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ABSTRACT

A new and relatively simple description is proposed for the
velocity profile in turbulent flow close to @ smooth wall. Heat
transfer coefficients are calculated from the description and are
shown to agree better with experiment than other theories. The
enalysis is extended to transport processses in liquids where the

viscosity has & large variation closs to the wall,
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SUMMARY

Since no exact theory for turbulent shear flow exists at the
present time, the analysis of heat transfer must be made in terms of
empirical formulas and semi-empirical theories. The empirical
formulas give no insight into the transport mechanism and are not
reliable outside the range of the experiments upon which they are
based., The semi-empirical theories aré derived from similarity hypotheses
supplemented by a few constants taken from experiment. These theories
have been remerkably successful in meny situations but fail in others,
indicating that they do not give a description of turbulent transport
that is universally valid. The purpose of this investigation is to
improve the phenomenological theories by extending their range of
velidity snd by reducing the number of empirical consfants. Pipe flow
alone will be considered because of its simplicity and the availability
of experimental results,

The present status of heat transfer theories is reviewed in some
detail in Section I. Reynolds postulated that energy and momentum are
trensported in the same way in turbulent shear flow and this analogy
forms the basis of all subsequent work. Prandtl and Taylor extended
the analysis to take into account the molecular transport close to a
smooth wall. Later Kdrmdn improved the theory by considering a layer,
between the laminar region at the wall and the turbulent core, in which
molecular and turbulent transports are of comparable magnitudes.
Measured velocity profiles were used to establish the thicknesses of

the layers and the momentum transport laws. With the latter and the
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‘Beynolds analogy, the heat transfer rates were found.

The method of Kdrmén is very satisfactory provided that the rates
of molecular transport of heat and momentum are not too different. For
many iiquids, however, these rates differ by a large factor and if the
thickness of the region of approximately lesminar flow is chosen from
momentum considerations, the effectively laminar region for heat trans-
fer may be grossly overestimated. Kdrmdn's theory fails when the
molecular transport of heat is much less than the equivalent transport
of momentum and empirical formulaes only have been available under these
circumstences. Another restriction of the Kdrmdn theory is that there
is no way of introducing the effect of variable viscosity in the region
close to the wall when the rate of heat transfer is high. Engineering
applications of high rates of heat transfer to liquids with viscosity
strongly dependent on temperature are becoming increasingly important.

A new law for the turbulent part of the shear stress in the wall
region ie proposed in Section II. The essential improvement over
Kdrmdn's method is that it is not necessary to assume a completely
laminar layer next the wall; the turbulent shéar stress is taken inte
account throughout the wall layer. A further mdvantage is that the
thicknese of the wall layer is determined from the two empirical
constants desecribing the velocity profile in the turbulent core. The
new law is not based on a similarity hypothesis, however, and hence its
validity can be judged only by the consistency of results deduced from
it and compared with experiment. The velocity profile derived from
application of the law is satisfactory, although this comparison does

not give & sharp criterion.
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The new law is combined with the Reynolds analogy in Section III.
to calculate heat transfer coefficients. These are compared with
experiments and slthough there is considerable scatter in the latter,
the law is confirmed within the error of measurement. It appears to
be quite satisfactory in the range where Kdrmdn's formula fails.

In Section IV. the turbulent shear stress law is applied to
momentum transport where the viscosity varies in the region close to
the wall. The turbulent fluctuations close to the wall are treated as
forced oscillations and a simple model is assumed for calculating the
effect of the viscosity change on the turbulent shear stress where
most of the change takes place near the wall., The influence of
density variation on the shear stress is not known so the theory is
confined to liquide. Most non-metsllic liquids have sufficiently
large Prandtl numbers (Cpp(/k) that the assumption that the viscosity
variation is confined to the wall layer is not very restrictive,

In Section V., the addition of the Reynolds anmlogy to the theory
of Section IV. allows calculation of the heat transfer coefficient for
variable specific heat and conductivity as well as viscosity, Compari-
sons of calculated end measured friction and heat transfer cosfficients
ere made in Section VI. The only ﬁests that have been found suitable
for this purpose were experiments on n-butyl alcohol made at the Jet
Propulsion Laboratory. The friction coefficients are found to be in
almost perfect sgreement. The calculated heat transfer coefficients
are found to be too high by 30% or so at ratios of bulk to wall vis-
cosity greater thén 5. Unfortunately, the conductivity variation with

temperature is not known and it was assumed constant in the analysis.
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. The conductivity is known to decrease with temperature and this vari-
ation tends to bring the theory into line with experiment. Whether or
not the conduetivity variation is sufficient to explain all of the
discrepency between theory and experiment is not clear at present.
The conclusions resulting from the investigation can be summarized
as follows:
(a) A new law for the turbulent shear stress in the wall layer has
been postulated and, assuming the Reynolds analogy to hold, is
proved to be correct within the limits of experimental error in
heat transfer and veloeity profile measursments. In particular
the theory is correct for large Prandtl numbers whers the earlier
Kdrmdn theory is deficient.
(b) With some reasonable assumptions as to the influence of vari-
able viscosity on the turbulent transport mechanism, the new theory
has been applied to transfer processes at high rates of heat flux,
in liquids. Variable specific heat and conductivity can be taken
into account. This extended theory is correct, approximately at
least, but cannot be proved or digproved completely until the
variation of conductivity with temperature is better known.
(¢) Few experiments of sufficient sccuracy for determining the
validity of the theory-afe available. In planning further
accurate heat transfer measurements, it must be kept in mind that
unless the variations of all physical properties are known, the

experimental results will be of limited use for checking a theory.



I. INTRODUCTION

The first impoftant step in the analysis of heat transfer in
turbulent flow was made by Reynolds, who postulated that energy and
momentum are transferred in the same way in turbulent shear flow
(Ref. 1, 1874). 1In order to demonstrate his theory, and subsequent
refinements, consider the squations of momentum 2nd energy, averaged

with respect to time, for mean flow parallel to a wall. These are:

- du
T=T o= -pur +/42§— _ (1.1)
§= g ~poTT+k ﬁaI (1.2)

where 7, is the shear stress at the wall and ﬁ” is the heat flow rate
per unit area normal to the wall., A discussion of the derivation of
these well known equations is given in Appendix A; for the time being
it is sufficient to state the principal assumptions. These are (a) the
density P » bthe viscosity Koo the specific heat COp and the conducti-
vity k are constant, (p) the temperature gradient 3¥T/3x , along the
wall, is neglected in comparison with the gradient BTyag normel to the
wall and (c) the shear stress and rate of heat flux sre independent of
distance from the wall. This last assumption will be approximetely
correct for pipe flow, provided that the distance from the wall is
small compared with the pipe radius.

The Reynolds analogy, as the postulate is usually called, can be

expressed quantitatively by the equation:

_f - T
PCPJBG% - Pduﬁ% ' (1.3)



- which states, in effect, that the rate of énergy transport normal to

the wall bears the same relation to the energy gradient as the shear

stress bears to the momentum gradient. Integrating (1.3) vetween the
wall, where u is zero and some station where u and T can be

considered as attaining mean values, as denoied by the subseript m

fr = % R
Pem-Tdtn P lm o
or b= & Ce (1.5)

where Cp and Cf are the heat transfer and frictioﬁ coefficients,
respectively.

The theory as given above ignores the molecular transport terms
in Bqs. (1.1) end (1.2). If these equations are rearranged in the

forms:

T

]

du
4T
PP< Ty + Y/ Iy (1.7)

where ¢r=cP%/k is the Prandtl number and u=/u? is the kinematic

fo

viscosity, it can be seen that if the Reynolds analogy applies to the
turbulent transport terms, and if ¢=1, Eq. (1.5) applies even when
the flow is partially laminar. However, if ¢ =i, the Reynolds analogy
cannot hold for a laminar region, next a smooth wall, for instancs.

The first extensions of the theory of Reynolds to fluids with
Prandtl numbers differing from unity were made by Taylor (Ref. 2, 1919)
and Prandtl (e.g. Ref. 3, 1928). Their refinements were similar and

the latter only will be indicated here. Prandtl assumed & layer of



- purely laminar flow between the wall and a completely turbulent core.
Denoting by y1- the distance of the outer edge of the laminar layer,

Prandtl obtained:

-lf)g_ = P % = P —;'L (1.8)
o o | dT - ¥ T B (1.9)
Pcr - }T{ - _F gu
T _ o , (1.10)
DTS a

the last equation arising from the application of the Reynolds analogy
from the edge of the core to the "mean" distance. Eliminating T1 and

u; from these three equations, he found:

t _ = SEPANE (R
o QP*@mef]

Defining a "friction velocity" u, = /\/7;/'0 , this equation becomes:
| 2 gcllfr\/z (1.11)
—_ = — 4+ (-1 .
Ch C €05

From empirical expressions for the friction coefficient for pipes
Prandtl deduced that K.HT/V = 5.6 gave the best dimensionless thickness
for the laminar layer. |

The relation (1.11) between the heat transfer and friction coef-
ficients is satisfactory for ¢ quite close to unity but cannot be
expected to hold for large or small values of ¢ . Kdrmdn (Ref. 4, 1934
and Ref. 5, 1939) improved Prandtl's theory by assuming three distinct
layers, a purely laminar sub-layer next the wall, a buffer layer in
which turbulent and molecular transport processes are of comparable
importance, and a completely turbﬁlent cors, In the laminar sub-leyer

Kdrmdn assumed Eq. (1.8) to hold and in the core the logarithmic law:



W/ dy = 2&51°n g*-k 55 g* 3 30 (1.12)

where gtngth/ﬂ is the dimensionless distance from the wall. The form
of this equation had been derived previously by similarity hypotheses
and the constants were determined from experiments (e.g. Ref. 6, p. 333).
For the buffer layer, Kdrmdn assumed a velocity profile of the same form

as (1.12), that is:

W/ ty = ajn%*+f: (1.13)

where & and b are arbitrary constants.

Upon examination of velocity profile measurements made by Nikuradze
very close to & smooth wall, Kdrmdn decided that the leminar profile
(1.8) held out to y* = y1%¥ = 5 and the turbulent profils (1.12) held
down to y* = y2* = 30. Because of experimental difficulties (the
distance y1*¥ corresponded to a few thousandths of an inch) the
measurements may not have been very reliable and, in addition, there
are no sharp dividing lines between layers. Kdrmdn determined the two
constants & and b in (1.13) so that u and du/dy were continuous
at the edge of laminar sub-layer and so u was continuous at the edge

of the core, heance:
a = ﬁf*z 5 b = - 3-*(%3,*' ,) = ~3.0§5 (1.14)

Kdrmdn, unlike other people, has no difficulty in finding two arbitrary
constants to satisfy three conditions.
For the calculation of heat transfer, Kdrmdn assumed that the

Reynolds analogy held for turbulent transport in the buffer layer and



" hence obtained, by substitution from Eq. (1.6) into Bg. (1.7):

o Au./alg wHe) I 8 - [A:/:lg JO""‘J 35

Since a(u.Ag = cLu',«/& in the buffer layer, Eq. (1.15) can be integrated

between y1% and y2*¥ to give:

%uf_ (GoT) = b LoV (1.26)

*/a. — 1 +t /T

Bxpressions for T,-To and T,.-T, can be found from Bgs. (1.9) and (1.10)
(with up and T2 for wuj; and Ty in the latter); by addition to
Eq. 1.15, substitution for a and b from (1.14) and a little mani-

pulation, one obtains:

-6',T -03— [(0' 1) +Ln {l +@-0(1- */g;)}]\/_c—: (1.17)

and substituting y1* =5, y2* = 30:

éh = ’CZT + 5 [(cr- D) + In {u + 0.83(c~ ')}]\/—g (1.18)

For ¢ approaching unity the coefficient of {/2/¢, is 9.2(v - 1) as
compared with 5.6(0 - 1) obtained by Prandtl.

The effect of varying the Prandtl number is to change the rela-
tive proportions ofb moleculer to turbulent transport at any given dis-
tance from the wall. This can be seen by comparing the two terms in
parentheses in Bq. (1.15); the first term, corresponding to turbulent
transport and resulting from the Reynolds anslogy, involves velocities
only and remains constant for fixed y, while the second term #/0
changes withthe Prandtl number. Increasing ¢ causes the turbulent

transport term to become relatively more important in the region close



 to the wall. Kdrmdn's reason for introducing the buffer layer was to
include a region in which both types of transport mechanism were repre-
sented, so their relative magnitudes could be varied with changes in
Prandtl number. His theory agrees well with experiments on water,
with a Prandtl number of 10 or so, but at very high values of ¢, 50
to 100 say, the deviation from measurements is very large. JFor o
large, the term 2/Cf Dbecomes negligible in comparison with the other
term on the right hand side of Bq. (1.18). Kdrmdn's equation predicts
Ch proportional to I/ for ¢ very large; it is well known from
measurements that Cp 1is more nearly proportional to |40 under these
circumstances.

The reason for the failure of Kirmdn's theory at large Prandtl
numbers is not difficult to find, The outer edge of the laminar layer
was identified with the point at which the measured velocity profile
first appeared to deviate from a laminar profile. There is no precise
point of deviation and besides there was scatter in the measurements.
At y*¥ =5 a small portion of the momentum transport undoubtedly
results from turbulence. For the sake of argument, let us say that 5%
of the shear stress at y* =5 is turbulenﬁ; certainly this is the
minimum emount that could be detected from examination of the velocity
profile. This is negligible as far as momentum transfer is concerned,
but it can be magnified into an appreciasble fraction of the total
energy transport if the Prandtl number is large. For instance, at o=10
the turbulent transport of energy would become 33% of the total, and in
Kdrmén's theory this would be nsglected. The relative amount of turbu-

lent transfer will decrease rapidly toward the wall so the net effect



-of neglecting it will not be serious at Prandtl numbers of 10 or so.
The situation is entirely different at very large values of ¢ ; at
o=100 , for instance, 83% of the totsl energy transport would arise
from turbulence and its neglect would increase the resistance of the
sub-layer to heat flow by an appreciable fraction.

Shortly after Kdrmén's analysis sppeared, Reichardt published 2
paper on turbulent heat transfer (Bef.‘7, 1940). He also divided the
flow into three regions but criticized Nikuradze's measurements, which
KArmdn had used as a basis for choice of the sub-layer thickness.
Reichardt made his own measurements of the velocity profile and found
some deviation from those of Nikuradze. He recognized the difficulty
of allowing for the magnification of the turbulent momentum transport
into snergy transport at large Prandtl pumbers and based his choice of
y1* on results of heat transfer measurements as well as the velocity
profile. He found y1* = 2 +to give the best sgreement with experiment.
Reichardt's representation of the buffer layer profile was somewhat more
complicated than Kdrmdn's and his final results are not as convenient
for zpplication. He did not believe that the Reynolds analogy held
precisely and he introduced a2 "turbulent Prandtl number" bearing the
same relation to thé turbulent momentum and energy transports as ¢ does
t0 the molecular momentum and energy transports. He found that a turbu-~
lent Prandtl number of sbout 0.9 gave the best agreement of his theory
with a limited number of experiments.

One of the most important problems in heat transfer at the present
time concerns the influence of variable physical properties, particularly

the viscosity. At very high rates of heat transfer in liquids the



‘viscosity may vary by a factor of five or more through the wall layers.
The conductivities of liguids are not usually as sensitive functions of
temperature as the viscosities and the effect of the variation of the
former may not be so important. Kdrman chose the thicknesses of the
laminar sub-layer and the buffer layer from measurements in isothermal
flow and because no measurements have been made with the viscosity
varying, there is no direct experimental evidence of its influence on
the profile. Reichardt, in the paper mentioned above, aseuﬁed that the
veloeity at the edge of the laminar sub-layer is constant, if the
viscosity variation is confined to this layer, but that the laminar
sub-laysr thickness changes. No data to support this assumption were
presented.

Boelter, Martinelli and Jonassen (Ref. 8, 1941) treated the influ-
ence of variable viscosity empirically. Starting from Kdrmdn's equation
in the form (1.17) they determined y1* +to give the best fit with
measurements of heat transfer where the viscosity varied. They assumed
a linear temperature gradient in the laminar sub-layer, and knowing the
variation of viscosity with temperature, found the ratio of viscosity
at the wall to the viscosity at y1* . The viscosity was assumed con-
stant and egual to the mean core value for y*>yl1* . The final results
consist of a table of y1* as a function of viscosity ratio and
Reynolds number which is to be used in conjunction with an equation
essentially the same as (1.17). The authors claim better correlation
of results from their semiéempirical theory than from the Xdrmdn rela-
tion for other heat transfer measurements. The weakness of their

method is that the variable y1™ may have no physical significance whatever.



.The Prandtl numbers of fluids cover a very wide range, those of
non—metallic 1iquids extending from 5 or so to as high as 1,000, while
for metallic liquids ¢ is very low, 0.0l or less. Gases have values
of ¢ from 0.65 to 0.8 but there is a large gap between the gases and
metallic liquids in which no fluids appear to fall. For very low
Prandtl numbers, Kdrmdn's theory is not applicable; in fact, it was not
intended for such conditions. Martinelli (Ref. 9, 1947) modified the
theory to take into account molecular'transport of energy throughout
the flow. Because the conductivity is high, the mean temperature may
oceur at & distance from the wall that is an apprecisble fraction of
the pipe radius (unless the Reynolds number is extremely large) and
hence qo in Eq. (1.2) is replaced by qo(l - y/R) where R 1is the
pipe radius, Actually, this is the more correct form for q, Jjust as
1—=1;0_g/ﬁ>1s strictly correct for the shear stress. In the turbulent
core Martinelli used EBq. (1.15) with this modification to gop. The
method of joining the solutions for the three layers is the same as used
by Kdrmdn, with the added complication of another parameter R. The heat
transfer measurements at very low Prandtl numbers are meager and probably
unreliable, so it is scarcely possible to say whether the theory is
satisfactory in this range.

Although many other papers on turbulent heat transfer in pipes
have appeared, most have been concerned with empirical representation
of measurements; those mentionsd above seem to the writer to be the
most significent contributions to the theory. Kirmdn's equation has
remained, after eleven years, the most useful and reliable and most
refinements to the theory start with it as a basis. Its deficiencies

are appreciable only at very low and at very high Prandtl numbers and
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~at high rates of heat transfer where the values of the physical proper-
ties vafy. Problems connected with these extreme conditions are, how-
ever, becoming increasingly important, as for instance the heat transfer
in nuclear reactors to molten metals with very low Prandil numbers, and
the high heat fluxes in cooling of rocket motors. The requirements for
a theory to improve on Kdrmdn's are clear; these are (a) elimination of
the completely laminar sub-layer so that, at very high Prandtl numbers,
the important contribution of the turbulent transport of energy within
this region is properly evaluated and (b) a method for determining the
influence of variable viscosity on the turbulent transport processes
near the wall. Knowledge of the underlying mechanism of turbulent trans-
port in shear flow is very limited and hence the theory of heat transfer
must of necessity be phenomenological in nature. The evils of the
empirical constants that invariably accompany such a theory make a

third requirement essential if it is to be useful; it must be simplef
The key to the analysis df heat transfer is an adequate description of
the velocity profile at the wall. It is with this description that the

section following is concérned.
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I11. MOMENTUM TRANSFER IN ISOTHERMAL FLOW

The momentum equation, averaged with respect to time, for turbulent

flow in 2 pipe is:
_ - 7. Ju_
T(-y4/R) = - pur aarra (2.1)

where y 1is the distance from the wall, R is the pipe radius and

is the shear stress at the wall. This equation is exact for fully
developed turbulent flow if the physical properties are constant. A
more complete discussion of the derivation of this equation is given in
Appendix A. The snelysis in this section will be concernsd with dis-
tances y that are much less than R , so that y/R can be neglected
in the first term. The turbulent shear stress -PE;7 must be zero at the
wall since the velocity is zero there, but will increase with y so
that far enough from the wall it dominates the viscous shear stress
completely.

Exact knowledge of the mechanism of turbulent exchange does not
exist, hence the evaluatign of w7 in (2.1) and its dependence on
physical and geometrical parameters must be deduced from measurements.
Outside of the region where the laminar shesr stress is important,
similarity arguments have been applied with considerable success. For
instence, one might assume that e depends on distance y from the
wall, since there is less "restriction" further from the wall, end also
on the velocity gradient du/dy , because this ratio is related to the
difference of momentum between neighboring flow layers. Further, w’
might depend on derivatizes of the velocity of higher order, but

probably not on the veloeity wu directly.
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The simplest combination of the relevant pasrameters that is

dimensionally correct lesds to the assumption:
-~ Ny .
= -Ky (Ig) = - T/p (2.2)

whers K 1is a constant. Integrating this equation one obtains:

* ) *
u = —rl(—' ,@ng + B (2-3)
with the notation:
Uy = 'V?;/P u*= w /Uy %*= gur/p (2.4)

and where B 1is a constant. The expression (2.3) is the familiar
logarithmic formula given by Kdrmdn (Ref. 10, 1930) snd extensive
measurements in pipes (Ref. 6, p. 333) have demonstrated that it repre-
sents the velocity profile quite well for y* > 30 if the Reynolds
number 2Ru./» is greater than about 10,000. The values of the constants

that fit the experiments best are:

%K_-__- 2.5 B= 5.9 (2.5)

With these constants in Eg. (2.3) the profile fits well even to the
center of the pipe, although it cannot be strictly correct there. ‘The
expression (2.2) chosen for «v’ is not uniqneg other formulations of
the similarity hypothesis, depending on higher order derivatiwes, lead
to a logarithmic relation for the velocity profile.

The velocity profile (2.3) is not satisfactory for y* < 30 and
the.reason for this is certainly connected with the neglect of the

viscous shear term near the wall. If this ierm is added, one obtains,
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instead of (2.2):

VT; =K <>+’)A& (2.6)

This equation can be integrated giving:
_ . -t ¥ ]
= je Ak @GFY) - 7

Kg*('\/l+‘fK5(*2 - |> (2.7)

A comparison of this profile with measurements close te the wall shows,

however, & large deviation in the wall region. The conclusion is that
the similarity lew for the shear stress in the completely turbulent
‘region does not hold in the region where viscous shear stress is
appreciable.

In searching for a law to represent the turbulent shear stress in
the region of partially laminar flow, the sauthor believed that the
shear stress should be related to the local mean velocity rather than
to distance from the wall or velocity gradient, as in the turbulent
core. If this is correct, the simplest form for the turbulent shear

stress is:
-p ur = p K, u® | (2.8)

where K1 1is a constant. The method employed in obtaining this rela-
tion is analogous to that used for the fully turbulent region, although
it is unlikely that a true similarity law holds in the wall region.
Whether or not (2.8) has a real physical meaning is not kmown. If it
can be proved that it gives a good description of the variation of
turbulent shear stress, it will serve its purpose. The only precaution

that need be observed is to avoid using it in situations where it tskes



- on physical significancs. ZExperiment alone can show whether or not (2.8)
represents conditions near the wall, just as experiment was required to
Justify the logarithmic law in the turbulent core.

The momentum equation becomes, after introducing (2.8):

"rs/f) = ur = K4 p-:% (2.9)

The solution of this equation, satisfying the boundary condition u =0

at y =0, is in dimensionless form:

= e ek () (2.10)

The laminar shear stress near the edge of the turbulent core is quite
small and its effsct can be teken into account by solving (2.6) for du/dy

and expanding in a series. Retaining the first two terms only:

e ! .. (2.11)
and integrating:
« = T%—,Zn,g*—i—B + 2‘2}* R (2.12)

For lerge y* this reduces to the form (2.3). The contribution of the
additional term is rather insignificant; it is included only to treat
the momentum equatiocn in a fashion parallel to the energy equation,
where the conductivity term will be retsined in the core.

The wall layer profile (2.10) must now be joined to the core
profile (2.12). The values of K and B are known while K] must be
determined. In order to have as smooth a junction as possible, wu* .and

du*/dy* will be made continuous and a second unknown, the juanction



- distance y31*¥* , introduced. The velocity gradient for the wall layer
is, from (2.10):

ff%: = MZ{K%*) o<y’< 4’ (2.13)

Bquating velocities from (2.10) and (2.12) and gradients from (2.11) and

(2.13) with y* = y1* , two equations for K31 and y1* are obtained:

A G () = 2shuye ss v 2 (2.14)
aach” ()

1l

5 JR
—%% o (2.15)
and numerical solution of these gives:

y'=2rs = (457 (2.16)

™

If the laminar shear stress at the inner part of the tﬁfbulent core isi
neglected, the thickness of the wall layer is y1* = 26.5 , very close
to the valye sbove.

The velocity profile deduced above is compared with measured pro-
files and with Kdrmén's approximation in FPig. 1. The individual
measured points are not indicated but it shoﬁld.be remembered that
there is considerable scatter in the results of each of the investigators.
The measurements are very difficult because the wall layer is quite thin
under normal circumstances and the wall may influence instrument readings.
Hone of the measurements can be considered really satisfactory. Leufer
found a core profile in & two-dimensional channel guite different from
pipe profiles. The conclusion from the comparison is that the theoreti-

cal profile deduced above is not less relisble than existing measure-
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‘ments. The fact that y1* turns out to be 27.5, quite close to the
value 30 previously accepted from measurements, is perhaps the strongest
argument that the turbulent shear stress in the wall layer is repre-
sented reasonably well by the sssumed law.

It is interesting to see what the law above implies for the turbu-
lent shear stress in the regipn previously called the laminsr sub-layer.
At y* =5, the edge of the sub-layer in Kdrmdn's analysis, the turbu-
lent shear stress is 12% of the total shear according to the new law
and at y* = 2 , Reichardt's choice of the sub-layer thickness, 2% of
the total shear stress. At the outer edge of the wall layer, corre-
sponding approximately tb the outer edge of the buffer layer, the
turbulent shear stress is 91% of the total. The spproximation of
T;(r-%/ﬁ) by 1 is not satisfactory at small Reynolds numbers. For
instance, at & pipe Reynolds number of 5,000, y1/R = 0.18 and at
10,000, yi1/R = 0.09; these terms are neglected in comparison with
unity apd hence the profile for the walllayer may not be satisfactory
for Reynolds numbers less than 10,000 or so.

To sun up resulis: a promising analytical representation of the
turbulent shear stress and the velocity profile hag been found, &
representation that is simple and eliminates the artificial laminar
sub-layer previously assumed. It is not possible to determine the
validity of the representation with any degree of accuracy from exist~
ing ve}ocity profile measurements. The turbulent transport given by
the proposed law will be used for caleculation of heat transfer coef-

ficients in the section following: the comparison with hest transfer
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‘'measurements over a wide range of Prandtl numbers will be a much more

sensitive test of its accuracy.
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I11. ENERGY TRANSFER WITH INVARIABIE PHYSICAL PROPERTIES

The energy equation, averaged with respect to time, for turbulent
flow in a pipe at distances from the wall small compared with the pipe

redius is:
$,=-FCP3‘—'1—r_’+k~;‘%- (3.1)

where qo is the rate of heat transfer normal to the wall (in the
negative y direction) and Cp is the specific heat. It is assumed
that the density p , the specific heat Op and the conductivity k
are constants and that the temperature gradient along the wall can be
neglected in comperison Qith dT/dy . A more comélete discussion of
this equation is given in Appendix A.

In the analysis that follows, the Reynolds anslogy will be assumed
to hold so that, for the turbulent transport terms:

T  _ uy

Tk T duly (3-2)

The validity of this postulate has not been proved conclusively by
experiment. Some investigators have suggested introducing a "turbulent

Prandtl number' ¢z so:

D ]

Ty _ o uv

Jﬁﬂg TG J%Ug

Reichardt (Ref. 7) found various values of o3 for different types of
flow but recommended 0z = 0.9 for heat transfer calculations; Corrsin
(Ref. 12) found 0z = 0.75 in heated wakes and Sage (Ref. 13) found

T = 0,83 in a two-dimensional channel. As will be discussed later,



. heat transfer measurements in pipes appear to correlate best with o =1,
Possibly the Reynolds analogy holds well in the high shear regions close
to the wall but(does not hold in low shear regions. The direct measure-
ments mentioned above were made far from a wall and hence may not be
applicable to the turbulent transport close fo the wall. In the absence
of better information < will be put equal to unity in the remeining
analysis. If it is found, at some future time, that another value of

is more appropriate, this can be introduced without complication,
provided that its value can be taken as constaﬁt.

Substituting (3.2) into (3.1) and re-arrenging:

o g
0(8 —PCP di}:ig +k

or in dimensionless form, introducing the Prandtl number ¢1=6Fy/k:

plpur 4T _ l 3.
Kro JK* W/u$+_(.,___ (3 3)

du™/. alg*

Bxpressions for «v' and Jiﬁﬂg* for both wall layer end core were found
in the preceding section. Substituting from (2.2), (2.8), (2.10), (2.11)

and (2.13) into (3.3), we find for the wall layer and the core, respectively:

A Y (o 0<y'<4 (3.4)
[4 Uy AT _ ( % %
zlo dg* - Wg*“'lf""(;'—" g >g| (3-5)

Since «v’ and J@Zﬁ* are both continuous at y* = y1* , it can be seen

from Bq. (3.3) that dT/dy* is continuous there as well.
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The integration of Egs. (3.4) and (3.5) can be done exactly and
the resulting tempersture distribution, in terms of the wall temperature

Tw and the tempsrature at the edge of the wall layer Ty , is:

JL%}I(T— M(ﬂMrg) T<i | (3.6)
o<y
— _flan VFMVE’5> T>I (3.7)

)" e

V"V_-“
/ -
Lo - V= L 4, 47+ awe e (3.8)
f &) fC 4+ e 474

The temperature T7 can be obtained from (3.6) or (3.7) by putting
= yi* .

The heat transfer coefficient is usually given in terms of the
temperature difference (Tp - Ty) where Ty is a mean temperature of
the fluid in the pipe. There are various ways of defining Tp and it
may be well to discuss these briefly. The simplest procedure is the
one used by Prandtl, Kdrmdn and others; they assumed that the distance
from the wall at which the fluid temperature reaches the mean temperature
is the same as the distance at which the velocity reaches the mean
veloeity. This is strictly correct only if the Prandtl number is unity,
because then the temperature and velocity profiles are.identical. At
other values of ¢ it will not be quite correct, the spproximation
becoming poorer as the Reynolds number decreases.

To apply the procedure abo¥e to the problem at hand, let yp* be
the value of y* at which T = Ty ; remembering that ym* is always

& large number we find, from Eq. (3.8):



_P_C;:"Lf_@—,n_r) - o he o = i (™ 2m> + o(ﬂ‘) (3.9)

where the order of the terms neglected is indicated. If the dimension-

less mean velocity up* occurs at yp* as well, then from Eq. (2.3):
= L x
= Wﬁngm + B (3.10)

Subtracting (3.10) from (3.9), and multiplying through by um = Um/Uxr ¢

'ﬁg—* GT) = @:)a [ w=tn (g*+ :,(3:«) +3] U (3.11)

Putting y* = y1* in the expressions (3.6) or (3.7) and multiplying
e u .
through by wup* , an expression for _P?OL_J: 6’(-7@ is obtained. Add-

ing this to (3.11) and defining the heat transfer coefficient OCp as:

- g

we obtain an equation for €n in the form:

| R 2 -
tn 0_4; + F&) \(—c;‘ (3.13)

where by definition, u,: = Um/Ur ='\/Pu.:./€ =\/2/¢  and the function F®)

U

is:

FO> = s tind ([ tamk Y") - 3 - &) o<t (Gaw)

= T b ([Tl (R) -3 - (i) o0 (3.15)

It will be noticed that the form of Bq. (3.13) is exactly the same as
that of Prandtl (1.11) and Kdrmdn (1.18) but the funetion F@) is

different in each.
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Before discussing these results in detail, other methods of defin-
ing the mean teﬁperature should be examined. The mean temperature is
sometimes identified with the average temperature over the pipe cross-
section, but o more common definition is the average over the pipe of
the teﬁperature weighted with the velocity ratio ufup , where wuy is
the mean velocity. This latter definition corresponds to the temperature
obtained if the fluid is completely mixed, and in many heat transfer
experiments the mean temperature 1s measured most conveniently ia this
way.

The average velocity over the pipe'cross—section is, in dimension-

less form:

*

R
Ui =-,;;25 uf(R*-gf)ig* (3.16)

]

where R¥* 1is a dimensionless radius defined as:

*
R = B - e re (3.17)

and Re 1is the Reynolds number 2Ru./¥Y. The mean velocity um* can be
determined from (3.16) by substituting the expressions for wu* from
(2.3) and (2.10) into the integral and evalumting. The thickness of the
wall layer y1* is small compareé with R* , particularly at larger
Reynolds numbers and hence the core gives the most important contribution

to the integral. Retaining only the largest terms:
'R*
_1_ * 1('_ * * |
(G g )@= 474"+ 0Ge) (3.18)

The terms of order 1/R* are negligible at large Reynolds numbers and

*
Uy =

2
—R*Z

small, although scarcely negligible, at a Reynolds number of 10,000.
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lIt ié doubtful, however, that any accuracy would bs gained by evaluat-
ing thess terms at the smaller Reynolds number. As was pointed out
previously, the appfoximation of replacing T:T;(l—-g/R) by 1T, bescomes
less sound at BRe = 10,000 or so, and the errors introduced may well

be of the same order of magnitude as the terms neglected in (3.18).

The momentum and energy transfer in the range of Reynolds number between
2,000 and 10,000 reguires more elaborate investigation, and this will
not be attempted here.

The integration of (3.18) is quite simple and leads to the rssult:

=,4{—:"&1'R + B - 2r ) (3-19)

Since ui=12/c s & useful equation for the friction coefficient can be

derived from (3.17) and (3.19) in the form:

%=ﬁhﬁe-ﬁ&@—ﬁ—ﬂn2+3-ﬁ7 (3.20)

or substituting the numerical values (2.5) for B and K :
(25 _ - (2
V%= =25k 2.5[,1%? (3.21)

This is very nearly the same as a formula derived by Kdrmdn in different

way, which, in our notation becomes:
1/—2—- = 2.46 In Re — 246 In)[ 2" + 0.30
6'4 GF

These relations for the friction coefficient will be useful later.
Returning to the evaluation of the welghted mean temperature, we define

Ty as:

To-To = g S(T SRS v(f.3.zz)



" In dimensionless form this expression is the same as:

~_Pc';Um(1;n‘ ur) _ R*cu? . * * ¥ *
.cl;- s = Tf;zgol’_ﬁ%—@- T U (R 8)‘13' (3.23)

Introducing the expressions for the velocity (2.3) and the temperature

(3.8) and neglecting terms of order 1/R* as before:
%Z—%S ' ,&LZ (rﬂngﬂi)@* *)J% +}:M3(T To = /Zn@.* 2,('—0_] U

The integral is easily evaluated, and if the terms in 4 R* are elimin-

ated by substitution from (3.19) we find:

-— = —Cz—+ F(r)r + % (3-2‘4’)

This equation is the same as (3.13) except fc->r the added constant. The
constant 5/4K = 7.81 1is a relatively small correction if o>/ since the
term 2/Cf will not be less than 200 for smooth pipes.

The factor F@)derived above is a function of o alene and intro-

ducing the values of B, K, y1* and K1 from (2.5) and (2.18):

Fa)= ,4.53#_-'-‘;—12,,.[@7557??) -5.5-250 (zs.a+ -%,i) o<1 (3.25)

= 1453 ,{—ai:-—-'——.' lan. (045S4TT) - 5.5~ 25 bn (263425 > (3.26)

A plot of F&) is shown in Fig. 2, together with the corresponding expres-

sion found by Kdrman, (1.18):

§ [@'— D + ﬂn{l + 0830~ ')H

The two expressions agree for 0.1<¢<10 , as is to be expected, but the

difference becomes very large for o >s0 . The bshavior of F@ for



25,

 extreme values of ¢- can be seen from (3.14) and (3.15) to be:

F@ > -T%_jn_é. - #/n—‘('?—z =-2-5ﬂn-5‘: -78 (0"—" 0) (3.27)

Foy—> XL _3

z T 4{—‘;?,4”3,* = 22.8(T-211 (> o) (3.28)

_m_
whereas the corresponding funetion of Kdrmdn behaves quite differently,
approaching ;r+as >0 and ST as ¢>o, Although ths analysis given here
takes into account the conduction of heat in the part of the turbulent
core nearest the wall, and should represent an improvement over Kdrmdn's
snalysis for small Prandtl numbers, neither theory will be satisfactory
at extremely small valueé of . PFor these it is necessary to take into
account the corrsct form of the heat flux; i.e., %h(h-&/R) rather than
do &s used here, There is no difficulty in doing this, but since the
turbulent transport of heat in the wall layer is relatively unimportant
when ¢ is very small, the result should not differ apprecizbly from
that of Martinelli, (Ref. 9), who used the Kdrmdn approximation for the
velocity profile at the wall.

The effect of varying the Prandtl number over a wide range, keeping
the Reynolds number constant, is to change the relative proportions of
turbulent and molecular transports of energzy at any given distance from
the wall, without changing the proportions of the momentum transports.
In principle at least, it should be possible to deduce, from overall
heat transfer measurements at various Prandtl numbers, the proportions
of turbulent and molecular transports at all distences from the wall.

In practice it is difficult to do this accurately because of scatter in
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,vheat transfer data. The simplest procedure is to guess at a law for
the turbulént transport of energy, calculate the heat transfer rate as
a function of Prand£1 number and compare with experiment. This is the
procedure used here essentially, aslthough the initial guess was derived
from momentum transport and has been confirmed to some extent already.

The heat transfer measurements, in spite of inaccuracies comprise
much mors sensitive tests of the validity of the assumed transport laws
then the velocity profile measurementé. The megnitude of the turbu-
lent transport very close to the wall, from y* =1 to y* = 10 say,
can be determined much more accurately from heat transfer data for
fluids with Prandtl pumbers between 1 and 100 than from direct velo-
city measurements. Similarly, the turbulent transport in the part of
the wall layer near the core could be investigated through heat trans-
fer measurements for fluids with Prandtl numbers ranging from 1 down
to 0.01. No such fluids seem to exist, however, so this method of
exploring the outer part of the wall layer is not available.  This
means, of course, that accurate evaluation of the energy transport in
that region is not essential, becauss situations where it is important
will not arise in practice.

A comparison of the calculated values of the Nusselt number
N, =(. Ko = with measurements of several observers is shown in Fig. 3.
The data, representing typical results, were taken from Ref. 14, page
168 and all are reported for a pipe Reynolds number of 10,000. In
evaluating Ch from Eq. (3.13), the empirical friction formuls
C¢=004Q/R§& was used, giving in this case Cf = 0.0073. The agree-

ment is excellent over the entire Prandtl number range, whereas



27.

. Kdrmdn's formula gives only half the experimentally observed heat transfer
coefficient at ¢ = 100. A widely used empirical formula for this range

of Prandtl numbers is (Ref. 14, p. 168):
08 o4
N, = 0023 (Re) &

On page 181 of Ref. 14, a large number of heat transfer measurements are
plotted on & logarithmic chart of N“/Wﬁqw.'Re . The Prandtl numbers
of the fluide ranged from 3 to 33 andvif the empirical formula above
were correct, all tsst data should lie on a single straight line. There
is considerable deviation from the line and this is -ascribsd to scatter.
Certainly the scatter is large but there appears to be a discernable,
although not well-marked, trend with Prandtl number., If Ny is calcu-
lated from the Cp in (3.24) and Ny /c® plotted vs. Re , the lines

of constant o are almost straight, almosgt parallel, and quite close
together for (<o <00 say. The experimental points for various
Prandtl number groups seem to follow the trend predicted by the theory.
The scatter is so large that one can scarcely draw a definite conclu-
sion; the mein point is that the theory given here agrees as well; and
probably betier, with the experiments than the widely used empirical
formula above.

The agreement of the theory with experiment shows that the turbu-
lent transport law assumed here cannot be far wrong. At very high
Prandtl numbers, the theory shows that Chg —%%‘-@ , as can
be seen from Egqs. (3.13) and (3.28), and hence the variation with ¢
must be essentially correct. ZXEven more remarkable, the value of K; ,

which was determined from the empirical constants in the velocity
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. profile equation for the core, must be about right. At least, there
geems to be no reason for changing it,

It is interesting to note that the analysis above can be applied
to mass transfer merely by changing notation. If ¢ is the concentra-
tion of one fluid diffusing into another fluid from the wall of a pips,
and if the concentration gradient along the pipe is small compared with
the gradient normal to the wall, the rate of transport of mass normal

$o the wall per unit area is:

Mo = -W—a—b—d"l—;— (3.30)

The quantity D is the coefficient of diffusion resulting from molecular

transport. This equation can be rewritten in the form:

ey » | de
= | - £ . 31
m, [ Torig + SC]TQ (3.31)
where S, =7/D , the Schmidt number. Applying the Reynolds analogy to

the turbulent transport term:

———

v’ uy’

defdy  — du/dy

Bq. (3.31) can be treated in a fashion identical with that used for the
energy equation. Defining the mass transfer coefficient as 0c==nu/um(ﬁfaa,
where ©Cp is the mean concentration over the pipe and Cy is the

concentration at the wall, one finds:

LI
4= T A FEE e (3.32)

where F 1is given by (3.25) and (3.26) with o« replaced by Sc . The

Schmidt number for water vapor diffusing into air is 0.49 and some other
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- combinations of gases have Schmidt numbers ranging from 0.1 to 1.0.

This same range. of Prandtl numbers is not well covered in heat tramsfer,
hence there would be considerable asdvantage in testing the validity of
the assumed transport mechanism by mass transfer measurementis,

There is one assumption about which some question still remains -
the Reynolds analogy. If a "turbulent Prandtl number" ¢; exists and
if it is constant, it can be included in the analysis without diffi-
culty. It is merely necessary to introduce the factor @ multiplying
the turbulent transport terms in the denominators of Egs. (3.4) and
(3.5). Multiplying numerators and denominators by o , it is clear

that the effect on (3.13) is simply to change this to:

= [‘fj + z-‘(%)ﬁ—;] (3.29)
If 02;;a75" as suggested by several independent investigators, then
for air where ¢ =07 , F(@/)=0 and C,=130/2 . This last relation
gives poorer agreement with heat transfer measurements on air in plpes
than if ¢ =1! . Hence for pipe flow it eppears that the Reynolds analogy
must be very nearly true, at least in the regions close to the wall,

To summarize the findings in this section, heat transfer coef-
ficients have beenAdetermined in a form convenient for applications.
The results agree closely with experiment at high Prandtl numbers,
where empirical laws only have been available heretofore. The agree-
ment shows that the forms of the velocity profile and the turbulent
transports of momentum and energy must be essentially correct in the

region very close to the wall,
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1V, MOMENTUM TRANSPORT WITE VARIABIE VISCOSITY

The viscosities of liquids are rather sensitive funetions of
tempersture and large varistions can occur at high rates of heat trans-
fer. The most rapid change of temperature is found at the wall, and
because most liquids have Prandtl numbers higher than unity, most of
the temperature variation, snd hence the viscosity variestion, occurs
within the wall layer. So far, no theory for heat transfer with vari-
able viscosity has appeared, although & number of empirical formulae
that are more or less satisfsctory over restricted ranges of the veri-
ables have been employed. Experimental date have, in the past, been
rather unreliable and it-has been difficult to find ways in which a
theory could be tested with confidence. More recently experimental
techniques have improved, mostly as a result of increased interest in
high rates of heat trahsfer. The availability of these data together
with the success of the analysis above for isothermal flow gives
encouragement to attempt extending the theory to the more complex
phenomena arising from varisble viscosity.

The momentum equation for pipe flow with variable viscogity is
the same as Eq. (2.1) anq for distances from the wall small compared

with the pipe radius becomes:

o 2 o J
J'.;.=u,r =-uv+lr§—-]85 (4.1)

where it will be assumed that P is constant. The viscosity ﬁ. is

primarily a function of temperature and hence the momentum and energy

equations are coupled and must be solved simultaneously. In order to
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'make the problem manageable, it will be assumed that M is a given
function of ¥y , the distance from the wall. In this way the momentum
equation can be solved independently of the energy equation. Such a
procedure does not avoid the difficulty of the coupling of course,
becausé eventually this must be introduced, but it simplifies solution
of the momentum equation, and the latter is the key to the solution of
the energy equation. One further assumption will be made, and this
introduces a definite restriction: the viscosity variation tekes
place almost entirely within the wall layer. Hence the final solution
will apply only to liquids with Prandt numbers greater than unity,
where the most of the te@perature difference occurs in the wall layer
and very little in the core. TFortunately, all liquids other than
metallic liguids do have Prandtl numbers greater than unity. Gases,
however, aside from the complication of variable density, are excluded
becausefifty percent or so of the temperature difference and hence of
the viscosity variation oceurs in the turbulent core.

With the assumption that the viscosity varies in the wall layer
only, we introduce the notation: |

-ﬂ‘f— %) foy = —ﬂ“—"‘i R (4.2)

where g*=:guy/n v J is the viscosity at y1* and u, the viscosity
at the wall, y1* being the edge of the wall layer as before. It is
assumed that A is not much different from Mme Eq. (4.1) cen be

written in dimensionless form as:

‘LI,"..I

b=~ 3= + gﬁf)éfg - (4.3)
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where u,*-=u/uf asldefined previously., Because the assumption -—-u7 =K u?
for the turbulent shear stress worked so successfully before, it is
tempting to try it here. This is quite wrong, however, as it assumes
a certain type of local similarity for which there is no Jjustification.
In spite of its incorrectness, the solution of (4.3) with this assump-
tion is illuminating becsuse it represents en extreme; the solution is

easily found to be:
'*- | *
W= e lanh (5. Y7)

.
* g ¥ .
where Y = S —%%6 (4.4)

The function Y*(y*) replaces y* 1in the corresponiing solution for
constent viscosity, i.e. (2.10), and represents & modified distance from
the wall that takes into account the viscosity variation.

The turbulent shear stress that results from the assumption above

is given by:

AR A (A (4.5)

Uad

Very close to the wall this approaches K}Y*z which in turn spproeches

K. i%t %*>z ags y¥* goes to zero. Hence the turbulent shear stress
immediately adjacent-to the wall is increased over that for constant
viscosity by the factor Q&/ﬂéf and is therefore the same as if the
viscosity were /u, throughout the pipe. Intuitively it seems unlikely
that this could be true; if the friction and heat transfer coefficients

are calculated from (4.5) with Mo< My » for instance, they turn out to
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‘be too 1arge; showing that the assumption sbove overestimates the
turbulent transport in this case.

As the’other extreme, one might assume the alternative expression
- for thé turbulent shear stress from the solution for constant viscosity,

and put:

SR WAy (4.6

Uy
which implies that the turbulent transport is unaffected by the vari-
ation of viscosity in the wall layer. This is quite wrong too, and if
Mo < ﬂ; the friction and heat transfer coefficients calculated on
this basis are much too iow. showing that (4.6) underestimates the
turbulent shear stress. The correct distribution of the turbulent
shear stress must lie between (4.5) and (4.6) and it is clear that no
simple similarity law can give it,

The source of velocity fluctuations in turbulent flow in a pipe is
in the core and outer part §f the wall layer next the core. Laufer
(Ref. ll)yfound the velocity fluctuations to reach a maximum within
the outei third of the wall layer next the core. The inner part of
the wall layer, next the wall, must be very stable and any velocity
fluctuations within this region will not arise there but consist of
forced oscillations coming from outside, presumably from the outer
third of the wall layer meinly. The part of the wall layer next the
wall is primarily & region of damping. If this picture is corrsct, the
influence of variable viscosity 6n turbulent transport can be clarified.

Suppose, for example, that the viscosityis least at the wall and
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' increases monotonically toward the core. The velocity fluxtuations,
and hence the turbulent shear stress, very close to the wall must be
influenced by the presence of the stable region of higher viscosity
between the wall region and the source of the fluctuastions further out.
The assumption leading to the expression (4.5) for the turbulent shear
stress does not teske into account the region of higher viscosity which
the velocity fluctuations must penetrate before reaching the wall. As
a result the shear stress is too high. The alternative assumption
(4.6) is correct in the outer part of the wall layer but neglects the
effect of the lower viscosity very close to the wall which allows the
fluctuations to last 1onéer and hence produce a larger turbulent shear
stress, If the influence of variable viscosity is to be estimated,
the entire path of the velocity fluctuations from their source down to
the wall must be taken into agcount.

The picture described above suggests a simple idealized model for
the part of the wall layer that is essentislly a damping region.
Imagine a fluid contained by two parallel walls, one fixed and the
other oscillating in its plané with a sinusoidal motion., The equation
of motion for the fluid is Faw&f::%g&@%% and putting LL=~U@)eéwf
and L =] 'F(g) s the amplitude equation is:

aég(,cj‘_;. i@ y=o (.7)

with boundary conditions:



~if the distance between the walls is b. For constant viscosity,
f =1 say, the velocity amplitude at any value of y is easily shown
to be given by:

[ ek gyb - coa By/b v
070, = .
ccwﬁ.ﬁ ~ ez f

where B= bAw/29" . The approximate shepes of the amplitude curves

for various values of the frequency parameter ﬁ are sketched on the

left.
ar /U .
b Uy oy N /U~ . 1‘vo
f
? " tond (R 45)
5 g,—-o % i
= t = 1
/1 aons. ll.(!cow‘\s
VOO P ST 7 LSS 77

This model probably gives a good representation of wu' in the region
very close to the wall in turbulent flow if b is identified with the
distance of the source of oscillations from the wall. No such simple
representation of v' can be devised but it seems reasonable to assume
that v' behaves in about the same way as u! . The actual velocity
fluctuations in the wall layer will cover a spectrum of frequencies and
this spectrum will undoubtedly change with distance from the wall.
Since it is assumed that v' ©behaves like u' , then Vﬁiﬁ1 should
behave like wu' , and the most logical way of choosing the frequency

is to match the known turbulent shear stress with one of the curves

ebove. The shape of Ywy is shown on the right, where-ég, is the
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" thickness of the region of damping near the wall. The factor & will
be of the order of 0.7 or so. The shape of the shear stress curve does
not matckh any one of the curves on the left. The region very close to
the wall is most important, however, because the most rapid change of
viscosity occurs there, and if one compromises on the outer region,
the zero frequency curve fits best, since Zhd{@ﬁﬁ'%uyﬁv) starts off
as & straight line. This identificetion is quite reasonable because it
is clear that only the very low frequency fluctuations can penetrate to
the wall; the higher frequencies will be demped out before they reach
the region very close to the wall,

If low frequency fluctuations only are of interest, the solution
of the problem in the idealized model for vsriable viscosity becones
extremely simple. Putting w=0 in Bq. (4.7), the velocity amplitude

for any viscosity variation is given by:

84
U/Ueg, = gj'éé'/i%(g)“

where b 1is identified with 6@. Introducing the dimensionless vari-

able %*= 4 uv/¥, this equation is identical with:
* * '
U/ Uy = YG/Yg (4.8)

-where Y* 1is the modified distance from the wall defined by (4.4).
For constant viscosity, the corresponding zero frequency equation was
U/Uom = K*/bxf and hence the amplification factor resulting from
variable viscosity is egf‘(i/g*Y:& . The numerical value to be

assigned to 6 is somewhat in doubt. ILaufer's measurements (Ref. 11)
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" indicate that the value of y at which thé u' fluctustions reach
& maximum moves out toward the edge of the wall layer as the Reynolds
number increases. It seems sufficiently accurate to put 6= in the
amplification factor above, slthough this overestimates the factor
slightly. Any further refinement is scarcely justifiable in view of
the spproximate nature of the calculation. With 6=t , the magnifica-
tion factor is simply gf Y*/g* Y.* ..

The turbulent shear stress very close to the wall should be
increased by the square of the amplification factor and since
- Wr/uy = Mz@—lﬁ’g*) for constant viscosity, the corresponding

expression for variable Qiscosity will be assumed to be:
= 2 * 2
- - Gk [ 1) = Gk R (#.9)
where VK = K K‘*/Y‘* (&.10)

The amplification factor is introduced into the argument of the hyper-~
bolic tangent rather than multiplying the function itself; hence it is
applied correctly very close to the wall, but only approximately
further out. The turbulent shear stiress must approach 1; at the outer
edge of the wall layer where the laminar shear stress becomes negli-
gible, and the way in which the corresction for variable viscosity was
introduced guarsntees this, as can be seen from (4.9). The calculation
of the turbulent shear stress involves two rather drastic approxima-
tions. One of these, the restriction to zero frequency oscillations,

is correct very close to the wall but not further out in the wall
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,vlayer where the higher frequencies become important. The other approxi-
mation, the method of modifying the shear stress for variable viscosity,
is also probably valid very close to the wall but not further out. How-
sver, the final expression for the turbulent shear stress must be about
right in the outer part of the wall layer and it is clear that errors
introduced by the approximations tend to compensate each other. There
is no way of determining the accuracy}of the expression (4.9) for the
turbulent shear stress, but it is not impossible that it is very close
to reality.

Subsfituﬁing the expression (4.9) into Eq. (4.3), the veloeity

profile is found by simple integration to be:

W = e Gk (KY) (4.11)

and the velocity gradient is:

LU N (o (4.12)
Jg* {Qﬂ @F? )

Both of these expressions reduce to the isothermal forms (2.10) and
(2.13) when #Qf)zl . The velocity profile in the turbulent core is
assumed to be the same as if the viscosity were M|, , constant through-
out the flow. Then the expression (2.11) for the velocity gradient
still applies. BEquating the two expressions for the velocity gradient;

i.e., (2.11) and (4.,12) at y* = y1* and making use of the relations
‘?(g.*)= | and A K/ Y.*=*{{—(Ta,* , we have:

“h G748 = 7y - wep
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| This equation is identical with (2.15) for isothermal flow and K
and K; are thé same, hence y1* = 27.5 as before. The thickness
of the wall layer does not change with variation of viscosity pro-
vided that this varistion is confined to the part of the wall layer
closest to the wall,

The velocity profile is found, as before, by integrating Eq. (2.11)

giving:
* _ * ’ i
wo==hny 3+ R (4.13)
where a new constant B' is introduced instead of B , which in iso-

thermal flow was found to be 5.5 from experiment. The constant B' |is

found by joining (4.11) to (4.13) at y* = y1* :
P 7YY - L ¥
.B - m M@T(:ﬂﬁ ) W/zngl aKg‘*
or, making use of BEqs. (2.14) and (4.10):
VA AN W *
B = <'@* |>‘m M(ﬂ(‘,'g,)-&-s (4.14)

Introducing the numerical values for K1 and y1* from (2.16) and

putting B = 5.5:
B'= 13.87 Y/yr - 831 (4.15)

From the definition of Y* it can be seen that if the viscosity in the
wall layer is less than in the core, B! is greater than 5.5 and the

everage velocity through the pipe is larger than for viscosity in the
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wall layer equal to that in the core; the reverse holds for viscosity
at the wall laréer than in the core.

The constency of the wall layer thickness is not unreasonable and
it is consistent with the picture of the way in which the velocity
fluctuations arise and are damped close to the wall., If the viscosity
is decressed in the damping region close to the wall, but remains
constant throughout the core and the regions in which the fluctua-
tions arise, the velocity gradient will be the same as for isothermal
flow except in the region close to the wall., In this latter region,
the velocity profile changes, giving rise to an increase of the core
velocity if the pressure drop and shear stress are kept the same.

The change of velocity profile close to the wall does not affect the
core by introducing any velocity fluctustions because this is a damp-
ing region. The self-induced turbulent fluctuations further out from
the wall are related to the velocity gradient, not the velocity, and
the gradient is the same as before. The velocity and velocity gradient
must be continuous at the junction of the damped and unstable regions
and the core velocity is increased because ofbthe changes in the
region close to the wall. This increase of the core velocity is the
sole effect on the core of the decrease in viscosity close to the
wall. The laminar and turbulent shear stresses next the wall are both
modified by the decrease of viscosity although the total shear stress
remains the same. The method of calculation of the influence of
variable viscosity is valid only if most of the variation is confined

to the region very close to the wall., If an appreciable change of
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viscoslty takes place over the region in which the velocity fluctu-
atiéns arise, the deseription of the velocity profile taken from iso-
thermal flow will not apply. The effect of variable viscosity in the
turbulent region on the transport of momentum is not yet known.

The average velocity over the pipe cross section is given by
Bq. (3.16) with the new expressions for wu* from (4.11) and (4.13).

Neglecting terms of order 1/R* as before, we find:

Un =T;K_A R+ 3 - (4.16)

instead of EBq. (3.19). Substituting numerical values and re-arranging,

5
an equation for the friction coeffieclent is obteined in the form:

@ = 250 Re - z.s’ﬂnv-g'- +13.89 (—\-g;-l) | (4.17)

where the Beynolds number Rg 1is defined in terms of the viscosity

The friction coefficient is influenced by variable viscosity only
through the ratio Yl*/yl* » at least for Reynolds numbers above
10,000. In the various empirical formulas that have been developed
.for the friction coefficient, it always has béen assumed that the
effect of variable viscosity could be correlated with some viscosity
ratio, lxwwﬁyw; say, alone. According to the theory developed here,
the effect is mors complicated, because the ratio Y1*/y1* depends not
only on the viscosity rétio, but also the shape of the curve of
viscosity versus y* . The value of T1¥* depends on how rapidly the

viscosity change near the wall takes place.
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This éompletes the analysis of the momentum transfer for vari-
able viscosity.‘ There is no way of proving that the details of the
mechanism postulated here are correct; confidence in their validity
can be gained only if the predicted friction and heat transfer coef-
fiqients agree well with experiment. The comparison with measurements
will be made after the analysis of the energy transfer in the section

following.
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V. ENERGY TRANSFER WITH VARIABIE PHYSICAL PROPERTIES

When the density is constant, the energy equation for variable
specific heat and conductivity is:
1T
fo= ~p kv +k—j§- (5.1)

where h 13 the enthalpy, defined as:

h = g CF dT (5.2)

The properties Cp and k are assumed to be functions of temperature

only. The energy equation can be rewritten as:

_ kl ’ k Ak )
Fo F[ Jh/A + dg (5.3)
and applying the Reynolds analogy to the transport of enthalpy:

Wy ur’

dh/dg — du/dy

the enerzy equation becomes:

_ W 4T
fo P G &uﬂ& J%
Introducing Cpl and k31 , the values of these quantities at y1*

and expressing in dimensionless form in terms of 3*= g“r/ﬁ% , this

equation can be written:

fc[:“f _ i
o J _ Lo Wy uf | V.
¥ ¢ ﬁf%ﬁ*?ﬁw

(5.4)



where ¢; is the Prandtl number at y1* . This equation reduces to
Bq. (3.3) when £he physical properties are constant.

The expressions (4.9) and (4.12) for wvr'/uf and du5Q3*
derived in the preceding section for variable viscosity can be substi-

tuted into (5.4) to give the temperature profile in the wall layer:

*

4
L LA X i o<y’ y* .5
6"’ 6- w-) cF FM’WY* Lk <g <4 (5.5)

-]

In the turbulent core, it will be assumed that the physical properties
are constanﬁ, their values being the same as at y1* . This assumption
introduces some error but the error should be small if most of the
temperature difference is confined to the wall layer. The temperaturs

profile for the core is then, from Bq. (3.8):

Ef"r—fl(T—) =t “T‘Tj‘— > (5.6)

The mean temperature can be found by either of the two methods given
in Section III. The equation for the heat transfer coefficient

corresponding to Bq. (3.24) is:

Pl (T _ 1 2 Z . 5
8,, TG Ce +F Ce +4’K (5.7)

where
*

31
dy¢* o
: ‘ (5.8)
F j A CaPT ~ ok 5iee)

and Cf is given by Bq. (4.17).
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The éxpressions above represent the complete solution of the heat
transfer proble;n. In practice a method of successive approximations
mast be applied because B, Cp and k will be given functions of
the temperature T rather than of y* as is required in the integrals.
The procedure will depend to some extent on the way in which the
problem is stated, but the method suggested below is the one that will
be used in the comparison with experirﬁent. Suppose that the mean
temperature Tm and the wall temperature T, are given, as well as
the Reynolds number Rey based on mean properties. The properties
/u. , Cp and k are known functions of T, The first step is to
guess at the variation of 1c=,u/,u. as a function of y*., The viscosity
M 8t y1* can be identified with H, initially if desired. From
the estimated variation of f , Y* can be determined as a function

of y* from:

Y* - f‘ixi
., T
Then 4K = Ws,*/Y.* = 0.069 g;*/Y,* can be found and the expression

$ aink® (W Y”) evaluated as a function of y*. Guesseg are made as
to the variation of Gp/Gpl and k/k]_ with y* and the integral in
(5.5) evaluated numerically as & fanction of y*,

The friction factor Cf can be found from Eq. (4.17) using the
mean Reynolds number and the value of Y1*/y1* from above. Then F
is determined from the end value of the integral in (5.5) and the

formule:
*

¢ * *
F = X - f“ 5 - 15.89 (5.9)
; -q':"#/mvﬂ (Y )+« g
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and from Eq. (5.7), C. is found. Making use of the identity:
Cp, Ux
-B—gr—— = —é:'vgg?ZfiE;is (5.10)

'where the factors on the left hand side are now known, the temperature
distribution in the wall layer is determined from (5.5). From this
temperature distribution the functions f , Cp/Cp1 and kfk; are
re-determnined as functions of y* and the entire process is repeated
until there is no further change in the temperature distribution.
Ordinerily, convergence is quite rapid and with a reasonable initial
guess as to the variation of f , only two numerical integrations of
(5.5) are necessary.

An attempt was made to find approximate methods for evaluating
the integral in (5.8). The viscosity distribution through the wall
layer was represented by a two-parameter family ofxcurvés and it was
hoped that this would be satisfactory for most liquids. Unfortunately,
such a simple representation of the viscosity variation was not
sufficiently accurate for the examples studied. The first purpose of
the investigation should be a damonstrgtion of the validity of the
theory, so that it does not matter if the numerical calculations at
this stage are somewhat tedious. At a later time, when the theory is
verified and its limitations determined, it will be desirable to find

more readily usable approximate formulas,
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VI. COMPARISON OF THEORY OF TRANSPORT

- FOR VARIABLE PROPERTIES WITH EXFERIMENT

The number of experiments on the influence of variable physical
properties on momentum and heat transfer is rather limited and in
most experiments the measurements are too inexact for sdequate com-
parison with the theory of the last two sections. In the current
standard texts (e.z. Ref. 14) the treatment of heat trensfer with
variable physical properties is based primarily on the experiments
reported in Refs. 15, 16, and 17. The results of these experiments
are given in the form of two empirical equations for the friction and

heat transfer coefficients, i.e.:

a4

CofCe = (Bm/pw) - (6.1)
b = = ﬁé‘—m—)m (6.2)
®y* o o |

where Cf 1is the friction coefficient in non-isothermal flow, OCrfj

is the friction coefficient in isothermal flqw and the other
quantities are defined as in the preceding sections. The viscosity

is the only propertybwhose variation is considered and this is assumed
to enter only as the ratio of bulk to wall values. The empifical
equations above are based on a very limited number of experiments and
cannot be expected to have universal validity. The sole serious
attempt at a theory for variable viscosity sppears to be the semi-
empirical work of Boelter and co-workers already described and

criticized in Section I.
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Within the last two years more accurate experiments on the influ-
ence of variable properties have been made at the Jet Propulsion
Laboratory by Summerfield and Kreith (Ref. 18). The experiments were
restricted to hsating flulds at high flux rates but the range of
viscosity ratio was extended well beyond that of most previous
workers. Three fluids have been investigated, water, aniline and
n-butyl alcohol, but the last only is useful for comparison of the
theory. The experiments on water gave friction pressure drops thirty
percent or so in excess of the values for smooth tubes, thus indicat-
ing considerable influence of roughness. Since the theory given here
applies only to smooth walls, the comparison of theory with experiment
is inconclusive., Further, the Prandtl number for water at the
temperatures used in the tests was about 5, & rather low value. The
theory is based on the assumption that most of the variation in
properties is in the wall lsyer and a negligible amount in the core.
At a Prandtl number of 5, about one-quarter of the temperature differ-
ence occurs in the core so the theory applies only approximately. The
results of the tests on aniline are also unsatisfactory for comparison
with theory bscause a deposit was formed on the tube surface at the
higher heat transfer’rates.

The experiments on n-butyl alcohol, as reported in Ref. (18) were
made carefully and the accuracy of the measurements is adequate for a
comparison with the theory. The bulk temperaturs in &8ll tests was
between 86°F, and 108°F, giving a Prandtl number based on bulk condi-

tions of about 30. The wall temperature was varied from 160°F. to
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L20°F. so ﬁhe ratio of bulk viscosity to wall viscosity was varied
from 2.25 to 12.7. ‘The bulk Reynolds number was varied from 42,000
to 78,000 in the 58 test runs reported. The heated length of the
stainless steel tube was 33 diameters, sufficient that the inleﬁs
length effects should not be serious. HMeasurements of pressure drop
in isothermal flow checked the theory for smooth tubes within two or
three percent so it can be assumed that the influence of surface
roughness was negligible. The sole difficulty with the final results
is that complete knowledge of the dependence of the physical properties
of n-butyl alcohol on temperature is not at present available. The
conductivity variation, in particular, is not known and although the
specific heét snd viscosity are better known, the values of these at -
higher temperatures are extrapolated rather than mesasured directly.
The test results show an eppreciable decrease of friction coef-
ficient as the wall temperature is raised, the coefficient dropping
to about half of the isothermal value at a viscosity ratio fm/pw = 19
The heat transfer coefficient changes very little with viscosiﬁy ratio,
although there is a slight increase, of the order of 5% to 10% at the
maximum wall temperature. The possible experimental errors in the
heat transfer measurements are considerably larger than for friction
measurements so there is more scatter in the former. For purposes of
comparison, eight typleal test runs were chosen and the theoretical
friction and heat transfer coefficient3>ca1cu1aﬁed for the precise
conditions of these tests. The analysis was made according to the

procedure outlined in the preceding section. No particular advantage
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is to be géined from the analysis of more test runs because thoss
chosen cover thé rahge of Reynolds numbers and viscosity ratio of the
tests.

The values of the physical properties used in the analysis were
taken from the report on the tests (Ref. 18). Variation of the specific
heat and viséosity with temperature were taksn into account but the
conductivity was assumed constant, with k = 0.095 Btu/(hr.)(ft.)(°F.).
The final results are tabulated below, where the test run numbers are

the same as in Ref. 18.

Run | Re x10%| T, T, ol Cey/C ¢, x 10%

# (eF.) | (°F.) Theor. =;E§£;= Theor. vExp.
15 | 7.22 | o5 | 163 | 235 ] 1,352 | 1.15| 5.70 | 3.66
17 | 729 193.8 | 28 |uh5 | 1,325 | 1.3 | 5.26 | 4.23
12 | 72.23 | o4 320 1 7.23 | 1.687 | 1.67| 5.56 | k.23
13 | 7.59 |98 405 112,13 | 1.988 | 1,96 | 5.68 | 4.M42
27 | 4.32 | 97 191 13.05 | 1.263 | 1.26| 5.28 | 4.66
28 | h.22 |95 245 | 5.01 | 1450 | 1.47 | 5.56 | 4.60
33 | 428 |9 208 | 7.00 | 1.712 | 1.65| 5.71 | 4.64

o | 4.9 [100 o 1909 | 1.850 | 1.86% 5.8 | 5.02

*(The velue reported in Ref. 18 is 1.96, but sinece this is not con-
sistent with other measurements, the value 1.86 is taken from Run
#34, made under almost identical conditions.)

The theoretical and experimental values of Cfi/Cr and Cp are

plotted in Fig. 4 for easier comparison. The viscosity ratio Mw/HUw

ig the parameter having the strongest influence so it is plotted as
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the absciséa. The coefficlents are actually functions of bulk
Reynolds number, buik Prendtl number and bulk temperesture as well,
but the range of varlation of these in the teéts was small and their
influgnce can scarcely be grester than the experimental scatter. The
agreement between theoretical and experimental friction coefficients
is amazingly good, so good as to appear accidental. Even if the theory
were}strictly correct it is surprising that the values of the properties
and conditions of the experiments as used in the theory do not intro-
duce more error. The minor influence of Reynolds number is apparently
predicted quite accurately. The sole major diserepancy is Run #33 and
even here the experimental point appears too low because it is out of
line with the general trend of the Reynolds number effect. The empiri-
cal formula (6.1) does not fit the experimental data except at the low-
est viscosity ratios, and of course it does not give any Reynolds
number variation.

The theoretical heat transfer coefficients differ appreciably
from the measured values, in contrast to the friction coefficients.
The analysis predicts a rather rapid increase of heat transfer coef-
ficient with viscosity ratio, tapering off to about 130% of the iso-
thermal value at the highest viscosity ratios. The experiments show
a very slight, almost linear increase of heat transfer coefficient
with viscosity ratio. The dashed lines were derived from all test
runs, not merely the eight given here. These lines represent 13 to

22 experimental points within & meximum scatter of #*%. Run #15 was
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perheaps en unfortunate choice for the analysis because it is one of
two points that aeviates from the lines by about 12%.

If the theory is reasonably correct, the most likely reason for
the overestimation of the heat transfer coefficient is that the vari-
ation of conductivity with temperature is neglected in the analysis.
It is known that the conductivities of alcohols decrease as the
temperature increases. An examination of expression (5.8) for P
shows that F will inecrease if k decreases toward the wall, and as
a result Cp will become less. Hence a correct accounting for the
variation of k with temperature will certainly tend to decrease the

discrepancy between theory and experiment. The veriation of k will

mnodify the temperature distribution close to the wall, giving a different

viscosity variation and hence change the friction coefficient. This
effect will be secondary, however, compared with the change of heat
transfer coefficient, as can be seen from (5.5) or (5.8). The con-
ductivity variation appears in the second term of the denominator of
the integrand and this term is dominating at the wall or very close to
the wall where k will be smallest. The first term, which alone
involves the viscosity vafiation, becomes important a certain distance
away from the wall and will not be very strongly influenced by the
change of temperature distribution closer to the wall. Hence agreement
of the theoretical and sxperimental heat transfer coefficients does not
necessitate disagreement of the friction coefficients.

Variation of the conductivity was not taken into account in the

analysis because very little information concerning the dependence on
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temperaturé is availsble. The only measurements reported appear to be
those of Bridgmen who found Ik = 0.097 Btu/(hr.)(ft.)(°F.) at 86°F. and
k = 0.094 at 167°F. for n-butyl alcohol. Conductivities at higher
temperatures are lacking, even for similar liquids. In order to bring
theory and experiment into agreement, the value of the confuctivity
should deprease with temperature at & decreasing rate so that its value
at 400°F. is 60% to 70% of the value ét 90°F.. This requirement does
not seem consistent with the resulte of Bridgman's measurements,
although the latter may not be completely reliable.

The conclusions regarding the theory which can be derived from the
comparison above are not as definite as desired. The mechenism of
turbulent transport of momentum as postulated cesunnot be far wrong,
otherwise the friction coefficients would not agree so well., The
mechanism of energy transport assumed in the analysis may be quantita-
tively correct but this cannot be proved or disproved until the con-
ductivity variation with temperature is known. No other experiments of
sufficient accuracy for comparison with the theory are known. In this
connection it is interesting to note that the empirical formula (6.2)
for the heat transfer coefficient, derived from earlier experiments,
underestimates the coefficients reported in Ref., 18 by about 20% and
requires a change of the exponent of the viscosity ratio from 0.14 to
0.10 to give satisfactory agreement. ZEven if the turbulent transport
mechanism postulated here is not quite correct, it is obvious from the

analytical forms that no simple equations such as (6.1) and (6.2) can
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possibly have universal velidity. Simplification of the analysis used
here can undoubtedly be gained by epproximations, but until the limit-

ations of the theory are better known there seems to be little point in

introducing them at this stage.
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APPENDIX A.

The momentum equation for flow with axial symmetry in a pipe is,

for an incompressible fluid:

P G s HEWD b B R Bk el) @

where u and v are components of velocity in the radial and axial
directions. For fully-esteblighed turbulent flow, u = w o+ u! ,
v=v!, p= ; + p' , where the barred quantities are time averages,
assumed functions of position only, and the primed gquantities represent
the turbulent fluctuations. Substituting these into Eq. (1), averaging

with respect to time and dropping derivatives with respect to x, except

for p,
& /. _ d d 4 .
FC)=-F vl iy 2

The form of this result implies that p is a function of x alone and
the other terms are functions of Y alone, in conformity with the assump-

tion of fully-established turbulent flow.

d

where
~ e

The shear stress at the wall of the pipe is 1 =~ 2R
R is the pipe radius. Substituting into Eq. (2) and integrating with

respect to:

AR AN RS
Yuv P.EY'+P/.(Y‘O{Y_

The constant of integration is zero, since To = U< at the wall,
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Dividing through by v and rearranging:
- = = -pur + A
° R P /40(\'-

In terms of distance y <from the wall, putting TH=R—% and changing

the sign of v! , this equation becomes:
T;Q-g/k)=_f)&71?’+}4ji—%“— (3)

For y<< R the 1veft—hand side of this squation becomes simply T .
Strictly, the factor 1-y/R should be left in the equation to give
correct results near the center of the pipe; for instance, to make
dufdy = 0 at y = R. At high Reynolds numbers, howsver, the resulting
velocity distribution differs from the approximate form by a negligible
amount. At lower Reynolds numbers, for instance, 2000 to 10,000, the
form of Wv’ is not known precisely anyway and the addition of the
factor (1-y/R) may not improve the result appreciably.

4 The energy equation applicable to flow in & pipe is similar in form

to the momentum equation. If h 1is the specific enthalpy of the fluid

dh . 3 N LD _ _é_c A‘;) 12 (e T
v * ‘WG‘“O +'i§(rk“') = _P'ar kvey ) + P é“'?)x ()
where the pressure end dissipation terms have been neglected. Futting

h=h+h', u=u+u' and v=v', dinto Eq. (4), and averaging with

respect to time, for steady flow:

%?@W) —\—f;(fﬂ i+vﬂ> -}’—Qwvg—) +—'-—%Q<\”§‘— (5)

_f'TM P
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One cannot assume that n is independent of x , because then no heat
can flow into the‘system. The only "fully-developed" temperature profile
is one with constant temperature everywhere. If the temperature gradient
along the pipe is small comparsd with the radial gradient, one cen
neglect the terms %—t(ﬁ) and "pL%oTCKg in comparison with the
others. The term. —%‘-@KE> is retained to allow for heat flux at the
wall.

With the assumptions above, the energy equation becomes:

T (k) = (v S0 3D (6)

where the bars over h, u and T are dropped. The velocity distribution
u is a known function of Y alone. Eq. (6) is a partial differential
equation and is, of course, difficult to solve except for very special
boundary conditions. It is usual practice to assume that the heat flux
per unit area normal to the radius is of the form 3’= %o“’/R where o
is the value at the wall, This is strictly true of dh/dx is constant

over the cross-section. Then from a heat balance:

2

S bku4r=~—5—‘¢=-~%"—{— (7)

With this result, integration of Eq. (6) yields:
P - Y L
fo R P Ay
and substituting r=w-a with a change in the sign of v! :

%o(l—g/ﬁ)=~ piet’ + k% (8)
r
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This equation is now identical in form with Bq. (3), but is more
restricted in appiication. It should be satisfactory after a heated
length of pipe of twenty or so diameters, provided that the condue-
tivity is not very large.

It>has been assumed in 211 of the analysis of this paper that the
influence of the viscosity fluctuations is negligible. This assumption
appears valid, although no positive proof can be given. With viscosity
& function of temperature only, the viscosity fluctuations can be approxi-
nated by :

e R
K= T

gince T' is ordinarily small. For a flat wall, the term involving

viscosity is:

ye ]

Pubtting uv=4d4 +u!' , v=v', /J.'=/7,+i’sz~T' and averaging, this term

becomes:

Bg( m) + 3 [ w z&)]

Hence, one should add to the right-hand side of Eq. (3) the term:

é#.b_i,
ATT:‘

Certainly for higher Prandtl numbers %@47‘15 large only very close to

the wall; in this region, however, the turbulent fluctuations are small,
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Further from the wall, whers the fluctuations are larger, %M/JT‘ is
small. Hence, it{seems reasonable to agssume that the entire term is

small everywhere.
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