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Abstract 

Linear cationic β-cyclodextrin (β-CD)-based polymers can bind with plasmid 

DNA to form colloid-sized composite particles (denoted as polyplexes) that are able to 

transfect cultured cells.  The effectiveness of gene delivery and the cellular toxicity have 

been related to structural features of the polycation.  β-CD polycations are prepared by 

the co-condensation of 6A,6D-dideoxy-6A,6D-diamino-β-CD monomers with other 

difunctionalized monomers such as dimethylsuberimidate (DMS).  In the first part of this 

thesis, synthetic variations of the β-CD structure are used to probe structure-function 

gene delivery properties.  The type of cyclodextrin and its functionalization are 

investigated by synthesizing numerous 3A,3B-dideoxy-3A,3B-diamino-β- and γ-CD 

monomers.  Both alkyl- and alkoxy-diamines are prepared in order to vary the nature of 

the spacing between the CD and the primary amines in the CD monomers.  These 

diamino-CD-monomers are polymerized with DMS to yield amidine-based polycations.  

The nature of the spacer between the CD-ring and the primary amines of each monomer 

is found to influence both molecular weight and polydispersity of the polycations.  When 

these polycations are used to form polyplexes with plasmid DNA, longer alkyl regions 

between the CD and the charge centers in the polycation backbone increase transfection 

efficiency and toxicity in BHK-21 cells, while increasing the hydrophilicity of the spacer 

(alkoxy versus alkyl) provides for lower toxicity.  Further, γ-CD-based polycations are 

shown to be less toxic than otherwise identical β-CD-based polycations.  

 Linear, cyclodextrin-based gene delivery systems, such as those described in the 

first part of this thesis, are amenable to forming polyplexes with a wide range of 

physicochemical properties that include size, surface charge, and density and type of 
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ligand presented.  However, it is not known how to best design these particles without 

having a set of physicochemical design constraints that have been optimized for the 

intended gene-delivery application.  In the second part of this thesis, I developed a model 

delivery system that can mimic the surface properties of the cyclodextrin-based gene-

delivery particles and used it to define design constraints that should be applied to next 

generation gene delivery particles.  As a test case, a well-defined nanoparticle-based 

system is developed to guide the rational design of gene delivery to hepatocytes in the 

liver.  The synthetic scheme allows for the variation of mean particle size and particle 

size distribution through variation in reaction conditions.  The nanoparticle synthesis is 

also amenable to incorporation of various ligand types, e.g., galactose, at tunable 

densities.  The synthesized nanoparticles are further shown to have PEGylated surfaces 

that resist aggregation in serum.  Finally, the availability of galactose to receptor binding 

is demonstrated by agglutination with RCA120. 

Four nanoparticles are synthesized specifically for the purpose of identifying 

design constraints to guide next generation gene delivery to the liver.  These 

nanoparticles are synthesized and described:  Gal-50 and Gal-140 are galactosylated 50 

nm and 140 nm nanoparticles, while MeO-50 and MeO-140 are methoxy-terminated 50 

nm and 140 nm nanoparticles.  All four particles have the same surface charge, and Gal-

50 and Gal-140 have the same surface galactose density. 

The hepatocyte uptake in vitro and hepatic distribution in vivo of these four 

nanoparticles is investigated.  In freshly isolated hepatocytes, Gal-50 nanoparticles are 

taken up to a greater extent than are MeO-50, but both 50 nm beads are taken up to a 

much greater extent than are either of the 140 nm nanoparticles.  However, about 90% of 
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the in vivo dose of Gal-140 nanoparticles is found within the liver 20 minutes after tail-

vein injection.  TEM and immunohistochemistry images confirm that Gal-140 

nanoparticles are primarily internalized by Kupffer cells, though isolated examples of a 

few Gal-140 in hepatocytes can also be found.  On the other hand, Gal-50 nanoparticles 

are overwhelmingly found in vesicles throughout the cytoplasm of hepatocytes, with only 

isolated examples of Kupffer cell uptake.  Despite similar surface charge and ligand 

density, 50 nm nanoparticles are primarily found in hepatocytes while 140 nm 

nanoparticles are primarily seen in Kupffer cells.  It is therefore clear that slightly 

anionic, galactose-PEGylated nanoparticles should be about 50 nm in diameter to 

preferentially target hepatocytes while they should be about 140 nm in diameter to 

selectively target Kupffer cells. 
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Gene therapy involves the manipulation of cellular gene expression in such a way 

that it will be corrective to the patient but not inherited to the next generation.  Gene 

therapy promises to revolutionize the clinical treatment of countless genetic disorders in 

decades to come, but human gene therapy today is still in its infancy.  For clinical gene 

therapy to become commonplace, improvements must be made in the design of gene 

delivery vectors to improve gene expression efficiency, as well as in the overall 

physicochemical properties of the gene delivery particles to improve target selectivity.  

This thesis addresses issues aimed at improving the prospects of gene therapy.  

This thesis is composed of two separate parts.  In the first part, synthetic 

variations of linear, cyclodextrin-based polycations are used to probe structure-gene 

delivery properties.  The synthesis and characterization of new cyclodextrin-polycations 

are described, followed by the results of in vitro assays that allow for the elucidation of 

structure-function relationships.  In particular, the impact of cyclodextrin-type and nature 

of the spacer between the cyclodextrin and the charge center on toxicity and transfection 

efficiency in BHK-21 cells is investigated.  A discussion follows that ties together the 

results and relates this work to other structure-function studies performed in our group. 

Chapter Three through Chapter Six represent Part Two of this thesis.  Part Two 

discusses the development, characterization and results of uptake experiments of a 

nanoparticle-based model system that approximates the physicochemical properties of 

linear, cyclodextrin-based polycations such as those discussed in Part One.   

Chapter Three provides an introduction to gene delivery to the liver.  First an 

overview of liver structure and physiology is presented, along with a number of images to 

clarify the discussion.  A number of liver diseases are then discussed as candidates for 
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treatment by gene therapy, and the potential advantages of gene therapy over 

conventional treatment are outlined.  Specifically targeting non-viral gene delivery 

polyplexes to the desired liver cells to treat these diseases has proved difficult, and the 

importance of developing a nanoparticle-based model system that mimics the surface 

properties of our cyclodextrin-based polyplexes is discussed.  Other requirements of the 

model system are also presented. 

Chapter Four begins with a brief discussion of the importance of PEGylating 

nanoparticle-based systems for in vivo applications and then details the synthesis and 

characterization of the nanoparticles mentioned in Chapter Three.  FITC-embedded 

carboxy-polystyrene nanoparticles were reacted with PEG to form protective coronas that 

shielded any hydrophobic surfaces from contact with other nanoparticles or massive 

protein adsorption from serum.  By careful control of reaction conditions, the mean 

nanoparticle diameter as well as the particle size distribution could be varied and matched 

to the actual size distribution of polyplexes.  Galactose can be conjugated to the 

nanoparticles at different surface densities, and the accessibility of the galactose moieties 

to lectin binding is demonstrated.  Four nanoparticles are described that will be carried 

forward for in vitro and in vivo uptake experiments, which are presented in Chapter Five. 

Chapter Five begins by discussing why freshly isolated hepatocytes were used for 

in vitro experiments instead of commonly used hepatocarcinoma cell lines. A discussion 

of in vitro results follows, in which plated hepatocytes and suspended hepatocytes are 

both utilized.  A set of experimental conditions is then identified that maximizes hepatic 

uptake following injection of nanoparticles.  The effects of dose and time gap between 

injection and liver removal are studied and results are presented.  Once experimental 
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conditions are set, the overall uptake of each of the four nanoparticles into hepatic tissue 

is studied and results are discussed.  TEM analysis of liver cross-sections provides 

information on hepatic distribution and intracellular trafficking of the nanoparticles, and a 

number of representative images are presented.  Finally, an immunohistochemical 

staining procedure is developed and introduced by way of illustration on an actual TEM 

image.  Results of these three-color images are discussed and overall conclusions are 

drawn. 
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2.1  Introduction 

Numerous non-viral gene delivery studies are involved in elucidating the 

relationships between vector structure and transfection efficiency by modifying 

promising systems and assaying their performance.  This ongoing research has 

demonstrated the significant influence of polycation structure on the efficiency of gene 

delivery.  Poly(ethyleneimine)s (PEIs) are a widely-studied class of polycations for gene 

delivery.  PEI molecular weight has been shown to affect both cytotoxicity and 

transfection efficiency (1, 2).  The charge density (1) and degree of branching (3) in the 

PEI backbone also significantly alter transfection efficiency in vitro.  Furthermore, 

substituents grafted onto PEI affect the interaction of PEI with DNA as well as PEI/DNA 

polyplex interactions with cells (4-6, and references therein).  Ionenes are another class of 

gene delivery vehicles whose structure has been related to stability of interaction with 

DNA (7) and to transfection efficiency (8).  Structure-function studies have also been 

undertaken with systems based on chitosan (9), poly(L-lysine) (10), linear 

poly(amidoamine)s (11), polysaccharide-oligoamine conjugates (12) and others.  It is 

clear from these reports that minor changes in the structure of the gene delivery vehicle 

can have dramatic effects on the gene delivery efficiency and toxicity of the vector. 

We have prepared families of linear, β-cyclodextrin-containing polycations 

(βCDPs) and have shown that these polymers can be used as gene delivery vectors (13, 

14).  Cyclodextrins (CDs) are cup-shaped molecules formed of cyclic oligomers of 

glucose.  Cyclodextrins comprised of 6, 7 and 8 glucopyranose units are called α-, β- and 

γ-CD, respectively (β-CD is represented in Figure 2.1).  There are three distinct 
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hydroxyls per glucopyranose unit; two secondary carbons and one primary carbon bear 

these hydroxyls and they are labeled C(2), C(3) and C(6), respectively (Figure 2.1).  The 

glucopyranose units are denoted alphabetically starting with ‘A’ and proceeding around 

the cyclodextrin ring (Figure 2.1). 
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Figure 2.1.  Representations and labeling of β-cyclodextrin. 

Initial structure-function studies with βCDPs demonstrated the importance of 

inter-charge spacing to transfection efficiency and toxicity (14).  Significant effects on 

transfection efficiency were observed when the inter-amidine distance was reduced by 

just 2Å.  Based upon this finding, we initiated a more complete structure-function 

investigation using linear, cyclodextrin-containing polycations.  In part 1 of our study, we 

showed that cellular toxicity was related to the distance of the charge center from the 

carbohydrate unit (whether it be a cyclodextrin or trehalose), and that increasing 

polycation hydrophilicity provides decreasing toxicity (15).  Part 2 of our work revealed 

that the type of charge center can dramatically change the delivery efficiency (16).  With 

the βCDPs, amidine charge centers give greater gene delivery than quaternary 

ammonium charge centers.  Here, we vary the type of cyclodextrin (β and γ) and the 

functionalization at the cyclodextrin, i.e., 3A,3B-dideoxy-3A,3B-diamino-β- and γ-CD, as 

compared to the previously used 6A,6D-dideoxy-6A,6D-diamino-β-CD, to prepare a 
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distinct series of linear, cyclodextrin-containing polycations.  Additionally, we report the 

effects of spacer length between the cyclodextrin and the charge center in order to make 

direct comparisons between otherwise identical β- and γ-CD-based polyamidines.  The 

polycations were characterized and assayed for plasmid DNA (pDNA) binding, polyplex 

size and ζ-potential, and in vitro transfection efficiency and toxicity. 

 

2.2  Materials and Methods 

β- and γ-cyclodextrins were purchased from Wacker Biochem Corp. (Adrian, MI) 

and dried in vacuo at 120°C overnight before use.  Chlorosulfonic acid (Alfa Aesar; 

Ward Hill, MA) was distilled before use.  Dimethyl suberimidate•2HCl (DMS) was 

purchased from Pierce Endogen (Rockford, IL) and used without further purification.  All 

other reagents were obtained from commercial suppliers and were used as received.  Ion-

exchange chromatography was run on a Toyopearl SP-650M (TosoHaas; 

Montgomeryville, PA) column (NH4
+ form) and products were eluted with aqueous 

ammonium bicarbonate up to 0.4M.  Thin-layer chromatography was performed on Silica 

Gel 60 F 254 plates (EM Separations Technology; Gibbstown, NJ) and the amino-

compounds were eluted with 5:3:3:1 n-PrOH:AcOEt:H2O:NH3(aq) and visualized by 

reaction with ninhydrin.  Matrix-assisted, laser desorption/ionization time-of-flight mass 

spectroscopy (MALDI-TOF-MS) was performed on a PerSeptive Biosystems Voyager 

DE PRO BioSpectrometry Workstation in the positive ion mode using a 2,5-dihydroxy 

benzoic acid matrix. NMR spectra were recorded on a Bruker AMX500 spectrometer as 
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dilute solutions of either D2O or DMSO-d6.  Dialysis was carried out using a 3500 

molecular weight cutoff regenerated cellulose dialysis cassette (Pierce Endogen). 

 

2.2.1  Synthesis of Benzophenone-3,3’-disulfonyl Chloride (1, Scheme 2.1)  

26.06 g (0.143 mol) of benzophenone were added in small portions to 190 mL 

(2.86 mol) of freshly distilled chlorosulfonic acid under an argon atmosphere.  The 

solution was then heated to 120°C with reflux.  After 20 hours at 120°C, the cooled 

solution was added slowly to about 1000 g of ice in a 2L Erlenmeyer flask.  The slurry 

was poured into a separatory funnel then extracted with chloroform (350 mL then 300 

mL) and washed with saturated NaHCO3 (200 ml), water (200 mL) and saturated NaCl 

(200 mL, twice).  The chloroform was removed under reduced pressure.  The yellow 

solid obtained was recrystallized twice from chloroform/hexanes.  The first-crop yielded 

30 g of off-white crystals; thesecond-crop yielded 5.4 g.  (65% yield).  Anal. (C13-

H8Cl2O5S2) C, H, Cl, S. 
O

ClSO3H

O

S SO O O O
Cl Cl

O

Imidazole, Et3N

N

N

N

N
S SO O O O

1200C, 20 hrs 2 hrs

1

2  

Scheme 2.1.  Synthesis of Benzophenone-3,3’-disulfonyl Imidazole (2) 
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2.2.2  Synthesis of Benzophenone-3,3’-disulfonyl Imidazole (2, Scheme 2.1) 

13 g (34.3 mmol) of 1 were dissolved in 150 mL chloroform.  Imidazole (4.95g, 

72.7 mmol) and Et3N (10.2 ml, 73.2 mmol) were added.  After about 30 minutes of 

stirring, 50 mL of dichloromethane were added to the slurry and allowed to stir for an 

additional 30 minutes.  About 200 mL of dichloromethane were required to homogenize 

the reaction slurry, which was then washed with water (200 mL, twice) and dried with 

sodium sulfate.  Benzophenone-3,3’-disulfonyl-imidazole, 2, was recrystallized from 

dichloromethane/ethyl acetate giving 13.9 g of colorless needles (92% yield).  Anal. (C19-

H14N4O5S2) C, H, N, S.  NMR data were in agreement with published chemical shifts 

(17). 

 

2.2.3  Synthesis of cyclodextrin-polycations (6a-d and 7a-d, Scheme 2.2).   

Syntheses of 2A,2B-disulfonated β-cyclodextrin (17) (3a) and 2A,2B-disulfonated 

γ-cyclodextrin (18) (3b) were carried out according to literature methods.  NMR and 

mass spectra data were in agreement with published values (17, 18).  Syntheses of 3A,3B-

di(aminoalkylamino)-β- and 3A,3B-di(aminoalkoxyamino)-γ-cyclodextrins (4a-d and 5a-

d) were carried out as exemplified by the following procedure. 

Synthesis of 5c 

Hexamethylenediamine (5.89 g, 50.7 mmol) was dissolved in 35 mL degassed 

water.  3b (1.50 g, 0.88 mmol) was added at once and stirred at 37OC under nitrogen for 
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19 hours.  The reaction was further carried out at 70OC for 3 hours then concentrated 

under reduced pressure.  Cyclodextrins were precipitated with 11:1 acetone:methanol and 

collected by filtration.  Ion-exchange chromatography yielded the pure product (855 mg, 

54% yield).  MALDI-TOF-MS [M+H]+ = 1493.7. 
The polycations were prepared as exemplified by the following procedure. 

Synthesis of 7c 

5c (100mg, 54.7 µmol) and DMS (15.5 mg, 56.7 µmol) were taken up in 108 µL 

0.5M Na2CO3 and stirred for 13 hours.  Acidification with 1N HCl to pH 2.0 followed by 

exhaustive dialysis yielded 58.4 mg of a white powder (56% yield). 
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Scheme 2.2.  Synthesis of Cyclodextrin-polycations (6a-d and 7a-d). 

 

2.2.4  Light Scattering and Molecular Weight Determination 

The specific refractive index (RI) increment, dn/dc, of each polycation was 

determined by fitting a linear curve to plots of RI versus concentration (five data points 
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per polycation).  Polycations were then analyzed on a Hitachi D6000 HPLC system 

equipped with an ERC-7512 RI detector and a Precision Detectors PD2020/DLS light 

scattering detector using a PL aquagel-OH column (Polymer Laboratories, Amherst, 

MA).  The eluent was 0.8 M ammonium acetate with 0.05% sodium azide, adjusted to pH 

2.8 with phosphoric acid and flowing at 0.7 mL/min.  RI values were measured on a Carl 

Zeiss refractometer (Max Erb Instrument Co., Burbank, CA) in the same eluent as used 

for HPLC analysis. 

 

2.2.5  Plasmid DNA 

Plasmid pGL3-CV (Promega; Madison, WI) was amplified with the DH5α strain 

of E. coli (Gibco BRL; Gaithersburg, MD) and purified using the Ultramobius 1000 kit 

(Novagen; Madison, WI).  This plasmid encodes the firefly luciferase gene under control 

of the SV40 promoter. 

 

2.2.6  Polyplex Formation and Characterization 

Polyplexes were formulated by adding polycation solutions in dH2O to an equal 

volume of plasmid DNA (pDNA) in dH2O (0.05 mg/mL final pDNA concentration) and 

incubating for 30 minutes.  Desired charge ratios were achieved by using appropriate 

concentrations of polycation solution.  Each polycation was examined for its ability to 

bind pDNA through a gel electrophoresis assay using a 0.8% agarose gel (30 µg ethidium 
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bromide/50 mL TAE buffer).  Particle size and ζ-potential of polyplexes were analyzed 

using a ZetaPALS instrument (Brookhaven Instruments; Holtsville, NY). 

 

2.2.7  Cell Culture and Transfections 

BHK-21 cells were maintained at 37°C in 5% CO2 atmosphere in Dulbecco's 

Modified Eagle's Medium supplemented with 10% fetal bovine serum, 100 U/mL 

penicillin, 0.1 mg/mL streptomycin and 0.25 µg/mL amphotericin B (Gibco BRL).  For 

transfections, cells were seeded at 50,000 cells/well in 24-well plates.  Trypan blue 

exclusion was used to verify cell viability above 95%.  At one day, cells were exposed to 

200 µL serum-free medium containing 1 µg pGL3-CV plasmid pre-assembled with CD-

containing polycations at various charge ratios.  After four hours, polyplex solutions were 

removed from the cells and replaced with 1 mL regular growth medium.  For 

measurement of luciferase activity and toxicity, cells were lysed two days after 

transfection with 1X Cell Culture Lysis Reagent (Promega).  The Luciferase Assay 

System (Promega) was used to measure luciferase activity of cell lysates on a Monolight 

2010 luminometer (Becton Dickinson Biosciences; San Jose, CA).  Total protein content 

of cell lysates was assessed with the DC Protein Assay (Bio-Rad; Hercules, CA) that is a 

derivative of the Lowry assay. 

 

Supporting Information Available: MALDI-TOF spectra of CD-monomers 4a-

d and 5a-d.  This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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2.3  Results 

2.3.1  Polycation Synthesis and Characterization 

β- and γ-CDs were selectively di-functionalized through a stapling reaction with 

benzophenone-3,3’-disulfonyl-imidazole (Scheme 2.1).  These intermediates react with 

various alkyl- and alkoxy-diamines to yield 3A,3B-di(aminoalkylamino)-CDs with various 

spacing groups between the carbohydrate ring and the primary amine (Scheme 2.2).  The 

difunctionalized amino-CD monomers were polymerized with DMS to give polycations 

with properties shown in Table 2.1.   

 

Polycation Polymerization
Yield (%)

dn/dc
(mL/g)

Mw (kDa) Mw/Mn Average degree
of polymerization

6a 32 0.1029 10.0 1.1 6
6b 44 0.1406 8.1 1.3 5
6c 61 0.1515 13.9 1.7 8
6d 74 0.1322 13.0 1.4 7

7a 32 0.1085 9.3 1.1 5
7b 47 0.1386 9.6 1.4 5
7c 56 0.1237 14.7 1.6 8
7d 58 0.1279 13.3 1.3 7  

Table 2.1.  Effect of cyclodextrin comonomer structure on polymerization. 

 

The choice of CD-comonomer influences the polymerization with DMS; 

polymerization yield increases with increasing distance between the cyclodextrin-ring 

and the primary amine on the CD-monomer.  Similar yield trends were observed for 

otherwise identical β- and γ-CD polycation syntheses.  CD-monomers with fewer than 
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four methylenes between the cyclodextrin and the primary amine yielded polycations 

with an average degree of polymerization (DOP) of 5 or 6, while those synthesized from 

monomers with over four spacer methylenes produced an average DOP of 7 or 8.  An 

increase in polydispersity accompanied the increase in polycation length. 

 

2.3.2  Polyplex Formation and Characterization 

 

Figure 2.2. Agarose gel electrophoresis of polycation/pDNA complexes.  For each 
polycation, complexes were formulated at charge ratios (+/-) of 0, 0.5, 1.0, 1.5, 2.0, 2.5, 
and 3.0 and run in order of increasing charge ratio (left to right) on a 0.8% agarose gel. 
 

To demonstrate polycation interaction with pDNA, polyplexes were formulated 

and run on a 0.8% agarose gel at a range of charge ratios.  Polycations 6a and 7a did not 

completely retard DNA below a charge ratio of 1.5, while 6b-d and 7b-d retarded DNA 

at charge ratios of 0.5 and above (Figure 2.2).  The diameter of polycation/pDNA 

polyplexes varied between 100 and 150 nm, while the associated ζ-potentials were all 

found to be positive (Table 2.2). 
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Polycation Particle diameter (nm) Zeta potential (mV) 
6a 121.5 ± 1.3 12.5 ± 0.3 
6b 96.4 ± 1.1 6.4 ± 1.1 
6c 107.7 ± 0.9 16.7 ± 1.7 
6d 88.2 ± 6.9 27.7 ± 1.0 
7a 124.1 ± 1.6 23.3 ± 0.5 
7b 118.6 ± 23.9 17.5 ± 3.0 
7c 153.3 ± 1.7 9.6 ± 1.1 
7d 102.9 ± 1.0 30.7 ± 1.4 

 
Table 2.2.  Particle sizing and zeta-potential of polycation/pDNA complexes formulated 
at charge ratio (+/-) of 5. 
 

2.3.3  In Vitro Transfection Efficiency  

In vitro transfection efficiency to BHK-21 cells was assessed in triplicate at 

charge ratios (+/-) of 2, 4, 6, 8, 10, 15 and 20.  Lysates of transfected cells were assessed 

for luciferase activity by measuring the relative light units (RLU) normalized by total 

protein content (Figure 2.3).   
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Figure 2.3.  Relative light units (RLU)/mg protein as a function of charge ratio for 
cyclodextin-polycation/pDNA complexes.  Complexes were formulated at various charge 
ratios and exposed to BHK cells in serum-free medium for four hours.  48 hours after 
exposure, the cells were assayed for luciferase activity.  Charge ratio of 0 indicates naked 
pDNA. 
 

Among the diaminoalkyl-CD analogues, 6a-c and 7a-c, increased spacer length 

produced greater transfection efficiency, with more pronounced enhancements between 

the a and b variants in each series.  The diaminoalkoxy-CD analogues, 6d and 7d, 

demonstrated intermediate levels of luciferase expression, below that achieved with the b 

analogues.  Generally speaking, the β-CD and γ-CD polycations with identical spacers 

produced similar luciferase gene expression. 
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2.3.4  In Vitro Cellular Toxicity 

The total protein content of cell lysates was used as a measure of polyplex and/or 

polycation toxicity (Figures 2.4 and 2.5).   
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Figure 2.4.  Cell viability to exposure of polycation/pDNA complexes at various charge 
ratios.  Cells were assayed for viability 48 hours after exposure to complexes; data were 
normalized with respect to untreated cells. 
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Figure 2.5.  Comparison of the toxicity of polycation alone to polycation/pDNA 
complexes.  Cells were exposed to polycation alone or to an equal amount of polycation 
complexed with pDNA; “charge ratio” for polycation alone merely represents amount of 
polycation.  Total protein concentrations in cell lysates were used as a measure of 
viability; data were normalized using values for untreated cells. 
 

The fractional cell survival of transfected cells was assessed by comparison to 

untransfected cells.  Amongst the charge ratios investigated, polycations 6a-c and 7a-c 

demonstrated a marked decrease in cell viability with increased spacer length; 6d and 7d 

were essentially non-toxic at the concentrations employed.  For the b and c analogues, 

cell viability decreased with increasing charge ratio and was worse for the β-CD 

polycations than for the γ-CD polycations.  The toxicity of each polycation was 
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independent of the presence of pDNA, as determined by comparison of polyplex-

transfected cells with those exposed to an equal amount of polycation alone (Figure 2.5). 

 

2.4  Discussion 

Previous studies of β-cyclodextrin-containing polycations (βCDPs) have 

demonstrated the importance of polycation structure to cellular toxicity and in vitro 

transfection efficiency.  The effect of inter-amidine distance (14) has been elucidated, as 

has the importance of using a bulky cyclodextrin instead of a smaller carbohydrate such 

as trehalose (15).  Here, we investigated the relevance of cyclodextrin ring size by 

studying otherwise identical series of β- and γ-cyclodextrin polycations.  Within each 

series, the length and character of the spacer between the cyclodextrin ring and the 

amidine charge center were varied to understand the importance of these additional 

variables in our system.  Such an approach allows the direct evaluation of the effect of 

cyclodextrin-type on in vitro transfection efficiency and cellular toxicity as well as 

providing further insights into the role of charge spacing along the polycationic 

backbone.  For in vivo application of the polycations described in this report, 

modifications are required to impart salt and serum stability.  Methodologies for 

modifying similar cyclodextrin-based polycations for in vivo use are available in our 

earlier publication (20). 

 The β- and γ-CD-based series of polycations follow remarkably similar trends in 

DOP.  DOP is found to increase with distance between the reactive primary amines of the 

CD-monomers and the cyclodextrins themselves.  As the number of methylenes between 
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the cyclodextrin and primary amine increases, an increase in DOP is observed with an 

accompanying increase in polydispersity.  All polycations shown here have an average 

DOP between 5 and 8, corresponding to an average of 10 – 16 amidine charge centers per 

polycation chain.  Assuming these differences in DOP do not significantly affect 

polycation performance, a direct correlation may be made between polycation structure 

and the observed performance. 

 Previous work demonstrated that the transfection efficiency and toxicity achieved 

with CD-containing polycations are affected by the presence of cyclodextrins and by the 

alkyl chain length between charge centers (14, 15).  Here, it is demonstrated that the 

transfection efficiency and toxicity of a related set of polycations are affected by the 

structure of the spacer separating the CD ring from the charge centers and, to a lesser 

degree, the type of CD used. 

 Diaminoalkyl-CD polycations 6a-c and 7a-c exhibit a marked increase in 

transfection efficiency as the spacer length increases, particularly with the increase from 

2 to 4 methylene units.  Dramatic differences between the a and b analogues are observed 

despite only a small change in polycation structure (a 2Å increase in distance between the 

cyclodextrin and the amidine charge center).  A smaller but significant increase in 

transfection efficiency is observed between the b and c analogues.  Polycations 6a and 7a 

gave low levels of luciferase expression that gradually increased with increasing charge 

ratio.  Optimum expression levels observed with these two polycations were of the same 

order as transfection efficiencies seen with polycations 6b, 6c, 7b and 7c at the lowest 

charge ratios.  Having reached relatively high transfection efficiencies at the lowest 

investigated charge ratios, polycations 6b, 6c, 7b and 7c did not display the steady and 
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marked increase with charge ratio seen with 6a and 7a.  Beyond a charge ratio of 6+/-, 

only 7b demonstrated a significant increase in luciferase expression. 

 The least effective polycations, 6a and 7a, are also observed to require the highest 

charge ratio to completely retard pDNA in the electrophoresis assay.  Previous work with 

CD-containing polycations has shown a correlation between relative binding efficiency 

and transfection efficiency (15).  The reduced binding efficiency associated with 

decreased spacer length may result from the bulky cyclodextrins impeding the access of 

polycation amidines to pDNA phosphates. 

 The presence of CDs in the polycation backbone has been shown to produce a 

dramatic reduction in toxicity of β-CD-containing polycations (13-16).  In part 1 of our 

study (15), 6A,6D-dideoxy-6A,6D-diamino-β-CDs were studied, while 3A,3B-dideoxy-

3A,3B-diamino-β- and γ-CDs are investigated here.  The transfection and toxicity assays 

employed in this series of papers do not indicate any advantages of functionalization of 

the CD at the C(3)-position over functionalization at the C(6)-position.  In part 1 it was 

shown that longer spacer lengths between the CD and the charge center result in 

increased toxicity; that is in agreement with the result that polycations 6a-c and 7a-c 

demonstrate an increase in toxicity as the CD-amidine distance is increased.  These 

results suggest that there is a toxicity-mediating influence of the CD on the cationic 

center, regardless of the site of CD-derivatization.  The CD may be affecting the 

interaction of the amidine charge centers with intracellular entities through its steric bulk 

and/or large sphere of hydration and thus lowering the toxicity of amidine-containing 

polycations.  The bulkiness of the CD also hinders access of polycation amidines to 

pDNA phosphates.  Since CD bulkiness and/or sphere of hydration correlate with the 
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trends in both toxicity and transfection efficiency, the observation that decreases in 

toxicity are associated with decreases in transfection efficiency and effective pDNA 

binding strength is self-consistent. 

 The diaminoalkoxy-CD polycations 6d and 7d demonstrate an intermediate level 

of transfection efficiency and insignificant toxicity.  Although this polycation pair 

provides the largest spacing between the CD and amidine residues among polycations in 

this study, the hydrophilic nature of the alkoxy spacer likely enlarges the effective 

hydration sphere around the cyclodextrin ring.  In addition, the alkoxy spacer has more 

flexibility than alkyl spacers.  These factors somehow mitigate the toxicity of polycations 

6d and 7d.  The change in transfection efficiency as a function of charge ratio is also 

intermediate relative to the diaminoalkyl-CD polycations; RLU/mg protein readings with 

polycations 6d and 7d rose gradually up to a charge ratio of 6+/-, above which no 

increase is observed. 

Each polycation produced measurable luciferase expression above background 

levels; the luciferase activities of untreated cells and cells treated with polycation alone 

are roughly 5*103 RLU/mg protein (data not shown) while the luciferase activity of cells 

treated with pDNA alone is roughly 5*104 RLU/mg protein.  For comparison, BHK-21 

cells were transfected with complexes of pDNA formulated with 25 kDa branched 

polyethylenimine or with βCDP6 (14).  Polyethylenimine complexes at an N/P of 5 were 

found to give luciferase activity of 5*109 RLU/mg protein (data not shown).  βCDP6 

complexes produced 2*108 RLU/mg protein at a charge ratio of 10+/- (data not shown). 

Here, analogous β- and γ-CD-containing polycations produced similar levels of 

gene expression, with the exception that polycations 6b and 6c outperform their γ-CD-
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containing analogues 7b and 7c at charge ratios of two and four; however, these 

differences do not persist as the charge ratio is increased.  At higher charge ratios, 

toxicity differences between the β-CD-containing polycations 6b and 6c and the γ-CD-

containing analogues become apparent, with the γ-CD-containing polycations being less 

toxic.  It is again interesting to note the correlation between enhanced transfection 

efficiency and increased toxicity. 

The peripheral diameter of γ-CD is about 17.5 Å while that of β-CD is about 15.4 

Å (19), highlighting the importance of even small variations in the CD-containing 

polycation system to in vitro performance.  Since the polycation backbone goes through 

adjacent sugar residues of the cyclodextrin ring in the case of the β- and γ-CD 

polycations discussed in this report, the linear backbone structure varies minimally 

between the two.  However, the remainder of the cyclodextrin-ring, which can be 

considered pendant to the backbone, is certainly larger in the case of γ- over β-CD. 

In part 1, Reineke and Davis showed that trehalose-based polyamidines are more 

toxic than those based on β-CD.  Here, CD-containing polycations demonstrate an 

increase in toxicity with an increase in distance between the CD and the amidine charge 

center and with a decrease in the size of the CD-ring.  Together, these results are 

consistent with the hypothesis that the size of the carbohydrate moiety and its associated 

sphere of hydration (overall increase in hydrophilicity) mitigate the toxicity of the 

amidine-based polycations. 

We have described the synthesis and characterization of a family of cyclodextrin-

containing polycations and demonstrated significant and clear effects of polycation 

structure on in vitro gene expression efficiency and cellular toxicity against BHK-21 
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cells.  The structure of diaminated cyclodextrins was found to influence both the 

molecular weight and polydispersity of polycations resulting from reaction of these 

compounds with dimethyl suberimidate.  Longer alkyl regions in the polycation backbone 

increased transfection efficiency and toxicity, while increasing hydrophilicity was 

toxicity-reducing.  Further, γ-CD polycations were shown to be less toxic than otherwise 

identical β-CD polycations. 
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3.1  Introduction 

Gene therapy promises to revolutionize the clinical treatment of countless genetic 

disorders,1 including many diseases of the liver.2  Though human gene therapy of liver 

diseases is still in its infancy, preclinical studies in animal models of disease have 

demonstrated proof of concept results in nearly all varieties of liver diseases that are 

conceptually amenable to gene therapy treatment. 

 

3.2  Liver Structure and Physiology 

The liver can be thought of as the guardian that resides between the digestive tract 

and spleen and the rest of the body.  In treating blood from the digestive system, the liver 

is handling large amounts of nutrient amino acids, lipids, vitamins and pollutant 

xenobiotics that enter the body in food and water.  In this capacity, the liver is responsible 

for metabolically regulating the excess of amino acids and ammonia derived from the 

intestine and its bacterial flora, glycogen production and storage, and processing of 

greasy compounds into water-soluble forms for excretion in bile.   

In addition to processing ingested materials, the liver has many other 

responsibilities including synthesizing the majority of the body’s total secretory protein, 

forming bilirubin and bile acids in relation to bile secretion, and removing bacteria, dying 

platelets and other particulate matter from circulation. 
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Figure 3.1.  Illustration of liver structure.  Reproduced with permission from Novartis 
Pharmaceuticals Corporation.  Circles point out mixing of blood flow from the hepatic 
artery with blood flow from the portal vein. 
 

The portal vein collects all the blood that leaves the spleen, stomach, small and 

large intestine, gallbladder and pancreas and carries it to the liver.  Approximately 75% 

of the blood flowing into the liver arrives through the portal vein,3 while the remaining 

25% of blood flow arrives via the hepatic artery and provides necessary oxygen for 

hepatic function.  Blood flowing through the portal vein and hepatic artery undergoes 

about 5 or 6 branches as it snakes through the liver, until finally blood from these two 

sources is mixed in the sinusoidal bed of the microvasculatory unit (black circles in 
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Figure 3.1 highlight mixing of blood flow from the two sources).  Sinusoids of the liver 

are specialized capillaries lined with Kupffer cells and endothelial cells that generally 

drain into central veins that ultimately empty into the inferior vena cava.  Single-cell 

thick sheets and beams of hepatocytes, which are the liver parenchymal cells, are 

surrounded on each side by sinusoidal channels and are protected by flattened endothelial 

cells that line the sinusoid and perform barrier functions.  

S
R

H

H H

K

K S

H

E

 

Figure 3.2.  TEM image of 20 nm thick section of normal mouse liver.  ‘H’ indicates a 
hepatocyte nucleus, ‘K’ indicates a Kupffer cell nucleus, ‘R’ labels a red blood cell, ‘S’ 
labels a sinusoid and ‘E’ points to an endothelial cell lining the sinusoid. 
 

Kupffer cells (‘K’ in Figure 3.2) are highly phagocytic members of the 

reticuloendothelial system that extend directly into sinusoids and monitor blood entering 

the sinusoid for material that can be phagocytosed or endocytosed.  Kupffer cells have 
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receptors for galactose, mannose, insulin and many other ligands.4  The functions of 

Kupffer cells include phagocytosis of particulate matter, detoxification of endotoxin, 

secretion of mediators, mediation of various immune reactions, uptake and catabolism of 

lipids and glycoproteins including many enzymes, and prolongation of the life of 

hepatocytes.5   

Hepatocytes (‘H’ in Figure 3.2) are polyhedral multifaced cells with eight or more 

surfaces.  In addition to their distinctive shape, hepatocytes are characterized by large 

regular nuclei, a large number of cytoplamic organelles and a high degree of internal 

organization.  Hepatocytes possess a rich network of endoplasmic reticulum (ER) that is 

related to the well-developed secretory function of the liver6 since secretory proteins are 

synthesized selectively in the rough endoplasmic reticulum.7, 8  The most intensive 

synthesis of proteins in the liver occurs in the ER of hepatocytes,9 since the majority of 

all blood proteins originate from hepatocytes.  In addition to many other metabolic and 

catabolic functions, hepatocytes are uniquely responsible for regulating the excess of 

amino acids and ammonia from the intestine with the urea cycle, regulating lipid 

metabolism related to massive intestinal absorption of lipids and formation of bilirubin 

and bile acids in relation to bile secretion.   
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Endothelial cells

H

Figure 3.3.  TEM image of 20 nm thick section of normal mouse liver, showing liver 
sinusoidal endothelial cells separating hepatocytes from the blood vessel. 
 

Given the critical regulatory, metabolic and catabolic roles played by hepatocytes, 

it is not surprising that access to the hepatocyte cell membrane is restricted (Figure 3.3).  

The barrier between sinusoidal blood flow and access to hepatocytes is largely governed 

by capillary endothelial cells, including Kupffer cells and liver sinusoidal endothelial 

cells (LSEC).  Though LSEC are active in the uptake of macromolecular plasma solutes 

through fluid-phase endocytosis,10 the primary function of LSEC is to act as a selective 

barrier between blood and hepatocytes by restricting access to materials that can pass 

through pores in the endothelial cell lining of sinusoids.  These pores, known as 

fenestrae, measure approximately 175 nm near the portal venule, while those near the 



 36
hepatic venules measure approximately 147 nm.11  However, with the decreasing average 

diameter of the fenestrae, a 50% increase in their frequency is observed.  Due to this 

physical constraint, 150 nm is a generally accepted maximum size cutoff for accessing 

hepatocytes in vivo.  Turbulent flow and mechanical agitation result in minimal resistance 

to passage of appropriately sized particles through the fenestrae.12  Taken together, 

Kupffer cells and LSEC form a coordinated defense system that protects hepatocytes 

against injury from viruses, bacteria and toxins.     
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Figure 3.4.  TEM image of 20 nm thick section of normal mouse liver, showing liver 
sinusoid, liver sinusoidal endothelial cells (‘E’) and space of Disse (‘SoD’). 
 

Upon passing through the fenestrae in LSEC lining the sinusoids, material enters 

the space of Disse.  This is functional extracellular space in the liver that facilitates 

contact between the many hepatocyte microvilli that extend into this region and material 

from the blood that passed through the LSEC fenestrae.  Hepatocyte plasma membranes 

are specialized to maximize their surface area in the space of Disse with many microvilli 
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to increase the potential for contact between the hepatocyte and blood components.  

Hepatocytes are only in contact with plasma components in the space of Disse. 

 

3.3  Diseases of the Liver 

The liver is a highly desirable target for gene delivery since it is involved in many 

diseases, including both inherited and acquired genetic disorders, and it is the largest 

protein factory in the body.  Primary liver cancer is the sixth most frequent cancer 

worldwide,13 and liver transplantation is currently the best available treatment.  However, 

the stagnant levels of donor tissue, combined with increasing demand and a high risk of 

relapse, stress the need for alternative treatments.  Gene therapy can impact 

hepatocellular carcinoma directly by transducing tumor cells with apoptosis-inducing 

transgenes.  In addition to hepatocarcinoma, liver transplantation is currently the best 

approach for treating a variety of genetic diseases such as familial amyloidosis, type I and 

IV glycogen storage diseases, C protein deficiency and hemophilias A and B.14  In many 

such cases, a genetic defect exists that does not affect the liver architecture, making gene 

therapy an attractive prospect.  Hemophilia, for example, can be temporarily remedied by 

intravenous infusion of purified and recombinant factor protein, an expensive course of 

action that has potentially serious side-effects.15  Gene therapy treatment of hemophilia 

would involve delivery of the corrective gene to the parenchymal cells of the liver and 

use of their protein synthesis machinery to synthesize and secrete the defective protein, 

thus permanently restoring the ability to clot blood.  Recent promising results make 

genetic correction of hemophilic patients seem a reasonable goal, but significant 
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improvements in the vectors will be required before gene therapy becomes the commonly 

prescribed treatment of hemophilia.   

Hepatocytes, the parenchymal cells of the liver, are ideal candidates for 

expression of gene products that are desired in systemic circulation, such as hormones 

and immunomodulatory factors.  This is because of hepatocytes’ inherent ability to 

produce large amounts of protein, combined with the high volume of venous outflow 

from the liver to ensure efficient biodistribution.  In this capacity, gene therapy to the 

liver may be used to create an internal protein synthesis factory to treat diseases that may 

or may not directly impact the liver.  For example, IFN-α may confer a state of resistance 

to viral infectivity at one or more stages of virus entry or replication.  However, fewer 

than 40% of patients with chronic hepatitis B or C can be treated successfully by 

administration of interferon α (IFN-α).16  Even PEGylated IFN-α, which generates more 

sustained levels of IFN-α in the blood, is only slightly more effective.  Side effects from 

this treatment cause the withdrawal of 20% of patients from therapy, and while it is not 

conclusively understood why only a minority of patients respond to treatment, it is 

suspected that patients infected with certain viral species may require a higher amount of 

IFN-α to induce a stronger antiviral response.17  However, the high cost of this approach, 

combined with additional side-effects, has prompted research for new approaches.  Gene 

transfer of IFN-α to hepatocytes in the liver has the potential to create ongoing IFN-α 

production, a result that has been demonstrated with an adenoviral vector in a mouse 

model of viral hepatitis.  The activity of hepatitis B and C viruses, which are the main 

pathogens causing chronic liver disease, can also be inhibited by delivery of small 

interfering RNA.18 
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Other liver diseases, such as Gaucher’s disease, are diseases of lysosomal storage 

that primarily affect mononuclear phagocytes.  Gaucher’s disease is an inherited disease 

leading to an error of glycoshpingolipid metabolism that leads to accumulation of non-

degraded insoluble glycolipids.  Such diseases are currently treated by enzyme 

replacement therapy, but they are also good candidates for treatment by gene therapy 

targeted to specialized hepatic macrophages called Kupffer cells,19 or by enzyme 

production in hepatocytes followed by incorporation into macrophages.2   

 

3.4  Gene Delivery to the Liver 

To treat the abovementioned diseases with gene therapy, specific targeting to 

individual cell types in the liver will be required.  Many diseases call for the targeted 

delivery of nucleic acid cargo to hepatocytes in the liver; however, these cells are a 

particularly difficult target for non-viral gene therapy.  Though galactose receptors are 

almost exclusively found in the liver, the liver contains two types of galactose receptors.  

Hepatocytes abundantly express an asialoglycoprotein receptor (ASGPr) that selectively 

recognizes galactose and N-acetylgalactosamine (GalNAc) residues on small molecules, 

proteins and particles.  Experiments on rat hepatocytes revealed an estimated 1.5 x 106 

binding sites per cell.20  Kupffer cells abundantly express a galactose-particle receptor 

(GPr) that primarily recognizes galactose residues bound to solid surfaces without 

recognizing small galactosylated molecules.21   

Much work has gone towards the pursuit of hepatocyte-specific targeting of gene 

delivery particles and nanoparticles.22-24  However, seemingly contradictory results 

frequently arise due to complexities in the system, such as excess cationic charge or 
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instability in vivo.  Efficient gene transfection generally requires excess polycation in the 

formulation to counter the anionic charge of nucleic acid and permit the condensation of 

nucleic acids into compact spheres.  However, since cationic particles are nonspecifically 

adsorbed on negatively charged cell surfaces or internalized through cell-surface 

proteoglycans, it is generally difficult to separate the effect of charge-mediated uptake 

from other physicochemical properties of the system.  Generalization is also complicated 

by the broad size distribution of most gene delivery particles, allowing only rough 

correlations to be made.  There is an additional complication that is due to the 

noncovalent nature of gene delivery particles.  The meta-stable particles, held together by 

equilibrated components, are prone to instability in vivo resulting from substitution of 

formulated components with biological molecules in serum, salt-induced destabilization 

or aggregation, fusion with cellular membranes or degradation of the particle.   

The effect of particle size on cationic gene delivery has been studied in many 

systems (ref. 25 and references therein), but generalization of these results is frequently 

not straightforward for the reasons outlined above, and a variety of size limits have been 

proposed for specifically targeting the hepatic ASGPr.  While 10 nm galactosylated 

particles were found to almost exclusively target hepatocytes in the liver,26 a gene 

delivery particle that contains only a single plasmid DNA chain is expected to have a 

diameter of about 25 nm.  Therefore, 25 nm is the minimum reasonable size for gene 

delivery applications.  The relative uptake of 23 nm nanoparticles by hepatocytes and 

Kupffer cells was found to be primarily related to the density of lactose on the 

nanoparticle surface.27  23 nm nanoparticles with 60 lactose moieties on the surface 

primarily targeted hepatocytes while those with over 300 lactose moieties on the surface 
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primarily targeted Kupffer cells.  There have also been reports of 200-400 nm liposomes 

accumulating in hepatocytes following intravenous injection,28 though Kanai et al.29 

observed uptake of 240 nm lecithin-coated polystyrene beads to be primarily in Kupffer 

and sinusoidal endothelial cells.  Using neutral, targeted liposomes, Rensen et al.30 

identified an upper size limit for binding and internalization by the hepatic ASGPr as 

about 70 nm.  Targeted liposomes below this limit were effectively bound and 

internalized via ASGPr while larger liposomes were not.   

Most of the liposomes and nanoparticles discussed above were injected directly 

into the liver, via portal vein or inferior vena cava.  Though this route of administration is 

possible in humans, it is certainly not ideal.  Therefore, in my work presented here, liver 

distribution of nanoparticles will be ascertained following tail-vein injection in mice.   

In our group, we have developed linear, cyclodextrin-based gene delivery 

systems.31  By varying the conditions under which polyplexes are formulated, we can 

control various physicochemical properties of the final polyplexes, including size, surface 

charge, and density and type of ligand presented.  However, this flexibility cannot be 

maximally utilized without a set of physicochemical design constraints that have been 

optimized for the intended gene-delivery application.  We therefore set out to develop a 

model system that closely mimics the surface properties of our cyclodextrin-based gene-

delivery particles and to define design constraints that should be applied to next 

generations of that system.  We present here the development of a slightly anionic, stable 

nanoparticle-based system to guide the rational design of gene delivery to hepatocytes in 

the liver. 
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In this work, we will use galactose as a targeting ligand that is covalently bonded 

to well-defined nanoparticles to correlate their physicochemical properties with hepatic 

distribution.  Since we are delivering galactosylated particles to the liver, both Kupffer 

cells and hepatocytes must be considered primary contributors to nanoparticle uptake, 

and differentiating between uptake into hepatocytes and Kupffer cells will be critical to 

understanding the effects of ligand targeting and particle size.   

Four PEGylated polystyrene nanoparticles are synthesized, characterized and 

investigated in this work.  Chapter Four presents a discussion of the synthesis and 

characterization of the nanoparticles.  Chapter Five discusses nanoparticle uptake both in 

vitro and in vivo.  In vitro uptake is quantified in freshly isolated hepatocytes, while 

differences in in vivo uptake of the various nanoparticles following low-pressure tail-vein 

injection are visualized by TEM and immunohistochemistry.   
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4.1  Introduction 

Numerous investigators have identified the importance of carefully designing and 

controlling the properties of gene delivery systems for selectively targeting the liver.  A 

prerequisite to selective targeting is particle stability in vivo and the minimization of 

nonspecific uptake.  We and others have previously demonstrated the importance of 

PEGylation to stabilize polyplexes and to reduce their nonspecific uptake.1  Nonspecific 

uptake of particles is commonly due to rapid clearance by cells of the mononuclear 

phagocytic system2 and adhesion to the endothelial lining of the vascular system.3  Such 

undesirable uptake is minimized by surfaces with little or no protein adsorption.  In 

particular, certain proteins called opsonins interact with phagocyte receptors and promote 

recognition by scavenger cells of the reticuloendothelial organs.  Phagocytosis is 

frequently initiated by adsorption of opsonins onto the surface of particles followed by 

complement activation or other recognition, leading to internalization by macrophages 

and intracellular processing.  Dunn et al.4 have demonstrated that interaction of 

PEGylated polystyrene nanoparticles with non-parenchymal liver cells in vitro decreased 

with higher surface densities of PEG, and also resulted in longer circulation times 

following intravenous injection into rats.   

By formulating PEGylated cyclodextrin-based gene-delivery particles under 

different conditions, the size, surface charge and ligand density of the final gene delivery 

particle can all be adjusted.5  However, the power of this flexibility cannot be maximized 

without a set of physicochemical design constraints that have been optimized for the 

intended gene-delivery application.  In particular, we are interested in generating a set of 

design requirements to guide gene delivery to the liver.  In this pursuit, we describe 
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herein the development of a nanoparticle-based model system that will facilitate the 

systematic identification of relevant physicochemical properties that alter the hepatic 

distribution of nanoparticles.  Further, this nanoparticle-based model is intended to mimic 

the surface properties achievable with the linear, cyclodextrin-based gene delivery 

systems developed in our laboratory.6-9  As such, the model system will be PEGylated 

and must facilitate variation of parameters such as particle size, surface charge and ligand 

type and density.   

This chapter details the synthesis and characterization of PEGylated nanoparticles 

with tunable physicochemical properties, while the following chapter discusses the 

results of hepatic uptake experiments.  The nanoparticles described in this chapter are 

slightly anionic to minimize nonspecific uptake in vivo, and galactose will be used as a 

targeting ligand since galactose receptors in vivo are almost exclusively found in the 

liver.  In particular, four nanoparticles will be described that are appropriate for uptake 

experiments: Gal-50 and Gal-140 are galactosylated nanoparticles with diameters of 50 

nm and 140 nm, while MeO-50 and MeO-140 are methoxy-terminated 50 nm and 140 

nm nanoparticles.  Through the use of these nanoparticles, the effects of nanoparticle size 

and surface presentation of galactose on hepatic distribution in mice can be explored, and 

the results are presented in Chapter Five. 

 

4.2  Materials and Methods 

Fmoc-PEG5000-NHS was purchased from Nektar (San Carlos, CA) and used as 

received.  All other reagents and solvents were obtained from commercial suppliers and 

were used as received, unless specifically noted.  Matrix-assisted, laser 
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desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF) was performed on 

a PerSeptive Biosystems Voyager DE PRO BioSpectrometry Workstation (PerSeptive 

Biosystems; Framingham, MA) in the positive ion mode using a 2,5-dihydroxy benzoic 

acid matrix.  HPLC was performed on an Agilent 1100 Series HPLC (Agilent 

Technologies; Palo Alto, CA) with a Prevail C18 5µm column (Alltech; Deerfield, IL) 

and a SEDEX Model 75 Evaporative Light Scattering (ELS) detector (Richard Scientific; 

Novato, CA).   

 

4.2.1  Synthesis of Galactose-PEG5000-amine (1, Scheme 4.1) 

4-aminophenyl β-D-galactopyranoside (1.79 g, 6.38 mmol) and Fmoc-PEG5000-

NHS (2.17 g, 0.43 mmol) were dissolved in about 16 mL of 1X PBS.  Sulfo-NHS (97 

mg, 0.44 mmol) was added, the pH was adjusted to pH 7.8 and the reaction was stirred at 

ambient temperature.  After 6 hours, EDC was added (435 mg, 2.27 mmol), and the 

reaction was stirred for an additional 48 hours.  The crude reaction mixture was dialyzed 

in 500 molecular-weight cutoff (MWCO) Float-A-Lyzers (Pierce; Rockford, IL) against 

water for two days with twice daily dialysate changes.  The solution was dried on a rotary 

evaporator at temperatures not exceeding 35OC.  Deprotection of the amine was 

accomplished by stirring the off-white product in 50 mL of 25% piperidine in DMF for 4 

hours at room temperature.  The solution was then concentrated under reduced pressure at 

temperatures not exceeding 40OC.  The viscous liquid was transferred to polypropylene 

centrifuge tubes and water was added.  Centrifugation and filtration through a 0.2 µm HT 

Tuffryn Membrane filter (VWR; West Chester, PA) resulted in complete Fmoc removal 
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from the crude reaction mixture.  The solution was subjected to extensive dialysis in 500 

MWCO Float-A-Lyzers before being lyophilized to dryness.  Purity was confirmed by 

HPLC-ELS and MALDI-TOF mass spectroscopy.  Final yield: 1.25 g, 59%. 
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FMOC-PEG5000-NHS
OHOH2C

HO
OH

O

OH N
H

PEG5000

O
NH2

25% Piperidine
in DMF

EDC, Sulfo-NHS
PBS, pH 7.8

(1)
Scheme 4.1.  Synthesis of Galactose-PEG5000-NH2 (1). 

 

4.2.2  Synthesis of PEGylated-polystyrene Nanoparticles (2, Scheme 4.2) 

FITC-embedded PEGylated-polystyrene nanoparticles were synthesized by 

reaction of Fluospheres (Molecular Probes; Eugene, OR) with MeO-PEG5000-NH2 or 

Galactose-PEG5000-NH2 (1).  Two sizes of Fluospheres were used as starting materials in 

this work.  28 nm Fluospheres were used to synthesisze PEGylated nanoparticles with 

final diameters up to 60 nm, while nanoparticles up to 160 nm were synthesized by 

PEGylation of 105 nm Fluospheres.  28 nm Fluospheres were sonicated then centrifuged 

at 14,000g for 20 minutes prior to use.  All Fluospheres were sonicated immediately 

before being added to reaction vials.  Typically, 500 µL of a 2% Fluosphere suspension 

(3.21 µmol –COOH for 105 nm Fluospheres) is added to 32 mg MeO-PEG5000-NH2 (6.42 

µmol) in a 1.5 mL Eppendorf tube and mixed to dissolve the PEG.  6.3 mg Sulfo-NHS 

(Pierce) is added to each tube, and 200 mM borate buffer, pH 8.2, is added up to 1 mL 

total volume per tube.  The pH of each reaction tube is adjusted to pH 7.80 then 1.0 mg 

EDC (5.13mmol) is added to each tube and vortex mixed for 6 hours.  Purification of 50 

nm nanoparticles was accomplished by dialysis in 100k MWCO DispoDialyzers (Pierce) 

against a variety of salt solutions starting with 3 M NaCl and ending with 1X PBS.  A 
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minimum of 7 dialysate changes were performed until no free PEG was detected by 

HPLC-ELS.  Workup of 140 nm nanoparticles was accomplished by cold centrifugation 

and repeated washes in salt solutions ranging from 4 M NaCl to final resuspension in 1X 

PBS.  Bead concentrations were determined by comparison to fluorescence of known 

concentrations of as-received Fluospheres on a SpectraFluor Plus fluorescence plate 

reader (Tecan; Research Triangle Park, NC) with FITC filters (ex: 485 nm; em: 530 nm).  

Yields:  50 nm nanoparticles, typically 40%; 140 nm nanoparticles, typically 70%. 
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Scheme 4.2.  Synthesis of PEGylated nanoparticles (2). 

 

4.2.3  Particle Size and ζ-potential Measurements 

Colloidal particle size was determined by photon correlation spectroscopy in 150 

mM NaCl at a wavelength of 532 nm, scattering angle of 90O and refractive index of 1.59 

using a ZetaPALS instrument (Brookhaven Instruments; Holtsville, NY).  Ten 

measurements on each diluted nanoparticle sample were taken, and the mean 

hydrodynamic diameter is reported.  50 nm nanoparticles were typically measured at 

1*1013 particles/mL while 140 nm nanoparticles were typically measured at 1.5*1010 

particles/mL.  ζ-potential measurements were calculated from electrophoretic mobilities 

using the Smoluchowski equation.  Nanoparticle electrophoretic mobilities were 
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measured in 150 mM NaCl using a ZetaPALS instrument with the following conditions:  

fluid refractive index 1.334, electric field 5.41 V/cm and adjusted to a conductance of 

15.0 mS.  Three samples were each measured seven times, and the mean +/- standard 

deviation of each is reported.  

 

4.2.4  Determination of Galactose Surface Density 

Concentration of galactose on the surface of nanoparticles was determined with 

the Amplex Red Galactose/Galactose Oxidase Assay Kit (Molecular Probes; Eugene, 

OR) by comparison to standard curves of galactose in solution with unmodified 

polystyrene beads.  The reaction was allowed to proceed for a minimum of 120 minutes 

before final absorbance readings were taken due to the different rates of reaction of 

galactose oxidase with galactose in solution versus with surface-immobilized galactose.  

Details of this reaction are provided in Appendix A. 

 

4.2.5  RCA120 Lectin Agglutination 

A suspension of 5.4*1012 nanoparticles in 500 µL 1X PBS is added to 4.7*1014 

molecules of RCA120 lectin (Sigma-Aldrich; St. Louis, MO) in 500µL 1X PBS.  Each 

lectin has two identical binding sites, for a total of 9.5*1014 galactose binding sites per 

experiment.  Agglutination is monitored by measurement of absorbance at 560 nm.  After 

30 minutes, 8*1018 molecules of galactose were added in 100 µL 1X PBS to disaggregate 

the system. 
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4.2.6  TEM of Nanoparticles 

Nanoparticles in water were applied to 400-mesh, freshly glow-discharged, 

carbon-coated copper grids for 45 seconds.  After this time, excess water was removed by 

blotting with filter paper, and the sample was negatively stained with 2% uranyl acetate 

for 45 seconds before blotting.  A Philips 201 electron microscope, operated at 80 kV, 

was used to record images.   

 

4.2.7  Serum-Induced Nanoparticle Aggregation 

Mouse serum (Sigma) was incubated in 96-well plates at 37OC and 5% CO2 for a 

minimum of 2 hours before use.  5*1010 nanoparticles were added to each 90 µL of 

equilibrated sera, and aggregation was monitored by measurement of absorbance at 560 

nm at 37OC. 

 

4.3  Results and Discussion 

4.3.1 Gal-PEG5000-NH2 Synthesis and Characterization 

Fmoc-PEG5000-NHS was converted to high-purity Gal-PEG5000-NH2.  Reaction was 

driven to completion by a large excess of 4-aminophenyl β-D-galactopyranoside and an 

additional dosing of carbodiimide coupling agent, EDC.  Optimum reaction pH in NHS-

mediated peptide coupling reactions is a tradeoff between the amide formation rate and 

the rate of deactivation of the activated NHS-ester.  PEG5000-NH2 has a pKa of about 
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9.2,10 and NHS-esters on the PEG chains deactivate quickly, especially above a pH of 

about 8.  An optimal pH of about 7.8 was determined for this reaction.  While the 

concentration of Fmoc-PEG5000-NHS did not significantly influence reaction yield, 

supplementation with additional Sulfo-NHS and EDC was necessary to reactivate any 

carboxylic esters on the PEG that had hydrolyzed. 

 

Figure 4.1.  HPLC spectra of a) Fmoc-PEG5000-COOH and b) Gal-PEG5000-NH2. 

 

The purity of the final purified compound was determined by HPLC-ELS, as 

shown in Figure 4.1.  Peaks representing starting materials (Figure 4.1a) and 
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intermediates were resolved relative to the Gal-PEG5000-NH2 peak (Figure 4.1b).  Purity 

was typically greater than 98%, as determined by HPLC.   

 

Figure 4.2.  MALDI-TOF mass spectra of a) Fmoc-PEG5000-NHS and b) Gal-PEG5000-
NH2. 
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n 

Predicted 
MWFmoc-PEG-NHS  

+ Na+ 

Observed 
MWFmoc-PEG-NHS 

+ Na+ 

Predicted 
MWGal-PEG-NH2  

+ Na+ 

Observed 
MWGal-PEG-NH2 

+ Na+ 
111 5318.1 5320.4 5251.3 5250.8 
112 5362.0 5364.2 5296.3 5294.3 
113 5406.1 5408.7 5340.3 5337.9 
114 5450.1 5452.7 5384.3 5382.2 
115 5494.1 5496.7 5428.4 5426.6 
116 5538.1 5540.6 5472.4 5470.7 
117 5582.2 5585.1 5516.4 5514.7 
118 5626.2 5628.7 5560.4 5558.4 
119 5670.2 5672.8 5604.5 5602.1 
120 5714.2 5716.9 5648.5 5646.0 
121 5758.3 5761.5 5692.5 5691.0 
122 5802.3 5805.1 5736.5 5733.1 

 
Table 4.1.  Molecular weights of Fmoc-PEG5000-NHS and Gal-PEG5000-NH2 for 
incremental numbers of ethylene oxide repeat units, with sodium counterion for 
comparison to peaks of MALDI-TOF spectra. 
 

MALDI-TOF mass spectroscopy also confirmed that the reaction went to 

completion.  Primary peaks in the MALDI-TOF spectra (Figure 4.2) line up well with 

predicted molecular weights (Table 4.1) of Fmoc-PEG5000-NHS (Figure 4.2a) and Gal-

PEG5000-NH2 (Figure 4.2b), according to the following formulas:  

 

The primary population of peaks in Figure 4.2 represents [M+Na]+, while the 

subpopulation represents [M+H]+.  In addition to MALDI-TOF, the average molecular 

weight per galactose of the final product was determined to be about 5500 with the 

Amplex Red Galactose Assay Kit, as expected for nearly complete galactosylation of the 

     MWGal-PEG-NH2     =    44.026n        +        326.354        +        16.023  
            [EO repeat]     [-(CH2)2-C(O)-Gal]          [-NH2] 

    MWFmoc-PEG-NHS  =    44.026n        +        170.042        +        238.082 
             [EO repeat]   [-(CH2)2-C(O)-NHS]    [-NH-Fmoc] 
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PEG.  Thus, the molecular weight determined from this technique compares well with the 

results of MALDI-TOF analysis. 

 

4.3.2  PEGylated Nanoparticle Synthesis and Characterization 

Most previous reports of PEGylating carboxy-polystyrene nanoparticles used 1 

µm beads or larger.10-12  These large particles are relatively insensitive to reaction 

conditions, and broadening of particle size distribution was not reported.  Ploehn and 

Goodwin13 PEGylated smaller carboxy-polystyrene beads (115 and 347 nm diameter), 

but no indication was given that polydispersity was monitored during that reaction.  For 

my purpose of determining physicochemical design parameters for next generation gene 

delivery vectors, polydispersity of the final PEGylated nanoparticles should be low, 

monomodal and well-defined.  We are interested in working with nanoparticles with 

hydrodynamic diameters in the range of about 45-150 nm.  These relatively small 

polystyrene beads were found to be much more sensitive to reaction conditions than 

larger 200 nm beads, thus requiring careful study to identify reaction and purification 

conditions that resulted in pure nanoparticles with desired mean diameter, particle size 

distribution and extents of surface PEGylation.   
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Figure 4.3.  Mean hydrodynamic diameters following PEGylation of 105 nm 
Fluospheres with different reagent concentrations. 
 

The extent of PEGylation, and hence the final nanoparticle hydrodynamic 

diameter, could be controlled by varying the concentrations of PEG and EDC during 

nanoparticle synthesis, as shown by the results given in Figure 4.3.  While varying the 

concentration of PEG in the reaction simply shifted the final mean particle size without 

affecting the distribution, EDC concentrations above about 15 mM resulted in significant 

broadening of the particle size distribution.   
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By carefully controlling reaction conditions, nanoparticles could be synthesized 

with size distributions (Figure 4.4b) that closely match those of the cyclodextrin-based 

gene delivery particles (Figure 4.4a) they intend to mimic.  PEGylated nanoparticles 

larger than 105 nm can be synthesized with very tight monodisperse distributions under 

appropriate reaction conditions (Figure 4.4c).  The polydispersity of the 50 nm 

nanoparticles and polyplexes is about 0.06, while that of the 140 nm nanoparticles is 

about 0.005.  Low polydispersities such as these will allow the effect of nanoparticle size 

on biodistribution to be clearly determined.   

TEM imaging of unmodified nanoparticles validated the particle sizes measured 

by photon correlation spectroscopy (PCS).  Particle size of unmodified polystyrene 

nanoparticles was found to be in good agreement between TEM and PCS measurements.  

This was expected, given the spherical shape of the particles and hence the 

appropriateness of the Stokes-Einstein expression to relate the diffusion coefficient, 

which is measured by PCS, to the particle size.  Further, PCS measurements of particle 
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size were performed at various concentrations to ensure the accuracy of the reported 

result,14 and insignificant difference was found between these measurements.  

 

 

Figure 4.5.  TEM images of a) unmodified 105 nm Fluosphere nanoparticles and b) 
PEGylated 105 nm polystyrene nanoparticles. 
 

As seen in the TEM images in Figure 4.5a, unmodified polystyrene Fluospheres 

adopt a close-packed arrangement with direct polystyrene-polystyrene contact between 

beads, while PEGylated nanoparticles (Figure 4.5b) are separated by darkly stained PEG 

coronas and avoid polystyrene-polystyrene contact.  Further evidence of consistent 

surface PEGylation was provided by our inability to separate PEGylated polystyrene 

nanoparticles into multiple populations by hydrophobic interaction chromatography, as 

described by Moghimi.15  Moghimi also demonstrated16 that it is critical for the entire 

nanoparticle surface to be PEGylated to minimize nonspecific uptake of nanoparticles by 

the reticuloendothelial system.  It is also important that the PEGylated nanospheres be 
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well shielded to avoid aggregation in serum.  Additionally, the tight monodispersity of 

the 105 nm Fluospheres is evident from this image. 

The stability of aqueous suspensions of 220 nm PEGylated polystyrene 

nanoparticles has been shown to increase dramatically for particles with hydrodynamic 

layer thicknesses of between 10 and 15 nm.17  The impact of PEGylated surfaces is even 

more critical in salt solution, where the Debye screening length will be much shorter than 

the hydrodynamic layer thickness.  In 150 mM NaCl, for example, the Debye screening 

length is about 0.8 nm.  As such, any charge-charge repulsion that originated from the 

particle surface in pure water will no longer be influential, and the PEG layer is entirely 

responsible for sterically shielding the particles.  In the present work, 140 nm PEGylated 

nanoparticles were synthesized by grafting PEG onto 105 nm polystyrene nanoparticles, 

resulting in hydrodynamic layer thickness of slightly more than 15 nm.  As such, this 

PEG corona is expected to provide near maximum protection against nanoparticle 

flocculation.  Similarly, 50 nm PEGylated nanoparticles synthesized from 28 nm 

polystyrene have approximate hydrodynamic layer thicknesses of 11 nm.  The decreased 

hydrodynamic thickness of PEG with the same molar mass on the smaller beads can be 

explained by the increased available angular segment volume with increased surface 

curvature.18    

 

4.3.3  Availability of Galactose for Receptor Binding 

As discussed earlier, galactose is to be used as a targeting ligand on some of the 

PEGylated nanoparticles.  The surface density of galactose on the nanoparticles can be 

controlled by varying the ratio of Gal-PEG5000-NH2 to MeO-PEG5000-NH2 in the reaction.  
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Further, the overall ratio of PEG-NH2 to carboxyls enabled nanoparticles with different 

surface densities of PEG to be synthesized.   

# beads per 
experiment 

# galactose  
per bead 

pmol galactose 
per cm2 

Total # galactose 
per experiment 

Total # RCA120 
binding sites per 

experiment 
5.4E+12 1142 81.3 6.2E+15 9.5E+14 
5.4E+12 556 39.6 3.0E+15 9.5E+14 
5.4E+12 357 25.4 1.9E+15 9.5E+14 
5.4E+12 183 13.0 9.9E+14 9.5E+14 
5.4E+12 0 0 0.0E+00 9.5E+14 

 
Table 4.2.  50 nm PEGylated nanoparticles with different surface densities of galactose 
for use in RCA120 agglutination assay. 
 

Galactose moieties are presented on the surface of nanoparticles through 

attachment to a 5000 Da PEG chain.  This experiment aims to confirm that there are 

galactose moieties accessible to binding large proteins such as RCA120.  RCA120 is a 

120,000 Da lectin with two identical and independent galactose binding sites per 

molecule.19  Five 50 nm PEGylated nanoparticles were synthesized for this study with 

different surface densities of galactose, as shown in Table 4.2.   
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Figure 4.6.  Illustration of nanoparticle agglutination as a result of RCA120 lectin binding 
galactosylated nanoparticles. 
 

When RCA120 lectin is mixed with an appropriate number of galactosylated 

nanoparticles, agglutination is expected to occur.  This effect is illustrated in Figure 4.6, 

where lectins can be seen crosslinking galactosylated nanoparticles.  This crosslinked 

network scatters light, and progress of agglutination can be monitored by measuring 

absorbance at 560 nm.  Agglutination should be rapidly reversible by the addition of free 

galactose.   
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Figure 4.7.  Turbidity increase due to agglutination of galactosylated 50 nm 
nanoparticles with RCA120 lectin.  100 µL of 140 mM galactose in PBS is added at 30 
minutes. 
 

By fixing the numbers of lectin molecules and nanoparticles in all experiments, 

the effect of galactose surface density on agglutination can be seen (Figure 4.7).  

Turbidity, expressed as absorbance at 560 nm, is found to increase more quickly and to a 

greater extent for nanoparticles with a higher surface density of galactose than for 

comparable nanoparticles with lower surface densities of galactose.  For nanoparticles 

with less than about 13 pmol galactose/cm2, there are comparable numbers of galactose 

binding sites available on the RCA120 lectin and galactose available on the surface of 

nanoparticles, and no agglutination is observed.  While this result may indicate that all 

galactose molecules are not accessible to binding, the general availability of nanoparticle-

bound galactose for protein binding is confirmed.   

Add galactose 
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Add glucose

Add galactose

 

Figure 4.8.  Turbidity increase of 50 nm nanoparticle with 81.3 pmol/cm2 surface 
galactose density due to agglutination with RCA120 lectin.  100 µL of 140 mM glucose in 
PBS is added at 30 minutes then 100 µL of 140 mM galactose in PBS is added at 35 
minutes. 
 

As compared to the rapid network disruption associated with galactose addition to 

the agglutinated solution (Figure 4.7), addition of an equal volume and concentration of 

glucose does not disrupt the crosslinked network (Figure 4.8).  The only effect caused by 

addition of 100 µL of a glucose solution to the cuvette is related to dilution and is 

identical to the effect of adding 100 µL of water.  It is thus confirmed that agglutination 

is due to interaction between nanoparticle-bound galactose and RCA120 lectin molecules. 
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4.3.4  Description of Nanoparticles for Uptake Studies 

I have thus far demonstrated that nanoparticles can be synthesized with a wide 

range of physicochemical properties.  However, a select few must be chosen for in vitro 

and in vivo uptake experiments.  Four nanoparticles were selected for this role, and their 

properties are detailed in Table 4.3.   

 

Bead name Mean diameter (nm) ζ-potential (mV) 
Galactose surface 

density (pmol/cm2) 
Gal-50 51.5 -2.7 +/- 1.8 25.4 

MeO-50 53.5 -2.7 +/- 2.8 0 
Gal-140 138.1 -2.6 +/- 2.1 30.6 

MeO-140 138.7 -3.2 +/- 2.3 0 
 
Table 4.3.  Summary of physicochemical properties of the four nanoparticles to be used 
in uptake experiments. 
 

Nanoparticles with mean diameters of 50 nm and 140 nm were selected for use 

because 1) cyclodextrin-based gene delivery particles can be conveniently synthesized in 

the range of about 45 nm to about 150 nm, so the nanoparticles selected for use in the 

present study approximate the bounds of that range, 2) access to hepatocytes through the 

hepatic sinusoidal wall requires passage through endothelial-cell pores that are estimated 

at 150-200 nm,20 and 3) 50 nm is below the 70 nm cutoff that has been proposed for 

neutral liposome uptake via ASGPr.21  The effect of galactose presentation on the surface 

of the nanoparticles will be investigated for 50 nm and 140 nm nanoparticles with 

galactose surface densities of 25-30 pmol/cm2.  Galactosylated 50 nm and 140 nm 

nanoparticles are heretofore referred to as Gal-50 and Gal-140.  The equivalent 
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nontargeted nanoparticles have methoxy terminated PEG chains and will be referred to as 

MeO-50 and MeO-140. 

All nanoparticles in Table 4.3 have slightly anionic surface potentials (at the plane 

of hydrodynamic shear) to minimize nonspecific uptake.  Cationic particles are 

internalized nonspecifically through proteoglycan receptors and may stick to anionic cell 

surface membranes, while highly anionic polystyrene nanoparticles have increased 

nonspecific uptake by scavenger receptors following complement activation.22, 23  

Unmodified, carboxylated, polystyrene beads (as-received starting material) had ζ-

potentials of approximately -45 mV.  The PEGylated nanoparticles have mean ζ-

potentials of about -3 mV.  These surfaces are nearly neutral due to the combined effect 

of carboxyl conversion to amides on the nanoparticle surfaces and PEG shielding of the 

surface charge.   

  

4.3.5  Serum Aggregation of PEGylated Nanoparticles 

In order to investigate the effect of particle size on specific uptake phenomena, 

the nanoparticles must remain dispersed in the presence of serum.  They also must not 

bind serum opsonins with great affinity, as such binding has been shown to increase the 

hepatic uptake of 50 nm and 500 nm polystyrene nanoparticles.24   
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Figure 4.9.  Nanoparticle aggregation in the presence of active mouse serum.   

 

If serum proteins bind the surface of nanoparticles, crosslinking between 

nanoparticles would be expected to occur.  Since many serum proteins are anionic, 

crosslinking should be more significant for cationic nanoparticles.  For this reason, 

amino-modified polystyrene nanoparticles were used as a positive control in serum 

stability studies.  As shown by the data in Figure 4.9, amine-functionalized nanoparticles 

crosslinked quickly and extensively in active mouse serum, while the PEGylated 

nanoparticles did not.  The role of serum proteins in inducing aggregation of the amine-

functionalized nanoparticles is supported by the lack of aggregation of any of the 

nanoparticles in 1X PBS.  Despite considerable effort, aggregation of the PEGylated 

nanoparticles could not be induced under any conditions.   
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4.4  Conclusions 

The synthesis and characterization of PEGylated polystyrene nanoparticles is 

described in this chapter.  These nanoparticles have slightly anionic surface potentials to 

minimize nonspecific interaction with cells and tissue in vivo.  The synthetic scheme 

allows for the variation of mean particle size and particle size distribution through 

variation in reaction conditions.  The nanoparticle synthesis is also amenable to 

incorporation of various ligand types at tunable densities.  The synthesized nanoparticles 

were further shown to have PEGylated surfaces that resist aggregation in serum.  Finally, 

the availability of galactose to receptor binding was demonstrated by agglutination with 

RCA120. 

Having developed a flexible and versatile model system, four nanoparticles were 

synthesized specifically for the purpose of identifying design constraints to guide next 

generation gene delivery to the liver.  In preparation for in vitro and in vivo uptake 

experiments, four nanoparticles were described:  Gal-50 and Gal-140 are galactosylated 

50 nm and 140 nm nanoparticles, while MeO-50 and MeO-140 are methoxy-terminated 

50 nm and 140 nm nanoparticles.  Through the use of these nanoparticles, the effects of 

nanoparticle size and presence of galactose on the nanoparticle surface will be explored 

in Chapter Five.  
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 5.1  Introduction 

In Chapter 4, I described the synthesis and characterization of slightly anionic 

PEGylated polystyrene nanoparticles that are appropriate for in vitro and in vivo 

biodistribution experiments.  In particular, four nanoparticles were selected for in vivo 

experiments, and their properties are shown in Table 5.1. 

Bead name Mean diameter (nm) ζ-potential (mV) 
Galactose surface 

density (pmol/cm2) 
Gal-50 51.5 -2.7 +/- 1.8 25.4 

MeO-50 53.5 -2.7 +/- 2.8 0 
Gal-140 138.1 -2.6 +/- 2.1 30.6 

MeO-140 138.7 -3.2 +/- 2.3 0 
 
Table 5.1.  Summary of physicochemical properties of the four nanoparticles to be used 
in uptake experiments. 
 

In this chapter, I will discuss the in vitro hepatocyte uptake and in vivo hepatic 

distribution of the four nanoparticles described in Table 5.1.  Comparable 50 nm 

nanoparticles and 140 nm nanoparticles that differ only in the presence of galactose on 

their surfaces will allow the impact of galactose to be identified.  Galactose receptors are 

almost exclusively found in the liver, though both hepatocytes and Kupffer cells display 

galactose receptors.  Hepatocytes abundantly express an asialoglycoprotein receptor 

(ASGPr) that selectively recognizes galactose and N-acetylgalactosamine (GalNAc) 

residues on small molecules, proteins and particles.  Kupffer cells abundantly express a 

galactose-particle receptor (GPr) that primarily recognizes galactose residues bound to 

solid surfaces without recognizing small galactosylated molecules.1  While both ASGPr 

and GPr recognize galactosylated particles, uptake via these receptors is differentially 

affected by particle size.  While an upper size limit of about 70 nm has been proposed for 
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ASGPr-mediated uptake of particles,2 Kupffer cells preferentially internalize 500 nm 

particles over 80 nm particles.3  Gal-50 is below the proposed cutoff for ASGPr-mediated 

uptake, while Gal-140 is above that cutoff and may also be recognized more readily by 

the Kupffer cell GPr.  Nanoparticles were synthesized with slightly anionic surface 

potentials to minimize nonspecific interaction with cells and tissue. 

In vitro uptake experiments will make use of freshly isolated hepatocytes as 

compared to hepatocellular carcinoma cell lines to provide results that more closely 

represent hepatocyte uptake in vivo.  By their nature, carcinoma cells divide much more 

rapidly than non-oncogenic hepatocytes, and their uptake mechanisms are altered 

accordingly.  Since we are interested in studying nanoparticle uptake and distribution in 

hepatic tissue, use of primary hepatocytes will more closely approximate the uptake 

response of hepatocytes in vivo than would immortalized cell lines.  Furthermore, many 

cultured cell lines have been cultured for extended periods of time, resulting in 

heterogeneous populations of cells.  Microarray comparison of mRNA expression levels 

of whole rat liver, several rat liver cell lines and primary cultured hepatocytes indicated 

that the cell lines were most dissimilar from whole liver, and that they also differed 

significantly from primary hepatocytes.  In addition, the duration of culture had a 

profound effect on mRNA levels.  Significant differences in ethanol toxicity,4 transferrin 

internalization rate5 and ASGPr receptor levels have also been reported between 

hepatocellular carcinoma cell lines and normal hepatocytes.  For example, HepG2 cells, a 

human malignant hepatic cell line, have only about 225,000 ASGPr per cell.  Rat 

hepatocytes have approximately 550,000 ASGPr total per cell.  But while HepG2 cells 

present 87% of the total cellular ASGPr on the cell surface,6 only about 250,0007 of the 



 79
hepatocyte ASGPr are expressed on the cell surface while the additional 300,000 

constitute an intracellular pool.  This intracellular pool of ASGPr has been implicated in 

intracellular trafficking and processing of receptor and ligand, including a role in 

transport in the secretory pathway following ligand internalization.8  Therefore, 

immortalized cell lines such as HepG2 do not provide an ideal in vitro system to guide in 

vivo hepatic biodistribution studies, and freshly isolated hepatocytes will be used in this 

work. 

In vitro uptake into hepatocytes will be assayed both with plated cells, to compare 

the dose fraction internalized by the cells, and with suspended cells to study the kinetics 

of nanoparticle association with hepatocytes.  In vivo hepatic distribution will be 

determined by TEM and immunohistochemistry, which allow for the visualization of 

liver sections from mice that received tail-vein injections of the different nanoparticles 

described in Table 5.1.   

 

5.2  Materials and Methods 

5.2.1  Animals   

Female Balb/c mice were obtained from Charles River Laboratories (Wilmington, 

MA) and were approximately 10–15 weeks old at the time of the study.  The animals 

were fed autoclaved LabDiet 5010 (Purina Mills; St. Louis, MO) and drank reverse 

osmosis, 1ppm chlorine, autoclaved water from bottles. The mice were housed on 

ventilated racks with autoclaved nestlets and Aspen Chip bedding (Nepco; Warrensburg, 

NY) on a 13-hour light cycle at 72–76OF and 30–70% humidity.  Caltech specifically 



 80
complies with the recommendations of the Guide for Care and Use of Laboratory 

Animals with respect to restraint, husbandry, surgical procedures, feed and fluid 

regulation, and veterinary care.  The animal program at Caltech is AAALAC accredited. 

 

5.2.2  Hepatocyte Isolation 

Mouse hepatocytes were isolated from female Balb/c mice (18–25 g, 10–15 

weeks old) by the standard two-step perfusion with collagenase by the Cell Culture Core 

of the USC Research Center for Liver Diseases, as previously described.9  Briefly, mice 

were anesthetized with pentobarbital sodium (60 mg/kg), and the liver was perfused via 

the portal vein at 3 mL/min first with Ca2+ and Mg2+-free perfusion buffer (10 mM N-2-

hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), 137 mM NaCl, 5 mM KCl, 

0.5 mM NaH2PO4, and 0.4 mM Na2HPO4, pH 7.2) for 3 minutes and then with perfusion 

buffer supplemented with 5 mM CaCl2 and 0.05% (w/v) collagenase (type IV; pH 7.5) 

for 3 minutes.  The liver was then carefully removed, and its capsular membrane was 

gently peeled off.  The dispersed cells, in cold Hank’s-HEPES buffer containing 0.1% 

BSA, were filtered through cotton mesh and allowed to settle.  Dead parenchymal 

hepatocytes were removed by density gradient centrifugation on Percoll (Amersham 

Biosciences; Piscataway, NJ) to give parenchymal cells of > 90% purity and >90% 

viability, as determined by trypan blue exclusion.  Appropriate numbers of hepatocytes, 

as described in the following sections, were transferred to collagen-coated dishes that 

were maintained at 37OC with 95% humidity and 5% CO2.  After one hour, the 

unattached cells were removed by aspiration, and culture medium changes were 

performed daily thereafter.  Complete hepatocyte media consisted of Dulbecco’s 
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Modified Eagle’s Medium/F12 without phenol red (Invitrogen; Carlsbad, CA), 

supplemented with L-methionine, 100 U/mL penicillin, 0.1 mg/mL streptomycin, 0.25 

mg/mL amphotericin B (Invitrogen) and 9% fetal bovine serum. 

 

5.2.3  Nanoparticle Uptake by Adherent Hepatocytes 

Following hepatocyte isolation, 100,000 hepatocytes were transferred to each well 

of collagen-coated 24-well plates.  After a minimum of 24 hours of incubation in 

complete medium, hepatocytes were incubated in OptiMem (Invitrogen) that does not 

contain any Cu2+ or Zn2+ ions for two hours prior to experimentation, to allow the hepatic 

asialoglycoprotein receptor (ASGPr) to adopt an accessible conformation and to achieve 

maximum uptake potential.10  The medium in each well was then replaced with the 

appropriate nanoparticle-containing medium, or PBS-containing medium for wells to be 

used in the preparation of standard curves.  Hepatocytes were incubated in 200 µl of 

Optimem containing 7.5*109 nanoparticles/mL for 40 minutes.  After this time, the 

medium was removed, cells were washed with cold HEPES buffer then lysed with 1X 

Cell Culture Lysis Reagent (Promega; Madison, WI).  Fluorescence of the soluble portion 

of the cell lysates was measured and compared to standard curves prepared by adding 

known numbers of beads to hepatocyte cell lysates. 

 

5.2.4  Preparation of Suspended Hepatocytes 

Following hepatocyte isolation, about 7*106 hepatocytes were transferred to a 

collagen-coated 10 cm2 dish and incubated for a minimum of 24 hours in complete 
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medium.  Hepatocytes were detached with Trypsin-EDTA (Invitrogen), spun down at 

400g for 5 minutes and resuspended at 2*106 cells/mL in complete hepatocyte media in 

50 mL polypropylene tubes, 10mL total per tube, with 40µm polypropylene Falcon Cell 

Strainers (Fisher; Hampton, NH) to minimize contamination while permitting gas 

exchange.  After incubating at 37OC and 5% CO2 overnight, hepatocytes were spun 

down, washed with HEPES buffer and resuspended in Optimem with 3% fetal bovine 

serum in polypropylene tubes.  Following 2 hours incubation in media lacking Cu2+ or 

Zn2+ ions, hepatocytes were spun down, resuspended in Optimem and aliquoted for 

experimentation.  Experimental details concerning data collection are described in the 

following section.   

 

5.2.5  Flow Cytometry Analysis of Nanoparticle Uptake Kinetics 

Single cell suspensions of 2*106 hepatocytes per mL were prepared as described 

above and kept on ice prior to analysis.  Immediately before use, cell suspensions were 

warmed to 37OC, nanoparticles were added to the FACS tube and analysis was started 

within 10 seconds.  Flow cytometry analyses were performed using a BD Bioscience 

FACSCalibur (San Jose, CA) equipped with a 488 nm argon laser and a 635 diode laser 

and Cellquest software.  Dead cells, aggregates and Kupffer cells were removed from the 

analyses by live gating on forward and side scatter.  Green fluorescence emitted by the 

beads was measured with a 530/30 nm bandpass filter.  Autofluorescent cells were 

removed by using a red channel measured by a 585/42 nm bandpass filter to gate out 

bright cells.  Flow rates were kept constant at 35 µL per minute.  Per cell mean 
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fluorescence from gated cells was analyzed by downloading the Cellquest list mode data 

file to FlowJo (Tree Star Inc.; Ashland, OR), gating the cells and then exporting the gated 

data to Microsoft Excel.  Mean fluorescence signals were averaged over all cells analyzed 

in five-second intervals.  The percentage of FITC-positive cells was calculated based on 

the ratio of the number of FITC-positive cells in each five-second interval to the total 

number of cells counted in that interval.  FITC mean values are normalized by the 

number of fluorescein equivalents per bead.   

 

5.2.6  Bulk Liver Uptake of Nanoparticles 

Twenty minutes after tail-vein injection of 100 µL saline containing 8*1011 

nanoparticles per 20 g mouse, mice were sacrificed and their livers were immediately 

excised, weighed and split into two comparable pieces. Each piece was then transferred 

to individual Lysing Matrix D tubes (Qbiogene; Irvine, CA) and subjected to three cycles 

of mechanical agitation in a FastPrep FP120 instrument (Qbiogene).  Cellular membranes 

were disrupted by three freeze-thaw cycles, and an additional cycle of mechanical 

agitation resulted in homogeneous liver samples that were lyophilized to dryness.  FITC 

was subsequently extracted into chloroform for comparison to a standard curve.  Standard 

curves were created by adding a known number of nanoparticles to liver pieces from 

untreated mice, followed by identical homogenization and extraction processing to the 

samples described above.  Data as shown represent tissue uptake of nanoparticles, which 

has been determined by subtracting the approximate fluorescence due to nanoparticles in 

liver blood vessels from the fluorescence of the wet liver tissue.  All experiments were 

repeated in triplicate. 
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5.2.7  TEM Imaging of Liver Tissue 

For electron microscopy, excised liver tissue was cut into 1 mm3 cubes and fixed 

in 2% glutaraldehyde in100 mM sodium cacodylate buffer (pH 7.4).  After washing in a 

sodium cacodylate buffer, the tissue was postfixed in 1% osmium tetroxide in sodium 

cacodylate buffer for 1 hour.  After rinsing, the tissue was embedded in Epon-Spurr resin.  

Thin sections of 20 nm were prepared, contrasted with uranyl acetate and lead citrate, and 

observed on a Hitachi 600 electron microscope (Hitachi Ltd.; Tokyo, Japan). 

 

5.2.8  Overlay of Fluorescence and TEM Images 

Mouse parenchymal liver cells were isolated as described above.  Cells were 

seeded at a density of 3*105 cells per collagen-coated glass cover slip in 6-well culture 

plates.  After a minimum of 24 hours incubation in complete medium, hepatocytes were 

incubated in OptiMem (Invitrogen) for two hours prior to experimentation.  Medium in 

each well was then replaced with 200 µl Optimem containing 7.5*109 nanoparticles/mL 

and incubated for 40 minutes.  Cells were then washed with HEPES buffer and fixed in 

2.5% glutaraldehyde for 2 hours at room temperature.  Glass cover slips were mounted 

with Vectashield mounting media (Vector Laboratories; Burlingame, CA).  To identify 

the same cell for light microscopy and TEM, spots were made with an ultra-fine tipped 

pen on the cell-containing cover slip.   
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5.2.9  Immunohistochemical Staining 

Mice received a 100 µL tail-vein injection containing 8*1011 nanoparticles per 20 

g mouse weight.  The injection was performed over less than five seconds using a 26-

gauge needle in all cases.  Twenty minutes after the injection of nanoparticles, mice were 

sacrificed and their livers were immediately excised, embedded in Tissue-Tek OCT 

embedding compound (Sakura Finetek USA; Torrance, CA) and stored in 2-

methylbutanol on dry ice.  Frozen liver sections were cut 12 µm thick, and two sections 

were placed on each slide for imaging.  Remaining blocks were stored at -80OC.  The 

slides were washed with PBS to remove OCT, and a perimeter was drawn around each 

pair of sections with an ImmEdge pen (Vector Laboratories).  Each section was then 

fixed with 4% paraformaldehyde and rinsed with TBS (100 mM Tris and 150 mM NaCl, 

adjusted to pH 7.4).  Slides were incubated with blocking buffer, then any biotin or 

streptavidin in the sections was blocked with the Streptavidin/Biotin Blocking Kit 

(Vector Laboratories) and rinsed with TBS.  Continuing with TBS washes between each 

step, slides were sequentially incubated with donkey blocking buffer, goat anti-ASPGR1 

antibody (Santa Cruz Biotechnology; Santa Cruz, CA), donkey anti-goat IgG-biotin 

(Santa Cruz Biotechnology) and finally QDot655 Streptavidin conjugate (Quantum Dot 

Corp.; Hayward, CA).  Following a final set of TBS washes, slides were mounted with 

Vectashield Mounting Medium with DAPI (Santa Cruz Biotechnology) nuclear stain. 
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5.2.10  Immunohistochemistry Imaging 

Images were acquired at the CHLARI Congressman Julian Dixon Cellular Image 

Core with a Leica DM RXA microscope using a HC Plan 20x/0.70NA Ph2 DIC C 

objective lens, 1.25x optovar and Koehler illumination (Leica Microsystems Inc.; 

Bannockburn, IL). A SKY/CD-300/VDS-1300 spectral imager with EasyFISH software 

(Applied Spectral Imaging, Inc.; Carlsbad, CA) was used. The 640 x 480 pixel images 

were acquired with 2 x 2 binning (1.039 um/pixel). All images acquired during a single 

session for each size nanoparticle were captured with identical exposure times and saved 

as 16-bit/channel EasyFISH files. Images were also saved as 24-bit RGB color images 

using constant slope contrast settings for each channel. Phase contrast and GFP images 

were acquired using a Chroma 41004 filter set (HQ480/40x, Q505LP dichroic, 

HQ535/50m), DAPI images were acquired using a Chroma 41001 filter set (HQ480/40x, 

Q505LP, HQ535/50m) (Chroma Technology Corp.; Brattleboro, VT) and QD655 images 

were acquired with a Leica N2.1 filter set 513832 (BP515-560, 580, LP590).  

 

5.3  Results and Discussion 

5.3.1  In Vitro Uptake Results 

Hepatocytes have access to high concentrations of amino acids and other nutrients 

from the digestive tract and endogenous protein catabolism, as well as a rich network of 

endoplasmic reticulum that enables their efficient secretory processes.11  As such, 

hepatocytes are the primary site of secretory protein synthesis in the body and are 
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accordingly involved in many disease states.  Hepatocytes are therefore a highly desirable 

target for gene therapy.   

Nanoparticle uptake into cultured hepatocytes can provide an initial indication of 

the effect of size and galactose targeting on hepatic uptake.  Besides the complex 

microenvironment in the liver surrounding each hepatocyte, as compared to the loosely 

packed monolayer of hepatocytes in culture, freshly isolated hepatocytes were found to 

have only 17% of their ASGPr on the cell surface12 as compared to between 40% and 

60% ASGPr presentation for hepatocytes in the liver.  After incubation at 37OC, the 

receptor distribution in isolated hepatocytes has been reported to approach 50% on the 

cell surface with the remainder associated with intracellular Golgi, microsomal and 

lysosomal membranes.13  To minimize the transient nature of these effects, hepatocytes 

were incubated in complete hepatocyte medium, as described in Materials and Methods, 

for a minimum of 24 hours prior to use. 

Nanoparticle uptake by plated hepatocytes was assayed by measuring the 

fluorescence of whole cell lysates after incubating freshly isolated hepatocytes with 

nanoparticles and washing with chilled HEPES buffer.  In all in vitro uptake experiments, 

hepatocytes were incubated for two hours in media that does not contain any Cu2+ or Zn2+ 

ions.  McAbee and Jiang10 have demonstrated that these ions result in the reversible 

accumulation of inactive ASGPr both intracellularly and on the cell surface, so 

hepatocytes were incubated at 37OC and washed in the absence of Cu2+ or Zn2+ before 

experiments were initiated. 

 
 
 



 88

Nanoparticle type % Dose in Hepatocyte Lysate 
Gal-50 21.9% 

MeO-50 9.0% 
Gal-140 1.6% 

MeO-140 1.5% 
 
Table 5.2.  In vitro uptake of nanoparticles by freshly isolated hepatocytes, as quantified 
by the overall fluorescence of cell lysates by comparison to a standard curve also using 
hepatocyte lysates. 
 

The results of nanoparticle uptake into plated hepatocytes are shown in Table 5.2.  

It is apparent that nanoparticles with 50 nm diameters are taken up to a much greater 

extent than are those with 140 nm diameter.  The presence of galactose on 140 nm beads 

has no apparent effect, with about 1.5% of each MeO-140 and Gal-140 dose being 

internalized by hepatocytes.  Galactose presentation does, however, significantly affect 

the uptake of 50 nm beads.  While about 9% of MeO-50 nanoparticles were internalized 

during the course of the experiment, greater than 20% of Gal-50 nanoparticles were 

internalized.  These results presented in Table 5.2 are consistent with the findings of 

Rensen et al.2 that hepatocytes preferentially internalize targeted liposomes with 

diameters less than about 70 nm.  In place of glycolipid-containing liposomes, the present 

work makes use of slightly anionic PEGylated nanoparticles that closely mimic the 

surface properties of stabilized gene delivery polyplexes.  Since PEGylation is commonly 

required to achieve long circulation times of nanoparticles in vivo, the results obtained 

with this system are expected to directly translate to a wide variety of gene and drug 

delivery systems. 

When formation of endocytic vesicles is accompanied by uptake of extracellular 

fluid along with any macromolecules or particles present, uptake is said to occur by fluid-
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phase endocytosis, or pinocytosis.  Vesicles resulting from pinocytosis are generally less 

than 100 nm in diameter, so it can be speculated that the fairly high uptake of nontargeted 

50 nm nanoparticles by hepatocytes in vitro may at least partially be due to pinocytosis.  

 

 

Figure 5.1.  Kinetics of nanoparticle uptake by suspended hepatocytes, as analyzed by 
flow cytometry.  a) Uptake of 50 nm and 140 nm nanoparticles are shown on the same 
scale.  b) Uptake of 140 nm nanoparticles are shown on an expanded scale. 
 

To help guide in vivo experiments and to better understand in vitro uptake, 

nanoparticle uptake kinetics were monitored with suspended, freshly-isolated 

hepatocytes, and the results are shown in Figure 5.1.  This experiment confirms the 

results obtained with plated hepatocytes.  Gal-140 and MeO-140 are taken up only 

minimally compared to the 50 nm nanoparticles (Figure 5.1a), and no difference in 

uptake was seen in 140 nm beads (Figure 5.1b) displaying galactose or methoxy on their 

surfaces.  Once again, uptake of the nontargeted MeO-50 nanoparticles does occur, but 

Gal-50 are taken up to a greater extent.  At least 10 nanoparticles were associated with 

each hepatocyte within 30 seconds of their addition to the hepatocyte suspension (data 

not shown).  This result is not unreasonable considering that ASGPr clustering has been 

observed within 15 seconds of ligand introduction,14 approximately 50% of ASGPr-
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ligand complexes are internalized within 3 minutes12,15 and that at saturation, each 

hepatocyte can take up 5*106 ligands by ASGPr per hour.7 

Following pinocytic uptake by hepatocytes in vivo, vesicles follow one of three 

distinct paths.16  About 80% of pinocytosis material is rapidly exchanged with 

extracellular fluid, about 18% is processed deeper into the cell and about 2% is secreted 

into bile.  The fraction of internalized fluid that is regurgitated back into plasma does so 

with t1/2 about 1-2 minutes in hepatocytes.  This t1/2 is considerably shorter than is seen in 

macrophages, fibroblasts or adipocytes.  Based on these uptake results, it is estimated that 

hepatocytes pinocytose the equivalent of 20% or more of their volume and at least 5 

times their plasma membrane surface area each hour.16  This high recycle rate of 

pinocytosed materials has also been confirmed with suspended rate hepatocytes,17 and the 

shape of the MeO-50 uptake curve in Figure 5.1a can be explained by this mechanism.18  

For the first 30-60 seconds of hepatocyte exposure to MeO-50 nanoparticles, uptake is 

proceeding quickly without significant nanoparticle release back into the extracellular 

fluid.  However, an average pinosome recycling time of about 1-2 minutes means that 

increasing amounts of pinocytosed material will be released after about 60 seconds until 

steady-state conditions are reached after about 200 seconds.  Under steady-state 

conditions, 80% of all pinocytosed material will be rapidly recycled while 20% will be 

retained within the cell and contribute to ongoing increases in cell fluorescence.  As such, 

an initial region of linearly increasing uptake is expected until about 30-60 seconds, at 

which time a transition will occur until another linear uptake region with a shallower 

slope is observed after about 200 seconds.  The MeO-50 kinetic uptake curve shown in 

Figure 5.1a matches this description. 
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The shape of the Gal-50 uptake curve is similar to that of MeO-50 (Figure 5.1a).  

This can be understood if the primary mechanism of uptake of Gal-50 in vitro is also 

pinocytosis, but with additional ASGPr-mediated uptake as well.  Suspended rat 

hepatocytes have been shown17 to uptake transferrin primarily by pinocytosis, despite the 

presence of a transferrin receptor on their cell surface.  Nearly 80% of transferrin uptake 

was attributed to pinocytosis, with the remainder coming through receptor-mediated 

endocytosis.  The half-time for internalization via the ASGPr is about 180 seconds,19 with 

an average time to recycle to the cell surface of about 4 minutes.6  Because of the 

similarity of these two uptake processes and the suggested dominant role of pinocytosis 

on uptake, it can be expected that Gal-50 will be internalized to a greater extent than 

MeO-50, but that the shape of the two kinetic uptake curves will be similar.  In the 

presence of Cu2+ and Zn2+ ions, uptake of Gal-50 and MeO-50 are indistinguishable (see 

Appendix D), suggesting that the difference in uptake between the two nanoparticles is 

ASGPr-mediated.   

 

5.3.2  Optimization of Experimental Conditions for In Vivo Experiments 

To allow direct comparison between all in vivo experiments, a set of experimental 

conditions was identified that maximizes hepatic uptake following injection of 

nanoparticles.  For this purpose, Gal-50 nanoparticles were utilized.  The percentage of 

the injected dose in the liver was determined by homogenizing the livers of two mice per 

set of experimental conditions and extracting the fluorescent dye in chloroform.   

Nanoparticles can be administered in a variety of ways to mice.  Since hepatic 

uptake is desired, direct injection into the liver can be accomplished via portal vein or 
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inferior vena cava.  While portal vein injections are possible in humans, unnecessary 

surgical procedures are preferentially avoided.  Therefore, the nanoparticles will be 

introduced into systemic circulation and will pass through the liver with the general blood 

flow.  Tail-vein injection in mice is the most convenient method of introducing materials 

into the mouse circulation and will be used in all in vivo experiments.  Injection of large 

volumes relative to the circulating blood volume of the mouse have been found to result 

in transiently increased cell membrane permeability20 that could obscure the effects of 

nanoparticle-size galactose presence.  Therefore, low-pressure tail-vein injections of 

nanoparticles (100 µL per 20 g mouse) will be employed in all in vivo experiments. 

 

 

Figure 5.2.  Optimization of experimental conditions for in vivo experiments by assaying 
total fluorescence of mouse liver following homogenization of liver and extraction of 
fluorophore.  a) Determination of optimal time between tail-vein injection of 
nanoparticles and liver removal.  8*1011 Gal-50 nanoparticles were injected via tail-vein 
per 20 g mouse, two mice per group, and sacrificed at the time shown.  b) Determination 
of optimal bead dose.  Mice received tail-vein injections of Gal-50 nanoparticles and 
were sacrificed 20 minutes post-injection. 
 

As shown in Figure 5.2, Gal-50 accumulates in the liver up to about 20 minutes, 

after which time its concentration decreases.  The effect of the Gal-50 dose on liver 

uptake was also investigated, over a dose range that is reasonable for nonviral gene 

delivery particles.  Based on the results of these liver uptake experiments, it was 
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determined that 8*1011 beads in 100 µL saline per 20 g mouse would be administered via 

tail-vein injection, with liver removal 20 minutes post-injection. 

 

5.3.3  Bulk Liver Uptake of Nanoparticles 
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Figure 5.3.  Overall uptake of nanoparticles into hepatic tissue.  Results are shown as 
mean ± standard deviation of three mice per group. 
 

As in the previous experiment, the uptake of nanoparticles into liver tissue can be 

determined by homogenizing the liver and extracting the fluorescent dye.  The 

comparison of bulk liver uptake of each nanoparticle is shown in Figure 5.3.  It is 

apparent that galactosylated nanoparticles are taken up to a much greater extent than are 

non-galactosylated nanoparticles, which is as expected given the unique presence of 

galactose receptors in the liver on hepatocytes and Kupffer cells.  In particular, nearly the 

entire dose of Gal-140 is found in the liver, as compared to about one-third of the Gal-50 

dose.  Concentrations of both MeO-50 and MeO-140 in the liver are quite low.  In vitro, 
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neither of the two types of 140 nm beads were internalized to a significant extent by 

hepatocytes, but it is clear that Gal-140 nanoparticles are taken up by the liver in vivo.  

As shown in the following sections, Kupffer cells are primarily responsible for Gal-140 

uptake in vivo. 

 

5.3.4  TEM Imaging Following Tail-Vein Injection of Nanoparticles 

Bulk liver uptake experiments indicated significant differences in the uptake of 

targeted and nontargeted nanoparticles, but gave no indication of the hepatic 

distributions.  TEM analysis of liver cross-sections following tail-vein injection of 

nanoparticles provided information on hepatic distribution and intracellular trafficking of 

the nanoparticles.  All images are representative of the overall hepatic distribution for 

each type of nanoparticle. 
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5.3.4.1  Hepatic Distribution of 140 nm Nanoparticles 

 

Figure 5.4 shows TEM images of a 20 nm thick section of liver tissue that had 

been exposed to Gal-140 by tail-vein injection of these nanoparticles.  The image in 

Figure 5.4a shows six hepatocytes surrounding a single Kupffer cell (marked ‘K’).  
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Hepatocytes are polyhedral cells with 8 or more surfaces and regular, round nuclei that 

represent about 60% of the cells in the liver but almost 80% of hepatic volume since they 

are the largest of the cells.  Kupffer cells are hepatic macrophages that have irregular 

nuclei and generally are located in the lumen of hepatic sinusoids adjacent to hepatocytes.  

Kupffer cells are in direct contact with the bloodstream and represent about 10% of the 

cells in the liver.   

Though isolated examples of Gal-140 in hepatocytes could be found (images not 

shown), only a few beads are found per cell in those cases, while nearly all Kupffer cells 

contain a large number of internalized beads as shown in Figure 5.4b.  This image clearly 

demonstrates Kupffer cell uptake of Gal-140, with hundreds of nanoparticles in each of 

the large phagocytic compartments (Figure 5.4c).  At 8*1011 nanoparticles injected per 20 

g mouse, approximately 50,000 nanoparticles are being injected per Kupffer cell in the 

liver.  Since the Kupffer cell galactose-particle receptor has been documented to 

endocytose as many as 4200 galactosylated particles per cell per minute,21 the large 

number of nanoparticles observed per cell is reasonable.   

Nanoparticle aggregation is not observed in Figure 5.4c, despite extremely 

concentrated conditions in the confines of phagocytic compartments.  This provides 

additional evidence that the nanoparticles are stable and do not aggregate or fall apart 

either in serum or intracellularly, confirming the results of in vitro stability assays.  The 

size stability in vivo allows the direct correlation of nanoparticle size with uptake results.   

Unlike Gal-140, MeO-140 nanoparticles are not taken up to a great extent by any 

hepatic cells.  In fact, most cells did not contain any MeO-140 beads, and few examples 
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could be found of aggregates of MeO-140.  However, of the cells that contained 

nanoparticles, MeO-140 were primarily internalized by Kupffer cells (images not shown).   

 

5.3.4.2  Hepatic Distribution of 50 nm Nanoparticles 

 

Figure 5.5.  TEM images of hepatocytes following tail-vein injection of a) MeO-50 and 
b) Gal-50 nanoparticles, 8*1011 per 20 g mouse.  Examples of individual vesicles are 
labeled with arrows. 
 

TEM images of liver sections following exposure to 50 nm nanoaparticles were 

quite different than those exposed to Gal-140.  Neither MeO-50 or Gal-50 were found 

concentrated in Kupffer cells, though liver that was exposed to Gal-50 had an unusually 

large number of 100-200 nm vesicles throughout the cytoplasm of most hepatocytes, as 

shown in Figure 5.5b.  As compared to hepatocytes from mice that received tail-vein 

injection of MeO-50 (Figure 5.5a), which contain occasional vesicles in the cytosol, 

hepatocytes exposed to Gal-50 contain many hundreds of clearly defined vesicles.   
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The result that Gal-140 are much more concentrated in Kupffer cells than are Gal-

50 is consistent with literature reports that Kupffer cells tend to uptake 80 nm particles 

much more slowly than they internalize 500 nm particles.3  However, identification of 

individual nanoparticles in the hepatocyte vesicles is not as clear in the case of Gal-50 as 

it was for Gal-140.  It is therefore critical to demonstrate that vesicles as shown in Figure 

5.5b do in fact contain nanoparticles.   

 

 

To confirm that the vesicles shown in Figure 5.5b contain nanoparticles, we 

endeavored to image the same cell by both fluorescence and TEM.  By carefully marking 

and photographically documenting the cell of interest, we were able to identify the same 

cell following workup for TEM.  In Figure 5.6, the capability of the technique is 
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demonstrated by imaging the same cell with light microscopy and TEM.  The nuclei and 

overall cell membrane shape, as well as relation to adjacent cells (not visible in Figure 

5.6), confirm that the same cell may be identified and imaged on separate microscopes on 

separate days.  Any slight differences in cell morphology may be attributed to the fact 

that the entire thickness of the cell is photographed with the light microscope, while only 

a thin section of about 20 nm is imaged by TEM.   

 

 

Figure 5.7.  Imaging of a hepatocyte, 24-hours post isolation that had been exposed to 
Gal-50 nanoparticles.  Comparison of a) light and fluorescence images and b) TEM 
image of the green perinuclear region on the top left side of (a).   
 

By comparing green regions seen by fluorescence microscopy of a plated 

hepatocyte in vitro with vesicle-containing regions seen by TEM, it was confirmed that 

the vesicles in hepatocytes exposed to Gal-50 in vivo contain nanoparticles.  In Figure 

5.7a, the majority of a hepatocyte is seen by fluorescence and light microscopy.  This 

plated hepatocyte was exposed to Gal-50 in vitro before being fixed with glutaraldehyde 

and imaged by confocal microscopy.  Heavy-metal staining of the cell and embedding in 

Epon resin allowed TEM to be taken of the same cell.  Since all nanoparticles used in 



 100
these experiments have FITC embedded in their polystyrene core, they show up as green 

in the fluorescence image (Figure 5.7a).  From this image it is apparent that the majority 

of Gal-50 beads are in the perinuclear region of the cell.  When perinuclear regions of the 

cell are magnified by TEM (Figure 5.7b), an unnaturally large number of vesicles are 

seen.  There are few vesicles in regions of the hepatocyte that do not show up green by 

fluorescence, so it is apparent that the green fluorescence originates from the large 

number of intracellular vesicles.  Isolated clusters of vesicles on TEM show up as bright 

spots by fluorescence, while clusters in close proximity, as shown in Figure 5.7b, show 

up as diffuse green regions by fluorescence.  Analogous to the situation seen in vivo 

following injection of Gal-50, individual nanoparticles cannot be easily identified inside 

vesicles, but green fluorescence is clearly originating from these vesicles.  We therefore 

conclude that Gal-50 nanoparticles are trapped within the vesicles seen by TEM. 

Hepatocytes and Kuppfer cells are not the only hepatic cells capable of 

internalizing nanoparticles.  Under the appropriate conditions, both hepatic stellate cells 

(HSC) and liver sinusoidal endothelial cells (LSEC) display phagocytic behavior.  

Following hepatic injury, hepatic stellate cells (HSC) differentiate into an activated 

phenotype that is capable of taking up 1 µm carboxylate-modified latex particles.22  

Despite liver enzyme assays indicating no toxicity associated with the nanoparticles used 

in this study, and hence no reason for HSC activation, HSC uptake of nanoparticles was 

considered and excluded based on TEM and FACS results (FACS data discussed in 

Appendix C).  We also must consider possible uptake by LSEC.  LSEC have been shown 

to nonspecifically internalize a number nanoparticles, including lecithin-coated 240 nm 

polystyrene beads,23 uncoated 240 nm and 330-800 nm polystyrene beads,24 and 12 nm 
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iron oxide nanoparticles.25  Furthermore, LSEC are indicated in the efficient ingestion 

and rapid degradation of naked pDNA in vivo and in vitro.26  Despite intense scrutiny, no 

evidence could be found of LSEC association or internalization of the PEGylated 

nanoparticles employed in this study. 

By TEM, we have thus confirmed a significant difference in hepatic distribution 

and uptake of 50 nm and 140 nm nanoparticles that present either galactose or methoxy 

moieties on their surface.  Although TEM provides a very detailed view of intracellular 

trafficking, it is limited by the small area that can be examined at a time and by lack of 

scalability, thus preventing conclusions to be drawn concerning distribution of the 

nanoparticles across the area of the liver. 

 

5.3.5  Immunohistochemistry Following Tail-Vein Injection of Nanoparticles 

To provide a more general view of the liver, an immunohistochemical staining 

(IHC) procedure was developed.  This technique is scalable in that processing may be 

done to multiple slides simultaneously.  Twenty minutes after nanoparticles were injected 

via tail-vein into mice, the liver was embedded in OCT blocks and stored in 2-

methylbutanol on dry ice.  12 µm thick liver sections were cut from the OCT blocks, 

excess OCT was dissolved away and endogenous biotin activity was blocked.  ASGPr 

was then stained red through a three-component antibody system.  Goat anti-ASGPr1 was 

used as the primary antibody to provide a target for attachment of a donkey anti-goat 

IgG-biotin antibody.  Since exogenous biotin was already blocked, incubation with 

QDot655-Streptavidin and subsequent washes permitted specific visualization of the 
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ASGPr receptor in the red fluorescence channel.  Blocking of exogenous biotin was 

critical to minimize nonspecific binding of QDot655-Streptavidin to liver tissue.  Finally, 

slides were stained with DAPI-containing VectaShield mounting media, providing blue 

staining to nucleic acids in cell nuclei. 

 

Figure 5.8.  Illustration of the staining that results from the immunohistochemical 
staining of the hepatic asialoglycoprotein receptor (ASGPr). 

In Figure 5.8, an example of the ASGPr staining pattern is drawn on a TEM 

image of normal mouse liver.  ASGPr is expressed primarily on the hepatocytic basal and 

lateral membranes, which are directed toward the perisinusoidal and pericellular spaces 

and make up about 75% of the hepatocyte circumference.  The density of ASGPr on these 

surfaces is 7- to 14-fold higher than on the apical surfaces.27,28  We would therefore 
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expect to see staining around the perimeter of sinusoids and around Kupffer cells, but 

hepatocyte-hepatocyte junctions should remain largely unstained.  However, sections 

used for IHC are 12 µm thick, or about 300 times thicker than sections used for TEM, so 

the three-dimensionality of the sinusoids must also be considered.  Liver sinusoids have 

an average diameter of about 7.3 µm,29 so it is likely that hepatocyte membranes located 

just above or below sinusoids will be partially included in the 12 µm thick IHC section.  

We would therefore expect sinusoidal endothelial cells to be included in the red-stained 

regions.  Similarly, since Kupffer cells tend to border sinusoids and sinusoid-facing 

perimeters of hepatocytes, it is to be expected that many Kupffer cells will also be stained 

red.   
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Figure 5.9.  Immunohistochemistry image of 12 µm-thick section of mouse liver 
following tail-vein injection of 8*1011 MeO-140 nanoparticles.  ASGPr is stained red, 
nuclei are blue and nanoparticles are green/yellow. 

A representative immunohistochemistry image obtained after tail-vein injection of 

MeO-140 nanoparticles into mice is shown in Figure 5.9.  In this image, a sinusoid is 

seen running from the top center of the image towards the bottom right corner before 

wrapping around a pair of hepatocyte nuclei and returning toward the top-center.  Along 

the length of this sinusoid, a large number of individual MeO-140 beads can be seen.  

The situation just described is similar to that seen in sinusoids running vertically down 

the left side and center of the image, in which the nanoparticles do not appear to be 



 105
aggregated.  Few examples of MeO-140 aggregation could be found, indicating that these 

beads are largely present in hepatic sinusoids and are not internalized to any great extent 

in hepatic cells.  This situation is similar to that observed for MeO-50 beads (not shown).  

No difference in nanoparticle distribution or density was observed between regions near 

the portal vein inlet to the liver and regions near the hepatic vein outlet. 

 

Figure 5.10.  Immunohistochemistry image of 12 µm-thick section of mouse liver 
following tail-vein injection of 8*1011 Gal-140 nanoparticles.  ASGPr is stained red, 
nuclei are blue and nanoparticles are green/yellow. 

The immunohistochemistry image obtained following Gal-140 injection is much 

different.  In the image shown in Figure 5.10, large aggregates of nanoparticles are 
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observed.  These aggregates show up as yellow due to bright green overlaying red.  

While both MeO-140 and Gal-140 are shown to primarily overlay sinusoidal or Kupffer 

cell regions of the liver, the massively aggregated state of Gal-140 point to uptake by 

either Kupffer or sinusoidal endothelial cells since no mechanism exists for particle 

aggregation in the sinusoids.  By TEM, no evidence of nanoparticle uptake into 

endothelial cells could be found, so we are left to conclude that the massive aggregates of 

Gal-140 nanoparticles are resident in Kupffer cells.  This result supports the conclusion 

drawn from TEM studies.  Immunohistochemistry provides the ability to image a 1-2 cm 

cross-section of liver, permitting the distribution of beads to be seen across the liver from 

portal-vein inlet to hepatic-vein outlet.  While both sized methoxy-beads are seen in 

sinusoids in similar concentrations across the liver, a somewhat higher concentration of 

Gal-140 beads are observed near the portal-vein inlet to the liver.  This observation is 

consistent with the observation that Gal-140 are taken up into cells while MeO-50 and 

MeO-140 remain largely in the sinusoids.   
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Figure 5.11.  Immunohistochemistry image of 12 µm-thick section of mouse liver 
following tail-vein injection of 8*1011 Gal-50 nanoparticles.  ASGPr is stained red, nuclei 
are blue and nanoparticles are green/yellow. 

In agreement with the TEM observations presented, immunohistochemistry on 

liver tissue from mice that received tail-vein injections of Gal-50 nanoparticles shows 

that Gal-50 are primarily internalized by hepatocytes (Figure 5.11).  In this image, a pair 

of sinusoids is seen running from the bottom right corner of the image diagonally towards 

the upper left corner.  Unlike the images taken following injection of any of the other 

beads, few Gal-50 beads are seen to overlap red-stained regions of liver.  The majority of 

nanoparticles in this image have been internalized by hepatocytes, including all 
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nanoparticles surrounded by red circles.  A few Gal-50 nanoparticles may be in 

sinusoidal spaces or in Kupffer cells, located near the center of the image and towards the 

bottom right, where the green fluorescence overlays the red ASPGr staining, but the 

majority of Gal-50 are internalized by hepatocytes. 

 

5.4  Conclusions 

In this work, I studied the hepatocyte uptake in vitro and hepatic distribution in 

vivo of four slightly anionic, PEGylated-polystyrene nanoparticles.  Slightly anionic 

surface charges are utilized to minimize nonspecific proteoglycan-mediated uptake or 

interaction with anionic cell surface membranes.  In freshly isolated hepatocytes, Gal-50 

nanoparticles are taken up to a greater extent than are MeO-50, but both 50 nm beads are 

taken up to a much greater extent than are either 140 nm nanoparticles.  However, about 

90% of the in vivo dose of Gal-140 nanoparticles is found within the liver 20 minutes 

after tail-vein injection.  TEM and immunohistochemistry images confirm that Gal-140 

are primarily internalized by Kupffer cells, though isolated examples of a few Gal-140 in 

hepatocytes can also be found.  On the other hand, Gal-50 nanoparticles are 

overwhelmingly found in vesicles throughout the cytoplasm of hepatocytes, with only 

isolated examples of Kupffer cell uptake.  Despite similar surface charge and ligand 

density, 50 nm nanoparticles are primarily found in hepatocytes while 140 nm 

nanoparticles are primarily seen in Kupffer cells.  It is therefore clear that slightly 

anionic, galactose-PEGylated nanoparticles should be about 50 nm in diameter to 

preferentially target hepatocytes while they should be about 140 nm in diameter to 

selectively target Kupffer cells. 
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 6.1  Overall Conclusions and Recomendations 

Based on the results of work presented in this report, it is apparent that the 

chemical structure and physicochemical properties of gene delivery particles affect their 

in vitro and in vivo performance.  The cyclodextrin-based gene delivery systems 

developed in our laboratory are amenable to tailoring of particle size, surface charge, and 

ligand type and density.  Through use of a nanoparticle-based model delivery system, I 

have now identified a set of parameters that enables the hepatocyte-specific targeting of 

particles in vivo.  Specifically, PEGylated 50 nm nanoparticles with 25 pmol/cm2 

galactose surface density and slightly anionic surface potentials are found to 

preferentially be internalized by hepatocytes following tail-vein injection in mice.  Given 

the difficulty of non-viral gene delivery to hepatocytes, gene delivery particles should 

now be synthesized with these properties and their in vivo hepatocyte-targeting assayed.  

Mean particle diameters of about 50 nm are attainable by formulating the particles in the 

presence of adamantane-PEG.1  Galactose surface density can be controlled by varying 

the ratio of lactose-adamantane-PEG to methoxy-adamantane-PEG during the 

formulation.  The surface charge of the particles can be controlled by incorporation of 

adamantane-PEGs that contain short anionic segments near the adamantane end.  In this 

manner, the optimized set of physicochemical properties identified with the nanoparticle-

based model delivery system may be incorporated into next-generation gene delivery 

particles. 
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6.2  Future Consideration: Increased Ligand Specificity 

In this work, a single galactose ligand was conjugated to the distal end of PEG 

chains on the surface of polystyrene beads.  While this ligand significantly altered hepatic 

distribution and uptake of the beads, resulting in effective Kupffer cell targeting of 140 

nm beads and increased hepatocyte uptake of 50 nm beads, further increases in 

hepatocyte-specificity may be desirable.   

Galactose is known to bind the hepatic asialoglycoprotein receptor with the 

relatively low affinity of approximately 4x10-4 M.2  Naturally occurring glycopeptides 

bind much stronger due to branched structure, and this ‘cluster effect’ can be mimicked 

by synthetic ligands.  The inhibitory power of the ligand can be increased significantly by 

presenting multiple galactose moieties in close vicinity,2, 3 with mono-, bi- and 

triantennary oligosaccharides capable of 50% inhibition at approximately 1 mM, 1 µM 

and 5 nM, respectively.  Stockert provides an excellent review of the asialoglycoprotein 

receptor,4 including a proposed distribution of surface receptor binding sites 

corresponding to the vertices of a triangle with sides of 15, 22 and 25 Å, in which only 

two terminal galactose residues are required for receptor recognition, with the third 

providing additional binding energy.  Studying binding between a triantennary 

glycopeptide and the rat ASGPr, Rice et al.5 reached a similar conclusion that the third 

galactose binds with less affinity than the first two.  It has been demonstrated6 that the 

spatial inter-galactose distances and the flexibility of the arm connecting galactose 

residues to the branch points significantly affects binding.  More flexible linkers resulted 

in more potent inhibitors, while spatial distances between galactose residues were best 

between 15 and 25 Å.5  A 2000-fold increase in binding affinity was found between a 
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monovalent ligand and an optimized bivalent ligand, and a 50-fold increase from the best 

bivalent to the best trivalent ligand.  Further increase to four or six galactose residues per 

molecule only increased binding slightly, likely due to an increased local concentration of 

galactose near the binding sites and interaction with an adjacent receptor.  Biessen et al.7 

investigated the effect of spacer length between the branch point and terminal sugars and 

found an at least 2000-fold increase in affinity for the asialoglycoprotein receptor 

between a trivalent ligand with only a methylene spacer and a trivalent ligand with a 20 Å 

flexible spacer. 

Galactose receptors have been found on the surface of other cells such as Kupffer 

cells, peritoneal macrophages and tumor cells.   Kichler and Schuber8 synthesized bi- and 

triantennary galactose ligands with varied distances between galactose residues and found 

that the triantennary ligand showed significantly higher affinity than the biantennary 

ligand for both the hepatocyte and peritoneal macrophage galactose receptors.  The 

dissociation constant of hepatocytes was a factor of 4 higher than that of the 

macrophages, but ideally this difference would be much greater.  Though not a primary 

concern, cluster effects are not observed in galectins,9 which are typically involved in 

cell-cell/cell-matrix interactions and growth regulation, suggesting that bi- and trivalent 

ligands will avoid interfering with these effects. 

While increased affinity for the hepatic ASGPr is desirable, a more precise goal 

may be increased specificity for hepatocytes.  In addition to increasing the valency of the 

ligand, which as discussed above has limited impact on specificity, sugar modifications 

can affect binding to ASGPr.  Terminal nonreducing D-GalNAc residues were found to 

bind hepatic ASGPr more strongly than galactose,10, 11 with an estimated 50- to 60-fold 
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enhancement in affinity.12, 13  Importantly, the peritoneal macrophage asialoglycoprotein 

binding protein (M-ASGP-BP) was shown to clearly bind Gal stronger than GalNAc,14 

though Fadden et al.15 recently observed that isolated Kupffer cell receptors for 

glycoproteins displays a slightly higher affinity for GalNAc compared to galactose.  It is 

worth mentioning that many affinity results obtained with isolated receptors generally do 

not accurately describe binding with intact receptors on the cell surface.3  In any case, the 

GalNAc ligand is significantly more selective for hepatocyte targeting than is galactose.  

Thus, an opportunity for selective targeting presents itself.  It was further demonstrated 

that a comparable tri(N-acetyl-lactosamine) ligand showed an affinity increase of about 

105 over a monovalent ligand for ASGPr, while the same ligand only enhanced binding 

by M-ASGP-BP by about 2000 times over the monovalent ligand.  It might be expected 

that such a significant difference in enhanced binding could result in improved selectivity 

of uptake. 

Due to the considerable difficulty associated with synthesizing triantennary 

ligands, it is worth considering the use of mono- or bivalent GalNAc ligands.  En route to 

synthesizing polyantennary structures, an appropriately functionalized monovalent 

GalNAc must be made.  A published scheme16 allows for the synthesis of a GalNAc 

ligand appropriate for conjugation to the distal end of PEG for conjugation to 

nanoparticles or incorporation into the nucleic acid delivery system (Scheme 6.1). 
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Scheme 6.1.  Synthesis of GalNAc-carboxylic acid ligand.16  Reagents:  (a) TMSOTf, (b) 
TMSOTf, (c) H2/Pd/EtOAc and (d) NaOMe. 
 

In place of the benzyl ester, similar protected amine compounds can be used, but the 

reaction would only be simplified slightly. 

Binding studies have compared interactions of different acylated derivatives of 

galactosamine to RHL-1, the major subunit of the rat ASGPr.13, 17  As the length of the 

acyl side chain increased from formyl to propionyl, affinity increased with the propionyl 

derivative having approximately 8 times stronger binding than the methyl derivative 

(GalNAc).  A thioacetyl derivative (GalNSAc) was found to bind slightly better than the 

propionyl derivative, while steric hindrance is suspected of reducing binding of the 

thiopropionyl derivative.  GalNSAc bound 9 times stronger than did GalNAc. 

By modifying the galactose structure, Lee18 found that the axial 4-OH of 

galactose contributes strongly to binding between Gal or GalNAc and the carbohydrate 

recognition domain (CRD) of RHL-1.  An equatorial 4-OH group is prohibitory to 

binding when the 2-acetamido group is present.  It was also determined that the lectin can 

accommodate a bulky substituent at 6-OH of galactose, indicating that substituents on 6-
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OH do not interact with the binding site, or that the binding site is spacious.  Proposed 

molecular interaction between RHL-1 and GalNAc similarly depict the 6-OH group as 

directed out of the binding cavity.  A negatively charged group at C-6 does interfere with 

binding, as do bulky aglycons α-anomerically linked to galactose. 

In a follow-up study, Lee et al.19 found that the methylene group (C-6) contributes 

to binding, with significantly decreased interaction for all compounds lacking the 

methylene group, such as those with methyl ester, carboxylic acid, amidine or amide 

substituents.  Only slight improvements, of less than 50%, could be realized by varying 

this C-5 substituent.  There appears to be a nonspecific and possibly hydrophobic 

interaction between the aglycon and the lectin, with increases in binding strength of up to 

an order of magnitude possible by modifying this unit.  In particular, there appears to be a 

strong interaction between the lectin and an amidino group on the third atom from the 

anomeric carbon, while a 4-fold improvement could be realized from large hydrophobic 

aglycons such as 6-aminohexyl.  Attachment of an acetyl group to 2-OH of methyl α-

galactopyranoside increased its inhibitory power to that of GalNAc.   

In considering additional sugar modification, there appears to be little potential 

for gain by modifying the C-5 substituent, and the methylene should be maintained.  The 

strong binding and tight cavity indicate that modification of 4-OH is likely to prove 

fruitless.  Modifications at C-2 have been made, and 7-9 times increase in binding affinity 

can be realized with propionyl or thioacetyl derivatives of GalNAc.  These sugar 

modifications may be worthwhile since they are not as laborious as other selective sugar 

modifications.  Since substituting the ether linkage for a thioether linkage did not 

significantly affect binding, opportunity appears to exist only at C-3 for additional 
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structure modification.  It is my opinion that the selective functionalization at this 

position is not immediately worth the considerable time commitment that would be 

required, since much can be learned more immediately from syntheses first of a 

monovalent GalNAc ligand, then a GalNPr ligand.  Depending on the results of in vivo 

uptake experiments with these ligands, a decision would then be made to be content with 

one of these ligands, to proceed with synthesis of the bivalent ligand or to pursue further 

sugar modification.  A priori, I believe that synthesis of a bivalent ligand will make a 

much more dramatic improvement on vector targeting than could additional sugar 

modification.  Synthesis of the bivalent ligand may not be any more difficult than 

selectively modifying galactose at the C-3 position. 

 

6.3  Future Consideration: Variation in Surface Density of Ligand 

While a single ligand may bind a single cell-surface receptor, such interaction is 

not necessarily sufficient to result in the cascade of events leading to ligand 

internalization.  It has been demonstrated that while proteins with more galactose 

residues per molecule have higher binding affinities with ASGPr,18 23 nm nanoparticles 

bearing 60 surface lactose molecules were about four times more effective at targeting 

hepatocytes than were 23 nm particles with over 300 lactose molecules.20  The 23 nm 

nanoparticles bearing over 300 lactose molecules were taken up by Kupffer cells to a 

much greater extent than were 23 nm nanoparticles bearing 60 surface lactose molecules.  

This range of 60-300 lactose per 23 nm particle corresponds to about 6-30 pmol/cm2 

galactose on the nanoparticle surface.  In the present study, surface galactose densities of 
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about 30 pmol/cm2 were employed, so additional gain may be realized by decreasing the 

surface density of galactose.   

With 27 nm liposomes, Sliedregt et al.21 found that at a loading ratio of 5% (w/w) 

of glycolipid targeting molecule, particles were primarily processed by the hepatic 

ASGPr.  But at a targeting loading ratio of 50% (w/w) resulted primarily in Kupffer cell 

uptake.  However, the increased specificity of GalNAc for hepatocytes appears to 

increase the loading window that still results in hepatocyte targeting,22 with further 

benefit coming from incorporation of a triantennary GalNAc ligand into the liposome.  

Despite the decreased concern of Kupffer cell uptake with GalNAc ligand, there may still 

be an optimal ligand density on the surface to give maximum uptake into hepatocytes 

through the entire volume of the liver.  Once GalNAc ligands are incorporated into the 

system, and optimal particle size for hepatocyte uptake is nailed down, the effect of 

ligand density could be investigated.  
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Appendix A:  Galactose Surface Concentration Determination 

As described in the Methods and Materials section of Chapter 3, the surface 

density of galactose on the nanoparticles was determined with the Amplex Red 

Galactose/Galactose Oxidase Kit from Molecular Probes.  However, comparison to a 

galactose standard curve at 10-30 minutes, as suggested in the kit, did not yield 

reproducible results.   
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Figure A.1.  Calculated surface density of galactose on nanoparticle surfaces by 
comparison to a standard curve of free galactose in solution. 
 

As shown in Figure A.1, the calculated surface density of galactose varied 

considerably over time, as determined by comparison to a standard curve of 6 different 

concentrations of galactose in solution.  This difference can be explained by the high 

local concentration of galactose on the nanoparticle surface.  After diffusing to find a 

single nanoparticle, the galactose oxidase enzyme is able to quickly jump from galactose 
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to galactose on the nanoparticle surface.  However, in solution, the enzyme must diffuse 

much longer distances between galactose molecules at every jump.  Therefore, reaction 

on the nanoparticle surface occurs much more quickly than does oxidation of galactose in 

solution.  Since the rate of oxidation of galactose ultimately defines the measured 

absorbance of the solution, an artificially high concentration of galactose on the 

nanoparticle surfaces is initially measured.  Only after about 120 minutes does the 

calculated surface density of galactose level off.  The reported values of galactose surface 

density are taken as averages of multiple measurements at times greater than 120 

minutes.  Glucose was found to have no reactivity in this system, and methoxy-

terminated nanoparticles of all sizes were correctly identified at all times as having no 

galactose on their surfaces. 

 

 



 129

Appendix B:  Nanoparticle Exocytosis by Freshly Isolated, Cultured Hepatocytes 

Nanoparticle 
type 

% Dose in Lysate, 
Warm Wash 

% Dose in Lysate,  
Cold Wash 

Gal-50 14.9% 21.9% 
MeO-50 7.7% 9.0% 
Gal-140 0.9% 1.6% 

MeO-140 1.0% 1.5% 
 
Table B.1.  Effect of wash buffer temperature on dose of nanoparticles following 
incubation with freshly isolated hepatocytes.  After removal of nanoparticle-containing 
media, wash buffer of either 37OC or 2OC was incubated on the plated cells for 5 minutes.  
Wash buffer was then removed, cells were lysed and fluorescence of cell lysate was 
compared to standard curves of nanoparticles in unadulterated hepatocyte lysate. 
 

As shown in Table B.1, exocytosis of nanoparticles appears to be a significant 

concern.  While about 22% of the Gal-50 dose was present in hepatocytes following a 5 

minute wash with cold buffer, only about 15% of the dose was present after a similar 

wash with warm buffer.  Similar behavior was seen in all other nanoparticles studied. 
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Figure B.1.  Kinetics of exocytosis of nanoparticles from suspended freshly isolated 
hepatocytes. 
 

In Figure B.1, the rapid rate of exocytosis of nanoparticles is seen.  In this 

experiment, hepatocytes were incubated at 37OC with nanoparticles for 30 minutes.  

Nanoparticle-containing media was then removed, hepatocytes were resuspended in fresh 

media and data collection was begun within 10 seconds.  Despite the relatively low 

uptake of 140 nm nanoparticles by suspended hepatocytes, the kinetic exocytosis profiles 

of all four nanoparticles collapse onto one curve.  Based on this result, it may be 

suggested that the primary mechanism of exocytosis of all four nanoparticles by 

suspended hepatocytes is similar. 

Rudolph and Regoeczi,1 working with suspended rat hepatocytes, observed a 

rapid release of pinocytosed material, while material internalized via receptor-mediated 
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endocytosis was released more slowly.  Within 7.5 minutes, only about 20% of the dose 

internalized by pinocytosis remained.  This is not dissimilar from the results shown in 

Figure B.1 with about 35% of the dose remaining after that time.   

Binding and endocytosis of ASGPr appear to be maintained through a continuous 

reutilization of plasma membrane receptors rather than through their replacement from 

the intracellular receptor pool that is known to exist for ASGPr.2  Even if Gal-50 are 

being internalized by an ASGPr-mediated mechanism, there is a legitimate concern then 

that the ligand may be caught in this short-circuit pathway of receptor recycling that has 

been shown to occur with a t1/2 of about 4 minutes.3  Independent of the mechanism, 

quantitation of nanoparticle uptake by hepatocytes in vivo is complicated by such rapid 

exocytosis.  
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Appendix C:  Isolation of Non-Parenchymal Liver Cells after Nanoparticle Injection 

Unlike the rapid exocytosis observed following nanoparticle uptake by 

hepatocytes, no evidence of nanoparticle exocytosis was observed in cultured Kupffer 

cells.  This result is in agreement with a literature finding1 that after phagocytosis of 

carbon particles, Kupffer cells entered a physiological state where receptor recycling does 

not take place.  We may therefore consider isolating Kupffer cells following tail-vein 

injection of nanoparticles without concern of misrepresented uptake data due to 

nanoparticle exocytosis.   

Quantification of uptake by individual cell-types in the liver would facilitate 

identification of relationships between nanoparticle structure and in vivo response.  Along 

these lines, we injected 8x1011 beads per 20 g mouse, then isolated non-parenchymal 

cells after 20 minutes.  Non-parenchymal liver cells were isolated by the Non-

parenchymal Liver Cell Core of the Research Center for Alcoholic Liver and Pancreatic 

Diseases, as previously published.2  FACS was performed at the Flow Cytometry Core at 

the USC Health Sciences campus.   

 

Bead Type % FITC-positive  
Kupffer cells 

% FITC-positive  
Hepatic stellate cells 

Gal-50 29.30 +/- 4.72 <1% 
MeO-50 3.37 +/- 0.49 <1% 
Gal-140 76.88 +/- 3.03 <1% 

MeO-140 28.76 +/- 3.01 <1% 
 
Table C.1.  Fraction of nanoparticle-containing Kupffer cells after their isolation from 
mouse livers that were exposed to nanoparticles by tail-vein injection of 8*1011 
nanoparticles per 20 g Balb/c mouse. 
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In Table C.1, we can clearly see that Gal-140 are primarily taken up by Kupffer 

cells, and that nearly all Kupffer cells contain Gal-140.  Though almost 30% of Kupffer 

cells contain MeO-140 nanoparticles, the mean fluorescence of MeO-140-containing 

Kupffer cells was less than 10% of the mean fluorescence of Gal-140-containing Kupffer 

cells.  Further, a wide distribution of fluorescence values were seen following Kupffer 

cell exposure to Gal-140, while a narrow distribution was seen in Kupffer cells exposed 

to MeO-140.  Therefore, we see that not only is the percentage of Kupffer cells that 

phagocytosed MeO-140 much lower than the percentage that phagocytosed Gal-140 

(29% versus 77%), the number of beads taken up by the average Kupffer cell is also 

much lower for MeO-140. 

In this experiment, the percent of FITC-positive Kupffer and Hepatic stellate cells 

is determined after tail-vein injection in mice.  The percentage of FITC-positive 

hepatocytes could not be determined similarly due to rapid exocytosis of nanoparticles 

from hepatocytes.  Additionally, because the data shown in Table C.1 for 50 nm and 140 

nm nanoparticles were collected months apart with different instrument settings, it is 

impossible to accurately compare the mean fluorescence values of 50 nm and 140 nm 

nanoparticles.  Including all liver cell types, each injected dose contains approximately 

4000 nanoparticles per cell, so it is conceivable to have 100% FITC-positive cells, with 

each cell having internalized 40 nanoparticles, and only 1% total uptake.  Therefore, 

direct comparison of the data presented in Figure C.1 to the data presented in Figure 5.3 

is not possible. 

We also see that almost 30% of Kupffer cells exposed to Gal-50 have internalized 

some of the nanoparticles.  By microscopy, we saw that hepatocytes were the primary site 
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of internalization of Gal-50, but clearly there is room for increased specificity.  In the 

future directions section of this report, the next steps in ligand synthesis is discussed. 

FACS analysis was also performed on Hepatic stellate cells, but no evidence of 

nanoparticle internalization was seen (Table C.1).  
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Appendix D:  Effect of Nanoparticle Dose on Uptake by Suspended Hepatocytes 

As described in the Methods section, hepatocytes were detached from 10 cm2 

plates and resuspended in colorless, complete hepatocyte media.  Following overnight 

incubation at 37OC and 5% CO2, the cells were spun down, resuspended in colorless 

media without FBS or Cu2+ or Zn2+ ions and incubated for an additional two hours.  The 

cells were then washed, resuspended and counted, filtered and distributed to individual 

tubes for experimentation.  Following appropriate incubation with beads, cell suspensions 

were transferred to FACS tubes on ice. 
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Figure D.1.  Effect of nanoparticle dose on uptake into suspended hepatocytes, in media 
containing Cu2+ and Zn2+ ions. 
 

The importance of Cu2+ and Zn2+ ion-removal prior to uptake experiments is 

shown by the results in Figure D.1.  In that experiment, suspended hepatocytes were 

maintained in colorless D-MEM/F-12 media (Invitrogen) until the experiment was begun.  

Gal-50 or MeO-50 nanoparticles were added to the hepatocytes in D-MEM/F-12 medium 
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and incubated for 45 minutes at 37OC under 5% CO2 atmosphere to allow equilibrium to 

be reached.  The presence of galactose on the nanoparticle surface has no impact on 

uptake relative to the nontargeted equivalent, MeO-50.   

 

 

Figure D.2.  Effect of bead concentration on mean fluorescence of suspended primary 
hepatocytes.    
 

Incubation of hepatocytes in Opti-MEM media that does not contain Cu2+ or Zn2+ 

ions for two hours, followed by cell wash in Opti-MEM, allows the impact of galactose 

to be seen (Figure D.2).  The strong linear correlation between FITC mean and 
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nanoparticle dose is in agreement with the hypothesis that pinocytosis is the primary 

mechanism of nanoparticle uptake by suspended hepatocytes.  However, this data alone 

does not conclusively single out any mechanism of uptake.  In pinocytosis, the rate of 

uptake is directly proportional to the concentration of macromolecules or particles in the 

extracellular fluid, but rates of pinocytosis may be 20,000 times slower than uptake via 

ASGPr-mediated endocytosis.1  Free galactose in solution with nanoparticles was not 

found to significantly impact uptake results. 
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