for unconstrained Brownian motion (see Eq. 3.11).

For larger γc/D, a transition to exponential scaling of T occurs. The transition is extremely

abrupt, with T increasing from 1s to over 105s with less than an order of magnitude increase

in γc/D for most sets of parameters. This suggests that there is only a very small intermediate

range of γc/D between regimes of completely failed tracking and nearly escape-proof tracking.

Our results in this section indicate that the most essential consequence of the nonlinearity

of L[e] is to impose a hard upper limit on the diffusion coefficient of particles that a partic-

ular feedback system is capable of tracking. While this conclusion was drawn from a fairly

artificial model in which our own choice of γc was the only limitation to the tracking system’s

performance, it should apply quite generally to real systems with limitations arising from the

imperfect frequency response of the plant or from localization noise.

The abruptness of the transition between trackable and untrackable diffusion coefficients

is remarkable. At the same time, it is somewhat troubling: an apparatus that tracks 20nm

particles with ease, for instance, might fail miserably on 5nm particles and it can be difficult

to predict this. Such a failure could mean the difference between doing cutting-edge work on

protein dynamics and being relegated to working with polystyrene beads. Fortunately, there

are ways around some of these tracking limitations. The relatively slow
√
t scaling of the mean-

squared displacement of a Brownian particle means that great gains in trackability can be made

just by increasing the size of the tracking laser beams, as is evident from the plots in Fig.

3.9. Similarly, this scaling implies that trackability improvements are possible by introducing a

method for fast actuation of the stage position even if that actuation has a very limited range. In

our apparatus, this could be done by using our acousto-optics (discussed in Chapter 5) to track

small displacements of the particle while larger displacements are handled by the piezoelectric

stages. The results in this section therefore largely apply to problems that can be eliminated

by good design. Nonetheless, understanding these technical challenges is an important part of

the further development of closed-loop particle-tracking systems.
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Chapter 4

Fluorescence correlation spectroscopy

Having discussed our procedure for localizing fluorescent particles in Chapter 2 and the dy-

namics of closed-loop tracking systems in Chapter 3, we fully understand how closed-loop

particle tracking works. However, we have not yet discussed the interpretation of the data

that we collect from tracking experiments. In this chapter we discuss Fluorescence Correlation

Spectroscopy (FCS), a statistical method based on the two-time correlation g2(τ)[8] of the fluo-

rescence rate. This popular technique typically refers to experiments, such as those described

in Chapter 1, in which fluorescence fluctuations are measured on small numbers of particles

that are free to move in solution but are not tracked in closed-loop; however, the generalization

to closed-loop FCS is straightforward, and this technique is a powerful approach to the analysis

the fluorescence signals that we collect while tracking.

The development of FCS began at Cornell in 1972 when Magde, Elson and Webb studied

the binding and unbinding of ethidium bromide to DNA[1]. Using an Ar+ laser to excite and a

parabolic reflector to collect fluorescence light from ∼ 104 molecules at a time, they were able

to determine the diffusion coefficient of the dye and both the binding and unbinding rates of the

dye to the DNA. These were among the first direct measurements of nonequilibrium fluctuations

in a system at equilibrium, and gave rise to what is today a major area of research in chemistry

and biophysics. Modern implementations of FCS take advantage of the technological advances

made in the last 35 years — high numerical aperture microscope objectives and single-photon

sensitive detectors make it possible to study single molecules, one at a time, using FCS.

This chapter begins with an introduction to FCS, in which we derive the standard mathe-

matical expressions for a very simple example experiment. Next we generalize these deriva-

tions to account for the systematic contributions to the FCS curve that arise when the flu-

orescent particles are tracked by the apparatus. Andy Berglund was the first to make such

calculations[18, 37, 42]; we further generalize his ideas here in order to incorporate internal

translational motion of the tracked particle into the FCS curve in preparation for our work

on DNA polymer dynamics in Chapter 7. We include a discussion of the relationship between
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closed-loop FCS and popular approaches for studying polymer dynamics, such as dynamic

light scattering or video correlation measurements. This chapter concludes with a derivation

of the contribution to the FCS curve due to the three-dimensional beam modulation described

in Chapter 2.

4.1 Open-loop FCS

We begin by discussing FCS in its most basic form: a stationary laser beam is used to collect

fluorescence from molecules that drift into and out of it by Brownian motion. Much of this is

relevant to our discussion of tracking-FCS in the next section: the notation and approach to

calculating the correlation functions are the same, just much simpler in this case. We begin

our discussion by establishing the notation that we will use throughout this chapter, and by

introducing the correlation function in general terms.

4.1.1 The correlation function g2(τ)

We first introduce a set of functions known only as “the functions fn” that are very useful for

describing point processes[8]. In general, fn(t1, . . . , tn)dt1 · · ·dtn is the probability that an

event (in our case, this event will always be the detection of a photon) takes place in each of

the infinitesimal intervals (t1, t1 + dt1), . . . , (tn, tn + dtn). In the case of fluorescence photon

detections, these functions are very closely related to the measured fluorescence rate Γ t (where

the superscript t will be used extensively in this chapter to indicate a function of time). This

relationship is given by

fn(t1, . . . , tn) =
〈
Γ t1 · · · Γ tn

〉
, (4.1)

where the average is an ensemble average that is necessary when the fluorescence rate is de-

termined by a random process (such as the Brownian motion of a fluorescent particle). The

related quantities Γ t and fn can be used interchangeably in calculating FCS curves, and I do so

in this thesis. My choice of which to use will usually be determined by whether the dynamics

I am modeling are described intuitively by a simple fluorescence rate, or whether the discrete

nature of photon collection is important. In particular, in studying the statistics of photon

emission in Chapter 6 I will use fn, and I will use Γ t otherwise. One feature of fn that is some-

times convenient is the simple notation for expressing conditional probabilities: for example,

f1|1(t2|t1)dt2 can represent the probability of detecting a photon in time interval (t2, t2 + dt2)

given that one was detected in (t1, t1+dt1). A final note on the functions fn: although they are

interpreted identically to probability densities over the infinitesimal time intervals dtn, there

is no reason for them to be normalized and so they are not probability densities themselves.
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Figure 4.1: Example FCS curve (right) for open-loop FCS data (left). Freely-diffusing Qdot 655
quantum dots emit fluorescence bursts on a time-scale of about 20ms. The duration of these
bursts determines the correlation time τc of the dominant decay of the g2 curve. The oscil-
lations in the FCS curve at shorter times are due to the three-dimensional beam modulation
described in Sect. 2.3.

The general procedure for performing FCS is to compute the two-time correlation function

of the detected fluorescence signal. In terms of fn, the correlation function is defined as

g2(τ) =
〈
f2(t, t + τ)

〉
〈f1(t)〉〈f1(t + τ)〉

− 1, (4.2)

where the averages are taken over t. It will usually be the case that all processes contributing

to the fluorescence signal are stationary[8]; in this case, the time averages are not necessary.

However, we leave the averages there because there are common nonstationary contributions

(such as photobleaching) that we want to be able to include in our definition. It is important

to note here that this function is defined with a normalization that is standard for FCS[46]

but unusual in general for stochastic processes[8]. The reason for this normalization is that

it eliminates systematic contributions to the correlation function at τ = 0, so that g2(0) can

be interpreted in a meaningful way. It is also important to note that while the FCS curve is

defined as a time average, theoretical calculations often assume that the fluorescence signal is

ergodic[8], so that time and ensemble averages are equal, and therefore use ensemble averages

to compute the relevant FCS statistics. Throughout this thesis this assumption is never violated,

so we will not distinguish between these two types of averages.

The correlation function expresses, in a simple form, the way in which fluctuations in a

signal persist over time. Except in very unusual cases (Section 6.2.5), the correlation is greatest

at τ = 0; g(0) is proportional to the variance of the signal. At longer values for τ , the correlation

decays on time-scales that are characteristics of the fluctuations, so that limτ→∞ g(τ) = 0. The

value at τ = 0 is sometimes referred to as the contrast of the FCS curve because larger g2(0)



52

will make all of the decays in g2(τ) more pronounced. This means that parameters may be

extracted from the FCS curve more accurately, so it is often desirable to design an experiment

to make the contrast as large as possible.

The fluorescence bursts due to molecules drifting through the focus of the laser in a single-

molecule microscopy experiment is an obvious example of the type of fluctuation that FCS

is sensitive to. Each burst persists for a random amount of time, depending on the particle’s

Brownian trajectory, and the correlation function decays sharply on time-scales longer than the

average burst duration. This is illustrated in Fig. 4.1. Features other than Brownian motion can

be much less apparent in the fluorescence signal: for example, the high-frequency oscillations

in the g2 curve in Fig. 4.1 are on time-scales so short compared to the fluorescence rate that

only a few photons are detected in any single period of the modulation. It is only by averaging

over the entire fluorescence signal that such features can be resolved.

4.1.2 Single-component FCS

Once we have computed the correlation function in Eq. 4.2 from our fluorescence data, we

must interpret that function based on a mathematical model for the dynamics of the particles

that gave rise to the data. In essence, we derive the predicted g2(τ) based on our model, and

determine the values of key parameters of our model by fitting to the data. We will now derive

g2(τ) for the simplest sample possible: a single type of fluorescent particle with no dynamics

other than Brownian motion. While very simple, this example illustrates the general approach

to FCS and — perhaps owing to its simplicity — is one of the most common applications of the

technique. For a more detailed review of FCS calculations with more general models, see [46].

We let the concentration of fluorescent particles in our sample be denoted C(x, t). For

a sample composed of discrete particles, the concentration has the same interpretation as

the rate of a Poisson process: C(x, t)d3x is the probability that a particle can be found in an

infinitesimal region of volume d3x about the point x. Given this interpretation, the intensity of

the fluorescence that we collect at time t is given by

Γ t =
∫

d3x Γ(x)C(x, t), (4.3)

where Γ(x) is the spatial dependence of the fluorescence rate that we assume is not time-

dependent, because there is no reason for us to be modulating the excitation beam in open-loop

FCS. It is standard practice to now express Eq. 4.3 in terms of the Fourier transforms of Γ(x)

and C(x, t) because, although not obvious quite yet, this simplifies calculations in later steps
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of the derivation. In terms of the wave vector k, Eq. 4.3 becomes

Γ t =
∫

d3k
(2π)3

Γ̃(−k)C̃(k, t), (4.4)

where tildes denote Fourier transforms.

On our way to computing the FCS curve, we consider the quantity

f2(t, t + τ) =
〈
Γ tΓ t+τ

〉
=
∫

d3k
(2π)3

∫
d3k′

(2π)3
Γ̃(−k)Γ̃(−k′)

〈
C̃(k, t + τ)C̃(k′, t)

〉
, (4.5)

where the averaging brackets appear over the concentration terms only, because the Γ terms

are deterministic. Now we must consider the time evolution of C(x, t). We know that C(x, t)

obeys the diffusion equation
∂
∂t
C(x, t) = D∇2C(x, t), (4.6)

where D is the diffusion coefficient, because we have assumed that Brownian motion alone

contributes to the motion of the particles in the sample. Taking the Fourier transform of Eq.

4.6 and solving, we get

C̃(k, t + τ) = exp
(
−kTkDτ

)
C̃(k, t), (4.7)

which we can now insert into Eq. 4.5 to get

f2(t, t + τ) =
∫

d3k
(2π)3

∫
d3k′

(2π)3
Γ̃(−k)Γ̃(−k′)

〈
C̃(k, t)C̃(k′, t)

〉
exp

(
−kTkDτ

)
. (4.8)

Finally, with some manipulation of the Fourier transforms we get

〈
C̃(k, t)C̃(k′, t)

〉
= (2π)6C̄2δ3(k)δ3(k′)+ (2π)3C̄δ3(k+ k′), (4.9)

where C̄ is the average concentration of the sample. This result follows as an application of

the statistics given in Eq. 2.12 because the particles move independently of each other, and so

the number of particles in any volume V is a Poisson random variable with parameter C̄V .

We are finally in a position to compute g2(τ), provided we insert an appropriate choice for

Γ(x). It is important to note that Γ(x) tells us the rate at which we detect photons, which is not

necessarily proportional to the rate at which photons are emitted because the FCS apparatus has

an imperfect collection efficiency that depends on the particle’s position in a nonlinear way.

For example, the presence of a confocal pinhole in the detection optics limits the collection

efficiency of the microscope along the z axis. This is generally the justification for using the
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three-dimensional Gaussian intensity profile

Γ(x) = Γ0 exp
[
− 2
w2

(
x2 +y2 + z2ζ2

)]
, (4.10)

where ζ accounts for the difference in the intensity decay in the axial and radial directions,

in place of the Gaussian-Lorentzian profile of Eq. 2.1. In truth, the Gaussian does a great

deal to simplify calculations involving Γ̃(k, t), and so I suspect its initial use was motivated by

practical reasons, not by the argument presented above. In any case, this argument is true,

and the Gaussian (with ζ ∼ λ/
√

2πw) is a good approximation to the Gaussian-Lorentzian for

small z anyway. I will use the Gaussian beam profile exclusively in this chapter.

The Fourier transform of Eq. 4.10 is

Γ̃(k) = Γ0
π3w3

8ζ
exp

[
−w

2

8

(
k2
x + k2

y +
k2
z
ζ2

)]
. (4.11)

Combining Eqs. 4.5-4.9 and Eq. 4.11 and inserting into Eq. 4.2, we get

g2(τ) =
1

C̄π3/2

(
w2 + 4Dτ

)−1 (
w2/ζ2 + 4Dτ

)−1/2
. (4.12)

It is common practice to define the characteristic diffusion time τD = w2/4D and the effective

sampling volume V̄ = π3/2w3/ζ, so that

g2(τ) =
1
C̄V̄

(1+ τ/τD)−1
(
1+ ζ2τ/τD

)−1/2
. (4.13)

In this form, g2(τ) illustrates some important features of FCS curves in general. The contrast

in the FCS curve (the value g2(0)) is the inverse of the effective number of particles N̄ = C̄V̄
that we detect simultaneously. This is quantitative justification for our claim that signals can

be better resolved when fewer molecules are detected at any one time. The decay of g2(τ) for

τ > τD tells us that τD represents the average duration of a single fluorescence burst. Figure

4.2 shows single-component open-loop FCS curves for several values of N̄ and τD.

4.1.3 Incorporating additional dynamics

As we have mentioned, FCS is sensitive to much more than just Brownian motion. Any dynam-

ics that affect the fluorescence of the particle on time-scales shorter than τD will in general

be resolvable using FCS. Examples can include chemical reactions such as the binding and un-

binding of intercalating dyes to DNA[1]; internal conformational fluctuations in polymers[21];

Förster energy transfer between donor and acceptor dyes[17]; or blinking of quantum dots[47].

Many such processes are independent of the particle’s position, and affect the fluorescence
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Figure 4.2: Example single-component open-loop FCS curves. Curves were plotted at effective
particle numbers N̄ = 0.5 (blue), 1 (black) and 2 (red). Characteristic diffusion times were τD =
1ms, 5ms and 10ms. For all curves, we fixed ζ = 0.3.

rate Γ t in a multiplicative way; for example, qdot blinking can be considered a process that

multiplies Γ t by 0 when the qdot blinks off and 1 when the qdot is on. Let Γ t = Γ t0Γ
t
1 · · · Γ tn,

where all of the Γ tj terms are statistically independent. Then

〈
Γ tΓ t+τ

〉
=
〈
Γ t0Γ

t+τ
0

〉
· · ·

〈
Γ tnΓ t+τn

〉
(4.14)

so that g2(τ) factorizes:

g2(τ) =
[
g0

2(τ)+ 1
]
· · ·

[
gn2 (τ)+ 1

]
− 1. (4.15)

This can be quite useful for simplifying calculations; in fact, even simple FCS curves are eas-

ier to calculate because Brownian motion is not correlated along orthogonal spatial axes, so

the correlation function along each axis can be calculated separately. An important class of

processes that cannot be factored apart in this way are those that depend on or influence the

particle’s position, such as the conformational dynamics of a fluorescent polymer. All such

processes must be considered simultaneously with the particle’s Brownian motion, as they will

be when we derive the tracking-FCS curve in Section 4.2.

4.1.4 The effect of background counts

In any real experiment it is impossible to eliminate background counts from the fluorescence

signal. These counts create additive contributions to the fluorescence rate, unlike the multi-
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plicative contributions that we saw in the previous section. Here we consider how they affect

the FCS curve.

We first let the background be any process with its own fn, and we use the superscripts

p to denote the fluorescence statistics of the particle and B to denote the statistics of the

background. Then

g2(τ) =
fp2 (t, t + τ)+ f B2 (t, t + τ)− f

p
1 (t)f

p
1 (t + τ)− f B1 (t)f B1 (t + τ)

fp1 (t)f
p
1 (t + τ)+ f

p
1 (t)f

B
1 (t + τ)+ f

p
1 (t + τ)f B1 (t)+ f B1 (t)f B1 (t + τ)

, (4.16)

where the form of the denominator reflects the fact that for any pair of detected photons, either

both came from the particle, both came from background, or one photon came from each.

Equation 4.16 applies generally to any additive contribution to the fluorescence rate. In the

case of the background, we will just assume that it is a Poisson process with rate ΓB so that

f B1 (t) = ΓB and f B2 (t, t + τ) = Γ 2
B . Inserting this gives

g2(τ) =
fp2 (t, t + τ)− f

p
1 (t)f

p
1 (t + τ)

fp1 (t)f
p
1 (t + τ)+ ΓBf

p
1 (t)+ ΓBf

p
1 (t + τ)+ Γ 2

B
. (4.17)

If we assume that the background is small relative to the signal from the particle at both times

t and t + τ , we compute the first-order Taylor expansion to get

g2(τ) ≈ g0
2(τ)

{
1−

(
ΓB
fp1 (t)

+ ΓB
fp1 (t + τ)

)}
, (4.18)

whereg0
2(τ) representsg2(τ)with ΓB = 0. This shows that the size of the FCS curve is uniformly

reduced due to the background. Essentially what is happening is the FCS curve becomes a

weighted average of g0
2(τ) and the curve gB2 (τ) for the background. For a purely Poisson

background, gB2 (τ) = 0 so the effect of the averaging is to attenuate g0
2(τ). While dynamic

time-scales are preserved in g2(τ), failure to correct for a large background will influence the

interpretation of the curve at g2(0): in the single-component FCS example, it will give the

appearance of a higher sample concentration. More information on FCS background correction

is given in [48].

4.2 Tracking-FCS

FCS is a very useful approach to evaluating the dynamic information in fluorescence signals.

This is not only true for particles probed via open-loop FCS; the fluorescence that we measure

while tracking a particle can be analyzed by FCS as well, provided we are careful to incorporate

the systematic differences between this scenario and open-loop FCS. In particular, both the

residual motion of the particle relative to the laser due to tracking errors (as discussed in the
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previous chapter) and the laser modulation described in Chapter 2 contribute fluorescence

fluctuations that appear in the FCS curve.

In this section we take a fairly general approach to deriving the closed-loop FCS curve. From

the beginning, we incorporate internal motion of the tracked particle in a way that will allow

us to calculate the FCS curves for objects ranging from large solid objects to objects with fairly

complicated conformational dynamics, such as polymers. This work is a generalization of Andy

Berglund’s work [37, 42], in which he calculated the closed-loop FCS curve for a point particle.

4.2.1 General calculation of the tracking-FCS curve

The tracking-FCS curve is computed by following exactly the procedure in Section 4.1.2, but

the quantity
〈
C̃(k, t + τ)C̃(k′, t)

〉
presents much more of a challenge than in the open-loop

case. In this section we compute the function f2(t, t + τ) in terms that are sufficiently general

to apply to a variety of specific particle types, from solid objects to polymers. The calculations

in this section are some of the most involved in this thesis, but I think that the simplicity with

which specific results follow in later sections justify the complexity.

We allow our fluorescent particle to be labeled with N identical fluorescent emitters, so that

the concentration of emitters is given by

C(x, t) =
N∑
l=1

δ
(
x− xtl

)
, (4.19)

where xtl is the position of emitter l at time t. Any intrinsic dynamics of the particle that we

study will appear in the statistics of the xtl . We let xts be the position of the tracking stage at

time t. If Γ(x−xts , t) is the spatially-dependent fluorescence rate, which is now time-dependent

due to beam modulation, then in analogy to Eq. 4.4 the detected fluorescence rate is

Γ t =
∑
l

∫
d3k
(2π)3

Γ̃(−k, t)eik
T(xtl−xts). (4.20)

From this, we get the expression

f2(t, t + τ) =
∑
l,m

∫
d3k
(2π)3

∫
d3k′

(2π)3
Γ̃(−k, t + τ)Γ̃(−k′, t)

〈
eik

T(xt+τm −xt+τs )+ik′T(xtl−xts)
〉
. (4.21)

In order to simplify Eq. 4.21, we make the assumption that the statistics of the terms in the

exponential are all Gaussian. This is not too restrictive to prevent us from applying the result

to interesting systems: it is a very good approximation for Gaussian polymers, although not

exactly correct[49]. Our tracking stages are constantly moving, so there is no natural choice

of coordinate axes. For convenience we may choose our coordinates so that
〈
xtl
〉
=
〈
xts
〉
= 0
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by letting the center of mass coordinate of the emitters xtcm = 0. We now make use of the

following property: If ξ is a constant vector and x is a zero-mean Gaussian vector random

variable, then 〈
eξ

Tx
〉
= exp

[
1
2
ξT
〈

xxT
〉
ξ
]
, (4.22)

which is verified by straightforward calculation of a Gaussian integral. Applying Eq. 4.22 to

Eq. 4.21, we have

〈
eik

T(xt+τm −xt+τs )+ik′T(xtl−xts)
〉
= exp

{
−1

2
kT
〈(

xt+τm − xt+τs
)(

xt+τm − xt+τs
)T�

k

−1
2

k′T
〈(

xtl − xts
)(

xtl − xts
)T�

k′ − kT
〈(

xt+τm − xt+τs
)(

xtl − xts
)T�

k′
}
. (4.23)

Rearranging terms and reapplying Eq. 4.22 to contract the coherent terms, we have

〈
eik

T(xt+τm −xt+τs )+ik′T(xtl−xts)
〉

=
〈
eik̄

T x̄lm
〉〈
eik̄

T x̄s
〉

exp

{〈[
kTxt+τm + k′Txtl

][(
xt+τs

)T
k+

(
xts
)T

k′
]T〉}

, (4.24)

where we have defined

k̄ =

 k′

k

 x̄s =

 xt+τs

xts

 x̄lm =

 xtl

xt+τm

 (4.25)

to simplify notation.

We can greatly simplify the averages in the exponent of Eq. 4.24 by eliminating uncorrelated

terms. We know that the xts is not correlated with xtl because the fluctuations determining the

positions of the two — tracking error for xts and internal motion for xtl — are uncorrelated.

Based on the same argument, xt+τs is not correlated with xtl , and xts is not correlated with xt+τm .

Due to our choice of coordinates, all of the correlations between these terms are zero.

We do expect there to be correlation between the remaining pair of terms. Both xt+τm and

xt+τs follow the motion of the center of mass of the emitters, so their correlation (while zero

for τ = 0) increases steadily over time. By conditioning on and integrating over all possible

values for the center of mass coordinate xt+τcm using the Chapman-Kolmogorov equation[8], it

can be shown that 〈
xt+τm

(
xt+τs

)T�
= 2Dgτ Id3, (4.26)

where Dg is the diffusion coefficient of the center of mass coordinate and Id3 is the 3 × 3

identity matrix. We will see later that the term in Eq. 4.26 will be exactly canceled by terms

in the remaining two averages in Eq. 4.24, so that the center of mass diffusion coefficient
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disappears from the FCS curve. This represents the fact that the tracking system cancels (on

average) the Brownian motion of the particle.

Inserting Eq. 4.26, 4.24 becomes

〈
eik

T(xt+τm −xt+τs )+ik′T(xtl−xts)
〉
=
〈
eik̄

T x̄lm
〉〈
eik̄

T x̄s
〉
e2kTkDgτ . (4.27)

We may now simplify the average over the xs terms in Eq. 4.27. To compute the average

we require the joint probability density p
(
xt+τs ,xts

)
, which we can find using the Chapman-

Kolmogorov equation and integrating over all possible values for xt+τcm :

p
(
xt+τs ,xts

)
=
∫

d3xt+τcm p
(
xt+τs ,xts|xt+τcm

)
p
(
xt+τcm

)
. (4.28)

In terms of the tracking error et = xts − xtcm, p
(
xt+τs ,xts|xt+τcm

)
is just the joint probability

p(et+τ ,et) calculated in Section 3.2.2. We insert the center of mass diffusion and integrate Eq.

4.28, and we find that the average is given by

〈
eik̄

T x̄s
〉
= exp

−1
2

k̄T

Στe +
 2Dgτ 0

0 0


 k̄

 , (4.29)

where Σe is the block-diagonal matrix of tracking errors defined in Section 3.2.2. Equation 4.29

captures the contribution to the FCS curve due to tracking errors that cause the position of

the center of mass of the particle to fluctuate relative to the position of the tracking stage.

Such fluctuations expose the particle to variations in the excitation beam intensity, resulting

in fluorescence fluctuations. The factor of exp
(
−kTkDgτ

)
represents the fact that the stage

exhibits Brownian motion because it tracks a diffusing particle, and cancels half of the term in

Eq. 4.26.

I should mention an additional source of systematic tracking error here. The tracking system

is only sensitive to the positions of the emitters, not to the true center of mass of the particle.

Because of this, the apparatus only tracks an estimate of xtcm, the variance of which scales

inversely as the number of emitters in the particle. This adds a factor proportional to the

variance of the distribution of particles and inversely proportional toN to the static localization

figures along the diagonal of Σe. This never presents a problem in the applications in this thesis,

because the particles that we track are either very small compared to the tracking error or are

relatively densely labeled. However, it would be an important consideration in studying, for

example, large polymers labeled only on their ends.

The remaining average term in Eq. 4.27 is determined by the statistics of the particle being

tracked. This will generally be of greatest interest to us because it contains the statistics that



60

are not systematics of the apparatus, but rather dynamics of the particle we are tracking. We

can simplify this term a bit if we re-expand it using Eq. 4.22 to get

〈
eik̄

T x̄lm
〉
= exp

{
−1

2
kT
〈

xt+τm
(
xt+τm

)T�
k− 1

2
k′T

〈
xtl
(
xtl
)T�

k′ − kT
〈

xt+τm
(
xtl
)T�

k′
}
. (4.30)

Based on our assumption that the statistics of the dye positions are Gaussian, it can be shown

that
〈

xt+τm
(
xt+τm

)T〉 = (2Dτ + Rg(m)2) Id3, where Rg(m) is the standard deviation of dye m

about the center of mass of the particle (sometimes called the radius of gyration). This means

that the only term that contains any interesting dynamic information is the coefficient of the

cross-k term. For now we do not make any assumptions about this term, because it will vary

depending on the type of particle we are tracking, and we simply write it as

ϕ(l,m; t, τ) ≡
〈

xt+τm
(
xtl
)T�

. (4.31)

If we finally combine Eqs. 4.21, 4.27 and 4.29 - 4.31 we get

〈Γ tΓ t+τ〉 =
∑
l,m

∫
d3k
(2π)3

∫
d3k′

(2π)3
Γ̃(−k, t + τ)Γ̃(−k′, t)

× exp

−1
2

k̄T

Στe +
 Rg(m)2 Id3 ϕ(l,m; t, τ)

ϕ(l,m; t, τ) Rg(l)2 Id3


 k̄

 , (4.32)

which is the primary result of this section. We can compute g2(τ) for a large number of inter-

esting types of particles by inserting appropriate choices for ϕ(l,m;τ), and we can account

for the systematic contribution of the beam modulation to the FCS curve (see Section 4.2.4) by

inserting the appropriate Γ̃(k, t). In the event that we are using an ordinary, stationary Gaus-

sian beam for excitation, we may insert Eq. 4.11 and evaluate the integral, leaving the result in

terms of the adjustable ϕ(l,m; t, τ) only. We get

g2(τ)+ 1 ∝
∑
l,m

∏
α∈{x,y,z}

{[(
σ 0
α

)2
+ Rg(m)2 +w2

α/4
][(

σ 0
α

)2
+ Rg(l)2 +w2

α/4
]

−
[(
στα
)2 +ϕ(l,m; t, τ)

]2
}−1/2

, (4.33)

where the proportionality constant is found either by explicit calculation of
〈
Γ t+τ

〉 〈
Γ t
〉

or by

requiring that g2(∞) = 0.



61

4.2.1.1 Example: solid particle in a stationary Gaussian beam

The simplest example particle that we may study is a solid particle with identical embedded

dyes that do not move relative to each other. This describes the polystyrene beads that we

use as diagnostic particles for testing our apparatus in the next chapter (although these beads

are spherical, we can approximate the dye distribution within them by a Gaussian without too

much error so that the results of the previous section need not be revised to account for this

difference). Provided the number of dyes N is large, we can ignore rotational motion of the

particle because it will not be resolvable in the fluorescence signal. We will assume that the

dyes are excited with a stationary Gaussian probe beam so Eq. 4.33 applies.

We let rl be the vector from the particle’s center of mass to dye l, so that xtl = rl + xtcm.

Since we have assumed that the dyes have a Gaussian distribution throughout the particle and

that xtcm = 0, we have

ϕ(l,m; t, τ) =
〈

rm (rl)T
〉
= R2

gδlm, (4.34)

where δlm is the Kronecker delta function and Rg = Rg(m) is the standard deviation of the

dye distribution and is independent ofm. The fact thatϕ(l,m; t, τ) is a constant is an artifact

of our choice to exclude rotational dynamics from our model; any exact expression must have

limτ→∞ϕ(l,m;τ) = 0. Since there are onlyN terms in whichϕ(l,m;τ) are nonzero (compared

to N(N − 1) terms for which it is zero) and we have assumed N is very large, we neglect these

terms in our calculation of g2(τ). Inserting Eqs. 4.11 and 4.34 into Eq. 4.33, we get the result

g2(τ) =
∏

α∈{x,y,z}

(
σ 0
α
)2 + R2

g +w2
α/4√[(

σ 0
x

)2
+ R2

g +w2
α/4

]2

− (στα )4
− 1, (4.35)

where
(
στα
)2 is the time-dependent tracking error from Eq. 3.29 and we have definedwx,y = w,

wz = w/ζ. In the special case Rg = 0, Eq. 4.35 is exactly the result computed for point particles

in [37, 42].

4.2.1.2 Example: free particles in a harmonic potential

An example of a different sort is that of N emitters that move independently and experience a

force F = −γ (xl − xcm) that confines them near their center of mass. This example is somewhat

removed from reality, as no natural system I can think of behaves according to these dynamics.

However, it is a nice illustration of the fact that we can extract the particle’s internal dynamics

from the correlation function.

In computingϕ(l,m; t, τ) for this model, we again work in the coordinates rtl relative to the

center of mass from Eq. 4.34, although now these depend on time. For any pair of different
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particles (l ≠m), ϕ(l,m; t, τ) = 0 because the particles are all independent and they are cen-

tered about r = 0; however, there is nonzero correlation for l =m. The conditional probability

p(rt+τl |rtl) is given by the well-known Ornstein-Uhlenbeck statistics[39]:

p(rt+τl |rtl) =N
[
rt+τl ; rtle

−γτ ,
(
1− e−2γτ

)
R2
g Id3

]
(4.36)

which we use to directly compute the average

ϕ(l, l; t, τ) = e−γτR2
g Id3 . (4.37)

Again, in this example Rg does not depend on m.

We may now compute g2(τ) quite easily, assuming a stationary Gaussian excitation beam:

g2(τ) =
N − 1
N

∏
α∈{x,y,z}

(
σ 0
α
)2 + R2

g +w2
α/4√[(

σ 0
x

)2
+ R2

g +w2
α/4

]2

− (στα )4

+ 1
N

∏
α∈{x,y,z}

(
σ 0
α
)2 + R2

g +w2
α/4√[(

σ 0
x

)2
+ R2

g +w2
α/4

]2

−
[
(στα )2 + e−γτR2

g

]2
− 1, (4.38)

in which both terms contain contributions due to systematic tracking errors, but only the sec-

ond term contains information about the internal motion of the dyes within the particle. We

are best able to resolve internal motion when N is small, wα is small, and Rg is large. In the

next section we will discuss more generally how these parameters influence the tracking-FCS

curves.

4.2.2 General properties of tracking-FCS curves

There is an important, fundamental difference between tracking-FCS and open-loop FCS: the

tracking system follows the center of mass of the emitters, meaning that any tracking errors

arise from correlated displacements of the emitters away from the stage position xs . This

means that tracking errors must contribute differently to g2(τ) than uncorrelated internal mo-

tion of the particle. Specifically, as the number of emitters increases the contribution to g2(τ)

due to correlated fluctuations increases because the signal size increases, while the contri-

bution due to uncorrelated fluctuations decreases because these fluctuations average to their

equilibrium value. This difference is reflected by the trends in the contrast (the value g2(0)) of

the FCS curve with changes in the parameters of our models. We explore these differences here

using the FCS curves we calculated in Eqs. 4.35 and 4.38. Figure 4.3 illustrates these trends,

showing the effect of changes in each of these parameters on the FCS curves for both types of
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Figure 4.3: Example tracking-FCS curves for the solid particle (dashed lines) and particle con-
taining free dyes (solid lines) with varied model parameters. In all plots, we used ζ = λ/

√
2πw,

λ = 532nm, γ = 200 Hz and we modeled the tracking system with a single pole at 10Hz. The
remaining parameters are specified. Omitted units are all µm.

particles.

First of all, we consider how Rg affects the FCS curves. For a fixedN , increasing Rg decreases

the contrast due to systematic terms. This happens because the density of dyes decreases as the

particle gets larger, so synchronized tracking errors produce smaller fluorescence fluctuations.

This is obvious in the case of a large solid particle, since if the particle is larger than the laser

beam then no fluctuations will be visible unless the tracking error is very large. Unlike the

systematic terms, the contrast due to the particle’s uncorrelated internal dynamics decreases

with increasing Rg because fewer emitters are detected at any one time.

We showed in Eq. 4.38 that the number of emitters N within the particle is inversely pro-

portional to the contrast in the FCS curve due to internal motion, and this was not surprising.

Whenever the motion of the individual particles is not synchronized, we expect the contrast to

decrease with increasing N . However, the relative size of the contrast due to correlated track-

ing errors increases asymptotically in Eq. 4.38 until it reaches its value for the solid particle

in Eq. 4.35. The reasoning for this is the same as before: larger N leads to larger fluctuations

due to correlated motion of the emitters.

The one parameter that affects the contrast of both systematic and internal terms uniformly

is the size of the laser beam. By decreasing the size of the beam, the FCS curve gains detail

because fewer emitters are detected at any one time. We can generally not make the tracking

laser beam very small for reasons discussed in 3.3.2, so we will often be limited in the amount of

detail we can resolve in the fluorescence signal used for tracking. The need for a small beam to
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achieve greater contrast motivates our use of a separate probe laser beam in our measurements

on DNA dynamics in Chapter 7.

Finally, in both equations the contrast due to the systematic terms scales as

g2(0) ≈
(
σ 0
)4

2
(
R2
g +w2

)2 , (4.39)

so that tracking errors are usually masked by the particle size and the beam size, unless those

errors are very large. While the differences between correlated tracking errors and uncorrelated

internal dynamics are interesting and important, it is due to this fact that we rarely see much

evidence of tracking errors in the contrast of our FCS curves unless we intentionally limit

tracking fidelity in order to detect them. However, in the richer FCS curves that we calculate in

Section 4.2.4 in which the laser beam is modulated, tracking errors appear in other ways. For

a thorough discussion the contribution of tracking errors to the FCS curve, see [42].

4.2.3 Dynamic light scattering and other related techniques

Dynamic light scattering (DLS) is a technique in which laser light is focused into a solution and

objects in that solution scatter some of that light onto a detector. Fluctuations observed at

the detector are used to infer properties of the objects in solution, but are usually only suffi-

cient for measuring large-scale translational motions because of visible light’s relatively small

scattering amplitude off of most objects. Similarly, neutron scattering experiments illuminate

target objects, sometimes containing embedded isotopic labels, and the detection statistics of

the scattered neutrons are analyzed. Neutron scattering obtains higher spatial and temporal

resolution than DLS, but is ineffective in aqueous samples because of the background generated

by scattering off of the solvent molecules.

In both DLS and neutron scattering, the detection statistics are described by the dynamic

structure factor of the target objects,

S(k, t) = 1
N

∑
l,m

〈
eik

T(xt+τm −xtl)
〉
, (4.40)

where xt+τm is the location of the mth scattering center. Not surprisingly, the statistics of FCS

are closely related to those of scattering experiments and may be expressed in terms of S(k, t).

Ric̆ka and Binkert showed[50] that this relationship is simply given by

f2(t + τ, t)∝
∫

d3kS(k, τ)Γ̃(−k)Γ̃(k) (4.41)

for open-loop FCS. This is seen quite easily from our own derivations: the dynamic term



65〈
eik̄T x̄lm

〉
appearing in Section 4.2.1 is exactly equal to the average in Eq. 4.40 whenever

k+k′ = 0. In open-loop FCS, the delta function δ3(k+k′) that appears in Eq. 4.9 enforces this

equality, which is precisely why Eq. 4.41 holds.

We must consider the source of this delta function term. It appears only if we assume

that the sample particles are uniformly distributed throughout the sample volume, so that

the probability of detecting one within any region depends only on the concentration of the

sample and the size of the region. This constant probability in position-space translates into a

delta-function in Fourier space.

In tracking-FCS, the probability distribution of any one of the dyes within the tracked particle

does not even resemble the open-loop case; in our derivations, we have assumed that this

probability is Gaussian with variance R2
g . As a result, no delta function appears inside the

integral; in fact, what does appear is the generalization of the delta function to a Gaussian with

variance R−2
g . It is only in the limiting case Rg →∞, corresponding either to a very large particle

or to very poor tracking, that there is equivalence between S(k, t) and
〈
eik̄T x̄lm

〉
.

One application similar to tracking-FCS in which the dynamic structure factor does appear

is in the use of a video camera to record the fluorescence signal. In this case, a quantity similar

to the FCS curve is found by computing the autocorrelation of the fluorescence intensity in

each pixel in the camera. This is the approach taken by Cohen[51], but his derivation is flawed:

he requires that the point spread function of the microscope be a delta function, but as a

consequence his predicted curve has a singularity at τ = 0 that he does not address. We

compute the correct image-image correlation function here, so that the relationship between

our and his measurements is clear.

We assume a correspondence between the spatial coordinates at the camera and in solution,

so that we may refer to the motion of the dye particles in the plane of the camera without

ambiguity. The fluorescence intensity in a single image, as a function of the continuous two-

dimensional position vector x, is given by

Γ t(x) =
∑
l

∫
d2x′C(x′, t)Φ(x− x′), (4.42)

where C is the concentration of dyes, given by Eq. 4.19, and Φ(x−x′) is the function that maps

the fluorescence of a particle centered at position x′ in the camera frame onto the camera at

position x. This can be an arbitrary point-spread function of the microscope, except that we

have not allowed for it to depend explicitly on x′ so we rely on the assumption that the laser

illumination profile is approximately constant over the region explored by the trapped particle.
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We re-write this in terms of the Fourier transforms of C and Φ, and get

Γ t(x) =
∑
l

∫
d2k
(2π)2

Φ̃(k)e−ik
T (x−xtl ). (4.43)

If we now compute the image-image correlation function, we get

C(τ) ≡
∫

d2x
〈
Γ t+τ(x)Γ t(x)

〉
=

∑
l,m

∫
d2k
(2π)2

∫
d2k′

(2π)2
Φ̃(k)Φ̃(k′)

〈
eik̄

T x̄lm
〉∫

d2xe−i(k+k′)Tx. (4.44)

The integral over x appears here because we compute the autocorrelation of each pixel sep-

arately rather than adding the values at all pixels and computing the autocorrelation of that

quantity. The autocorrelation operation and the average-over-space operation do not commute,

which is why the results end up looking different. The integral over x contributes a factor of

(2π)2δ2(k + k′), so that the average term — again, the same that we derived in Section 4.2.1

— collapses to the dynamic structure factor.

It is important to remember that we did not account for the variation of the excitation beam

within the sample. If in fact the excitation laser did vary over the region in which the trapped

particle moves, things would not have gone quite so smoothly. Equation 4.42 would contain

an additional term of Γ(x − xs) in its integrand, accounting for both the illumination profile

and the tracking error. This term would result in the appearance of another set of k vectors in

Eq. 4.43; Equation 4.44 appears as it does only because the constant-intensity approximation

translates into a δ2(k+k′) term among these additional k vectors. More generally, a term of the

familiar form
〈
eik̄T x̄lm

〉
in which k+ k′ ≠ 0 would remain in the integrand. The details of this

calculation are essentially the same as in Section 4.2.1 and are not relevant to our experiments,

so we need not work them out explicitly here.

4.2.4 Contributions due to modulated beams

In section 4.2.1 we computed the tracking-FCS curve in terms of an arbitrary laser excitation

profile in Eq. 4.32, and in calculating two example g2(τ) curves we assumed that the laser was

a stationary Gaussian beam. Unlike the stationary beam, the modulated beams that we use for

tracking make systematic contributions to g2(τ). We derive these contributions in this section.

As we saw in Chapter 2, there are many parameters that describe the three-dimensional ge-

ometry of the two rotating tracking beams: both the beam waists and the rotation radii depend

on z and can be completely different between the two beams. In computing the localization

error signals, we simplified the model a little by assuming that the two beams were identical,
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save for an offset in z and the relative position of the waist focal plane relative to the rotation

focal plane. Our calculations in that chapter were important because we needed to prove that

our localization method would actually work. In this Chapter, we need not concern ourselves

with as much detail in describing the beam geometry, because the tracking-FCS curves are not

very sensitive to the beam geometry both because the z−axis modulation is slight and because

a well-tracked particle does not explore a large region of the three-dimensional laser beam.

We will approximate our excitation profile by a pair of identical three-dimensional Gaus-

sians that are rotating at a fixed radius r and are offset in space by the distance 2z0. In this

approximation we may say that the expected z position of the tracked particle is z = 0, where

the beams are focused at z = ±z0. The spatially-dependent fluorescence rate relative to the

stage position (in coordinates e = xcm − xs ) is then given by

Γ(e, t) = Γ0
2

exp
[
− 2
w2

(
ex − r cosωxyt

)2
− 2
w2

(
ey − r sinωxyt

)2
]

×
{
(1− cosωzt) exp

[
−2ζ2

w2 (ez + z0)2
]
+ (1+ cosωzt) exp

[
−2ζ2

w2 (ez − z0)2
]}
. (4.45)

In terms of the vector positions of the two laser beams

xt1 =


r cosωxyt

r sinωxyt

−z0

 ,xt2 =

r cosωxyt

r sinωxyt

z0

 (4.46)

and the diagonal matrix of beam waists

W =


w2

4 0 0

0 w2

4 0

0 0 w2

4ζ2

 , (4.47)

we may write the Fourier transform of the fluorescence profile

Γ̃(k, t) = Γ0π3w3

8ζ

[(
1− cosωxyt

)
exp

(
ikTxt1 −

1
2

kTWk
)

+ (1+ cosωzt) exp
(
ikTxt2 −

1
2

kTWk
)]
. (4.48)

In order to compute g2(τ), we now just need to insert Eq. 4.48 into Eq. 4.32 and work through

a very long sequence of algebra to simplify the result. I will spare these messy details; the



68

10
−5

10
−4

10
−3

10
−2

−1

0

1

2

3

4

5

6

7

8

9

τ [s]

g
(τ

)

 

 

0.1μm

0.2μm

0.4μm

0.6μm

0.8μm

Figure 4.4: Tracking-FCS curves for a point particle with 3-D modulated laser beams and varied
tracking errors. The curves are successively offset by 1 for clarity. We set σ 0

x = σ 0
y = σ 0

z to the
values given in the legend. Other parameters were fixed at Rg = 0, w = 1µm, ζ = λ/

√
2πw,

λ = 532nm, r = w/
√

2, z0 = 1µm. We modeled the tracking system with a single pole at 50Hz.
The modulation frequencies were ωxy = 5kHz and ωz = 50kHz.

result for the solid particle is
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where we have assumed
(
στx
)2 ≈

(
στy
)2

and we have defined
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4
(4.50)
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(
στz
)2 + R2

g +
w2

4ζ2
. (4.51)

Figure 4.4 shows g2(τ) from Eq. 4.49 with variations in the RMS tracking error. The size

of the oscillations at both modulation frequencies increases with increasing tracking error

because, as shown in Chapter 2, it is proportional to the particle’s distance from the origin.

The oscillations decay in amplitude at longer times because of the combination of dephasing

due to the particle’s motion in the rotating beam and tracking error correction by the feedback

system.

The term in Eq. 4.49 due to the beam rotation is identical to that in two-dimensional tracking

as shown in [42]. That reference also shows how the localization of the particle along the x
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and y axes is inferred from the size of the oscillations. Here we apply the same approach to

the z axis. We evaluate the quantity [g2(0)+ 1]/[g2(π/ωz)+ 1], which gives the ratio of the

size of the oscillation at its maximum value to that at its minimum value. We use σπ/ωzα ≈ σ 0
α

for all axes α because the modulation is much faster than the particle’s motion. If we assume

that ωxy � ωz so that oscillations at ωxy only begin to appear at times much longer than

π/ωz, we have

g(0)+ 1
g2 (π/ωz)+ 1

=
3 exp

(
− z2

0

2(σ0
z )2+R2

g+w2/4ζ2

)
+ exp
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0
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[(
σ 0
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]
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If we isolate the oscillations at ωxy by setting ωz � ωxy , we find that they scale the same

way:
g(0)+ 1

g2

(
π/ωxy

)
+ 1

= 1+ 2r 2(
R2
g +w2/4

)2

(
σ 0
x

)2
+O

[(
σ 0
x

)4
]
. (4.54)

From Eqs. 4.53 and 4.54 it is evident why the oscillations atωz are so much smaller than those

at ωxy in the plot in Fig. 4.4. Since w/ζ ∼ λ/
√

2πw, with waist sizes near w ≈ 1µm we

expect the oscillations atωz to be as much as 100 times smaller than those atωxy for a given

mean-squared tracking error. While it is possible to infer the tracking error by solving Eq. 4.53

for σ 0
z , the oscillations in g2(τ) are often so small that they cannot be used for this purpose.
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Chapter 5

Experimental apparatus and
diagnostic results

In this chapter, we give a detailed description of the experimental apparatus that we designed

to implement the three-dimensional localization technique described in Chapter 2 and to sub-

sequently track fluorescent particles using feedback as described in Chapter 3.

5.1 Design overview

We begin with a general overview of the design of the apparatus. This section (I hope) con-

tains enough basic information to describe the complete functioning of the tracking apparatus

without requiring a background in optics. Later sections contain more detailed information.

5.1.1 Modulation optics

The most important part of our experimental apparatus is the set of optics used to modulate

the laser beams for three-dimensional localization as discussed in Section 2.3 and illustrated

in Fig. 2.4. Two separate laser beams must be rotated in circular orbits while the optical power

in the beams is modulated with opposite phase. These beams are then combined and focused

together into a sample, with the two beams focusing at slightly different depths. In this section,

we discuss how all of this is accomplished.

We rotate the beams and modulate the optical power with acousto-optic modulators (AOM).

These are standard optical components, but we describe their basic operation here due to their

relative obscurity in other fields. For more information, see [52]. The type of AOM that we use is

illustrated in Fig. 5.1. It consists of a slab of glass with a piezoelectric actuator — a crystal that

expands when a voltage is applied to it — bonded to it on one side. A high-power sinusoidal

RF signal (in our case f ∼ 40MHz and P ∼ 1W, although the power is enhanced by a resonance

in the AOM’s input coupler) is applied to the piezo, which creates a compression wave that
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Figure 5.1: Acousto-optic modulator. High-power RF applied to a piezoelectric transducer sets
up a traveling acoustic wave in a glass slab. Incident light scatters off of the resulting periodic
refractive index at an angle θ depending on the RF frequency and optical wavelength.

propagates through the glass. An acoustic absorber is bonded on the opposite side of the glass

to prevent reflection of the wave (actually, in our case the glass is cut at an angle to achieve

this purpose). Inside the glass, the compression wave induces a sinusoidally-varying index

of refraction due to the dependence of the index on the density of the glass. When incident

light interacts with this index variation, some fraction of the beam is scattered at angle θ from

the incident beam. This angle depends approximately linearly on the frequency of the acoustic

wave, and the optical power in the deflected beam depends linearly on the acoustic wave power.

Careful alignment of the laser beam to the AOM is necessary in order to couple as much of the

incident beam as possible into the deflected beam — the optimal coupling angle depends on

both the wavelength of the beam and the frequency of the acoustic wave. With a well-aligned

532nm beam, we have been able to couple as much as 85% of the incident optical power into

the deflected beam.

We deflect our beams by varying the frequency of the RF signal applied to the AOMs. We

use voltage-controlled oscillators (VCO) to perform this frequency modulation. These devices

output RF at a frequency proportional to their input voltage; we drive the VCOs with a sine

wave, producing the frequency-modulated RF that causes the AOM to deflect the laser beam

back and forth. Each AOM produces deflection along a single Cartesian axis, so we must use

two AOMs along orthogonal axes — driven with the sine and cosine quadratures of the rotation

frequency — for complete beam rotation.
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Incident beams
f

Figure 5.2: Focusing of laser beams. Colored lines represent the outer boundaries of three laser
beams. Collimated beams (black) focus at almost exactly the focal distance f from the lens.
Diverging beams (red) focus further from the lens, and converging beams (violet) focus nearer
to the lens.

Three-dimensional localization requires two rotating beams focused at different planes in

the sample. We create two beams from a single laser by linearly polarizing its output at an ad-

justable angle using a birefringent quartz plate known as a half-wave or λ/2 plate. A polarizing

beamsplitter (PBS) separates this beam into two beams with orthogonal polarizations, equiva-

lent to taking orthogonal projections of the incident beam’s polarization onto the coordinate

axes defined by the PBS. Once split, we modulate the optical power in each beam between 0 and

100% using an AOM that we drive with a sinusoidally-attenuated RF signal. Our attenuation

electronics ensure that the power modulation is done with opposite phase between the two

beams in order to ensure high-quality z-axis localization signals.

In addition to modulation with opposite phases, the two beams must be focused at different

depths in the sample. Fig. 5.2 illustrates how this is accomplished. Converging beams focus

nearer to the focusing lens than diverging beams, so we may separate the two tracking laser

beams simply by mis-matching their divergence angles. This can be done by passing each

beam through a pair of lenses and adjusting the spacing between either lens pair. Once these

adjustments are made, the beams are recombined on a polarizing beamsplitter and are ready

to focus into the sample.

Figure 5.3 contains a photo of the apparatus, showing the beam paths and all of the mod-

ulation optics. A single AOM deflects the output of the laser along the y axis. This deflected

beam is split and two AOMs, one for each beam, perform the x-axis deflection and power mod-

ulation simultaneously. Pairs of lenses adjust the divergence of each beam, and the beams are

recombined on a polarizing beamsplitter. Once combined, the beams are transmitted to the

sample by the optics described in the next section.
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Figure 5.3: Photo of modulation optics with beam paths drawn in. Different colors distinguish
the paths of the two identically-colored tracking beams. The beam originates at the laser at
point a. It is deflected parallel to the optical table surface by the acousto-optic modulator at
point b, then rotated 90◦ by a set of mirrors (not labeled) to produce the y-axis deflection. The
beam is split in two at point c. Acousto-optic modulators at points d1 and d2 deflect along
the x axis and modulate the optical power in the two beams. The beams are recombined by a
polarizing beamsplitter at point e after passing through focusing optics (not labeled). The 1in
spacing of the holes on the optical table serves as a size scale reference.
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Figure 5.4: Schematic of the apparatus. Circled ωxy indicates the RF output of a VCO (with
40MHz center frequency) that is frequency-modulated atωxy by driving the control port of the
VCO with a sine wave. Arrows overlaid on beams in the schematic illustrate beam deflection:
the beam is deflected along the vertical (y) axis by the first AOM and a set of mirrors (not
shown). The remaining AOMs deflect on the horizontal (x) axis to complete the beam rotation.

5.1.2 Additional optics, detectors and feedback electronics

In the previous section, we described all of the optics necessary for modulating the tracking

laser beams. We now complete our overview of the apparatus by describing the optics that

transmit the beams into the sample, collect the fluorescence light, derive localization signals

and actuate the tracking stages.

Figure 5.4 shows a nearly complete schematic of the apparatus, including the modulation op-

tics described in the previous section. Once the two tracking beams are recombined, a quarter-

wave (λ/4) plate is used to circularize the polarization of the two beams simultaneously. This

serves primarily to ensure that each focused beam is symmetric, but additionally causes the

back-reflection of either beam to lie along the beam path of the opposite beam. This aids in

aligning the microscope. The two combined beams are reflected off of a dichroic mirror and

focused into the sample by a microscope objective.

Fluorescence light is collected by the same microscope objective that focuses the beams and

is separated from the laser light by the dichroic mirror. As shown in Fig. 5.4, the fluorescence

light is split by a 50/50 beamsplitter and collected by a pair of photon-counting avalanche

photodiodes (APD). This arrangement is widely known as the Hanbury-Brown-Twiss (HBT) con-
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figuration, named for the scientists who invented it for studying fast correlations in coherent

light in the 1950s[53, 54]. After detecting a photon, electron cascade detectors such as pho-

tomultiplier tubes and photon-counting APDs become insensitive to subsequent photons for a

brief period of time — on our APDs, about 50ns. However, a pair of detectors looking at the

same fluorescence signal is sensitive to photon pairs arriving with infinitesimally short time-

spacing: there is a 50% chance that the second photon will be incident on a different detector

than the first, so that the first detector’s dead time does not prevent its detection. We use the

HBT configuration for our fast time-scale measurements in Chapter 6, but the time resolution

it provides is not necessary in other measurements and so we often use only a single detector.

The fluorescence signals output by the APDs are combined and fed directly into the lock-in

amplifiers. These devices input an analog signal, digitize it, and perform precisely the compu-

tation discussed in Section 2.2.2 in real-time. The result is converted back into an analog signal

and fed into a feedback controller. The controller consists of three separate, independent ana-

log integrators — one for each Cartesian axis. The outputs of the integrating controllers go

directly to high-voltage amplifiers that drive the piezoelectric nanopositioner stages. These

stages move the microscope objective (along the x and y axes) and the sample (along the z

axis) in order to track the motion of the fluorescent particles we detect.

5.1.3 Probe beam

The apparatus we have so far described in this section is capable of tracking diffusing fluores-

cent particles while making high time-resolution measurements of the fluorescence signal. For

many applications — for example, measuring photon statistics on individual fluorescent emit-

ters as we do in Chapter 6 — no additional components are required. However, as we discussed

in Section 4.2.2, the tracking beam is often insufficient for providing high spatial resolution for

measurements on particles with internal translational degrees of freedom, such as polymers.

The sensitivity of such measurements depends on the size of the focused beam inside the

sample — the smaller the beam, the better the spatial resolution. As discussed in Section 3.3,

tracking places exactly opposite demands on the beam size: smaller beams improve absolute

tracking fidelity but impose limits on the size of the particles that can tracked. To get around

this complication, we use a second, tightly-focused laser beam for measurements on internal

motion while tracking with a much larger beam.
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5.2 Detailed component descriptions

In the previous section we described the basic functionality of the three-dimensional tracking

apparatus with a level of detail sufficient for understanding the experimental measurements

appearing later in this thesis. In this section, we provide much more detail — the types of

details that someone building or using this type of apparatus might find useful but few others

will. This section is ordered primarily as a discussion of our experiences with the particular

components used in the tracking apparatus. Many of these components were inherited from

earlier generations of the apparatus, built by Andy Berglund. Descriptions of those components

can be found in Andy’s thesis[37]. Nonetheless, I have more to say about most of them, and I

include my thoughts here.

5.2.1 Lasers

Green Tracking laser. The Melles-Griot DPSS 532nm laser is not stabilized for intensity or

polarization, but I have found that the beam power delivered to the back of the microscope

objective fluctuates less than 5% over time-scales of several hours. The laser did need time

to warm up in order to achieve such stability: fluctuations are visible by eye for about 10

seconds after power-up, but steady-state power output seems to be reached in about 1

hour. This laser began operating intermittently at the end of the data-taking that resulted

in Chapter 7 of this thesis (after six years of service), and will likely be replaced before

proceeding further with more experiments.

Violet probe laser. The violet laser system is illustrated in Fig. 5.5. Despite its complexity,

in most regards this setup is actually fairly robust. The Verdi V8 and MBR-110 require

little maintenance — nothing more than occasional coupling realignment. The MBD-200

is also fairly stable, holding its cavity lock for many hours at a time, but its input coupling

needed optimization every few days. Its output suffers from intensity fluctuations of a

few percent on ∼ 100ms time-scales, and etalon effects in the PM fiber cause large (∼
10%) fluctuations on similar time-scales. Stability of the probe power is essential, as any

amplitude noise is visible in the fluorescence correlation function. To eliminate all of this

noise, I used a moderately fast (∼ 3kHz -3dB bandwidth) feedback circuit comprised of an

IntraAction AOM for power modulation, a New Focus amplified photodiode on the fiber

output, and an analog integrating controller with a stabilized voltage reference (LM399)

for setting the intensity lock point.

This configuration was chosen because it was the fastest way to generate blue/violet light

since we already owned all of the necessary components. Its complexity is a major draw-
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Figure 5.5: 415nm probe laser system. A Coherent Verdi V8 DPSS laser produces 5.25W at
532nm and pumps an MBR-110 Ti:S laser that produces 400mW of light at 830nm. The 830nm
laser pumps an MBD-200 resonant frequency doubler that produces about 5mW of 415nm light
that is coupled to a Thorlabs/Nufern polarization-maintaining fiber. The fiber’s output power
is stabilized using a feedback loop consisting of a New Focus photodetector, an IntraAction
AOM and a home-built integrating feedback controller. Inset shows plots of typical normalized
output power of the doubler (blue), fiber without feedback (green) and fiber with feedback (red),
offset by 0.2 from each other for clarity.

back as it requires a relatively large amount of maintenance, a fiber to clean up its beam

shape (and guide it through the lab to the tracking apparatus), and control electronics

to keep its output power stable. Furthermore, it occupies almost as much optical table

space as, consumes as much energy as, and was almost certainly more expensive than

the entire tracking apparatus. Compact, efficient, inexpensive solid-state lasers are now

available in many blue wavelengths and should always be chosen over this configura-

tion unless tunability to very specific optical frequencies is needed (which it never is for

room-temperature fluorescence spectroscopy in liquids).

5.2.2 Modulators

Acousto-Optics. The acousto-optic modulators (IntraAction AOM-40) have worked very well

for beam rotation and power modulation. They are much more reliable and easily ad-

justable than the resonant galvanometer mirrors used for beam rotation in the two-

dimensional tracking apparatus. They are also much more pleasant to work around,

considering the large difference in the response of the human ear at their 40MHz (vs.

8kHz) drive frequency.

The speed of the acoustic wave inside the AOM determines the deflection fidelity: the

wave must cross the entire diameter of the beam at an approximately constant frequency
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in order to avoid producing a blurred deflected beam. In our glass AOMs the speed of

sound is approximately 3km/s, so the time needed for the acoustic wave to fully cross

our ∼ 1mm beams is about 300ns. This means that frequencies as high as a few hundred

kHz should produce high quality, nearly blurr-free deflection. In practice, we have used

modulation frequencies ωxy up to 75kHz without any noticeable degradation in beam

quality.

During alignment, the laser beams are passed through the AOMs as close to the piezo

transducers as possible without clipping — usually about 1mm. This does not affect cou-

pling efficiency but reduces phase lag between the input RF and output beam power/deflection

dramatically. With 40MHz glass AOMs, the 90◦ phase-lag frequency can be pushed to well-

past 100kHz, allowing for the possibility of very fast feedback on the optical power or

beam deflection.

We must be careful when coupling the deflected output of one AOM into another. As

discussed in Sect. 2.3, the ideal beam rotation has a conical shape in three dimensions,

which requires that the deflections along the two axes focus in approximately the same

plane. We use lenses to image the deflection of the first AOM into the plane of the acoustic

wave of the second AOM in order to achieve this goal.

One drawback to using the AOMs to rotate the beam is that the optimal alignment angle

for coupling into the first-order deflected beam changes as a function of acoustic wave

frequency. This results in the creation of amplitude noise on the tracking beam with a

spectral peak at twice the rotation frequency, which is generally too fast to eliminate us-

ing feedback. Fortunately, we usually only need very small deflections so this effect is of

little consequence. However, if we were to start feeding back to the AOMs for tracking fast

particles or using rotation-radius modulation, this issue should be addressed. I have con-

sidered a few ideas for feed-forward noise cancellation, but I suspect the best solution is

to buy specialized acousto-optic deflectors. These correct for acoustic frequency changes

by (I suspect) either using multiply-resonant input coupling networks with higher Q for

off-center RF frequencies or by using multiple piezos that actuate along slightly different

axes and have spectrally-separated frequency responses.

RF amplitude modulators. Most devices sold as RF amplitude modulators do not respond at

control frequencies higher than a few tens of kHz. I spoke to an RF engineer from the

company Tele-Tech about this, and he related some useful information to me. Standard

current-controlled RF attenuators are essentially just mixers with poor high-frequency

response on their control ports that reduces the creation of harmonics of the input RF

signal on the attenuated output. If higher-frequency harmonics are not an issue — for



79

example, resonant AOMs respond very weakly to them — then a mixer may be substituted

for the attenuator.

I was told: “a mixer is a symmetric device!” Application of AC signals to any two ports of

a mixer results in the output of the product of those signals on the third port. The only

functional differences between ports, in fact, are the frequency responses: often the RF

and LO ports do not respond to DC, but the IF port almost always does. By driving the

IF port of a mixer with a DC-offset 100kHz sine wave, we create amplitude modulation

of the input RF. Driving the AOMs with this signal causes the amplitude modulation we

require for z-axis localization.

In principle, a mixer can be used in this configuration for power modulation at frequencies

all the way down to DC. However, when using a mixer for low-frequency beam power

control I discovered an interesting problem related to the frequency modulation of the RF

signals used for beam deflection. A portion of the frequency-modulated RF is visible to

the electronics used to drive the mixer’s IF port. By interfering with those electronics, this

can cause substantial amplitude modulation on the mixer’s output. This effect was small,

between 5 and 10% of the DC power level, when the mixer was driven with an Agilent DC

power supply, and twice as large when driven by an op amp. I found no improvement by

replacing the mixer with a true current-controlled RF attenuator, but fortunately a solid-

state voltage-controlled attenuator (Mini-Circuits ZX73-2500) provided sufficient isolation

between the RF and DC signals to eliminate the effect. It is possible that sufficient isolation

could also have been achieved using a passive filtering network between the electronics

and the mixer, but I did not attempt to do this.

Electro-optic phase modulator. My original design for the optical power modulation used for

z-axis localization used an electro-optic modulator (EOM) made by New Focus, driven on

a resonance induced using an inductor in series with the EOM’s capacitance. The main

reason for choosing this approach was that I was concerned about optical power losses,

and it conserved power by alternating all of it between orthogonal polarizations. The

EOM required temperature stabilization because its birefringence exhibited large thermal

drifts, so I glued a thermistor directly to the crystal inside of it and placed a thermo-

electric cooler (TEC) on the outside, as close to the crystal as possible. Driving the TEC

in closed-loop to stabilize the thermistor’s resistance, the drift in the EOM’s output was

greatly suppressed. I recorded my first 3-D tracking data with the EOM modulation. How-

ever, the EOM needed adjustments every week or so, and removing it in favor of doing

all modulation with the AOMs greatly improved the robustness of the apparatus (at the

expense of a 50% loss in optical power, which I had deemed insignificant by this point).
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5.2.3 Optics

Microscope objective and collection optics. We use a Carl Zeiss C-Apochromat water-immersion

(NA 1.2) microscope objective in inverted epifluorescence configuration. This objective

was chosen because it is optimized for deep aqueous samples; in comparison to our Zeiss

Plan Apochromat oil-immersion objective, both objectives produced good localization

signals on fluorescent beads immobilized on glass surfaces but we were unable to track

particles in 3-D with the oil-immersion objective. We attribute this to the aberrations in-

duced by the refraction index mismatch between the immersion oil and the water. The

C-Apochromat is very heavy (240g, compared with 140g for the Plan Apochromat) due

to its many optical elements. This added weight reduces the resonance frequency of the

piezo nanopositioner that moves the objective, and so effectively limits the bandwidth

with which we can feed back. This has not been a problem for tracking particles as small

as 20nm quantum dots in water, and can be overcome in the future by one of the strategies

described in Section 3.3.2.

The red fluorescence light (from the green excitation laser) collected by the microscope

objective is focused by a Zeiss f = 160mm tube lens, then collimated by an Edmund

Optics achromat and focused again by a second achromat onto the APD active area. This

configuration was unnecessary for the experiments described in this thesis, but the highly-

corrected tube lens will enable the use of a confocal pinhole for reducing background

fluorescence in future experiments. In contrast, the only imaging optic for the blue fluo-

rescence light (from the violet excitation laser) is a single Edmund Optics achromat. In the

future this will be replaced by a second tube lens, for integration of a confocal pinhole.

Polarization optics. For convenience and to conserve optical power, we split our beam by

rotating its polarization with a zero-order half-wave plate (CVI Laser) and separating or-

thogonal polarizations. The power balance between these beams is critical because even

small changes affect the z-axis localization signals. Fortunately, we see no evidence of

drift with the CVI waveplate and New Focus polarizing beamsplitters. Once the beams are

recombined, we use a multi-order quarter-wave plate (VLOC) to create circularly-polarized

beams (with opposite helicity). This serves the purposes both of enforcing radial symme-

try of the focused beams and of transmitting retro-reflected light from one beam along

the beam path of the other, aiding beam alignment.

Filters.

We use interference filters for combining laser beams and separating fluorescence based

on wavelength. These filters are comprised of a set of bandpass emitter filters from
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Figure 5.6: Layout of filters for light combining and separating. a: Omega Optical XF2031,
reflects λ < 505nm. b: Omega Optical XF2006, reflects λ < 445nm. c: Chroma Technologies
ET480/40m, transmits 460nm < λ < 500nm. d: CVI Laser BSR51-1037, reflects 500nm < λ <
600nm. e: Chroma Technologies DRLP545, reflects λ < 545nm. f: Chroma Technologies
HQ575/50m, transmits 550nm < λ < 600nm. We sometimes use a Chroma Technologies
HQ630/140m-2p bandpass emitter filter on the red fluorescence channel (not shown) for its
strong rejection of light at both 415nm. Note that the 1064nm beam is not used in experiments
described in this thesis, but dictated the use of the CVI bandpass filter.
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Figure 5.7: Assembled microscope stage. Labeled components are described in the text.

Chroma Technology and a set of dichroic mirrors from Chroma Technology, Omega Opti-

cal, and CVI Laser. A schematic of the filter arrangement is shown in Fig. 5.6. The Chroma

bandpass filters have very high passband transmission (> 90%) and stopband optical den-

sities greater than OD6. Over time we have slowly replaced all of our bandpass filters with

Chroma’s ET and HQ series filters because of their exceptional performance. The dichroic

mirrors all perform well, with seemingly negligible differences between manufacturers.

Of note, however is that the mirror by CVI Laser was mistakenly used in making the mea-

surements found in Chapter 6, and reduced the detection efficiency (for fluorescence at

655nm) by 80-90%.

5.2.4 Mechanical components

Sample stage.

A stable mechanical stage is necessary to hold the nanopositioners, sample, and micro-

scope objective in the proper relative orientation. I designed a fairly simple stage to ac-

complish this and fabricated most of the necessary parts out of aluminum in the Caltech

mechanical engineering machine shop. The assembled stage is shown in Fig. 5.7.

The xy nanopositioner is bolted to a 1.5” thick aluminum plate that is suspended above

the optical table on rubber balls for vibration reduction. A 1/8” thick aluminum plate
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1cm1cm

Figure 5.8: Coverslide holder. White dashed rectangle indicates the border of the coverslides.
White dot-dash lines indicate the sample border imposed by the double-sided tape. The 12.5mm
central hole reduces laser back-reflection. 5mm corner holes are for dowel pin alignment and
the smallest holes are threaded for fastening with a thumb screw.

and some Thorlabs mounting hardware hold the microscope objective in place atop the

nanopositioner. This configuration is stable enough for the microscope objective to be

removed and replaced without requiring realignment of the laser beams.

25µL liquid samples are sandwiched between two VWR No. 1 glass microscope cover-

slides that are separated by a layer of double-sided tape to ensure sufficient sample depth

(about 100µm). A pair of binder clips clamps the coverslides to an aluminum holder that

attaches firmly to the z nanopositioner via a complementary aluminum plate. The cov-

erslide holder is held in place by a single thumb screw, and held in alignment by a pair

of dowel pins. This mechanism was efficient for loading and unloading samples quickly,

and held them in place quite stably. The coverslide holder with slides and binder clips

are shown in Fig. 5.8.

The z nanopositioner is suspended above the microscope objective by a Newport minia-

ture 3-axis translation stage used for coarse adjustment. This stage was a disappointment

because of its abominable torsional rigidity. Fortunately, there is no evidence that its

instability affected the performance of the apparatus, which perhaps should not be sur-

prising considering the tiny forces exerted and distances traveled by the nanopositioners.

Nanopositioners. Both of our nanopositioner stages came upon us by a bit of serendipity. The

xy nanopositioner (Physik Instrumente P-517, 100x100µm) was purchased for scanning
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the surfaces of coverslides, before a tracking apparatus was envisioned, but happened

to perform well enough to track fairly fast-moving particles. The z axis nanopositioner

(Physik Instrumente P-753, 38µm) was purchased long ago for another fluorescence ex-

periment, and I happened to discover it in a closet while looking for some glassware.

The two-axis stage has an unloaded resonance at about 400Hz, with -90◦ of phase at

300Hz. Adding the water immersion microscope objective and mounting bracket brings

the resonance down to 300Hz, with -90◦ of phase at about 220Hz. These resonances

are unavoidable consequences of using long-travel piezo stages and do limit our tracking

bandwidth. In contrast, the z-axis stage has both loaded and unloaded resonances at over

1kHz due to its much shorter travel and very light-weight load. This stage is fast enough

to not limit our tracking bandwidth in any detectable way, but its shorter travel means

that it is usually the limiting factor determining the duration of tracking trajectories. It

may eventually need to be replaced by, or used in tandem with, a stage with longer travel.

5.2.5 Acquisition hardware and software

Avalanche photodiodes. We use industry-standard Perkin Elmer photon-counting actively-

quenched APDs (SPCM-AQR15). These output 35ns TTL pulses each time a photon is

detected, with a 50-60ns dead time following each pulse. Being careful to shield the

detectors from ambient light, it is possible to operate them very nearly at their dark count

rates provided the excitation power is not high enough (say, 10µW) to induce significant

autofluorescence from the glass coverslides or leakage of the excitation beam through

the emitter filters. The dark count rates of these detectors decrease after initial power-up

to a steady-state minimum after about 1 hour of warming up. In addition, I have found

evidence that the dark count rates on these detectors increase over much longer time-

scales. When I began testing, the detector that we had used most frequently had a dark

count rate roughly 12 times higher (600Hz) than the manufacturer specification (50Hz).

Our other, less-used detectors all had count rates only twice as high as the specification.

The higher dark-count detector eventually stopped working completely, so it is possible

that this is a symptom of impending failure.

Time Interval Analyzer. We use the GuideTech GT653 time interval analyzer (TIA) board to

record photon arrival times with 75ps (same-channel) and 500ps (cross-channel) timing

accuracy. Using the API provided by its manufacturer I wrote code in C++ to interface

the boards with Matlab, and this interface has worked fairly well. I am able to record

data essentially indefinitely using the board’s memory-wrap function, although I usually

limit acquisitions to about 100 seconds. Since upgrading to a new version of MATLAB a



85

memory allocation error has begun to appear about once a week, requiring a re-start of

MATLAB each time. I am confident that my code does not have memory leaks or overrun

errors; this may be a problem with using executables compiled against an earlier version

of MATLAB’s MEX libraries, but I have not taken the time to recompile the executables yet.

Computer data acquisition board. A National Instruments data acquisition board (NI-DAQ)

records analog signals from our apparatus. The 2-D tracking apparatus had used two sep-

arate computers for the NI-DAQ and GT653 boards because of system failures that had

occurred with early versions of the National Instruments driver software. I reverted to

using a single computer for all acquisitions after installing upgraded drivers that seemed

more stable, and I began using the MATLAB Data Acquisition Toolbox to control the NI-

DAQ. This was convenient, but had a bug that I never quite tracked down: when the

computer was recording photon counts at a high rate (several hundred kHz), the sam-

pling on the NI-DAQ would slow down without triggering an error in the software. As a

result I obtained data traces reporting that, for example, the fluorescence signal from a

single tracked particle spanned 30 seconds while the stage motion from the same particle

spanned 40 seconds. This was never really a problem because I rarely operated at such

high count rates, but it is something that should not happen.

5.2.6 Control Electronics

Electronics — most home-made — are responsible for synchronizing the beam modulation and

controlling the tracking stages and excitation beam power. They can be broadly divided into

two categories: modulation electronics and post-detection electronics. Figures 5.10 and 5.11

are electrical schematics of the modulation and post-detection electronics, respectively. Most

of these electronics are visible in the photo in Fig. 5.9.

5.2.6.1 Modulation electronics

VCO controller. This circuit takes the sinusoidal reference signal from the xy lock-in am-

plifier and transforms it so that it may be used to drive the VCOs for beam rotation. A

basic schematic is shown in Fig. 5.10. The circuit makes three identical copies of the

input reference signal and applies an independently adjustable gain (for rotation radius

control) and a single adjustable DC offset of about 9V (to center the VCO at the AOM’s

peak response frequency) to each one. One of those signals is output to the y-axis VCO.

In order to ensure that the modulations along the x and y axes have the necessary 90◦

phase difference, the remaining two signals go through all-pass filters that apply variable

phase shifts[55] before being output to the x-axis VCOs. The phase must be set any time
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Figure 5.9: Photo of most of the electronic components of the apparatus. Cable connections at
the top right corner are part of a light-proof box containing the optics, detectors, and sample
stage. Labeled components are all described in the text.

we change the rotation frequency, because both the filters’ phase shifts and the phase

lags due to the acoustic wave propagation delay in the AOMs depend on the frequency.

Z Modulator. This circuit is a simple op-amp phase splitter[55]. A basic schematic is shown in

Fig. 5.10. It takes as its input the reference signal from the z-axis lock-in amplifier, splits

it in two, and inverts one of the resulting signals. An adjustable DC offset (of about 0.3V)

is then applied to each signal, and the signals are output to mixers that modulate the

power in the two tracking beams. By carefully aligning the beams into the two AOMs, the

acoustic wave propagation delays can be made almost identical for the two beams. This

means that we may come very close to achieving the 180◦ relative phase between the two

beams without using variable phase shifters. Our apparatus actually has a phase error

of about 5◦ between the two beams, but the magnitude of the localization signal varies

quadratically with small phase errors so that this contributes only about a 0.2% loss in

signal.

5.2.6.2 Post-detection electronics

Pulse splitting and combining electronics. The signals output by the APDs are sequences

of 35ns pulses. These pulses must be recorded by a computer, made available for real-

time monitoring, and processed by the lock-in amplifiers to compute localization signals.
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Figure 5.10: Schematic of the electronics for beam modulation. Components grouped in dashed
rectangles comprise individual home-built circuits and are described in the text. The home-
built Fluorescence Servo appears in Fig. 5.11. The remaining components are commercial
items. VCO: voltage-controlled oscillator, Mini-Circuits ZOS-50. Mixer: Mini-circuits ZAD-8.
VCA: voltage-controlled attenuator, Mini-Circuits ZX73-2500.
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Figure 5.11: Schematic of the detection and feedback electronics. Components grouped in
dashed rectangles comprise individual home-built circuits and are described in the text.

Figure 5.11 contains a schematic of the electronics used to split and combine the signals

as necessary. A pair of commercial TTL fan-out circuits (Pulse Research Labs) outputs four

copies of each APD signal. One copy is recorded by the GT653 TIA in the computer, with a

79ns analog delay imposed between channels by a long coaxial cable. This delay reduces

noise at very short lag times due to the coincident arrival of pulses at the TIA. A second

copy of the fluorescence signals is filtered and amplified for display on an oscilloscope

(not shown). A third copy is combined using a home-built circuit based on a fast TTL

OR gate (SN74F32) and buffer (SN74F125). One copy of the combined signal is output

directly to each lock-in amplifier, and one copy is output to the fluorescence servo. 50Ω

terminators are used to prevent the reflection of the high-frequency components of the

signal.

Lock-in amplifiers. We used the dual-phase SR850 DSP lock-in amplifier by Stanford Research

Systems for demodulation on the x and y axes for both 2-D and 3-D tracking experi-

ments. For z-axis demodulation I initially built an analog lock-in amplifier using a VCO

chip phase locked to the excitation beam power; a mixer for phase detection; and a low-

noise amplifier. This circuit worked, and I used it to record my first 3-D tracking data on

particles as small as 24nm, but the mixer’s temperature-dependent DC offset presented

a problem. The offset can only be trimmed when the apparatus is not tracking a particle.

However, as soon as the apparatus began tracking a particle and the fluorescence signal
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jumped up, more power was dissipated in the mixer and it heated up. This caused the

offset to drift, introducing a time-dependent bias in the lock point of the tracking system.

To avoid such errors, and to take myself out of the feedback loop (as the offset trimming

servo), I purchased the SR810 single-phase DSP lock-in amplifier. This change was also

the primary reason that I began using the AOMs for the power modulation — the higher

frequency used with the EOM was too fast for DSP amplifiers, and I did not want to use an

analog lock-in because of their inferior DC offset properties. As a result of these changes,

the stability and robustness of the tracking apparatus improved remarkably.

I operate the lock-in amplifiers with an integration time of 300µs and with the lowest-

possible dynamic reserve. This means that the lock-in applies as much gain as possible to

the analog input signal, which reduces spurious digitizer noise. After some investigation,

I convinced myself that high dynamic reserve settings were a major contributor to the

small amount of noise that kept the 2-D tracking apparatus Andy Berglund and I built

from reaching the shot-noise limit. We vary the loop gain of the feedback system using the

adjustable sensitivity settings of the lock-in amplifiers. The variable aspects of the loop

gain are the fluorescence rate and the lock-in sensitivity, so we must balance changes in

the fluorescence rate by changing the sensitivity in order to maintain a particular tracking

bandwidth. The lock-in sensitivity is adjustable only in fairly large (6-8dB) increments, so I

built a variable-gain dual amplifier with calibrated 2dB increments to make more sensitive

adjustments on the x and y axes. The z axis was less sensitive to gain changes due to

the z nanopositioner’s high resonance frequency, so the lock-in’s coarse increments were

sufficient.

It may seem counter-intuitive to output digital pulses directly into the (intrinsically ana-

log) lock-in amplifiers. In fact, no signal is lost by doing this[37]. In addition, it is an

unfortunate misconception in the closed-loop particle tracking community that it is pos-

sible to benefit from complicated demodulation schemes that actuate the tracking stages

after every detected photon, rather than performing lock-in detection and averaging over

an intermediate time-scale. As shown in [19, 36, 37] and Sections 2.2.4 and 2.3.5, photon-

counting shot noise distorts localization estimates made with any finite averaging time.

Taking that averaging time to zero is worst-case example of this. Such an approach stems

from a basic misunderstanding of localization statistics, but is mitigated by similarly-

misunderstood dynamic properties of the feedback system. All feedback actuators have

some latency, and so if averaging is not performed on the localization estimate it will

be performed by the actuator. For a relatively slow actuator such as a piezo stage, the

result is hardly noticeable; for a fast electroosmotic trap, measurable displacement of the

trapped particle and localized heating can occur[51].
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Tracking controllers. I built the z tracking controller as an integrator based on the LT1012

op amp, with a differential input (based on the OP27 op amp) for properly interfacing the

controller ground with the lock-in amplifier ground. For my early 3-D tracking measure-

ments, I used the integrator circuit from the 2-D tracking apparatus, which was based on

OP27 and had floating inputs. I eventually replaced this circuit with one identical to the

z integrator because of its superior noise and offset properties. Each circuit includes an

analog switch (ADG417 for z, SW06 for x and y) that allows the integrator to be reset

with a TTL pulse.

High voltage amplifier. We drive the nanopositioner stages with a high-voltage amplifier from

Physik Instrumente that features an integrated readout circuit for measuring the stage

positions from their capacitive sensors. The outputs of the amplifier have low-pass filters

at frequencies of several hundred Hz, and these cause substantial amounts of phase loss

within the tracking bandwidth. The roll-off is presumably designed to reduce the gain at

the stages’ first resonance frequencies, but we would prefer a flat response that allowed

us more control over the stage dynamics.

Fluorescence Servo. Any variations in the fluorescence rate of a tracked particle translate

into variations in the loop gain of the feedback system. This can cause problems if the

variations are too large. If the fluorescence rate becomes too high, high loop gain may

cause the feedback system to become unstable; if the rate becomes too low, the tracking

bandwidth may become too small and the particle may be lost. When we were working

with mixtures of fluorescent beads of different sizes (and different brightnesses), Andy

Berglund and I devised a feedback circuit that used an AOM to vary the DC optical power in

the tracking beam in order to keep the loop gain constant. This allowed our 2-D tracking

apparatus to track 60nm and 210nm beads (with 27-fold differences in brightness) within

a single sample, and with exactly the same fluorescence rate[19, 42].

The fluorescence servo that we used was a very simple circuit. A set point was chosen for

the fluorescence rate, and the difference between the detected fluorescence rate and the

set point was sent to an integrating controller with a bandwidth of a few Hz. When no

particle was being tracked, the integrator was fixed on its upper rail so that the excitation

beam was as bright as possible. Once a particle drifted into focus, the fluorescence rate

quickly jumped above the set point and the integrator reduced the power to bring the

fluorescence back down.

We required a fluorescence servo for our work with DNA molecules in Chapter 7 because

those molecules were labeled with dyes that photobleach. This approximately exponential

decay in the fluorescence rate requires an exponentially-increasing excitation intensity to
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counteract. As a result, the amount of time for which we can track a molecule before all

its dyes have bleached is proportional to the logarithm of the maximum amount of optical

power available to the fluorescence servo. Consequently, we want the fluorescence servo

to have as much available power as possible. However, the simple fluorescence servo

allows the excitation beam to quickly reach its maximum intensity while no molecules are

being tracked. When a molecule finally does drift into focus, this high intensity will quickly

destroy many of its dyes because the bleaching rate is proportional to the intensity. Even

in the short period of time between the molecule drifting into focus and the fluorescence

servo reducing the beam intensity, a lot of damage will be done.

I developed a more sophisticated version of the fluorescence servo that works around this

problem. The servo inputs both the fluorescence rate and the optical power in the tracking

beam. When the fluorescence rate is low (because no fluorescent particles are in focus),

the servo locks the optical power to a set point that is usually an order of magnitude

or more below the total available optical power. Once a molecule drifts into focus and

the fluorescence rate increases, the servo transitions to locking the fluorescence rate to a

separate set point. As the molecule bleaches, the servo is able to increase the excitation

intensity by a very large amount, but the optical power when the molecule first drifted

into focus is completely unrelated to the size of this power reserve.

A schematic of the improved fluorescence servo appears in Fig. 5.11. A Schmitt trigger[55]

(based on the LT1677 op amp) is used to discriminate between low and high fluorescence

values — this is a comparator that triggers on and off at two adjustable threshold values.

This hysteresis is necessary because of the large amount of photon counting noise at the

low fluorescence rates that we trigger on — we do not want counting noise fluctuations to

cause errant switching between the servo’s operational modes. A single analog integrator

(based on the LT1012 op amp) is the only controller in the servo in either operational

mode. When the Schmitt trigger makes its transitions, it simply switches (via an ADG436

analog switch) the integrator’s input between the fluorescence error signal and the op-

tical power error signal. The integrator outputs to a voltage-controlled attenuator that

regulates the RF power into the y-axis AOM.

Analog microcontroller. Whenever a particle is lost at the boundary of one of the tracking

stages, it is best to return the stages to the center of their ranges in order to maximize

the duration that subsequent particles are tracked for. We use an analog microcontroller

(Analog Devices ADuC812) to reset the integrators when they are near their boundaries.

I wrote code in assembly that does this somewhat badly, as it allows the z stage to rail on

its upper boundary.
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A microcontroller was used in the past as the feedback controller in the initial 2-D tracking

apparatus, but its output was noisy so we switched to an analog controller. I eventually

tracked the microcontroller noise down to a grounding problem that I remedied by putting

a differential amplifier on the DAC output. The noise was still worse than an analog circuit,

and I never did find a good application for the microcontroller, but it will be good to know

this if one should arise in the future.

5.3 Experimental procedures

In this section we describe certain procedures that were necessary for constructing or calibrat-

ing the tracking apparatus.

5.3.1 Bead immobilization

Immobilized fluorescent beads are extremely useful diagnostic tools because they facilitate

direct characterization of the focused tracking beams. In any tracking application this is im-

portant for ensuring the quality of the modulated beams and the alignment of the detectors[37].

For our three-dimensional tracking apparatus, it is no understatement to say that the ability to

produce immobilized fluorescent beads reproducibly is essential.

We discovered by accident that coating glass coverslides with a layer of poly-l-lysine causes

strong adhesion of polystyrene beads. At the time we were trying to find a way to prevent

positively-charged amino-derivatized quantum dots from sticking to glass; we simultaneously

failed at our goal and made one of the most important strides in all of the years of the develop-

ment of our apparatus. In particular, the 210nm fluorescent polystyrene beads with “Suncoast

Yellow” dye made by Bangs Laboratories stick instantly and irreversibly to these charged sur-

faces. These beads are inexpensive, extremely photostable, extremely bright, and absorb light

with wavelengths spanning from the UV up to nearly 650nm.

For cleaning and coating coverslides, I fabricated a pair of teflon racks that hold about

20 coverslides each. The racks are held together by steel screws and brass thumb nuts that

discolor quickly in corrosive cleaning solutions, but this does not seem to affect the slide

coating. The procedure we used to coat the coverslides with poly-l-lysine was a very slight

variation (substitution of KOH for NaOH) on a procedure made available online by Pat Brown’s

lab at Stanford[56]. Once the slides have been coated, they may be used essentially immediately

to immobilize beads. We dilute the stock 1% bead solution by a factor of about 10−3 into a 0.1%

v/v solution of Tween-20 (Sigma-Aldrich P2287, a detergent that reduces bead aggregation)

in purified water. We generally prepare about 1mL of this solution at a time because it is
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Figure 5.12: Position-dependent fluorescence intensity of the rotating 532nm tracking beam
(left) and the 415nm probe beam (right) measured on an immobilized 210nm fluorescent bead.
Raster scans used 100nm increments along both axes. We fitted Gaussians to both beams and
corrected for the 210nm bead size. Corrected waist fits: 532nm: wx = 2540nm, wy = 1790nm.
415nm: wx = 710nm, wy = 375nm.

stable for years without precipitation or photodegradation even when exposed to room lighting.

We sandwich 2µL of the diluted bead solution between a poly-l-lysine slide and an uncoated

glass slide, and the beads usually adhere in less time than it takes to place the slides in the

microscope.

5.3.2 Beam scans

Using an immobilized bead we can map out — in three dimensions if we choose — the spatially-

dependent excitation intensity of each beam. The capacitive sensors in the nanopositioners

make this easy — an internal feedback servo in the high voltage amplifier can be used to position

the stages in closed loop with sub-nanometer accuracy. We use the NI-DAQ to raster scan the

beam across an immobilized bead, and we average the fluorescence at each point for a few

hundred milliseconds using the TIA board. The resulting data can be very helpful for estimating

the waists of the tracking beams, from which we can then infer the statistics of the localization

estimates. This type of scan can be useful to reveal asymmetries or other irregularities in the

beams.

Figure 5.12 shows the focused beam spots for the rotating 532nm tracking beam and a

415nm probe beam, measured on an immobilized fluorescent sphere. The tracking beam was

particularly large when these measurements were made — it may not have been properly fo-

cused — so the large ratio of beam sizes is a bit skewed from normal. However, the waists

of the 415nm beam are almost certainly too small to be useful for tracking anything but very

slow-moving particles. The scan of the 415nm beam indicates a slight astigmatism — the beam

focuses along the x and y axes in different planes, resulting in elliptical cross-sections. We
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saw very similar astigmatism when we focused the 532nm beam to a diffraction-limited spot,

implying that it may be caused by distortion in an optical element shared by the two beam

paths.

We must be cautious in our use of beam scans to characterize the probe and tracking beams

quantitatively. Unlike our 2-D tracking apparatus, in which samples were only a few µm thick,

3-D tracking requires the transmission of the beams deep (∼ 50µm) into a liquid sample. Mea-

surements that we make on beams at the glass surfaces may be significantly distorted by optical

aberrations when the beams are used for tracking. An extreme example of this occurs when

we use an oil immersion microscope objective: the oil has a refractive index that is matched

to the glass but severely mismatched to the water. The deeper the beams are focused into

water, the more distorted they become. We were not able to track in three dimensions using

an oil immersion objective. Our water immersion objective is designed to minimize distortion,

but we are not able to know with certainty how effective it is. Open-loop FCS measurements

(see Section 4.1) yield numbers that are consistent with our measured beam shapes, but these

measurements are hardly sensitive enough for making careful comparisons.

5.3.3 Localization signal measurement

Another important application of an immobilized fluorescent bead is the measurement of lo-

calization error signals. The quality of these signals determines the tracking fidelity of the

apparatus, so the ability to directly measure them is essential for proper alignment of the

tracking beams. We use the nanopositioners to scan the bead through the center of the mod-

ulated laser beams, and we simultaneously record the stage positions and the output of the

lock-in amplifiers. Figure 5.13 shows the localization signals that we measured immediately

before capturing our first-ever three-dimensional tracking results.

5.3.4 Alignment

The alignment of the tracking beams relative to each other is important to ensure quality lo-

calization signals. As we began discussing in the previous section, the beam alignment may

be characterized using the localization error signals measured on an immobilized fluorescent

bead. In this section we describe in more detail the characteristics of a well-aligned pair of

beams.

The two focused tracking beams must be both collinear and normal to the coverslides.

This can be ensured by satisfying two conditions: the light back-reflected from the coverslides

by both beams should produce concentric ring diffraction patterns that expand and contract

symmetrically with coarse changes in the z position of the sample, and the two-dimensional
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Figure 5.13: Localization error signals measured on an immobilized 210nm fluorescent bead.
Each data point is an 80µs average of the analog signal. The x and y signals were computed by
the SR850. The z signal was measured with a home-built analog lock-in amplifier — its higher
intermediate frequency accounts for the larger noise on that signal. Peak fluorescence rates
were several hundred kHz. Signals were recorded on a Tektronix TDS3032 oscilloscope.

localization signals from both beams should go to zero at the same point when scanned over

an immobilized fluorescent bead. With care, it is possible to eliminate all measurable devia-

tions from this ideal. However, the alignment tends to drift over time, probably due to some

combination of thermal expansion of mirror mounts, slow AOM pointing drifts, and accumula-

tion of slight displacements of the tracking stage with use. The effects of drift are particularly

pronounced on the 415nm probe beam because of its small waist. This beam can easily be

deflected by an entire beam waist but, unlike tracking beam errors that can be difficult to diag-

nose, such a deflection produces obvious results. With regular use, the alignment of all beams

should be checked every week or two to ensure good tracking system performance.

The criteria we specified for good beam alignment along the x and y axes never really

fails. Unfortunately, no comparably reliable criteria exist to ensure good z-axis alignment.

Due to the extremely small offset (∼ 1µm) desired between the two tracking beams relative to

the focal length of the microscope objective (∼ 1mm), it is difficult to try to prepare beams

with the necessary divergences simply by measuring the propagation parameters of the beams.

Things are certainly not simplified by the fact that our tracking beams have the asymmetric

geometry described in Section 2.3.1, and the rotation radius therefore factors into the location

of the tracking plane and the quality of the localization signal. Our only option tends to be to

make careful adjustments of the beam divergence that we monitor directly on an immobilized

fluorescent bead. In general, a well aligned pair of beams with properly-balanced optical powers

will produce a nearly symmetric z-axis localization signal that goes to zero when the beams

are positioned so that the brightest point of their combined excitation profile lies over an

immobilized fluorescent bead. Exactly how to achieve this ideal, and how deviations from it
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Figure 5.14: Left: Fluorescence rate and positions of the x (blue), y (green) and z (red) stages
while tracking a 24nm fluorescent bead. Right: Mean-squared deviation of the tracking stages
as a function of time interval ∆t. Second-order fits to Eq. 3.35 are shown in black for x and y ,
and a first-order fit to Eq. 3.34 is shown for z. Fit parameters are given in the inset table.

affect tracking performance, is not always apparent. Often, a lot of trial and error are needed;

probably the only sure way to optimize the z-axis alignment is through patience and careful

diagnostic testing. Fortunately, unlike the x and y axes the z-axis alignment tends not to drift

at all. Once the proper alignment is found, it may never require adjustment again.

5.3.5 Tracking system characterization

Once the beams are aligned and producing good error signals, freely-diffusing fluorescent beads

take over the diagnostic role of their immobilized counterparts. A particularly useful measure-

ment is made by tracking a bead and computing the feedback system parameters described

in Section 3.2.2 from the function MSD(∆t) defined in Eq. 3.34. By measuring these parame-

ters we can set the electronic gains in the feedback loops to appropriate values for particular

fluorescence rates.

Figure 5.14 shows some very early tracking data, taken seven days after the initial success of

the three-dimensional tracking apparatus. The sample consisted of a dilute solution of 24nm

fluorescent beads (Invitrogen FluoroSpheres) in 0.1% v/v Tween-20 in water. We sonicated the

mixture for an hour to reduce bead aggregation, but we still see evidence of bead clusters

in solution. We fitted curves from Eq. 3.35 to the mean-squared deviation data and found a

diffusion coefficient D = 10.8 ± 1.6µm2/s, consistent with a cluster of beads approximately

40nm in diameter. The fluorescence rate shown in the figure fluctuates about its mean value

because of tracking errors, some caused by systematic drifts in the analog lock-in amplifier

used on the z-axis. The abrupt drop in fluorescence at about t = 37s may be due to one of

the beads breaking away from the cluster, but we do not have enough data to confirm that the
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Figure 5.15: Tracking-FCS curve for 24nm fluorescent bead data in Fig. 5.14. 10kHz beam
rotation accounts for the large oscillations. 338kHz z-axis power modulation is much more
subtle.

diffusion coefficient of the cluster increased after the drop.

We calculate the steady-state tracking error according to Eq. 3.31 and get Lx = 260nm,

Ly = 290nm and Lz = 370nm. The loop gain was above its optimal value γc =
√

2D/n2 (see Eq.

3.32) on both the x and y axes, and this accounts for the fairly large overshoot at ∆t ≈ 3ms

in the MSD curves. Reducing the gain would have reduced the tracking error. Likewise, γc

was below optimal along the z axis so increasing the z gain would have improved the results.

Nonetheless, these values compare compare reasonably to the localizations we achieved with

the two-dimensional tracking apparatus on slower particles but with fewer photons[19].

Figure 5.15 shows g2(τ) computed for the fluorescence measured in Fig. 5.14. As discussed

in Section 4.2.4, it is often difficult to extract much information about the z axis beam modu-

lation because of the gradual decay in the fluorescence intensity along that axis. For the data

in the figure, the z-axis beam modulation frequency was ωz = 338kHz and the beams were

rotated at 10kHz. A generous eye might be willing to attribute the jagged appearance of g2(τ)

between 1 and 50µs, or the slight shoulders about the peak at 100µs, to the z-axis modulation.

However, there is too much noise at those short times and the shoulders are sensitive to beam

misalignment, so it is not clear whether we can resolve the modulation at all.

5.3.6 Delay calibration

For measurements made with a pair of detectors in the Hanbury-Brown-Twiss configuration

shown in Fig. 5.4, the inevitable delay δ caused by optical and electronic path length differences

has the effect of shifting the location of coincident photon detections in the FCS curve from
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Figure 5.16: g2(τ) (blue) measured by strobing the optical power at 1MHz over an immobilized
fluorescent bead. Fit (red) to a triangle wave yields a delay δ = 79ns.

g2(0) to g2(δ). We intentionally induce a large electronic delay (see Fig. 5.11) to reduce timing

noise at short correlation times (visible at τ = 0 in the figure), and this shifts the FCS curve

further. In order to extract information about any processes affecting the fluorescence on time-

scales that are at all comparable to δ, we must make an accurate estimate of δ and correct our

FCS curves by offsetting the delay.

We made our delay calibration for the measurements in Chapter 6 by using a high-speed TTL

RF switch (Mini-Circuits ZYSWA-2-50DR) to strobe the RF power in the y axis AOM, and con-

sequently the optical power in the beam, at 1MHz. We approximate the fluorescence intensity

with a square wave of period T (= 1µs),

I(t) =

 1 : 0 ≤ t (mod T) ≤ T/2
0 : t (mod T) ≥ T/2

, (5.1)

in which case g2(τ) is a triangle wave with a peak at τ = 0. We measured fluorescence for 30s

on an immobilized 210nm fluorescent bead with the optical power set to provide an average

total count rate of about 320kHz. The resulting g2(τ) curve is shown in Fig. 5.16, with a

numerical fit to a triangle wave. The fitted wave has a peak at 79ns, which is equal to the delay

time δ. Visible in the plot is the jitter at τ = 0 due to cross-talk in the TIA board at short time

delays; this is the motivation for imposing the electronic delay between channels.
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Chapter 6

Photon statistics of quantum dot
fluorescence

6.1 Introduction

6.1.1 Quantum dots

Quantum mechanics describes the behavior of matter on very small spatial scales[57, e.g.]. It

predicts that the confinement of a particle to a small region places restrictions on the energies

that it may have. In particular, the continuous energy scale predicted by classical mechanics

becomes a set of discrete energy levels that are observable when a particle is confined on scales

usually well below 1nm. The best-known example of this is the hydrogen atom, in which the

positively-charged proton and negatively-charged electron are confined due to electrostatic at-

traction. The resulting quantized energy levels produce the discrete lines in the sun’s emission

spectrum that were among the most important experimental motivations to the development

of the quantum theory.

Quantum effects are not limited to electrostatically-confined free electrons and protons.

Electrons within solids are confined by the boundaries of the solids, but for macroscopic solid

particles this confinement is very weak. As a result, the electron energy levels are very close

together and their discrete nature cannot be distinguished from a continuum. If a solid particle

is made small enough, however, the confinement of the electrons can have a large influence

on many properties of the solid. For semiconductor materials, these effects are particularly

strong and begin to appear at relatively large particle sizes (1-10nm) that are well within reach of

modern synthesis and characterization methods. For a review of the size-dependent properties

of semiconductors on these size scales, see [58] or [59].

Quantum dots (qdots) are semiconductor crystals between about 1 and 10nm in diame-

ter. The confined electrons in these crystals occupy discrete energy levels; the energy spacing
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Figure 6.1: Two-level emitter energy level diagram. Absorption of a green excitation photon
drives the emitter from the ground state to the excited state. Relaxation to the ground state
produces a red fluorescence photon.

between the levels increases, and the strength of transitions between all but a few levels de-

creases, as the crystals are made smaller[59]. As a result, a simple model of qdots as systems

with two tunable energy levels is sufficient to describe some of their properties. In the case of

CdSe qdots, the energy level spacing can be tuned to cover nearly the entire visible range of the

electromagnetic spectrum, so the qdots become fluorescent emitters of visible light. Figure 6.1

illustrates fluorescence from a two-level emitter. The emitter absorbs incident light at a rate

γeg = σa
λ
hc
I, (6.1)

where hc/λ is the energy of the incident photons, σa is the absorption cross section of the

qdot at the wavelength λ, and I is the intensity of the incident light. Absorption of an incident

photon induces the transition of an electron within the qdot from its ground (ψg) to excited (ψe)

state. The electron then spontaneously relaxes back to its ground state at a rate γge intrinsic

to the emitter either by a radiative decay producing a fluorescence photon or a thermal decay

producing phonons in the crystal bulk.

Quantum dots were discovered independently by Efros and Ekimov[60, 61] and Brus[62] in

the early 1980s. Since then methods have been developed for producing nearly monodisperse[63]

CdSe qdots with high fluorescence quantum yields[64, 65], and for conjugating such qdots to bi-

ological molecules[66, 67]. Qdots have been shown to be strong 2-photon absorbers; combined

with their broad absorption spectra, narrow emission spectra and low biotoxicity, this makes

them excellent markers for multi-color microscopy in living cells[58, 68, 69]. In addition, qdots

are much brighter and more photostable than organic dyes[69] and their relatively long fluores-

cence lifetime τf ≡ γ−1
ge ∼ 25ns allows qdot fluorescence to be separated from shorter-lifetime

background fluorescence using time-correlated methods[70]. For these reasons, qdots today
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are among the most popular fluorescence markers in biological and single-molecule imaging.

Despite these strengths, however, qdots are not perfect emitters: it is well-known that they

exhibit “blinking” behavior, in which their fluorescence turns off and on at random intervals

that span a broad range of time-scales[71–74]. Furthermore, a substantial fraction of qdots in

any particular sample will generally be permanently nonradiant[75]. Qdots are very sensitive

to their local environment [75, 76], which can either complicate or facilitate their use in certain

applications. Finally, geometry variations between individual qdots synthesized in the same

batch can lead to variation in their fluorescence lifetimes and absorption cross sections[77].

6.1.2 Photon statistics

Earlier in this thesis, we described the light emission from fluorescent particles in very simple

terms. A stationary particle in a stationary excitation laser beam radiates photons at a constant

rate Γ , with each photon emission independent of each other. In this model the probability

f1(t)dt of detecting a photon in any time interval (t, t + dt) is Γdt, and the joint probability

f2(t1, t2)dt1dt2 is just Γ 2dt1dt2. The correlation function g2(τ) of the photon detections from

the constant-rate emission model gives g2(τ) = 0.

The term photon statistics refers to the properties of photon detection that are intrinsic

to the light-emitting particle. The simple case that we have worked with is known as Poisson

photon statistics because the probability of detecting n photons in a time interval T is given

by the Poisson distribution. While laser light is usually very nearly Poisson[78], most other

light-emitting systems exhibit more complicated photon statistics.

An arc lamp is a canonical example of an emitter with super-Poisson photon statistics, in

which the detection of a photon at a particular time t implies an increased probability of de-

tecting a photon at times shortly after t[53, 54]. This occurs due to fluctuations in the electrical

current producing the photons: more photons are produced when the current is high and fewer

when it is low, so photons are emitted in bunches. This cannot be described in terms of Poisson

statistics because the photon detection times are not independent of each other.

Light emission from radiative transitions in objects with quantized energy levels produces

sub-Poisson statistics[79, 80]. Detecting a photon at time t implies a reduced probability of

detection at times shortly after t because the emitter must make two transitions — from the

ground to the excited state and back — for each detected photon. Some time is required to

cycle between states, so detection of two photons separated by a time interval shorter than the

average cycling time is unlikely. These are known as anti-bunching statistics.
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6.1.3 Motivation for our work

Quantum dots produce fluorescence light via electronic transitions from the excited to the

ground state. As a result, their fluorescence exhibits anti-bunching statistics. Anti-bunching,

combined with the blinking statistics described briefly in Section 6.1.1, make for some interest-

ing photon statistics in qdot fluorescence. However, to resolve either requires long observation

times: anti-bunching because it occurs on very short time-scales (near τf ∼ 25ns), so many pho-

tons must be detected to develop good statistics; blinking because it occurs over a wide range

of time-scales.

It is difficult to measure either process on single qdots in solution because Brownian motion

limits qdots’ observation times to several tens of milliseconds. Anti-bunching can be resolved

if the statistics are averaged over multiple qdots, but variations in the fluorescence lifetime

and absorption cross-section are obscured by such measurements. Evidence of blinking shows

up as increased variance in the fluorescence signal, but the fluorescence correlation decay is

dominated by diffusion so it is difficult to distinguish blinking qdots from objects that do not

blink at all[47]. Wide-field microscopy is better at resolving blinking because the observation

times of each qdot are much longer, but current detectors do not have sufficient time resolution

to detect anti-bunching and an axial tracking system is necessary to keep the qdots from exiting

the imaging plane. Consequently, most measurements are made on qdots immobilized on glass

surfaces. However, glass surfaces are very reactive[81], and it cannot be known what effect this

has on the measured fluorescence statistics.

We used our tracking apparatus to make the first long time-scale high time resolution mea-

surements on qdots diffusing freely in aqueous solution. We resolve photon anti-bunching

on individual qdots and find evidence that heterogeneity in the anti-bunching time-scales first

observed on glass surfaces[77] was not an artifact of the glass, but persists in solution. The

fact that we resolved anti-bunching on single freely-diffusing emitters is itself significant: anti-

bunching is the fastest process that can be studied by fluorescence because the emitter cannot

respond to any faster fluctuations. In essence, it proves that we are able to resolve all dynamic

time-scales in the detected fluorescence signal. Ours are the first measurements to achieve

emitter-limited time resolution on an individual freely-moving fluorescent object.

In addition to anti-bunching, our measurements are the first to show unambiguous evi-

dence of blinking in qdot FCS curves on time-scales longer than the diffusion time. We used 2-

mercaptoethanol, a known blinking suppressant[76], in order to ensure that qdots did not blink

off for long periods of time and escape the tracking apparatus. On time-scales longer than 1

second, previous measurements had shown that 2-mercaptoethanol increased the total on-time

of blinking qdots by increasing the average time between transitions from the bright to dark
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states while not affecting the time between transitions from the dark to bright states. Our mea-

surements show that this cannot be the case on shorter time-scales because our data implies

that one, if not both, of these time-scales must decrease with addition of 2-mercaptoethanol.

This chapter provides background on both anti-bunching and blinking statistics, and presents

our measurements of these statistics in qdot fluorescence. It is a more detailed version of the

work published in [20].

6.2 Photon statistics of a two-level emitter

Any system with discrete energy levels must be described probabilistically[8]. In the case of

the two-level emitter in Fig. 6.1, we define the probabilities ρg and ρe that the emitter is in

the ground and excited states, respectively. γeg is the rate at which the ground-state emitter

is driven to the excited state, and γge is the rate at which the excited-state emitter relaxes to

the ground state. Given this model, the populations of the two states evolve according to the

Master equation

d
dt

 ρtg
ρte

 =
 −γeg γge

γeg −γge


 ρg

ρe

 , (6.2)

so that the steady-state populations are given by

ρ∞g =
γge

γeg + γge
, ρ∞e =

γeg
γeg + γge

. (6.3)

We should note that this rate equation model does not account for the deeper physical phe-

nomena governing the qdot’s interaction with the excitation laser: in particular, the electric

polarization of the qdot oscillates with the electric field of the laser, coupling the qdot to the

field. However, strong dephasing effects typical in solid objects, and the broad linewidth of

the qdot absorption spectrum, ensure that this oscillation is only relevant on time-scales much

shorter than the decay times γ−1
ge and γ−1

eg [27].

We use the functions fn defined in Section 4.1.1 to characterize the statistics of the two-

level emitter. At any time t, the probability of a photon detection occurring in the time interval

(t, t+dt) depends on the probabilityρte that the emitter is in the excited state and the probability

γgedt that it relaxes to the ground state in this interval:

f1(t)dt = Φρteγge dt, (6.4)

where Φ is the fluorescence quantum yield, representing the probability that the ψe → ψg
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transition produces a fluorescence photon. At steady-state, this gives

f1(∞) =
Φγegγge
γeg + γge

, (6.5)

which is the rate of fluorescence photon emissions averaged over all time.

The dynamic behavior of the emitter is contained in the function f2, which gives way to

the correlation function g2(τ) as defined in Eq. 4.2. There are several ways to compute f2:

it can be found by evolving the populations ρtg and ρte according to Eq. 6.2 or by computing

waiting time statistics for the times between photon detections. The former approach is less

mathematically sophisticated and more generally applicable, but the latter is an interesting

physically-motivated approach. I will provide both derivations here.

6.2.1 Evolution of the Master equation

To compute the correlation function we require the two-time detection probability f2(t, t + τ),
which we can find by conditioning on the first detection time:

f2(t, t + τ) = f1|1(t + τ|t)f1(t), (6.6)

where, as defined in Section 4.1.1, f1|1(t2|t1)dt1dt2 is the probability of detecting a photon in

(t2, t2 + dt2) given that we detected a photon in (t1, t1 + dt1). If a photon has been detected

in (t, t + dt) then immediately after time t the emitter is, with certainty, in the ground state

(ρg = 1, ρe = 0). The probability of detecting a photon at a later time t + τ is then determined

by ρt+τe as it evolves from this initial state. ρt+τe is given by the solution to Eq. 6.2 with this

initial condition,

ρt+τe =
(

0 1
)

exp


 −γeg γge

γeg −γge

τ

 1

0

 , (6.7)

where the matrix exponential is computed in the standard way by diagonalizing the evolution

matrix. After a lot of algebra, we get

f2(t, t + τ) = Φρt+τe γgef1(t) =
(
Φγegγge
γeg + γge

)2 [
1− e−(γeg+γge)τ

]
(6.8)

and, using the steady-state value for f1(t) from Eq. 6.4, we get the result

ge2(τ) = −e−(γeg+γge)τ , (6.9)
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where we use the superscript e to label this as the correlation function of the emitter’s statis-

tics alone. The full FCS correlation function is found by incorporating the systematics of the

tracking-FCS curve described in Chapter 4 according to the multiplicative rule in Eq. 4.15. It is

important to note that Φ cancels out of the correlation function; in effect, the sub-unity quan-

tum yield only reduces the average fluorescence rate so that more photons must be detected

to maintain a particular signal-to-noise ratio. It has no effect on the time-scales or functional

forms of the functions f2(t, t + τ) and g2(τ).

The function ge2(τ) from Eq. 6.9 shows that the correlation between photons is reduced

relative to the Poisson value (0) for time-scales τ < (γeg + γge)−1, reaching -1 at τ = 0. This

is a characteristic of anti-bunching statistics, indicating anti-correlation of photon detections

at short times. ge2(τ) increases exponentially to 0, so that on long time-scales the statistics of

the two-level emitter are indistinguishable from Poisson statistics. This tells us that our use of

Poisson statistics in earlier chapters to describe the fluorescence statistics is not invalidated

by anti-bunching because we were never concerned with such short time-scales. The long time-

scale Poisson approximation is an example of adiabatic elimination of fast dynamics[82].

6.2.2 Computing waiting-time statistics

We now show that the result from Eq. 6.9 may also be computed using waiting time statistics,

which is (in my opinion) a more elegant approach than simply evolving the master equation. We

start by first finding the two-time joint probability density p(tk, tk+1) that gives the statistics of

the waiting time between adjacent ψe → ψg transitions. This quantity differs from f2(tk, tk+1)

in that it specifies that no transitions occur between tk and tk+1, whereas f2(tk, tk+1) allows

any number of transitions to occur in that interval. p(tk, tk+1) is a true probability density;

f2(tk, tk+1) is not. We have

p(tk, tk+1) = p(tk+1|tk)p(tk), (6.10)

where p(tk) is just the steady-state detection probability from Eq. 6.4 (with Φ = 1) and

p(tk+1|tk) represents the probability that, given that the emitter is in the ground state at time

tk, it jumps to its excited state at some time τ ∈ (tk, tk+1) and then relaxes back to the ground

state at time tk+1. Since both of these transitions are defined by single, constant rates, they

obey exponential statistics[8]. We use this fact to directly compute p(tk+1|tk):

p(tk+1|tk) =
∫ tk+1−tk

0
dτγege−γegτγgee−γge(tk+1−tk−τ)

= γegγge
γge − γeg

(
e−γeg(tk+1−tk) − e−γge(tk+1−tk)

)
. (6.11)
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Just to ensure the consistency of this result, we consider the apparent pole in the denominator

of the constant factor for γeg = γge:

lim
γeg→γge

= γ2
ge(tk+1 − tk)e−γge(tk+1−tk), (6.12)

indicating that the pole is canceled by the zero in the term containing the exponentials.

It is a straightforward generalization of Eq. 6.11 to compute the conditional probability

density of two transition times that are not necessarily adjacent. Let us compute the prob-

ability density that a transition occurs at time tk+n, given a transition at time tk, for n > 0.

This is found by integrating over the intermediate times tk+1, . . . , tk+n−1 using the Chapman-

Kolmogorov equation,

p(tk+n|tk) =
∫∞

0
dtk+n−1 · · ·

∫∞
0

dtk+1p(tk+n|tk+n−1) · · ·p(tk+1|tk), (6.13)

where the conditional probabilities are simplified because each detection time only depends

on the detection time immediately prior to it. Equation 6.13 is a convolution integral that can

be simplified by using the Laplace transform of Eq. 6.11,

p̃(s) = γegγge
(s + γeg)(s + γge)

, (6.14)

and the convolution theorem. Equation 6.13 becomes

p(tk+n|tk) = L−1

[(
γegγge

(s + γeg)(s + γge)

)n
; tk+n − tk

]
. (6.15)

This inverse Laplace transform is not easy to calculate. Luckily, we will not need to invert it to

compute the results that we require.

The function f2(t, t + τ)dt2 represents the probability that two ψe → ψg transitions occur

in the intervals (t, t + dt) and (t + τ, t + τ + dt) with any number of transitions occurring at

times between t and t + τ , and that both of these transitions are radiant. We set tk = t and

then compute f2(t, t + τ) by summing the probabilities that t + τ = tk+1, t + τ = tk+2, and so

on. We have

f2(t, t + τ) = Φ2
∞∑
n=1

p(tk+n = t + τ|tk = t)p(tk = t)

= Φ2γegγge
γeg + γge

L−1

 ∞∑
n=1

(
γegγge

(s + γeg)(s + γge)

)n
;τ

 , (6.16)

where we have inserted Eq. 6.15 and brought the sum inside the Laplace transform. The series
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converges because the inverse transform is taken along a contour that is fully contained in the

right half of the complex plane (so that it is the geometric series), so we have

f2(t, t + τ) =
Φ2γegγge
γeg + γge

L−1

[
γegγge

s(s + γeg + γge)
;τ
]

=
(
Φγegγge
γeg + γge

)2 [
1− e−(γeg+γge)τ

]
. (6.17)

Clearly, since this is the same as Eq. 6.8, it gives rise to the same correlation function. This

approach required more thought about the statistics of emission than the master equation

evolution did, and rewarded us by not requiring a messy calculation of a matrix exponential.

6.2.3 Effect of background counts

In any real experiment we will inevitably detect background photons, the statistics of which

are usually Poissonian and completely uncorrelated with those of the emitter (or at least they

are very loosely correlated, since small fluctuations in the laser intensity affect the statistics

of both background scattering and fluorescence). Because of this background the probability

of coincident photon detections does not actually go to zero as τ → 0, since two background

photons can be detected simultaneously, or one photon from background and one from the

emitter can also be detected simultaneously. We now compute the quantitative influence of

this effect on the correlation function.

Just as in Section 4.1.4, we assume that the background is a Poisson process with constant

rate ΓB . We use Eq. 4.17 to compute the FCS curve, inserting f2(t, t + τ) from Eq. 6.17 and

f1(t) from Eq. 6.4. This gives us

ge2(τ) = −
 γegγge
γegγge + ΓB

(
γeg + γge

)
2

e−(γeg+γge)τ . (6.18)

Equation 6.18 is more clearly expressed in terms of the ratio of the background count rate to

the emission rate. If we define

κ ≡ ΓB
(
γeg + γge
γegγge

)
, (6.19)

then Eq. 6.18 becomes

ge2(τ) = −
(

1
1+ κ

)2

e−(γeg+γge)τ . (6.20)

This result tells us that background noise will prevent the correlation function from reaching

its minimum value -1 at τ = 0.
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6.2.4 Effect of additional emitters

The presence of a second emitter will have a dramatic effect on the depth of the anti-bunching

dip in the correlation function because the second emitter is just as bright as the first. Equation

6.20 predicts that for a Poissonian emitter with equal brightness as the initial emitter (κ = 1),

the anti-bunching dip will be only 25% as deep as for a single emitter. However, if the second

emitter is a two-level system then it too will exhibit anti-bunching, so the effect will be less

pronounced than this.

Here we use the general expression Eq. 4.16 and insert identical values for the fn from both

the emitter and the background. The resulting correlation function is

ge2(τ) = −
1
2
e−(γeg+γge)τ , (6.21)

which shows that the anti-bunching dip becomes half as deep in the presence of a second

two-level emitter — a reduction that is half as large as it would be if the second emitter were

Poissonian.

It is easy to generalize to N emitters, and even further to N emitters that are not all equally

bright. For notational simplicity we denote the average fluorescence rate of emitter j by bj , and

the anti-bunching recovery rate γge + γeg for emitter j by γj . We assume a constant Poisson

background ΓB . It is straightforward to show that the correlation function is given by

ge2(τ) = −
∑N
j=1 b

2
je
−γjτ(∑N

j=1 bj
)2
(1+ κ)2

, (6.22)

where, as in Eq. 6.19, κ is the ratio of the background count rate to the fluorescence count rate,

κ = ΓB

 N∑
j=1

bj

−1

. (6.23)

This correlation function will be useful to us when we study the excitation of multiple electrons

within a single qdot in Section 6.3.3.

6.2.5 Implications of the Cauchy-Schwarz inequality: photons!

In deriving anti-bunching statistics, we assumed that the fluorescence light is radiated in delta-

function bursts, not in packets of any finite duration. This assumption is taken for granted

in modern physics, because no one denies the existence of photons. However, the resulting

correlation function, with ge2(0) = 0, cannot be generated by bursts of light with any nonzero

correlation time. This means that the observation of photon anti-bunching is experimental
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proof that light exists as quantized photons, not a continuous electromagnetic wave. Moreover,

it can be shown that the oft-cited “proof” via the photoelectric effect — for which Einstein

was awarded his Nobel prize — is actually insufficient to prove photons’ existence because

quantized electron energy and classical radiation would also produce the effect. We do not

discuss this here, but the argument is expounded in [80].

Instead of delta-function bursts, we can assume that the emitter radiates bursts that have a

finite correlation time or, more generally, have a pulse shape h(t). We can write the magnitude

of the fluorescence emission during an experiment of duration T as

I(t) =
N∑
n=1

h(t − tn), (6.24)

where 0 ≤ tn ≤ T is the list of times at which the emitter relaxed to the ground state and

emitted a fluorescence burst. Since the radiated energy is both finite and proportional to the

square of the magnitude, we know that h(t) must be square integrable:

∫∞
−∞
h(t)2 dt <∞. (6.25)

Then h(t), and consequently I(t), lie in the L2 inner product space over the real line[83, e.g.].

The Cauchy-Schwarz inequality [83] states that, for any x and y in an inner product space,

〈x,y〉 ≤ ‖x‖‖y‖, (6.26)

so in our case we have

∫∞
−∞
I(t)I(t + τ)dt ≤

(∫∞
−∞
I(t)2 dt

)1/2 (∫∞
−∞
I(t + τ)2 dt

)1/2

=
∫∞
−∞
I(t)2dt. (6.27)

The fluorescence signal is causal (I(t) = 0 for t < 0 and t > T ) — we do not detect any

fluorescence when our detector is not on. In terms of the unnormalized correlation function

G2(τ) =
〈
f2(t, t + τ)

〉
, (6.28)

where the averages are taken over time, Eq. 6.27 is written

G2(τ) =
∫ T

0
I(t)I(t + τ)dt ≤

∫ T
0
I(t)2 dt = G2(0). (6.29)

This inequality tells us that our assumption — that the radiated fluorescence is square-
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integrable — must be false if we observe anti-bunching in any real system. However, if that

radiation were a classical electromagnetic wave, this would imply that each burst transmitted an

infinite amount of energy. This is unacceptable, leading us to the conclusion that the radiation

must not be a classical electromagnetic wave, but rather a quantized sequence of bursts of

infinitesimal width.

It is interesting to consider what the correlation function would look like if h(t) ≠ δ(t),

especially because every electronic signal that we measure in the lab is classical (we cannot

detect a signal from a single electron because such a signal is dwarfed by electronic noise). We

have

G2(τ) =
〈

1
T

∫ T
0

∑
i,j
h(t − ti)h(t + τ − tj)dt

〉
, (6.30)

which in general is not very easy to calculate, even for simple h(t), because we must account

for the overlap of all possible numbers of pulses from adjacent photon detections. However,

things are simplified if the pulse width w is very short compared to the time spacing (γeg +
γge)(γegγge)−1 between detected pulses, so that the probability of two pulses overlapping is

very small. If we assume, for simplicity, that the pulses are top hat-shaped and their integral

is one, then the normalized FCS curve is

ge2(τ) ≈ 1− e−(γeg+γge)|τ| +Θ (w − |τ|) γeg + γge
γegγge

1
w2 (w − |τ|) , (6.31)

where Θ is the Heaviside step function. Due to our assumption of short pulses, ge2(0) � 1

and the Cauchy-Schwarz inequality is satisfied. This tells us that the self-correlation of h(t)

dominates ge2(τ) on short time-scales, so that no sequence of classical pulses can exhibit sub-

Poissonian statistics when directly correlated with itself. We are able to detect anti-bunching

in our experiment because we interpret the signal we detect as coming from a photon-emitting

source, where the nonzero pulse width is an artifact of the acquisition electronics. Figure

6.2 shows the difference between the correlation functions for photon anti-bunching and for

anti-bunching of pulses with finite width.

6.3 Experimental measurements of quantum dot anti-bunching

We purchased carboxy-derivatized qdots with 655nm emission peaks from Invitrogen/Molecular

Probes (Qdot655; Eugene, OR). We prepared a buffer consisting of 50mM sodium borate in

deionized water and adjusted the pH to 8.3, as measured on a Beckman Φ45 meter with a

saturated KCl probe, by titration with sodium hydroxide. Immediately before adding qdots to

the buffer we added 140mM 2-mercaptoethanol in order to suppress qdot blinking[76]. We
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Figure 6.2: ge2(τ) for anti-bunched photons (blue) and pulses with w =10ns (red). Both curves
used γeg = γge = 4 · 107s−1.

diluted the qdots to 80fM in this buffer; this extremely low concentration ensured that qdots

drifted into focus of the apparatus very rarely, so that our measurements on each qdot were

not contaminated by the detection of a second qdot.

6.3.1 Data

Figure 6.3 shows the raw data from a sample tracking run. The qdot is tracked for over 20

seconds, after which it is lost because the z tracking stage reached its upper boundary and all

stages were reset. The fluorescence remains roughly constant throughout the run, but several

large dips are visible (the most dramatic of which are at t ≈ 7s and t ≈ 19s). In order to

determine whether to attribute the dips in fluorescence to tracking error or qdot blinking, we

computed the mean-squared deviations of the tracking stage positions (see Sections 3.2.2 and

5.3.5 and [42]) and fit curves to this data. The results gave us an estimate of the qdot’s diffusion

coefficient D ≈ (19.5± 2.0)µ m2/s, where the uncertainty comes from averaging over all three

axes. This diffusion coefficient corresponds roughly to a 20nm sphere. In addition, we find the

RMS tracking error to be about 410nm along the x axis, 260nm along the y axis and 280nm

along the z axis. The relatively large error on the x axis was the result of a slight asymmetry

in the beam rotation that caused a larger slope of the localization signal along that axis. This

caused the loop gain of the tracking system to be greatest on that axis, and resulted in excess

noise appearing in the stage positions. Our tracking beams had waists of about 1.2µm and

1.4µm, implying that even a 2σ tracking error in the radial direction would result in a drop

in fluorescence intensity of about 50%. It is very unlikely that these nearly 100% drops in

fluorescence intensity are due to tracking errors. We attribute them to qdot blinking, which we
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Figure 6.3: Qdot tracking in 50mM sodium borate/140mM 2-mercaptoethanol (and no glycerol).
Top: Fluorescence intensity, in 10ms bins. Bottom: Positions of the x (blue), y (green) and z
(red) tracking stages. The y position is initially beyond the range of the data-acquisition device.

study in more depth in later sections.

Given the diffusion coefficient that we measured and the size of our laser beams, the open-

loop FCS diffusion time of these qdots through the focus of our laser was about τD ≈ 30ms. We

tracked qdots for roughly three orders of magnitude longer than this, limited almost entirely

by the travel range of the tracking stages. In open-loop FCS the average fluorescence rate of

a particle in the effective sampling volume V̄ , as defined in Eq. 4.13, is only about 35% of the

peak fluorescence rate at the origin. In contrast, the average fluorescence rate of a qdot that

we tracked with the tracking error reported above is greater than 80% of the peak rate. The

resulting g2(τ) curves have between fifty-fold and hundred-fold improvements in their signal-

to-noise ratio, and this was sufficient for measuring anti-bunching at mean fluorescence rates

as low as 65kHz.

We tracked 80 quantum dots, for between 3.5s and 29s, over a range of excitation inten-

sities that was controlled by attenuating the excitation beam with neutral density filters. We

computed the FCS curve for each of these qdots for |τ| < 200ns and fit the result to the function

g2(τ) =
{
1−αe−γτ

}
g0

2(0), (6.32)

where α accounts for attenuation of the anti-bunching dip due to background counts or mul-

tiple electron excitations[84]. g0
2(0) represents the contributions to the curve other than anti-

bunching, all of which have much longer characteristic time-scales and so can be safely treated
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Figure 6.4: Rise rates γ ≡ γeg+γge (blue circles) as determined from 80 tracked qdots at varied
excitation intensities. Red circles with error bars indicate the sample mean. Insets show g2(τ)
for data points A and B with fits to Eq. 6.32. Linear fit: γ = (37.8± 8.8)+ (3.97± 0.8) · 10−2I
[MHz].

as a constant over the time-scale of these fits. In Fig. 6.4 we show the anti-bunching rise rates

γ ≡ γeg + γge extracted from the fits, in addition to the anti-bunching curves for two example

qdots at different excitation intensities. The excitation intensity was inferred from the optical

power in each beam and the irradiance profiles of the beams as measured on an immobilized

fluorescent bead. We estimated a 15% loss in power through the objective, immersion water

and coverslide.

We expect γ to vary linearly with excitation intensity because the excitation rate γeg , given in

Eq. 6.1, is proportional to the intensity. A linear fit to the data is shown in Fig. 6.4 and predicts

an average fluorescence lifetime τf ≡ γ−1
ge = (27±6)ns. This value is comparable to the average

lifetimes 20ns[77] and (32±2)ns[84] measured on surface-immobilized CdSe/ZnS qdots; we do

not see a statistically-significant deviation in our data from previous measurements, although

the difference between those measurements implies that deviation between samples may be

even larger than our experimental uncertainty.

The slope of the linear fit gives σa = (1.48±0.15)·10−14cm2. From this σa we may infer the

bulk extinction coefficient ε of a solution of qdots in the following way. In a bulk measurement,

a beam of cross-section A traverses a length L of sample, and we measure the fraction of the

incident power that is absorbed. ε is the ratio of the absorbed to the incident power, per unit

L, for a sample concentration C of 1M. In the volume AL there are NACAL qdots, where NA is

the Avogadro number. These qdots absorb the light incident upon the area σaNACAL, so that
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Figure 6.5: Standard deviation ∆γ of the anti-bunching recovery rates at different values of the
excitation intensity I. 2σ error bars were computed using Eq. 6.33. Linear fit (by maximum-
likelihood method): ∆γ = (12.7± 5.8)+ (9.2± 7.0) · 10−3I[MHz].

the fraction absorbed per unit L is σaNAC . Inserting a concentration of 1M and converting the

units, the σa we measured implies a bulk extinction coefficient ε = (8.9 ± 0.9) · 106M−1cm−1.

This is significantly larger than the the value of 2.1·106M−1cm−1 specified by the manufacturer.

It is possible that the enhancement is due to the addition of 2-mercaptoethanol to our qdot

solutions, but we cannot be certain that this was the cause.

6.3.2 Recovery rate heterogeneity

Perhaps the most distinguishing feature of the data in Fig. 6.4 is the large variation in γ ob-

served for different qdots at the same excitation intensity. We computed the relative standard

deviation ∆γ/γ of the rise rate and found that it varies little with intensity, ranging between

23% and 40% with a mean of (30± 5)%. This implies that the spread is not due to poor signal,

since the signal-to-noise ratio improves as the intensity increses. It is also not due to intensity

fluctuations, as the power in our beam is stable to within 5% over time-scales longer than any

of our data runs. We conclude that the variation we see is primarily due to heterogeneity in the

qdot sample. Such heterogeneity has been measured before on qdots immobilized in glass[77],

but it was impossible to determine from those measurements whether this effect was an inher-

ent property of the qdot sample or the result of their proximity to notoriously reactive glass

surfaces[81]. Our results provide strong evidence that the heterogeneity is a property of the

qdot sample, not an experimental artifact.
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To further characterize the heterogeneity of the qdots, we can try to determine the relative

contributions of variations in γge and σa from our data by examining the intensity dependence

of the variations in γ. In Fig. 6.5 we plot∆γ as a function of I from the data in Fig. 6.4. Each data

point in the plot is an estimate of the sample standard deviation using the 10-20 data points at

each excitation intensity. Like all statistical estimates[85], the standard deviation estimate has

an intrinsic variance that depends on the sample size. If we assume that the distribution of γ

about its mean at any fixed intensity is Gaussian with variance (∆γ)2 , then the variance of the

standard deviation estimator is

Var


 1
N − 1

N∑
j=1

(
γj − 〈γ〉

)2

1/2
 = (∆γ)

2

N − 1
. (6.33)

We use this variance to compute the 2σ error bounds shown in Fig. 6.5.

We expect ∆γ and I to be linearly related, so we fit a line to the data in Fig. 6.5 in order to

extract the standard deviations ∆γge and ∆σa from

∆γ = ∆γge + 10−6 λ
hc
I∆σa. (6.34)

Due to the large uncertainty in each data point an ordinary least-squares fit would be inappro-

priate; our fit needs to account for this uncertainty. We computed the most probable linear

fit to the data using a numerical maximum-likelihood method. Figure 6.6 shows the likelihood

function

L
(
∆γge,∆σa

)
=
∏
j

exp

−
(
Nj − 1

)(
∆γj −∆γge − 10−6λ

hc Ij∆σa
)2

2
(
∆γj

)2

 , (6.35)

where (Ij ,∆γj) are the six data points in Fig. 6.5 and Nj is the number of data points at each

intensity value in Fig. 6.4. The parameters defining the line in Fig. 6.5 were those that maxi-

mized the likelihood function, and the uncertainties were computed by finding the rectangular

box centered at the maximum that contained 95% of the likelihood. Due to the skew orienta-

tion of the elliptical contours, these uncertainties are somewhat conservative: a more careful

approach would characterize the ∆γge and ∆σa as lying inside the skew ellipse containing 95%

of the likelihood. Such a characterization, however, would not give independent bounds for

the two parameters.

The maximum-likelihood fit gave ∆γge = (12.7±5.8)MHz. This is a reasonably tight uncer-

tainty bound, and indicates that the qdots that we studied almost certainly exhibited variations

in γge because zero is far outside of this range. The corresponding standard deviation in the

fluorescence lifetime, using γge = 37.8MHz from the fit above, is ∆τf = (8.9 ± 4.1)ns. This

number compares favorably with the lifetime variation measured on surface-immobilized qdots
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(∆τf ≈ 7ns)[77], so that we have no evidence that the size of the variation in those measure-

ments can be attributed to interactions between the qdot and the glass surface.

The fit ∆σa = (0.34± 0.26) · 10−14cm2 was not as convincing: while zero is outside of the

2σ bound, it is well within 3σ and so there is a small (∼ 2%) probability that σa is constant

among the different qdots in the sample. The size of ∆σa is less than about 40% of the value of

σa deduced from the data in Fig. 6.4. This relative variation is considerably smaller than that

measured on glass-immobilized qdots (∼80%)[77]. The qdots used in that study clearly differed

from ours in their absorptive properties, as their bulk extinction coefficient was almost two

orders of magnitude smaller than ours at an even lower excitation wavelength. While we can

certainly say that we observe quantitative differences from those measurements, we cannot

safely attribute the differences to the the presence of the glass. In future work we will examine

the differences between the photon statistics of qdots from identical samples both free in

solution and on glass surfaces with a variety of surface chemistries.

In order to be able to say with greater confidence whether the qdots we studied exhibit

variations in σa at all (to rule out the possibility that σa = 0), we require more data. Even a fairly

modest 4-fold increase in the number of qdots tracked at each excitation intensity would likely

reduce the uncertainty in ∆σa to a level that would allow us to answer this question. Recording

fluorescence from qdots at a wider range of intensities than measured here would help as well.
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Alternatively, the wide range in tracking trajectory durations for which we were able to resolve

anti-bunching indicates that we often acquire far more data than needed for this measurement.

We could modify our apparatus to change the excitation intensity while tracking a single qdot

once we have acquired enough data. For long tracking trajectories we could essentially map

out the intensity dependence of γ for each qdot, making it easy to determine whether there is

variation in σa between qdots or not.

6.3.3 Evidence of multiple excitations

The g2(τ) curves in Fig. 6.4 contain anti-bunching dips at τ = 0 that are shallower than

predicted by the theory in Section 6.2 for a single emitter in the absence of background. Figure

6.7 shows the fitted values of α for all of the qdots that we tracked. It is clear from the figure

that the shallow anti-bunching dips in Fig. 6.4 were not an anomaly; there is quite a bit of

variation in the fitted values for α, which range from between about 0.15 and over 0.9.

In Section 6.2.3 we showed how background counts will always ensure that α < 1. To

account for background in our data we computed the average ratio of the size of the background

to the size of the fluorescence from each qdot, and found κ = (4± 0.6) · 10−2 when averaged

over all qdots. According to Eq. 6.20, this κ imposes an upper limit of 0.92 ± 0.01 on the

attainable value for α, corresponding to the line at N = 1 in Fig. 6.7. α nearly reached this

maximum for two qdots but the remaining fits all produced substantially lower α values, near
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0.6 for excitation intensities less than 1kW/cm2 and 0.4 for higher intensities.

We used a very simple model to attempt to explain the deviation in α from the optimal

theoretical value as well as the apparent intensity-dependence of the α values. We allow up to

a finite numberN of electrons to be excited simultaneously in the qdot. Each electron is excited

at the same rate γeg and relaxes at the same rate γge. We let ψj denote the state in which the

qdot contains j excited electrons. The allowable transitions between statesψj are illustrated in

Fig. 6.8. The ψj → ψj−1 transition occurs with rate jγge because any of the j excited electrons

may relax to produce the transition. Similarly, the upward transition ψj → ψj+1 occurs at the

rate (N − j)γeg because there are N − j ground-state electrons available to be excited. It can

be shown that the steady-state population ρ∞j of state ψj is given by

ρ∞j ∝

 N

j

 γN−jge γ
j
eg, (6.36)

where we used the standard notation for the binomial coefficient. We may then express the

average fluorescence rate of the ψj → ψj−1 transition by

bj = jγgeρ∞j ∝ j

 N

j

 γN−j+1
ge γjeg. (6.37)

These bj were first discussed in Section 6.2.4 when we derived the contribution of additional

emitters to the anti-bunching correlation function. Equation 6.37 may appear misleading be-

cause the proportionality constant contains terms that depend on γeg and will cause the fluo-

rescence rate to saturate; however, those terms disappear from the correlation function in Eq.

6.22 so they do not contribute to α. We use Eq. 6.22 to compute the predicted value of α for

N = 1, 2, 3, and 4 and plot them in Fig. 6.7.

The curves that we derived from this model seem to capture the qualitative features of the

data. Their rapid decay at low excitation intensities explains why we rarely seeα approaching its

upper limit even at low excitation intensities. The slight increase in the theory curves at higher

excitation intensities occurs when γeg > γge, so that upward transitions dominate downward

transitions. As γeg increases, ψN → ψN−1 eventually begins to dominate all other transitions,

resulting in an enhancement in the anti-bunching dip.

The curve for N = 2 fits the data well at excitation intensities below 1kW/cm2, but over-

predicts the data at higher intensities. The curves at N = 3 and N = 4 match the data at low

(<0.5kW/cm2) and high (>1kW/cm2) intensities, but underpredict the data at intermediate in-

tensities. The curves suggest that more data should be taken at lower excitation intensities to

try to observe the predicted strong dependence of α on I. This may be difficult, however, due to
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Figure 6.8: Simple multiple-electron qdot model. We let ψj be the state of the qdot with j
excited-state electrons andN−j ground-state electrons. Each electron transition is independent
of each other and occurs with the same upward and downward rates, so that the upward and
downward rates for the qdot state transitions are equal to the single electron transition rates
scaled by a combinatorial factor as described in the text.

the large numbers of photons needed to develop good statistics on anti-bunching time-scales.

The theory curves in Fig. 6.7 support the attribution of the reduced values of α to multiple

electronic excitations in the qdot. However, our multiple-excitation model is oversimplified. To

say any more about what we have measured we require a more appropriate model accounting

for the complicated physics of multiply-excited qdots[86], and we probably require more data

as well.

6.3.4 Absolute detection efficiency calibration

As an interesting application of our measurements in this section, we can estimate the absolute

collection efficiency of our apparatus. Our measurement of the absorption cross-section σa

allows us to determine the rate at which the qdot cycled between its ground and excited states.

This is related to the rate at which the qdot was actually emitting photons by the fluorescence

quantum yield; in the absence of blinking the quantum yield for CdSe/ZnS qdots is nearly unity,

so we may estimate the emission rate very closely.

The fluorescence rate that we collect is related to the emission rate by a constant factor

η that contains all of the systematic losses in the experiment. Figure 6.9 illustrates what is

probably the largest of these. The fluorescence radiation is spherically symmetric, and the

microscope objective only collects light from a second-order cone of angle θ, determined by its

numerical aperture. The fraction of the fluorescence light that we collect is given by the ratio
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of the area subtended by the cone to the total surface area of the sphere:

Acone
Asphere

= 1
2
(1− cosθ) (6.38)

= 1
2

1−
(

1− NA2

n2

)1/2
 , (6.39)

where n is the index of refraction of the medium (1.33 for water) and NA= n sinθ is the

numerical aperture of the objective. Even with our high numerical aperture water immersion

objective, this limits us to a collection efficiency of around 28%. Additional losses occur all

over the optical apparatus: scattering of fluorescence by the coverslides and immersion water

accounts for a few percent; transmission losses in the microscope objective are about 20%;

the best chromatic filters lose about 10% each; and photon-counting APDs have a detection

efficiency of only about 65% at 655nm. The largest and most unfortunate loss is due to the

mistaken use of the CVI Laser harmonic separator (see Section 5.2.3) in the fluorescence path

when the qdot measurements were made. Based on its specifications, we expect fluorescence

collection losses of 80-90% at 655nm.

Figure 6.10 shows the fluorescence rates of each tracked qdot, averaged over the entire

duration of each tracking trajectory. There is a clear dependence on intensity that appears

roughly linear at low intensities and saturates at higher intensities. The fluorescence rate we
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Figure 6.10: Qdot fluorescence rates averaged over the entire duration of each tracking trajec-
tory. Solid curves show fits to the detected fluorescence rate as a fraction of the total fluores-
cence rate derived from Eq. 6.40, using the values γge and γeg extracted from the data in Fig.
6.4. Fits to all of the data (black) yielded ηΦ = 9.6 · 10−3 (black) and fits to the data at the first
four excitation intensities yielded ηΦ = 7.2 · 10−3 (green).

expect to collect, given the fits for γge and σa, is computed using Eq. 6.4. This gives

f1(t) = Φη
(

1
γ ge

+ 106hc
σaλI

)−1

, (6.40)

so that the product Φη is the only free parameter. We fit Eq. 6.40 to the data, yielding

Φη = 0.96%, and the result is the black curve shown in the figure. The fit curve matches

the data rather unsatisfactorily: it is too large at low excitation intensities and too small at

high intensities. This may be due to a nonlinearity in the fluorescence rate; as discussed in

Section 6.3.3, we see evidence that we excited more than one electron within the qdots. At

higher excitation intensities more electrons are excited, which leads to a nonlinear dependence

of the fluorescence rate on the excitation intensity. We do not attempt to account for this here;

instead, we excluded the data from the two highest excitation intensites and computed another

fit, giving Φη = 0.72%. This curve is plotted in green; it fits the data at low intensities very well,

but underpredicts the fluorescence rate at the high intensities.

If we assume a fluorescence quantum yield near unity, the fitted values of Φη indicate that

we collect approximately 1% of the fluorescence emitted by the qdot. We estimate that our

collection optics and chromatic filters account for a loss of about 80-85%, and the detector

quantum efficiency brings this number up to about 90%. The harmonic separator’s transmissive
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losses further increase this to 98-99%, so that our 1% estimate is not at all unreasonabe for the

apparatus as it was used to collect the qdot data.

6.4 Blinking statistics

Blinking — the turning off and on of the fluorescence signal at random intervals — is a hall-

mark of quantum dot fluorescence and probably the most important deviation of qdots from

ideal fluorescence emitters[71]. In this process, an excited-state electron makes a nonradiative

transition to a “trap” state at the surface of the qdot, effectively ionizing the qdot. Subsequent

excitations of other electrons in the qdot decay rapidly via a nonradiative Auger process[87]

in which their energy is transferred to the trapped electron rather than to an emitted photon.

As a result the quantum yield of the ionized qdot is essentially zero, so its fluorescence dis-

appears. Eventually the trapped electron is released back to the excited state, and the qdot’s

fluorescence returns.

6.4.1 Three-state model

A blinking qdot can be described very simply by introducing a third, dark state to the two-level

emitter model[72]. Figure 6.11 illustrates this. Transitions between the excited state ψe and

the dark state ψ0 cause the qdot to blink on and off. If we let ρ =
(
ρg ρe ρ0

)T
be the

occupancy probabilities of each state, then the states evolve according to

d
dt
ρ =


−γeg γge 0

γeg −(γge + γ0e) γe0

0 γ0e −γe0

ρ. (6.41)

The three-state model can be simplified a bit because the fluorescence lifetime is much

shorter than the average blinking time (γge � γ0e) — the time-scales of anti-bunching and

blinking do not overlap[84]. The statesψg andψe quickly reach an equilibrium with each other

between each transition to ψ0. Since we are not interested in anti-bunching in this section, we

approximate ρg and ρe with their equilibrium values in the absence of the dark state ψ0, and

combineψg andψe into a single effective bright stateψ1. We determine the transition rate γ01

from ψ1 to ψ0 using ρ∞e from Eq. 6.3 to get

γ01 =
γ0eγeg
γeg + γge

, (6.42)

and the effective transition rate from ψ0 back to ψ1 remains just γ10 = γe0. As a consistency
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Figure 6.11: Simple three-state blinking model. A non-radiative transition from the excited
state ψe to a dark state ψ0 (occurring at rate γ0e) renders the qdot off, and a non-radiative
transition back to the excited state (at rate γe0) turns the qdot back on.

check, it is straightforward to show that this adiabatic elimination yields an identical stationary

distribution to that of the full three-state model. It is important to note that the simplification

to a two-state system is only valid at low excitation intensities, because an Auger process causes

rapid transitions to the dark state when multiple electrons are excited simultaneously by high

excitation intensities[71, 72]. This model can be improved by incorporation of a fourth, twice-

excited state, but this prevents the simplification by adiabatic elimination. In our experiments,

we will keep the excitation intensity relatively low so that we do not have to worry about these

effects.

We now determine the effect of blinking on the FCS curve. We treat the blinking as a discrete

modulation of the fluorescence quantum yieldΦ between the values 0 and 1, independent of any

other process determining the fluorescence rate. Following the procedure described in Section

4.1.3 we can incorporate blinking into the FCS curve by computing the correlation function

of the blinking process on its own and multiplying the result by the FCS curve for the other

dynamics in the experiment, such as systematic tracking errors. The blinking process that we

have described here is known as a random telegraph process[8], and is different than the point

processes we have dealt with when computing correlation functions elsewhere in this thesis.

The fn do not exist for this type of process, but we define the correlation function in a manner

consistent with our previous definition:

gb2 (τ) =
〈
ΦtΦt+τ

〉
〈Φt〉 〈Φt+τ〉 − 1, (6.43)

where the superscript b indicates this is the correlation function of the blinking process. Since

only the population of the bright state contributes to these averages, the steady-state value for
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the quantum yield is 〈
Φt
〉
= ρ∞1 = γ10

γ01 + γ10
. (6.44)

The time correlation may be computed in a fairly simple manner. We write an equation for the

evolution of ρt1 over the infinitesimal time step dt:

ρt+dt
1 = ρt1 (1− γ01dt)+

(
1− ρt1

)
γ10dt, (6.45)

where the first term on the right is the probability that Φt = 1 and that no transition to the

dark state was made during the time step, and the second term is the probability that Φt = 0

and that a transition to the bright state occurred during the time step. Rearranging terms in

Eq. 6.45 and taking the limit dt → 0, we have

d
dt
ρt1 = − (γ01 + γ10)ρt1 + γ10. (6.46)

We find the conditional probability p(t + τ|t) that Φt+τ = 1 given Φt = 1 by solving Eq. 6.46

with the initial condition ρt1 = 1, and we use it to compute the correlation function

gb2 (τ) =
γ01

γ10
e−(γ01+γ10)τ . (6.47)

This expression decays exponentially on a characteristic time-scale τb = (γ01 + γ10)−1. The

contrast gb2 (0) = γ01/γ10 is related to the fraction of time that the qdot spends in the bright

state by gb2 (0) =
(
ρ∞1
)−1−1, so that the more time the qdot spends in the dark state, the larger

the blinking contribution to the FCS curve becomes.

The three-state system is a fair first approximation to qdot blinking behavior. However, the

exponential decay it predicts in the correlation function does not generally match the statis-

tics observed in real qdots, which have on- and off-times that are distributed with power law

statistics[73, 74]. The addition of more dark states would introduce more exponential decays,

and could therefore be used to approximate the observed power-law statistics[88]. However,

it is beyond the scope of our work to try to do this and no physical insight would be gained

by the indiscriminate addition of states. The physically-motivated explanation of the power-

law statistics of qdot blinking is currently a topic of active research in theoretical chemistry

groups[89].

6.4.2 Tracking-FCS of blinking quantum dots

We measured blinking on the qdots we purchased from Invitrogen by tracking them and study-

ing their fluorescence correlation functions over longer time-scales than those discussed in
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Figure 6.12: Average tracking trajectory durations at each C2ME, with 2σ error bars.

Section 6.3. We prepared 80fM solutions of qdots in an aqueous buffer consisting of 30mM

sodium borate and 40% v/v glycerol. The buffer pH was adjusted to 8.3, after the addition

of glycerol, by titration with sodium hydroxide. 2-mercaptoethanol was added at six different

concentrations C2ME immediately before the addition of qdots to the buffer. Qdot solutions

were diluted to 80fM to prevent multiple qdots from being detected over the course of a sin-

gle tracking trajectory. At all C2ME, we fixed the excitation intensity to 570W/cm2 using an

absorptive neutral density filter.

We tracked between 10 and 13 qdots at each 2-mercaptoethanol concentration. The average

tracking trajectory durations at each C2ME are shown in Fig. 6.12. There may be a slight trend

toward increased trajectory duration with increased C2ME, but this trend is not larger than the

experimental uncertainty and so is not statistically significant. This indicates that C2ME was

never low enough for a largely increased blinking time to end many trajectories prematurely.

These results agree with previous observations[76] that found nearly complete suppression of

qdot blinking for C2ME > 1.4mM on time-scales longer than 1s.

We computed g2(τ) for each tracked qdot, and averaged all of the curves from each 2-

mercaptoethanol concentration. The results are shown in Fig. 6.13. In the figure we also

provide the g2(τ) curve for a 60nm fluorescent bead (Bangs Laboratories) in water, which had

nearly the same diffusion coefficient as the qdots in 40% v/v glycerol and was excited at a laser

intensity that produced a nearly identical fluorescence rate to that of the qdots. By taking

the mean-squared deviation of the tracking stage positions, we determined the RMS tracking
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Figure 6.13: Tracking-FCS curves for qdots in 40% v/v glycerol/water solution with varied C2ME,
compared to a 60nm fluorescent bead in water.

error of the bead and qdots to be between 150nm and 200nm along the x and y axes and

between 200nm and 350nm along the z axis. As a consequence of these small errors relative

to the 1.2µm and 1.4µm beam waists, we see an offset g2(0) of essentially zero in the FCS

curve for the bead. For the qdot curves, we attribute the increasing g2(0) as C2ME decreases to

reduced suppresion of qdot blinking. The FCS curves for the qdots at all C2ME have decayed

to zero by τ ≈ 1s, indicating that we observe blinking only on times shorter than this. This

is partly because longer off-times are not tolerated by the apparatus: the qdot may move too

far while off for it to be detected once it turns on. These g2(τ) therefore represent qdot FCS

curves conditioned on never switching off for too long. We expect this contribution to our

data to be small because we were able to track qdots for long periods at all 2-mercaptoethanol

concentrations; however, this effect can be eliminated in the future by labeling the qdots with

organic dyes as done in [75], allowing us to probe blinking on even longer time-scales.

We first use the three-state model described in the previous section to try to fit the decays

in the FCS curves. We used the function

g2(τ) =
[

1+ a+ γ01

γ10
e−(γ01+γ10)τ

][
g0

2(τ)+ 1
]
, (6.48)

derived from Eq. 6.47, where we inserted the experimentally-measured curve for the fluorescent

bead into g0
2(τ), and we included the parameter a to accommodate a slight offset in the g2(τ)

curves over time-scales shorter than 1s that we suspect is a systematic artifact due to slow
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Figure 6.14: Blinking FCS curves from Fig. 6.13 with fits to the exponential curve in Eq. 6.48.
The curves are spaced apart by 0.1 for clarity. Fit parameters are given in Table 6.1

C2ME [mM] γ10 [s−1] γ01 [s−1] a · 103 τb[ms] ρ∞1
1.4 38 6.2 17 23 0.86
7.0 36 4.8 24 24 0.88
14 72 6 14 13 0.92
28 110 12 22 8.3 0.90
70 470 33 1.0 2.0 0.93
140 1100 83 12 0.83 0.93

Table 6.1: Parameters for the fits in Fig. 6.14

fluctuations in the qdot’s fluorescence rate. The fits of Eq. 6.48 to the data are shown in Fig.

6.14 and the fit parameters are shown in Table 6.1. The exponential curves in Fig. 6.14 fit

the rather steep correlation decays in the data at the higher 2-mercaptoethanol concentrations

(C2ME ≥ 70mM) quite well. This implies that the blinking statistics at those concentrations are

roughly exponential, which is consistent with the hypothesis that high concentrations of 2-

mercaptoethanol reduce the number of dark states available for the excited electrons within

the qdot[76]. At lower C2ME, however, the correlation functions decay much less sharply and

the result is increasingly poorer fits as C2ME decreases. This deviation from a single exponential

decay cannot result from a single dark state with transition statistics governed by only a single

set of forward and backward rates.

In order to better fit the correlation decay curves at lower C2ME, we require a more detailed

model of the qdot blinking dynamics. As we discussed in the previous section, however, the

physics of qdot blinking are still not fully understood so no model provides an obviously ap-

propriate choice. Experimental observations have shown that a power law provides a good
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Figure 6.15: Blinking FCS curves from Fig. 6.13 with fits to the stretched exponential curve in
Eq. 6.49. The curves are spaced apart by 0.1 for clarity. Fit parameters are given in Table 6.2

empirical description of qdot blinking[73, 74], but it is difficult to compute the correlation

function for power law statistics. A correlation function may be found for qdots with power

law distributed off-times if we introduce time-scale cutoffs and require the qdot on-times to be

exponentially distributed[90], but these cutoffs are not physical and the exponential on-times

do not agree with observation[73, 74, 89]. Instead, we let our data motivate our choice of fitting

function and leave a more detailed understanding to future work or collaboration.

We find that the introduction of the the stretching exponentβ to Eq. 6.48, giving the function

g2(τ) =
[

1+ a+ γ01

γ10
e−(γ01+γ10)βτ

][
g0

2(τ)+ 1
]
, (6.49)

results in curves that fit the measured correlation functions at low C2ME very well. These fits are

shown in Fig. 6.15 and the fit parameters are given in Table 6.2. At the lower concentrations

C2ME ≥ 70mM , the steep decays in the data may cause artificially high γ values for these fits.

As a result, trends in those parameters may be exaggerated over these concentrations.

Despite its empirical nature, we chose to leave Eq. 6.49 in a form suggestive of Eq. 6.48

because the parameters γ10 and γ01 share some physical relevance in the two equations. In

both, τb = (γ01+γ10)−1 represents a characteristic time-scale of correlation decay and γ01/γ10

is proportional to the the variance in the fluorescence quantum yield due to blinking and can

be used to find the equilibrium population of the bright state ρ∞1 as described in the previous

section. We use the fitted values of γ01 and γ10 to find τb and ρ∞1 , and we provide these values in
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C2ME [mM] γ10 [s−1] γ01 [s−1] β a · 103 τb[ms] ρ∞1
1.4 15 3.6 0.36 30 55 0.81
7.0 4.9 1.3 0.26 61 161 0.79
14 50 6.4 0.34 2.5 18 0.89
28 76 13 0.32 0.58 11 0.85
70 1400 210 0.22 3.3 0.62 0.87
140 3800 530 0.29 9.0 0.22 0.88

Table 6.2: Parameters for fits in Fig. 6.15.

Tables 6.1 and 6.2. While we may directly compare values for the γ parameters between fits to

the exponential model, the stretched exponential form generally prohibits such comparisons

for any curves with different β values. In our fits, however, the values for β lie fairly close

together — the average over all concentrations is β = 0.30 ± 0.04 — so coarse comparisons

may be made.

Both fits suggest the same general trend, in agreement with measurements on surface-

immobilized qdots on time-scales longer than 1s[76]: with increasing C2ME, the fraction of time

the qdot spends in the bright state ρ∞1 increases. Those prior measurements suggested that

the total on-time increased because the average individual on-time increased while the average

individual off-time remained constant. Both of our sets of fit parameters suggest that this was

not the case for the short time-scale blinking that we measured. The derivative

d
dγ01

τb = −
1

(γ01 + γ10)2
(6.50)

is always negative so that any increases in on-time (decreases in γ01), while off-times remain

constant, will be met by increases in τb. Contrary to previous measurements, we observe that

the correlation times τb actually decrease as C2ME increases. This implies that any increases in

on-times due to increased C2ME must be offset by decreases in off-times. Without considering

the individual fits to the γ parameters, we cannot rule out the possibility that both on-times

and off-times decrease with increasing C2ME, but do so in proportion to each other so that the

average total on-time increases. In fact, all of our fitted γ values suggest that this is the case

— we must hesitate to make this claim with certainty, however, because of the difficulty in

interpreting the different β values resulting from the fits to the stretched exponential.
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Chapter 7

Structural fluctuations in isolated DNA
molecules

The final application of the tracking apparatus that we discuss in this thesis is to the study of

internal structural fluctuations of double-stranded λ-phage DNA molecules. While this is the

first application of our work to a real biological system, our measurements are not yet directly

relevant to the biological properties of these molecules. Instead we study them strictly from

a polymer dynamics perspective as we attempt to reconcile our measurements with measure-

ments made with other techniques and with predictions from polymer theory.

Figure 7.1 provides a basic illustration of the molecules that we study in this chapter. DNA

molecules are labeled at random sites along their backbones by intercalating organic dyes.

Some of these dyes absorb green light and emit red fluorescence; these are used as tracers for

the tracking system to follow the molecule. The remaining dyes absorb violet light and emit blue

fluorescence, and they are excited by the 415nm probe laser. The probe’s small focused beam

waist leads to large fluctuations in the blue fluorescence signal as the dyes drift through the

beam. Motion of the dyes relative to the probe beam is caused almost exclusively by structural

fluctuations within the DNA molecule because the tracking system eliminates contributions

due to the molecule’s translational motion. By studying the statistics of the blue fluorescence,

we may infer basic mechanical properties of the freely-diffusing DNA molecule.

Polymers are very complex molecules. The theory used to describe them is necessarily

approximate, because the exact equations of motion for the polymer would be impossible to

solve in any analytical way. While these approximate theories rely on free parameters that

are best determined by experiment, they have yielded some predictions — for example, the

scaling of the polymer’s center of mass diffusion coefficient or radius of gyration with respect

to the chain length — that agree with experimental observations to a high degree of accuracy.

In this chapter we study the predictions of applicable theories to the dynamic behavior of

DNA molecules; we study both center of mass motion and internal motion, which are almost
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~1µm

Figure 7.1: Illustration of a DNA molecule (gray) labeled with intercalating dyes. The rotating
tracking beam (green) and probe beam (violet) are drawn approximately to scale.

completely decoupled in our measurements.

Recent literature from several groups[21–25] has reported on measurements of a similar

nature to ours. However, despite these measurements a fair amount of uncertainty still remains

about some basic polymer properties of DNA molecules. Surprisingly, there is no consensus

in the literature on the value of the free-solution diffusion coefficient of λ-phage DNA, with

measured values differing by as much as a factor of 3; some of these differences have been

accounted for, some have not. More interestingly, there is some uncertainty regarding the basic

physics governing the internal polymer motion: the importance of the interactions between

the polymer and its solvent is still not agreed upon. Matters are certainly not simplified by

theoretical deficiencies that we find in some of those references. We address all of the concerns

regarding this literature in Section 7.3 of this chapter.

This chapter begins with a detailed overview of the aspects of polymer theory relevant to

our work. This review is based closely on the definitive book by Doi and Edwards[91], but for

completeness we provide enough detail in the review to accommodate all of the calculations

that we will need for computing FCS curves later in the chapter. Once those calculations are

complete, we review the recent literature relevant to our work in the context of the polymer

theory. Finally we present our measurements, in which we directly measure the translational

diffusion of the molecule and find a center of mass diffusion coefficient that lies about half-way

between previous measurements. In addition, we clearly detect statistical correlations in the

molecule’s fluorescence on time-scales up to 1 second, but we find the measurements to lack
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any clear signatures of either the presence or absence of strong solvent interactions.

7.1 Theoretical dynamics of linear polymers

A polymer is any molecule constructed by linking together a large number of similar or identical

smaller molecules or monomers. Three of the four major classes of biological molecules —

proteins, nucleic acids and carbohydrates, but not lipids — are examples of polymers. Due

to their large size, a complete specification of even the static properties of a single polymer

would require accounting for an extremely large number of degrees of freedom: the λ-phage

DNA molecules that we study in this chapter are composed of ∼ 106 atoms that are each free

to move in three dimensions and to interact with surrounding solvent molecules.

A half-century of experimental evidence suggests that many properties of polymers are

characteristics not of the specific form of individual monomers, but rather of the fact that

the monomers are linked together to form long chains[92]. These so-called global properties

can be described in terms of only a few adjustable parameters that are specific to individual

polymers. It is the goal of polymer physics to find these general theoretical descriptions, and

the goal of polymer chemistry to understand the localized behaviors that determine the global

parameters. In this section we review the basic theory describing the mechanical properties

of flexible linear polymers from the global polymer physics perspective. Most of this review

is drawn from the definitive book by Doi and Edwards[91], with some ideas taken from de

Gennes’ book[92]. Both are excellent resources, the latter as a more readable and insightful

introduction and the former for its detailed calculations.

7.1.1 Static properties of flexible polymers

We begin by introducing a basic model that will form the foundation of many of our calcula-

tions in this chapter. We let the polymer molecule consist of a sequence of N submolecules

that are assembled into a linear chain. These submolecules may correspond to the individual

monomers, but our definition is sufficiently general that it may likewise apply to a coarser

description where each submolecule consists of a group of monomers (and b is chosen accord-

ingly). The fact that this choice is not well-defined is not a problem with our model, because

coarse-graining the polymer into submolecules is itself an artificial description and will yield

incorrect local properties for absolutely any choice of submolecules. On a large enough scale,

however, we will find that the specific assignment of submolecule size does not affect the

predictions for the polymer’s global behavior.

We let the vector Rm denote the position of the mth submolecule relative to an arbitrary
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Figure 7.2: Freely-jointed polymer model. The vectors R1, R2 and R3 to the first three sub-
molecules (from arbitrary origin O) are shown, as is the vector r21 ≡ R2 − R1.

coordinate origin. A simple model of the polymer requires that the length of the bonds between

submolecules be fixed at b0 and allows the submolecules to rotate freely about their bonds

in three dimensions. This is known as the freely-jointed chain and is illustrated in Fig. 7.2.

In solution, each submolecule experiences a random Brownian force (see Section 3.1.1) from

collisions with the solvent molecules. As a result we treat the instantaneous configuration of

the polymer as a random walk starting from R1 and proceeding according to the prescribed

behavior of the bonds between submolecules. We define the vector from submolecule m to

submolecule n by rnm = Rn − Rm. We compute the statistics of rnm, for n ≥m, by

〈rnm〉 =
〈n−m∑
j=1

r(m+j)(m+j−1)

〉
= 0 (7.1)

〈
|rnm|2

〉
=
〈n−m∑
j=1

n−m∑
k=1

rT(m+j)(m+j−1)r(m+k)(m+k−1)

〉
= (n−m)b2

0, (7.2)

where the second result follows from the fact that
〈

rTnmrjk
〉
= δnjδmkb2

0 because the vectors

between submolecules are uncorrelated. By symmetry, we may generalize this result to arbi-

trary n,m:
〈
|rnm|2

〉
= |n−m|b2

0. In fact, for large |n−m| it can be shown that the distribution

of rnm is approximately Gaussian with mean and variance given by Eqs. 7.1 and 7.2[91].

Polymer models with rigid bond lengths, of which the freely-jointed chain is an example, are

known as random-flight models. A broad range of these types of models can be imagined; for

example, a freely-rotating chain in which the angle between any three sequential submolecules

is fixed but each submolecule is permitted to rotate about its bonds is both physically sensible
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and solvable for the first two moments of rnm. Interestingly, these models — which differ in

their local structure — result in nearly identical statistics to the freely-jointed chain for rnm on

global scales (when |n−m| is large)[91]. The only difference is generally just the replacement

of b0 by an effective bond length b > b0.

That the local properties of the random-flight models do not affect the Gaussian statistics of

rnm over long distances suggests a further simplification of these models. We already discussed

the arbitrary nature of our choice of submolecules; we may as well choose our submolecules

to be large enough that the local stiffness of the bonds between them may be neglected from

our model. For example, suppose a zero-mean Gaussian with variance N0b2
0 is a good approxi-

mation to the statistics of rnm for |n−m| ≥ N0 in a random-flight model. We further coarsen

this model into a sequence of larger submolecules, each containing at least N0 of the random-

flight submolecules, and let the effective bond length b = b0
√
N0. The resulting statistics of the

vectors between the nth andmth of these new submolecules are zero-mean Gaussian with vari-

ance |n−m|b2. This simplified model is known as the Gaussian chain, and is very important

because of its analytical simplicity.

We must always remember what physical properties of the polymer we are choosing to

ignore through the selection of our polymer model. In the case of the Gaussian chain, local

chain stiffness is eliminated; any polymer that is stiff over length-scales comparable to either

the length of the polymer chain or the beam waist of the excitation laser will exhibit signatures

of this stiffness in its FCS curves[23]. For our purposes, however, the Gaussian chain model

should suffice, because our relatively long DNA molecules do not satisfy these criteria and may

be described as effectively flexible chains[23].

Another inaccuracy is that the Gaussian model describes polymer chains that are not pre-

vented from intersecting themselves. Such “phantom chains” do not exist in the real world,

where knots and tangles form within polymers much like in macroscopic strings as a con-

sequence of self-intersection. Under special solution conditions known as Θ conditions, the

repulsive force from self-interaction is exactly balanced by the interaction with the solvent,

so that the equilibrium configuration of the real chain is no different than of the phantom

chain[91, 93]. In more general conditions, known as “good solvents,” the polymer swells due to

self-avoidance and this phenomenon is difficult to model exactly in a dynamic context without

producing unsolvable equations of motion.

7.1.2 Generalized dynamics of polymer solutions

Using the very basic description of a polymer as a sequence of linked submolecules, we may

incorporate the motion of the chain into our theoretical description in a very general way. A
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polymer chain in solution moves because its backbone makes frequent collisions with sur-

rounding solvent molecules that exert impulsive forces on it. The resulting polymer motion

is just a generalization of the Brownian motion of a solid particle that we reviewed in Section

3.1.1. In fact, we describe the Brownian force acting on the polymer in terms of the forces act-

ing on each submolecule, and we set the statistics of these forces to exactly what they would

be if the submolecules were freely-diffusing particles independent of the polymer chain.

Adjacent submolecules in the polymer chain model exert forces on each other that hold

the polymer together. We may capture all of these forces in terms of a generic potential U

that depends on the polymer’s instantaneous configuration. One important aspect of polymer

Brownian motion that is distinct from that of a single solid particle is that the motion of individ-

ual submolecules is coupled through interactions with the solvent. Motion of one submolecule

induces fluid flow that biases the motion of other submolecules that are nearby in space but

potentially quite distant along the polymer chain. We use a self-adjoint positive definite inter-

action tensor Hnm (or mobility tensor) that maps the force applied on submolecule m to the

velocity of submolecule n based upon this hydrodynamic coupling.

In order to express the motion of the chain with a differential equation, we calculate the

force acting on every submoleculem in the polymer chain due to the confining potential U and

the Brownian force Bm(t). These forces couple into the velocity of submolecule n according

to Hnm. The Langevin equation of motion for the submolecules of the polymer is then given

by[91]:
∂
∂t

Rn =
∑
m

Hnm · [−∇mU + Bm(t)]+
kBT

2

∑
m
∇m ·Hnm, (7.3)

where∇m is the del operation with respect to the components of the vector Rm. The first term

in Eq. 7.3 is due to the forces we discussed, and the second is a correction necessary whenever

Hnm depends explicitly on the coordinates Rn[94]. Bm(t) is simply a three-dimensional vector

of random forces of the type described in Section 3.1.1: each component of Bm(t) is a zero-mean

Gaussian white noise process. Due to the coupling of submolecules through the hydrodynamic

interaction, the correlation function of the Brownian force is

〈
Bn(t)Bm(t′)T

〉
= 2kBTδ(t − t′)

(
H−1

)
nm

Id3, (7.4)

where H−1 is the inverse of the hydrodynamic tensor matrix.

It is generally fairly easy to compute reasonable U and Hnm. Essentially, this reduces all of

polymer dynamics to the solution of the Langevin equation Eq. 7.3 or its associated Fokker-

Planck equation. Unfortunately, an explicit solution is only possible for a very small class of U

and Hnm. The trick now is to find a U and Hnm that are simple enough to yield exact solutions

but detailed enough to account for as much of the relevant polymer physics as possible.
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Figure 7.3: Rouse/Zimm model. Left: Adjacent submolecules are constrained by a Harmonic
potential equivalent to being bound together by springs. Right: Continuum limit.

7.1.3 Harmonically-bound submolecules: the Rouse model

The first model to incorporate dynamics into the model of the Gaussian polymer chain was

proposed by Rouse in 1953[95]. This model simplifies the U and Hnm to perhaps the greatest

extent possible while maintaining the correspondence of the Langevin equation’s steady-state

solution with the static Gaussian chain. This model is considered insufficient for describing

experimentally-observable properties of real polymers because it only incorporates the influ-

ence of localized interactions along the polymer chain. However, it is important because it

forms the basis of more detailed models, and the equations of motion for that model reduce

to a form resembling those for this model.

We let the N submolecules of the polymer be bound by the harmonic potential

U = k
2

N∑
n=2

|Rn − Rn−1|2 , (7.5)

where k is the force constant of the bonds between submolecules. We will deduce the value of

k at the end of this section by equating the variance of the inter-chain distances predicted by

this model with those of the static chains in Section 7.1.1. This potential describes the polymer

as essentially a set of beads connected by springs, as illustrated in Fig. 7.3. The Rouse model

ignores all hydrodynamic couplings between submolecules, so that the mobility tensor is given

by

Hnm =
1
γ

Id3 δnm, (7.6)

where γ is the Stokes drag coefficient of the individual submolecules, identical to that described

in Section 3.1.1.
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Inserting Eqs. 7.5 and 7.6 into Eq. 7.3, we get the Rouse Langevin equation

γ
d
dt

Rn = −k (2Rn − Rn+1 − Rn−1)+ Bn(t). (7.7)

At the ends of the chain, we just use R0 = RN+1 = 0. Instead of solving this (potentially

high-dimensional) ordinary differential equation, we make the assumption that the number N

of submolecules is very large, so that b is very small compared to the overall length of the

polymer. In this case we may approximate the polymer as a continuous curve parametrized by

the vector R(y, t), where y = nb is the position coordinate along the backbone of the chain.

This continuum limit is illustrated in Fig. 7.3, and results in the transformation of Eq. 7.7 into

the partial differential equation

γ
∂
∂t

R(y, t) = kb2 ∂2

∂y2
R(y, t)+ B(y, t). (7.8)

The statistics of B are transformed using δnm → bδ(yn −ym), so that

〈B(y, t)〉 = 0〈
B(y, t)B(y ′, t′)T

〉
= 2kBTγbδ(y −y ′)δ(t − t′) Id3,

(7.9)

and the boundary conditions for R simply become

∂
∂y

R(y, t)

∣∣∣∣∣
y=0,y=L

= 0. (7.10)

Our definition of the continuum limit is slightly different than that used in[91], where the

variable n is simply turned into a continuous variable ranging between 0 and N . Such an n

is dimensionless while y is not, which results in the factor of b in the covariance in Eq. 7.9.

The choice of how to define the limit is not important because it ultimately must not affect

the statistics we compute, but we prefer our definition because it is at least mathematically

well-defined, corresponding to taking N → ∞, b → 0 and Nb = L. Based on this definition

we know that k must contain a b−2 term in order to ensure that the second derivative term is

nonzero, but we don’t worry about this until we can compute k explicitly.

Due to these boundary conditions and the presence of the second derivative operator, we

project Eq. 7.8 into the Fourier basis by defining

χp(t) =
1
L

∫ L
0

dyR(y, t) cos
[
πpy
L

]
(7.11)

Λp(t) =
(
2− δ0p

)∫ L
0

dyB(y, t) cos
[
πpy
L

]
(7.12)
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for p ∈ N. It is important to note that these definitions are not normalized (χp is missing

a factor of 2 − δ0p, while Λp is missing 1/L), which matters when we transform back into

real-space coordinates. The Langevin equation for the Fourier coefficients is

γp
∂
∂t
χp(t) = −kpχp(t)+Λp(t), (7.13)

where we have defined kp = 2π2kp2b2/L and γp = (2 − δ0p)γL. The statistics of Λp(t) are

found directly from Eq. 7.9:

〈
Λp(t)Λq(t′)T

〉
= 2kBTγpbδpqδ(t − t′) Id3 . (7.14)

We now solve Eq. 7.13 to get

χp(t) = exp

[
−kp
γp
t
]
χp(0)+

1
γp

∫ t
0

dτ exp

[
−kp
γp
(t − τ)

]
Λp(τ), (7.15)

and use this expression to compute the statistics of χp. For p > 0 χp(t) is stationary, so we

compute its statistics by taking the limit t →∞. This gives

〈
χp(t)

〉
= 0〈〈

χp(t + τ)χq(t)T
〉〉
= kBTb

kp
exp

[
−kp
γp
τ
]
δpq Id3,

(7.16)

(where we use van Kampen’s covariance notation[8], 〈〈·〉〉, as in Chapter 3) indicating that the

Fourier coefficients decay exponentially on time-scales that depend inversely as the square of

the wave number p. Low-frequency modes therefore dominate the predicted behavior of the

polymer. For p = 0, the exponential terms in Eq. 7.15 vanish because k0 = 0 and we are left

with

〈χ0(t)〉 = χ0(0)〈〈
χ0(t + τ)χ0(t)T

〉〉
= 2kBTb

γ0
t Id3,

(7.17)

which clearly indicates that χ0 is nonstationary.

We require the statistics of the polymer chain’s motion in position space, not Fourier space.

We invert the projection into the Fourier basis by computing

R(y, t) = χ0(t)+ 2
∞∑
p=1

χp(t) cos
[
πpy
L

]
, (7.18)

and we use this and Eqs. 7.16 and 7.17 to find the statistics of the polymer’s motion. In
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particular, the center of mass coordinate is given by

Rcm(t) =
1
L

∫ L
0

dyR(y, t) = χ0(t), (7.19)

so comparison of Eqs. 3.8 and 7.17 indicates that the center of mass moves by ordinary Brown-

ian motion with diffusion coefficient Dg = kBTb/γL. Furthermore, we can compute the statis-

tics of the end-to-end vector

R(L, t)− R(0, t) = −4
∞∑
p=1

χ2p−1(t), (7.20)

which is stationary with zero mean and variance given by

〈
|R(L, t)− R(0, t)|2

〉
= 16

∞∑
p=1

3kBTL
2bπ2k(2p − 1)2

= 3kBTL
bk

. (7.21)

From our description of the static chain in Section 7.1.1, specifically Eq. 7.2, we must require〈
|R(L, t)− R(0, t)|2

〉
= Nb2. This tells us that k = 3kBT/b2 is the appropriate spring constant

for the potential U binding the submolecules together, and allows us to compute the decay

time-scale of mode p from Eq. 7.16,

τp ≡
γp
kp

= γL2

3kBTπ2p2
= τ1

p2
. (7.22)

The predictions in Eqs. 7.19 and 7.22 are considered major failures of the Rouse model[91].

Empirical data has shown that Dg scales more closely to L−1/2 and that τp scales as L3/2;

the deviations of the Rouse predictions from these values is attributed to the exclusion of

hydrodynamic interactions from the model. We now review one way in which those interactions

are incorporated while maintaining the linearity, and hence solubility, of the Langevin equation.

7.1.4 Hydrodynamic interactions: the Zimm model

In the previous section we offered a detailed derivation of the statistics of the Rouse polymer,

despite the fact that the Rouse model is considered insufficient for describing real polymers.

The reason for the deficiency is that the model ignores all interactions between the polymer

and the solvent and describes a phantom chain, ignoring self-crossing of the polymer. The diffi-

culty in incorporating these phenomena into the model is not a modeling difficulty, but rather

a mathematical one: the general Langevin equation for the motion of the polymer becomes

nonlinear when the appropriate mobility tensor Hnm and self-avoidance potential U0 are used.

However, a simplification of these exact terms attributed to Zimm[96] has improved some of
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the deficiencies of the Rouse model while remaining exactly solvable.

Zimm’s approach used the Oseen tensor, which is derived straightforwardly from the stress

tensor for the fluid[91, 97], as the mobility tensor. The Oseen tensor is nonlinear, but its diver-

gence vanishes so that the correction term in Eq. 7.3 is zero. Zimm simplified the nonlinearity

by what is known as a mean-field approximation: he replaced the Oseen tensor by its average

over the ensemble of static polymer configurations, as described in Section 7.1.1. This results

in a linear Langevin equation for R(y, t).

Without providing the details because they are worked out in [91, 96], Zimm was able to

reduce the Langevin equation for his polymer model to one of exactly the same form as that

for the Rouse polymer,

γZp
∂
∂t
χp(t) = −kZpχp(t)+Λp(t), (7.23)

which differs from Eq. 7.13 only in the use of the Zimm values for the coefficients γZp and kZp ,

which are given in [91]. This model, despite the use of the mean field and other approximations,

predicts the diffusion coefficient and relaxation time scalingDg ∼ L−1/2 and τ1 ∼ L3/2 discussed

in the previous section.

So far the polymer we have described is still a phantom chain, so any predictions about it are

only truly valid in Θ solution conditions. Self-avoidance can be incorporated into the polymer

model by addition of a repulsive potential to the harmonic potential in Eq. 7.5. Such a potential

induces a new nonlinearity in the dynamics, but the Langevin equation may again be relaxed by

a mean-field approximation that incorporates the effects of the potential into the coefficients

γZp and kZp . This is not simple, however, because in a good solvent the static distribution of the

polymer changes due to the repulsive self-interaction force and the attractive solvation force.

The polymer swells in such conditions, and this affects the averages of the Oseen tensor and

the repulsive potential.

Due to the fact that the Zimm model produces Langevin equations that are so similar to those

of the Rouse model, we do not provide any more mathematical detail on these models. Later

on when we compute FCS curves, we will again perform all of our derivations using the Rouse

model. By inserting well-known alternative coefficients for the standard Rouse coefficients, we

may apply our results to the Zimm model. Table 7.1 lists the proper coefficients for the Rouse

model and for the Zimm model both in Θ conditions and in a good solvent. Their derivation

can be found in [91].

7.1.5 Chain stiffness: semiflexible chain

A review of polymer theory in the context of the dynamics of double-stranded DNA would be

incomplete without mention of the effect of chain stiffness on the polymer dynamics. No real
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Rouse Zimm, Θ Zimm, good
kp 6kBTπ2p2/L 6kBTπ2p2/L kBTb1/5p11/5/L6/5

γ0 γL 3
8ηs

√
6π3Lb ηsL3/5b2/5

γp 2γL ηs
√

12π3Lbp ηsb2/5L3/5p2/5

Table 7.1: Langevin equation coefficients for various flexible polymer models. ηs is the solvent
viscosity. The Zimm/good solvent coefficients are all scaling relationships, hence the absence
of numerical coefficients.

polymer chains behave like the flexible polymers we have described in this section over all size-

scales. Rather, the bonds holding the chains together induce some stiffness that implies that on

very small scales the Gaussian chain model breaks down: the vector between submolecules n

andn+1 will necessarily resemble that betweenn−1 andn, because a lot of energy is needed to

produce a sharply-kinked chain. More detailed models that incorporate chain-stiffness, such as

the Kratky-Porod[91, 98] and semiflexible Gaussian chain model[99], are needed to accurately

describe the polymer on these size scales.

The length scale over which the polymer stiffness is important is called the persistence

length, and is a characteristic feature of specific polymer molecules. Winkler showed[23] that

the ability of an FCS measurement to resolve chain stiffness depends on the waist of the probe

beam being comparable to or larger than the persistence length. The persistence length of

double-stranded DNA is about 50nm[100], so our probe beam waists of 400nm and 700nm

are unlikely to produce FCS curves showing strong signatures of chain stiffness on the DNA

molecules that we study. Furthermore, the extent to which semiflexible chain behavior domi-

nates a polymer’s motion depends on the relationship between the overall length of the polymer

and the persistence length. This is easy to understand, since a polymer that is only as long as

its persistence length is rather rodlike, with dynamics dominated by rotational modes. λ-phage

DNA molecules are about 340 times longer than the persistence length, so that their dynamics

are dominated by flexible chain-like motions (stretching modes) rather than stiff chain motions

(bending modes, rotational modes). We do not discuss semiflexible chain models further in

this thesis, but refer to [23] as a good review of the dynamics of these chains and particularly

their application to FCS measurements.

7.2 Fluorescence correlation spectroscopy of polymers

For years, polymers have been studied by irradiating them with a probe beam and studying the

scattered light. Regardless of the mechanism for this scattering — whether a neutron beam is

scattered off of isotopes within the chain or a laser beam is absorbed and fluorescence emitted

— the theoretical calculations for describing the scattering are almost identical. As defined in



142

Section 4.2.3, the dynamic structure factor

S(k, τ) =
∑
l,m

〈
eik

T (xt+τm −xtl )
〉
, (7.24)

where xt+τm and xtl are the positions of the lth and mth dye molecules (or scattering centers)

is closely related to what is measured by FCS. We begin this section by presenting exact and

approximate expressions for the dynamic structure factors of Rouse and Zimm polymers. Next

we compute a related quantity,ϕ(l,m; t, τ) from Section 4.2.1, that is needed for tracking-FCS

measurements.

7.2.1 Dynamic structure factor

Here we summarize the computation of S(k, τ) for the Rouse and Zimm models, closely follow-

ing Doi and Edwards’ review[91] of the calculations by de Gennes and Dubois-Violette [101, 102].

We derive an exact expression that applies to both models, and then perform a standard sim-

plification using parameters from the Rouse model.

Since the statistics of the polymer are Gaussian, we may transfer the average in Eq. 7.24

from outside the exponential into the exponent according to Eq. 4.22. Doing this, while simul-

taneously accounting for the fact that there is no coupling between R(y, t) and R(y ′, t′) along

orthogonal axes, we get

S(k, τ) = 1
N

∑
l,m

exp
[
−1

6
|k|2

〈∣∣∣xt+τm − xtl
∣∣∣2
�]
, (7.25)

where the factor of 1/3 comes from the fact that the inner product contains three quantities

with identical statistics, one for each axis. It is useful shorthand (and convention[91]) to write

φ(l,m; t, τ) ≡
〈∣∣∣xt+τm − xtl

∣∣∣2
�
, (7.26)

which is related to ϕ(l,m; t, τ) as defined in Eq. 4.31, as we will see later in Section 7.2.3.

It is important to remember the distinction between xm, the position of the mth dye, and

R(y, t), the position of the polymer. In the dense-labeling limit, the positions of the dyes and of

the polymer are indistinguishable; however, for more sparse labeling the continuous polymer

chain and the discrete set of dyes are distinct and must be treated as such.

We may now insert Eq. 7.18 for the real-space Rouse chain dynamics into Eq. 7.25, which
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gives us

φ(l,m; t, τ) =
〈∣∣∣χt+τ0 − χt0

∣∣∣2
�
+ 4

∞∑
p=1

{〈(
χt+τp

)T
χt+τp

�
cos2

[
pπym
L

]

+
〈(
χtp
)T
χtp
�

cos2
[
pπyl
L

]
− 2

〈(
χt+τp

)T
χtp
�

cos
[
pπym
L

]
cos

[
pπyl
L

]}
, (7.27)

where we have used the δpq term in Eq. 7.16 to preemptively eliminate all products between

unlike Fourier coefficients. The p = 0 term in Eq. 7.27 corresponds to the center-of-mass

motion given by Eq. 7.17. The remaining sum is simplified partly by the following peculiar

fact[91]:
∞∑
p=1

1
p2

[
cos

(
pπym
L

)
− cos

(
pπyl
L

)]2

= π
2

2L
∣∣ym −yl∣∣ . (7.28)

After inserting this and the covariance for χp from Eq. 7.16, we are left with

φ(l,m; t, τ) = 6Dgτ +
∣∣ym −yl∣∣b + 24kBTb

∞∑
p=1

1
kp

(
1− e−τ/τp

)
cos

[
pπym
L

]
cos

[
pπyl
L

]
,

(7.29)

where τp is defined in Eq. 7.22. When calculated using Eq. 7.29, the dynamic structure factor

is exact for the Rouse and Zimm models. However, it is also not easy to calculate, requiring

numerical evaluation of the sums over l, m and p. If we study Eq. 7.29 in certain limits, we

may evaluate its approximate behavior.

In the so-called small-angle regime defined by |k|2Nb2 � 1, the only term that is not very

small in Eq. 7.29 is the first: we get S(k, τ) = Ne−|k|2Dgτ . This is not at all surprising, since it

just implies that the low-frequency modes are dominated by Brownian motion of the center of

mass of the polymer.

The most common approximation used in fluorescence measurements of polymers [21, 25]

is that the measurement time-scale is much shorter than the polymer chain’s relaxation time-

scale, so τ � τ1. Expanding the exponential term inside the sum over p then allows us to show

that the sum is dominated by large p, allowing a simplification of the cos terms. We write the

identity

2 cos
[
pπym
L

]
cos

[
pπyl
L

]
= cos

[
pπ(ym −yl)

L

]
+ cos

[
pπ(ym +yl)

L

]
, (7.30)

where the second term fluctuates very rapidly at the large p values that contribute the most to

the sum; for this reason we ignore it, assuming that its fluctuations will average away to zero.

The resulting expression for S(k, τ) is written in terms of three discrete sums. We can simplify

it by converting those sums into integrals. From here on, we use the values for kp and τp for

the Rouse model, but the derivation for the Zimm model is done similarly. For more details,
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see the original derivation[102].

For the Rouse model we have

S(k, τ) ≈ 1
L

∫ L
0

dym
∫ L−ym
−ym

du exp
{
−|k|2Dgτ −

1
6
|k|2|u|b

− Lb
3π2

|k|2
∫∞

0
dp

1
p2

cos
[
pπu
L

](
1− e−τp2/τ1

)}
, (7.31)

where we have used u = yl − ym. From here, Doi and Edwards make the argument that the

integrand is sharply peaked at u = 0, so that the integral over u only depends on ym when ym

is near zero. We follow their work here, but we will find in the next section that this introduces

a large error in S(k, τ) for small k. This is significant for us, because the FCS curve is dominated

by the small-k terms. If indeed the integrand is sharply peaked, then for large enough L the

ym dependence of the integration bounds contributes very little relative to the overall size of

the integral. We may compute the integral over u across the entire real line without drastically

affecting the result. We make some variable substitutions to get

S(k, τ) = 12
|k|2be

−|k|2Dgτ
∫∞

0
dv exp

{
−v − (Γkτ)1/2 h

[
v (Γkτ)−1/2

]}
, (7.32)

where we have defined

Γk ≡
kBT
12γ

|k|4 b2 (7.33)

and

h(v) ≡ 2
π

∫∞
0

dx
cos (xv)
x2

(
1− e−x2

)
. (7.34)

A final approximation is now used to convert Eq. 7.32 into a more useful form. If we assume

that Γkτ � 1, then we may substitute h(0) for the term inside the exponential, in which case

we may compute the integral:

S(k, τ) ≈ 12
|k|2b2

exp
[
−|k|2Dgτ −

2√
π
(Γkτ)1/2

]
. (7.35)

This approximation receives widespread use in polymer dynamics studies. It can be shown

that the short-time approximation for the dynamic structure factor for the Zimm polymer in

a good solvent yields a similar expression, but with an exponent with a τ2/3 dependence. By

fitting the temporal decay of the measured dynamic structure factor to a stretched exponential

of the form S(k, τ)∝ exp
[
−|k|2 (Γτ)β

]
, several groups claim to have found evidence of Zimm

or Rouse behavior in their measurements[21, 22, 25].
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Figure 7.4: Exact (solid) and approximate (dashed) Rouse dynamic structure factor. a compares
the exact S(k, τ), computed numerically in Matlab, with the approximation from Eq. 7.35. b
compares the exact S(k, τ) to our corrected approximation from Eq. 7.37. The approximate
curve for |k| = 0.2 is not clearly visible because its deviation from the exact curve is very small.
Numerical computations truncated the sum over p at p = 200. We used b = 0.05, L = 10,
Dg = 1 [arbitrary units] in all calculated curves.

7.2.2 Application to open-loop FCS

Equation 7.35 was derived through the use of a large number of approximations. This standard

derivation was well-suited to dynamic light scattering experiments, but we must consider their

effect on FCS measurements. In particular, because light scattering measurements are made at

a fixed k vector and FCS measurements are an integral over all k vectors, there may be some

difficulty in directly using Eq. 7.35 to compute our FCS curves.

The prefactor of |k|−2 in Eq. 7.35 is very significant. Because of it, if we were to attempt to

compute the FCS curve according to Eq. 4.41, the integral would not converge. In fact, the error

at τ = 0 for small k vectors is enormous, as shown in Fig. 7.4a. This error is not a problem

at all for DLS measurements at a fixed k vector, because the normalization of S(k,0) is found

experimentally.

We may backtrack a few steps and find an expression for S(k, τ) that is more acceptable for

use in FCS. If we had not eliminated the dependence on ym on the integration limits in going

from Eq. 7.31 to Eq. 7.32, but we had made the assumption that Γkτ � 1, then we would have

S(k, τ) ≈ 1
L

∫ L
0

dym
∫ L−ym
−ym

du exp
[
−|k|2Dgτ −

1
6
|k|2|u|b − 2√

π
(Γkτ)1/2

]
(7.36)

= 12
|k|2b2

[
1− 6

N|k|2b2

(
1− e−|k|2b2N/6

)]
exp

[
−|k|2Dgτ −

2√
π
(Γkτ)1/2

]
(7.37)

for the Rouse model. The results of this correction are shown in Fig. 7.4b. The corrected

curve is a very good approximation to the exact S(k, τ), especially for the small |k| terms
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that contribute the most to the FCS curve. Errors at τ = 0 reappear at larger k because of

our approximation of the fast-decaying sums by integrals in Eq. 7.31. Fortunately, the |k|−2

decay in the amplitude of S(k, τ) means that these less-accurate large-k terms contribute only

a small amount to the FCS curve. The agreement between the approximate and exact curves in

the figure is striking at times comparable to τ1, since we obtained Eq. 7.37 via the short-time

approximation. If we plot the relative error between the exact and approximate curves at a

fixed |k| (not shown) we find that the error does increase on longer time-scales, but only after

S(k, τ) has almost completely decayed to zero. This means that any fears concerning the use

of an approximation for S(k, τ) for measurements spanning long time-scales are unwarranted

for the Rouse polymer. The Zimm polymer in good solvent is more difficult to analyze in this

way because of the approximate nature of the coefficients in Table 7.1.

We now compute the the integral in Eq. 4.41 to find the FCS curve. If we insert a stationary

Gaussian laser beam, as described by Eq. 4.11, we find that in general a closed-form expression

for the integral does not exist. However, if the beam waistw/ζ along the z axis is comparable to

w, the waist along the x and y axes, then we may compute the integral using a transformation

to spherical coordinates. This gives

∫
d3k
(2π)3

S(k, τ)Γ̃(k) ≈ Γ0w3π3/2

32b2

1√
ν(τ)

{
1+ 2λν(τ)− 2

√
λν(τ) [1+ λν(τ)]

}
, (7.38)

where we have defined λ = 6/Nb2 and

ν(τ) = Dgτ +
2√
π

(
kBTb2

12γ
τ
)1/2

+ w
2

8
. (7.39)

This calculation gives us a fair estimate of what the FCS curve will look like, but the requirement

that ζ = 1 has its consequences: the decay in the predicted g2(τ) will be steeper, and the

predicted contrast will be greater, than the measured curve. More generally, the approach used

in Chapter 4 and in [23, 103] should be used: the integrals over k are computed first to find

the FCS curve in terms of φ(l,m; t, τ), and then the polymer physics is inserted and the FCS

curve itself is approximated as needed.

7.2.3 Tracking-FCS of polymers

So far in this section we have only calculated curves that are useful for other people; we showed

in Section 4.2.3 that the dynamic structure factor does not apply directly to our tracking-FCS

measurements. In fact, we showed that the only tracking measurements for which it does apply

are camera-based correlation methods where the illumination beam intensity is uniform over

the region explored by the tracked particle.
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From Eq. 4.31, we know that the tracking-FCS curve is determined by the quantity

ϕ(l,m; t, τ) =
〈

xt+τm
(
xtl
)T�

. (7.40)

In both of our models this outer product matrix is diagonal and the motion of the chain is

isotropic; therefore we know that

ϕ(l,m; t, τ) = 1
3

〈(
xt+τm

)T
xtl

�
. (7.41)

In our derivation of the tracking-FCS curve in Section 4.2.1 we defined our coordinate system so

that
〈

xtl
〉
= 0. Using this and the statistics we calculated for chain dynamics in Section 7.1.3,

we may represent ϕ(l,m; t, τ) exactly by the series

ϕ(l,m; t, τ) = 4kBTb
∞∑
p=1

1
kp

exp

[
−kp
γp

]
. (7.42)

In order to compute the tracking-FCS curve, we require what we referred to as the radius of

gyration Rg of individual scattering centers along the backbone of the polymer chain. These

are defined by

Rg(m)2 ≡
〈∣∣R(ym, t)− Rcm(ym, t)∣∣2

〉
, (7.43)

and so in the standard way we insert the statistics of the polymer in terms of kp:

Rg(m)2 = 4kBTb
∞∑
p=1

1
kp

cos2
[
pπym
L

]
. (7.44)

In the case of either the Rouse polymer or the Zimm polymer in Θ conditions, this series is

another peculiar one with a simple closed-form solution. I found this expression by trial and

error, although I have no doubt that it has been known for a long time:

Rg(m)2 =
Lb
3

[(
ym
L
− 1

2

)2

+ 1
12

]
. (7.45)

Especially due to the strong agreement between the exact and approximate dynamic struc-

ture factors for the Rouse polymer as illustrated in Fig. 7.4, it is tempting to try to relate

ϕ(l,m; t, τ) to φ(l,m; t, τ), because of the convenient approximations for φ(l,m; t, τ). If we

expand the squared term in Eq. 7.26 and isolate the cross-term, we get

ϕ(l,m; t, τ) = 1
6

[
Rg(m)+ 6Dgτ + Rg(l)−φ(l,m; t, τ)

]
Id3 . (7.46)
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Now it seems appropriate to insert

φ(l,m; t, τ) = 6Dgτ + |ym −yl|b +
12√
π

(
kBTb2

12γ
τ
)1/2

(7.47)

into Eq. 7.46; however, this φ increases without bound as τ →∞, and so it will clearly produce

invalid results: Eq. 4.33 predicts that the correlation function would approach −1 at long times

because the normalization constant cannot depend on τ . This approximation clearly produces

invalid tracking-FCS curves.

7.3 Literature review

Now, in the context of the theory that we have reviewed in this chapter, we review the recent

literature that is relevant to our measurements.

7.3.1 Lumma et al., Phys. Rev. Lett., 2003

This paper[21] was the first to use FCS to study the internal dynamics of DNA molecules in

solution. The authors studied λ-phage DNA labeled along its backbone by intercalating dyes.

They postulated that intramolecular dynamics would influence the FCS curve because their

focused laser beam waist (∼ 180nm) was much smaller than the radius of gyration of the poly-

mer (730nm). Indeed, their FCS curves decayed on shorter time-scales than would be predicted

for a solid particle of this size and decayed with a functional form that differed slightly from

that which they predicted for pure Brownian motion. They fit curves based on a theory for a

semiflexible polymers and a short-time approximation for the dynamic structure factor. Their

measurements showed evidence of chain stiffness influencing the FCS curves in the form of an

inferred dynamic structure factor scaling as exp
[
−|k|2 (Γτ)3/4

]
(characteristic of a semiflexi-

ble chain) when the average distance between dyes was comparable to the persistence length

of the polymer.

I have three concerns about the results in this paper. First, open-loop FCS was used and

so translational diffusion contributed to the decay of the FCS curve. The polymer’s internal

dynamics, it was argued, decay on shorter time-scales than the translational motion; such

time-scale separation allows both processes to be resolved simultaneously. However, the fits

to the data yielded translational diffusion coefficient estimates ((1.01± 0.05)µm2/s) that were

much larger than other measurements have produced. While this may have been the result

of an inaccurate calibration of the FCS setup, in which case the decay characteristics of g2(τ)

would not be affected, it is not clear that the problem was not more fundamental. It is difficult

to accurately extract dynamics from FCS curves when those dynamics overlap in time.



149

Second, the theoretical fits to the data in this paper were derived using the expression for

the dynamic structure factor S(k, τ) = exp
[
−|k|2 (Γτ)β

]
. This approximation is appropriate

only on short time-scales, but was used quite generally without such limitation; this may lead

to misleading results, as discussed in the next section and in [24].

Finally, as was shown in Section 7.2.2, the k-dependent prefactor of the dynamic structure

factor must be considered in computing the FCS curve. Due to the most common use of the

dynamic structure factor in measurements at a fixed k, the prefactor is sometimes omitted;

however, when integrating over k, it should not be left out. Exactly how severe the consequences

of this omission are is not clear. Detailed comparison of the g2(τ) derived using the exact

expressions for S(k, τ) are necessary to determine this.

7.3.2 Shusterman et al., Phys. Rev. Lett., 2004 and Petrov, et al., Phys. Rev.

Lett., 2006

The first of these papers[22] studied both single- and double-stranded DNA molecules using

FCS by labeling them at their ends with a single fluorescent dye. The authors analyzed the FCS

curves using the short-time approximation to the dynamic structure factor, finding stretching

exponents that uniformly predict Rouse behavior (β = 1/2) for double-stranded molecules

and Zimm behavior (β = 2/3) for single-stranded molecules. They describe these results as

puzzling, and rightly so: hydrodynamic interactions are expected to increase with polymer

length for semiflexible polymers because more interaction takes place between distant parts of

the chain. They observe the opposite, inferring from their data that Rouse dynamics dominate

even more strongly on longer chains.

The second of these papers[24] addresses concerns that those authors had with the pre-

vious paper. They perform similar measurements, FCS on end-labeled double-stranded DNA

molecules of different sizes, but perform their analysis quite differently and come to quite

different conclusions: they find evidence of strong hydrodynamic interactions and that the

molecules they study are semiflexible chains. The authors of this paper argue, correctly, that

the authors of the first paper misapply the predictions of the short-time approximation over

long time-scales. By contrast, the authors of the second paper numerically calculate the ex-

act form of the FCS curve and fit it to their data; their results fit the theory for semiflexible

polymers quite well.

7.3.3 Cohen and Moerner, Phys. Rev. Lett., 2007

This paper[25] distinguishes itself from the others we have discussed in that feedback control

was used to eliminate contributions due to translational diffusion. λ-phage DNA molecules
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labeled with intercalating dyes and studied by fluorescence video microscopy while they were

immobilized in an electroosmotic trap. The video images were analyzed with an autocorre-

lation method as described in Section 4.2.3, as well as with spatially-resolved measurements

that directly probe the dynamic structure factor of the molecules. Curves fit to both measure-

ments led to the conclusion that Zimm-type hydrodynamic interactions determine the dynamics

of the polymer; the spatially-resolved measurements implied that Zimm behavior dominated

the higher-frequency spatial modes and that Rouse behavior dominated the lower-frequency

modes. These were the first measurements to suggest such k dependence of the qualitative

features of the polymer dynamics, first predicted by Dubois-Violette and de Gennes[102]. Addi-

tionally, these measurements showed an interesting radial dependence on the relaxation of the

polymer’s dynamics, and are the only measurements to show correlation between a polymer’s

instantaneous radius and its time-dependent diffusion coefficient.

I have several concerns about this paper. First, there are several flaws in the analysis of the

image-image correlation function C(τ). As we discussed in Section 4.2.3, the application of the

dynamic structure factor to the image-image correlation function C(τ) only applies if the exci-

tation beam’s radius is very large compared to that of the molecule under study. Furthermore,

the point spread function of the microscope factors into C(τ) but was omitted from the analy-

sis without justification. Finally, the curve that was fit to C(τ) in this paper is either incorrect,

or the paper contains a typographical error. A curve of the form S(τ) = exp
[
− (γτ)β

]
was

fit to C(τ), and conclusions were drawn by comparing the fit value β to the values (1/2, 2/3)

predicted for the exponents of the short-time approximate dynamic structure factors. Assum-

ing that the excitation beam was large enough, the correct fit function should have been the

integral of the product of the dynamic structure factor and point spread function, as discussed

in Section 4.2.3. This yields the substantially different scaling C(τ) ∼
[
1+ (γτ)3/2

]−3/2
.

Second, the analysis of the dynamic structure factor as measured from the camera images

may be incorrect. The measurements in this paper are intrinsically long time-scale measure-

ments; fluorescence correlation is resolved over time-scales approaching 1s. However, the

short-time approximation was used for all theoretical fits. As argued in [24], the indiscrimi-

nate application of these approximate expressions for the dynamic structure factor can provide

misleading results; the conflicting results of [22, 24] illustrate this quite clearly. Over the ex-

tremely long time-scales of a tracking/trapping measurement, it is very difficult to justify the

application of these approximations.

Third, tracking error statistics are not accounted for in these measurements. This is trou-

bling because it is claimed that the apparatus was only able to trap each molecule for between

9 and 18 seconds. There is theoretically no limit to the duration for which a particle may be

trapped in an electroosmotic trap, unlike the limits imposed on our apparatus by the finite
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travel of the tracking stages. The fact that these molecules were lost implies that either they

were always tracked very poorly and escaped (see Section 3.3.2) or, more likely, the tracking

fidelity decayed over time due to photobleaching of the molecules. Either way, tracking errors

should have been accounted for. This is especially true since the measurements were spatially

resolved: tracking errors in a uniform illumination profile are invisible to FCS, but easily seen

by a camera.

Finally, the two-dimensional nature of the trap raises questions about the validity of the

measurements due to interactions with the cell walls. The λ-phage DNA molecules extend

over a large fraction of the trap and are in almost constant contact with the trap walls. This

is reflected by the diffusion coefficient estimate ((0.32± 0.02) µm2/s) that is much smaller

than other measured values. Without comparisons to measurements made on freely-diffusing

molecules, it cannot be known how these interactions affect the dynamics of the molecules.

7.4 Measurements

We purchased λ-phage DNA (48514bp, L ∼ 17µm) from New England BioLabs (Ipswich, MA) and

diluted it to a concentration of about 160pM in a buffer containing 10mM TRIS, 10mM NaCl

and 1mM EDTA in 18MΩ purified water at pH 8.0. We purchased the intercalating dyes POPO-1

(434nm/456nm) and POPO-3 (534nm/570nm) from Invitrogen/Molecular Probes (Eugene, OR).

We diluted the POPO-3 dyes to 100pM and the POPO-1 dyes to a concentration between 2.5pM

and 1nM in TRIS buffer with 140mM 2-mercaptoethanol added to improve photostability. We

prepared samples with a final concentration of DNA molecules of about 300fM by diluting the

DNA further into the dye solutions. This corresponded to dye label densities ranging between

1 dye : 15bp and 1 dye : 6000bp. We incubated the dye/DNA solutions for 15 minutes in

the dark at room temperature to ensure complete attachment; longer incubation times did not

produce noticeably different brightnesses among labeled molecules using the POPO dyes.

We tracked a total of 59 different molecules for times ranging between 5 and 54 s. We used

the fluorescence servo described in Section 5.2.6 to modulate the power in the 532nm beam

and keep the measured fluorescence rate of the POPO-3 dyes fixed at about 104 photons/sec.

Resulting beam powers reached as low as about 20nW, and were limited to about 10µW using

neutral density filters. By fixing all of the systematic contributions to the fluorescence data

on this detection channel, we ensured that the tracking error statistics were the same for each

molecule that we tracked.

We set the optical power in the violet probe beam to a fixed value for each experiment using

a combination of neutral density filters and the probe intensity stabilization servo described

in Section 5.2.1. We tried to set the power to a level that maintained an average fluorescence
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Figure 7.5: Example tracking data with a label density of 1 dye : 300bp and 415nm illumination
power of ∼ 800nW. Top: fluorescence intensity in the blue and red fluorescence channels.
Bottom: x (blue), y (green) and z (red) tracking stage positions over time. The violet curve
shows the optical power of the 532nm beam, which was controlled by the fluorescence servo.

rate between 104 and 105 photons/sec: by collecting fluorescence at this rate for ∼ 10s, we

achieve high statistical accuracy in our FCS curves on time-scales longer than ∼ 10µs. The

optical power needed was determined by the label density, ranging between about 200nW and

2µW. At these powers, we see no evidence of triple state blinking or photobleaching of the blue

dyes.

Figure 7.5 shows a typical data acquisition. The sharp contrast in the qualitative appearance

of the blue and red fluorescence signals arises from the differences in the focused beam waists

of the 415nm beam and 532nm beams. The 415nm beam is significantly smaller than the

radius of gyration of the molecule, so individual dyes diffuse into and out of the beam due to

the polymer’s internal motion and produce large spikes in fluorescence. By contrast, the 532nm

beams are significantly larger than the polymer’s radius of gyration so the internal motion of

the polymer has a much smaller affect on the fluorescence fluctuations.

The data in Fig. 7.5 clearly illustrates the functioning of the fluorescence lock servo. As

shown in the lower plot, the fluorescence rate remains locked at a value well below its maximum

while no particle is being tracked (t < 5s). Once a molecule drifts into the focused laser, its

fluorescence causes a spike on the red channel. The servo responds by reducing the beam power

and continues adjusting the power over the course of the data run, increasing it in response

to the bleaching of the POPO-3 dyes. Between t = 35s and t = 40s, the apparatus loses the

DNA molecule because the fluorescence servo is incapable of further increases in optical power.

Once the fluorescence rate drops, the servo quickly reduces the optical power to its set-point
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Figure 7.6: Average interval-dependent mean-squared deviation of the tracking stages for 42
DNA molecules, representing a total of 859s of tracking data. We plotted the 2σ error bounds
of the data to illustrate the experimental uncertainty; for clarity, only the bounds (not the mean
values) are shown. We fit curves to the data using Eq. 3.35, with γp = ∞ for all curves because
we do not see obvious evidence of the plant dynamics so the second-order model is too rich
for the data. The inset table provides the remaining fit parameters.

in the absence of tracking; a second DNA molecule quickly drifts into focus, but is only tracked

for a few seconds because the x stage reaches its upper boundary and all stages reset. The

difference in the brightness of the blue fluorescence from the two molecules suggests that the

first molecule was labeled more densely than the second. We are not certain why we observe

such variations in label density within a single sample.

The distinctly nonexponential increase in the power required to lock the fluorescence rate

arises for the following reason: the number of active dyes decays exponentially with a rate

that is proportional to the excitation power. As the excitation power increases to track the

decaying fluorescence, the decay rate increases. We expect the excitation power P(t) to obey

the nonlinear differential equation

d
dt
P(t) = Γ0 − P(t) exp

[∫ t
0

dt′P(t′)
]

(7.48)

which, to my knowledge, does not have a clean closed-form solution. Exact quantitative under-

standing of P(t) is not so important, so we will not analyze this any further.
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7.4.1 Center of mass motion

First we analyze the center of mass motion of the DNA molecules that we tracked by considering

the motion of the tracking stages. Figure 7.6 showsMSD(∆t) as defined by Eq. 3.33 along with

theoretical fits to Eq. 3.35. We averaged the data from 42 separate molecules, with tracking

times ranging between 7 and 54s. Some data had to be excluded because the z tracking stage

had railed on its upper boundary; in these cases, the data along all three axes were rejected in

order to avoid biasing the results with data from molecules that were tracked away from the

localization origin.

Our fits to the MSD(∆t) curves give D = (0.71± 0.05) µm2/s, corresponding to a polymer

with a radius of gyration of about 600nm. The dominant source of error in our fits is not

fitting error, but statistical uncertainty in computing MSD(∆t). The uncertainty 0.05µm2/s

that we specify is the mean of the 2σ bounds shown about the measured curves at ∆t = 1s.

It is easy to calculate what we expect the uncertainty in MSD(∆t) to be for a finite number of

measurement intervals. We calculate
〈
MSD(∆t)2

〉
= 3D2

g for pure Brownian motion; at times

∆t that are long enough for our stage positions to be close approximations of the particle’s

actual position, this expression holds for the stage position statistics. The 2σ error bounds

that we predict are therefore given by ±2Dg
√

3/N , which for our mean diffusion coefficient and

859 measurement intervals, is ±0.08µm2/s. This is consistent with our measurements, imply-

ing that the molecules we tracked all had the same diffusion coefficient. If, for example, the

DNA sample had been contaminated by a nuclease that digested the molecules into fragments

of different lengths, we would have observed a larger uncertainty in the estimated diffusion

coefficient.

While the fits toMSD(∆t) are very good for both the x and y axes, the z-axis fits are clearly

imperfect. The error in the fits is not simply one of poor fitting: we have observed similar z-axis

curves in other measurements that the theory does not fit to. More investigation is needed to

determine the source of this discrepancy. Fortunately, the z axis diffusion coefficient estimate

cannot be far off because long-time features ofMSD(∆t) are not affected by the stage dynamics.

Our measured value for Dg is incompatible with all of the previously-measured diffusion

coefficients for the λ-phage DNA molecule. In particular, dynamic light scattering yields (0.41±
0.05)µm2/s; wide-field fluorescence microscopy yields (0.47±0.03)µm2/s (or (0.59±0.04)µm2/s,

if scaled by 1.752/5 as suggested by the authors to approximate that for unlabeled molecules)[104];

and open-loop FCS yields 1.1µm2/s[23] or (1.01±0.05)µm2/s[21]. Closed-loop tracking experi-

ments are the best way to measure diffusion coefficients, particularly for particles with internal

dynamics, because the measured stage positions are completely decoupled from the particles’

internal motion. FCS and DLS measurements only yield a convolution of the center of mass and
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Figure 7.7: Example tracking-FCS curves, for the data in Fig. 7.5. The black curve is the tracking
error contribution to the blue curve predicted by the theoretical fit parameters from Fig. 7.6.

internal motions. Accurate deconvolution relies on a strong understanding of both motions

or, ideally, a large time-scale separation between them. Furthermore, FCS measurements are

very sensitive to calibration, because it is impossible to know the exact focused beam inten-

sity inside the sample. The only measurements similar to ours that have produced Dg values

for λ-phage were those by made in a two-dimensional electroosmotic trap[25]. These mea-

surements were affected by the shallow depth of the trap, reducing the diffusion coefficient

by 24% from the smallest previously-measured value. In addition, those measurements relied

on reconstructed particle trajectories based on applied velocity pulses, and it is not clear how

accurately such reconstructions may be calibrated. By contrast, our nanopositioner stages can

be calibrated externally with high-accuracy methods such as laser interferometry. We believe

that our measurements are therefore the most precise yet made on the diffusion coefficient of

this molecule.

7.4.2 Internal motion

Next we use tracking-FCS to study the internal motion of the DNA molecules using the same

data described in the previous section. Our first consideration must be the effect of tracking

errors on the FCS curves. The RMS tracking error is found from Eq. 3.31 by inserting the

system parameters extracted from the MSD(∆t) curves in the previous section: σ 0
x = 100nm,

σ 0
y = 140nm, σ 0

z = 150nm. These errors are small, but nontrivial compared to the focused

415nm beam waist: for a waist of 400nm and a polymer with radius of gyration of 600nm, the



156

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

τ [s]

g
2(τ

)

Figure 7.8: Variation in measured g2(τ) curves with label density of 1 dye : 150bp.

2σ intensity fluctuations may be as large as about 10% of the peak fluorescence intensity.

Figure 7.7 shows the FCS curves for the first molecule tracked in Fig. 7.5 for both fluores-

cence channels, as well as the contribution to the blue curve due to the tracking error that we

calculate from the fits in Fig. 7.6. The large contrast in the blue curve and different decay time-

scales — the error decays at the feedback system bandwidth while the fluorescence decays at

the polymer decay time — implies that we do see dynamics other than tracking errors in our

signals. We note that the tracking error contribution to the red curve is nearly zero due to

the much larger focused waist of the 532nm beam. The decay in the curves for both channels

therefore represent the same statistics, with the exception of the fact that the red curve is in-

fluenced by the fluorescence servo, and so highlights the improvement in contrast due to our

use of the tightly-focused 415nm beam. The curves appear to decay with similar time-scales,

supporting this argument. The dominant decay has a time constant of about 100ms, which is

comparable to that which we predict (180ms) for a freely-diffusing particle with its diffusion

coefficient and radius of gyration but without internal dynamics according to the open-loop

equivalent of the derivation in Section 4.2.1.1.

As illustrated in Fig. 7.6 and discussed in the last section, some of the molecules that we

tracked were apparently less densely labeled than others from an identical sample. Accordingly,

we find variations in the FCS curves. Figure 7.8 shows the FCS curves for the 15 molecules we

tracked with a label density of 1 dye : 150bp. As reported in [23], decreased label density affects

the FCS curve for flexible polymers by shifting it to the left. In our case, we see evidence that the

curves are shifted upward. We attribute this to differences in the signal to background ratios
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Figure 7.9: Fits (black) and residuals of Rouse and Zimm theories to measured g2(τ) curves
(colored circles). a: Fits to Zimm theory. b: Residuals of Zimm fit. c: Fits to Rouse theory. d:
Residuals of Rouse fit. g2(τ) plots offset successive curves by 0.2 for clarity. Label density (in
bp/dye) is given in the legends.

of the differently labeled molecules. As we discussed in Section 4.1.4, increased background

relative to signal causes an overall attenuation of the FCS curve.

We fit curves to our data for five different dye label densities using the exact expressions

in Eq. 7.44 for Rg(m), Eq. 7.42 for ϕ, and Eq. 4.33 for g2(τ). We allowed for two adjustable

parameters in the fits: b and τ1 were set independently by the fitting routines. We fit to both

the Rouse model and the Zimm model for a good solvent and found that both models produced

comparable fits that are fairly good. Neither model appears to perfectly reproduce the decay on

very long time-scales (near 1s), at which the measured curves turn upward and the theoretical

curves do not. This feature of the experimental curves could be an artifact due to a small

amount of photobleaching of the blue dyes; photobleaching would cause an increased contrast

in g2(τ) that decayed on the time-scale of the bleaching process.

Our results in this section leave us without an obvious conclusion. It is possible that the

Zimm and Rouse polymer models predict tracking-FCS curves that are not distinguishable for
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our particular experimental configuration, possibly because our probe beam’s focused waists

were too large (so we are less sensitive to the high frequency components of the polymer

motion). Other FCS experiments on polymers used waists that were focused nearer to their

diffraction limit. In our case it is difficult to control the focused waist because we require that

the focal spot be both small and aligned with the axial localization origin of the tracking system,

but it is possible that we can improve our focusing with some fine-tuning.

One measurement we may consider is comparing the short-time decay of g2(τ) to the power

law scalings predicted by the theories and discussed in [24]. It is possible that the long-time

decays are less sensitive to the polymer model than these short times, so this is worth exam-

ining.

We should also find a reference for calibration of our probe beam via FCS. Most FCS measure-

ments use rhodamine 6G to calibrate the focal volume due to that molecule’s very well-known

diffusion coefficient, but it has very poor absorption at 415nm, and so is a poor choice for

our calibration. We characterized our probe beam by scanning it over the surface of a glass-

immobilized fluorescent nanosphere, but it is not clear how that measurement relates to the

beam geometry deep inside the liquid sample.

Finally, there are some concerns regarding the label density variation that we observed

among our molecules. The exact source of this variation is unknown, as we always followed

Invitrogen’s labeling protocol (with the exception of a reduced incubation time) when labeling

our molecules. Reducing the incubation time could potentially have produced molecules with

a lower average label density, but probably not molecules with such variation.

The one conclusion that we can safely draw from our fluorescence data is that we do see

intramolecular motion of the polymer chain, on time-scales extending out to about 1s. Our

measurements are the first to (almost) completely decouple the center of mass and internal

diffusive motions of a polymer in three dimensions, which is suggestive of future applications.
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Chapter 8

Concluding remarks

With the development of the apparatus described in this thesis, particle tracking microscopy

has moved one step closer to viability as a technique for the study of biological systems. The

quantum dot tracking demonstrated in Chapter 6 indicates that particles the size of (admit-

tedly, large) proteins are already within reach of our apparatus. Our demonstrations both of

heterogeneity in quantum dot fluorescence and of statistical correlations on time-scales longer

than the diffusion time are both of a category of measurements that are only possible with

tracking techniques. It will be exciting to see what role such techniques will play in biological

applications in the future.

The work on DNA polymer dynamics presented in Chapter 7 serves as a reminder that as

experimental complexity increases and the boundaries of what we are able to measure expand,

it is critically important to be as rigorous in the analysis of measurements as in making the

measurements themselves. Early work in this area suffered from both theoretical and experi-

mental deficiencies. While improvements were subsequently made on either the theoretical or

the experimental side, our work represents the first merger of rigor on both sides. Our exper-

imental precision allows us to conclude that non-tracking measurements determined biased

values for the translational diffusion coefficient of λ-phage DNA and may therefore be difficult

to interpret, and that two-dimensional tracking measurements contained more systematic bias

than previously thought; our theoretical precision (following that of [24]) allows us to conclude

that other tracking measurements on this molecule were analyzed incorrectly; and our mea-

surements suggest that the solvent effects we set out to quantify can be difficult to resolve

because, at least in the correlation functions and over the time-scales that we analyzed, no

clear signatures of solvent interaction exist or are even predicted in theory. This emphasis of

the sensitivity of conclusions to the methods and analysis used to make them is perhaps the

most important contribution of this thesis.
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Appendix A

Signal analysis via recursive Bayes
estimation

A.1 Introduction

Single-molecule confocal fluorescence microscopy has become an important tool for studying

the dynamics of diffusing molecules in solution. In this technique, a stream of photons is ob-

served as fluorescent molecules diffuse through a region of a sample that is illuminated by

a laser. Current apparatus can measure photon arrival times to sub-nanosecond precision,

and observe fluorescence from single molecules in low-concentration samples [105]. This tech-

nique has been used to investigate a wide range of chemical and biological problems, both in

vitro and in vivo; however, current methods for the analysis of the fluorescent photon stream

work indirectly and are limited in scope. Here we present a rigorous quantitative approach to

single-molecule identification, in which we derive a Bayesian estimator and relevant analytical

models for the diffusion and fluorescence. The benefit to using analytical models is that they

can provide a great deal of insight in complicated experiments. This is not essential for an

identification scheme; however, it is our goal here to demonstrate not only an identification

scheme but also a general approach applicable to a wide range of problems in single-molecule

microscopy. In a more complicated experiment, such as tracking the movement of a molecule

or studying dynamics of interactions at the single-molecule scale, only a physical model will

suffice to provide rigorous quantitative insight.

Several methods exist for the analysis of the observed photon stream; most generate a

particular histogram or autocorrelation function from the stream, and extract information by

fitting these to theoretical or simulated functions for the species under examination or from

data obtained in reference experiments. These methods were initially developed for estima-

tion of bulk statistical parameters of the sample, such as diffusion coefficient or concentra-

tion, though applications in single-molecule experiments have been developed as the technical
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barriers to detecting single molecules have been overcome [2]. Fluorescence correlation spec-

troscopy (FCS) analyzes fluctuations in an autocorrelation of the fluorescence intensity signal to

extract information about the diffusion coefficient and concentration of the sample molecules,

but cannot distinguish between molecules differing in brightness, which we define here as the

number of bound dyes of a single color per molecule [1, 26, 46]. Alternative formulations

of FCS have employed multiple spectral channels and dye colors to enable experiments with

multiply-labeled fluorophores [106, 107]. Photon Counting Histogram (PCH) and Fluorescence-

Intensity Distribution Analysis (FIDA) measure photon counts in time intervals of fixed duration

and fit these measurements to theoretical distributions to differentiate between species with

different brightness, but can not differentiate between molecules based on diffusion coeffi-

cient [108–110]. Fluorescence Intensity Multiple Distributions Analysis (FIMDA) uses a similar

photon-counting histogram but with time intervals of varying duration, and can simultaneously

extract information about both diffusion and brightness [111]. The most recent autocorrela-

tion method, Photon Arrival-time Interval Distribution (PAID) combines the autocorrelation

approach of FCS with a photon counting histogram to extract information about diffusion and

brightness simultaneously, and can be applied to multiple spectral channels [112]. Bayesian

estimation has been used previously in identification of multiply-colored fluorophores, how-

ever the estimator was simplified considerably in favor of probability distributions obtained by

running reference experiments [113]. Additional work in time-correlated single photon count-

ing (TCSPC) has used pulsed excitation lasers and measured the timing of photon detections

relative to these pulses to identify molecules based on their diffusion coefficient and has been

shown to be more accurate than FCS in single-molecule identification [114, 115]. Here, though,

we only consider experiments with a stationary excitation profile.

While the estimation accuracy of the data-fitting methods for bulk sample parameters can be

quite good, these methods suffer from several disadvantages when applied to single molecules.

Techniques requiring simpler calculations, such as FCS and FIDA, can be applied in real time

but are limited in the number of parameters that they can use to distinguish between species

[26, 109]. More complex techniques such as PAID are very specific, but the nonlinear fitting

algorithms required for data analysis become very computationally intensive and make real-

time analysis intractable [112]. In addition, it is difficult to accurately evaluate measurements

made from single molecules using a statistical fit because of the infinite number of very different

paths that can be taken by a molecule through the laser focus, and the consequently infinite

number of possible fluorescence observations. A fitting algorithm will work better for some

paths than for others, depending on the similarity between the path taken and the mean value

of all possible paths.

Our approach, on the other hand, can be used to distinguish between species differing in
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virtually any parameter in our model, and is computationally simple in that no fits are required

— a probability distribution is directly output at each iteration of the estimator, making real-

time signal analysis feasible. It is derived for use specifically in single-molecule experiments,

as it includes a spatial component to incorporate variations in the path taken by the molecule

through the laser focus. It is not limited to measuring parameters of single molecules, however.

As with current methods, accumulated measurements from multiple single-molecule observa-

tions can be used to estimate parameters on a larger scale, such as reaction rates or relative

concentrations.

The problem that we focus on is the identification of a fluorescent molecule based on the

data obtained from a single pass of the molecule through the laser focus, when the set of

possible species identities is known. Note that this can be considered a simplification of the

parameter estimation problem; to estimate a parameter such as the diffusion coefficient, we

simply perform such an identification where the set of possible identities is a set with widely

varying values for that parameter. We deal with fluorescence detected from a single spec-

tral channel, although similar approaches are possible with multiple-channel experiments for

multiply-labeled species. We derive a Bayesian estimator on the photon stream using distri-

butions for the spatial dependence of the fluorescence rate and the time dependence of the

diffusion. We derive analytical expressions for the relevant models for diffusion and fluores-

cence, rather than relying on Monte Carlo simulations to generate the models. Our estimator is

recursively updated after each detected photon, though it may be updated at any desired time

interval in the absence of detection, thus maintaining a distribution over the potential set of

species inside the laser focus (including the possibility that the focus is empty) at all times.

We present the results of the application of the estimator to simulated two-dimensional

diffusion experiments in which molecules are distinguished based on both diffusion coefficient

and brightness. Two-dimensional experiments are chosen only for computational simplicity;

the filter is derived for diffusion in an arbitrary number of dimensions. Diffusion coefficient

and brightness are chosen as the standard parameters used to differentiate between molecules,

however our derivations apply to experiments that distinguish between any parameter in our

model.

A.2 Derivation of probability distributions

In this section, we will derive the basic filtering equations for identifying the type of a diffusing

molecule based on recorded fluorescence photon arrival times. The essential component of this

filter is a probability distribution over space and over possible identities of the molecule under

observation conditioned on a sequence of fluorescence photon arrival time measurements. We
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wish to update this distribution in real time as photons are detected, and we assume that at

any time at most a single molecule is in the laser focus (this can be ensured by a low sample

concentration). By maintaining this distribution, we may specify the most probable identity of

the diffusing molecule at any time, given the observations made up to that time.

A.2.1 Recursive Bayesian estimator

Let S = {s1, . . . , sn} denote the set of species present in the sample. Let tk be the time at which

the kth photon is detected, and ξn = {t1, . . . , tn} denote the set of arrival times in a particular

experiment up to time tn. We wish to find an expression for the probability P(sj|ξk), the

probability that at time tk the signal we are observing is due to a molecule of type sj . Since the

fluorescence rate is dependent on the (time-correlated) molecular position ~rk ≡ ~r(tk), we must

start with a distribution over species and spatial coordinates p(~rk; sj|ξk). Using Bayes’ rule and

the definition of conditional probability, we find the following expression for the probability

that a molecule is of type sj and is at position ~rk given the observed photon stream ξk:

p(sj ; ~rk|ξk) =
p(ξk|~rk; sj)p(~rk; sj)∑

j′
∫
d~r ′kp(ξk|~r ′k; sj′)p(~r ′k; sj′)

= p(tk|~rk;ξk−1; sj)p(ξk−1|~rk; sj)p(~rk; sj)∑
j′
∫
d~r ′kp(tk|~r ′k;ξk−1; sj′)p(ξk−1|~r ′k; sj′)p(~r ′k; sj′)

= p(tk|~rk;ξk−1; sj)p(~rk; sj|ξk−1)∑
j′
∫
d~r ′kp(tk|~r ′k;ξk−1; sj′)p(~r ′k; sj′|ξk−1)

. (A.1)

In our notation the event tk together with the measurement record ξk−1 is symbolically identical

to the measurement record ξk. For diffusion in d dimensions, the integrals in Eq. A.1 are over

all of Rd.

We now expand p(~rk; sj|ξk−1) over possible values for ~rk−1 to find

p(~rk; sj|ξk−1) =
∫
d~r ′k−1p(~rk; ~r

′
k−1; sj|ξk−1)

=
∫
d~r ′k−1p(~rk|~r ′k−1;ξk−1; sj)p(~r ′k−1; sj|ξk−1), (A.2)

which contains the recursive term p(~r ′k−1; sj|ξk−1). We substitute into Eq. A.1 to find a formula

for the time evolution of the probability distribution over molecular species sj and position ~rk

conditioned on a set of measured fluorescence photon arrival times ξk:

p(~rk; sj|ξk) =
p(tk|~rk;ξk−1; sj)

∫
d~r ′k−1p(~rk|~r ′k−1;ξk−1; sj)p(~r ′k−1; sj|ξk−1)∑

j′
∫∫
d~r ′kd~r

′
k−1p(tk|~r ′k;ξk−1; sj′)p(~r ′k|~r ′k−1;ξk−1; sj′)p(~r ′k−1; sj′|ξk−1)

. (A.3)

We were required to carry along a distribution over spatial coordinates in order to develop a
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recursion formula. In the end, however, we are interested in species identification through the

probability P(sj|ξk), which we may now write in terms of Eq. A.3:

P(sj|ξk) =
∫
d~rk p(~rk; sj|ξk). (A.4)

We define our species identification estimator ŝ as the value of sj ∈ S which maximizes Eq. A.4.

The estimator ŝ defined by Eqs. A.3 and A.4 is exact, in the sense that we have not made any

assumptions about the correlation between molecular diffusion statistics and photon detection

statistics. In order to update an estimation based on the kth photon detection at time tk, we

only require knowledge of two distributions, p(tk|~rk;ξk−1; sj) and p(~rk|~rk−1;ξk−1; sj). The

former distribution represents the fluorescence emission statistics of a molecule of type sj at

a particular position in the laser focus, while the latter distribution represents the diffusion

statistics of a molecule of type sj . Next, we will describe explicit functional forms for these

distributions which are relevant to confocal microscopy experiments.

A.2.2 Effective diffusion statistics

In a typical experimental situation, the motion of a molecule between points ~rk and ~rk−1 is

not correlated with any photon detection events. This point is somewhat subtle, and relies on

our explicit inclusion of both fluorescence and diffusion statistics. If we detect many photons

in a small time interval, it is very likely that a fluorescent molecule is at a position ~rk of high

laser intensity, so that the position of a molecule ~rk is correlated with the measurement record

ξk. However, the future probability that the molecule will move from position ~rk−1 to position

~rk (without emitting a photon) in time ∆tk ≡ tk − tk−1 is independent of the prior photon

detections ξk−1. Symbolically, we have

p(~rk|~rk−1;ξk−1; sj) = p(~rk|~rk−1;∆tk; sj), (A.5)

where the right-hand side of Eq. A.5 is the usual Green’s function solution to a Fokker-Planck

equation for the diffusion statistics of molecules of type sj .

In most cases of experimental interest, we may average over three-dimensional distributions

to obtain a set of estimator equations which is effectively two-dimensional. Furthermore, if we

consider a cylindrically symmetric laser excitation profile, we may reduce all of the (vector)

coordinates ~rk to (scalar) cylindrical radial coordinates rk, where as before rk ≡ r(tk). For

isotropic, force-free Brownian motion projected into d = 2 dimensions, we can solve Eq. A.5
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analytically to find

p(rk|rk−1;∆tk; sj) =
1

4πDj∆tk
I0

(
rkrk−1

2Dj∆tk

)
exp

(
−
r 2
k + r 2

k−1

4Dj∆tk

)
, (A.6)

whereDj is the diffusion coefficient for molecules of type sj and I0 is the zeroth-order modified

Bessel function of the first-kind.

A.2.3 Fluorescence photon detection statistics

Equation A.6 contains all of the information we need to know about diffusion in order to im-

plement the filter, Eq. A.3. Next we will develop an explicit expression for the fluorescence

photon detection statistics p(tk|rk;ξk−1; sj) (we have dropped the vector notation on rk as be-

fore). For simplicity, we use a simple two-level, saturating emitter model of fluorescence, but

the implementation of the filter is essentially the same for any rate-equation model or model

incorporating the internal dynamics of the fluorophore [17]. In this model, the instantaneous

rate γj(rk) of photon emission by a molecule of type sj at position rk and labeled with mj

(identical) dye molecules is determined by the spatially-dependent laser excitation rate ΓL(rk),

the relaxation rate of the dye molecule Γj and the background noise count rate ΓB :

γj(rk) =mj
ΓL(rk)Γj
ΓL(rk)+ Γj

+ ΓB . (A.7)

ΓL(r) is proportional to the laser beam intensity, which we take to be Gaussian with beam waist

w in the transverse dimensions, and we neglect the variation of the excitation intensity in the

axial direction:

ΓL(r) = ΓL(0) exp

(
− r 2

2w2

)
. (A.8)

It should be noted here that finite efficiency photon detection does not affect the forms of

the filter or the fluorescence model. We can always scale the rates in Eq. A.7 by the detection

efficiency η which has no effect on the spatial dependence of fluorescence statistics (except to

decrease the overall rate of photon detection). Furthermore, for small η, we may assume that

a fluorophore emits many photons (∼ 1/η) between any two photon detections. This ensures

that the fluorophore is in its radiative steady-state and we may safely neglect any quantum

statistics associated with single-molecule photon detection. Since the form of Eq. A.3 is largely

independent of η, we often neglect the distinction between photon emission and detection rates,

whose ratio is η by definition.

The probability 2εp(tk|rk;ξk−1; sj) is the likelihood of a photon detection in the infinitesi-

mal interval tk ± ε with no other photons detected at times t ∈ (tk−1, tk). This probability can
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be expressed as

2εp(tk|rk;ξk−1; sj) = 4π εγj(rk) exp
(
−2εγj(rk)

)
×
∫
drk−1 rk−1 p(nk = 0|rk; rk−1;ξk−1; sj)p(rk−1|ξk−1; sj), (A.9)

where nk is the number of photons emitted in time interval ∆tk. Note that the precise value

of the factor ε is unimportant because exp (−2εγ(rk)) ≈ 1 since ε is very small by definition.

The integral represents an average over all possible starting radial positions rk−1 from which

the molecule moves to radial position rk in the time interval ∆tk. In general, nk depends

on the path taken by the molecule over the time interval, which makes calculating an exact

analytical expression for Eq. A.9 difficult, although a path integral representation is possible

(see Appendix A.5). The difficulty in calculating this function arises from the variation of the

photon emission rate over the possible paths that a molecule can take from rk−1 to rk. We

expect the fluorescence count to obey Poisson statistics, so

p(nk = 0|rk; rk−1;ξk−1; sj) ≈ exp
(
−γj(rk)∆tk

)
(A.10)

as long as a molecule does not move between photon detections to a position of very different

excitation intensity. We expect the approximation in Eq. A.10 to hold for w2γj(0) � Dj ,

so that a molecules does not move too far between photon detections. This is precisely the

experimental regime of interest, since this condition is violated when few photons are detected

in a single-molecule transit through the laser focus, and we would not expect to gain much

information in this case anyway. In Appendix A.5 we calculate the first-order correction to Eq.

A.10. For typical parameters in our simulations, the numerical value of this correction factor

is less than 2% for regions within the beam waist of the laser.

A.2.4 Practical Considerations

Several details must be considered before the filter can actually be implemented. First, while

the integrals in Eq. A.3 are over all of Rd, we must truncate them numerically. We set the

integration limit Rmax > w, the laser beam waist, so that ΓL ≈ 0 in the regions excluded from

the integrals; in practice, we find that Rmax = 4w is sufficient.

Next, to account for the loss of probability at the boundary Rmax due to the diffusion term,

we add a distribution representing the probability of molecules from the outer regions diffusing

into the region bounded by Rmax to the spatial distribution in Eq. A.3 at each iteration of the

estimator. This takes into account the concentrations of the different species in the sample,
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and is given by

pleak(r1|ξk; sj) = 2πCj
∫∞
Rmax

dr0 r0 p(r1|r0;ξk; sj) (A.11)

which is a convolution of Eq. A.6 with the distribution of molecules in the outer region, which we

assume to be uniform with concentrationCj . This leak term allows us to run the estimator in the

absence of a molecule in the laser focus. To account for the possibility of an empty laser focus,

we include a dark species s0 with brightnessm0 = 0 in all iterations of the estimator. Note that

we have not yet defined the initial distribution p(sj ; ~r0); in order to obtain this distribution we

simply run the estimator on background noise, in the absence of fluorescent species, until a

steady-state distribution is reached.

Finally, we must decide how to determine when a molecule has either entered or exited the

laser focus. For this we use the spatial distributions generated by the estimator. We decide

on a particular threshold radius Rth that bounds what we consider to be the laser focus, and

calculate the probability that the focus is empty,

P(empty|ξk) = P(s0)+ 2π
∑
j≠0

∫ Rmax
Rth

drk rk p(rk; sj|ξk). (A.12)

We decide on a minimum value Plow for this probability and consider a molecule to have entered

the laser focus when Eq. A.12 drops below this value. Additionally we choose a maximum value

Phigh and consider the molecule to have exited the focus when Eq. A.12 increases above Phigh.

At this point, we integrate the spatial distributions to obtain an estimate of the identity of the

observed molecule. We leave detailed discussion of the motivation for this scheme to a future

publication.

With these details specified, our formulation of the estimator is complete. Next, we dis-

cuss the expected strengths and limitations of the estimator under particular experimental

conditions.

A.2.5 Experimental regimes

While the derivation of Eq. A.3 is applicable to all cases of molecular diffusion and fluorescence,

we expect its performance to be affected by the parameters of the experiment. For instance,

we stated that Eq. A.10 is a poor approximation when the diffusion rate is very fast relative

to the fluorescence rate γj(~r). We may attempt to evaluate Eq. A.9 more accurately, but the

performance of our estimator will still be quite limited due to its dependence on a spatial dis-

tribution that changes more rapidly than it is updated. We expect the filter to be most effective

when γj(~r) is high and diffusion rate is low, so that the value we calculate for p(~rk−1; sj|ξk−1)

remains a good estimate for p(~r |ξk−1; sj) as the molecule moves from ~rk−1 to ~rk.
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It may be the case that the diffusion rate is very small relative to γj — such is the case

for diffusion of molecules on a membrane, for example. In this case we expect to detect large

numbers of photons at a fairly constant rate, so that little spatial information is gained from the

time spacing between photons. Hence we expect that we can ignore this spacing and the exact

arrival-time data, and instead count the numbers of photons detected in individually-spaced

time bins of arbitrary size τbin. Then we replace ξk = {t1, . . . , tk} with ξk = {n1, . . . , nk}
in deriving Eq. A.3, where we define nk as the number of photons counted in the time bin

(tk−1, tk). We define ~rk = ~r(tk) as before. Here the diffusion probabilities p(~rk|~rk−1;ξk−1; sj)

are calculated as in Eq. A.5, and the fluorescence probabilities are calculated using

p(nk|rk;ξk−1; sj) ≈ exp
[
−γ̃j(rk)τbin

] [γ̃j(rk)τbin]nk
nk!

(A.13)

where the approximation, as in Eq. A.10, comes from the molecule’s path-dependent fluores-

cence rate.

This formulation of the estimator requires significantly fewer computations, because the

diffusion and fluorescence probabilities can all be calculated prior to the experiment, making

real-time estimation easier to achieve. We expect the performance to be determined in part

by the bin time τbin that we choose — a τbin that is too large ignores significant diffusion

dynamics, but more computations are required as the bin time is made smaller — so the choice

of bin time requires balancing these tradeoffs.

A.2.6 Generalizing the approach

We have stated that the most important point that we are presenting here is a general approach

to computational single-molecule studies. It is important, then, to consider how our approach

generalizes to other experiments. The recursive estimator given by Eq. A.3 is a valid form

for any experiment in which no more than a single molecule is likely to be in the focus of the

laser; modifications or extensions of the models for diffusion and fluorescence do not affect

the form of the estimator. Obvious extensions to the fluorescence model may incorporate

multiple spectral channels to facilitate further identification or experiments using fluorescence

transfer [17]. Additionally, more fluorescence details may be incorporated if necessary, such

as dye photobleaching, blinking dyes, forbidden transitions, and spatially-dependent photon

collection efficiency. Extensions to the diffusion model can be made to incorporate diffusion

restricted to a particular spatial domain, diffusion with net flow, and as we have stated, free

diffusion in higher or lower dimensions. Clearly this makes feasible the use of this recursive

estimator in many common chemical and biological experiments.
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As stated earlier, parameter estimation can be treated as an extension of identification as we

have defined it here. Any parameter that can be incorporated into our model for identification

can also be approximated by our technique if we simply perform identification over a set in

which that parameter is varied — this is precisely a maximum likelihood estimator [see 116, for

example]. It is also possible to use a similar approach to derive estimators for parameters that

are relevant on the bulk sample scale, not the single-molecule scale. For example, the details of

single-molecule observations are not affected by sample concentration, though the frequency

of such observations is. It is not very difficult to write a concentration estimator using a model

for this frequency. Coupled with the identification estimator, this could be used to estimate the

concentrations of the different components of a sample. Thus all of the functionality of FCS

and other current techniques can be achieved by rigorous estimation and extended to include

any exotic photophysical or diffusion dynamics for which a suitable model exists.

Our ultimate goal is the development of techniques that facilitate experiments in which

exotic dynamics will limit the efficacy of current methods. Current techniques are limited

to experiments for which sufficient autocorrelation functions or histograms can be generated

for fitting to the experimental data. We envision experiments in which fluctuations in the

quantities being measured affect the fluorescence stream in such a way that realizing accurate

results by fitting observations to a small number of sample functions will be impossible. For

example, to study time-dependent mechanical oscillations or rotations in single molecules —

such oscillations are common to proteins yet current techniques for their study are quite limited

[117] — an FCS experiment would require an enormous number of model autocorrelations to

explore a significant portion of the infinite-dimensional space that such oscillations lie in. In

contrast, with an appropriate model our recursive update approach would be capable of making

a statistically best estimate of oscillatory state of such a system continuously in time for as

long as the system can be observed. We can also imagine the study of random events that

have a dramatic effect on diffusion dynamics, such as active inter-compartmental transport of

free molecules in a living cell, in which a there is not only a random short-duration change in

the diffusion coefficient during transport, but also a change in the topology of the space over

which the molecule is confined. Again, for such a process it will be very difficult to calculate or

simulate a sufficient set of functions to fit the observations to, while a recursive update formula

with a sufficient model can be readily written down. We believe our approach is the best path

to take for the study of such complex stochastic single-molecule dynamics.

Now we will present the results of simulations to demonstrate and characterize the estima-

tor in the single-molecule identification experiment.
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Figure A.1: Data generated by two-dimensional simulation. The plot shows a trajectory of a
molecule with Dj = 0.25µm2/ms and mj = 1 through the circular region centered at the laser
focus with radius Rmax = 2µm. The inner, dashed circle represents the laser beam waist. Entry
and exit points are indicated. Displayed molecule positions are updated in 0.5µs increments.
Circles indicate the molecule’s position at each photon arrival time. Labeled points correspond
to the times at which the distributions in Fig. A.3 are shown.

A.3 Simulations

In this section, we will simulate diffusion experiments in two dimensions in MATLAB to il-

lustrate the use of the recursive filtering technique for the analysis of photon streams. The

simulations specify a set S of species with varied diffusion coefficients Dj and brightness mj ,

and all other model parameters held constant. Discrete, fine-grained (∆t = 0.5µs) Brownian

motion trajectories are generated for a particular species, and photon streams are generated

from a Poisson distribution with rate given by Eq. A.7. We set the beam waist w = 0.5µm and

rates ΓL(0) = 637ms−1 and Γj = 500ms−1 for all j. We first set ΓB = 1kHz to evaluate the esti-

mator in the presence of minimal background noise. The arrival times of photons are extracted

from the stream and sent to the estimator for evaluation, and identifications are made from the

resulting distributions using Rmax = 2µm, Rth = w = 0.5µm, Plow = 0.25 and Phigh = 0.75.
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Figure A.2: Simulated photon counts detected in time intervals of 50 µs as the molecule tra-
versed the path in Fig. A.1. Also shown is the expected photon count over these intervals
based on the actual laser intensity at the molecule’s position, given by Eq. A.7. Note the differ-
ence between expected and detected fluorescence rates — this contributes to the difficulty of
extracting accurate spatial information from the photon stream.

A.3.1 Identification based on diffusion coefficient

An experiment that we may perform using our identification algorithm is one in which the dye-

labeled sample molecules may polymerize with unlabeled molecules, and we try to distinguish

between monomers and dimers. For example, such an experiment could be used to distinguish

between single-stranded and double-stranded DNA. Figs. A.1 and A.2 show a sample trajectory

and photon stream generated for an experiment with S = {(1,0.25), (1,0.5)}, where we denote

sj = (mj ,Dj) with Dj in units of µm2/ms; these values are consistent with small nucleic acid

polymers [91, 112]. The trajectory shown is for a molecule of type s1. This photon stream

was run through the estimator and some of the resulting spatial distributions are shown in Fig.

A.3. We see in these distributions the effect that random fluctuations can play in the estimate;

while the peaks of the spatial distributions for the molecule at positions A, B, and D are nearly

exactly at the molecule’s actual radial position, the estimator is off by nearly one beam waist

when the molecule is at position C. Statistically, such momentary inaccuracies are expected; by

its recursive nature, however, the estimator corrects such errors quickly as additional photons

are detected.

To evaluate the performance of the recursive estimator in this type of experiment over a

range of possible S, we vary the ratio of diffusion coefficients between species: we set S =
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Figure A.3: Sample spatial distributions resulting from the stream of 253 photons presented in
Fig. A.2, using S = {(1,0.25), (1,0.5)}. The distribution after the 62nd photon detected (point
A in the trajectory) is in the top left. The top right, bottom left, and bottom right distributions
are after the 125th, 188th and 252nd photons, with the molecule at positions B, C, and D,
respectively. Integrated probabilities given by Eq. A.4 are reported for each species. Dotted
vertical lines indicate the actual radial position of the molecule.
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Figure A.4: Performance of recursive estimator in identifying species with varied diffusion
coefficient ratios. One trajectory and resulting set of 91 photon arrivals was generated for
molecule type s1 with the set S = {(1, 0.1), (1, D2)}, for 6 logarithmically-spaced values of D2

. Shown are the radial distributions for each species after the final photon arrival time was
processed. Integrated probabilities are indicated.

{(1,0.1), (1,D2)} with 0.1 ≤ D2 ≤ 0.5. Fig. A.4 shows the final probability distributions over

space and species type for a single simulated trajectory and set of photon arrival times for a

molecule of type s1, run through the estimator with varied values for D2. This highlights an

important aspect of the estimator: in addition to providing an identification scheme, it provides

a quantitative evaluation of the accuracy of the identification in the form of the probability that

the estimated species is indeed present. The estimator was not able to correctly identify the

molecule for D2 ≤ 0.15; however, as D2 increased to 0.5, P(s1|ξ) increased to 85%.

We now consider the accuracy of the estimator in identifying molecules relative to theo-

retical upper and lower performance bounds. A primary difficulty in extracting information

about the diffusion dynamics lies in the uncertainty in estimating molecule position from flu-

orescence rate, since the detected fluorescence rate is not a deterministic function of position

(see Fig. A.2). In theory, the best possible identification estimate could be made if the exact

position of the molecule could be extracted from the data at each iteration of the estimator. To

simulate this we generate trajectories and photon streams in a manner identical to that used for

the recursive estimator, but we record the exact radial position of the molecule at every photon

arrival time. We use a maximum likelihood estimator [see 116, for example] for species identity

from the position and arrival-time data; we take the probability of successful identification by
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Figure A.5: The performance of the recursive estimator as a function of diffusion coefficient ra-
tio, compared to that of the estimators representing theoretical upper and lower performance
bounds. We set S = {(1,0.1), (1,D2)} and generate trajectories resulting in at least 200 iden-
tifications for each species type, for each estimator, for varied D2. Plotted are the geometric
mean success probabilities for each estimator.

this method to be the theoretical upper bound for performance in any simulated experiment.

In addition, we decide on a lower bound for the success probability by considering only the

duration of the identification trajectory — this should contain the least possible information

about the diffusion dynamics. We numerically approximate p(τ|Dj), the probability distribu-

tion of the time τ spent within the laser focus given the diffusion coefficient Dj , and let our

identification estimate for each trajectory be the species for which this probability is greatest.

We take the performance of such an estimator to be the minimal performance that we should

be able to achieve with data from a single trajectory.

Fig. A.5 compares the accuracy of the recursive estimator to that of the theoretical upper

and lower bounds. For clarity, success probabilities are not shown for each species, but rather

the geometric mean of the two probabilities is shown. The geometric mean was chosen as a

simple measure of both the accuracy and the bias of the estimator; it is highest only when

the estimator is nearly unbiased and accurate for both species. For diffusion coefficient ratios

less than 1.5, the probability of successful identification lies near 50% for all three estimators.

For ratios above 1.5, the recursive estimator lies well within the bounds. Note that here we

only consider the probability that the estimator correctly reports the species present, not the

reported probability of the estimate. We expect to be able to improve the performance by

specifying a minimum threshold for this probability and thereby only accepting estimates that
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Figure A.6: left: The performance of the recursive estimator in the multiple component ex-
periment with S = {(1,0.4), (1,0.2), (1,0.15), (2,0.15)}. Trajectories were generated for each
species, and the resulting photon arrival-time data was run through the estimator. The distribu-
tions shown are the distributions prior to the final exit time of the molecule for each trajectory.
right: The table shows the integrals of the probability distributions shown in the figure, giving
the probability of each species being present according to the data generating each plot.

are made with a high degree of certainty; these data represent a minimal level of performance

for our estimator.

Identification of diffusing fluorophores by diffusion coefficient alone is a problem addressed

by FCS. Using this method, a nonlinear fit to simulated data or a maximum likelihood estimator

is used to identify a species given its autocorrelation function [114]. Our technique has several

advantages over this method, in that the estimator provides a rigorous probability distribution

over species present in the sample. Thus, in addition to a most probable identity, it provides

a measure of how certain the estimate can be considered to be. In addition, such an estimate

can be made at any time during the fluorophore’s path through the beam focus, allowing an

experiment to interact with sample molecules before they leave the focus, as is necessary for a

tracking or sorting experiment. FCS methods, in contrast, rely on an autocorrelation that may

not provide a good identification estimate with incomplete data. Of course, a major advantage

over FCS is that we can consider additional molecular parameters in our identifications. Next

we consider an experiment in which the species present may differ in brightness mj .

A.3.2 Multiple species identification

Here we propose a hypothetical experiment in which four dye-labeled species exist in solution:

one small molecule, one large molecule, one small-large molecule complex, and one small-large

complex where one of the dyes has photobleached. Such experiment could be useful if, for

instance, we wanted to measure the kinetics of complex formation. We can also imagine an
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Figure A.7: left: The performance of the recursive estimator in a high diffusion coefficient ra-
tio multiple component experiment with S = {(1,2), (1,0.4), (1,0.08), (2,0.08)}. Trajectories
were generated for each species, and the resulting photon arrival-time data was run through
the estimator. The distributions shown are the distributions prior to the final exit time of the
molecule for each trajectory. right: The table shows the integrals of the probability distribu-
tions shown in the figure, giving the probability of each species being present according to the
data generating each plot.

experiment using real-time feedback to isolate only the complex with two intact dyes from

solution. To simulate such experiments, we let S = {(1,0.4), (1,0.2), (1,0.15), (2,0.15)} to test

low diffusion coefficient ratios and S = {(1,2), (1,0.4), (1,0.08), (2,0.08)} to test high ratios.

The ratios between molecular diffusion coefficients of complexes and their constituents are

largely dependent on the relationships between the geometry of the individual components

and that of the complex. Hence both cases have some physical relevance, with the low-ratio

case an example where geometry is largely not altered by binding, and the high-ratio case an

example in which the individual constituents may be tightly folded, for instance, while the

complex takes a large, extended form.

Figs. A.6 and A.7 show distributions resulting from trajectories generated by each species

type in the multiple species experiments. In the low diffusion coefficient ratio experiments,

the estimator identifies s1 and s4 with high probability, but cannot distinguish well between s2

and s3 due to their very similar diffusion coefficients. For higher diffusion coefficient ratios,

all species are identified with high probability. Note that in both cases, s4 is identified with

probability nearly 1, indicating that brightness is a much stronger criterion for distinguishing

between species than diffusion coefficient.

Experiments to distinguish between species based on both diffusion coefficient and bright-

ness are the focus of the FIMDA and PAID methods [111, 112]. Our method has several advan-

tages over these. Again, our estimator reports identification probability, a rigorous measure of
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Figure A.8: Comparison of estimator performance using binned photon-count data and arrival-
time data. Geometric mean success probabilities are shown for simulations in which we set
S = {(1,D1), (1,3D1)} and vary D1. A minimum of 100 identifications were made for each
species, for each value of D1, for both estimators. Binned data were generated with bin times
τbin = 0.1ms and τbin =0.5ms, as indicated in the legend. For τbin = 0.5ms, the estimator
cannot successfully observe species s2 for D3 > 0.3µm2/ms, so the plot does not continue
beyond this point.

the confidence in the estimate. This is useful in any experiment — for kinetics experiments, we

can calculate the appropriate uncertainties in whatever values we measure; for sorting, we can

be highly certain that we extract the correct molecules. Second, FIMDA and PAID require mul-

tidimensional nonlinear fits of their data to simulated or theoretical results, making real-time

experiments nearly impossible with modern computer hardware. Third, as in the comparison

with FCS, our technique always provides the statistically-best estimate of the species present at

all times, providing information for real-time experiments while the fluorophores are within the

focal volume. While we are not aware of any studies that examine the performance of FIMDA

and PAID in the identification of single diffusing molecules, we expect that our estimator should

be at least as accurate as these methods.

A.3.3 Slow-diffusion identification

In experiments where species diffusion coefficients are small relative to the fluorescence rates,

we expect that a reduction of the photon stream from a series of arrival times to a series of

photon counts in time windows of length τbin will be both effective and computationally simpler

than the arrival-time estimator that we have been using. We test this by running a series of two-
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species diffusion-based identification simulations, setting S = {(1,D1), (1,3D1)} and varying

D1. Fig. A.8 shows the results of these simulations, run using bin times of 0.1ms and 0.5ms.

We see that for small diffusion coefficients, with sufficiently small bin time, the binned-data

estimator’s performance reaches as high as 90% — roughly ten percentage points higher than

the performance of the arrival-time estimator. For D1 ≥ 0.02µm2/ms, both estimators achieve

roughly the same performance. When a larger bin time is used, the performance of the binned-

data estimator is degraded, falling as low as 50% before the data become too coarse-grained to

make identifications, which happens for D2 > 0.3µm2/ms.

It is somewhat surprising to see the binned-data estimator outperform the exact arrival-time

estimator. We attribute this result to accumulated numerical error as many photon arrival times

are processed; finite precision mathematics (MATLAB uses 64-bit data types) limits the accuracy

of each iteration of the estimator. The binned-data estimator may update as little as 10% as

frequently as the arrival-time estimator, and as a result the difference in accumulated error

is great enough that the binned estimator performs better despite the arrival-time estimator’s

theoretical advantage. The effect is particularly pronounced for molecules with small diffusion

coefficients because a very large number of photons is typically detected as such molecules

diffuse through the laser focus. This results in a large number of recursive updates, each

introducing some numerical error to the distribution.

As shown in Fig. A.8, the performance of the binned-data estimator will be limited by

selection of the bin time; to achieve best results, the bin time must be made sufficiently small

to capture essential features of the fluorescence stream, yet not too small to cause numerical

error to hurt accuracy. Initial speculation about the implementation of the recursive estimator

on a Field Programmable Gate Array [118] leads us to believe that the binned-data estimator

with reasonable bin time reduces the frequency of computations sufficiently to enable its use

in experiments requiring real-time feedback.

Clearly the binned-data estimator, not the arrival-time estimator, is the best tool for the cur-

rent problem both for computational efficiency and accuracy, at least when numerical precision

is limited to 64-bit. However, the arrival-time formulation will be essential for experiments in

which fast photophysical dynamics, such as blinking or energy transfer, are incorporated into

the fluorescence model. The binned-data estimator will never be able to accurately handle dy-

namics on a time scale smaller than τbin, while the arrival-time estimator’s time resolution is

limited only by photodetector resolution.
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Figure A.10: Performance of the identification estimator on binned data with bin time 0.1ms
and varied background noise strengths as indicated. The plots were generated with S =
{(1,0.01), (1,D2)}, 0.01 < D2 ≤ 0.1, with at least 100 identifications made for each species.
Shown are the geometric means of the success probabilities for each species.
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A.3.4 Background noise and estimator performance

So far we have only presented results showing the performance of the estimator with 1kHz

background noise. Here we consider the effect of higher-rate background fluorescence on the

estimator. The model that we derived for the fluorescence incorporated a constant-rate back-

ground count ΓB . We expect that Eq. A.7 will provide fluorescence rates that are exact assuming

that the noise has a constant rate that can be measured or approximated prior to the experi-

ment.

Figs. A.9 and A.10 show the identification accuracy of the estimator on data containing

constant-rate Poisson background noise. The plots are generated by setting S = {(1,D1), (1,D2)}
with D1 constant at 0.1 for the arrival-time data and 0.01 for binned data, and varying the ratio

D2/D1. Note that a direct comparison between the probabilities in these figures is irrelevant

because the plots are over different diffusion coefficient regimes. We see that there is little no-

ticeable difference in the performance of the estimator on either data type with noise at 1kHz

and 2kHz, but for noise strengths of 5kHz there is a performance loss of a few percentage

points for the arrival-time data. The difference in noise-rejection performance between the

data types is again attributed to numerical issues: higher noise count rates increase the num-

ber of iterations of the arrival-time estimator and therefore increase propagated error. Typical

background count rates in single-molecule fluorescence experiments are about 1-2kHz, and

both estimators are robust to noise at these levels.

A.4 Conclusion

We derived a recursive Bayesian estimator to calculate a probability distribution for the identity

of a single diffusing fluorophore given its photon arrival-time stream as it makes a single pass

through the focus of a confocal fluorescence microscope. We derived analytical models for

the diffusion and fluorescence dynamics in such an experiment, and tested our estimator by

running experimental simulations in two dimensions.

We showed that our estimator is capable of identifying single molecules based on differ-

ences in their diffusion coefficients and brightness, but we stress that our method provides a

means of identification that based on any species-specific parameter. Our simulations indicated

that the accuracy of the estimator in identification by diffusion coefficient is reasonable, as it

lies within the performance bounds set by a minimal-data estimator and an ideal, theoretical

one. We showed that our estimator is significantly more sensitive to brightness than it is to

diffusion coefficient by demonstrating that species with twofold differences in brightness can

be identified with probability 1, while estimator accuracy on species with twofold differences
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in diffusion coefficient is not much better than random guessing.

A key feature of our identification scheme is that it provides a probability distribution over

the set of possible species identities. This provides a measure of the certainty of an identifica-

tion, as we demonstrated that relatively similar species are identified with fairly low probability,

and relatively dissimilar ones are identified with high probability.

We showed that by counting photon arrivals in time windows of fixed duration we can sig-

nificantly reduce the number of calculations necessary while maintaining accuracy in diffusion

coefficient-based identification for slowly diffusing molecules. In fact, accuracy improved by

doing this because of issues with the accumulation of numerical errors over many estimator

iterations. We believe that this approach is experimentally tractable, in that it is both accurate

and computationally simple enough to facilitate experiments requiring real-time feedback.

It is important to note that our work was done in two dimensions purely for computational

simplicity and to illustrate the technique. The estimator is valid in an arbitrary number of

dimensions, and the models we derived are easily extended to three dimensions. Assuming a

correct model, we believe that the performance of the estimator applied in three dimensions

will not be much different than that which we have presented.

The most important point we wish to address is the prospect of using approaches similar to

what we have presented to tackle more complicated problems in single-molecule spectroscopy.

Rigorous mathematical tools exist for the treatment of stochastic processes such as diffusion

and fluorescence, and when applied properly they yield direct quantitative approaches to the

same problems that have previously been addressed using more limited and circuitous meth-

ods. These quantitative tools are only limited in the extent to which the physical processes un-

derlying the experiments are understood; for any system that we can write an accurate model

for, we can develop an estimator to measure something about that system. We hope we have

made clear the motivation for our belief that coupling a rigorous quantitative approach to data

analysis with clever experiments will allow for novel studies of complex stochastic dynamics

on the single-molecule scale.

A.5 Perturbative calculation of p(nk = 0|rk; rk−1;ξk; sj)

Let γj[~r(t)] be a position-dependent Poisson rate with ~r(t) some fixed path satisfying ~r(tk−1) =
~rk−1 and ~r(tk) = ~rk. Let p−[~r(t)] be the probability that no photon is emitted along the path

~r(t). From an elementary probability calculation, we have

p−[~r(t)] = exp

(
−
∫ t

0
dt′ γj[~r(t′)]

)
(A.14)
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where the notation is to indicate that p− is a functional of the path ~r(t).

p(nk = 0|rk; rk−1;ξk; sj) is the average of the functional over all (scalar) paths r(t) with

r(0) = rk−1 and r(t) = rk. Since the sample paths are generated by Brownian motion, we take

the Wiener measure dµW [r(t)] with diffusion coefficient Dj as our probability measure on this

function space [119]. We may now write p(nk = 0|rk; rk−1;ξk; sj) as a path integral over the

class F of all continuous functions from (rk−1, tk−1) to (rk, tk):

p(nk = 0|rk; rk−1;ξk; sj) =
∫
F dµW [r(t)]p−(t|r(t))∫

F dµW [r(t)]

= 1
p(rk|rk−1;∆tk; sj)

∫
F
dµW [r(t)] exp

(
−
∫ t

0
γj[r(t′)]dt′

)
. (A.15)

If we now write the instantaneous rate function as

γj[r(t)] = γ̃ +
(
γj[r(t)]− γ̃

)
(A.16)

where

γ̃ = 1
2

(
γj[rk]+ γj[rk−1]

)
, (A.17)

we may make a perturbation expansion of Eq. A.15 around the constant potential γ̃.

For the constant rate γ̃, we have

∫
F
dµW [r(t)] exp

[
−
∫ tk
tk−1

γ̃dt′
]
= p(rk|rk−1;∆tk; sj) exp [−γ̃∆tk] . (A.18)

Including the first order contribution from the perturbing term γj(r)− γ̃ gives the next lowest-

order correction

p(nk = 0|rk; rk−1;ξk; sj) = exp [−γ̃∆tk]−
2π

p(rk|rk−1;∆tk; sj)

×
∫ tk−1

tk
dt
∫
dr rp(rk|r ; tk − t; sj)

[
γj(r)− γ̃

]
p(r |rk−1; t − tk−1; sj)+ · · · (A.19)
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Appendix B

Statistical limits to dilute
concentration estimation

B.1 Introduction

Chemical concentration is perhaps the most fundamental measurement one can make in the

analysis of an arbitrary solution sample. With the recent success of single-molecule detec-

tion (SMD) techniques in measuring chemical reaction kinetics in dilute solutions and biolog-

ical systems, the value of the ability to measure dilute concentrations has been made quite

apparent[105, 120]. Simultaneously, the recent push to miniaturize the analytical appara-

tus required to make increasingly intricate chemical and biological measurements into mono-

lithic lab-on-a-chip devices has introduced the requirement that concentration measurements

be made accurately and quickly on a microscopic scale, using only a very small volume of

sample[121, 122]. Single-molecule detection techniques have already been implemented for

this purpose, and it is inevitable that their use will grow far more widespread as miniaturization

continues due to their intrinsic ability to satisfy the requirements of these devices[123, 124].

However, SMD techniques, by design, collect information from only small numbers of discrete

particles in any finite detection time, and this has statistical consequences: the value of the

measured concentration can only be considered an estimate, the accuracy of which improves

over time in a mathematically well-understood way. In order to make analytical measurements

on increasingly dilute or increasingly small samples, it will be crucial to understand how the

concentration estimation technique chosen will perform as a function of time. If concentration

fluctuations occur on a time-scale that is too fast, or if an application requires a certain degree

of accuracy in too short a time period, a particular technique may be inappropriate — in fact,

it is possible that no technique is capable of reaching particular performance goals.

The traditional approach to spectroscopic concentration measurement is to measure some

property of the sample that is proportional to the concentration, such as absorbance or fluores-
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cence, within some region of the sample. A drawback associated with this approach is that at

very low concentrations, or with very small detection regions, the concentration within the de-

tection region exhibits fluctuations that grow increasingly large relative to the mean concentra-

tion, as illustrated in Fig. B.1. This fact is exploited by confocal Fluorescence Correlation Spec-

troscopy (FCS), which estimates concentration based on the variance of these fluctuations[26].

In higher-concentration regimes, smaller relative fluctuations about the mean lead to faster

convergence of concentration estimates, such that temporal convergence properties are not

important. In the single-molecule regime, however, large relative fluctuations lead to large

uncertainty in concentration estimates made using averaging times that are too short. Un-

fortunately, the statistics of concentration fluctuations are very complicated because of their

diffusive nature[125] such that characterization of the convergence properties of methods that

rely on averaging the detection-region occupancy is quite difficult, and little work has been

done in this area.

In this paper we address the problem of concentration estimation in relatively dilute sam-

ples, by which we mean that the average number of analyte particles within the detection region

is much smaller than 1. At low relative concentrations it is possible to resolve the discrete entry

times of individual analyte particles into the detection region, which allows for an alternative

and fundamentally different approach to concentration estimation. The rate at which particles

are detected is fully determined by the concentration, the geometry of the detection region and

the diffusive properties of the particles. However, once detected, a particle’s dynamics within

the detection region are determined strictly by the geometry of the region and by its diffusive

properties, assuming that the analyte particles do not interact. The concentration plays no role

in determining the motion of the particles or the time spent by each particle within the detec-

tion region, so that the rate of individual particle detections is the only feature of the detected

signal containing concentration-relevant information. We may discard nearly the entire signal,

using only the time intervals between detections of individual particles to make statistically

complete concentration estimates.

In the first section of this paper, we derive a probabilistic model for the time-spacing between

detections of individual analyte particles. The exactness and simplicity of this model allow us,

in the next section, to compute a limit for the convergence rate of a concentration estimate

that is independent of the estimation technique, and hence to determine a lower bound for the

kinetic time-scales that may ever be probed experimentally in dilute solutions.

We continue by deriving a concentration estimator using just the particle detection times

extracted from an SMD signal. Based upon such a reduced signal, this technique is easily

characterized in terms of its convergence, allowing us to explicitly show that its accuracy over

time asymptotically approaches optimality. We formulate this estimator as a time-domain tech-
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Figure B.1: Simulation of the concentration fluctuation statistics of several concentration
regimes. Ensembles of 100ms Brownian motion trajectories were generated at relative con-
centrations of 0.1, 2, 10 and 100. Fluorescence photons were generated and the resulting
fluorescence rates are shown.

nique, which is unique among SMD methods for concentration estimation because no averaging

is required over multiple signal bursts. It is therefore naturally suited for use with methods

that analyze individual signal bursts for independently monitoring the concentrations of the

individual components of a sample.

In the final sections of this paper, we discuss the implementation of our technique exper-

imentally and we present the results of detailed numerical simulations that illustrate its use

in several realistic experiments. The highlight of these sections is the combined application

of a Bayesian burst analysis method[16] with our concentration estimator to simultaneously

monitor the concentrations both species in a binary solution.

B.2 Statistics of exact particle detection

In this section we derive a model for the concentration-dependent times between the detection

of individual analyte particles when the distribution of particles in the sample is known and at

equilibrium. We believe that the majority of cases of experimental interest will fit within these

specifications — in any closed volume the distribution will be uniform, and in a microfluidic

device the sample geometry is so tightly confined that the analyte distribution should be cal-

culable to within the necessary accuracy. By assuming that the distribution of particles is in

equilibrium, we are technically limiting ourselves to cases in which the sample concentration
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Ω

V

∂ΩV \ Ω

Figure B.2: Illustration of the regions of the sample that we describe in the text, in the example
of a microfluidic channel. V is the entire sample, Ω is the detection region, V \Ω is the region in
the sample outside of Ω, and ∂Ω is the boundary of Ω. Red spheres represent analyte particles.
Wavy arrows indicate fluorescence emission. Large arrows outside of V indicate the direction
of fluid flow.

is held constant. In practice this will only be an absolute requirement over a time period suf-

ficiently long to make accurate concentration estimates; we avoid unnecessary complications

by leaving such fluctuations out of our model, and we discuss our approach to dealing with

slowly fluctuating concentrations in later sections. Rapidly fluctuating concentrations cannot

be ignored from the model in this way; rarely, however, will it be possible to accurately monitor

such fluctuations experimentally in dilute solutions.

We assume that in our experimental apparatus there is a region Ω within the overall sample

volume V that we monitor for the presence of analyte particles (see Fig. B.2 for illustration). In

single-molecule fluorescence experiments, for example, Ω is the region defined by the focus of

the excitation laser and the fluorescence-collection optics.

Given that the equilibrium spatial distribution c(x) of the analyte particles may be non-

uniform — microfluidic devices containing regions in which two sample streams are mixed are

a good example — we must define precisely what we mean by the concentration of the sample.

We define the normalized spatial density ρ(x) and the concentration C such that

∫
Ω
ρ(x)dx = |Ω|, (B.1)

where |Ω| is the volume of Ω, and

Cρ(x) = c(x), (B.2)

which is consistent with standard notions of concentration and rigorously accounts for inho-

mogeneity. Throughout the paper, we will frequently refer to concentration in units relative to

|Ω|, such that numerical concentrations will be dimensionless and |Ω| = 1. Under this conven-

tion, C is the average number of particles within Ω over time. This is done to underscore the

importance of relative concentrations over absolute concentrations in our presentation.
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B.2.1 Detection-region diffusive influx dynamics

We begin by deriving an expression for the influx rate of analyte particles into an arbitrary

detection region Ω. We assume that the motion of analyte particles obeys the convection-

diffusion equation
∂
∂t
ρ(x, t) = ∇ · (u(x)ρ(x, t))+D∇2ρ(x, t), (B.3)

where D is the diffusion coefficient of the particles and u(x) is an arbitrary fluid flow field. In

order to solve for the rate at which particles enterΩ, we follow a procedure originally developed

by Smoluchowski to study irreversible chemical kinetics. According to this model, the rate at

which particles reach the surface ∂Ω of the region Ω can be found by solving Eq. B.3 over V \Ω
(the region of V excluding Ω) with the absorbing boundary condition ρ(x, t) = 0 on ∂Ω and

appropriate initial conditions[8, 126, 127]. Since ρ(x, t) is in equilibrium with V , all of the net

flux of analyte out of V \Ω is through ∂Ω, such that the rate γ(t) with which particles enter Ω

is given by the change in the number of analyte particles in V \Ω,

γ(t) = −C ∂
∂t

∫
V\Ω

dxρ(x, t). (B.4)

Combining Eqs. B.3 and B.4 and applying Green’s theorem, we have

γ(t) = −CD
∫
∂Ω
∇ρ(x, t) · dA, (B.5)

where the integrand is the familiar diffusive flux into Ω. Note that the convective term has

vanished because ρ(x, t) is zero on ∂Ω, but is incorporated into the integral through its effect

on ∇ρ(x, t).
The reduction of the detection-region influx statistics from a multi-dimensional PDE model

to a scalar function of time is a significant result, particularly in microfluidic applications. It

allows us to reduce arbitrarily complicated sample and detection geometries combined with

diffusion statistics into a single function that exactly characterizes the concentration-relevant

statistics in an experiment. Furthermore, that γ(t) depends linearly on C is a noteworthy point.

It allows us to define the concentration-independent rate function

γ̃(t) = 1
C
γ(t) (B.6)

that is an intrinsic characteristic of the sample and detection geometries. This separation

implies that for a given geometry and sample species, we must determine γ(t) only once in

order to fully specify the detection-region influx statistics at any concentration.

In practical terms, computing γ̃(t) is a nontrivial task for all but the simplest sample ge-
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ometries. It will sometimes be the case, however, that the steady-state value of γ̃(t) alone is

sufficient to approximately characterize the influx statistics. In particular, this will be true when

γ̃(t) decays to steady-state quickly relative to Cγ̃(t), the rate at which particles are detected.

Such rapid decay is a characteristic of experiments in which convective flow drives the motion

of particles into Ω, causing γ̃(t) to decay rapidly, and is also found in free solution at very low

concentrations. It results in only very few particles entering Ω before the difference between

γ̃(t) and γ̃(∞) is negligible. A concentration estimate made using a fairly large number of

detections will be trivially influenced by the time dependence of these few; therefore we may

solve for only the steady-state influx rate, which is a much simpler computational task due to

the time-independence of the problem.

B.2.2 Particle-detection statistics

Since particle detection is a discrete process, the rate Cγ̃(t) at which we detect new particles

is only meaningful in a probabilistic sense. In this section we complete our model by deriving

a probability density over the time-spacing between discrete detection events.

Imperfections in our ability to extract detection times from an SMD signal will affect the

statistics we observe. Here we will ignore the exact sources and consequences of these imper-

fections, but assume that we may still define a rate of particle detection j(t) that is distinct

from but related to the rate of diffusive influx γ̃(t). If we assume that detection is perfect —

that all particles entering Ω are detected immediately — then j(t) = γ̃(t). We will restrict our-

selves to this approximation until a later section, when we provide more details on the types

of inaccuracies inherent to most detection methods.

For the purpose of derivation, we define the conditional probability P(τk|tk−1) that the kth

particle in a stream of particles is detected at some time T > τk + tk−1 given that the (k− 1)th

particle was detected at time tk−1. We may write

P(τk + dτk|tk−1) = P(τk|tk−1)
(
1− Cj(τk + tk−1)dτk

)
(B.7)

since the probability that no particle is detected in the infinitesimal interval dτk is 1−Cj(τk+
tk−1)dτk. Rearranging Eq. B.7 and taking the limit dτk → 0, we have the differential equation

∂
∂τk

P(τk|tk−1) = −Cj(τk + tk−1)P(τk|tk−1), (B.8)

the solution to which is the exponential decay

P(τk|tk−1) = exp
{
−C

∫ τk
0
dt′j(t′ + tk−1)

}
. (B.9)
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Finally, we note that 1− P(τk|tk−1) is, by definition, the cumulative probability function corre-

sponding to the probability density p(τk|tk−1) over the waiting time τk. Thus we have

p(τk|tk−1) = −
∂
∂τk

P(τk|tk−1) = Cj(τk + tk−1) exp
{
−C

∫ τk
0
dt′j(t′ + tk−1)

}
. (B.10)

The result that we will require in later sections is not simply the probability of a single

waiting time, but rather the joint probability of the set ξ = {τ1, . . . , τk} of sequential waiting

times over the course of an experiment. It is simple to show that this joint probability is given

by

p(ξ|C) = Ckj(τ1) · · · j
 k∑
i=1

τi

 exp

−Cζ
 k∑
i=1

τi

 , (B.11)

where we have made the substitution

ζ(t) =
∫ t

0
dt′j(t′). (B.12)

Equation B.11 is the general probabilistic model that we will use in all forthcoming derivations

in this paper.

B.3 Concentration estimation

In this section we restrict ourselves to purely statistical calculations using the particle detec-

tion model derived in the previous section. We begin by deriving a performance limit for the

convergence of concentration estimates assuming only that the concentration estimation tech-

nique used is unbiased. Next we derive and characterize a simple time-domain concentration

estimator, the convergence of which asymptotically approaches this limit. The calculations

in this section are independent of the particle-detection technique in the sense that the only

assumption we make is that the model for the particle-detection statistics, namely that the

detection rate is linear in C , is correct.

B.3.1 Universal limit to estimator performance

It is a critically important point that the statistics of diffusive influx into Ω are a complete

model of the concentration-relevant information present in the signal that we detect in an SMD

experiment. The occupancy of Ω at any time is determined by the competing rates of particles

diffusing into and out of Ω. However, once a particle has entered Ω, its exit time depends

only on the geometry of Ω and on its diffusive dynamics; while the spatial density ρ(x) may

affect the exit statistics by determining where particles are most likely to enter Ω, the scalar
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concentration C can only affect the exit times if the diffusive dynamics of a single particle

depend on the presence of other particles. If we assume that the analyte particles do not

interact, we can safely ignore the detection-region outflux statistics without compromising any

concentration information in the detected signal. The result is that any statistical properties we

derive using our influx statistics model may be broadly applied to any concentration-estimation

technique, including detection-region occupancy-averaging methods and FCS, because those

methods simply cannot incorporate any additional information into their estimates.

Suppose we detect a set of detection-region entry times ξ = {τ1, . . . , τk} under experimental

conditions satisfying the assumptions of our detection statistics model. We define an estimator

Υ(ξ) as a function of those entry times that we require to be unbiased, such that

EC[Υ(ξ)] = C, (B.13)

where

EC [·] =
∫∞

0
dτ1 · · ·

∫∞
0
dτkp(ξ|C) [·] (B.14)

denotes the expected value functional over all possible sets of entry times for a fixed C , and

p(ξ|C) is given by Eq. B.11.

We will use the variance of Υ ,

VarC[Υ(ξ)] = EC
[
(Υ(ξ)− C)2

]
, (B.15)

as a standard measure of its performance — smaller variance indicates that Υ(ξ) is distributed

more closely to the actual value of C , indicating faster convergence of the estimator. A fun-

damental property of all unbiased estimators is that their variance satisfies a positive lower

bound for any finite measurement record. This is simply a consequence of the limited amount

of statistical information contained in a finite sample. A concentration estimator Υ(ξ) based

on particle detection statistics satisfies the assumptions of the Cramér-Rao inequality, which

gives us the lower bound on VarC[Υ(ξ)][85],

VarC[Υ(ξ)] ≥
1

EC
[(

∂
∂C logp(ξ|C)

)2
] . (B.16)

Substituting Eq. B.11 into Eq. B.16, the Cramér-Rao inequality evaluates to

VarC [Υ(ξ)] ≥
C2

k
, (B.17)

representing a performance limit for any unbiased concentration estimation method.
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An unbiased estimator that achieves equality in Eq. B.17 is referred to as optimal. Al-

most universally, the goal in estimation problems is to find an optimal estimator; however,

one does not always exist. In fact, by applying the attainment corollary to the Cramér-Rao

inequality to our detection statistics model it can be shown that no optimal concentration es-

timator exists[85]. We conclude, therefore, that regardless of the estimation technique used,

the concentration estimate will always converge with variance strictly greater than C2/k.

We note that nothing about our derivation of Eq. B.17 requires that detection is done via

SMD. In particular, Eq. B.17 applies even for large-scale concentration measurement devices

such as spectrophotometers or fluorometers. However, such devices monitor large regions

of relatively high-concentration samples so that Cγ̃(t) is very large. As a result, k becomes

large very quickly so that C2/k is negligible and we can consider measurements to have fully

converged in very short times. In SMD, Cγ̃(t) is intentionally restricted for the sake of single-

molecule resolution, and as a result C2/k is nontrivial.

B.3.2 Near-optimal time-domain concentration estimator

One procedure for finding an estimator for a particular quantity is to compute the maximum

likelihood estimator ΥML(ξ), defined such that[85]

p(ξ|ΥML(ξ)) = max
C
p(ξ|C). (B.18)

The maximum likelihood estimator for C is given by

ΥML(ξ) =
k

ζ
(∑k

i=1 τi
) , (B.19)

for which we compute the expected value

EC [ΥML(ξ)] = C
k

k− 1
, (B.20)

indicating that ΥML(ξ) is biased. It is clear from Eq. B.20, however, that the modification of

ΥML(ξ) given by

Υ̃(ξ) ≡ k− 1
k

ΥML(ξ) =
k− 1

ζ
(∑k

i=1 τi
) (B.21)

is unbiased for k > 1; additionally, since (k− 1)/k < 1, we know that the variance of Υ̃ will be

strictly smaller than the variance of ΥML. Therefore Υ̃ is an unequivocally better estimator than
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ΥML, so Υ̃ is the estimator that we will characterize and use. The variance of Υ̃ is given by

VarC
[
Υ̃(ξ)

]
= C2

k− 2
, (B.22)

which compares favorably to the optimal variance of Eq. B.17 and approaches optimal in the

limit k → ∞. Because Υ̃ is unbiased, we can use Eq. B.22 to give uncertainty bounds in our

estimates of the standard form γ̃(ξ)±2
√
γ̃(ξ)2/(k− 2), approximately corresponding to a 95%

confidence interval.

B.3.3 Time-domain variance and concentration fluctuations

The optimal variance given by Eq. B.17 and the variance of Υ̃ given in Eq. B.22 are both expressed

as functions k, but in a fixed amount of time this number depends on the analyte concentration

such that these expressions do not clearly represent the convergence of the estimates over time.

To clarify this time dependence, we compute the expected value of the variance in Eq. B.22 as

an explicit function of time:

Et,C
[
VarC

[
Υ̃(ξt)

]]
=

∞∑
kt=3

C2

k− 2
p(kt), (B.23)

where ξt is the measurement record up to time t, kt is the number of particles detected up

to time t, and p(kt) is the probability of detecting kt particles in time t given by the Poisson

distribution,

p(kt) =
1
kt !

exp [−Cζ(t)] [Cζ(t)]kt . (B.24)

Note that the sum in Eq. B.23 begins at kt = 3 because Eq. B.22 is infinite for k < 3; Eq. B.23 is

therefore a conditional expectation, in which it is assumed that at least 3 particles have been

detected. Equation B.23 is invalid for very small t but becomes quite accurate very quickly as

the probability that only 2 or fewer particles have been detected becomes vanishingly small for

large t. While the summation in Eq. B.23 cannot be computed explicitly, it can be represented

in terms of the generalized hypergeometric function F ,

Et,C
[
VarC

[
Υ̃(ξt)

]]
= C

2

6
[Cζ(t)]3 exp [−Cζ(t)] F

 1,1

2,4
;Cζ(t)

 , (B.25)

which simplifies evaluation due to numerical methods for computing F .

Now that we have an expression for the variance over time of Υ̃ at a fixed concentration,

we can discuss the measurement of a dynamically-fluctuating concentration C(t). In order

to permit a time-dependent concentration within the framework we developed for computing
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the particle detection statistics, we require that C(t) fluctuates sufficiently slowly that its time

dependence does not affect the form of γ̃(t) — that is, the fluctuations are slow enough that

they produce negligible changes in the equilibrium density ρ0(x) in V . This time-scale is set

by the time required for concentration fluctuations to propagate throughout the sample by

convective and diffusive motion. We must also require that C(t) is approximately constant

for a time sufficiently long to estimate it with a suitably small variance. In the single-molecule

concentration regime, the latter will nearly always be the dominant time constraint.

Provided a C(t) with sufficiently slow fluctuations, our estimation strategy is simple. We

begin by choosing an acceptable uncertainty in the concentration estimate and using Eq. B.23

to approximate the estimation time required to attain it. We divide the detected signal into time

intervals of this required time and estimate the approximately-constant C within each interval

using Υ̃ . Finally, we construct C(t) using these estimates. We present simulations in a later

section that illustrate this strategy.

B.4 Experimental considerations

The results in the previous section rely on the assumption that the time-dependent detection

rate of analyte particles scales linearly with concentration. We have already shown that this

is true in the limit of perfect detection, when detection-region entry times can be determined

exactly. In this section, we begin by discussing how realistic sources of detection inaccuracy do

not violate this linear dependence. Next we discuss how the inability to distinguish individual

particles gives rise to a problem of recurrent detections, in which one particle follows multiple

sequential paths through the detection region and the resulting signal bursts are attributed to

multiple distinct particles. We go on to discuss techniques for extracting detection times and

rejecting recurrent detections from a single-molecule fluorescence signal. Finally we discuss

the effects of multiple occupancy, in which a concentration-dependent fraction of particles

entering Ω will go undetected because Ω was not empty upon their entry.

B.4.1 Localization inaccuracy

The inability to precisely localize individual particles in SMD experiments[128] has two primary

consequences that are of concern to us. First, once a particle has entered Ω, some time will be

required before we detect it and there is some probability that it will leave Ω before this time,

escaping detection. Second, it is possible that particles following trajectories that come close

to Ω without actually entering it will be detected as having entered.

We may model the first of these inaccuracies using the conditional probability η(τ|t)dτ
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that a particle is detected at time t+τ , given that it entered Ω at time t. Note that η(τ|t) is in

general not normalized, because there is some nonzero probability that a particle will escape

detection. If fluorescence is the method of detection, η has a sharp peak at t = 0 because the

time-scale of fluorescence is much shorter than that of diffusion. As a result, we can make the

approximation η(τ|t) ≈ δ(τ). To allow for arbitrary detection methods, however, we do not

restrict the form of η(τ|t).
The second inaccuracy may be modeled as a time-dependent rate of spurious detections

Cj0(t), where the proportionality to C follows from its dependence on the concentration of

analyte particles immediately outside Ω. Typically we will choose Ω in such a way that the

spatial sensitivity of the detection method is high on ∂Ω, so that j0(t) will be fairly small. As

with η, however, we will not restrict the values of j0(t).

Using Cγ̃(t) from Eq. B.6 as the rate that particles actually enter Ω we may define Cj(t),

the rate at which particles are detected, as

Cj(t) = Cj0(t)+ C
∫ t

0
dt′η(t − t′|t′)γ̃(t′). (B.26)

In the same sense that γ̃(t) is a characteristic of the diffusive dynamics alone, j(t) is a charac-

teristic of the coupled diffusion and detection dynamics in a particular experiment. Its linearity

for general η and j0 imply that all of the results of the previous section will hold for any de-

tection method subject to our assumptions here regarding localization inaccuracy.

B.4.2 Recurrent detections

The detection statistics that we use in this paper are based on a model in which particles

are only counted the first time they enter Ω, because this is the only entry that gives us any

concentration-relevant information. Unfortunately, we cannot easily distinguish between par-

ticles that have already been detected and those that have not. Thus, whatever technique we

use to determine detection times must correct for the recurrent detections of single particles,

in which an analyte particle is detected, exits the detection region, re-enters at some later time

and is detected once again. If ignored, these events will drive the detected analyte influx rate

much higher than the calculated rate for a given geometry and concentration, giving a falsely

high concentration estimate.

Fortunately, the time-scale of recurrent detections is a result of the detection-region geom-

etry alone and does not depend on the concentration of the sample. This time-scale tends to

be very fast because a particle is very likely to re-enter Ω almost immediately after exiting,

while re-entry becomes less likely over time as the probability that the particle has remained

close to Ω decreases. Thus, in dilute samples we expect a separation between the time-scales
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Figure B.3: Comparison of the time-scales of recurrent detections and first detections for freely
diffusing particles into a spherical detection region with radius 0.5µm. The main plot compares
the probability densities of recurrent detection times (blue curve with circle markers) with those
of first detection times (curves without markers) for relative concentrations of 0.05, 0.1, 0.2,
0.5 and 1. The inset compares the cumulative probabilities corresponding to those probabil-
ity densities. Arrows indicate the direction of increasing concentration. Recurrent detection
statistics were generated by Monte-Carlo simulation, while the exact solution to Eq. B.3 was
used for first detection.

of initial and recurrent detections. Figure B.3 shows the recurrent-detection time probability

compared to the probability of first-entry times for particles freely diffusing into a spherical

Ω in an unbounded V . At concentrations relevant to SMD, the time-scale separation is great

enough that simply ignoring short detection times will reject nearly all recurrent detections

while rejecting very few first detections.

B.4.3 Entry-time determination methods

In order to make concentration estimates using our detection-time estimator, we require the

ability to accurately extract detection times from an SMD signal. Two tools have been employed

to do this for fluorescence-based SMD while simultaneously identifying recurrent particle de-

tections. The first of these is the Lee filter, in which the detected signal is smoothed such that

fluorescence bursts from recurrent detections are merged while the fine structure of the bursts

is preserved and may be used for subsequent analysis[129]. These merged signal bursts are

identified by simply applying a fluorescence count threshold to the signal.

The second approach is to use the Bayesian filter that we have introduced, which computes

a spatial probability density for the detected particle over time[16]. Applying a threshold to the
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probability that Ω is non-empty is an accurate way to determine entry times, and the spatial

estimator’s ability to monitor particles over some distance as they diffuse away from Ω pro-

vides a criterion for identifying recurrent detections. This method requires considerably more

computational power to implement than the Lee filter, but it enables experiments in which each

signal burst is analyzed individually, so that the concentrations of multiple species may be di-

rectly monitored simultaneously in a single sample. For simple experiments where little other

than the concentration of a homogeneous solution is needed, the Lee filter is ideal because of

its simplicity. The Bayesian filter is the natural technique for more complicated experiments,

as it provides a rigorous framework for simultaneous detection and analysis of signal bursts.

B.4.4 Bias due to multiple occupancy

Single-molecule detection experiments are typically designed under the assumption that the

concentration of the sample is low enough that it is very unlikely that more than one particle

will be within the detection region at a given time. The probability of detecting two or more

particles is always nonzero, however, and we must consider how this affects our concentration

measurements. The number of particles inside Ω at any time has a Poisson distribution, so the

probability that Ω is empty is exp(−C|Ω|). We will only be able to detect particles that enter Ω

while it is empty, so that our estimator will converge to an effective concentration

Ceff ≡ EC
[
Υ̃(ξ) exp(−C|Ω|)

]
= C exp(−C|Ω|) (B.27)

that is biased by the exponential term. When the relative concentration C|Ω| is small Ceff ≈ C ,

so that this bias is negligible; however, it cannot be ignored in the higher range of SMD-relevant

relative concentrations.

In order to recover the sample concentration from the estimated effective concentration, we

define the corrected concentration estimator Υ̃corr by inverting Eq. B.27:

Υ̃corr (ξ) = −
1
|Ω|W

[
−|Ω|Υ̃(ξ)

]
, (B.28)

where W is the Lambert W function[130]. We know that in the limit k → ∞, Υ̃ converges in

probability to Ceff , and since W is continuous we know that Υ̃corr must converge to C[131].

Thus we know that Υ̃corr will be unbiased asymptotically, but we require knowledge of its

mean and variance for finite k to determine how many particles we must detect in order to

make acceptably accurate estimates.

The functional form of W makes exact computation of EC
[
Υ̃corr

]
and VarC

[
Υ̃corr

]
difficult.

Instead, we computed these statistics by numerical integration in MATLAB (Mathworks, Inc.,
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Figure B.4: Statistical properties of Υ̃corr at relative concentrations of 0.05, 0.15, 0.25,
0.35, 0.45, 0.55, 0.65 and 0.75. The plot in (a) shows the bias of Υ̃corr relative to C , de-
fined as C−1EC

[
Υ̃corr (ξ)− C

]
, and (b) shows the variance of Υ̃corr relative to C2, defined as

C−2 VarC
[
Υ̃corr

]
(solid curves), and that of Υ̃ , given by (k− 2)−1 (black dashed curve). In both

plots, arrows indicate the direction of increasing concentration.

Natick, MA) over a range of relative concentrations that are relevant for SMD and a over range

of values for k. These results are shown in Fig. B.4. The first plot is the relative estimator bias,

showing the error that we expect in our estimates as a percentage of the sample concentration

C . The second plot shows the variance of Υ̃corr at several concentrations, compared to the

variance of Υ̃ from Eq. B.22.

Together, the plots in Fig. B.4 express our requirement for low relative concentrations in

quantitative terms. For relative concentrations less than 0.25, Υ̃corr has a negative bias only

for small k, such that after approximately 50 particles are detected the estimator is effectively

unbiased. Furthermore, after 50 particles are detected the variance of Υ̃corr is very close to that

of Υ̃ throughout this concentration range. We should reasonably expect that even with perfect

detection we would require this many or more detections to achieve an acceptable estimator

variance, so the detection-induced bias will need to be paid only slight attention at these low

concentrations. At higher concentrations, however, Υ̃corr quickly becomes very inaccurate for

any reasonable estimation time. Therefore, when we specify that we require a low relative

concentration, we can take this to mean one that is not much higher than 0.25.

Of course, the results in this section would be irrelevant if we had the ability to determine

with infinite resolution the number of particles within the detection region at any time. While

some techniques could be adapted to resolve multiple particles within the detection region it
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is difficult to do this accurately for even just a few particles and nearly impossible for larger

numbers. Therefore, while we may be able to extend the utility of our technique to higher

concentrations, there will always be a limit to how high that concentration may be.

B.5 Simulations

In this section we present the results of numerical simulations to illustrate the key points

from the derivations in the previous sections. All simulation codes were written in C and

compiled and run in Linux, and are available from the authors upon request. Uniform pseudo-

random numbers were generated using the publicly-available Mersenne Twister code[132], and

standard techniques were used to transform these to random numbers of the appropriate

distributions[133]. All data analysis was done with MATLAB and C code, also available from

the authors.

Ensembles of three-dimensional Brownian motion trajectories were generated at fixed or

fluctuating concentrations, specified in the text. Simulated particles had a diffusion coefficient

D = 100µm2s−1, unless specified otherwise. Their positions were updated after every time step

∆t = 100ns with independent random Gaussian-distributed steps in each Cartesian direction

with variance 2D∆t and mean u(r)∆t determined by the convective flow field, if applicable.

Simulations were limited to bounded regions interfaced to constant-concentration reservoirs

in a manner similar to that in [134] but in 3 dimensions and in the presence of convection. Free

diffusion simulations were performed within a sphere of radius 3 µm and channel simulations,

within a 20µm cylinder with radius 1µm and reflecting boundary conditions imposed on the

radial boundary. The particles in the channel were driven by the laminar flow field u(r) =
α(R2 − r 2)ez, where R is the outer radius of the channel, α was adjusted to yield a peak

velocity of 5mm/s, and ez is the unit vector parallel to the channel. These geometries were

chosen in particular for their simplicity and their experimentally relevant size scales.

B.5.1 Concentration estimation with exact particle detection

Our first set of simulations is meant to illustrate the performance of Υ̃ under ideal conditions

— when our knowledge of the detection-region entry times is exact.

We begin with simulations of free diffusion with a 0.5µm-radius spherical detection region.

The symmetry of Ω allowed us to compute γ̃(t) exactly, given by

γ̃(t) = 4πDR
[
1+ R (πDt)−1/2

]
. (B.29)

The concentration of the sample relative to Ω was fixed at 0.1, or approximately 317pM in this
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Figure B.5: Concentration estimation for free unbiased diffusion. Twenty 1s ensemble trajec-
tories were simulated with a relative concentration of 0.10 (red dashed line). Concentration
estimates (solid blue curves) were produced by (a) Υ̃ and (b) 〈O(Ω)〉, the time-averaged occu-
pancy of Ω. Exact influx times were used in (a), and exact occupancy information was used in
(b). Markers in (a) indicate particle-detection times. 2σ error bounds (black dot-dash curves)
were computed using Eq. B.25.

geometry. Upon initial entry into Ω, particles were marked in order to eliminate recurrent de-

tection. To properly preserve the spatial density of undetected particles within the simulation

volume, we labeled newly-injected particles as having been already detected with a probability

computed using the exact time-dependent solution to Eq. B.3. These correspond to particles

that were detected at some time, exited the simulation volume, and then re-entered the sim-

ulation volume at a later time. Using the exact particle locations, we computed Υ̃ over time

and compared it to the averaged occupancy of Ω over time. The results are shown in Fig. B.5.

These results agree very well with the predictions of our detection statistics model. In addition,

they show that the occupancy-averaging estimator converges with roughly the same variance

as that which we computed in Eq. B.22, agreeing with our assertions about the generality of our

convergence results and indicating that occupancy-averaging is a nearly-optimal concentration

estimation method.

Next, we simulated twenty independent 250ms ensembles of trajectories of particles diffus-

ing within a cylindrical microchannel. We defined Ω as an ellipsoid with two 0.5µm semiaxes

and a third semiaxis perpendicular to the flow with length 0.8µm; Fig. B.2 shows an illustration

of this geometry. The relative concentration of the simulation was fixed at 0.05, correspond-

ing to 99pM. Given the incompatible symmetries of V and Ω, it is not possible to analytically
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Figure B.6: Concentration estimation within a micro-channel. Twenty 1s ensemble trajectories
were simulated with a relative concentration of 0.05 (red dashed line). Concentration estimates
(solid blue curves) were produced by (a) Υ̃ and (b) 〈O(Ω)〉, the time-averaged occupancy of Ω.
Exact influx times were used in (a), and exact occupancy information was used in (b). Markers in
(a) indicate particle-detection times. 2σ error bounds (black dot-dash curves) were computed
using Eq. B.25.

compute γ̃(t). Instead, we determined γ̃(∞) ≈ 9ms−1 by simulation and used this steady-state

approximation to γ̃(t) to make concentration estimates, as before, using exact occupancy and

detection time statistics. The results are shown in Fig. B.6. These results highlight the gener-

ality of the detection-time concentration estimation technique by illustrating its accuracy for

bounded, biased diffusion, and further support the observation that the variance bound we

computed for the detection-time estimator approximates that of occupancy-averaging estima-

tors.

B.5.2 Concentration estimation via fluorescence detection

In real single-molecule experiments we can never be certain of the actual positions of analyte

particles, so the results just presented represent the best possible results we could ever expect

to achieve experimentally. In order to evaluate more realistic scenarios, we performed simu-

lations in which diffusing particles emitted fluorescence photons and concentration estimates

were made by smoothing the fluorescence signal with a Lee filter and applying a count thresh-

old to determine detection times. It is difficult to precisely define Ω in this case due to the

smooth leading edge and irregular geometry of the laser focal region. As a result, in these and

later simulations we fix the absolute concentrations but provide approximations for Ω and the
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relative concentrations.

The fluorescence rate of each particle in the sample was computed at each time step accord-

ing to the spatially-modulated rate Γ(r) = ΓL(r)Γr/ (ΓL(r)+ Γr )+ ΓB corresponding to a 2-level

saturating-emitter model where Γr is the relaxation rate of the fluorophore in its excited state,

ΓB is the background fluorescence rate, and ΓL(r) is the position-dependent laser excitation rate

in 3 dimensions. In the simulations we used Γr =1MHz and ΓB =5kHz, and for ΓL we used the

Gaussian-Lorentzian beam profile

ΓL(x,y, z) =
ΓL(0)
w(z)2

exp

[
−2(x2 +y2)
w(z)2

]
, (B.30)

where ΓL(0) =600kHz was the peak excitation rate and the beam waistw(z) is given byw(z)2 =
w2

0

[
1+ (λz/(πw2

0))2
]

with excitation wavelength λ =532nm and focused waist w0 = 0.5µm.

The fluorescence rates of all particles in the sample were added and the resulting total rate

was used to generate exponentially-distributed waiting times between detected photons at each

time step. The resulting signal was down-sampled into a sequence of photon counts within time

windows of duration 50µs. An example of such a signal is shown in Fig. B.7. The signals were

then smoothed using a Lee filter with a width of 350µs and a smoothing parameter σ = 4[129].

The recurrence-rejection properties of the Lee filter are evident in the inset of Fig. B.7, where

fast fluctuations causing the raw signal to climb above and then dip below the threshold value

— we used 12 photons per time window — three times within a single burst are smoothed

into only a single crossing of the threshold. The smoothed signal was analyzed for individual

particle detections by locating the onset of each fluorescence burst, defined by the point at

which the signal first exceeded the threshold.

We generated twenty 250ms fluorescence signals corresponding to a sample in the microflu-

idic geometry already described at an absolute concentration of 150pM. We approximate Ω as

a 3.2µm cylinder with a radius of 350nm, in which case the relative concentration was 0.11.

Again we approximated j(t) for this geometry using its steady-state value, which we found to

be j(t) = 4.9µs−1pM−1 by Monte-Carlo calculation. We used the extracted detection times to

compute Υ̃corr , and the results are shown in part (a) of Fig. B.8. Along with the concentration

estimates, we plotted error bounds corresponding to two standard deviations of the exact con-

centration estimator Υ̃ ; we see, as expected, that at this concentration the detection-corrected

estimator converges at a rate nearly equal to that of the idealized estimator Υ̃ .

In order to compare the performance of our concentration estimation technique with a

standard method, we used FCS to analyze the same simulated signals that we analyzed with

our detection-time method. In FCS, the sample concentration is proportional to the inverse of

the autocorrelation curve g(τ) at τ = 0 [46]. We calibrated our estimates by computing the FCS
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Figure B.7: Example fluorescence trace. The main plot shows a simulated 250ms fluorescence
trace for a 150pM sample within a microfluidic channel. The inset compares the raw fluo-
rescence signal (blue solid curve) with the output of the Lee filter (green solid curve) for a
particular signal burst. The dashed red line indicates the fluorescence count threshold used in
the analysis.

curves for seven 5s simulated fluorescence signals over a range of concentrations from 20pM to

400pM and finding the linear least squares fit to g(0)−1. For a particular signal, we computed

the FCS concentration estimate at any time T by generating the FCS curve of the signal for all

photons detected at times t < T . In part (b) of Fig. B.8 we show the FCS concentration estimates

computed in this way at 10ms intervals for each signal. The error bounds shown are identical

to those in part (a) of the figure. These error bounds, though derived for Υ̃ , appear to be a good

characterization of FCS as well.

B.5.3 Estimation of dynamic fluctuations in mean concentration

Next we demonstrate the ability of our technique to accurately estimate dynamically-fluctuating

concentrations within the micro-channel geometry already described by simulating 10s flu-

orescence signals while varying the rate at which particles were injected at the inlet of the

channel according to the sinusoid C(t) = 200 + 100 sin(2πt/2.5) and the exponential C(t) =
400 exp(−t/2.5) in order to modulate the concentration within the channel. Concentration

estimates were made over 250ms time intervals. Error bounds of two standard deviations

were computed for each time interval using Eq. B.22, and estimates were fit to sinusoidal and

exponential functions. The results are shown in Fig. B.9.

The results in Fig. B.9 are quite promising. In both plots, nearly every estimate was within
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Figure B.8: Concentration estimates derived from fluorescence data. Twenty 250ms ensemble
trajectories were simulated within a microchannel with a concentration of 150pM (red dashed
line). Fluorescence signals were generated and used to compute concentration estimates (solid
curves with markers) by (a) coupling the Lee filter with Υ̃corr , and (b) FCS. Markers indicate the
times at which the estimates were updated. Green curves correspond to the fluorescence signal
in Fig. B.7. 2σ error bounds (black dot-dash curves) were computed using Eq. B.25.

two standard deviations of the actual value of the concentration — in fact, the majority of

the estimates were much closer than that. Furthermore, the numerical fits of the data to the

functional forms of the concentration yielded curves that were almost identical to the actual

concentration curves. While this success does depend on the fluctuations in C(t) (the frequency

of the sinusoid and the time constant of the exponential) being sufficiently slow, it shows that

there are excellent prospects for measuring time-varying concentrations via SMD using our

technique.

B.5.4 Simultaneous multiple-species concentration estimation

In our final set of simulations we illustrate how our detection-time concentration estimator

may naturally be coupled with a single-molecule fluorescence burst analysis method in order

to monitor the concentrations of several analyte species in a single solution. Until now, our

approach in this paper has been limited to experiments in which only the total concentration

of fluorescence-labeled species is measured, because no effort has been made to analyze the

details of each fluorescence signal burst. A far more interesting approach is one in which

there are several labeled species in solution that can be distinguished by their fluorescence

fluctuation characteristics, and we examine each signal burst to determine which species was



204

0 2 4 6 8 10
0

200

0 2 4 6 8 10
0

200

400

C
(t

) 
(p

M
)

C
(t

) 
(p

M
)

Time (s)

(a)

(b)

400

Figure B.9: Dynamic estimation of fluctuating concentrations. Diffusive trajectories were gen-
erated within a microchannel while modulating the sample concentration (red dashed curves)
according to (a) C(t) = 200 + 100 sin(2πt/2.5) and (b) C(t) = 400 exp(−t/2.5). Fluorescence
signals were generated and concentration estimates were made over 250ms time intervals by
coupling the Lee filter with Υ̃corr . Blue markers indicate the concentration estimates over time.
2σ error bounds were computed according to Eq. B.22. The green curves are numerical fits of
the data to the appropriate functional forms.
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most likely to have caused it. We then compile lists of detection times for each species, and

use our concentration estimator to determine the concentrations of those species over time.

In a previous paper we introduced a time-domain recursive Bayesian estimator for the analy-

sis of individual single-molecule fluorescence bursts[16]. The estimator was based on an update

rule for propagating probability densities corresponding to each species in solution over time.

We showed that even in simple experiments — where the species in solution differed only in

their diffusion coefficients — we could identify the species responsible for each burst quite

accurately.

In order to illustrate the combined use of our identification and concentration estimation

techniques, we simulated a mixture of freely-diffusing particles whose fluorescence character-

istics are identical to those described in the previous two simulations, but whose diffusion

coefficients are different, with D1 = 100µm2s−1 and D2 = 33.3µm2s−1. The detection region Ω

was defined as the cylinder centered at the origin with radius 300nm and height 2µm, chosen

because of the high intensity and spatial sensitivity of the excitation laser within this region.

The concentration of the fast species was fixed at 20pM (0.0068 relative to Ω), and that of the

slow species was fixed at 60pM (0.020 relative to Ω). Fluorescence signals were generated with

sampling time 50µs, and the entire fluorescence signal was run through the recursive Bayesian

estimator. The estimator propagated probability densities over a 3-dimensional cylindrical

lattice with radius 1.25µm and height 6µm, with radial grid resolution of 50nm and axial res-

olution of 100nm. The detection times of individual particles were chosen to be the times at

which the occupancy probability ofΩ first exceeded 75%, and bursts were defined to have ended

once that probability dropped below 10%. Recurrent detections were rejected by combining all

bursts separated by less than 2ms, and the species corresponding to each set of recurrent

bursts was chosen to be that with the greatest probability at the end of the final burst. Con-

centration estimates were made using the steady-state approximations γ̃1 = 88ns−1pM−1 and

γ̃2 = 180ns−1pM−1, which were found by calibrating the concentration estimator on homoge-

neous samples of each species type. The results of the analysis of ten 10s fluorescence signals

are shown in Fig. B.10.

The results in Fig. B.10 show an overestimate of the concentration of the slow species and

an underestimate of that of the fast species. Such biases are unavoidable due to errors in iden-

tification, but their quantitative analysis will be left for future consideration. Even considering

identification errors, though, these results are quite promising. Using time-domain techniques

naturally suited to the problem we were able to extract information from these simulated sig-

nals that would have been difficult to obtain using any other approach. While simple, the binary

sample that we simulated represents one of the most difficult experiments of this type in prac-

tice, as identification is much less sensitive to the diffusion coefficient than it is to differences
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Figure B.10: Simultaneous concentration estimation of both species in a binary mixture. We
simulated ten 10s ensembles of Brownian motion trajectories corresponding to a species with
D1 = 33.3µm2s−1 at 60pM and D2 = 100µm2s−1 at 20pM. The resulting fluorescence signal
was analyzed with a Bayesian estimator for species identification and Υ̃corr for concentration
estimates. The blue curve shows the estimates for species 1 and the green curve, for species
2. Markers indicate detection times. Red dashed lines indicate the sample concentrations.
Violet dot-dashed lines indicate the mean value of the concentration estimates at the end of
the simulation. 2σ error bounds (black dot-dash curves) about these mean concentrations were
computed using Eq. B.25.
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in the fluorescence spectrum, for example. We believe that the use of these time-domain meth-

ods in the future, possibly using more sensitive criteria for species identification, will make

possible novel experiments in dilute chemical and biological kinetics.

B.6 Discussion

We presented an approach to concentration estimation in SMD experiments based upon the

times between detections of individual analyte particles. In dealing only with detection times,

we drastically reduced the SMD signal while retaining all information relevant to the sample

concentration. We showed that the detection times have relatively simple statistics, which we

explicitly computed using Smoluchowski’s model for irreversible chemical kinetics. Using these

statistics, we determined the minimal variance with which an arbitrary concentration estima-

tion technique can converge over time — a calculation that would have been nearly impossible

without using our reduced signal statistics. Furthermore, we derived a very simple time-domain

concentration estimation technique, the convergence of which we explicitly showed was asymp-

totically optimal.

We presented numerical simulations to illustrate our technique applied in fluorescence-

detection experiments in both free solution and in a microfluidic channel. We showed that the

convergence of our technique is indistinguishable from that of FCS at low concentrations and

thus, indirectly, we established quantitatively the rate at which FCS concentration estimates

converge in time. We showed that our technique can be applied to accurately recover the

functional form of slow concentration fluctuations from an SMD signal. Finally we showed that

the combined application of our concentration estimator with a time-domain burst analysis

method is an accurate and natural technique for monitoring the concentrations of multiple

species in solution simultaneously.

Our work in this paper completes, in a sense, the work that we presented in our previous

paper on Bayesian analysis of SMD signals. Using these techniques to monitor changing concen-

trations of multiple species in solution, we believe that novel experiments in chemical kinetics

of dilute systems will be possible. One of the strengths of this time-domain approach is that

by analyzing each signal burst individually we avoid the time-averaging that is a characteristic

of other methods for SMD. This feature is critical for measuring the slow kinetics in dilute sys-

tems such as real and synthetic biological systems and microfluidic devices, all of which are of

major interest to modern biotechnology, because in such systems it is unlikely that a reaction

will occur over the course of just a single signal burst.

Another strength of our concentration estimation technique is that it provides a statistically

rigorous measure of the uncertainty in its estimates in the form of an exact expression for the
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estimator variance. For this reason this technique is ideally suited to analytical experiments in

which it is essential to provide accurate error bounds for measured concentrations.

In addition to kinetics experiments, our concentration estimation technique is ideal for

efficiently measuring trace amounts of a single analyte, as might be required by low-power lab-

on-a-chip devices. We see no reason to use a technique other than ours for this purpose, as its

convergence is nearly optimal and it is computationally trivial to implement.

We must stress that essentially none of our presentation depends specifically on fluores-

cence detection as the SMD technique chosen. Our estimator only requires that the detection

method have single-molecule resolution and that the detection rate scales linearly with concen-

tration. We suspect that it will find wide application among the growing number of experimental

methods for single-molecule detection.
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