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Abstract

Dopamine neurotransmitter and its receptors play a critical role in cell signaling
process responsible for information transfer in neurons functioning in the nervous system.
Development of improved therapeutics for such disorders as Parkinson’s and
schizophrenia would be significantly enhanced with the availability of the three-
dimensional (3-D) structure for the dopamine receptors and of the binding site for
dopamine and other agonists and antagonists. In this thesis, I report the 3-D structures of
the 5 subtypes of the human dopamine receptors, predicted from primary sequence using
first principles theoretical and computational techniques. I use the term “first principles”
to mean that we do not use the high resolution crystal structure of rhodopsin as a
template, nor do we use homology modeling or threading of any kind to determine the
structure. Predicting the binding sites, and the relative binding affinities of endogenous
ligands and various pharmaceuticals to the 5 receptors validates the predicted structures.
These structures correctly predict the critical residues for binding dopamine and several
antagonists, identified by mutation studies and give relative binding affinities that
correlate well with experiment. The predicted binding site for dopamine and agonists is
located between transmembrane helices (TM) 3, 4, 5, and 6, while the best antagonists
bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM 5. We
identify characteristic differences between the binding sites of agonists and antagonists,
as well as factors that cause differential binding to the 5 subtypes of the human dopamine
receptors.

This thesis consists of five chapters that have, or will shortly result in
publications. The first chapter is a brief introduction to the field, the motivation for the
project, my scientific contributions, and contribution of others on the team. Chapter two
introduces the methods and their successes at reproducing experimentally known results
for the human D, dopamine receptor; it discusses, in great detail, the active site of
pharmaceutical agonists and antagonists to the human D, dopamine receptor, and
highlights the strengths and shortcomings of homology modeling for membrane bound

proteins; this chapter will be submitted for publication to the Journal of Molecular
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Biology. Chapter three reports the results of a blind study performed in collaboration with
Aventis Pharmaceuticals. For this study, we were provided with the two-dimensional
structure of 9 antagonists and were asked to predict their binding sites, binding affinities,
and to explain the differential binding of the ligands to the human D, and D, dopamine
receptors and the human a1A adrenergic receptor. The results of this study are in
preparation for submission to the Journal of Medicinal Chemistry. Chapters four and five
of the thesis give preliminary results of comparative studies of the agonist and antagonist
binding sites of the five subtypes of the human dopamine receptors. Chapter 6 contains
results of another blind study on the G2A receptor with Professor Owen Witte.

In addition to the six main chapters, this thesis contains 6 independent appendices
that report results of similar studies in other systems. The first 2 appendices are work
that has already been published. The remaining 4 appendices will shortly result in
publications, but at this time, they are not publication worthy; these appendices represent
data that has been analyzed but has not been written in paper format.

In addition, I would like to make note of the studies that I have conducted on the 9
subtypes of the human adrenergic receptors with Mr. Peter Freddolino, the 4 human
histamine receptors that were conducted with Mr. Freddolino and Mr. Maziyar Kalani,
and the 4 G2A-like lipid receptors conducted with Mr. Rene Trabanino, Dr. Radu, Dr.
Yang, and Professor Owen Witte of the Howard Hughes Medical Institute at the David

Geffen School of Medicine at the University of California, Los Angeles.
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