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Abstract 

 The solution to the riddle of how a protein folds is encoded in the conformational 

energy landscape for the constituent polypeptide. Employing fluorescence energy transfer 

kinetics, we have mapped the S. cerevisiae iso-1 cytochrome c landscape by monitoring the 

distance between a C-terminal fluorophore and the heme during folding. Within 1 ms after 

denaturant dilution to native conditions, unfolded protein molecules have evolved into two 

distinct and rapidly equilibrating populations: a collection of collapsed structures with an 

average fluorophore-heme distance (r) of 27 Å and a roughly equal population of extended 

polypeptides with r > 50 Å. Molecules with the native fold appear on a timescale regulated 

by heme ligation events (~300 ms, pH 7). The experimentally derived landscape for folding 

has a narrow central funnel with a flat upper rim on which collapsed and extended 

polypeptides interchange rapidly in a search for the native structure. 

     Nonnative states of proteins are involved in a variety of cellular processes, including 

translocation of proteins across membranes and formation of amyloid fibrils. Probes that 

report on the structural heterogeneity of a polypeptide ensemble could resolve ambiguities in 

the classification of these states. We have shown that added anions shift the equilibrium 

between the compact and extended polypeptide structures that are present during refolding of 

Saccaromyces cerevisiae iso-1 cytochrome c. Specifically, at high salt concentrations (≥ 700 

mM), all the polypeptides are compact with a mean C-terminal fluorophore-heme separation 

quite close to that in the native protein (25 Å). Addition of chemical detaturants, on the other 

hand, tends to shift the equilibrium towards unfolded structures. 

 Folding of modified Fe(II) cyt c was probed by fluorescence in presence of imidazole 

with NADH as photochemical sensitizer. At very high imidazole concentrations (400 mM), 



 v
protein was still found to fold but the rate that coincides with Met80 ligation was slowed 

down significantly. 

 Reductive flash-quench/scavenge experiments, in which ascorbic acid was used to 

scavenge MeODMA•+, were shown to keep ferrocyt c reduced for up to 500 µs. Electron 

injection into unfolded modified yeast Fe(III)cyt c was fast in comparison to injection using 

NADH as photochemical sensitizer. The overall electron transfer process was reversible. 

This photoreduction system could be used to trigger folding of Fe(II) cyt c to monitor the 

changes in dansyl fluorescence intensity on µs time scales.  
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