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ABSTRACT

The two principal existing methods of calculating axially-
symmectric compressible flow in turbomachines are: (1) a simplified
one-dimensional analysis, and (2) numerical methods using the com-
plete or linearized flow equations. The first is not satisfactory for
multi-stage turbines with appreciable wall divergence; the second is
very tedious and time consuming. The purpose of this-investigation
is to extend the approximate methods, successfully used in calcu-
lating incompressible flow in compressors with constant blade height,
to the analysis of compressible flow in turbomachines with variable
blade height. Assuming that the blades can be completely defined by
the exit flow angle, and neglecting the influence of downstream blades,
the analysis is made considering the flow between successive blade
rows only. With these restrictions, subsonic and isentropic super-
sonic flow patterns can be determined for arbitrary boundary shapes
as long as separation does not occur. Average losses can be ac-
counted for by the use of a polytropic law, and the effect of radial
variations in stagnation temperature can be included without diffi-
culty. Examples illustrating the flexibility and practical value of the
iteration method, and the rapid convergence of successive solutions

are given.



-1~
I. INTRODUCTION

In the modern aircraft gas turbine, the flow is necessarily
in the transonic range for two rcasons: (1) to keep the weight and
size of the machine at a minimum, and (2) to fit the mass flow and
pressure ratio of the compressor. Earlier turbojet engines had single
slage transonic turbines, but present engines employ multistage tur-
bines with rapid channel divergence in order to use effectively the
increased pressure ratios and keep the axial velocities compatible
with the blade speed. In these types of machines, the flow at the
mean blade height is mainly axial, and the aspect ratio of the blades
is usually above unity for weight saving considerations. As long as
the channel wall divergence is not too great so that separation can
be avoided, there is no reason for low efficiency, particularly in
view of the favorable pressure gradient through the turbine.

Two distinct design problems occur in practice which Marble
(Reference 15) has classified as the direct and inverse problems of
turbomachine design in analogy with the corresponding classical
problems in the theory of finite wings. The direct, or "off-design"
problem occurs when the blade speed, blade shape, boundary configu-
ration, and fluid state ahead of all blades is given, and the three-
dimensional velocity field, blade loading, and distribution of energy
are to be determined. The inverse problem occurs in the original
design of turbomachinery, when the blade loading, blade speed,
boundary configuration, and fluid state ahead of all blades is pre-
scribed, and the three-dimensional velocity field, blade shape, and
distribution of energy in the field are to be determined.

The exact analysis of viscous, compressible flow through an
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axial turbomachine will probably never be possible because of the
non-linear character of the equations governing the flow. However,
the design engineer has a great need for an analysis suitable for
engineering purposes, and may have no use for a lengthy, compli-
cated and costly procedure even if it were available. He needs an
extremely flexible method of analysis which, while being as simpli-
fied as practicable, still produces information accurate enough for
effective design work.

The equations governing three-dimensional, compressible
channel flow are greatly simplified if terms involving viscosity are
neglected. In view of the fact that viscous effects actually are very
slight except near the boundaries, and as long as separation is avoided,
the assumption of zero viscosity seems justified. Viscosity effects
could be accounted for as an added correction to the basic solution.
However, with the present day turbines which operate in the high
subsonic range, it is obvious that compressibility effects can not
be neglected.

One of the principal methods available to the design engineer
for the analysis of axially-symmetric, compressible flow in turbo-
machines is a simplified one-dimensional analysis. This method is
used extensively in preliminary design considerations and is simple
and straightforward. Since only the exit flow angles from the blade
rows at the mean blade height are considered, the radial distributions
of velocity and energy are not determined. Although this analysis
gives reasonably accurate results for a single stage turbine with a
fairly high hub ratio and small channel divergence, the one-dimensional

method is inadequate for large channel divergence where the radial
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distribution of velocities becomes significant. It is particularly in-
adequate for the design of multistage turbines with channel wall di-
vergence since it is difficult to get the proper balance of work on the
individual stages. This work balance is strongly affected by the radial
distribution of the axial and radial velocities. Since the one-dimen-
sional analysis is done at the mean blade height, it gives no informa-
tion as to the radial distribution of velocities.

The second principal method of analysis of axially-symmetric
compressible flow in turbomachines is by numerical methods using the
complete or linearized flow equations to solve for the complete velocity
and energy field through the machine. Since the determination of the
entire flow field involves six unknowns at each point in the flow (the
three components of velocity, the pressure, the temperature, and the
density), the analysis using these numerical methods is necessarily
lengthy and extremely complicated and cannot be considered suitable
from the point of view of the design engineer. Monroe (Reference T)
formulated the idealized problem in terms of a stream function for the
velocities in the meridional plane, and solved the resulting non-linear
differential equation by a simultaneous application of the relaxation
technique of Southwell and an iteration process. Wu (Reference 9Y) has
utilized various relaxation methods, matrix systems, and finite differ-
ence schemes to solve the complete hydrodynamical equations for the
entire flow field in many types of problems. Vavra (Reference 8),
Reissner {Reference 10), Goldstein (Reference 11), Wislicenus (Ref-
erence 13), and many others have employed various techniques to solve
the complete, or nearly complete, equations by some numerical method.

Although these numerical methods are not suitable for design purposes,
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they are quite general and can be used for centrifugal, mixed flow or
axial flow machines with blades of any aspect ratio.

In an effort to simplify the problem of solving for the complete
flow field, a linearized analysis has been provided by Marble (Refer-
ences 5 and 15) and Fabri (Reference 6). Marble (Reference 15) pro-
posed a linearized analysis of the problem, satisfactory for high aspect
ratio blades, to allow an approximate treatment of the general blade row
with prescribed wall geomelry. He assumed that the trailing vorticity
could be considered to be transported downstream by the mean axial
flow and not by the perturbation velocities, that is, disturbances in the
radial and axial velocities are small in comparison with the mean axial
velocity, and that the blade row is made up of an infinite number of
blades of finite chord. The analysis for the inverse problem was carried
out in detail and was found to allow a general and reasonably simple so-
lution. In Reference 5, Marble extended the analysis to the direct prob-
lem of off-design operation, and to the study of mutual interference of
neighboring blade rows in a multistage axial turbomachine. He provided
examples of axial and conical flow, and stated that the simple linearized
solution was sufficiently accurate if the vorticity effects were not large.
A second order linearization was given to handle problems with greater
vorticity effects. However, the computation required to find the three-
dimensional flow in any particular case is rather lengthy using the lin~
earized solutions, and involves some type of numecrical integration. A
simple exponential approximation was then introduced to simplify the
computation, and the results using this approximation compared favor-
ably with the detailed results of the linearized solution.

The analysis of flow in turbomachinery where the channel bound -~

aries are purely cylindrical, or vary only slightly from a cylindrical
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shape, has been extensively investigated by Rannie (References 1 and 14),
Traupel (References 2 and 3), Sinnette (References 4 and 18), and others.
In these analyses, the radial momentum equation used in the treatment is

of the form,

Q-

_ ve
r s

2
5 (1),

@

where the radial force and other momentum terms have been neglected.
The distribution of axial velocity is approximated by assuming axial sym-
metry, and since the centrifugal force within the rotating fluid body is bal-
anced only by the radial pressure gradient, the resulting flow calculated
in this manner is in reality that which must exist far downstream of the
blades where radial velocities and accelerations have vanished. No in-
formation is provided by these analyses on how rapidly the change in ve-
locity pattern takes place as the fluid passes through the blade row.

The purpose of this thesis is to present an approximate method
for the analysis of compressible flow in modern axial turbomachines which
gives sufficiently accurate information for design purposes and yet retains
the simplicity necessary to be of practical value to the design engineer.
This is the logical step forward from the one-dimensional method to the
analysis of compressible flow in axial turbomachines. Methods which
have been successfully employed in the incompressible case (Reference 1),
have been modified and extended to the analysis of compressible flow in
arbitrarily shaped axially-symmetric channels. It is obvious that little
simplification over the so-called “pumerical'' methods can be obtained if
the complete flow and energy fields are to be determined in the analysis.
In this thesis, the flow is analyzed at the station immediately downstream
of the blade row by a considcration of the upstream conditions, channel con-

figuration, and blade shapes. The blade trailing edge angle only is consid-

ered, and the complete flow field through the blade row is not determined.
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The method of analysis presented is extremely flexible and has
been used to solve the direct and inverse problems, subsonic or super-
sonic, for arbitrary axial boundary configurations. In the solution of
the direct problem, the choice of blade speed, blade spouting angle,
boundary configuration, and upstrcam conditions can be arbitrary, and
the three-dimensional velocity field, blade loading, and distribution of
energy in the field are determined. In the inverse problem, for a given
blade loading, blade speed, boundary configuration, and fluid state ahead
of all blades, the blade spouting angle, velocity field and energy distri-
bution can be determined. By a simple change of sign in the equations
used, the method can be applied equally well to an axial compressor as
to an axial turbine. Although this method is not as general as those used
by Wu (Reference 9), for example, it is more flexible and practical for
blading of aspect ratio greater than unity, and is sufficiently accurate
in view of the assumptions used in the treatment.

The analysis is carried out on the basis of steady, axially-
symmetric flow with infinitely many blades. The fluid is as sumed to
be compressible, but all other real fluid effects are neglected except
as they may be approximated by a ''polytropic efficiency" and the use
of the pulytropic exponent 'n''. As a result of this assumption, the pos-
sibility of separation of flow at the channel walls or along the blades is
excluded. Boundary layer effects are also not considered in the anal-
ysis. In the supersonic solution, the occurrence of shock waves is
excluded. Radial or nearly radial blades are presupposed so that the
radial force can be neglected, and the radial momentum equation used

in the treatiment has the form,

2
%: —-V.-_a.é..(:-‘..

A u (2),
e o 7 or
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This assumption seems justified in view of the investigations of Karlsson
(Reference 19), who, by a two-dimensional analysis of incompressible
flow with an infinite number of blades, showed that the effect of the radial
force resulting [rom norimnal blade twist Is of negligible magnitude.,

The effect of downstream blades on conditions upstream is ne-
glected, and the blade shape is specified by the trailing edge angle only.
Simply stated, a blade row is assumed whose only effect on the flow is
to turn it through a specified angle distribution which is a function of
radius across the channel. An assumption similar to this has been used
successfully in the analysis of flow through a compressor (References
1 and 14), and should be even more applicable to turbines where the blade
solidity is high., The equations are particularly suited to the analysis
of flows with a prescribed radial total enthalpy distribution.

Subject to the above assumptions, the resulting ""exact' equations
are solved by an approximate method using a simple iteration procedure.
An integral for the axial velocity is derived in terms of known upstream
conditions and the downstream pressure. The pressure distribution is
found by integrating the radial momentum equation and applying the
energy equation at a boundary. The mass flow equation is used to solve
for the constant obtained from the axial velocity integral. The iteration
is started by assuming an axial velocity distribution and continued until
the solution is reached, i.e., until the velocity distribution produced by

an iteration is the same as that assumed for that particular iteration.



1I. FUNDAMENTAL EQUATIONS

A. Development of Basic Differential Equations

The differential equations are developed assuming steady,
compressible flow of a fluid through an axially symmetric cylindrical
channel of arbitrary shape. An infinite number of blades is assumed
so that the velocity components are considered independent of angle
about the axis of the machine. The fluid is assumed perfect with no
losses of any sort except as these losses can be approximated by a
"polytropic efficiency' and the use of the polytropic exponent "'n''.
All boundary layer and viscosity effects are also neglected.

In order to generalize the eguations for an arbitrary (but
reasonable) channel shape, it is necessary to consider a special type
of blading. These blades, infinite in number, have no other effect on
the flow than to turn il through a prescribed anglc distribution. Thus
the effect of downstream blades on upstream conditions is neglected.
Attention is directed to the flow patterns immediately before and after
the blade rows four either the stator or the rotor.

In Figure i, a stream annulus of small radial extent is shown,
and absolute velocity components are considered at stations 1, 2, and
3. Generally, there will be a shift of the stream surface in passing
through either stator or rotor blading, and three components of
velocity will be present at each station.

With the above assumptions, the continuity equation is written

in differential form as:

(olugrla(r; = Favvéradra - ‘03M,:?r3dr (3).
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FIG. I— GHANNEL AND STREAM ANNULUS

For a row of stator blades, the energy equation must hold along
a stream surface. and for a row of rotor blades, the energy equation
must hold along a relative stream surface. Hence, in terms of

absolute velocities at stations 1, 2, and 3, we have:

_.T_.zz_/_(é"fe:_z;fg_/.u 2, ,,.2) =
CPM— ik akdral CA 7R A iy i G e (’zv72_t (4)
¥ P, a2 S RN R
L 2w L (rviimtewny) = 7 ps e (s rgreny) ()

Neglecting the radial force, the radial momentum equation must

hold at all stations., In absolute velocities and omitting subscripts,

this equation is:

= —— - - W

v Ve _, 24 du (2)
a7 7 ar 7z ‘

L
P
If the flow is counsidered to be isentropic along a relative stream-

surface, the following relations must hold along this surface:
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- (B - (F)T (6)

8- @@

If a polytropic flow is considered, +# will be replaced by =n in
Equations 6 and 7. The above equations are fundamental in the solution

of the direct and inverse problems.

B. Transformation to Non-dimensional Form

For ease in handling the equations, and to avoid the use of large
numbers in calculation, the derivation is completed in non-dimensional
form. The notation used is given in Appendix A. Axial and radial co-
ordinates are made non-dimensional by referring them to a standard
dimension, usually the outer radius of the annulus at station 1. Velo-
cities are made dimensionless by referring them to a standard tip speed.

The following notation is used:

R - outer radius of the annulus at station 1.
A RO - reference blade speed.
8= &); - dimensionless radial component of velocity.
©
A= w‘; - dimensionless tangential component of velocity.
©
¢=w“2 - dimensionless axial component of velocity.
a
P = —g—— - dimensionless pressure.
o}
2R’ - ; ;
Q= = e @ - dimensionless density.
L4
r- R . .
= Z)-E—/-?—?T - dimensionless temperature.

"g— =7 - gas equation.
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m = W - dimensionless mass flow.
2rmgr A,
;‘ = /\;: - dimensionless radial distance.
Q
¢ = AZ; - dimensionless axial distance.
o

Wilh this notation, Eguations (3), (4), (5), (2), (6), and (7) become

respectively:
Q%9 d‘;‘; = Qb 5, = @5 B, 4, dS (8)
2 ) s
72; G _“%—? +'al‘(63+42+¢32) =%€+'é/"(e+’\e+¢? = 5% (9)

52 - ?-eg—j-@—?-f (11)

&g &
vl a

o - (#&)-E) ),

C. Equations for the Direct Problem for an Arbitrary Channel Shape

The basic integral for the axial velocity will be derived for the
rotor (stations 2 to 3) for the isentropic case and simplified to the
integral for the stator. The complete derivation is given in Appendix
B for the isentropic direct problem and in Appendix C for the polytropic
direct problem.

Differentiating the left side of Equation (10) in respect to the

radius ;2 and the right side in respect to 5‘3 gives:



-12~

2 2 A2 = L= i + 2+-——-[5’3
{%Cgt%t_i%ﬁ)d;a_ {7_/#(%) 22(9 ey, %9‘3)}0@ (14),

Using Equations (8) and (13), differentiation of the first term of the right

side of the above equations results in:

(/Z"’) b2 45 ' (15),

Substituting Equations (11) and (15) into (14), and using the differential

d
form of the mass flow relation (Equation (8) ) for the ratio d;‘e ,
3

the following differential equation is obtained:

2, 2 _ (B ts]r oo 2050)
A z;‘é/f‘;’“?b;)‘*;‘?—é{é"ﬂ -2 ¢afa{ 7 agz £

7-/
- Z2(2)" /}

For a cascade with an infinite number of blades, the exit flow
is parallel to the tangent of the camber line at the trailing edge, and
its direction is independent of the direction of flow approaching the
cascade. For most practical applications, the direction of flow
leaving the cascade is very ncarly constant and independent of the
inlet direction throughout the design operating range. With this
assumption for the rotor, it is therefore assumed that the rotor
spouting angle /J;, is a known function of radius at station 3. Using
the sign convention shown in Figure 8, it is therefore possible to
describe the relation between /\3 and @; along the radius at

station 3 with a function G (é) such that:

Ay = 6(7;)¢3“§; (17),
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Eliminating Aj from the differential Equation (16) by use of
Equation (17) and integrating, the following integral for the rotor axial

velocity for the direct problem is obtained:
Jdé f;- éd‘;{?
% 5(16°%) £(1+6°%)
¢:_§__________ e"‘-j 7 ( 3[?’6[2:7 d’({zz)
3 i\‘/#—G‘z' \]/+6 P4, |7 dE, dE,
i.

2 48
~ 7 e(p} } Wé’”““j £dE+C

(18)¢
It is to be noted that no linearization has been performed in

arriving at the above integral. The expression for (})B is quite compli-

described later is straightforward. Once a set of streamlines have
been assumed, all factors involving the upstream conditions become

known functions of f; . In the solution of the direct problem, it

is assumed that G /é) is a given function of £, . Thus in the

d B3
ad

in the iteration process in order to evaluate the integral,

are the unknowns which must be determined

integrand, P3 and

An alternate form for the square bracket in the integrand can be

obtained by using the energy and radial momentum equations at station 2:
7/ o

ey _ dl£n,)_ 2L [(2) |2 (g L2 19

)* Cl:—;; ¢ 2) ?’~/2‘é (/pa) / d;a/'g‘ 02.) ( )‘

In the case that PZt = 1 (isentropic expansion to station 2 from stagna-

tion conditions), the bracketed term in the integrand may be further

simplified to:

[;?; 3%”(/—/9%/) dé(é Z)} (20),
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The constant of integration C1 is determined by integrating
Equation (8). The integrated form of this relation equates the total
flow rate upstream to that at station 3:

% )
m = | Q2) b5 (21),
.

Using Equation (13), the integral form of the radial momentum

equation becomes:

4

' 72 7!

A
The constant of integration C, is obtained by applying the energy
relation (Equation (10) ) at a boundary.

Having assumed a set of streamsurfaces for a particular

boundary configuration, the value of -(%—?j can be approximated
from the values of the slope and rate of change of slope of these stream-

surfaces at station 3. At each point on a streamline at station 3, the

following relation must hold:

- @ [&f
&; = Cpﬁd,:)3 (23),
dif . . . .
where —&-}—3 is the slope of the streamline in question. Thus
the value of dBs becomes:
dés
2
a6; _ _%(_éf) +¢(_qﬂ_fe) (24).
a4, d 5 \dfs 3ld &</5
Oz

In order to approximate the value of at points across the

44,

channel, it is therefore necessary to estimate the slope and curvature

of the assumed streamlines at each point.
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For the solution of the direct problem for the rotor with an
arbitrary channel shape, Equations (10), (13), (17), (18), (21), (22),
and (24) are applicable.

The derivalion of the integral for the axial velocity in the case
of the stator is carried out in a similar fashion using the form of the
energy relation given as Equation (9), Using the sign convention of

Figure 8, Equation (17) for the stator (stations 1 Lo 2) becomes:

A, = F(f;) Pe . (25).

The integral for ¢2 obviously takes the same form as
Equatlon (18), and is given here only for completeness:

;27% : f '
2IF) ;'(H'Fz) / p'—;z v dl
%=

Az=n vre(%) 24 |7 af

T(’f) —;(A ] St A (26)

For the solution of the direct problem for the stator with an
arbitrary channel shape, Equations (9), (12), (21), (22), (24), (25),

and (26) (with appropriate subscripts) are applicable,

D. Equations for the Inverse Problem for an Arbitrary Channel Shape

In the inverse problem for the rotor, the same assumptions and
basic differential equations are used as in the direct problem with the
exception that now the blade relation, Equation (17), is replaced by
the following given function which describes the work output of the

rotor as a function of the radius at station 3:

HU8,)= 42 2.% £,0, (27).
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The function H ({9) gives the dimensionless rate of change
‘of angular momentum per unit mass flow at the particular radius, and
represents the energy taken out of the stream. By multiplying this
function by suitable constants it can readily be converted to B.T.U.
per pound of mass flow,

The complete derivation of the axial velocity integral is given
in Appendix D for the isentropic case and in Appendix E for the poly-
tropic process. For the isentropic inverse problem, the derivation
remains the same. up to and including Equation (16), which may be

written in a slightly modified form as:
/ 2 ¢sbs | v dl2r B
Ly ';:’;(/\ ¢)‘f‘ (f/‘ ) ( )45:5‘2{:// y;t 3%;(5:/\2)

-7 ...ee:r') 265
5757 *Pag (28).

Using Equation (27) to eliminate )\3 , the integral is

found to be:

%
b = Py)’fa {, 2l v pFd ’) (u-sz2e) & (;/,)} d6s

7 YR NA TR AT 5
%

___I__(/_/_//fa/) dﬁdé

P & /45 (29).

Apgain the numerical evaluation of this integral by the iteration

process to be described later is straightforward once a set of stream-

lines has been assumed. The unknown P3 and appear in

d b
45
the integrand as in the direct problem. Because of the nature of the

differential equation, however, the axial velocity ¢, also appears in

the integrand.
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Since the mass flow and radial momentum integrals remain
unchanged, Equations {10), (13), (21), (22), (24), (27),. and (29) are
applicable to the solution of the isentropic inverse problem.

If the inverse problem could be conceivably applied to a stator
it would consist of prescribing values of )\3 as a function of ;‘a ,
and solving for the resulting velocity field, distribution of energy and
blade shape (as described by the blade trailing edge angle). In this

case, the integral for the axial velocity simplifies to:

( )45 {2’/ d;‘lt"ﬁgrog‘(g afé‘%%d}({g/)e) dz, +¢

(30)
where A, (é) is a prescribed function of the radius at station 2.
Equations (9), (12), (21), (22), (24), and (30) (with appropriate

subscripts) would be applicable,

E. Changes in Equations for the Compressor Solution

In the development of the equations in the preceding sections,
the turbine sign conveution given in Figurc 8 has been adopted, It
the equations are to be used for compressor design, Equation (17) for

the direct rotor problem becomes, in accordance with Figure 9:

£ - 6l£) ¢, (31),

and the energy relation, Equation (10), is changed to:

2 2 =2
a%-af+é/9+ﬁa+ga-3§;/‘e)=;§-@;+z €+/)+ 2{/\) (32),
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Using these equations, the derivation is carried out in exactly the
same manner as set forth in the preceding sections for the turbine.
For the inverse problem for the compressor, the work out-

put function (Equation (27) ) becomes:

H/;_;)= 7{2)’8_ ';Cj’A_? (33)‘

Using Equations (32) and (33) in place of Equations (10) and (27), the
relations for the inverse compressor problem are derived in the same

manner as for the turbine.
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III. PROPOSED ITERATION PROCEDURE

A, Procedure for the Direct Problem

The general scheme of iteration is exactly the same for the
direct and inverse problems, subsonic or supersonic, isentropic or
polytropic. In Appendix F, one complete iteration is given for an
isentropic supersonic solution (Example Vb) and a polytropic subsonic
solution (Example VIIIb) for the direct rotor problem. The stator solu-
tion is obtained by lhe same procedure using the appropriate axial
velocity integral and energy equation.

In order to understand the techniéue of iteration for the direct
problem described below, the reader is urged
Examples Vb and VIIIb of Appendix F. For an arbitrary channel
shape, seven equations are used in the solution. For the rotor, these
relations are Equations (10), (13), (17), (1.8), (21), (22), and (24). In
the examples worked out in Appendix F', the functions ¥ (fg) and G(;;)
have been assumed to be constant and independent of radius in order
to simplify the axial velocity integral and the computation. This
assumption is by no means necessary. For arbitrary given functions,
) (é) and G /é) , the exponential integrals of Equation (18)
should be evaluated at various stations across the channel by plotting
the integrand and determining the value of the integral graphically.

In the solution of the direct problem, it is assumed that the
boundary configuration, blade speed, blade trailing edge angle, and
upstream conditions are prescribed. It is further assumed that the
mass flow rate is fixed and is compatible with the given upstream

conditions.



-20-

Once the problem has been set up, the first step is to assume
a set of streamsurfaces as shown in Figures 3, 4, and 5. For most
applications, these streamsurfaces should be chosen on the basis of
equal annular areas in a plane perpendicular to the axis of the machine.
The accuracy of the solution can be improved by increasing the number
of stations across the channel. However, it is believed that for most
purposes, six or seven steps will give sufficient accuracy for design

work. N

Having assumed a reasonable set of streamlines, the second
step is to estimate the axial velocity distribution at the downstream
station. Taking average or middle-channel values for the prescribed
upstream conditions, the mass flow relation and the energy equation
can be co?nbined into one equation in terms of ¢3. Using average

values in Equations (10) and (21), the relation is obtained as follows:

7-7, -2 [é_} Ko B 2(F0r ) e
n- 2] (55 o

Substituting Equation (34) into Equation (35) gives:

- Tet"% [%a-/\:-f%a‘fa(@a’* %73)] - & (f;za_:ia) (36).
-3 = Z\" 2

Using Equation (17) to eliminate A3 aud Equation (23) to
eliminate 93 , Equation (36) becomes a relation involving only

one unknown, —$3 . The solution must be found by trial and error,

In general, there will be two values of @ which satisfy this
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equation corresponding to the average subsonic and supersonic solutions.
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FIG. 2 — PLOT OF MASS FLOW VS. AVERAGE AXIAL
VELOGITY FOR GCHANNEL FLOW

If no value of $3 satisfies Equation (36), the prescribed
mass flow cannot be forced through the channel because of choking,
and the boundary configuratioﬁ or upstream conditions must be altered
accordingly.

Having found the average value of the axial. velocity at station 3,
an estimate of the distribution of this velocity across the channel can
be made considering the total temperature gradient, the blade shape,
and the pressure distriﬁution expected at the downstream station.

Using the estimated distribution of &3 , Equation (22) is
iterated across the channel to determine the pressure gradient. The

tangential velocity is found from Equation (17), the radial velocity from

Eguation {23), and the value of 3?3 from Equation (24). In order
2

to evaluate @& —4—9—2- , and K170 at various points across the
3 d';a d&,
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{
channel, it is necessary to estimate as accurately as possible the slope
and curvature of each streamline at the station in question. Knowing
the complete channel configuration, slopes and curvatures at points
across the channel can be easily estimated using a simple linear distri-
bution scheme, or a large scale drawing can be constructed and the

values of slope and curvature taken graphically from this. The value

d P35
o &y
stations along the axis. However, it is to be noted that even a rela-

of in Equation (24) can be taken as the average value between
tively large error in the estimation of the above quantities will have little
effect upon the pressure gradient obtained because of the nature of the
integrated form of Equation (22). The actual pressure distribution
across the channel is found by applying the energy equation at a boundary

to determine the constant Cz.
o Bz
d ;3

integral can now be iterated across the channel for values of ¢3 in

With these values of P3 and , the axial velocity

terms of the constant C . If the curvature of the channel is not large,

e
the value of :;3 is very small compared to the other factors in
3
the integrand (2G, for example), and hence a relatively large error in
. a6 .
estimating d;'3 has a small effect on the resulting value of ¢3.
3

The constant Ci is obtained by iterating the mass flow relation
(Equation (21) ) across the channel, and a new axial velocity distribution
is obtained.

The above described process is the procedure for one complete
iteration of the given equations, Normally in the subsonic case, the
distributién of ¢3 thus obtained is used in the next iteration, aﬁd the

process is repeated until the axial velocity distribution produced by an
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iteration is the same as that assumed for that particular iteration.
This is the solution. Values of Z;. and Q3 are then found by

use of Equation (13).

.B. Procedure for the Inverse Problem

Generally, the same procedure of iteration, as described in
section A above for the direct problem, is used in the solution of the
inverse problem. Egquations (10), (13), (21), (22), (24), (27), and (29)
are applicable to the isentropic rotor. Relations used in the poly-
tropic case are derived in Appendix E. Examples IX, X, and XI of
Appeundix F are typical solutions to the inverse problem. One complete
iteration is given in Example IX b to illustrate the method used.

It is noted that the integrand of Equation (29) contains a term

involving Since in any practical solution the axial velocity

_

o ’
at any point across the channel will not be zero, this term does not
cause any real difficulty in the iteration procedure. However, if the
original estimate of the axial velocitiy profile at the downstream station
differs greatly from the actual solution, it has been found that succes-
sive ilerations will "oscillate” about the real solution, but will
eventually converge as in the direct problem,

It is obvious that the work output function H (;3) , given as
Equation (27), must be prescribed reasonably. For any given channel
shape, blade speed, upstream conditions and mass flow, there is a
limited range of blade angles that can be used before the smooth flow

over the blades is destroyed by separation effects. The limitation thus

imposed by the maximum turning angle through the blade row also
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limits not only the amount of work that can be extracted, but also the

distribution of this work across the channel,

C. Convergence of Subsonic and Supersonic Solutions

Figure 2 indicates that, for any given setup, there is normally
a supersonic as well as a subsaonic solution for the direct and inverse
problems. This is illustrated in Appendix F by Examples IVa and Va
for the stator and Examples IVb and Vb for the rotor., In these
examples, for a given boundary configuration, blade spouting angle,
aund set of upstream conditions, both the subsonic and supersonic
solutions have been obtained.

Experience in working various examples has shown that if the
flow is in the low subsonic range, point A of Figure 2, for example,
the iteration process converges very rapidly, and only two or three
iterations are necessary to obtain accuracy of four significant figures
in the solution., However as the flow becomes highly subsonic as at
point B, the convergence becomes less rapid, and more iterations are
necessary to obtain the solution, It is interesting to note that, in the
subsonic range, the process will converge from any reasonable
assumed distribution of 4)3. It is even possible to obtain a solution in
which the flow is supersonic in one part of the channel and subsonic in
the remainder (Examples Ia and IIIa).

It has been found, however, that if the flow is completely
supersonic (point E of Figure 2, for example), the iteration process
diverges rapidly away from the solution. Thus if an axial velocity
distribution is assumed whose average value is represented by point D,

successive iterations will result in decreasing values of ¢3 and
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eventually the subsonic solution at point A will be reached., If an
axial velocity distribution corresponding to point F is assumed,
successive iterations will rapidly increase ¢3 toward\infinity, It

is the realization of this phenomenon which makes it possible to
obtain the isentropic supersonic solution in a given problem. Having
made two successive iterations at each of the points D and F, and
having noted the relative change in the constant C1 in these iterations,
a simple interpolation will give the values of ¢3 corresponding to the
solution at point E once the solution has been Ystraddled",

It is important to understand the basic reason why the proposed
iteration process is successful, For either the direct or inverse
problems, six unknowns must be solved for at the downstream station.
These are the three components of velocity ( 63, /\3 and ¢3), the
pressure P3, the density Q3 , and the temperature 75 . Using
the isentropic (or polytropic) relation along streamsurfaces, two of
these (Q3 and 73 )} can be eliminated. The remaining four unknowns
are made functions of the axial velocity ¢4 and the boundary and
streamline configuration. The radial velocity is eliminated in terms
of ¢, by Equation (23), the tangential velocity Az by Equation (17)
or (27), and the pressure P3 by the integral, Equation (22), Thus,
effectively, only one unknown remains, the axial velocity ¢3 , and for
any assumed distribution of ¢3, all other unknowns are determined,
An iteration process must be used to determince 4>3 because of the

complexity of the equations involved.
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D, Correction for the Displacement of Streamlines

Having assumed a set of streamsurfaces for any particular
example, and having found the corresponding solution by the proposed
iteration procedure, it is possible to make a correction to determine
more accurately the actual position of the streamsurfaces and thus
refine the solution. The mass flow functions m {fe) and m (;3)
are plotted against radius for conditions at stations 2 and 3 as shown
in Figure 6, Using this diagram and fixing the radial coordinates at
station 3, it is possible to estimate new corresponding upstream
coordinates. With these corrected upstream radial coordinates, and
the upstrcam condi roblem is re~-
worked and a new solution found. It is to be emphasized that this is
a small correction and that the new solution will not vary more than
one or two percent from the solution based on the original stream-

surfaces. An illustration of this method is given in Example Vb of

Appendix F.
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IV. ADDITIONAL CORRECTIONS AND SIMPLIFICATIONS

A. Corrections to the Basic Solution

If it is desired to solve for the flow pattern and distribution of
energy in the field at any axial station in the blade row itself, this can
be done approximately by multiplying the axial velocity by a function
which accounts for the blade thickness and thus reduces the effective
area of the channel, Assuming a blade thickness function t (f) and
a blade spacing s, the increased axial velocity at any point within the

blade row would be:
)
(@), - 9"’( =) (37)

where s and t ({') are assumed to be known functions at any radial
position across the channel, The assumptions used in the direct
problem, including that of axial symmetry, remain unchanged, except
that the blade spouting angle now becomes the mean camber line at
the point in question. The fundamental equations and iteration pro-
cedure remain unchanged except for the use of the above indicated
expression for the axial velocity.

One of the basic assumptions used in the derivation of the
fundamental equations given in Part II, is that the effects of the vorti-
city of the flow downstream on upstream conditions are negligible. A
correction to the upstream conditions due to vorticity effects down-
stream could be made using the approximate theory suggested by
Marble (Reference 15) for the three-dimensional case. If the hub

ratio is large, the simpler two-dimensional approximation given by

Rannie (Reference 1) can be used. Once the upstream conditions have
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been changed using this higher order correction, the corresponding
new solution can then be found by the same procedure as previously

outlined in Part IIl.

B. Simplification of Flow Patterns

An investigation has been made to determine whether or not
there are any special cases in which the equations, used in this analysis
of three-dimensional, compressible flow, reduce to a simple expression

fur the axial velocity, Consider the integrated radial momentum

equation:

-/

%
> [ G )s dés (2]
5 7‘(@)[ (1 882~ 432) 4% - o

Since the value of P3 appears in the integrated mass flow
relation, Equation (21), to the power ;’— , il is clear that, generally,

no simplification can be made for a channel of arbitrary shape where

9 dﬁ? de.?

and = cannot be expressed in
7 ds, 3 dg, P

terms of constants and the radius ;3

the values of

However, one simplification does occur in the example of a
rotor in a cylindrical channel. In this case, if the velocity after the
rotor is purely axial, Equation (22) reduces to P, = CZ?—{; . I, in
addition, the total temperature ana pressure are constant across the
channel at station 2, and if /\2 = ?Cz (vortex flow), Equation
(16) for a straight channel reduces to ¢ = C;. The constant G, is

evaluated by applying the energy equation at a boundary, and the mass

flow integral becomes:
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£ /

: 2|7/
- / =/ G
m = Vo [’” 27 75;:] G 4 ds; (38),
or, since 7. is constant,

/

. L &_ 7 Lfa]zﬁzé_-a (39).

22 ey Zor =

Even in this simplified case, Equation (39) must be solved by
trial and error for the constant Cl' This particular example gives a
constant mass flow per unit area and the work is taken out uniformly
across the channel,

With the cxception of the above case, it can he generally stated
that there are no special conditions or flow patterns in three-dimen-
sional, compressible flow through turbomachinery using this method

which result in a simple closed-form solution for the downstream axial

velocity,

C. Proposed Optimum Turbine Design Condition

In the design of a turbine, the condition which normally controls
the amount of heat that can be released in the combustion chamber is the
limiting temperature that the first stage rotor blade root can safely
withstand in continuous operation. Since the blade stresses decrease
from root to tip, the allowable temperature is higher at the tip than at
the root. This fact allows the possibility of increasing the amount of
heat released in the combustion chamber, and hence the energy in the
jet exhaust, for a fixed amount of work taken out of a turbine.

In formulating the optimum turbine design condition, reference
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will be made to a one-stage turbine with an arbitrary, but fixed,
boundary confibguration, such as is shown in Figure 5, It is assumed
that the total pressure in the combustion chamber, thc blade spced,
mass flow and total amount of work to be extracted by the turbine are
fixed by conditions in the compressor. It is further assumed that the
distribution of the maximum allowable total temperature across the
channel at station 2, based on limiting blade temperatures, is known.
Since the total enthalpy is conserved through the stator row, the limiting
total temperalure prolile at station 1l is therefore known.

In order that the maximum energy be left in the exhaust gases

at station 3, the condition is imposed that the velocity shall be axial

after the turbine ( /\3 = 0) aud that the total enthalpy shall be constant
. . dTse
across the channel at this station ( 0).

To simplify the formulation of the proposed optimum turbine
design condition, il is assumed that the known limiting total temperature
profile at station 1 'is linear, and that the combustion chamber can be
constructed so as to give this desired total temperature variation across
the channel.

The design problem can then be formulated as follows: Given a
one-stage turbine with fixed boundary configuration, combustion chamber
total pressure, blade speed, mass flow, and linear total temperature
profile at station 1, what are the blade spouting angles of stator and
rotor so that a given amount of work can be extracted by the rotor and
yet leave the total temperature counstaunt and the velocity axial at station
3?

With the above assumptions and conditions, Equation (27) can be

written:
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Hl%) = £, A, (40),
and Equation (10) in terms of total temperatures becomes:
A = L
;:Tzét —?{:/\a T 23 (41).

If Z}t is to be constant at station 3, then the work must be taken

out across the channel in such a way that:

Aé’\ez A %Zét (42).

Since the linear change in total temperature at station 2 is
assumed known, the distribution of work across the channel is deter-
mined by Equation (42) and the total amount of work to be extracted.
The solution to this simplified inverse problem is found in a manner
similar to that illusiraled by Example X of Appendix I, and the blade
trailing edge angles of stator and rotor are completely determined,

In view of the discussion given in Part III, Section B, on
limiting blade angles, it will obviously not always be possible to obtain
the above proposed optimum condition, particularly if the upsiream
total temperature gradient is large. Furthermore, the above consi-
derations could not reasonably apply to a multi-stage turbine since
boundary layer effects and mixing would soon destroy the original
total temperature profile. However, the designer should not overlook
the possibility of increasing the gross thrust of a turbine by the use of
a total enthalpy gradient based on blade limiting temperatures. (See

Example XI, Appendix F.)
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V. RESULTS AND CONCLUSIONS

An approximate method has been developed for the solution of
three-dimensional, compressible flow in axial turbomachines. The
methods and equations used are extremely flexible and can be used to
solve the direct and inverse problems, subsonic or supersonic, isen-
tropic or polytropic for either a turbine or a compressor. The upstream
conditions, blade shape (as defined by the blade trailing edge angle),
blade speed, and axial boundary configuration can be prescribed in the
direct problem, while the upstream conditions, blade speed, blade
loading, and axial boundary configuration can be prescribed in the
inverse problem. In each case, six unknowns c;tre solved for at the
downstream station. These are the three components of velocity, the
pressure, the density, and the temperature. In the analysis, maximum
utilization has been made of the given channel configuration,

The equations are derived for a blade row with infinitely many
blades, on the basis of isentropic (or polytropic), non-viscous, com-
pressible, axially-symmetric, steady flow. Radial or nearly radial
blades are assumed so that the radial force can be neglected. Separa-
tion of flow and boundary layer effects are not considered in the analysis.
For an arbitrary boundary shape, a special type of blading is assumed
whose only effect on the flow is to turn it through a specified blade
angle distribution across the channel. Using the assumption that the
blade shape is specified by the blade Lrailing edge augle ouly, and
assuming that this spouting angle is very nearly independent of condi-
fions ahead of the blade row in the operating range, the analysis of the

flow has been made at the station immediately downstream of the blade
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row in terms of specified conditions immediately upstream of the blade
row.

This method greatly simplifies the analysis of flow in turbo-
machines, since, with the above assumptions, it is not necessary to
solve for the complete three-dimensional flow field through the blade
row, but only to consider stations immediately upstream and down-
stream of the blading.

The iteration process developed is simple and straightforward,
and the same general procedure is used in the solution of all suggested
types of problems. The calculations can be done with a slide rule, and
the accuracy of the solution can be improved by increasing the number
of radial steps across the channel. Corrections can be made for the
displacement of the assumed streamlines and for the effect ot down-
stream vorticity on upstream conditions to further improve the solution,
It is believed that the results thus obtained by this approximate method
are sufficiently accurate for design purposes.

Once the boundary configuration and other necessary conditions
have been assumed for any particular problem, experience in working
various examples by the proposed iteration process has shown that a
basic solution for the direct problem accurate to four significant
figures can be obtained for a stator in approximately four hours and
obtained for a rotor in approximately six hours, The calculations ior
the inverse problem are somewhat simpler and less time is normally

required for this solution.
a4
dg

the integral for the axial velocity and the integral for the pressure in

In order to evaluate the term which appears in both
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the case of an arbitrary channel shape, it is necessary to estimate the
slope and curvature of the streamlines al Lhe stalion in question. It is

to be noted that, for a reasonable channel shape, a relatively large error
in this estimation will have little effect on the solution obtained. The

term a8 appears in the general axial velocity integral for the

z
rotor (Equation (18) ) and for the stator (Equation (26) ) as a small
correction term, and a large error in the assumed values of slope and
curvature will have a small effect on the resulting axial velocity profile.
This is especially true for the rotor where the term 2G is normally

dominant.

Considering the pressure integral (Equation (22) ), it is to be

noted that here, again, the contribution of the term é{‘% is small
2

for a reasonable boundary shape. For the stator, the term —é\— is

the predominant one, and the terms gf— and ¢ f?‘l are

usually small corrections. Because of the small magunitude of the factor
multiplying the integrand of Equation (22) in the iteration, a relatively

large error in will have but a slight effect on the resulting

as
pressure gradieni. After the rotor, where the velocity is predominantly
axial, the term —é\i .might be of the same order of magnitude as
F2) g—g— and ¢ _f_;‘_’f_ . As a result, it is possible to have a
negative pressure gradient radially after a rotor if the slope and curva-
ture of the channel is large.

It is impossible to make any general statement as to the relative
contribution of the integral (Equation (18) ) and the constant of integration

C, to the resulting axial velocity profile. The relative size of the

1

integral and the constant may be of any magnitude depending on the

channel shape, total temperature gradient, blade spouting angles, and
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upstream conditions of any particular example.

Several interesting observations are possible from the results
of the examples given in Appendix F. The channel shapes assumed for
these iterated problems are given as Figures 3, 4, and 5. In each
example, the assumptions, channel configuration, upstream conditions
radial coordinates, and other data are specified, and the resulting
solution at the downstream station is tabulated. One complete iteration
is given in Examples Vb, VIIIb, and IXb to show the method used in
each case.

Examples I and II use the channel configuration shown in
Figure 3. In both of these examples of the direct problem, the mass
flow, blade speed, blade spouting angles, and total heat content in the
flow are the same. Example I, however, has no radial total tempera-
ture gradient at station 1, while Example Il has a large radial enthalpy
gradient. The effect of a total temperature gradient across the channel
in changing the axial velocity profile is clearly evident from the results
obtained. Normally for a stator, it is to be expected that the positive
pressure gradient would make the axial velocity higher at the root than
at the tip, This is the case in Example Ia for no temperature gradient.
However, Example Ila shows that the effect of the positive total
gradient imposed is to make the axial velocity higher at the tip than at
the root, and reduce the Mach number slightly at all stations across the
channel. Also, the resulting total pressure at station 3 has been in-
creased by the use ol Lhe radial eunthalpy gradient.

Examples IV and V use the channel configuration of Figure 5,

and have the same mass flow, blade speed, blade spouting angles, and



-36-

conditions at station 1, Example IVa is the subsonic stator solution
while Example Va is the supersonic solution for the same stator.
Examples IVb and Vb are the subsonic and supersonic rotor solutions,
respectively, for conditions after the subsonic stator of Example IVa.
The mass flow functions for the subsonic and supersonic rotor examples
are plotted in Figure 6, From this graph, the position of the displaced
streamlines has been estimated and plotted on Figure 7, This plot of
the streamline shift in each case, clearly indicates that the shift is in
one direction when the "governing" Mach number is subsonic, and in the
opposite direction when the "governing" Mach number is supersounic,
The "governing" Mach number has been defined by Monroe (Reference 7,

-

T\ 1
page 51) as ithe Mach numbe

!

- based on
of the total velocity, The results shown in Figure 7 clearly agree with
Monroe's observation that the deflection of the "meridional Mach
surfaces' is iu different directions for subsonic and supersonic
"governing" Mach numbers, and that the deflection of the streamsurfaces
will be less if the governing velocity is transonic than if it is entirely
subsonic or entirely supersonic,

Examples VI, VII, and VIII use the channel configuration of
Figure 5, the same conditions at station 1, and the same blade speed,
blade spouting angles, and mass flow. Example VI is the isentropic
case, Example VII is a polytropic solution with n = 1.37 (7 = 94.5 per-
cent), and Example VIII is a polytropic solution with n = 1.33
( 7 = 86. 8 perceut)., From these examples, the cffcct of a decrease
in "polytropic efficiency™ on the three-dimensional velocity field and

distribution of energy in the flow can clearly be seen. When the
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tefficiency™ has dropped to 94.5 percent, the average axial velocity at
station 3 has increased 2.7 percent, the average total pressure has
decreased 2.5 perceut, and the work output has increased 4.7 percent
when compared with the isentropic solution. As the "polytropic
efficiency" drops to 86.8 percent, the results of Example VIII show that
the average axial velocity at station 3 has increased 8.2 percent, the
average total pressure has decreased 8.0 percent, and the work output
has increased 17.0 percent when compared with the isentropic solution.

The results uf these examples clearly show the reason for the
“"loading up" of the first stages of a multi-stage turbine as the efficiency
drops. As the efficiency decreases, more work is taken out in the
initial stage, and less Loulal pressure is left for the remai
stages. Thus, the last stage of a multi-stage turbine may well act as
a compressor if the efficiency of the system has dropped sufficiently.

In view of this phenomenon, it is obvious that the desigh engineer should
design his machine for the expected efficiency in the operating range,
and not on the basis of isentropic flow.

Example XI has been constructed to illustrate the increase in
gross thrust obtainable by the use of a radial total temperature gradient.
Assuming a one-stage turbine configuration similar to that shown in
Figure 3, and keeping the mass flow, combustion chamber total pressure,
biade speed, and work extracted constant in each case, the gross thrust
of the jet exhaust has been calculated with and without a total tempera-
ture gradient. In order Lo give the example morc physical meaning,
blades were used which were tapered in cross-sectional area from hub

to tip. Having calculated the centrifugal stress at various radial points
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along the blades, and using the high temperature data for "Vitallium"
(H.s. 21) (NR-10) given in References 16 and 17, it was estimated
that the rotor blade root could safely stand a temperature of 1450°F,
while the blade tip temperature could be 1850°F .

Using this data, the gross thrust of the turbine was calculated
for: (a) A constant radial total temperature of 1450°F, and (b) a linear
total lemperature gradicent of 400°F with the same root total tempera-
ture of 1450°F. The results of these examples show that an increase
in gross thrust of 917.8 pounds, or 7.7 percent, was obtained by the

use of the radial total temperature gradient indicated.



39
REFERENCES

ﬁowen, J. T., .Sabersky, R.H. and Rannie, W.D.: "Theoretical
and Experimental Investigations of Axial Flow Compressors. "
Report on Research Conducted under Navy Contract N6-ORI-
102, Task Order IV. Mechanical Engineering Laboratory,
California Institute of Technology.

Traupel, W.: "New General Theory of Multistage Axial Flow Tur-
bomachines', NavShips 250-445-1, Navy Dept. (Translated by
C. W. Smith, General Electric Corp.)

Traupel, W.: "KBmpressible Str8mung durch Turbinen', Schweizer
Archiv, pp. 176-186. June 1950.

Sinnette, J. T., Costello, G. R. and Cummings, R.L.: "Expres-
sions for Measuring the Accuracy of Approximate Solutions
to Compressible Flow through Cascades of Blades'. NACA

- T.N. 2501, 1951.

Marble, F. E. and Michelson, I.: '"Analytical Investigation of Some
Three-Dimensional Flow Problems in Turbomachines'. Final
Report on NACA Contract NAw-5665, C.1I.T., May 1950.

Fabri, J. and Seistrunck, R.: "Ecoulements Tourbillonnaires dans
les Machines Axiales'. France, Office National d'Etudes et de
Recherches Aeronautiques, Publication No. 45, 1950.

Monroe, G. M., Lf. U.S. Navy: "A Study of Compressible Fluid
Motion in Turbomachines with Infinitely Many Blades'. Ph.D.

Thesis, California Institute of Technology, 1951.



10.

11.

12.

13.

14.

15.

16.

17.

40

Vavra, M. H.: '"Steady Flow of Nonviscous Elastic Fluids in
Axially Symmetric Channels'. Journal of the Aeronautical
Sciences, Vol. 17, No. 3, March 1950, pp. 149-156, 172.

Wu, Chung-Hua: NACA T.N. 1795, 2214, 2302, 2407, 2455, 2492,
2604, 2702.

Reissner, H.: "Blade Systems of Circular Arrangement in Steady,
Compressible Flow'. Courant Anniversary Volume-Studies
and Essays, Interscience Publishers, Inc., 1948.

Goldstein, A W.: "Axisymmetric Supersonic Flow in Rotating
Impellers'. NACA T.N. 2388, 1951.

Wislicenus, G. F.: "Fluid Mechanics of Turbomachinery', Mc~
Graw-Hill Book Co., Inc. (New York) 1947.

Traugott, S. C., Smith, L. H. Jr., and Wislicenus, G.F.: A
Practical Solution of a Three-Dimensional Flow Problem of
Axial-Flow Turbomachinery'. Published by the Department
of Mechanical Engineering, Johns Hopkins University, 1952.

Bowen, J. T., Sabersky, R. H., and Rannie, W. D.: "Investiga-
tions of Axial Flow Compressors''. Am. Soc. of Mech. Eng.,
Preprint No. 49-A-102.

Marble, F. E.: "The Flow of a Perfect Fluid Through an Axial
Turbomachine with Prescribed Blade l.oading'; J. A.S.,

Vol. 15, No. 8, pp. 473-485, Aug. 1948.

Sweeney, W. O.: "Haynes Alloys for High-Temperature Service',
Trans. Am. Soc. Mech. Engrs., Vol. 69, 569 (1947).

Clark, F. H.: '"Metals at High Temperatures', pp. 208-21l,

Reinhold Pub. Co., 1950.



41

18. Sinnette, J. T., Jr.: 'Increasing the Range of Axial Flow Com-
pressors by Use of Adjustable Stator Blades'. Jour. Aero.
Sci., Vol. 14, No. 5, pp. 269-282, May 1947:

19. Karlsson, T.: ' 1"On the Influence of Radial Components of Blade
Forces in Axial Turbomachines', M.E. Thesis, Calif, Inst.

of Technology, 1953.



Mg

£ =

mw T

-

-

42

APPENDIX A
SYMBOLS AND DEFINITIONS

Stator spouting angle measured from the plane perpendicular
to the axis.

Rotor spouting angle measured relative to the rotating wheel.
Axial distance between stations in feet.

Constant obtained from axial velocity integral.

Constant obtained from radial momentum integral.

Specific heat at constant pressure.

Used to denote incremental changes of a quantity in the radial
direction.

Cotangent of stator spouting angle fé’e as a function of radius.

rrf ). Ae
~ie) g2

Cotangent of rotor relative spouting angle /dfg as a function
of radius. 6’/;‘3) = Az +éy
#3

Ratio of specific heats.
Acceleration of gravity (32.17 ft/secz).

Dimensionless work output of rotor as a function of radius.

/’/(}"3) = ;eAe * é ’\3

Dimensionless mass flow. m = _Wo
2N 9P Ao

Mach number based on total velocity. M=
7 T

"Governing'' Mach number as defined on p. 87 of Reference 7.
N R

My \I 7T

Polytropic exponent.

Polytropic efficiency. (—77;3/7—)7] = —72—’3—/-

Angular velocity of rotor in radians per second.

Pressure in pounds per sguare foot.

Dimensionless pressure. P = —;—’*
[+



P N N

o

€

e &

-
-
fn

4

4

Density (lb. sec. 2/ft. ).

PRSP
Dimensionless density. @ = -—-70;2—"
2
Gas constant (1715 ft ).
20
sec F

Reference radius in feet.

Radiue from the axis in feet.

. . . 7
Dimensionless radius. §‘= %
Q

Absolute temperature in degrees Rankine.
R

Dimensionless temperature., 7 = WERE 7

Radial component of absolute velocity in feet per second.

Dimensionless radial component of absolute velocity. @-= a);
o

Tangential component of absolute velacity in feet per second.

v

Dimensionless tangential component of absolute velocity. A= oA
[+

Axial component of absolute velocity in feet per second.

w

- Dimensionless axial component of absolute velocity. ¢ = 5
(4]

-

-

-

-

Dimensionless total absolute velocity. ¢ = \|#°+ A°#6°
Mass flow in pounds per second.

Asxial distance along axis of rotor from reference point in feet.

z
Dimensionless axial distance. § = R
Subscript to denote station immediately upstream of stator.

Subscript to denote station immediately downstream of stator
and immediately upstream of rotor.

Subscript to denote station immediately after rotor.
Subscript to denote inner boundary of channel.
Subscript to denote outer boundary of channel.
Slope of streamline.

Rate of change of slope of streamline.
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APPENDIX B
Note: In Appendices B, C, D, E and F, Equations of lower number
than 43 refer to relations previously given in the text. The
numbering of equations is consistent throughout the thesis.

Development of Equations for Direct Problem (Isentropic).

The equations are derived for a rotor with infinitely many blades
on the basis of isentropic, non-viscous, compressible, axially-symmet-
ric, steady flow. Radial or nearly radial blades are assumed so that
the radial force can be neglected. The channel shape, blade shape,
mass flow, and upstream conditions are assumed specified in any par-
ticular example.

The derivation follows the general procedure given in Refer-
ence 1, Section 2:2. 2 for the incompressible case. The energy equa-
tion is written for any two points (for example, b2 and b3, .Fig. 5) on
a streamline surface between stations 2 and 3. Using absolute veloc-~

ities, the equation in dimensionless form is:

2
r'e a e a /
Ll -fu20= 75 Tﬂz’[é’ﬂhj*é) +¢3J""é_§3 (43)
where
¥ _ e A 2 2 2
5o Let T T Ltz (9‘3+)‘2 +¢e))
and

v > I ta2, N2 2
LTy - Fr G 2 (0 At ).

The energy equation is now differentiated in respect to the rad-

jius at stations 2 and 3:



{7—2’7&121‘ d;({a }dé {_—% E"g}@*’h¢3 df({a 3)}d;3 (44).

yo)
Using the gas equation, Z; = ?j" , the first term of the right

side of Equation (44) becomes, with the isentropic relation:

L
@3 _ ( Py )a'_
03_ /Da -

[

(ZZ:Z)"’ (13)

r dT _ :/d(/’g)z 7 d (,ojv -’1’—’)

7 dg T dg I df (45),

Using the differential form of the continuity equation for a

stream cylinder of small radial extent,
¢z(\)2 ‘fe d;a = ¢3 4’3 ;3 d;j (8)

and differentiating Equation (45) as a product, the following is obtained:

7 (@): A7 d v —ﬁgé..__( )
7/"/d{9 Qa@‘;"dév{"/“’@f g,

(3)=__{,,_d%, v P d (a b ¢
"’ dé"a @z Q; 455 -1 B7 di, \@:/ %4, (15),

Using the radial momentum equation at station 3,

2

L 25 | - 9,2% _g 2% 1
Qs 2%5 ‘53 735, ¢33$‘ ()

and combining Equations (8), (11), (15) and (44), the following differ-

ential equation results:



dr? d(;z/)z
= {?2’7 d;: T 44 )}dfa

a
Ay 893 ) 3/{’/\3)
7 ~
N (_@_) bsfs | 2 oTex _ alfedd . ¥ Ge R o p._f)
Fal ¥efs | 71 95, 2% 7~ @3 B* 95\ @
For the direct problem it is assumed that the rotor spouting
angle /A5 is known as a function of radius at station 3

It is there-
fore possible to describe the relation between Az and @3 along

the radius with a function G( ;‘3) such that

My = GlE)8,— &, (17).

Eliminating A3 from Equation (46) with this relation the fol-
lowing differential equation is obtained

(efg%)i * 3 [(6’ #.- £)+ ¢’f} 32, [’é (69 {")}

\l~

(R 3 -2 () e B nst
_Q’_g_?g+@ ;(G@)

aé‘s

4 7/ £
—(2Y $1 ) x e _3GM_ vy (BT o [y AT 29
(/’a) ?:5s {7"/ €2 95, S 7 (Pe) (Kn e }

2%s / a(/+G3)
ot *4”3[; J

(H-G?) 2(1+G2) ag}

L

r- L.
_(B) %5 v ol oEd)  y o [P5VT D ")\, 265
- (Pa) ?.5, {r—/ a_—;at A =L _...._) afa(z‘ .: as‘3+2€ (47).

(46).
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If Py, {? , -g—?f—- and the known quantities at station 2 are
7

considered to be functions of {? (to be determined in the iteration

process) the integral for ¢, can be immediately written down as:

{a d;‘ i {9 :
£ 93 a/{?
53(’*5'2) _:/"*““"z v
@, = .@_f__,_____ e RS (___f?q_)' % | 7 dlee _dlb2)e)
2 {?W W '% ¢<’—';a 7= dfz d;a
%

d93

&dé,+C,

(18).

An alternate form for the square bracket in the above inte-
grand can be obtained by using the energy and radial momentum equa-

tions at station 2:
7=/ L
Mo 4d8:, 1 d d/fah A7\ [y BT
Lo -4 4L (150 )- S Za((B) T )se (o ) 0o,

In the case that P,, = 1 (isentropic expansion to station 2 from

2t

stagnation conditions), the bracketed term in the integrand may be

further simplified to:

[;?} $E(1-57) - g‘}‘;;(aiha)} (20),

The integral form of the mass flow equation is:

fo £
m=4cea 2) ¢4, 44 (21),

and the integral form of the radial momentum equation is:
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7-/

4
|z Q)] /25yl 4 a0y
6 F3 Q#M gg @d{, Séydg)dé+68 (22).
%

Equations (10), {13), (17), (18), (21), (22), and (24) are used
in the solution of the direct problem for the rotor (isentropic).

In the case of a stator, Equation (17) becomes:

Mo = FI£) #2 (25),

L (£:.2,)
s

2

G is replaced by F in Equation (18) and the terms and
2G are omitted. Egquation (18) becomes Equation (26) for the isentropic
stator. Equatiomns (13), (21), (22), and (24) (with appropriate sub-

scripts) remain unchanged, and the energy relation becomes Equation

(9).
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APPENDIX C

Development of Equations for Direct Problem (Polytropic).

The equations for a polytropic process through a rotor are
derived with the same assumptions as used in Appéndix B with the

exception that the isentropic relation (13) is now replaced by:

L J
@5 _ (_./_’g_.)" - (_Zz_)?'l_f (48)
02 ’Da Ta

where n is related to the so-called polytropic efficiency Y] for an

expansion (n < y) by: (see Reference 12, p. 449)

P
-———-—n’f/ 7= 3 (49).

The energy equation (10), the continuity equation (8), the rad-

ial momentum equation (11), and the blade relation (17) remain the

same in differential form.

The first term of the right side of Equation (44) now becomes:

alk v A ds
I Qpd g, T @ dS,

_r d_ (._/_%_) L dBy 1 1 dP 7 R dGs

7 dg \ Qs Gy 4&, 7~ Q@sdi, - @5 a5, .
But,

1 dB_ 7 P dQ v pFa (A7

7/ @; ds, 7 033 d;; L i\ ¢, /.

(50).
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The right side of the differential equation is obtained in the

same form as Equation (46) with a correction term as follows:

(51).

Using the differential form of the continuity equation (8), Equation

(51) finally becomes:

! A R
7 %g_(ﬁ?z_{ /%)(%n:&é () (_@__"
Y 5‘ s 2

d_p=
@ SETAR #e, o)\ G /dE (52).

22~/

The differential equation corresponding to Equation (46) for

the isentropic case now is:

Az, s s 2 b £, 7z (lde
{__ 'é"%"()tg"‘;l’)'*a/; )_ = ¥ 3lar _ 2 )

. Paf, | 7 %2 2%
72-7 5 P;‘L 28 (7-72) 2 fcaid
Y N7 2 <] =z 2 7z
- ?—Tgna;a (oe) ! "533;’3  @i)eni\ @ )a;_, (53).

The relation corresponding to Equation (47) becomes:

34’3 % / 2 (1+62) - ’% 3 ) _7 ler _ affehz)
o4y § (/+62) 2(G% 3¢, P25z = 24, 5‘;2

7 38 aé’?
- 7—-7’? )} 2 +26 + ¢3 (?’/)(zw)( )953 (54).

The integral equation corresponding to Equation (18) is:
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a6 | rb g
*'%;me@ zﬂ 17

3 A
b= & et Bl (_E._g_n s | o dZer _ d(%eX.)
3 ;3\]7;‘5:’3 \=e? & > d; d £,

77
o, 2G| _(rn) (2 )
(6’+d 18, @ gm0 q)a) zs, LAE+C,

(55),

I PZt =1 at station 2, the square bracket under the integral

will be:
v 7 2.2_:/
[r/ d;&/ /=A%) ‘5;{;_{‘;)’2)} (56).

The integrated form of the mass flow equation is

f %
m =/ ’03) 3, 4,48, (57)
;

;
and the integral form of the radial momentum equation is:

n

(00 [ ’
n-/ [ Q2 Az o &8z _ CL’Q;

/

O

Equations (10), (17), (24), (48), (55), (57) and (58) are used
in the solution of the polytropic direct problem for the rotor.

In the case of the stator, Equation (25) is used in place of
Equation (17), and the terms _ql?__ (i )‘a) and 2G are omitted in
Equation (55). Equations (10), (24), (48), (57) and (58) remain un-

changed (with appropriate subscripts).
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APPENDIX D

Development of Equations for the Inverse Problem (Isentropic).

The following equations are derived with the same assump-
tions as given in Appendix B with the exception that now the blade
relation, Equation (17), is replaced by the following given function
which describes the work output of the rotor as a function of the

radius {? :

HIE) = §2.7 £, 25 (27).

For the isentropic case, the derivation remains unchanged

up to an including Equation (46)., which may be written as:

o400 )0 3fE0(B) 45 {7 g - g

(28).

Using Equation (27) to eliminate A, , the differential equa-~-

tion corresponding to (47) is developed as follows:

Ao, Ldds _ 4 L)
§3 ¢a 3 532 d{?

_.fl £33 /03 7] » A% _ d/{a/\a
b, // + )d{ (4:43) = ¢2;2{-, df, df )

- Zp Ta (& 2 s
SEAETAT )}’L@dé‘;

;ﬁ—‘%{u—;—; df; (p) f;"?jj‘; (5:22) (59)
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des _ (_&);_fi_ 7 Al _ p;:/i.(@’j
o 5, Pl P24, |7/ ds. 77

-(2E2 T )} - ?5(" 1k ) (60).

Assuming that the right side of the above Equation (60) is
a known function of § P

(to be determined in the iteration process),
the integral equation for the axial velocity can be written as

%
- £ | v dler
‘%‘Z[ )c»efz{_”’“‘

?’ ("a 9.9
7/ d €, “_7— % /+ Hii d;‘a(;/\);}' d

-—é;(l+—’t—"—”-§‘§—— d'ﬂd;‘g%’

(29),

Since the mass flow integral and the radial momentum inte-

gral remain the same, Equations (10), (13), (21), (22), (24), (27) and

(29) are used in the solution of the isentropic inverse problem for
the rotor.
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APPENDIX E

Development of Equations for the Inverse Problem (Polytropic).

The following derivation is made assuming the same conditions
for a rotor as given in Appendix C. The work output of the rotor as a
function of radius is again given by Equation (27).

The differential equation (53) still holds, which is:

T L/ T AE ‘?’)";j’j’{f,' 2% - st

- }’271—/9 Pz) +¢963’+ -2 ("‘")
E4 3

FEVECY 3 2¢5  (#)(n) G’a (53).

The resulting integral equation is similar to Equation (29) with

the addition of a correction term:

43
gg = [p_?)"“__é_{ ’d dfet__f_g%/_g_ (fg_;;:)*_(// é‘zha)d(;a)} dgg

¢2;a {? d;?
| ) (BT p H-5A2\dH
> {/7/)(721)(47 dfs (’* Z: )d;;}d;”" (61).

The mass flow and radial momentum equations remain the

‘

same as in Appendix C, and Equations (10), (24), (27), (48), (57),

(58) and (61) are used to solve the polytropic inverse problem for

the rotor.
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APPENDIX F

Iterated Examples

The following data are used for Examples I-X inclusive:

w =734 rad/sec (7000 RPM) p, = 16,300 —%- R_=1.2500 ft.
ft
y = 1.40 wR _=917.5 ft/sec C_=.239 E?-J
5 p 1b°F
R =1715 L o 2. 2 éftz
sec”°F WR = .8418 x 10° —, = .250 ft
s5ecC

Example Ia.

Solution for the stator of Fig. 3 (cylindrical channel), with no
radial total temperature distribution and coordinates for equal areas
in the plane perpendicular to the axis. This is a solution for the direct
problem (F (52 ) given) for the isentropic, subsonic case.

For the stator with F constant, P,, =1, and @ = 0, Equations (18),

It
(21), (22), (13), (25) and (43) of Appendix B become:

_2

%, o7 o R
¢ - - Z[.gi) é/-[;%%%(/—g?“/:,é ’:”ad;‘z + C’Fa (62)

£Z
1+FE 2 1452
§ P (1#F?) £ 177

o ;/ (e eren ©3)

2. =
p = [Z;-’ ﬁ%/%d{? +Co (64)
f

"

@ - (8- (Bf"

& 1 4
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Ao= F @2 (F = const.) (66)

Ze = ELr+ (N e) (67)

M = —ié—— (Mach number) (68).
\F7al

Conditions at station 1: (given)

P, =1.00 O, = .23828 e = 4.1968
P, = .9723 Q, = .23354 7, =4.1631
%%:o F=2.75 m = .020417 W =114.7
Solution at station 2:
a, b2 <5 d2
£, .8000 .8544 .9055 .9539
¢, .7926 L7479 .7105 .6785
As  2.1796 2.0567 1.9539 1.8659
P, .4928 .5365 .5730 6041
T, 3.4283 3.5128 3.5794 3.6340
QZ .14372 15274 16007 .16623
M 1.059 .986 .929 .880
AZ’Z +.0001 -.0002 -.0001 -.0004
C, = .6508 P, =P, L=y ©,,=0,
C, = .8169

1b
sec

¢1 = .4857

A = 0

T., = 2060°R

1.0000
.6508

1.7897
.6307

3.6789
.17144
.841

-.0002
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Note: The column headed A Z > above represents the difference
between TZ as calculated by the iteration process and Zé
obtained by applylay the enerygy equation along the strearm-
lines indicated after the solution has been reached. The same
applies in the solution of the following examples. This is a
rough check on the accuracy of the solution. Obviously, if an
exact solution had been found, A 7 would be zero.

Example Ib.

Solution for the rotor of Fig. 3 (cylindrical channel) with no

radial total temperature gradient and radial coordinates for equal areas.

This is an isentropic, subsonic solution for the direct problem (G (§3 )

given) for a rotor.

For the rotor with G constant and PZt = 1, the applicable
relations are Equations (63), (64), (65) (with appropriate subscripts)

and the following three equations:

)
/ v 7 "
) {(.f.:e.) i [ -5 i, 2o 877 |+ e (69)
;r-rGa(H_GZ) 2 2 < é 1+G*
7 ;. 7
)\?=6’¢?—- {7 (G = const.) (70)
o 7 °
7l 5N 7500 7 (/)3" ‘%2)+‘53A3 (71),

Conditions at station 2 are the same as after the stator, Example la.

aler
dg, =

G=1.411 7] m = .020417



Solution at station 3:

58

a3 by 3 d3 €3
5; . 8000 . 8544 . 9055 . 9539 1.0000

b, . 6624 L6779 . 6955 L7146 . 7346

A3 . 1346 .1021 L0759 . 0544 .0365

P, . 5862 . 5865 . 5865 . 5865 . 5865
2’3 3, 6025 3.6034 3.6034 3.6035 3.6035
Q4 . 16269 .16278 . 16276 L16276 . 16277
P3t . 6244 ., 6254 .6264 L6273 . 6284
T3t 3.6679 3.6699 3.6717 3.6734 3.6751
Qs .17019 . 17041 . 17061 .17077 . 17099
ol 0 -, 0007 -.0017 -.0035 -.0058

C, = .5710 C, = .8585

Solution for the stator of Fig. 3 (cylindrical channel) with the
same conditions and assumptions as given in Problem Ia except with a
radial total temperaturce gradient.

Equations (62) - (68) of Example Ia are applicable.

Conditions at station l: (given)

&) By 1 4 €]
¢, . 8000 . 8544 . 9055 . 9539 1.000
Ue  3.3819 3.8252 4.2415 4.6361 5.0118
P, 1.00 1.00 1.00 1.00 1.00
Q,, 29569 .26142 . 23577 . 21570 .19953
Pl .9723 .9723 .9723 . 9723 . 9723
7, 3.3548 3.7946 4.2076 4.5990 4.9717
Ql . 28981 .25622 .23108 .21141 . 19556
@, . 4355 . 4628 . 4871 . 5096 .5298
N0 0 0 0 0

F =2.75 m = 020417 dTse - 13,1495

%,



Solution at station 2

2
£, . 8000
b L6778
N> 1.8639
P, . 5295
To  2.8200
Q, L 18777
M . 999
al; 0
Cy
Py = Pry o

Example IIb

.
.

b2

. 8544
. 6805
1.8714
. 5713
3.2599
. 17525
. 930
-,0012

= .5565

G, =

€2

. 9055
. 6829
1.8780
. 6061
3.6762
. 16488
. 883
-, 0052

C, = .8339

2

1Qyy =

)

.9539
. 6848
1.8832
.6355
4,0729
. 15602
. 842
-.0104

92:0

1,0000
. 6864
1.8876
.6611
4,4527
. 14845
. 805
-. 0172

Solution for the rotor of Fig. 3 (cylindrical channel) with the

same conditions and assumptions given in Problem Ib except with a

radial total temperature gradient.

Equations

(63), (64), (65), (69), (70)

and (71) of Example I (with appropriate subscripts) are applicable. Condi-

_tions at station 2 are the same as after the stator, Example Ila, above.

G=1,41

Solution at station 3

1,

.
.

a3 by
£, . 8000 . 8544
Py . 5377 L6174
Ay  -.0413 .0168
P, . 6009 . 6009
T,  2.92317 3.3072
Q, . 20551 .18168
P, .6313 . 6381
Qg .21289 .18964
T3¢ 2.9653 3.3643
03 0 +.0035

C, = .4635

dlet _ g 1495,

€3

. 9055
. 6920
.0709
. 6009
3. 6670
. 16386
. 6422
.17184
3.7373
+.0012

C,

=, 8646

m = ,020417

dj

. 9539
. 7628
1224
. 6009
4,0081
. 14990
. 6447
. 15759
4,0895
-.0039

1.0000
. 8303
L1716
L6012

4,.3334
. 13871
. 6461
. 14603

4.4235

-.0126
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After correcting the upstream conditions at station 2 for the
displacement of the streamlines from the position originally assumed,
the following corrected solution at station 3 is obtained: (See Problem

Vb for method. )

aj b3 Cy d3 e,

53 . 8000 . 8544 .9055 .9539 1.0000

. 5311 . 6106 . 6853 . 7560 . 8234
Az -.0506 0072 0615 1128 . 1618
P, . 6029 . 6029 . 6029 . 6029 . 6032
T, 29268 3.2771 3. 6296 3.9868 4.3374
Q, . 20602 . 18411 . 16623 15127 . 13917
P, . 6327 . 6378 . 6417 . 6453 . 6476
Ty 2.9675 3.3303 3.6951 4.0648 4.4263
Q. .21325 19166 .17381 . 15879 14641
a7, 0 -. 0001 -. 0022 - 0055 -.0118

C, =.4578 C, =.8654

Example Illa.

Solution for the stator of Fig. 4 (divergent channel with straight
walls) with a radial total temperature gradient. This is an isentropic,
subsonic solution for the direct problem for a stator (F (gz) given).

For the stator with F constant and P = 1, Equations (63), (65)

and (66) are applicable in addition to the following four relations:

52
( )cfa; [_;Zl_;igt (/_g"ﬂ d Bz ;/-H-‘ { L
é.

g /+F2
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Conditions at station 1: (given)

s/

Tie

Qi

1t

a

1
. 80
3.9931
.25043
1. 00
. 9696
3.9581
. 24497
. 4944
-. 0247

F=2,75

by

.85
4.0950

. 24420
1. 00

. 9696
4,0591

. 23888

. 5014

. 0000

d T
dg,

=+2,0375

€1

. 90
4,1968
.23828
1. 00
. 9696
4,1600
. 23309
. 5069
.0253
0

m

c=,25ft

=z
-7
(73)
(74)
(75)
d, €1
.95 1.00
4,2987 4. 4006
. 23263 .22724
1. 00 1. 00
. 9696 . 9696
4.2610 4, 3620
. 22756 . 22229
5112 . 5142
0511 L0771
0 0
L024639 W = 138.4 1=
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Solution at station 2:

a2 b, “2 d, €2

;2 .790 . 850 .910 .Y70 1.30
b . 7410 . 7046 . 6735 . 6469 . 6236
Ao 2.0377 1.9376 1.8521 1.7790 1.7149
J2P -. 0370 0 . 0337 . 0647 .0935
P, . 5247 . 5716 .6122 . 6472 L6777
7, 33212 3.4904 3. 6479 3.7966 3.9376
Q, . 15798 16378 . 16782 . 17051 .17210
M 1.004 .930 . 870 . 817 779
YA 0 -.0027 . 0061 -.0103 .. 0138

Cy =.6017 C, = . 8317 Py =P Q- Q. lor=1,,

Example 1IIb.

Solution for the rotor of Fig. 4 (divergent channel with straight
walls) with a radial total temperature gradient. This is an isentropic,
subsonic solution for the direct problem for the rotor (G (;‘3) given).

Equations (63), (65), (70), (73), (75)(with appropriate sub-

scripts) and the following two relations are applicable:

%= glmz fj p) %< ?7‘%*"(‘ / f//a’)z)}aﬁ*d;’ “’*"zﬂ’f *;?(76)

7

7 _ > 2 2 2 (77).
7_72&“52,32- 7{723‘ *'aL(‘%+A3+q§)+§5)‘3 )

Conditions at station 2 are the same as after the stator, Example

I1la above.

G=1.411 m = .024639 dl2t _ ) 4979 ¢ =.25 ft.

d e
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Solution at station 3:

ag b3 c3 d3
£, . 780 -850 920 .990
$; . 4567 . 4987 . 5423 . 5873
g;  -.0228 0 L0271 . 0587
Az -.1356 -. 1463 -.1548 -.1613
P, . 6500 . 6500 L6505 . 6508
q 3 . 18409 . 17954 . 17525 17119
73  3.5308 3. 6209 3.7117 3.8027
P, 6712 6749 . 6780 . 6804
Q;, 18836 . 18442 . 18051 17672
T3¢ 3.5634 3. 6600 3.7560 3.8514
a7, +. 0001 +.0005 -. 0013 -. 0048

C, =.3871 C, = .8842

Example IVa

1.
. 6347
. 0952
. 1644
. 6508
. 16720
. 8923
. 6828
.17304
. 9459
. 0092

060

Solution for the stator of Fig. 5 (divergent curved channel walls)

with a radial total temperature gradient. This is an isentropic, sub-

sonic solution for the direct problem for a stator (F (;2) given). The

same equations as used in Example IIla are applicable.

Conditions at station 1: (given)

1
. 00

4.6043

. 00
. 21719
. 9400

4.5237

. 20780

. 7365

. 1473
0

ay b1 cy d1 ey
g/ .80 .84 .88 .92 .96
T, 3-7894 3.9524 4.1152 4.2783  4.4413
P, 1.00 1.00 1.00 1.00 1.00
Q4 .26389 .25301 .24299 23374  .22516
P, .9400 .9400  .9400 .9400 . 9400
T, 3.7231 3.8832 4.0433 4.2034  4.3636
Q, 25248 . 24207 .23248 .22363 . 21542
¢y . 6804 .6960  .7090 .7205 7293
9, -. 0340 0 . 0354 0720 .1094
A 0 0 0 0 0
F =2.75 dlit _ 4 0746 m = .029242 W = 164.2 2

44,

c = .250 ft.

sec



Solution at station 2:

a

2
£, .785
b, .7051
Az 1.9390
o, -.0705
P, .5417

2’2 3.1805

QZ 17032
M .977
AZ; 0

Example IVb

.842

L6763

1.8598

.0135

.5860

3.3928

17272

.90

C

2t

9

= 5694

1t

64

3

.899
.6531
L7960
.0914
.6222
.5937
17313
.854

.0013

.956
.6344
1.7446
.1649
.6518
3.7860
L17217
.809

-.0039

e

2

.013

.6192
. 7028
L2353
6761
.9713
.17022
776

.0069

£2

1.070

.6072

1.6698

.3036
6962

4.1519

16767
.747

-.0118

Solution for the rotor of Fig. 5 (divergent curved channel walls)

with a radial total temperature gradient.

This 1s an isentropic,

subsonic solution of the direct problem for the rotor (G (g}) given) .

The same equations as used in Example Illb are applicable.

Conditions at station 2 are the same as after the stator,

Example IVa.

G=1.730
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Solution at station 3:

8l;

a3

. 760

. 1958
-.4213
-. 0294

. 6948

3.4149

. 20346

3.4660

.21117
.7320
212

Example Va.

by

. 848
. 2641

-.3911 -.

. 0106
. 6981

3.5669 3.

. 19573

W

. 20027
. 7209
. 210

+.0010 -

C, =.1594

. 5998 3.

€3 d;
.936 1.024
. 3260 . 3852
3720 -.3576
. 0750 1617
.7010 . 7027
7180 3.8682
. 18852 . 18167
7535 3.9064
. 19303 . 18619
. 7246 7274
.219 . 236
0003 -. 0049
C, =.9012

1.112
. 4458
-.3408
. 2719
.7010
4.0126
. 17466
4.0568
17950
. 7283
. 266
.0113

H

. 200

. 5117
. 3148
. 4094
. 6927
. 1461
. 16707
.2018
17272
. 7257
.302

. 0196

Supersonic isentropic solution for the stator of Example IVa

(divergent curved channel walls and radial total temperature gradient).

The conditions at station 1, the data, and the applicable equations are

the same as for Example IVa.

Solution at station 2:

A

C

1

a2
L9303
2.5583
-.0930
3171
2.7294
11617
1.367

0

=.7512

b2

. 8906

2.4491 2.

.0178
. 3715

2.9784 3.

. 12471

-
e

+. 0039

Cz =203

. 274 1.

€2
. 8601
3653
. 1204
L4169
2051
.13007
188

. 0034

P =P

dZ

. 8371
2.3020

L2176

. 4547
3.4157

. 13310
1.123

. 0012

1t Qe T Qe

€2
.8201
2.2553
3116
. 4856
3. 6131
. 13440
1.080

. 0082

ZEt =7}
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Example Vb.

Supersonic isentropic solution for the rotor of Example IVb
(divergent curved channel walls and radial total temperature gradient).
The conditions at station 2 are assumed the same as after the subsonic
stator of Example IVa. The data and equations used are the same as that
used for Example IVb.

One complete approxirhation for this problem is given below to
show the method of iteration. The procedure of correcting for the dis-
placement of the assumed streamlines is then given to show the method
for this correction.

The iteration is started by assuming an axial velocity distribu~

-

tion across the channel. The tangential velocity is then calculated using

a 85
dfg

the pressure distribution from Equation (73) and the application of Equa-

Equation (70). The value of “is found from Equation (75) and
tion (77) at the inner channel boundary. The axial velocity distribution
is then determined using Equation (76) and the constant is determined by
the mass flow Equation (63). The iteration is continued until the values
of ¢3 assumed agree with those resultiﬁg from the iteration process. It
is important to note that in the supersonic case, the iteration diverges
rapidly away from the solution. Thus if an axial velocity distribution is
assumed that is greater than the solution, successive iterations will iﬂ—
crease ¢3 until the pressure P3 has reached zero. If an axial velocity
distribution is assumed which is less than the solution, successive
iterations will result in decreasing values of ¢3 and eventually the subsonic
solution will be reached. The supersonic solution is found by a simple

interpolation once the solution has been "'straddled'.

1
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The reverse is true for the subsonic solution for a given setup.
The iteration process will converge toward the solution from any

reasonable assumed distribution of b3

Data used in the solution:

v dlzr
A%, =.088 77 4f=10.0075  G=1.730  2G =3.460
2
G S = . 7496
1+G
a3 by c3 d3 €3 f3
53 . 760 . 848 .936 1.024 1.112  1.200
(gf; -.150 040 .230 . 420 610 .800
573
2
(—a—i) _.250 100 .450 .800  1.150  1.500
<ey
Factor .02117 .02125 .02133 .02138 .02144
=z 1.4310 1.5415 1.6411 1.7305 1.8098
P2 5,
é‘i““ 1.2283  1.1316 1.0509  .9824  .9235 .8722
3
P 2 2
y Giden)) .01299  .01357 .01489 .01694 .01719
o
—a—-e-(;‘eAe) -.7702 -.8526 -.9333 -1.0018 -1.0842
Y
7;-2—;(5—5.,,) .006498  .006235 .005993 .005768 .005560
/ é_éi
("Factor" above = —gz— f; ’*Gedé
£ 1+G(1+67)
Try C; = 1.3920 3 -,



a3
P, 1.7098
Go,  2.9580
As 2.1980
&5 -.2565
2
Ay 4.8312
2
Az
6.3568
£3
As 5
2
é} -
083
3
47
_ 2 265 +
7 9%,
3 P
3¢, 5.0235
;é_a(_ézi
52 (52), -.7535
2
_F
dJ/"' . 4274
33;"23
263
56 11809
_p 2
oz, 2. 0191
b
ga;‘g +.
z:.;/
AL 7 +.

68

b3 Cq
1.6727 1.6943
2.8938 2.9311
2.0458 1.9951
. 0669 . 3897
4.1853 3.9804
4.9354 4.2525
. 6461 4.5939 4
. 0948 . 2283
. 6750 3.6681 4
.3484 -.8374 -2
4.9820 5.2060
. 1993 1.1974
L1673 . 7624
.3666 1.9598
-.6132 -3.3205
7030 -1.9668 -
04352 + .01116 -

1.7698

3.0618

2.0378

. 7433

4,1526

4.0553

. 1539

4

. 5665

. 0181

4

L2763

-4

5.6770

2.3843

1.4158

3.8001

. 1561

1.9004

3.2877

2.1757

1.1592

4.7337

4.2569

4

.9512

1

. 7261

5

-8

.4955

6.4060

3.9077

2.1855

6.0932

2.0912

3.6178

2.4178

1.6730

5.8458

4.8715

. 5642

.4161

. 8386

. 2680

7.4200

5.9360

3.1368

9.0728

-6.7254 -11.5795 -18.9730

5.0229

.01885 -

-9.1524

. 05475

15.2762

. 10553



69

The constant CZ is found by applying Equation (77) at the inner

channel boundary:

Zé:=3.7894<.14286[%.8312+2.9234+.0658+zu.522Lnd6705ﬂ =1.7600
P, = . 5417(. 5534)%7 = . 0683 c, - (. 0683)7 = .4645

- a, b, ¢y a, eq £
R7 .4645  .5080  .5192  .5003  .4456  .3400
A .0683  .0934  .1008  .0886  .0591  .0229
£ L1260 L1594 .le20  .1359 0874  .0329
()" L2218 . 2694 . 2725 . 2404 L1754 .0873
Average . 2486 . 2709 . 2564 . 2079 L1313
(-g%) .5355  .4920  .4809  .4996  .5543  .6601
Average 5137 .4864 .4902  .5269  .6072

The axial velocity integral is iterated in steps across the channel as

follows: A 453 ¢, %zfér?a?ge
.02117 [.3557(5.1414—.7702)+3.46-.407?Z} = _.097R4 .09754 |
. 16448

.02125[;4176(4.8681—.8526)+3.46+1.163ﬂ = .13388 .23142

.31687
.02133{;4208(4.9062—.9333)+3.46+2.880a = .17090 .40232
.50862
.02138 l:. 3598(5.2735-1.0018)+3. 46+4. 947(ﬂ= .21260 .61492
. 74602

. 02144 [.2376(6.0766-1.0842)+3.46+7.583é]= .26220 87712

The mass flow equation is iterated to solve for C, as follows:

.029242=.003229(. 04877+1. 1799C1)+. 003676(.16448+1. 0912C1)
+.003818(.31687+1. 0166C1 )+.003522(. 50862+. 9529C1)

+.002257(. 74602+. 8978C)

_ -023790

C1 * 517089

=1.3920



Solution at station 3:

23 b3

@, 1.7098  1.6727
As 2.1980  2.0458
03 -. 2565 . 0669
P, . 0683 . 0934
7y 1.7601  2.0079
Q, .03880 . 04653
Tyr 2.8773  3.0093
Qg 13256 . 12794
P, . 3815 . 3849
M 1.780 1.570
M, 1.100 . 993
e +.0001  +.0028

[

3

. 6943
. 9951
. 3897
.1008
.1365
. 04718
. 1204
.12162
.3795
. 540
. 005
.0170

1

d,

.7698
.0378
. 7433
. 0886
. 1406
. 04139
. 2056
. 11358
. 3641

. 620

.110

. 0548

€3

.9004
. 1757

1.1592

f—

. 0591
.9793
. 02986
. 2572
. 10373
. 3379
. 880

. 340

. 1065

3

2.0912

.4178

1.6730

. 0229
. 5653
. 01464
. 2649
. 09198
. 3000
.420

1.810

. 1603

Correction of supersonic solution for displacement of streamlines:

A
mig)- [ Q9.5 44,
7“.

a, b2 c,
2 .785 842 .899
m(£) o .005498 . 011201

%
Zqﬂé) =u//‘a%'¢§§;‘i;;

e
ag by €3
;; . 760 . 848 .936
m(£) O . 005258 .011609

1

4

.956
.017071

ds

.024
.018374

1

1

€2

.013
.023095

€3

112
. 024639

1.

1.

2
070
029242

3
200

029242

The functions m({a) and m(é, ) are plotted against radius on

Fig. 6. From this graph, a corrected i is obtained and, hence,

new conditions at station 2.
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Corrected values at station 2:

az b, €2 d, €2 £,

.785 . 839 .902 .968 1.026 1.070

. 7051 . 6778 . 6322 . 6305 . 6157 . 6072
1.9390  1.8640 1.7926  1.7338 1.6933  1.6698
-.0705 . 0090 . 0955 . 1804 . 2514 .3036
3.7894  3.9438  4.1240  4.3127 4.4785  4.6043

. 5417 . 5837 . 6241 . 6580 . 6816 . 6962
3.1805  3.3815  3.6043  3.8266 4.0135  4.1519

.17032  .17259  .17315  .17197 .16978 . 16767

Corrected solution at station 3:

b d f

as 3 €3 3 €3 3

bz 1.7398 1.7007 1.7151 1.7686 1.8722  2.0493

As 2.2499 2.0942 2.0311 2.0357 2.1269 2.3453

B3 -.2610 .1020 . 2573 . 4422 .9361 1.6394

P,y . 0605 . 0842 .0953 . 0959 .0733 . 0295

75 1.7003 1.9450  2.1067  2.2072 2.1223 1. 6832

Q; .03558 . 04330 . 04523 . 04344 . 03452 . 01754
Lt 2.8660  2.9896  3.1189 3.2376 3.3064  3.2898

Qs .13104  .12665  .12076  .11325 . 10449 . 09375
P, . 3643 .3790 .3763 . 3666 . 3458 . 3071

T, +.0006 +.0033 -. 0069 -. 0368 -. 0881 -.1032

C, = 1.4165 C, = .4487

Note: Examples VI, VII and VIII use the channel configuration of Fig.

5 and the same conditions at station Il. Ekxample VI is the isen-
tropic solution (y = 1, 40), Example VII is a polytropic solution
for n = 1.37, and Example VIII is for n = 1. 33. From these
examples it is possible to see clearly the effect of a decrease
in polytropic efficiency on the solution for the same mass flow,

upstream conditions and channel configuration.
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Example Vla.

Solution for the stator of Fig. 5 (divergent curved channel
walls) with a radial total temperature gradient. This is an isentropic
{(y = 1.40) subsonic solution for the direct problem for a stator
(F(ﬁe) given), The radial coordinates have been chosen for equal
areas in the plane perpendicular to the axis. The same equations

as used in Example Illa are applicable.

Conditions at station 1: (given)

2 by cy d) € £y
£, .8000  .8438 . 8854 .9252  .9633  1.0000
Z,, 3.7894 3.9679  4.1374  4.2995 4.4548  4.6043
P, 1.000 1.000 1.000 1.000 1.000 1.000
Q, .26389 .25202  .24170  .23258 .22448 .21719
P .9500  .9500 .9500 .9500 . 9500 .9500
Q .25439 .24295  .23300  .22421 .21640 .20937
7 3.7343 3.9102  4.0772  4.2369 4.3900 4.5373
@, .6202  .6355 . 6481 . 6583  .6657 .6716
&, -.0310  .0030 . 0367 .0701  .1026 . 1343
F =2.75 m = . 026865 é‘-‘—gﬁ- = 4.0746 A =0
Solution at station 2: (y = l.40)
“ a, b, c, d, e, f,
£, 7850  .8496 .9098 .9661  1.0194 1.0700
&» L5772  .5513 .5317 .5166 .5046  .4948
A2 1.5873 1.5161  1.4622 1.4206 1.3876 1.3607
6, -.0577 .0198 . 0865 .1453 .1986  .2474
P, L6712 .7095 .7378 . 7592 L7763 .7898
Q, .19848 .19723  .19451  .19103  .18732 .18349
7, 3.3814 3.5974  3.7930  3.9738  4.1437 4.3041
M, .75 . 754 . 675 . 668 . 630 . 609
aZ, 0 -.0013  -.0025 -.0037 -.0061 -.0080
Ly = T, Par = Prp Q= Q C,=.4661 C, =.8923
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Example VIb

Solution for the rotor of Fig. 5 (divergent curved channel walls)
with a radial total temperature gradient. This is an isentropic (y=1.40)
subsonic solution for the direct problem for the rotor (G(é) given).
The radial coordinates are for equal areas. The same equations as
used in Example IIIb are applicable.

Conditions at station 2 are the same as after the stator, Example

Via.
G=1.96 m = .026865 é;féi-z 2.8593
2
Solution at station 3: (y = 1.40)
a3 b3 c3 d3 €3 f3

s, . 7600 . 8661 .9605 1.0464 1.1258  1.2000
b3 .1652 . 2370 .2982 . 3543 . 4089 . 4658
@3  -.0248 . 0187 . 0844 .1660 . 2616 .3726
Nz -.4362 -.4016  -.3760 -.3520  -.3244  -.2870
P, . 7550 L1595 L7626 . 7635 . 7606 . 7532
r, 3.4970 3.6683  3.8290 3.9802  4.1197  4.2460
Q, . 21589 .20707 . 19916 .19181 .18460  .17738
T, 3-5281 3.6993  3.8605 4.0126  4.1549  4.2867
P, . 7788 .7824 . 7847 . 7853 . 1837 . 7788
Qs . 22073 .21150  .20326 .19572  .18859  .18167
Al;  -.0001 -.0002  -.0024 -.0072  -.0135  -.0219
C, = .1329 C, = .9228

Example VIla

Solution for the same channel configuration, mass flow, and
conditions at station 1 as for Example Vla, except for a polytropic

process (n =1.37 , 7 =94. 50/0) through the stator.

Equations (48), (57), (58), {66),(74), (75) and the following

integral are applicable for the polytropic stator (F = const):



%
- Pz %__{_ 7 alit/ =1 a:ﬁe (7=n) T d/%?-‘,;i’ =

" felf':Z//’*Fz) (75”)@; [;— / ):I dé_' e & g, ; d; %—2 I+Fz (7).
F=2.75 m = .026865 g%?i = 4.0746

Solution at station 2: (n = 1.37)

2, b, ) d; €2 f

£, . 7850 . 8496 .9098 .9661 1.0194  1.0700
b, . 5897 . 5652 .5469 . 5330 . 5222 . 5135
Ae 1.6216  1.5543 1.5040 1.4657 1.4360 1.4121
B2 -.0590 . 0203 .0890  .1499 . 2055 . 2567
P, . 6450 . 6837 L7127 1347 L7523 L7662
' 3.3635 3.5778  3.7726 3.9526 4.1218  4.2814
Q, .19176  .19110  .18889 .18585 .1825l .17895
P .9789 .9821 .9845  .9863 .9874 .9882
Q,, .25834  .24751 .23793 .22938 .22164  .21461
AZé +. 0001 -, 0017 -.0022 -.0038 -. 0066 -. 0090
C, = . 4762 C, = .8883 Z;t = Z;t

Example VIIb

Solution for the same channel configuration, blade shape,
and mass flow as for Example VIb, except for a polytropic process
through the rotor (n = 1.37, 7 = 94. 5% o).

Conditions at station 2 are the same as after the stator,
Example VIla.

Equations (48), (57), (58), {70), (75), (77) and the follow-
ing integral are applicable for the polytropic rotor (G = const,

pZti 1)



-
_ /
‘%" i
;3 ’*62(/+62)
s
dés: , 1
+ d—gg +

75

FA
2 CPZ{Z 7

(f IM72-1)

e (%Z?tig;

7 dZzr

/ déz

-
72

G =1.96 m = .026865 g%é
a

Solution at station 3: (n = 1.37)

a3 b3 3
¢, . 7600 . 8661 .9605
®, . 1664 . 2496 .3120
Az -.4339  -.3769  -.3490
O3 -. 0250 . 0197 . 0883
P, . 7387 . 7430 . 7457
73 3.4890  3.6590  3.8190
Qs .21172  .20306  .19524
Tsr 3.5199  3.6839  3.8422
P, L7620 . 7608 L7617
Qs .21646  .20653  .19823
ATy 0 -.0044  -,0092
C, = .1338 C, =.9215

72-
7’ 7{

il

a (27
25 ¢

/+Gz

2

= 2.8593

d3

1.0464
. 3637
-.3335
, 1704
. 7463
3.9694
. 18799
3.9947
. 7632
.19102
-. 0137

2

G‘Z
7( /+62

€3

1.1258
. 4097
-.3228
. 2621
. 7439
4.1094
. 18101
4.1404
L7636
. 18443
-. 0177

iz
?Z
-QL ]+86

(79).

1.2000
.4514
-.3153
. 3611
. 1379
4.2382
17410
4.2807
. 7640
. 17849
-.0194

It is interesting to note that, compared to the isentropic case

(Examples VIa,b), the polytropic flow through the identical stator

and rotor results in the following percentage changes at station 3

(maximum):
5 +5.3%0
Az +7.7%0
P,: -2.3%0

3*

o
Zé.-0.3/o

~ . [a]

Pa: -3.0/o
Work out: +6.6%/0
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Example Villa

Solution for the same channel configuration, mass flow, and
conditions at station 1 as for Example VIa, except for a polytropic

process (n - 1.33, 7 = 86.80/0) through the stator. The equations

used in Example VIla are applicable.

F=2.75 m = . 026865 ;i;khz 4.0746
Solution at stalion 2: (u = 1.33) /
22 2 °2 42 °2 £2
£, .7850  .8496  .9098  .9661 1.0194 1.0700
¢- .6225  .5994  .5828  .5704 .5613  .5545
Ao 1.7119  1.6483  1.6027  1.5686  1.5436 1.5249
8, -.0622  .0216  .0948  .1605 L2209 .2772
P, .5878  .6280  .6584  .6817 L7000 . 7146
z, 3.3149  3.5286  3.7225  3.9022  4.0695 4.2279
Q, 17731 .17796  .17685  .17470  .17199 . 16902
P, .9387  .9470  .9532  .9571 .9608  .9631
Q,, 24770  .23863  .23035  .22262  .21564 .20918
AT, -.0001  -.0002 -.0019  -.0044  -.0071 -.0107
e = Ly Cp=.5027 C, = .8765

Example VIIIb

Solution for the same channel configuration, blade shape, and
mass flow as for Example VIb, except for a polytropic process
through the rotor (n = 1.33, 7 = 86.8%0).

Conditions at station 2 are the same as after the stator, Ex-
ample VIIla. The equations used in Example VIIb are applicable.

One complete approximation for the polytropic, subsonic, direct prob-

lem for the rotor is given below to demonstrate the iteration procedure.



Data used in the solution:

77

m = 026865 G=1.96  2G = 3.9200 —9—2—:.7935
14+G
7 dlz¢
2 Zf2t_ 10,0075
7 az, ~ 000
a, b3 <3 e f3
£ L7600 8661 .9505  1.0464  1.1258  1.2000
2Ff
i -.1500 .0791 .2829 .4684 .6298 .8000
YA
2
(""’f; -.2500 .1720 .5474  .8891  1.2049  1.5000
24 £
Factor .02083 .01874  .01716  .01593  .01495
g 1.6278 1.7561 1.8551 1.933¢ 1.9949
2 52
d_( 7 _
E;;(,_,gt 2/)2) 9.1313 9.0490  8.9897  8.9174  8.8593
/JJ'
ry a (zn)
= =5 .6600 .8311 10.0646 10.2042 10.2714
r_/d;a Pg 9 9
(7-72) (/;’f) L.
e ] 20529 2.1450  2.2328  2.3169  2.3975
—4s5, 1.2433  1.1208  1.0325 .9646 L9102 .8653
%
5(£-£5)
@\ % i .01532 .01530  .0l1516  .01495  ,01470
2 2
.006099 .005064 .004509 .004072

o] (ﬁ)(ﬁmg_,) .006801
2

(For definition of ""Factor' above, see Problem Vb).
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Try C1 = .1568

a3 by €3 d3 €3 ts

¢, 1949 2717 3312 .3775 4164 .4524
G¥, 3820 .5325 .6492 L1399 .8161 .8867
Ay -.3780  -.3336  -.3113  -.3065 -.3097 -.3133
eg -.0292 L0215 .0937 L1768 .2664 .3619
/\2
L .1880 .1285 .1009 .0898 .0852 .0818
£5

B

L2 .1582 1147 .0953 .0875 .0835

s

&, -.0039 .0576 1352 2216 .3141
-g 2¢: +.0019 -.0418  -.1308  -.2501  -.4043

2 24,
éﬂ%&fﬁ +.3207  -.1296  -.3559  _.4518  -.4635 -.4084
265194 /5
2% L

92&2??L -.0487 .0467 .1813 .3356 .5017 6786
28; $.2720 -.0829  -.1746  -.1162  +.0382  +.2702
24

293 +.0946 ~.1287 -.1454  -.0390  +.1542

24,

-5 2% _.0221 +.0388  +.0515  +.0155  -.0670

343

A@?{ .00094 +.00068 +.00008 -.00066 -.00158
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The constant C2 is found by applying Equation (77) at the inner

channel boundary.

3
L
P, = 5878(1.0443)271 =
23
n-~-1
P3 n .9153 .9162 .
P, 7000 7028 .
P
(+=2) 1.1909 1.1191 1.
P
2
P %
(=) 1.1404  1.0883 1.
2
Av 1.1143 1.0704
n-1
hang n
P, .9157 L9165
L d p% 8 0227
44 _p5 4. 0380  +.
¢3 d’{a@

n-1
. 7000 CZ = (.7000)T= 9153
c3 d, e fs
9169 L9170 .9163 .9148
7049 .7052 .7031 . 6984
0706 1.0345 1.0044 .9773
0526 1.0258 1.0033 .9829
1.0392 1.0145 9931
.9169 .9166 .9155
+.0026 -. 0209 -. 0490

T, = 3.7894-.14286 [ 1429+.0380+. 0009+2(1.3438-. 2873i| = 3.4616

The axial velocily integral is iterated in steps across the channel as

follows:

. 020831,
.01874[1.
.01716][1.
.01593[1.
.01495]1.

The mass flow equation is iterated to

8139(9.1313-8.8461)+3.92+, 0946+
8797(9.0490-9. 0107)+3.92-. 1287+

9278(8.9897-9. 2287)+3.92-.
9610(8.9174-9.3537)+3.92-.
9811(8.8593-9.4040)+3.92+.

1454+
0390-
1542-

Ad,
.0780] = . 09602
. 0487] = . 07331
.0058] = . 05697
. 0484 = . 04742
L1175 = . 04302

Ps

solve for C1 as follows:

Average
. 04801

. 09602
.16933
.22630
27372
.31674

. 13267
. 19781
. 25001
. 29523
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. 026865-. 017071(. 04801 +1. 1820C ) +. 016377(. 13267 11. 0766GC,))

+.015754(. 19781+. 9985C,)+. 015167(. 25001 +.9374C)
+.014597(. 29523+, 8877C))
_.012654 _
C, = Togo7r7 = - 1568
Solution at station 3: (n = 1.33)
23 b3 °3 d3 °3 f3

£, . 7600 . 8661 .9605 1.0464 1.1258  1.2000
&, . 1949 L2717 .3312 .3775 L4164 . 4524
A -.3780  -.3336  -.3113 .3065  -.3097  -.3133
6, -.0292 L0215 . 0937 .1768 . 2664 .3619
P, . 7000 . 7028 . 7049 .7052 . 7031 . 6984
7, 3.4617  3.6285  3.7862  3.9354  4.0740  4.2038
Q, .20220  .19367  .18615 17921 .17275  .16518
T,, ~ 3.4876  3.6503  3.8062  3.9582  4.1049  4.2456
Py, . 7185 L7177 . 7181 . 7204 L7219 . 7229
Qs .20600  .19659  .18863 .18183  .17605  .16929
aT;  -.0001  -.0047  -.0108 -.0155  -.0178  -.0202

Compared to the isentropic case (Examples VlIa,b), the poly-
tropic flow with n = 1. 33 through the same stator and rotor results in

the following maximum percentage changes at station 3:

o . o
¢3. +18.07 /0 T3. -1.17/0
)\3: +20.8%0 P31:: -9.3%0
P3: - 8.3%0 Work out: +19.5%0

Example IXa

Solution for the stator of Fig. 5 (divergent curved channel
walls) with a radial total temperature gradient and radial coordinates
for equal areas. This is an isentropic, subsonic solution for the direct

problem for the stator. The resulting solution at station 2 is used in
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Example IXb as the upstream conditions for a solution of the inverse

problem for a rotor.

The equations used in Example Illa are applicable.

Conditions at station l:

2y
s, . 8000
L1t '3.7894
P, 1.00
Q, . 26389
P . 9400
Z, 3.7231
Q . 25249
6, -. 0340
0.} . 6804
F =2.75

Solution at station 2:

az

£, . 7850
b . 7008
Az 1.9272
6, -. 0701
P, . 5460
7, 3.1879
Q, .17126
YA 0

by = Z;t

C, = .5659
Example IXb

given
Dy 1
.8438  .8854
3.9679  4.1374
1.00 1.00
25202 .24170
.9400  .9400
3.8985  4.0650
24113 .23126
L0033 .0403
6970  .7108
m = . 029242
b, <2
.8496  .9098
. 6688 . 6452
1.8392  1.7743
. 0241 .1050
5954 L6322
3.4217  3.6292
.17402  .17419
-.0010  -.0026
P, = P
C, =.

4

.9252
4.2995
1.00

. 23258

. 9400
4.2243

. 22253

. 0768

L7215

e

1
. 9633
4.4548
1.00
. 22448
. 9400
4.3768
.21478
.1125
. 7303

alie _ 4 0746

as

d,

. 9661
. 6275
1.7256
. 1765
. 6601
3.8183
.17286
-. 0049

1 e T Qg

8412

€2

1.0194
. 6139
1.6882
. 2416
. 6822
3.9938
.17081
-.0083

2

!

f

1. 0000
4.6043
1.00
. 21719
. 9400
4.5237
. 20781
. 1473
. 7365

=0

£,

1.0700
. 6033
1.6591
.3016
. 6997
4.1577
. 16828
-. 0116

Solution for the rotor of Fig. 5 (divergent curved channel

walls) with a radial temperature gradient and radial coordinates for
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equal areas. This is an isentropic, subsonic solution for the in-

verse problem (H(;;) given) for the rotor. One complete approxi-

mation for the inverse problem for the rotor is given below to il-
lustrate the iteration procedure.
Equations (63), (65), (73), (75), {77) (with appropriate

subscripts) and the following two relations are used:

43

et 4 [+ az £ dion, PRYA
£ ag)oz;:{ﬁd{t( ) £ df }a’;(’*”f ;‘;’ f; d+G (80)

%

B

H(%)- ;‘2/\2+§;/}3 (27).

When iterated across the channel, Equation (80) becomes:

% ,Z(f’);'z 7 ) ) S |- en)

(81j.

Conditions at station 2 are the same as after the stator,
Example IXa above. The work output function H(.g;) is given in this
example, and the blade shape (spouting angle) is determined.

Data used in the iteration:

_ dler _ _ {constant-
= ,029242 —-——*“dga = 2.8593 H(é) = 1.300 given)
dH

(H;-H; ;) =0 Lz, =0




\' Ny
> W
Y >

W

#2

Nk

1 dé, 2

- ‘giéﬂa) é?
(H ?fe"a) d ;z Ln ;‘,_/

@;~75H>
@, (£-45)

a2

8

“Jt

?'é;( é '7‘:'-/)

s

. 7600

83

a3

.3000 1.

.5129 1.

L2129 -,

. 2801 -,

1.7889

. 86305

-. 02931

. 1061

. 01489

. 007820

. 8661

3000 1.

5626 1.

2626  -.

3032

L]

1.7317

. 0944

. 86305

-. 02801

. 01501

. 006658

.9605

3000

6143

3143

. 3272

1.6766

. 86305

-. 02751

. 0859

. 01496

. 005821

. 0464

. 3000

. 6671

.3671

. 3508

1.6238

. 86305

-. 02681

. 0794

. 01482

.4210

.3739

. 005185

.1258 1.2000

.3000 1.3000

L7210 1.7752

.4752

i

. 3960

1.5736

. 86305

-. 02631

. 0742

. 01462

. 004682
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Try C1 =,1039.
aj b, €3 dy €3 £
P, .1039 . 2379 .3295 .4159 .5242 . 6891
As _.2801  -.3032  -.3272  -.3508  -.3739  -.3960
8, -. 0156 .0188 .0932 .1948 .3354 . 5513
3
Az
. 1047 .1088 .1145 .1209 .1274
£s
&; . 0016 . 0560 . 1440 . 2651 . 4433
967
> .3242 .7881 1.1827  1.7707  2.9097
£
= &3
Q?agg -.0005  -.0441  -.1703  -.4694 -1.2889
245 2.9845 -2.1545 1.5785 -1.0580 4485  +.4290
5, -2.9 -2. -1. -1, - . 429
23 2F
L) 4.4477  -.1704 - -.495 -.2870  +.3432
343(%f3 447 7 4466 4956
b
<¢(9'é) -. 0260 . 0409 . 1804 .3698 .6316  1.0336
AN/ 3
985 +.4217  -.1295  -.2662  -.1258  +.3446 +1.3768
74,
26s +.1461  -.1978  -.1960  +.1094  +.8607
2,
- 26;
- -.0065  +.0592  +.0700  -.0642  -.5647
FY: 9
7/
7

+.00076 +.00082 +.00008 -.00214 -.00809
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The constant C2 is found by applying Equation (77) at the inner

channel boundary.

Z;“—' 3.7894 - . 14286 [0785 +.0108 +.0002 + 2. 60(ﬂ = 3.4052

_r 7
P, =.5460 (1.0682)7/ =.6878  C, =(.6878) 7 =.8986
a3 b3 c3 d3 e3 f3
E
P, . 8986 .8994 .9002 .9003 . 8981 . 8900
P, . 6878 . 6900 . 6921 . 6924 . 6865 . 6651
(gg) 1.2597 1.1589 1.0947 1.0489 1.0063 .9506
A
P3\7
-] 1.1793 1.1111 1.0668 1.0347 1.0045 . 9645
Av. 1.1452  1.0889 1.0507 1.0196  .9845
r2
(-8 %) .1014  .1006  .0998  .0997  .1019  .1100
Av. .1010 .1002 . 0998 .1008 . 1059

The axial velocity integral is iterated in steps across the

channel as follows:

A, 9?3 Average
2.0486 (.08717- .02931) + .01550 = . 13403 13403 00701
1.8856 (.08648 -.02801) - . 01867 = . 09158 . 22561 1282
1.7616 (. 08613 -.02751) -. 01684 = . 08642 .31203 - 26882
1.6556 (.08700 - .02681) +.00869 = .10834 .42037 620
1.5492 (. 09140 - .02631) +. 06386 = . 16470 .58507 - 20272

The mass flow equation is iterated to solve for C1 as follows:

1029242 = . 017052 (. 06701 + C,) +.016344 (. 17982 + C;)
+. 015718 (. 26882 + C;) +.015110 (. 36620 + C,)
+.014393 (. 50272 + Cl)

_ .008166  _
C1 = —578617 1039
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Solution at station 3:

a b C d e f

3 3 3 3 3 3
£, 7600 . 8661 . 9605 1.0464 1.1258  1.2000
¢; .1039 . 2379 . 3295 .4159 . 5243 . 6890
A; -.2801  -.3032  -.3272  -.3508 -.3739  -.3960
gz -.0156 . 0188 . 0932 . 19438 . 3354 . 5512
P, .6878 . 6900 6921 . 6924 . 6865 . 6651
T, 3.4052  3.5688  3.7243  3.8706 4.0010 4. 0978
Q, .20197  .19335  .18583  .17886 17158 . 16231
G(£) 4.619 2.366 1.922 1.672 1.434 1.167
B;  12°12' 22550 27%°300  30%55'  34°53t 40735
275 0 +.0064  +.0096  +. 0097 +.0070  +.0014

Note: A supersonic solution is indicated for problem IXb by using
average values in the mass flow and energy equations
(¢3 & 3.780). However, the supersonic solution is im-
possible in this case since the pressure goes to zero at the

outer channel boundary before the solution is reached.

Example Xa.

Examples Xa, b are the isentropic, subsonic solutions for the

stator and rotor of Fig. 5. This is an example of the inverse problem

in which H{ §3 ) and )\3= 0 are specified and the blade shapes of
both the stator and rotor are thus determined.

Equations (27), (63), {(65), (73 ), (74), (75) (with appropriate
subscripts) are applicable for the stator in addition to the following

relation:

(,\5,=0, H({3)=§;/\2)
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o
_ __%7_@__( Tef,_ dO: 1 As dld,
¢ [/3) B & 7 (/p/"d; EXAT )]‘{72+5/ (82),

Conditions at station 1 are assumed the samc as for Example

IXa.

2, b, 2 d, € £,

H(£)1.3000 1.3561  1.4061  1.4515 1.4935  1.5328

(given)
/\2 1.6561 1.5962 1.5455 1. 5024 1.4651 1.4325

o= . 029242
FE)= ==
dlie _ e
ds " 4. 0746
Solution at station 2:
a, b‘2 <, d2 e, fz
£, .7850  .8496  .9098  .9661  1.0194  1.0700
. 6791 . 6327 . 6004 . 5760 . 5532 . 5311
/\a(ylvwl. 6561 1.5962 1. 5455 1.5024 1.4651 1.4325
g, --0679 . 0228 . 0977 . 1620 2177 . 2656
P, .6367 . 6780 . 6932 . 7308 . 7489 . 7635
7, 3.3310 3.5501  3.7485  3.9310 4.1015  4.2627
Q, .19116  .19093  .18604 . 18590 .18279  .17912
F({a) 2.439 2.523 2.574 2.608 2. 648 2. 697
B, 22°18*  21%36' 21915 20%591  20%41'  20°21
LY 0 -.0035 -. 0052 -. 0051 -. 0038 -. 0019
[ =679 Cp=.8190 Py =Py Q= G5 Ly
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Example Xb.

Solution for the rotor of Fig. 5 for the inverse problem in
which H (;‘3 ) and )\3= 0 are specified and the blade shape G (5;)
is to be determined.

Equations (27), (63 ), (65), (73), (75), {(77) (with appropriate

subscripts are applicable for the rotor in addition to the following

relation :
4
A4
7 =7
o = [(_@1 b [r ey 5 o },;_;-_L_@] ) .
3J (2/e.e 17 dz / 3) dgp(éﬂgz d{;Jdé G (83).
f‘.
Conditions at station 2 are the same as after the stator,
Example Xa.
_ dler _ S5
m = .029242 v = 2.8593 A3-o Gl £ )-%
Solution at station 3:
a3 b; €3 ds €3 f3
5; . 7600 . 8661 .9605 1.0464 1.1258  1.2000
¢3 . 2985 .3398 . 3627 . 3830 L4110 L4602
& -.0048 . 0269 . 1026 . 1794 . 2630 . 3682
Az 0 0 0 0 0 0
P3 . 6876 . 6873 . 6868 . 6857 . 6825 . 6758
Q, .20196 . 19280 . 18481 17763 .17105 . 16416

75 3.4049  3.5639  3.7388  3.8602  3.9940  4.1165
G(4) 2. 546 2. 549 2.648 2.732 2.739 2. 608

Bs 21°25  21°23* 2041 20%7'  20%02'  20°57
AT, o -.0001  +.0011  -.0010  +.0001  + 0002

C, =.2985 C, =.8985

1 2



89

Example XI

This example has been constructed to illustrate the increase
in gross thrust obtainable by the use of a radial total temperature
gradient.

A hypothetical one-stage turbine consisting of a stator and a
rotor has been assumed similar to that shown in Fig. 3. In order
to give this example more physical meaning, rotor blades have been
used which are tapered linearly in area in such a way that Lhe ralio
of hub to tip cross-sectional area is three. Using a rotor tip speed
of 1100 feet per second, the stress due to centrifugal forces was
calculated at various points along the blade. Using the high-tempera-
ture data for '""Vitallium", (H.S. 21) (NR-10), given in References 16
and 17, it was then estimated that the blade root could safely stand a
temperature of 1450°F, while the blade tip temperature could be
1850°F.

Using this data, the thrust of this turbine is calculated for
two conditions: (a) A constant radial total temperature of 1450°F,
and (b) a linear temperature gradient of 400°F with the same root
total temperature of 1450°F. The mass flow, boundary configuration,
combustion chamber total pressure, and work extracted are the same

in both cases.

Example Xla.

Solution for the stator and rotor of Fig. 3 with no radial total
temperature gradient and equal area coordinates. This is an isen-

tropic, subsonic solution to the inverse problem (H (f;) given).
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For no radial total temperature gradient, H ( {,7 ) = ;; As
= constant, and a cylindrical channel, Equation (82) reduces to
P, = C1 . Equations (63), (64), (65) and (67) are also used in

the solution for the stator.

Conditions at station 1: (given)

4, =2.7071 P, = 1.00 0, = 36940 @, = .4915
I =2.6726 P = .9562 Q = .35775 A =0
@ =880 228 T . = 1910°R (const.) W = 148.26 ——
Wk, = 1100 SS’C p, = 16,300 _%’_ H(é): 1.3964 (const.)
ft
R. =1.25ft m = .031650 Ay =0
Solution at station 2:
a, b2 c, d2 e,
£, .8000 .8544 .9055 .9539 1.0000
b, . 7260 .7260 .7260 .7260 .7260
As 1.7455 1.6342 1.5421 1.4639 1.3964
5 .4812 .5236 .5585 .5879 6125
Q, .21909 .23268 .24369 .25277 26027
7> 2.1965 2.2501 2.2921 2.3259 2.3533
F :-ﬁ-:— 2.404 2.251 2.124 2.016 1.923
A 22934 23°59! 25713! 26°25" 27°30°
M, 1.071 1.005 .951 .904 .873
Az, 0 +.0002 0 -.0003 -.0001
Cy = .7620 loe = L;e ) Pay = Prp» Oy = Oy
C, = .8114



For the rotor with no radial total temperature gradient,

H (f;‘(?) = constant, and )\3 = 0, the solution at station 3
is easily found to be:
¢, = .7806 Q, = .22525
A = 0 Ty, = 2. 3081
P3 = .5003 Q3t = .24798
(2 = 2.2211 P3t = .5724
a, b3 Cg d3 e
6‘=—£:'31 1.025 1.095 1.160 1.222 1.281
22 44°20"  42°25' 40°46'  39°17" 37°56'

Assuming isentropic expansion to atmospheric pressure through

an ideal nozzle, the total gross thrust is found to be 11,966 pounds.

Example XIb.

¥oo s

Solution for the same stator and rotor as Example Xla except

with a linear radial total temperature gradient of 400°F. The mass
flow, combustion chamber total pressure, and work extracted are the

same as in the above example.

Equations (27), (63), (64), (65), (67), and (82) are applicable.

Conditions at station 1: (given)

a) by ) d; €]

£, . 8000 .8544  .9055 .9539 1.0000
T,y 2.7071 2.8614 3.0062 3.1434 3.2741
P, 1.00 1.00 1.00 1.00 1.00
Q)4 . 36940 .34948 .33265 .31813 . 30543
P, .9512 .9512  .9512 .9512 .9512
7, 2. 6687 2.8208 2.9635  3.0988 3.2276
Q, . 35643 .33721 . 32097 . 30696 . 29471
b, .5185 . 5331 . 5467 . 5587 . 5705

Al 0 0 0 0 0



m.= .031650

d 7
as

Solution at station 2 :

®a
Az
P,
T
Q,
- Az
F = 5
Ba
M,
YA
c, =
C =

2

For the rotor with H (é)

42
. 5844

1.7455
. 5018

2.2231
. 22574
2.987
18°30°
1. 044

-. 0001

. 5844
.8212

92

=2.8350 H(%)
k2 2
.6975  .7955
1.6342 1.5421
. 5443 . 5774
2.4050 2.5697
. 22632 .22474
2.342 1.938
23%7'  27%18"
.974 .920
+.0054 +. 0064
Zét =?;t » P

= 1. 3964 (const), Asz=0

d

. 8819

1.4639
. 6036

2.7212
. 22183

1. 659
3109
. 878

+. 0049

= constant and

<

2

. 9589

1.3964
. 6249

2.8625
.21829
1.467
34°19!

. 850

+.0017

2t = Pre Qo 7 Qg

A; =0,

Equation (64) reduces to P3 = constant. Equations (63), (65), ( 71),

and the following integral are applicable:

(84).



Solution at station 3:

3t

3t

o 9

3t
_ %2

G—¢3

Pz

al,

.6002
0
.5289
2.2566
.23435
2.3081
5724
.24798
1.333
36°52"

0

7426
0
.5289
2.3853
22171
2.4624
5912
.24005
1.151
40"58"

-.0017

L= .6002

93

.8514
0
.5289
2.5060
.21103
2.6072
6075
.23300
1.064
43%13"

-.0023

.9397
0
.5289
2.6203
.20182
2.7444
.6220
.22658
1.015
44935"

-.0020

C, = .8336

J4

.986
45°22"

-.0011

Assuming isentropic expansion to atmospheric pressure

through an ideal nozzle, and summing the thrust by stream tubes,

the total gross thrust is found to be 12,883.8 pounds.

This is

an increase of 917.8 pounds, or 7.7 percent, over than found in

Example XIa.
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TABLE T — STREAMSURFACE COORDINATES, SLOPES AND CURVATURES
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FIG.8 —TYPICAL TURBINE VELOGITY DIAGRAM SHOWING SIGN
CONVENTION USED IN ALL EXAMPLES
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