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Abstra,ct

High-power, coherent radiation from semiconductor lasers is attractive for such
diverse applications as free-space communication, optical data storage, and micro-
surgery. However, several factors conspire to prevent near-ideal performance from
broad area devices and laser arrays. Waveguides wider than a few microns support
many lateral modes with poor gain discrimination. Consequently, such modes are
easily “mixed” by perturbations in gain and refractive index caused by gain sat-
uration, thermal gradients, and inhomogeneities that are due to imperfect crystal
growth. This causes spatially localized modes, multimode operation, and reduced
spatial coherence, all of which lead to farfields broader than the “diffraction limit.”

In this thesis, we have investigated the influence of gain saturation on the
lateral modes of broad area structures and laser arrays. Analytical and numeri-
cal techniques have been developed to solve self-consistently for mode shapes and
propagation constants as a function of injected current density above threshold. For
example, our analysis indicates that the gain-saturated modes of broad area lasers
consist of an integer number of phase-locked “filaments.” In gain-guided quantum
well lasers, these nonlinear modes are observed to oscillate into narrow, single-lobed
farfields, which broaden only slightly with increased power output up to the 500
mW level. Conversely, laser arrays have been widely touted as structures that sup-
press unwanted filamentation in favor of spatial mode control. Indeed, in this work
we have demonstrated supermode control at the 100 mW power level by varying

the diffraction region length in diffraction-coupled arrays. Both theoretically and
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experimentally, however, we have found the lateral modes of laser arrays to be un-
stable with increased current injection. Waveguides that are phase-matched below
threshold become detuned under the influence of gain saturation, so that interguide
power transfer is reduced. This decreases the injection-locking bandwidth, and ulti-
mately, the spatial coherence. While undesirable for a laser oscillator, this property
may be attractive for all-optical switching in nonlinear directional couplers.

Finally, we have considered marrying the high-power, coherent output of broad
area lasers and laser arrays with the broadband tunability possible in semiconductor
lasers. In particular, the steplike density of states unique to quantum well struc-
tures results in gain spectra that are broader and flatter than comparable spectra
of double heterostructure lasers. Experimentally, we have tuned uncoated, single
quantum well stripe lasers in a grating-coupled external cavity over a range >125
nm centered about 800 nm. Similarly tuned broad area lasers output in excess
of 200 mW (pulsed) into a single longitudinal mode over 80 nm, and buried het-
erostructure lasers were operated continuously over 90 nm. We expect that in the
future, such devices could provide a compact, rugged, more efficient alternative to

dye lasers.



—ix—

Table of Cont ents

Acknowledgements
Abstract

Table of Contents

Chapter One

v
vi

Viil

Introduction
1.0 Introduction 1
1.1 Lasing in Semiconductors 4
1.2 Carrier-Induced Gain and Refractive Index 6
1.3 The Effective Index Method 10
1.4 Duality of Gain and Index Waveguiding 15
1.5 Gain Saturation Nonlinearity 18
1.6 Synopsis 22
References 2

Chapter Two

Nonlinear Lateral Modes of Broad Area Lasers
2.0 Introduction 27
2.1 Carrier-Dependent Refractive Index 30
2.2 Solution of Nonlinear Complex-valued Field Equation 37
2.3 The Outer Solution and Boundary Matching 44
2.4 Discussion of the Multifilament Solutions 45



—X—

2.5 Light-Current Curves 52
2.6 Conclusions 56
2.7 Appendix 2A 57
2.8 Appendix 2B 61
References 63

Chapter Three

Asymmetric Tailored-Gain Broad Area Lasers

3.0 Introduction 67
3.1 Path Analysis of the Linear Tailored-Gain Waveguide 75
3.2 Eigenvalues of the Linear Tailored-Gain Waveguide 85
3.3 Nearfield and Farfield Patterns 87
3.4 Measurement of the Antiguiding Parameter 94
3.5 Conclusions 102
3.6 Appendix 3A 102
References 108

Chapter Four

(GaAl)As Laser Tunable Over 125 nm

4.0 Introduction 109
4.1 Grating-coupled Tuning of Single Quantum Well Lasers 114
4.2 Variation in Tuning Range with Quantum Well Width 119
4.3 Coupled-Cavity Model 125
4.4 Conclusions 133

References 135



—xi—

Chapter Five

Coupled-Wave Model for Multiple Stripe Semiconductor Lasers

5.0 Introduction 137
5.1 Coupled-Wave Theory 141
5.2 Broad Area Tandem Semiconductor Lasers 149
5.3 Conclusions 155
References 157

Chapter Six

Supermode Control in Diffraction-Coupled Laser Arrays

6.0 Introduction 159
6.1 Supermode Theory 162
6.2 Experiment: Supermode Control 168
6.3 Discussion: The Cost of Mode Discrimination 174
6.4 Conclusions 179
References 182

Chapter Seven

Nonlinear Lateral Modes of Laser Arrays

7.0 Introduction 183
7.1 Nonlinear Supermodes of Diffraction-Coupled Arrays 184
7.2 Comments on Supermode Stability 196
7.3 Farfield and Strehl Ratio 199
7.4 Extension to Distributed Coupling Arrays 202
7.5 Conclusions 205

References 209



CHAPTER

One

Introduction

1.0 Introduction

Semiconductor lasers fabricated from III-V materials such as Ga;—,Al; As and
Gay—.In;As;_,P, have the potential to provide inexpensive, compact, and efficient
sources of coherent radiation in the infrared (IR) wavelength region 650-1550 nm.
Near IR wavelengths from 750-880 nm are accessed by Ga;—,Al;As and find appli-
cations in optical data storage, free-space communication, solid-state laser pumps
(e.g., Nd:YAG), short-haul fiber optic communications, laser printers, and compact
disc players. Also, much of the basic physics has been gleaned from this material
system because the maturing growth techniques of molecular beamn epitaxy (MBE)
and metal organic chemical vapor deposition (MOCVD) allow for the fabrication of
near-ideal heterostructures. Longer IR wavelengths between 1000 and 1550 nm are
accessed by the quaternary system Ga,_,In As;_,P, and bracket the minimum
loss and group velocity dispersion wavelengths of silica optical fibers at 1300 and
1550 nm, respectively. This is therefore the material of choice on which to base
long-haul fiber optic communication systems. In addition, visible and near-visible
wavelengths from 650-750 nm are currently a subject of great interest. For exam-
ple, red lasers based on (GaAl)(InP) are commercially attractive as replacements
for HeNe lasers at 633 nm in such products as bar-code scanners and laser point-

ers. More exciting are potential medical applications such as photodynamic therapy
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(PDT), whereby photosensitive drugs are activated, in vivo, under optical irradia-
tion piped down an endoscope to release a prescribed chemical dose for local tumor
treatment. At present, such drugs are photosensitive only at HeNe wavelengths, -
but effort is under way to develop others that absorb at near IR wavelengths to
take advantage of the reduced tissue absorption there and the high power available
from (GaAl)As semiconductor lasers.

In this thesis, we have targeted high-power, coherent, broadband tunable de-
vices for applications in space, medicine, spectroscopy or wherever organic dye lasers
have been utilized as IR sources. The prospect of supplanting a table-top, optically
pumped instrument that is less than 1% energy efficient with a rugged, current-
pumped, 50% eflicient semiconductor laser smaller than a grain of salt is very at-
tractive. As such, our research has dwelled on characterizing the above-threshold
regime of wide-aperture semiconductor lasers and laser arrays, which currently offer
output power in the 0.1-1.0 Watt regime. Figure 1.1 gives a sketch of the power and
beam performance currently available commercially, in addition to the requirement
for space-based communication, for example.

In particular, the influence of gain saturation nonlinearities has been empha-
sized here in order to clarify the “ideal” performance level to which such devices
aspire. Analytical and numerical techniques have been developed to solve self-
consistently for electromagnetic modes and their propagation constants as a func-
tion of injected current density above threshold. Experimental fabrication and
characterization of a number of device geometries in (GaAl)As have been achieved.
Quantum well lasers have been used exclusively because of their superior charac-
teristics, especially with regard to overall energy efficiency and broadband tuning
capability.

In this chapter, the groundwork will be laid with respect to the interaction of

radiation and matter in quantum well heterostructures. Concepts of gain and loss,
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Figure 1.1 Commercially available semiconductor lasers at 850 nm emit approximately 100
mW of power into a beamwidth 4° by 10°. The requirement for space-based communication
~ is closer to 1 Watt into a circular spot a few degrees in diameter.

index and gain waveguiding, and gain saturation are reviewed in order to extract
the relevant quantities for the design and characterization of high-power semicon-
ductor lasers. In addition, reviewing these basic concepts places all subsequent

approximations and assumptions in the foreground.
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1.1 Lasing in Semiconductors

The general requirements for laser oscillation are gain and feedback, as shown
in Figure 1.2(a). In a semiconductor, the feedback can be conveniently provided by
facets cleaved along parallel crystalline planes. The GaAs/air interface has a Fresnel
reflectivity of 0.31, so that with moderate internal distributed losses, the photon
lifetime inside the cavity is approximately a few round trips, providing sufficient
feedback for lasing. Gain is achieved by providing a population inversion within
the semiconductor, as is obtained conveniently at the junction of a forward-biased,
degenerately doped pn junction. Figures 1.2(b) and (c) illustrate these concepts
within a homojunction diode laser, as first demonstrated!=® in 1962. Such lasers
could be fabricated via a simple p-diffusion into an n-type substrate, and threshold
current densities on the order of J;;, =~ 10 kA/cm? were achieved.

Since this first demonstration of lasing in GaAs, there have been two “quan-
tum leaps” in the technology which have significantly advanced the state-of-the-art.
The first, in 1969, was the invention of the double-heterostructure (DH) laser*?®.
This innovation made possible continuous wave (CW) operation of (GaAl)As diode
lasers at room temperature. Figure 1.3 shows the conduction and valence band
edges of the diode under full forward bias. By sandwiching a thin layer (~~ 0.1-0.2
pm) of undoped, low-bandgap, high refractive index GaAs between two cladding
layers (one p-doped, the other n-doped) of higher bandgap, lower refractive index
(GaAl)As, a dielectric waveguide is formed which tightly confines the optical mode
to the “active” region where the population inversion is established. This strong
overlap between optical mode and active region provides efficient use of the injected
carriers in supplanting the inherent absorption with gain. DH laser structures in the
1960’s and 1970’s were grown primarily by liquid phase epitaxy (LPE) and achieved

threshold current densities on the order of J;; ~ 1 kA/em?.
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Figure 1.2 (a) The general requirements for laser oscillation are gain and feedback, as
shown schematically here. (b) The homojunction GaAs semiconductor laser (¢.1962) pumped
by electrical current satisfies the requirements of (a). (c) Band diagram perpendicular to the
junction with no bias (left) and with strong forward bias (right). Population inversion (and
hence gain) is created at the junction.



6

The second quantum leap occurred with the introduction of separate confine-
ment heterostructures for the charge carriers and for the transverse optical radiation
field. In particular, since 1981, the graded-index, separate-confinement heterostruc-
ture single quantum well (GRINSCH-SQW) laser® has become an industry stan-
dard. Figure 1.3 shows the corresponding band diagram and waveguide profiles for
this new laser. The width of the inner heterostructure (i.e., the quantum well) is
made comparable to the deBroglie wavelength of electrons (2 75 A at room temper-
ature, for an electron energy of kT'). As a result, the properties of the QW-confined
charge carriers differ from the DH case to reflect the 2-dimensional nature of the
carrier gas. The consequences are important, for example, with respect to tunability
and linewidth. Furthermore, the reduction in active volume by about a factor of 10
from the DH case reduces the absorption of the optical mode under zero pumping
by a proportional amount. Thus threshold current densities as low as J;, ~ 0.1
kA/cm? have been achieved”. As shown, the outer heterostructure is not abrupt,
but is graded in order to funnel carriers down smoothly to the quantum well (QW)
(through electron-electron and electron-phonon interactions), where they become
trapped and recombine. The overall width (~ 0.4 ym) and refractive index step
(~ 0.2) of the GRIN layers are chosen so that the waveguide so formed supports
only the fundamental transverse optical mode, as shown in Figure 1.3. To fabricate
such a complex structure with high precision requires very sophisticated epitaxial
growth techniques, and the success of the GRINSCH-SQW laser owes much to the
maturity of MBE and MOCVD technologies.

1.2 Carrier-Induced Gain and Refractive Index

The interaction between radiation and matter that takes place inside a semi-
conductor laser is manifest in the complex-valued dielectric constant e(w) — that is,

as a property of the medium, which is seen by traveling electromagnetic waves of
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diagrams under full forward bias. (b) Gain and refractive index profiles perpendicular to the
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radian frequency w. In actual fact, the material response to an electric field is man-
ifest as the polarization, rather than as the electric field, so that the fundamental
quantity is not the dielectric constant e(w) but the susceptibility X (w), related to

€ Via

e(w) =€ (1 + X(w)) (1.1)

where ¢; is the permittivity of free space. We distinguish between the resonant
component x(w) and the non-resonant component x¢ of the semiconductor suscep-
tibility: X(w) = xo0 + x(w). Hence, (1 + xo) = n2, where ng is the non-resonant

refractive index. The resonant component of the susceptibility is complex-valued:

X(w) = xr(w) + ixi(w) (1.2)

to allow for changes in the phase (x,(w) < dispersion) and amplitude (x;(w) <
gain) of electromagnetic waves propagating in such a medium (see Equation (1.7)).
In gas lasers and solid-state lasers, such as Nd:YAG, the active species are mutually
decoupled so that the radiation field can be considered as interacting with a colli-
sionally broadened 2-level system. In this simpler case, the resonant susceptibility
X can be written®

wo — w
(wo —w)? +1/T7F
1/T,

(wo —w)? +1/T3

Xr(w) = Alfe(w) = fo(w)]
(1.3)

Xi(w) = A[fC(w) - fv(w)]

where wq is the frequency of the optical field, hw is the energy separation of the
states of the 2-level system, T3 is the mean time between phase-destroying collisions
(t.e., phase-damping time), f. and f, are the occupation factors of the upper and
lower states, and A is a constant proportional to the dipole matrix element.

In a semiconductor, the active states are blurred into bands in accordance with

the Pauli exclusion principle, the upper transition “level” being the conduction
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Figure 1.4 (a) Real and (b) imaginary parts of the complex-valued susceptibility function
x(w) for the two cases of double heterostructure and quantum well lasers, as a function of
photon energy. The imaginary part is directly proportional to the laser gain, while the real
part gives the change in refractive index from its non-resonant value. The different curves
correspond to different values of injected carrier density, increasing in the direction of the
arrow.

band and the lower being the valence band. Within each band, carrier populations
thermalize with a characteristic time T, because of electron-electron and electron-
phonon interactions. On time scales long compared to T,, such as is considered here,
states within the bands act independently. Thus we consider the conduction band
- valence band system to be an ensemble of collisionally broadened 2-level systems
with transition energies spanning over the reduced density of states function p(w).

The dielectric susceptibility of the semiconductor is then written as®
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+o0
xr(wo) = / §(w) Tr(wrwo) div |
o (1.4)

-+ oo
xi(wa) = / p(w) Rl wo) dow .

-0

This simple broadening has very important consequences for the gain and refractive
index lineshapes as a function of the carrier population inversion. Figure 1.4 illus-
trates x(w) for the two cases of the DH and QW laser for comparison. Whereas the
gain lineshape ¥;(w) of the 2-level system is a classic Lorentzian, in a semiconductor
the gain lineshape is determined primarily by the reduced density of states function
p(w) and the Fermi occupation factor f.(w)— fy(w), since kT >> 1/T, typically. In
contrast to Xi(w), the gain lineshape x;(w) is asymmetric with respect to its peak;
this causes a detuning of the zero crossing of x,(w) away from the peak of x;(w).
The net result is an index coupling Ax,, which changes as a function of carrier den-
sity. That is, gain fluctuations Ay; that are due to fluctuations in carrier density
are additionally manifest as fluctuations in the index of refraction of the medium.
For the DH and QW lasers, x(w) is plotted for several quasi-Fermi energies corre-
sponding to realistic carrier densities (few x10'® ¢m™3) in the active region. The
photon energies of peak gain are marked as a function of carrier density. Clearly,
as the carrier density increases, the peak gain increases (dx;(w)/dN > 0), while the
cdrresponding index decreases (dx,(w)/dNxr(w) < 0). The consequences of this
carrier-dependent gain and refractive index coupling are of considerable importance

in modeling the waveguiding properties of semiconductor lasers.

1.3 The Effective Index Method

In order to predict realistically the electromagnetic modes of semiconductor
lasers, and the coupling between said modes, an accurate model for the inherent
waveguides must be constructed. In Section 1.2 we illustrated how the local sus-

ceptibility (and through Equation (1.1), the dielectric constant) is a function of the
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local carrier population. In order to construct the 2-dimensional complex dielectric
constant profile, we relate the susceptibility x(wg) to the bulk gain and refractive

index seen by a plane electromagnetic wave of frequency wy:
E(z,1) = % B e'lk(wo)z—wot} (1.5)

where k(wg) is its propagation constant, and X is a unit vector in the z-direction.

Upon substitution of Equation (1.1) for e(w) into k(wg) = wo+/po€(wo ), We obtain

k(wo) = n°cw° {1+ Xé:é’)} . (1.6)

Since x(wp) = Xr(wo) + ixi(wo), we obtain the following correspondences between

the resonant susceptibility x(wp) and the gain g(wo) and index of refraction n(wy):

Xr(wo) }
2n2
koxi(wo)
ng

n(wo) =mngyl+
0 0{ (1.7)

g(wo) = —

where ko = 27 /Ao. Alternatively, gain is often expressed as an imaginary component

of the index of refraction, as follows:

Im{n} = X_z%-) - —gé:;’) . (1.8)

In a semiconductor laser, the electric field g(x, Y,z,t) is a complicated super-
position of many lateral (z-dependent), transverse (y-dependent), and longitudinal
(2-dependent) modes, all of which oscillate at different frequencies. To simplify
analysis, we consider oscillation at the single frequency wyg, thereby selecting a sin-
gle longitudinal mode, and we assume for the electric field a traveling wave solution

along the axial (z) direction of the form®

E(z,y,2,t) = % E(z)F(z,y)ePrwot) : (1.9)
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where B = kon and 7 is the complex modal propagation constant (“effective mode
index”). Transverse electric (TE) polarization is assumed because of its higher
Fresnel reflectivity at the facets, which results in a lower threshold modal gain (in
this thesis, Fabry-Perot lasers are considered exclusively). In (1.9), E(z) is the
lateral mode we wish to determine, and F(z,y) is the transverse mode, which is
usually a slowly varying function of the lateral coordinate, z.

The procedure for determining F(z,y), E(z), and n in the case of a stripe
geometry laser is indicated graphically in Figure 1.5. Briefly, cross sections of the
2-dimensional complex index profile are constructed in the transverse (y) direction
at fixed z, as in Figure 1.5(c). The transverse optical mode F(z,y) and its effective
index n.s¢(z) are the eigensolutions of this waveguide. The lateral mode E(z)
and its modal propagation constant S are the eigensolutions of the complex profile
subsequently constructed from n.ss(z), as shown in Figure 1.5(d). This technique,
known as the effective inder approzimation®, is valid when the lateral refractive
index and electric field variations are much slower than the transverse ones.

In practice, the intermediate step of finding the eigensolutions F(z,y) and
ness(z) are often omitted for simplicity. The transverse modal gain is proportional
to the imaginary component n.sfi(z), and can be estimated by reducing the peak

gain of the active region by the transverse optical confinement factor:

=Tg(z) (1.10)

d
neff,i(l‘) ~ g(z) x W

€

where g(z) is the peak gain, d is the active region width, and W,s; is the effec-
tive width of the transverse optical mode. The ratio d/W,sy is defined to be the
transverse optical confinement factor I'. Similarly, a value for n.ss .(z) is often as-
sumed. While the absolute value of n.yy,-(z) is not critical, the change An, sy ()
in ness(z) that is due to the presence of lateral variations in transverse structure

or in injected carrier density determines E(z) and 7. In the case of injected carrier
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Figure 1.5 The effective index model for a stripe geometry laser. (a) Coordinate definitions
showing transverse and lateral optical modes. (b) Band diagram in the transverse dimension.
(¢) Transverse gain ni(z,y) and index n,(z,y) profiles at a particular value of , with the
transverse mode F(z,y). (d) Lateral gain neyy,i(z) and index n.ssr(z) profiles, with the
lateral mode E(z).
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density, Ancsy () is often assumed to be simply related to the change An.sfi(z)

in the gain that is due to injected carriers!?:

Aneffy,-(:lt) = -bx Aneff,,'(.z‘) (1.11)

where b > 0 is referred to as the antiguiding parameter. In general, b is a function
of frequency wy and carrier density N(z). In the limit of small changes in carrier
density, b is simply given by

dneffy,. dneff,,- __er dX,'
dN dN = dN/ dN -’

Figure 1.6 plots b as a function of photon energy for the cases of DH and QW

b=—

(1.12)

lasers, corresponding to the gain and index spectra of Figure 1.4. Furthermore, the
photon energies of peak gain for each of 3 carrier densities is also indicated. The
figure illustrates that b decreases with increasing carrier density for the DH, but
increases for the QW laser. This is because the differential gain (proportional to
dxi/dN) as a function of carrier density exhibits a peak!!; for the QW laser the
operational point lies on the decreasing side of that peak, while for the DH laser
the opposite is true.

Using Equations (1.10) and (1.11), the complex refractive index is taken to be

Fg(wo)
2kg

where n.sy is the complex index of refraction at the carrier density corresponding

Neff(wo) = neffo(wo) — (b +i)—— (1.13)

to optical transparency. Solutions for E(z) and n are then determined by solu-
tion of the complex-valued Helmholtz equation (i.e., 1-dimensional, reduced wave
equation) at a particular fixed frequency wy corresponding to the frequency of peak
gain:

dzf(;‘)w{ n2p(z) = n? } B(z) = 0. (1.14)

The solution E(z) is referred to as a “lateral mode”. 7 is its effective modal index;

that is, 8 = kon is its propagation constant.
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Figure 1.6 Antiguiding parameter b calculated according to Equation (1.12) for the case
of DH and QW lasers. The different curves correspond to increasing values of injected carrier
densities. Solid circles correspond to the operating points indicated in Figure 1.5.

1.4 The Duality of Gain and Index Waveguiding

In the stripe geometry laser of Figure 1.5, the lateral mode is guided by a
profoundly different mechanism from the transverse mode. Light diverging in the
transverse direction is channeled by total internal reflection so that, outside the
positive index waveguide, the electromagnetic field is evanescent and decays expo-
nentially. Energy is stored in the exponential tails but there is no Poynting power

flow there. The electromagnetic wavefront is flat, indicating power flow only in
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the axial direction. Light which is guided chiefly by total internal reflection will be
termed indez-guided. The lateral waveguide, however, exhibits a negative index step
that is due to the carrier-induced refractive index coupling of the gain. Thus, for
angled incidence, light is refracted out of the waveguide. The Helmholtz equation,
(1.14), yields a solution E(z) cos(kz) which, like the index-guided case, consists of
two plane waves propagating at equal but opposite angles to the longitudinal axis.
However, the constituent plane waves experience gain in traversing the waveguide
and hence do not have equal amplitudes everywhere across the width (exactly anal-
ogous to the longitudinal direction). Since the core region experiences higher gain
than does the cladding, the modal wavefront is advanced there. This directs Poynt-
ing power into the cladding (an additional loss) in order to equalize the energy
derived from stimulated emission everywhere in the mode. Such a field propagates
self-consistently along the longitudinal axis and thereby satisfies the definition of a
lateral mode. We will call such modes gain-guided. Rather than rely on total inter-
nal reflection at the core-cladding interfaces to guide the light, gain-guided modes
rely on a continuous generation of photons within the guide itself to compensate for
those lost at those interfaces.

The difference in transverse and lateral guiding mechanisms leads to astigma-
tism in the laser output. Upon divergence at the cleaved facet, the wavefront is
curved in the lateral plane as if it would emanate from a smaller aperture a few
microns deep into the semiconductor. More importantly, the difference in power
flow in the cladding regions of index-guided and gain-guided waveguides leads to
qualitative differences in the way such modes couple to one another when placed in
close proximity. This coupling is important for designing and characterizing phased
array lasers for high-power applications, and also for integrated optic or photonic

switching devices.
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Figure 1.7 Lateral guided wave modes for 4-element, index-guided (a) and gain-guided (b)
laser arrays.
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Figure 1.7 shows the lateral guided wave modes calculated numerically!? for
4-element, index-guided and gain-guided waveguide arrays, respectively. Each guide
alone supports only the fundamental mode. In the index-guided structure, power is
exchanged between guides via a slow leakage through the evanescent fields (analo-
gous to electron tunneling between adjacent quantum wells). Coupled-mode theory
provides an excellent description of the behavior of such weakly coupled devices!?
whether operated as laser oscillators, integrated optic switches, or directional cou-
plers. The gain-guided structure, on the other hand, supports more modes than
would be expected from a coupled-mode analysis. This is because coupling be-
tween gain-guided modes is inherently strong because of their similarity to radia-
tion modes. Poynting power is actively exchanged via radiation through the lossy
regions in arrays of such waveguides. The spatially periodic carrier injection due
to the electrodes writes a complex-valued dielectric grating into the medium, that
serves to couple the plane waves in each waveguide via distributed reflections. Thus,
index-guided and gain-guided structures are in this sense duals of one another, and

we will find it fruitful to emphasize this difference.

1.5 Gain Saturation Nonlinearity

The complex refractive index is additionally dependent on the electromagnetic
field intensity through the modulation of the carrier population that accompanies
stimulated emission. As laser threshold is surpassed, the electromagnetic modal gain
becomes clamped at the level of the resonator losses, as is required for steady-state
operation. Charge carriers introduced into the active region by additional pumping
are depleted by stimulated emission in proportion to the increasing intensity of
the optical field. However, the optical field is not of spatially uniform intensity,
and the steady-state carrier population reflects it. The result is a spatially varying

complex susceptibility (i.e., gain and refractive index). In particular, where the
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then into the Helmholtz equation, (1.14), yields the complex-valued, non-analytic,

eigenvalue equation that determines the nonlinear lateral laser modes.

Figure 1.9 depicts the effect of gain saturation for the case of fundamental mode

oscillation in a stripe geometry laser. The lateral gain and refractive index profiles,

plus the self-consistent mode intensity and wavefront, are shown below threshold

(dashed lines) and above threshold (solid lines). Since the refractive index above

threshold is increased where the optical intensity is highest, the waveguide is effec-

tively narrowed, tending to further increase the peak intensity. The accompanying

local decrease in gain is termed spatial hole-buring. This positive feedback will

be shown to self-stabilize as the spatial hole burned in the gain profile approaches

transparency. However, this “self-focusing” mechanism has the following deleterious

effects:

(1)

(i)

(ii)

(iv)

the output power is a sublinear function of the pump current since the carriers
become utilized less efficiently as the overlap of the optical field and the current
injection decreases with increasing current injection,

the gain near the stripe edges increases until at some point the second-order
lateral mode has enough modal gain to overcome its losses. The resultant
multilateral mode operation is manifest as kinks in the light-current curve,

in order to propagate self-consistently, the wavefront of the self-focused mode
is retarded near the intensity peaks to reflect the locally low gain there, which
1s a source of wavefront aberrations,

coupled waveguides that are phase-matched at low optical intensities become
detuned if the intensity varies from channel to channel. The resultant decreased
interguide power transfer leads to a degradation in the mutual coherence of the

composite structure.
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Figure 1.8 Self-focusing that is due to gain saturation in a stripe geometry laser. Dashed
lines show the fundamental lateral mode below threshold: (a) refractive index, (b) gain, (c)
mode intensity, and (d) mode wavefront. Above threshold (solid lines), feedback from the
mode intensity into the gain and refractive index profiles causes self-focusing, reducing the
lateral width of lasing and causing wavefront aberrations.



—29_

1.6 Synopsis

To reiterate: in this thesis, we probe issues fundamental to the achievement
of high-power, coherent, frequency-tunable emission from (GaAl)As semiconductor
lasers. These issues, such as lateral mode discrimination and gain saturation, have
been addressed in two ways: (i) the distribution of high output power over mutually
coupled diodes (laser arrays), and (ii) the optimization of individual laser diode
Fabry-Perot resonators (including external cavity lasers). This section provides a
synopsis of the thesis; the work herein is based largely upon the publications listed
as References 16-24.

Chapter One has laid the groundwork and the assumptions for several of the
concepts utilized in the following six chapters. In particular, the concepts of gain-
coupled refractive index, duality of gain and index waveguiding, and the intensity-
dependent index of refraction have been introduced and/or reviewed where appli-
cable.

Chapters Two to Four discuss primarily high-power and single frequency oper-
ation from broad area quantum well lasers. Chapter Two details the implications
of the gain saturation nonlinearity for the lateral modes of broad area lasers. The
theory developed raises fundamental questions about mode selection in the above-
threshold regime. Chapter Three discusses a means of improving the poor mode dis-
crimination inherent in the devices of Chapter Two. This method, “gain tailoring,”
selects single plane-wave states as the laser eigenmodes, resulting in single-lobed
farfields for all of the higher order modes. Finally, Chapter Four demonstrates that
high power operation from gain-guided lasers can be achieved at a single frequency
via operation in a dispersive external cavity. Furthermore, single quantum well
lasers are demonstrated to be wavelength-tunable over a record range of 125 nm.

Chapters Five to Seven illustrate the duality of gain-guided and index-guided

coupled semiconductor lasers. Chapter Five presents a novel theory of gain-guided
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laser arrays, based on laterally coupled plane waves. The theory is applied in the
design of a high-power array/broad area hybrid laser. Chapter Six presents theory
and experiments of laser arrays with diffractive coupling. By optimizing the device
geometry, supermode selection is achieved with high mode discrimination. Finally,
in Chapter Seven, we extend the nonlinear analysis of Chapter Two to index-guided
laser arrays. While deleterious for laser oscillation, the gain saturation nonlinearity
may in future be exploited to fabricate photonic switching devices such as nonlinear
directional couplers.

Whereas index-guided laser arrays have, in the past, been successfully modeled
by coupled-mode theory'3, this thesis extends the present understanding of high-

power devices to both gain-guided laser arrays and broad area lasers.
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CHAPTER.

Two

Nonlinear Lateral Modes O{ BI‘O&& AI‘G& L&SGI‘S

2.0 Introduction

In principle, the most direct way to increase the optical power available from a
semiconductor laser is to increase the volume of the lasing mode. It is not sufficient
merely to increase the pump level because the resonator facets are susceptible to
catastrophic optical damage at high power densities. The simplest practical recourse
is to increase the lateral dimension. In the past, stripe geometry lasers wider than
about 10 pm exhibited filamentary nearfields that were not stable with respect to
increased current injection and gave rise to equally unstable farfield patterns. Thus
stripe geometry lasers were fabricated to support only a single filament,! and the
high-power effort shifted toward building phased arrays of such lasers. It was diffi-
cult, however, to fabricate arrays in which adjacent elements were coupled in-phase.
In fact, twin-lobed farfield patterns were the rule rather than the exception, because
the preferred lasing mode in uniform arrays is not the fundamental supermode? of
the array. Subsequently, many schemes have been proposed to favor the funda-
mental supermode, and several groups have reported laser arrays oscillating into a
single-lobed farfield®~!3. However, all of the above require an additional degree of
complexity in array design and fabrication, and true single lateral mode operation
remains difficult to achieve over a large range of injected current density. More
elaborate schemes such as unstable resonator geometries!* show promise but are

still technologically immature.
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Recently, wide (> 100 pm) uniform gain, broad area, quantum well lasers
have been demonstrated'® to oscillate coherently into a nearly diffraction-limited
single-lobed farfield pattern. The emission was stable over a large range of injected
current, and a gradual broadening of the farfield with increasing power level was
the only apparent degradation. The nearfield was characterized by a relatively flat
amplitude with a small (=~ 10%) superimposed ripple; the ripple period was close
to 10 um. Figure 2.1 illustrates the experimentally measured nearfield of a 100 ym
wide, broad area laser at several different current levels, up to 6 I;j, and the farfield
at 1.2 I;,. The stability of the nearfield and the narrowness of the farfield cannot be
explained by the simple linear theory of gain-guided structures. This led to renewed
interest in the basic properties and expected performance of such devices. In this
chapter, we investigate the theoretical behavior of these broad area lasers.

In particular, we intend to characterize the optical modes consistent with a
heavily saturated gain profile. Our devices were driven up to 60 times threshold!®,
so we are most interested in characterizing the high-power regime. In this regime,
the intensity dependence of the carrier density and the resulting changes in the
fefractive index must be included in the analysis. Thompson, in 1972, analyzed
optical nonlinearities that are due to carrier depletion and found them to introduce
a third-order nonlinearity in the field equation!”. His solutions in unbounded media
were either solitary filaments, or periodic solutions consisting of adjacent filaments
coupled either in phase or in antiphase. A serious limitation of his approach was the
restriction to real refractive index variations only. As he pointed out, this restriction
made it impossible to match his multifilament solutions to lossy boundaries, and
thus excluded the eigenfunctions of gain-guided lasers (which we introduce).

Since then, much of the work in the literature has focused on analysing the
stability of solitary filaments!®~2! and providing design guidelines?? for narrow

stripe-geometry lasers. In this work, we focus on the multifilament solutions that
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are important in broad area lasers. However, since the modulation depth of these
solutions is relatively small, it is somewhat misleading to characterize these solutions
as coupled filaments. Rather, the intensity modulation of the electric field introduces
a spatial perturbation into the gain and refractive index profiles of the broad area
waveguide. The below-threshold, gain-guided modes are thereby coupled to one
another, so that each alone is not a self-consistent eigensolution. Rather, the self-
consistent eigensolution can be regarded as a complex superposition of the below-
threshold modes. Thus the multifilament solutions, which we introduce here, are
analogous to the supermodes of multielement laser arrays. An important distinction
to make is that the exact superposition is a function of pump current, reflecting
the nonlinear nature of the problem. Moreover, the nonlinearity is saturable , and
we show that gain saturation is responsible for the stabilization of filament size.

Lateral carrier diffusion does not play a significant role in this stabilization.

2.1 Carrier-Dependent Refractive Index

In this section the complex refractive index is written to include the carrier
dependence. As the physical origin of the self-focusing mechanism lies in the local
depression of the gain profile by stimulated emission (spatial hole-burning), this is
what we shall quantify first. It will then be incorporated into the effective refractive
index. Figure 2.2(a) shows a broad area device of the type we shall consider. The
laser shown is a single quantum well, separate-confinement heterostructure, and is
known to give very low threshold densities?*. Parts (b) and (c) show representative
optical modes of the transverse and lateral waveguides, respectively. The trans-
verse mode is index-guided, and for the single quantum well of thickness L,, it is
characterized by a small optical confinement factor T.

The lateral waveguide is formed by the perturbation in the gain and index

profiles introduced by the steady-state carrier distribution under the current stripe,
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Figure 2.2 (a) Stripe-geometry broad area laser with coordinate system used in this analy-
sis. (b) Fundamental transverse mode of graded-index, single quantum well structure, show-
ing very small optical confinement factor. (c) Nonlinear lateral mode as observed from our
best devices. The gain is locally depleted by stimulated emission in the high-intensity regions,
leading to an increase in the local refractive index and the phenomenon of self-focusing.
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as indicated in Figures 1.5 and 2.1. In the carrier rate equation, we shall consider
one-dimensional variables, having separated out the longitudinal dependence and
integrated out the transverse dependence. When the lateral mode “sees” an effective

index n.jy, the steady-state rate equation becomes!®:20

N(@) _  &N(a)

dz? "’

J(z) _ ( ¢ ) T g(N(z)) P(z)+

e Neff sp

where
J(z) = injected current density [cm™%s7!]

N(z) = carrier density [cm™2]

P(z) = photon density in lateral mode E(z) [ecm™?)

g(z) = spatial gain profile in the quantum well [cm™?]

Tep = spontaneous lifetime [s]
D = lateral diffusion coefficient [cm?V~1s71].

Equation (2.1) states that at a given position z, the carriers gained by injected
current are balanced in steady state by losses that are due to stimulated and spon-
taneous emission and by lateral diffusion. Note that in contrast to Equation (1.15),
Equation (2.1) includes lateral carrier diffusion. In this section, we will quantify its

contribution. Non-radiative recombination processes can be lumped into the spon-

taneous emission lifetime 7,,. We define a normalized saturated gain profile y(z),

o(z) = 5’(—%& - %(N(:w _Na), (2.2)

where, as is customary!”, we have linearized about the threshold gain g5 = g(N).
The corresponding linearization with respect to current density is shown in Figure
2.3. gy is the differential gain (with respect to carrier density) at threshold. The
dimensionless quantity 4(z) quantifies the spatial hole-burning, giving the deviation

from threshold gain in units of the threshold gain. Equation (2.1) can now be
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Figure 2.3 Linearization of the gain-current density relation about the threshold gain, gsp .
In this analysis, threshold current is proportional to threshold carrier density, and thus the
slope of the dashed line is proportional to the differential gain, g; - The curve shown is based
on experimental data for GRINSCH-SQW lasers*’.

expressed as a second-order, linear, ordinary differential equation in the normalized

saturated gain profile:

i (GO %("’—)] (z) = i(‘”) A (‘”}; T, (2.3)
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where the following definitions have been made:

sz =D, , (2.4a)
_ Desslc
Py = ——— 2.4b
i LginTsp ( )
Jth = eNth y (2.40)
Tep
Joat = —Jth_ (2.4d)
Tsp9th

L,p is the diffusion length when the carrier lifetime is determined solely by spon-
taneous emission, and Jy, is the threshold current density. Equation (2.3) has no

simple solution, as the diffusion operator, L, is z—dependent:

L(z) = szf— -1+ I;Eft)], (2.5)

and P(z) is still unknown. We can, however, find an approximate solution in terms
of P(z). Since P(z) > 0 for all z, it is appropriate to find a WKB approximation

for the Green’s function of L(z) 23:

1 exp{——lf 1+ P(t)dtl} -
Tl g) e gy

The Green’s function is integrated against the right-hand side of (2.3) and the

Gwkp(z,z') =

integral is expanded asymptotically in powers of the diffusion length. The result for

the saturated gain profile is as follows:

pr d270(37) L4
~ —————— 2.
where
J(IJ)-J,,, _ 1;(:)
(e) = e (2)

sat

is the solution when diffusion is neglected (viz., Equation (1.16)). To interpret

(2.7) in our context, consider a saturated gain profile that reflects a self-modulated



35—

nearfield. While the level of the losses determines the average gain level, regions of
relatively high (low) optical intensity cause regions of local depression (elevation)
in the gain. This effect, which is due to stimulated emission, is dominant and is
represented by the first term in Equation (2.7). In addition, diffusion will cause
some of the carriers to shift from regions of high gain to regions of low gain—
filling in the gaps—and this effect is represented by the second term in (2.7); it is
a correction to the first term.

Now, suppose that () oscillates about zero with a periodicity defined by

transverse wavevector k;. Compared to the first term in (2.7), the diffusion term

is of order k?Lgp/(l + };f::)) If kyL,p is small compared to one, then certainly
kazp < 1, and the diffusion correction is small; as the power increases over P,,q, it
becomes smaller yet. That is, the diffusion length, being proportional to the square
root of the carrier lifetime, is reduced in the presence of stimulated emission. Note
that P,,; can be interpreted as the photon density at which the stimulated emission
rate equals the spontaneous emission rate, since at this intensity the carrier lifetime
1s reduced by a factor of two. This is in accordance with other common definitions
of the saturation intensity 726,

Since modulation in P(z) occurs only on spatial scales longer than L sp, and
the effects of diffusion become vanishingly small at high power, we neglect them. As
a result, we take (2.8) as the saturated gain profile. It remains to incorporate this
expression into the complex refractive index, n.ss. Observing the traveling wave
convention (1.9) leads to the relationship

n?;,(z) = n2 — %g-rgth (b+14)v(z), (2.9)

where ng is the effective index of refraction corresponding to the threshold gain
level, and b is the antiguiding factor (positive, with convention (1.9)). Note that

in our model, b is identical to the linewidth enhancement factor, «, at threshold
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carrier density. Finally, we establish the dependence of n? s¢ on field E(z), rather

than on photon density P(z), by making use of the following relation:

27’zw TP(z)

, (2.10)
0 Ly

E(2)|" =

where hw is the lasing transition energy and L, is the previously mentioned active

layer thickness. The field strength at saturation is then (from (2.4b) and (2.10))

hw n, 1
B, =2 2 Detf (2.11)
ng ¢ gthL Tsp
We further define
€sat = _—b Pgth, (212)

ko
and note for future reference that €,4¢ is proportional to the product of the antigu-
iding factor b and the modal threshold gain I'g;s. Equation (2.9) for the carrier-

dependent dielectric constant becomes, finally,

|B(z)[? Efatﬁ——“”,jf”' (213)
IE( )I +Esat . .

eff(x) - nO + e-’at( + b)

Equation (2.13) predicts, as expected, an increase in both the real and imaginary
parts of n?;; in regions where |E(:1:)|2 is large. That is, the gain is decreased, while
the refractive index is increased. Furthermore, at threshold, J = J,, and P = 0,
which gives n? £f = N4 as desired. At low field intensity, |E(z)]> < EZ,,, this expres-
sion is of the form common to the nonlinear optics literature?”: n?(z) = nZ+n,-I(z),
where I o« |E|? is the optical intensity. However, in our case, the nonlinearity in
the effective index is saturable. As seen from (2.13), the maximum local increase
in dielectric constant occurs in the saturated limit |E(z)|® > E?,,, and is given by
€sat- 1t can be appreciated from (2.12) that the parameter e,,; represents the de-
pression in dielectric constant incurred via pumping from transparency to threshold
current density. To minimize self-focusing, it should be as small as possible. Equa-

tion (2.12) indicates that to accomplish this, small values for the antiguiding factor,
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optical confinement factor, and threshold gain are desired. All of these quantities
are smaller in quantum well (QW) lasers than in regular double heterostructure
(DH) lasers, and thus we conclude that the nonlinear action is weaker in QW lasers.
€sat has been measured in both QW and DH lasers and is known to be smaller by
a factor of 2 in the case of the QW lasers?®. In very low threshold QW lasers, this

improvement may be doubled again.

2.2 Solution of Nonlinear Complex-valued Field Equation

Incorporating the complex effective refractive index (2.13) into the Helmholtz
equation, (1.14), gives the following second order, nonlinear, nonanalytic, complex

eigenvalue problem to be solved for the modes of the broad area laser:

1 ?E(z) |, i, |E@)] - B3, L5t
"4 <nf ="+ (1 4+ <)é€sa 2at E(z)=0. (2.14
k§  do? { o ) \E(2)[" + EZ,, ) (219

As can be deduced from phase-plane arguments, Equation (2.14) supports peri-
odic solutions of the form E(z) = Eo¢(1 + me(z)), where E, represents the aver-
age fleld amplitude and e(z) is a periodic function that contains the filamentary
self-modulation. Here m is a modulation depth small compared to unity, so the
composite solution has no nulls. Thompson identified such multifilament solutions
in his treatise, and it is evident that corresponding solutions exist in the complex
case for a laser of infinite width. For our laser of finite width, we take a solution of

the form

E = Epett® (2.15)

so that amplitude variations appear in a and phase variations in ¢. As such,
small modulation solutions are characterized by small a, in which case appropriate

linearizations can be easily made. Let ¢ be a dimensionless position coordinate:

r = {d, where d is the half-width of the laser. Since E(0) # 0, we consider only
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even solutions for E(¢), and thus our task is to solve the problem on the interval

0 < £ < 1. In the normalized coordinates, Equation (2.15) becomes
a" +i6' +a'® +i2d'6 — 6% + L(a) = 0, (2.16)

where 6(£) = ¢'(£) (note that the equation depends only on the phase gradient
6, not on the absolute phase ¢). The intensity-dependent refractive index term is

included in the last term of (2.16):

Egeza - E;"at—j—lj"”{ }
Ele?s + E? '

sat

L(a) = k{;’dz{ng —n? 4 (1+ %)em (2.17)

The term L(a) can be linearized for the case of |a] < 1 (small modulation depth):

L(a) = Lo+ L; - a + O(a?), (2.18)

with
Lo = k3d*(n? — n%) + %(1 + %)kgdzem(l —a), (2.19a)
Li=(01+ %)qg , (2.195)

and where the following definitions have been made:

J—J,
T+ 1

2
i+ 1

___ B
#—E§+E2 ’

sat

@2 = 2k2d o pegar (2.20¢)

’ (220a)

q
1}

(2.200)

Here o is a dimensionless quantity related to the ratio between pump and field
intensities, and in our model, is constrained by energy conservation to be an O(1)
term. On the other hand, u gives the approximate ratio of stimulated to stimulated

+ spontaneous emission, and saturates smoothly towards unity in the high-power



-39-

limit. ¢ is proportional to the ou product, and (as we shall see) corresponds to
the squared filament wavevector.

We have solved Equation (2.16) (subject to the linearization (2.18)) analyti-
cally. The bulk of the derivation appears as Appendix 2A. At this point, we merely
summarize the result.

In addition to the filamentary self-modulation, which we expect to vary on a
short length scale of O(10pm), we allow for a global phase curvature and a slowly
varying amplitude variation, over the broad width of the laser, to satisfy the loss

requirement of the amplified, gain-guided mode. We separate the two as

a=as+a,, (2.21a)

0=0;+86,, (2.21b)

where f denotes “fast” (or “filament”) and s denotes “slow.”
The fast and slow variables are decoupled by an appropriate averaging proce-

dure. The fast, or self-modulation terms, are

ar =m(€) cos/qr d¢ , (2.22a)
o
85 = m(¢) [—ﬁ sin / qr d€ — 26, cos / g dg] , (2.22b)
% 8, .
d¢(€) ~m(€) [b_2 cos [ gr df —2—sin [ ¢, dﬁ} , (2.22¢)
ar qr
where m and g, are the slowly varying modulation depth and filament wavenumber,
given by
. 12 1/2¢ 4b°x3
m(§) = my (1 + p sinh (Xof)) ) p=1+ p (2.23a)
0
2b?
/Qr d€ = qoé + qOXO (xo€ — tanh(x0f)) , (2.23b)

and mg is the modulation depth at the center of the device.
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The slow amplitude and phase variations are

2.2
a, = qu(O tanh®(xo¢) — %(m2(§) -md), (2.24q)
0
8, = bxo tanh(xo&) , (2.24b)
¢ = blncosh(xof). (2.24¢)

These solutions are parameterized by mg and xo. Later it will be shown how these
quantities are related to the real and imaginary parts of the eigenvalue, 7.

The parameter xo appears throughout, and we pause to discuss its significance.
Locally, the angle, ©, between the optical axis and the direction of phase and energy

propagation is, for small angles (in radians),

1 d¢ Ao

0(¢) = Re(B) dz ~ onmd (€), (2.25)

where n is the real refractive index and 6 = 8, + 6y, as before. Thus, from (2.24b),
Aobxo/2n7d is the maximum slowly varying angle of off-axis propagation, while
d/xo is the lateral position of the “knee” of the hyperbolic tangent. The value of
Xo is set by matching to the fields outside the gain stripe. As a rule, the larger the
change in n.sy is at the boundary, the larger xo must be to accommodate it. Note
that solutions in media of infinite extent are obtained by putting xo = 0, while mq
is unspecified.

Thus, depending on the magnitude of xo compared to unity, the phase front
can be approximately parabolic over the width of the device (xo < 1), or else quickly
approach a linear asymptote on either side (xo > 1). The important consequence of
this fact is that in the former case, the farfield will be essentially single-lobed, while
in the latter case a sharply defined, double-lobed far field will result. Consequently,
it is desirable to minimize the change in n.ss at the edge of the gain stripe to reduce

Xo and get a narrow farfield.
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The primary structure in the nearfield pattern is the self-modulation. Its
wavenumber in the center of the laser is gp, defined by (2.20c) as

Eg

2 2 12
= 20kid |
% %o 6’”E§+E§at

(2.26)

This is an intensity-dependent quantity, small at low intensity, but quickly increasing
to a limiting value. Hence, the filament spacing stabilizes as saturation intensity is
surpassed.

Since the filament width saturates, the number of filaments must also stabilize.

From Equation (2.22a) we infer the number of lobes in the nearfield to be
‘g do
N=[1+/ Tael > 1+ 27, (2.27)
o T ™

where [...] denotes the greatest integer less than or equal to the argument. The
variable ¢, is always greater than or equal to go (Equation (2.23b)), which establishes
a lower bound for N. The squared wavenumber g2 saturates to 20kZd?e,,;. Recall
that ¢ is an O(1) quantity and can be taken as unity for purposes of discussion.
As we mentioned earlier, €4,; is the difference in real dielectric constant between
transparency and threshold. This difference comes from unsaturable losses (chiefly

mirror losses). For a laser of width W, we have
N> [14+W/Wg, (2.28)
where Wy is a saturated filament spacing given by

_ 7r)\0/n0
Wy = \/;[a (/L) n(1/R)] ° (2.29)

where L is the laser length, R is the facet reflectivity and « is the distributed loss

constant. Thus, unsaturable losses in addition to the mirror losses decrease the
saturated filament spacing and increase the number of filaments. These losses give

rise to the differing number of filaments observed in DH and QW lasers.



—49~

In order to quantify this analysis, we choose €,,¢: to characterize the wafers
grown in our laboratory by Molecular Beam Epitaxy. For a single quantum well
device of length L = 500 pm, the relevant values are I'gy; = 30 cm™! and b = 2 2%,
The value of b has been estimated experimentally for (GaAl)As lasers to lie in the
range 2 to 6 30, with the lower values more appropriate for quantum well lasers (in
agreement with Figure 1.6). At A = 0.845 um, this gives €54, = 2.7 x 1073, and a
saturated filament spacing of ~ 12 pm. This value justifies our decision to neglect
diffusion effects in formulating (2.14). For a device 100 pm wide, the estimated
lower bound on filament number is N = 9. This estimate agrees well with the
experimental nearfield trace of Figure 2.1.

At this point, the solutions are parameterized by the modulation depth my,
phase gradient yo, and the field amplitude Ey. It remains to relate mo and xo to

the eigenvalue, 7. We make implicit definitions of 4, ; in terms of 7 as follows:
2420 2 2 2 52 _ 1 4
k3d*(nk —n?) ~ 2nokid®(ng — ) = E(A, + z—g—); (2.30)

Thus, A, ; gives the deviation of the eigenvalue from the effective indez at threshold.

From Equation (2.19a) we have

Lo =L +iL} (2.31a)
where Lj = %(A, + kid%esat(l — ) , (2.31b)
and L{ = 515(43,- + kjd%esat(1 — ) . (2.31¢)

Using Equations (2.A7), (2.A24)-(2.A25) (from Appendix 2A) leads to

A; = kid?eg01(0 — 1) —miqd | (2.32a)

A; = kEdesat(0 — 1) — 2m2q2 — 2b%x2 . (2.320)



—43-

Thus, solving for the physically meaningful quantities of modulation depth mg and
the slow phase gradient xo by boundary matching is equivalent to determining the
normalized eigenvalues A, and A;.

A physically important parameter is the modal gain, G,,, defined to be the rate
at which the traveling-wave solution grows. For purposes of discussion, we allow

the modal gain to be different from the threshold gain, I'g;s, and thus we examine

all traveling-wave solutions. Since G, — T'gep = ~2koSm(n — ng), we have
G = Ty + =2 (23)
m I T S Re(no ko d® '

Ultimately, energy conservation requires A; = 0 for a lasing mode, and this deter-
mines the unknown field amplitude Ey in terms of mg and x, via Equation (2.32b).
The three terms in A; correspond to three physical mechanisms that affect the gain.
The first is proportional to o —1. Recall that o is related to the ratio of pump inten-
sity to field intensity. An increase in ¢ indicates an increase in the pump level (or
decrease in the optical power), which reduces the amount of gain saturation. The
second term, proportional to m3, reflects the inefficiency introduced by modulation
in the nearfield pattern. In comparison of a field with a modulated nearfield to one
without, where both experience the same modal gain, the average gain level consis-
tent with the modulated field is increased by an amount proportional to the square
of the modulation depth; that amount appears here. The third term, proportional
to x32, reflects the losses that are due to phase curvature, or off-axis propagation.
Energy propagating at an angle to the optical axis is absorbed by the lossy bound-

aries; this effect also reduces the gain.
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2.3 The Outer Solution and Boundary Matching

Beyond the gain stripe (¢ > 1), the pump current is zero. However, several
processes conspire to prevent the gain from immediately taking on its unpumped
value. Current spreading will cause the current injected into the active region to
taper off at the edge of the gain stripe. Optical pumping also occurs, which partially
bleaches the unpumped material. Our model of n.ss is based on a linearization of
the gain about the threshold gain, and extension of this model into the unpumped
region would be clearly inaccurate. In addition, the roll-off rate of n. ;s would be of
the same order of magnitude as go. Consequently, the separation of scales we used
in the previous section of this chapter would be inappropriate.

However, the exact shape of the gain distribution outside the gain stripe affects
only slightly the rate at which the field grows or decays at the edge of the gain stripe,
which in turn determines the values that the inner solution must take on there. For
our model, we will assume that the effective index of refraction outside the stripe
has a functional form that satisfies the following criteria:

(i) ness = ng at the edge of the gain stripe.

(ii) nesy rolls off smoothly to its full absorption value, defined to be n;.

In addition, we would like the specific functional form to allow for a closed-form,

analytic solution. These criteria are satisfied if we take
nsz = ng + Btanh k(¢ — 1) + Ctanh® k(¢ — 1), (2.34)

where

B+ C =n?—n2, (2.35)

and « characterizes the roll-off rate.
Our approximate solution beyond the gain stripe is, therefore, the solution of

the Helmholtz equation, (1.14), with this effective index; that is,

E(€) = Eye~PEDgech /" k(€ — 1), (2.36)
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where the complex constants D and F satisfy

F? + kF 4+ 2DF = —(n? — n}), (2.37a)

D?* — kF = —%(A, + i%) : (2.37b)

The appropriate branches to select are Re(D) > 0 and Re(F) > 0. The eigenvalues
are determined by the requirement that the field E and its first derivative E' be
continuous at the edge of the gain stripe (¢ = 1). Both conditions can be met by

the requirement
E' E'

Ele=1i- E (2.38)

g=1+
Consequently, the transcendental equation that determines the eigenvalues and
modal gain is:

a'(1) +i6(1) = —D. (2.39)

2.4 Discussion of the Multifilament Solutions

We can now solve the eigenvalue equation for mg and xo and substitute the
results into our expressions for the lateral mode. In Figure 2.4(a) and (b) we
have plotted the lateral power distribution and local phase angle, respectively, for
a 10—filament mode of a 100 um wide device, for current pumping J = 6J;p,
Jin/Jsat = 3, b = 2, and €,0r = 2.7 x 1073, The unsaturated (amplitude) loss
outside the gain stripe is taken to be 90 cm™?!, and & corresponds to a 10% — 90%
roll-off distance of 20 ym in n.ss. The number of lobes in the nearfield pattern, 10,
1s higher than our estimate, reflecting the additional qontributions to ¢, that come
from xo. As we said, xo is set by boundary effects; consequently, lossier boundaries
on the gain stripe will increase the number of lobes in the nearfield. This pattern
is very similar to the experimental trace reported in Reference 15 (reproduced in

Figure 2.4(c)) in the size and spacing of the lobes and the increase in modulation
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Figure 2.4 Our analytical solution for the lowest-c 10-filament mode of a device with
half-width d = 50 pm, €50 = 2.7 X 1072 and I'gyp = 30 cm™!. The spreading parameter
at the edges is k! = 20 um. (a) Nearfield intensity. (b) Local phase-front angle. The slow
component of the phase-front angle reaches 0.32° at the lossy boundary, corresponding to
emission off-axis of about 1.1° outside the facet. (c) Experimental trace of nearfield intensity

of 100 pm wide device at several points above threshold'®.
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depth towards the edge of the stripe. In addition, we can estimate the width of the
far field from the largest local, average phase angle under the gain stripe. In Figure
2.4(a), the average phase angle (inside the facet) is approximately, from Equation
(2.25), 0.32°, which yields a farfield width of 2.1° outside the laser; that, too, is in
agreement with Reference 15.

Next, let us consider the lateral mode spectrum. In the linear case, this spec-
trum is characterized by a finite set of modes, each with a distinct modal gain. The
mode with the highest m(;dal gain is deemed to be the lasing mode at threshold.
However, the situation is more complex in the associated nonlinear problem. In
addition to modal gain, G,,, each mode must also be characterized by a field ampli-
tude, Ey, at a given injected current density. This added degree of freedom allows
a finite set of lateral modes to have the same modal gain by allowing the individual
amplitudes to vary.

This multiplicity is illustrated in Figure 2.5. Here we plot the modal gain as
a function of ¢ for modes containing 8-13 filaments. If the resonator losses are 30
cm™1, then all solutions with matching modal gain are candidates for lasing modes.
For comparison, the gain of a uniform plane wave of the same Ej is also plotted.
None of the lateral modes is as efficient as a plane wave in extracting gain. That is
to be expected because the lateral modes have the absorbing boundaries to contend
with. The boundaries introduce losses in two ways. First, they induce a spatial
modulation, which lowers the extraction efficiency by an amount proportional to m3.
Secondly, as we have said, they impart an overall phase curvature to the field, which
directs energy off the axis of propagation and into the absorbing walls. The relative
contributions of these two mechanisms are plotted in Figure 2.6 for the lowest-o
mode (s.e., the 10-filament mode). Their explicit contribution to the modal gain can
be seen in Equations (2.32-33). The two contributions combine to give each mode

an upper cutoff in ¢. As o increases (and thus power decreases), the modal gain for
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Figure 2.5 Traces of the N = 8 through 13 filament solutions in the modal gain vs. o
plane, with conditions as in Figure 2.4. All modes have lower modal gain than the plane wave,
as a result of the modulation depth and phase curvature induced by the boundaries. For
a resonator with threshold gain of 30 cm™!, allowable modes must satisfy the steady-state

condition G = Tgyp (A; =0).
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any given lateral mode will tend to increase as well, because the gain is becoming
less and less saturated. However, the saturated filament spacing is becoming ever
smaller, and the penalty that the mode pays is an increased modulation depth.
Eventually, the modulation penalty overwhelms the benefits of gain saturation; the
modal gain falls off again, and the cutoff appears. Fortunately, higher-order modes
(meaning more filaments) have successively higher cutoff-o’s, so higher modal gains
are always possible with higher-order modes.

We have made the assumption that for a given I'gys, the field pattern with the
greatest power (lowest o) is the actual lasing mode. However, at a given threshold
gain, solutions exist for all the lateral modes that are above cutoff. In Figure 2.7 we
plot the lateral power distribution for the 4 lowest-order modes with modal gains
of 30 cm™!. Successively higher-order modes have more lobes, smaller modulation
depth, and more phase curvature (as can be inferred from the correction to the
filament wavenumber given in Equation (2.230)).

Finally, we comment briefly on the issue of modal selection. In linear theory,
the rule is: The mode with the most gain wins. In a nonlinear system, the lasing
mode is determined not by modal gain, but by a stability analysis. It is possible
(but not likely) that the mode with the smallest ¢ is unstable, while a mode with a
higher o is stable. Alternatively, for certain operating points there may be multiple
stable points (as is the case in coupled-cavity lasers®!). The plausibility of this
latter scenario may become more apparent by considering longitudinal variations
within the laser. In a Fabry-Perot laser, the average optical intensity is not a con-
stant, but is minimized somewhere between the two facets. Likewise, the material
gain is maximized in the central region. According to our analysis, different modes
may be favored in different regions of the resonator. The round-trip o of a lat-
eral/longitudinal mode combination would thus be a weighted average of the local

o, and this average would be the arbiter of which mode lases.
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Figure 2.6 Relative contribution to modal gain from (a) pumping (0 — 1), (b) modulation
depth (m), and (c) phase curvature (x ) for the N = 10 filament solution in Figure 3. Huge
losses incurred by increasing modulation lead to an upper "cutoff” in ¢. The N = 10
solution does not exist beyond cutoff,
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Figure 2.7 Nearfield intensities for the N = 10, 11, 12 and 13 filament solutions for the
30 cm™! loss resonator. Parts (a) — (d) correspond to modes A — D in Figure 2.5.
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Concerning stability, for the unsaturated case where |E(z)|® <« EZ,,, the
Helmholtz equation can be expressed in the form of the nonlinear Schrodinger equa-
tion. This equation is one of a class that admits soliton-like solutions, which are
known to be unstable against many types of perturbation32. Thus, in the low-power
regime, the laser may exhibit instability. Above saturation intensity, however, the

nonlinearity is much weaker and the self-guiding mechanism is stabilized.

2.5 Light-Current Curves

In our analysis, we have exploited the perturbation technique of multiscaling
to decouple the slowly varying, gain-guiding mechanism from the quickly varying,
self-focusing mechanism. This technique breaks down when the intensity-dependent
filament size is of the same order as the laser stripe width. This can happen at low
powers (near threshold) where the nonlinearity is weak, or for stripe widths narrow
enough to be comparable with the saturated filament spacing. In this work, we
concern ourselves only with broad area lasers, of widths typically 50-100 ym. In
order to explore the low-power regime near threshold, a numerical solution of the
nonlinear wave equation, (2.14), is required.

Moreover, the numerical solution represents an independent confirmation of
our analytical work. Figure 2.8 illustrates the result of a self-consistent numerical
infegration of Equation (2.14) for a uniform gain broad area laser of width 100 pm.
The nearfield intensity and phase angle are shown in (a) and (b) at a pump level of
6 Iix, and can be compared with the analytical result shown in Figure 2.4. Apart
from a slightly larger filament size, the numerical result compares very favorably
with the analytical one. The farfield corresponding to the nearfield of Figure 2.8(a)
and (b) is shown in Figure 2.8(c). In agreement with the experimental result, it is

narrow and single-lobed.
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Figure 2.8 Numerical solution of the N=8 filament mode for a 100 pum wide broad area

laser, at a pump level I = 61;y,: (a) nearfield intensity, (b) nearfield phase angle, and (c)
farfield intensity.
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As the pump level is reduced to near threshold, the filament size broadens so
that the optimum number of filaments within the multifilament solution is reduced.
This is illustrated in Figure 2.9, which shows the optical power output via each N-
filament mode as a function of electrical pump power fed to the 60 um wide laser.
In accordance with the discussion of Section 1.4, self-focusing causes the filaments
to narrow as the pump current is increased. As a result, a mode with N filaments
utilizes the available gain less efficiently than one with N+1 filaments beyond some
optimum pump current, causing a rollover in the optical power output. This is
evident for the modes shown in Figure 2.9. The mode competition for available gain
results in kinks in the light-current curve. Because of the self-stabilizing mechanism,
the range of drive currents where a given mode is preferred increases substantially
at higher output powers.

Numerical solutions also afford the flexibility of altering the boundary condi-
tions at the edges of the current stripe. In particular, it was predicted theoretically33
that gain guides strongly discriminate against multifilament modes composed of ad-
jacent filaments coupled 7 radians out of phase. It was determined numerically that
these additional modes do exist, but have threshold currents 10-20% higher than
the in-phase modes shown in Figure 2.9. In index-guided broad area lasers, this

discrimination is reversed, again in accordance with the theoretical prediction.
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Figure 2.9 Light output power (mW) vs. electrical input power (mW ) for a 60 pm-wide,
broad area laser. Curves are shown, for individual N-filament nonlinear modes, to roll over
because of self-focusing. Competition from higher-order modes gives rise to kinks in the
overall light-current curve.
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2.6 Conclusions

To summarize, in this chapter we have determined, both analytically and nu-
merically, the lateral modes of broad area lasers that are self-consistent with a
saturated gain and refractive index profile. We have indicated two different ways in
which to regard these modes: the first is that of coupled filaments, and the second
is of broad area supermodes. In either case, we conclude that since the self-focusing
nonlinearity is saturable, the self-consistent eigensolutions stabilize at high output
powers. The strength of the nonlinearity, as governed by the parameter e,,;, is
proportional to the product of the antiguiding factor b and the modal threshold
gain I'g;,. As both parameters are smaller in quantum well than in double het-
erostructure lasers, we found improved broad area performance in quantum well
lasers. Indeed, further improvement over quantum well lasers may be realized by
quantum wire broad area lasers.

Until recently, stable, uniform nearfield patterns have not been commonly ob-
served, as an excellent crystal growth over the entire laser is required to realize
spatially uniform gain and index profiles. We have seen from Figure 2.5 that the
different longitudinal modes differ in modal gain by only a few cm™!. Furthermore,
in numerical calculations we have found that variations in local gain of a fraction
of a cm™! will disrupt the smooth lateral structure. To some degree, the effects of
longitudinal propagation can smooth out the effects of inhomogeneities. Neverthe-
less, the broad area laser remains extremely sensitive to such effects. Possibly, the
destabilizing effect of material defects can be overcome by structures such as the
recently demonstrated “controlled filament” laser®*. In this structure, the effective
mirror reflectivity is modulated in the lateral dimension in order to induce filaments
at prescribed positions. The present analysis indicates that this structure can be
optimized if the reflectivity modulation is chosen with the same periodicity as the

saturated filament spacing of the parent broad area laser.
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2.7 Appendix 2A

This appendix details the solution of Equation (2.16). After dividing into real

and imaginary parts, this equation becomes

af" +a," +(af' +a,/)? = (05 +60,)2 + Ly + Li(a; 4+ a,) =0 (2.Ala)

07 + 8, +2(as' +a,' )65 +6,)+ Ly + Li(as+a,) =0 (2.A1b)

where, for example, L] denotes the real part of Ly. The fast variables a f,0f, are
those that vary on a spatial scale of O(27/qp); the slow variables a,, 8, vary on
a spatial scale of O(1). To exploit the existence of two distinct length scales, we

spatially average Equations (2.A1) over a distance long compared to 27 /qo, but

short compared to 1, leaving
a," +a," =62 + Ly + La, + (as* - 62) =0, (2.A20)
8, +2a,'8, + Ly + Lia, +2{as'8;) =0 . (2.42b)
(...) denotes spatial averaging over the fast scale; Equations (2.A2a-b) vary on the
slow scale. They determine the slowly varying quantities a, and 6,.
Keeping highest-order terms (dropping a,'?,a,") leads to the following two
coupled equations for the slowly varying amplitude and phase gradiént:
~6% + Ly + L]a, + {as* — 62) =0, (2.A3a)
8, +2a,'6, + Li + Lia, +2(af'8) =0 . (2.43b)

Noting from Equation (2.19b) that L] = 5L}, we can eliminate a, easily from these

equations, leaving the following equation in 8,:
b6s' + 0,(8, + 2ba,’) = b2x2(€), (2.A44q)

where

b x*(6) = Ly — bL + (af'* — 62) — 2b(as'6;). (2.A44b)
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Neglecting 2ba,’ with respect to 8,, (2.A4a) becomes
b9," = b*x*(¢) — 6. (2.45)

We choose initial conditions a,(0) = 0, a,'(0) = 0, 6,(0) = 0, which together with
(2.A3a) imply
Ly +(af - 6%)], = 0. (2.46)
Then
bx(0) = —Li — 2(af'65)],. (2.A47)

By approximating x =~ x(0) = xo (to be checked in Appendix 2B), we can integrate
(2.45) for the slowly varying phase gradient, and then determine the slowly varying
amplitude from Equation (2.43a):
6, = bxo tanh(xoé) (2.A8a)
1
a, = 77 (tanh®(xo€) — L - (as'* — 62)) (2.A8b)
1
We spatially averaged Equations (2.41) to obtain the slow equations, (2.42).
Upon subtracting Equation (2.42) from (2.A1), we are left with the fast equations:
as" + (a5 — (as"®)) + 2as'a,’ — (6% — (62)) — 26,8, + Lia; =0 (2.49a)
Gf’ + 2(af'0f - (af’0f)) + 2af'9, + 2a3'9f + Liaf = 0. (2.A9b)
Equations (2.A9a-b) describe a harmonic oscillator system with a slowly varying
resonance frequency. The terms in parentheses act as driving terms at double the
resonant frequency; their corresponding response will be smaller than the funda-
mental, and we neglect them in favor of the fundamental response. Of the remaining
terms, we keep only those of O(¢3) and neglect the O(go) and O(1) terms. Equations
(2.A9) then simplify to
af" - 2939f + L;af =0 (2.A10a)

85 +26,a;' + Lia; = 0. (2.4100)
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In view of the slowly varying coefficients, we form a WKB-type solution

af~ ¢ eifade (2.411a)

Bf ~ cy eifqdf 2.A11b
f

with slowly varying ¢(£). Together, Equations (2.A410) become the following eigen-

value system

. 2 o
{1 TYE-0)
L +ig20, oy 2 0
The characteristic equation is
4326,
¢* = qd + 467 — ;22 (2.A13)

bq
Taking ¢ to be of the form ¢, — ig;, then ¢ = ¢ — ¢* — i2¢,¢q;. Assuming that

a2 > ¢2, we take
¢* =g — i2¢,q;. (2.414)

Comparing Equations (2.413) and (2.414) gives

¢ = ¢¢ + 462 (2.A15a)
6, ¢
=7 qé + 462 ( )

There are two solutions for ¢, (equal magnitude, opposite sign), and one for g¢;.

Thus, the two solutions of (2.A413) for the propagation constant are
9+ = *gr —1¢i , (2.A16)

where henceforth ¢, is understood to be the positive root of (2.A15a). Note that
¢i < ¢, as assumed. Now, ay and 8y are real quantities. Symmetry dictates the

choice of ay as

af = %(eijﬂd& + eifq‘di) = moefq‘df cos/qrdﬁ. (2.A17)
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The quantity m(£) = mg exp [ ¢id€ is the slowly varying modulation depth. The

phase 6y is then determined by the eigenvector of Equation (2.412). We have

C2
C

g g
=1 — 20, >~ +1— — 24,. 2.A1
. qui ) ba, ( 8)

Then e e . .
05 = _0[_2‘ e favde 2
2 ley I+ 1

_eifq—df]

(2.419)

2
= m(f)(-;qo sin/q,-dﬁ — 26, cos/qrdﬁ).
Finally, let’s estimate how the modulation depth and filament wavenumber vary

across the half-width of the device. From (2.415b) and (2.A8a) we have

2
ge=% [_ 0 . _ 1 inh? 2
/q,d§ =3 ,/qg s dt¢ = 2 In(1 + p sinh®*(xo¢)), (2.A20a)
where
2.2
p=1+ 4bq,j‘°. (2.4200)
0

Hence the modulation depth is
f idE . 192 1/2p
m(€) = moed 99 = m, (1 + p sinh (xoé)) . (2.421)

Thus, the modulation depth is at a minimum, my, at the center of the device, and

increases monotonically towards the boundary. For the filament wavevector, we will

find that 260, < qo, 50 ¢» = \/q2 + 462 ~ qo + 262/qo. Then

2
/Qrd€ = qo + 2bq0X0 (ng — tanh(x(,f)). (2.A422)

At the middle of the device, the wavevector is simply go, and it, too, increases

monotonically towards the boundary.
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Finally, recalling the slow equations, (2.43), we can now evaluate the averaged

quantities that depend on the fast solutions ay and 6;:

2 2 2
gy =B B )
{ f) 2 (bz qg+493 + s) (2.A23a)
2 g2 2
12 m* 6 99 2 2 2
= (2 (= 46 2.A23b
(af ) 2 (b2(qg+493) +q0+ s) ( 3)
2 2 2 2
' m* g 20, g
— 0 Z7s 10y VA2
{as'0s) 9 ( b b g} +49§) (2.423c)

This enables explicit evaluation of the slowly varying amplitude; together (2.A423)
and (2.A8b) give

g = = [§x2tanh?xof — Lf — T g2 2.424

= gV xeten X0 — Lo — 5%/ (2.424)

where terms of relative order 1/b? have been neglected. This equation can be

simplified further. By imposing the condition a,(0) = 0, we infer from (2.424) that
Lj = —imlq?. Equation (2.424) becomes

b x3

q?

ag =

tanh? o€ — 5 (m?(€) — ). (2.425)

The last calculation we need is the quantity x. From Equation (2.A44b) we have

4 2 2 02 42 1
B242 = [T —bLi 4 90 [ 5% _ 2 ] _
To a good approximation (lowest order in 1/5%),
2 4
B2x2 ~ Lf — bLh — B0 A27
X o — bLg 2 g2 + 462 (2 )

2.8 Appendix 2B

In the solution of Equation (2.A5),

b9, = b2 x*(€) - 6, (2.B1)
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we made the approximation that x(§) was a constant, yo. The actual expression

for x(€) is

2O -t = gz (b0l +mt0at (B2)]. em2)

r

While x(€) = xo at £ = 0, the difference could conceivably become significant when

m(£) > mo. We can make an estimate of the error by taking
0s =050 + 051, a1 < 8s0, (2.B3)
where 0,9 satisfies (2.A8). Substituting (2.B3) into (2.B2) gives
bBs1’ + 2640601 + 63, = b2 (x*(€) — x3)- (2.B4)

We neglect 63, (we are assuming that the error is small) and substitute (2.B1) for

X2(‘£) - Xg’ to get

Br’ + 20,08, = I8 2-m2(5)ﬁ (2.B5)
sl b 30 31_2b2 my ‘12 . .

(2.B5) has the solution

g¢(1 + p sinh? xo¢)!/°
g? + 4b2x2 tanh® xo(

2 2
Mgdg

3
01 = sech2X0§/ d¢ cosh? xo( [1 -~
0

i . s

The integral in (2.B6) does not have a simple closed-form expression, but we are
interested only in determining the approximate size of 6,; relative to 6,. We

asymptotically expand (2.B6) for large and small x, yielding

m2q2
= =?1”{ﬁ§2 e (2.B7)
max(fs0) Xo __msbq xof® asxo—0.

While 6, undergoes a sign change at some intermediate value of xg, neither expres-
sion becomes O(1) for reasonable values of mq, go, and xo. Therefore, the original

approximation is valid.
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CHAPTER

Three
Asymmetric Tailored-Gain Broad Area Lasers

3.0 Introduction

In the previous chapter, we briefly detailed experimental emission characteris-
tics of broad area lasers that appeared anomalous in light of the established linear
theories of gain-guided structures. As a result, we proposed and demonstrated the-
oretically that the nonlinearity introduced by gain saturation could be responsible
for narrow, single-lobed farfield emission that persists into the high-power regime.

However, the fraction of broad area lasers exhibiting this anomalous behavior is
quite small. Others exhibit classic filamentary behavior by which multiple filaments
form but are not phase-locked. On the other hand, there are some devices that
exhibit considerable coherence over, say, 50 um wide apertures, and whose behavior
can be adequately explained by linear theories. Two examples follow.

Figure 3.1 shows the nearfield intensity, spectrally-resolved nearfield intensity,
and the farfield intensity of a 60 ym-wide broad area laser at three different current
levels above threshold. We observe that the nearfield is characterized by a large dc
term with a small ripple, as in the nonlinear modes, and that the number of ripples
increases from 3 to 5 to 7 as the current is increased. The farfield, however, is broad
(full width half max ~ 5° at threshold) in contrast to that of the nonlinear modes,
and broadens further with increased current pumping. The origin of these features
is revealed in the spectrally resolved nearfield. At each pumping level, we observe

a multiplet of spatial modes, each with a different lateral intensity profile, repeated
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Figure 3.1 Free-running characteristics of a 60 pm-wide, broad area laser at the three cur-
rent levels 1.11yp,, 1.5I;, and 1.8144: (a) nearfield intensity, (b) spectrally-resolved nearfield

intensity, and (c) farfield intensity. For the spectrally-resolved nearfield, wavelength increases
towards the top of the photo.
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at the longitudinal mode spacing of 3.5 A. Both the number of longitudinal modes
and the number of spatial modes within each multiplet increase with the pump
level. This is the result of, respectively, spectral and spatial gain saturation. This
saturation is depicted schematically in Figure 3.2.

Figure 3.2(a) shows the gain as solid lines for 3 different current levels, I3 >
I, > I. Shown as discrete points are the loss and oscillation frequency of the
different spatial (lateral) modes, as calculated from a linear analysis. At I = I,
only the ¥ = 1 modes participate in the lasing. However, Figure 3.2(b) shows
that the » = 1 mode saturates the gain incompletely because it has less than unit
overlap with the injected current density. At some elevated current level, I = I,
therefore, the v = 2 mode reaches threshold and also participates in the lasing,
as shown in Figure 3.2(a). By extension, the v = 3 mode reaches threshold at
I = I3. Thus, higher order spatial modes participate in lasing at higher injected
current densities. Since each spatial mode oscillates at a different frequency, they are
mutually incoherent. The incoherent sum of their nearfield and farfield intensities
can be seen from Figure 3.2(b) to give rise to the measured patterns shown in
Figure 3.1. Note especially that just the » = 1 mode has a single-lobed farfield. All
others are twin-lobed, with lobe separations that increase slightly with mode index.
The spectrally integrated farfield is therefore box-like, and broadens in proportion
to the number of lateral modes that participate in the lasing. This behavior has
been observed with high uniformity GRINSCH-SQW broad area lasers grown by
MOCVD.

We turn now to a second example of controlled behavior from high-uniformity
broad area lasers. Figure 3.3 shows the nearfield intensity, spectrally-resolved
nearfield, and farfield intensity from this second class of devices, at an elevated

current level I = 1.75I;;. In contrast to the first class, the spectrally-resolved
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Figure 3.2 Spatial and spectral gain saturation in broad area lasers: (a) gain spectra at
three current levels matching losses of the lowest-order waveguide modes, (b) spatial hole
burning gives rise to multilateral mode oscillation, and (c) broad farfields.
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Figure 3.3 Free-running emission characteristics of a 60 pum-wide, broad area laser, pur-
portedly with a slight asymmetric gain gradient: (a) nearfield intensity, (b) spectrally-
resolved nearfield intensity, and (c¢) farfield intensity, all at the current level I = 1.75I,;,.

nearfield shows a single spatial mode repeated at several longitudinal mode fre-
quencies, and the farfield is narrow and single-lobed. However, that single lobe is
not normal to the facet, and shifts by about one beamwidth as I is increased from
Ity to 1.75 I,. Asymmetry is also observed in the nearfield intensity. As we will
show, this asymmetry can result from the introduction of an asymmetric gain gra-
dient across the width of symmetric devices such as those discussed in the previous

example. In the process, the gain discrimination between competing lateral modes
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Figure 3.4 Experimental apparatus: light from the rear laser facet is collimated, dispersed
by the grating and refocussed onto the laser. The collimated beam is intercepted by an
R = 8% beamsplitter in order to image the nearfield, spectrally-resolved nearfield, and the
farfield.

is increased. Thus, the onset of multilateral mode operation, as illustrated in Figure
3.2, is delayed until higher injection currents, to obvious advantage.

In order to examine this device more closely, a small amount of optical feedback
was added by coupling the laser to an external cavity comprised of a collimating
lens and a diffraction grating, as shown in Figure 3.4. When the grating is tuned

to reflect in first order, this exter—al cavity images a spectrally-resolved, spatially
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inverted nearfield back onto the rear facet of the semiconductor laser. It thus
has the dual purpose of symmetrizing the lateral dimension (via the inversion)
and enforcing single longitudinal mode operation (via dispersal of the spectrum
perpendicular to the epitaxial layers). The resulting integrated and spectrally-
resolved nearfields are shown in Figure 3.5 along with the farfield intensity, shown
superimposed on that with the grating blocked (i.e., Figure 3.3(c)). As is evident,
the laser operates in a single longitudinal mode. Most likely, because of the box-like
farfield observed, several lateral modes are also lasing but remain unresolved by the
grating monochromator. The resolution of the lens-grating pair is about 2.2 &, and
that of the monochromator about one-tenth of that. We note immediately that
the grating-decoupled farfield is offset from 0° by more than one beamwidth. This
result is consistent with the predictions of the forthcoming analysis.

That the asymmetry is consistent with a gain profile that is graded across the
device width can be seen as follows: the more common double-lobed farfields ob-
served for symmetric devices are indicative of the two “plane-wave” components,
propagating with equal but opposite lateral k-vectors, which comprise each lateral
mode (see Section 5.0). An asymmetric gain gradient suppresses one of these com-
ponents so that, in the farfield, a single lobe is radiated that is offset from the
normal. The mechanism is as follows: in order for the lateral mode to propagate
self-consistently, it must grow uniformly upon propagation along the laser axis. To
accomplish this in the presence of a lateral gain gradient requires the modal wave-
front to be skewed, thereby directing to the low-gain side photons generated on the
high-gain side. This wavefront tilt compensates for the spatial imbalance in the
photon generation rate. In addition, as will be shown, the gain gradient spatially
segregates the lateral modes. Thus, the mode that is localized more in the high-
gain region has the highest modal gain, and the gain discrimination between this

mode and all others is increased over the uniform gain case. As such, we expect
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Figure 3.5 Emission characteristics of the laser of F igure 3.3 under grating-coupled oper-
ation at I = 1.51;;: (a) nearfield intensity, (b) spectrally-resolved nearfield intensity, and
(c) farfield intensity at the current level I = 1.1I;; under grating-coupled (dashed) and
uncoupled (solid) operation.

single-lateral mode oscillation to persist to higher currents than the uniform gain
case. This expectation is borne out by the experimental results.

In application of this principle, Lindsey et al. have demonstrated! ? intention-
ally gain-tailored broad area lasers, by varying the fractional coverage of injecting
metal-to-p™ GaAs contact relative to Schottky-blocking metal-to-p GaAlAs contact
over the surface of a broad area laser via halftone photolithography. The enhanced

current spreading provided by a thick upper cladding layer smears out the effects
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of the discrete dots and gives rise to a smooth, nonuniform spatial gain distribu-
tion within the active region. In this manner, an approximately linear, asymmetric
gain profile was created via incorporation of the gain dependence on injected car-
rier density. This scheme is illustrated in Figure 3.6. The gain-tailoring principle
has also been applied to laser arrays in order to induce fundamental supermode
operation3~.

In the following analysis, we determine the unsaturated optical eigenmodes of a
linear, asymmetric, tailored-gain waveguide. We will show that the highly nonuni-
form gain profile in halftone, tailored-gain broad area lasers plays an important role
in the suppression of the lateral mode control problem observed in uniform gain
devices. For example, we show that the higher order lateral modes of these lasers
have farfield patterns that are all single-lobed and only slightly displaced from the
fundamental. Thus even under multi-lateral mode oscillation, the farfield pattern
remains single-lobed, albeit with a slightly larger beamwidth. In addition, the beam
emission angle at threshold is sensitive to the exact value of the antiguiding fac-
tor, b; consequently use is made of asymmetric tailored-gain broad area lasers with -

varying spatial gain gradients to make a measurement of b for the case of a multiple

quantum well active region.

3.1 Path Analysis of the Linear Tailored-Gain Waveguide

In a linear asymmetric waveguide, we model the complex effective index of

refraction, n(z), by

Tle —oo<zr<0~
Ness(€) = § no — okoz 0t<z<t (3.1)
Ne t <z < oo

where n. is the (constant) complex index of refraction external to the guide, ng
and o are also complex constants, and £ is the width of the guide. Throughout

this chapter, we will denote the real and imaginary parts of the complex index of



p*GoAs
aiftone pottern
"HALFTONE" / o
LASER _
Active
Region
(A)
o
/ AuGe/Au
current flow
*ill\l/ & pt-GaAs
S ,',',‘;'l'f'r’,‘,’u’?n O p - Gay, Al 4As

z
(B) =

)

Output beam
Cleaved mirror~,
() i
Cleaved mirror ®
Output beam

Figure 3.6 Halftone tailored-gain semiconductor laser: (a) perspective view showing vary-
ing fraction of injecting (black) to noninjecting (white) p-contact, (b) idealized gain profile
across the laser width, and (c) top view showing the output beam offset from the normal
direction.
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refraction by nesf(z) = fepr(z) + tnefr(z) = Riesp(x) — iv(x)/2ko. Hence, fiesp(z)
denotes the ordinary (real) index of refraction, and vy(z) = —2k¢n.ss(z) is the

spatially dependent modal gain. Thus, n. and ny are written as:

Ne = Ne — 17¢/2ko
(3.2)
g = Mg — Z"/o/2k0 .

The inset of Figure 3.7(a) shows the waveguide which we will use for illustrative
purposes throughout this chapter. It is 120 um wide with a gain gradient of 1
cm™!/pm.

The gradient of the complex index of refraction within the guide (0 < z < ¥)
is given by oky. o is a dimensionless quantity that plays a key role in determining

the properties of the waveguide, and is defined by
o= —3(b+1) (s,6>0). (3.3)

Here b is the antiguiding factor, and the real constant s is related to the guide

parameters by

_ Yo — 7t
s = Tl (3.4)

It should be noted that in this model, there will always be a step discontinuity
in the index of refraction n.ss(z) at the left edge of the guide (z = 0), while there
will be a corresponding step discontinuity at the right edge of the guide (z = ¢)
only if v¢ # ve (3. €., ne # ng = ng — ckof). After substituting (3.1) into (1.14),
and dropping the term second order in z, the Helmholtz equation inside the guide
becomes

d’E

—— + k2(n2 —n? — 2ngkooz)E =0 . 3.5)
d$2 o\'*0

This equation has the general solution

E(z) = a Ai(z) + bBi(z), z=ptwzr, (3.6)



18-

(Aa)
Ao
D TE +100 fig= 3.415 ot eo o
£ 5 S
Q 60 ; 0 .
~ < -100 —T,= -60 cm
40F | ©
= 7200 ~Ty=-200 om' )
g or (+)branch
© (0o :
—l O i ’ * o & - o s ee
g L] L ] L] . . - o, . . - . . . o e e 4
g =T {0} branch . (-) branch
x ~40fF .
T}
; —SOP
(@]
a
I ! ' ' . L L >
3.4] 25 30 35 20 2z =
Re {n}—
(B) of /no
T (+)l +
— ao} /
1
5 (+), ¥
s 20} o,
= /
) r
©  of (0) ©, /
= i —t—+—
< * ©) *
Q 3
o -
= -~20F ( )3+\
4 (=), *
: \
B -a0F
T (=) +\
-60} On‘
[l 1 , )
34| 46 a7 28 o 2
Re {n}—>

Figure 3.7 (a) Mode diagram for an asymmetric linear, tailored-gain waveguide showing
location of eigenmodes in the complex n plane. (b) Enlargement of boxed region in part (a)
showing modes on the (+), (0), and (—) branches.
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where a and b are complex constants, Ai(z) and Bi(z) are Airy functions, and p and
w are defined by ,
p= 5%(772 - ng) (3.7)
w= ko(2noa)ir .
The argument to the Airy functions, z = p + wz, describes a straight line £ in
the complex z—plane with one endpoint at z = p and the other at z = p + wl.
The length of £ is |wf|, while the angle ¢ it makes with the real axis is given by
Y = fw = tan™! %?{{5’%. For the case of pure index guiding, v is zero, and L lies on
the real axis. In the case of pure gain-guiding (b = 0), as considered in Figure 3.7,

o is a pure, imaginary number:
o=—is (pure gain-guiding, s real) (3.8)

where s is related to the guide parameters by Equation (3.4). Then we can write w

as

w = ko(2nos)¥(—i)¥ . (3.9)

There are three distinct families of modes, which will be referred to as the (+) ,
(0) , and (—) branches, corresponding to the three branches of the cube root. Since
ng < fip, the angle 9 is determined almost entirely by the cube root of (—1?), which
has the values e~¥*/6 ¢=7/6 and e+**/2, The angle ¥ then takes on the values
F30°, and +90°. The inclusion of index antiguiding (b # 0) effects a rotation of £
in the complex plane; this will be discussed in Section 3.4.

The quantity w! determines the length and orientation of the line £ in the
complex plane. To determine its endpoint at z = p, the eigenvalue 7 is required. The
normalized eigenmodes will be completely specified when the ratio of the coefficients
a/b in Equation (3.6) is known. This ratio is determined by requiring E and dE/dz
to be continuous at the edges of the guide and bounded at infinity. Requiring the

field to decay exponentially as 2 — —oco, and matching the boundary conditions at
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the left edge of the guide, we derive the following expression for the ratio a/b inside

the guide:
B. _ B./
b z=0 \/ﬁeAI(p) - Al (,0) ’
where the prime (') denotes a derivative with respect to the argument, and
— k_g 2_ .2 1
Pe = 2 n ne) : (3 1)
w

Similar consideration at the right side of the guide leads to

a VP, Bi(p + wf) + Bi'(p + wi)

- = -t —~ . (3.12)

blo=e VP Ai(p+wl) + Ai'(p + wl)

Inside the guide, the ratios (a/b)|__, and (a/b)|.=¢ both describe the same linear

z=0

combination of Ai(z) and Bi(z). Setting them equal yields the following eigenvalue

equation for n:

VP, Bi(p) — Bi'(p) _ /P Bi(p+wl) + Bi'(p + we) _
VP Ai(p) — Ai'(p) /P, Ai(p +wl) + Ai'(p + wi)

This equation may also be obtained by the more common method of solving a 4 x 4

0. (3.13)

determinant; the present method has the advantage that it explicitly yields the ratio
a/b.

Equation (3.13) was solved numerically for the eigenvalues 7,, where v is the
mode index. The mode structure in the complex effective index plane for our
model waveguide is illustrated in Figure 3.7(a). An enlargement of the boxed region
is shown in Figure 3.7(b). Three distinct families of modes exist in a pattern
resembling a sideways “Y”: the high modal gain (+) and the low modal gain (-)
branches boast a large gain discrimination between modes, while the middle (0)
branch, being the remnant of the uniform gain (s = 0) structure, includes modes
having nearly the same modal gain. Unlike the case of a wide, uniform gain guide,
the mode discrimination between the fundamental and higher-order modes in an

asymmetric tailored-gain waveguide can be large, typically 10 cm™?.
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Since the lateral modes on the (+) branch will be the first to lase, these are
then the most important ones to characterize. To accomplish this, we examine the
Airy functions of complex argument. For convenience, the magnitude and phase
of both Airy functions are illustrated over the complex plane in Figure 3.8. The
arrows indicate directions of increasing magnitude and phase.

In order to proceed with the theoretical analysis, it is necessary to determine
which one of the terms a Ai(z) or 5Bi(z) provides the dominant contribution to
E in Equation (3.6). Numerical solution of (3.13) shows that on the (4) and (-)
branches, a/b > 1 and thus Ai(z) comprises the dominant part of the solution.
This is easily understood after referring to Figure 3.9(a), which shows the paths
L(+) and £(—) superimposed on |Ai(z)|. Along these paths, the profile of |Ai(z)| is
consistent with a well-confined mode, while that of [Bi(z)| is not (see Figure 3.8(b)).
Only when the endpoint z = p + w/ lies near the Stokes line at /z = % does Bi(z)
make a significant contribution to the (+) and (—) eigenmodes. Thus, the solutions

,(,:t)(x) of the Helmholtz equation, (1.14), can be expressed in terms of Ai(z) alone
in guides for which |w]Z is suitably large.

The nearfield profiles along lines £(+) (3 = —30°) are shown in Figure 3.10(a).
These profiles are virtually identical to those obtained by numerical solution of the
problem®. Note that these modes are concentrated near the high-gain end of the
waveguide (r = 0). The v = 1 mode has the largest spatial overlap with the lateral
gain profile and thus has the highest modal gain at threshold. As is evident from
Figure 3.7(b), it also has the highest effective index of any mode on the (4) branch,
and will henceforth be referred to as the “fundamental” mode of the waveguide.

The paths £(—) (¥ = +30°) are also illustrated in Figure 3.9(a) Since here the
zero of the Airy function occurs at z = p + w¥, the nearfields are concentrated in

the lossy regions of the waveguide, as illustrated in Figure 3.10(a).
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Figure 3.8 Level lines for the magnitude of (a) Ai(z), and (b) Bi(2); the arrows show the
direction of increasing magnitude. Lines of constant phase for (c) Ai(z) and (d) Bi(z); the
arrows show the direction of increasing phase. The contours in (a) and (b) differ by a factor
of ten and by 7/4 in (c) and (d).

Similarly, on the (0) branch, a/b < 1, as Bi(z) provides a better match to the
boundary conditions at the edges of the waveguide. The paths £(0) (¥ = +90°),
shown in Figure 3.9(b), imply that Bi(z) provides the best description of a confined

mode. Because of the symmetry of Bi(z) about the positive real axis, the nearfield
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Figure 3.9 Path of the argument to the Airy function for the waveguide of Figure 3.7. (a)
(+) and (—) branches, and (b) (0) branch.
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Figure 3.10 (a) Intensity nearfield patterns, and (b) farfield patterns for the modes of
Figure 3.7.
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patterns of these modes are approximately centered within the waveguide. These
modes therefore have a modal gain intermediate to modes on the (+) branch and
modes on the (—) branch. They correspond to the (0) branch of Figure 3.7(a), and

are also plotted in Figure 3.10.

3.2 Eigenvalues of the Linear Tailored-Gain Waveguide

Once it has been determined that the contribution of Ai(z) dominates that
due to Bi(z) on the principal (+) branch, it becomes possible to derive very simple
analytical expressions for the mode effective indices and modal gains: Figure 3.9(a)
shows L(+) starting near a zero of Ai(z) and ending in the sector of exponential
decay |Z|z < w/3. At the left edge of the guide, E(0) = a Ai(p), where p is given by
Equation (3.7). Setting p equal to one of the (real) zeros —r, of the Airy function
gives

k2
Ty =Py = w—g(ﬂf - ng) . (3.14)

Approximating (n2 — n2) by 2n¢(n, — no) then yields an expression for the vt

eigenvalue 7,:

1 w?

Ny = Ng —

We note in passing that the v** zero of Ai(z) is approximately’

s 2o 1) 10

After using the definition of w in Equation (3.7) for the case of pure gain-guiding
(o = —1s), taking the principal branch of w, and equating the real and imaginary
parts, we obtain an expression for n = 7 + 7 on the (+) branch:

1

7t >~ np — 3¢

(3.17)
7—79') ~ ng + —é—'éy s



where
1/3

. (3.18)

32

€y =
2720

In the complex 7n plane, therefore, the mode structure is particularly simple: All
the modes of the principal branch lie on a straight line emanating from the point
(fio , Mo), and making an angle tan~!(—+/3) = —60° with the real axis. The modes
are spaced along this line according to the zeros of the Airy function, with the
higher-order modes being more closely spaced together.

Since the modal gain y{*) is related to 7, through (3.2), we can write

YP = 70 — koV3e,
2 |/ (3.19)

Ty, .

=% — \/§ko

2Tl0

Since 0 < r; < r3..., the fundamental mode has the highest modal gain and hence
will be the lasing mode at threshold. At threshold, the modal gain 4{*’ of the
fundamental mode must equal the mirror losses v, (scattering losses are probably
insignificant in such a wide gain-guided laser). Equation (3.19) may be inverted to
give the required peak gain o at threshold in terms of I',, and the gain gradient s.

The mode discrimination A4{" between any two modes is given by

AygP = 4P -8,
\/§k 8? 1/3 5 o, = lru - 7‘,,+1| ’ (320)
= 0|a v
27’1.0

where, as indicated, §, is the spacing between the zeros of Ai(z). The mode dis-
crimination scales sublinearly with the gain gradient, and is greatest between the
fundamental » = 1 and the next higher order v = 2 mode. Our numerical analysis®
indicates that Equation (3.20) is accurate to within a few percent for the waveguide
of Figure 3.7(a).

In an entirely analogous manner, formulae for the propagation constants of

modes on the (—) branch may be determined by setting p + wf equal to a zero of
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the Airy function. The effect of the additional term w{ leads to slightly different
expressions for the eigenvalues 7!~) and modal gain v{:

1

ﬁg’_) ~ ﬁ[ - 561/ 3

=(= = \/g
7y o~ Ay — = o (3.21)

1/3
Ty .

2

S
272.0

|
757 =y + V3K ‘

The approximations for the eigenvalues on the (—) branch lie on a straight line
emanating from the point (7,, n¢). The angle that this line makes with the real
axis is +60°, so that it makes an angle of 120° with the corresponding (+) line. In
this case the ¥ = 1 mode on the (—) branch has the lowest modal gain of all the
modes. We remark that Equation (3.21) is not as accurate as (3.19) for truncated
waveguides, in which ny # ng — okof, because of the perturbation introduced by
the discontinuous truncated region at the lossy edge of the guide. As a result of
their low modal gains, however, modes on the (—) branch are unlikely to lase, and
so the error is unimportant from a practical point of view.

Finally, modes on the (0) branch have nearly constant modal gains, and are
composed almost entirely of Bi(z). It is not possible to obtain simple, closed-form
analytic expressions for the eigenvalues for these modes. Once again, however, since
they have low modal gains compared to those on the (+) branch, the formulae are

not required.

3.3 Nearfield and Farfield Patterns

The nearfield patterns of the lowest-order eigenmodes of our model waveguide
were illustrated in Figure 3.10. As can be inferred from the paths £(+) , shown in
Figure 3.9(a), all of the low-order modes have single-lobed nearfield patterns. Prior
to deriving analytic approximations for the nearfields, we determine the position

within the guide, x,, of peak intensity of the v** mode. Referring to Figure 3.11,
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Figure 3.11 Calculation of the nearfield pattern showing geometric construction for de-

termining X .

we see that along the path £, |Ai(z)| reaches its maximum when £ is tangent to the
level lines of Ai(z). These level lines are perpendicular to the lines of constant phase
of Ai(z). The anti-Stokes line associated with the principal branch is asymptotic to
(see Figure 3.8(c)) the line of constant phase that makes an angle of —60° with the
negative real axis. The corresponding tangent line is therefore at an angle of —30°,

which is precisely the angle ¢ that £ makes with the negative real axis for the case

of no index antiguiding. Setting p, ~

the following expression for x,:

Xv =

—r,, a simple geometric construction yields

V3
N
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It should be noted that for a wide guide, the position of the mode within the guide
X» depends only on the gain gradient, and is independent of both the peak gain 7,
and the width £ of the guide. The mode maxima are separated within the guide by

(using (3.7))
Ax, = V3 2nes| 7% 6, (3.23)
2kg

where s is given by (3.4) and §, by (3.20).
Equation (3.23) leads to a particularly simple expression for the modal gains

on the principal branch; taking g = (y0 — 7¢)/¢ as the spatial gain gradient, the

expressions for the modal gain and mode discrimination become

fz+) = 7(Xu) ) (3.2)
A7£+) = gAx, .

That is, the modal gain is given simply by the value of the spatial gain at the point
where the electric field has its peak value. This suggests that to first order, the mode
intensity profile is symmetric about its peak position, and that its width is much
less than the width of the waveguide.

To find an expression for the nearfield pattern, we approximate the Airy func-
tion Ai(z) along the lines £(+). To wit, the leading asymptotic behavior of Ai(z)

as |z| = oo is’

Ai() ~ { grM 2 (=2) T (HAED =D o EEDTD) | ) < 5

— — —2,3/2
yr 27 45 Lz <7 .

(3.25)

The first expression includes the zeros on the negative real axis, and is the one

we use. In constructing Figure 3.8, we have found this result to be accurate to

within 10% to 15% even for |z| as small as 2 or 3. Its simple analytical form further
motivates its exploitation here.

We write z in terms of the rectangular coordinates z = u' + 7v' and rotate the

coordinate system to new variables u and v so that u lies along the anti-Stokes line
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Lz = e™*2"/3 and v lies perpendicular to it (i. e., along £). Along the line £, u is
constant and v is linearly related to the lateral position z within the guide:

Ty
2’ (3.26)
v=|w|(z—x») -

Below the negative real axis, the + exponential provides the dominant contribution
to Ai(z). The radicals may be simplified by making a binomial expansion about

v=0with v <« u:

2u 8 \u
S22 (3.27)
(u+1v)7H4 x4 [1 + (E) ] et

After substituting (3.27) and (3.26) into (3.25) and dropping an unimportant con-

stant, the expression for the electric field reduces to
E(z) ~ e~ (E=x)?2w] +idy(z=x) (3.28)

That is, the nearfield pattern is approximately Gaussian with half-width w,, cen-
tered at x, and multiplied by a linear phase variation ¢,, where x, is given by

(3.22), and w, and ¢, are given by

_ (2r,)1/4
] (3.29)
by = Il (r,)1/2 1
v=I 2 2r, | -
The normalized nearfield intensity I,(z) is therefore
I(z) ~ e~z fwl (3.30)

Tw?
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The intensity nearfield patterns may be found for the (—) branch in a similar
manner. The exact (numerical) nearfield intensities and phases® for representative
modes on each of the three branches is plotted in Figure 3.12(a). All of the modes
are very nearly Gaussian in profile with linear phase variations over the region of
appreciable intensity. Higher order terms in the expansion of Equation (3.27) lead
to slightly asymmetric nearfield patterns with some curvature in the phase fronts,
in closer agreement with the numerical result.

Once E,(z) has been found to have such a simple form, it is trivial to calculate
its farfield pattern. In the Fraunhofer approximation, the farfield pattern F,(9) is
given by the square of the Fourier transform of E,(z) times an obliquity factor. The
wide, asymmetric, tailored-gain broad area lasers of interest here have very narrow
farfield patterns near the axis, and thus the obliquity factor may be ignored. Making
use of the shift and convolution Fourier Transform theorems, the intensity farfield

pattern may be written as

Fu(e) = fe—(z—xu)2/2w3 +* fei¢v(z_Xv 2

2

= le"92/423 x 8(6—9,) (3.31)

— ¢—(6-0,)% /28]
’

where F denotes a (—i) Fourier Transform, and * denotes the convolution opera-
tion. The emission angle ©,, and beamwidth ¥,, after refraction at the resonator

facet, are given by
oy (180 ¢, (18 r,\1/2 1
0.(°) = (7) = (T) ] [(?) - oJ :
oy (180 1 1 _ (180 |w|
5(%) = (T) o = ( - ) Fo(2r )i

Farfield patterns for the (—) branch may be calculated similarly, and are, in fact,

(3.32)

identical (except for an unimportant global phase factor) to those on the (+) branch.
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Figure 3.12 (a) The waveguide of Figure 3.7, (b) the nearfield patterns of selected modes
on each of the three branches, and (c) the corresponding phases. Note that all the nearfield
patterns are approximately Gaussian in shape, and that the phase fronts are nearly linear.
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The farfield patterns corresponding to all nearfield modes of Figure 3.10(a)
are plotted in Figure 3.10(b). We see that the farfield patterns for all modes are
emitted slightly off-axis, are single-lobed and approximately Gaussian in shape, in
agreement with Equation (3.31). This stands in marked contrast to the farfield
patterns of all real index-guided and symmetric gain guided lasers, for which only
the fundamental mode has a single-lobed farfield pattern. Physically, we understand
this as follows: All of the low-order eigenmodes are well confined within the guide.
Hence, each experiences a nearly linear gain gradient across its width. The self-
consistent solution inside the laser resonator thus requires a net power flow from
the side of high gain to the side of low gain. As a consequence, the phase front of
the guided wave is tilted with respect to the optical axis, and power is emitted in
the farfield at an angle ©, off-axis, towards the low-gain side of the laser.

In real index-guided and symmetric gain-guided lasers, power flow directed
off-axis at an angle ©, must be balanced by an equal component at —©,. The
asymmetric tailored-gain waveguide disrupts this symmetry by reinforcing one com-
ponent at the expense of the other. This may be seen analytically by examining
Equation (3.25). The + and — exponentials describe power propagation at opposite
angles to the optical axis. Choosing the gain slope s > 0 forces the lines £(+) below
the negative real axis, and the + exponential is dominant (power flow reinforced at
©,). On the other hand, choosing s < 0 would cause the — exponential to dominate.
On the negative real axis (Stokes line), neither term is dominant. This switching
of dominance is exactly the Stokes phenomenon. Thus, the small amount of power
that travels in the opposite lateral direction is described by the subdominant term
of (3.25), which we neglected, and contributes to farfield emission at an angle —0,,.

We stress that our analysis is predicated on achieving distinct (+) and (—)
branches in the mode structure. A suitable degree of asymmetry is required to

accomplish this. Since the nearfield patterns of the low order eigenmodes on the
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(+) ( (=) ) branch are strongly localized in the high gain (low gain) half of the
guide, a number v modes appear on each if the guide width (¢) and gain gradient

(through w) satisfy

lole > o + 222 ~ ﬁr,, + 2(2r,)Y/4 . (3.33)
2 |w] 2

Of some practical importance is the fact that the farfield patterns of the higher
order modes on the (+) branch are only slightly displaced from the fundamental.
From (3.16) and (3.32), we see that the angles of emission of higher-order modes
scale approximately as v3. Thus, under high-power operation, when multilateral
mode operation is a certainty, the beamwidth will degrade gradually, becoming
slightly broader and shifting very slightly in angle. This analytical result is borne

out by experimental data!?.

3.4 Measurement of the Antiguiding Parameter

In the interest of simplicity, the preceding analysis considered only the case
of a pure gain waveguide with no index variation. The effect of the antiguiding
parameter b on the eigenmodes may be determined by recalling the definition of &

in (3.3), viz. 0 = —s(b+ ). Rewriting o as
a(b) = o(0) (1 —:d) , (3.34)

then
w(b) = w(0) (1 —ib)'/*,

lw(®)] = lw(0)] (1+8)1/¢, (3.35)
Lw(b) = Lw(0) — %tan_lb .
Aside from a slight increase in its length, the principal effect on £ is a clockwise
rotation about —r, of $tan™'b radians (see Figure 3.13(a)). The expression for the

eigenvalues on the (+) branch becomes slightly more complicated:

1/3
o2 /e—ié(*)

2710

'I’],(,i) -l n(?) F Ty (336)
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where ®® = 2tan~!b + . The mode discrimination for the (£) branch becomes

Ay (b) = (1 + B3 coszsofc—lﬁsinzso 2v(0) (337)

where ¢ = itan"'b. When compared with the case of no index antiguiding, for
b = 3, the mode discriminations on the (+) branch are increased by about a factor
of two. The cluster of modes centered about the middle of the guide (:. e., the (0)
branch) is relatively insensitive to the effect of the antiguiding parameter. As a
result the number of modes on the (+) branch actually decreases with increasing b,
consistent with the notion that index antiguiding should shift the high-gain modes
towards the lower-gain regions of the waveguide.

Qualitatively, the effect of antiguiding on the nearfield patterns may be de-
termined with the aid of Figure 3.13(a) and a simple geometrical argument. As b
increases from 0, the angle ¢ that £ makes with the real axis increases. As a result,
L becomes tangent to the level lines of Ai(z) at a point farther removed from z = 0,
implying that the position x, of the maximum intensity of E has shifted towards
the low gain side of the waveguide. Furthermore, as these latter level lines are less
strongly curved than those near the origin, the width of the mode increases as well.
Nearfield profiles along the two lines of £(b = 0) and £(b = 3) in Figure 3.13(a) are
compared in Figure 3.13(b).

A quantitative generalization of the technique used earlier to determine the
nearfield and farfield patterns is included as Appendix 3A. At this point we simply

quote the relations for position of the nearfield peak x,(b),

2 1 sin(6 + 7 /3)
Xv(b) = 7—5 (1+ b2)1/8 cos(8 + ) x»(0) , (3.38)
half-width of the nearfield distribution w, (b),
w3(b) = V2sin(m/6 + ¢)/ cos(8 + ) w2(0) | (3.39)

(1+62)173 cos(2p + 6/2)
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Figure 3.13 (a) Effect of the antiguiding parameter b on the path of the argument to
the Airy function throughout the complex plane. (b) Spatial gain profile. (c) Effect of the
antiguiding factor on the nearfield patterns.
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and farfield emission angle ©,(b)

~ 2y1/2 | 2sin(7/6 + ¢)
0,(b) = (1 + b?) \/cos(9+go) 0,(0), (3.40)

all expressed in terms of their values in the no antiguiding case. The angles ¢ and

8 are functions of b defined as follows:

¢ = =tan"1b,
3 (3.41)

tanf = 3tanyp .
For example, when b = 3, w, increase by a factor of 2, x, by a factor of 3, and O,
by a factor of 4.

When the antiguiding factor is included, the farfield beamwidth remains ap-
proximately constant because the increase in the width of the nearfield is offset by
an increase in the phase curvature. The major effect of antiguiding on the farfield
patterns is to shift ©, to larger angles. O, is a sensitive function of b, and therefore
knowledge of the guide parameters (made possible via the halftone process described
earlier) allows estimation of the antiguiding factor.

Figure 3.14 shows the pulsed, low duty cycle nearfield and farfield patterns
for a linear tailored-gain broad area laser 60 pum wide fabricated via halftone
photolithography®. The farfield pattern is narrow and single-lobed up to greater
than 31, emitting up to 200 mW into 2.3°. The large gain discriminations pre-
dicted by our model imply that near threshold, these devices operate in the funda-
mental lateral mode. The peak of the farfield should, therefore, be shifted off-axis
by the angle O as given by Equation (3.40). To estimate b, we shall measure oY
for devices fabricated with several different gain gradients, s.

For a successful experiment, it is necessary to estimate the gain gradient, s,
defined in Equation (3.4). The constant 7, is fixed by the requirement that, at

threshold, the modal gain of the lasing mode 4{*’ must precisely equal the sum of
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Figure 3.14 Experimental (a) nearfield and (b) farfield patterns for a halftone laser 60 um
wide. Note the nearly linear spatial gain profile as evidenced by the spontaneous emission
pattern at 0.71,},.
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losses, typically about 40 cm™! for a device 250 um long. In an asymmetric tailored-
gain halftone laser in which the fraction of injecting contact varies between 100% at
the left edge of the laser and 0% at the right edge, light will be emitted only where
the gain is greater than zero. We can estimate the position of transparency by ex-
amining the amplified spontaneous emission profile just below threshold. Together
with 7o, this determines the gain gradient.

Equation (3.40) may then be used to calculate the position of the off-axis
farfield beam position ©{"’ as a function of the antiguiding factor b. Figure 3.15
plots the theoretically expected emission angles for several values of the antiguiding
factor along with experimental data from halftone, asymmetric,tailored-gain lasers
with differing gain gradients. We find a value b = 2.5 & 0.5, which is in agreement
with earlier published results®. )

The threshold currents I;; and external differential quantum efficiencies Nezt Of
tailored-gain lasers depend upon the extent to which the waveguide is truncated at
the low gain region, because light is emitted only over those portions of the laser that
are pumped to transparency (> 0 cm™!). Thus, carriers injected into the net lossy
regions of the laser (indicated by the shaded regions of Figure 3.16(a)) will increase
I;» and decrease 7., but will not increase the optical output. Figure 3.16(b) plots
the excess current above threshold, I — Iy, vs. the optical power emitted per facet
for pulsed, low duty cycle operation of lasers with uncoated mirrors and for various
device widths £. The total (two-mirror) differential quantum efficiency 7,.: is also
indicated. As expected, 7 rises as the width of the laser decreases. However,
decreasing the width of the laser makes it more susceptible to the adverse effects

of gain saturation, leading to some power’s being radiated into a small sidelobe at

—0.
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Figure 3.15 Plot of the beam emission angle 6 as a function of the antiguiding parameter
b and spatial gain gradient. The experimental data points fit b = 2.5, in agreement with
previously published results.
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Figure 3.16 Light-current curves for tailored-gain, broad area lasers. (a) Waveguide model
for various truncated waveguides. The shaded areas represent regions of the waveguide, which
are pumped below transparency, and therefore waste carriers. (b) Experimental light-current
curves showing variation of two-mirror differential quantum efficiency 7 as a function of device

width.
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3.5 Conclusions

In conclusion, we analyzed the lateral optical eigenmodes of such lasers in
terms of the Airy function of complex argument. Unlike uniform phased arrays of
semiconductor lasers, the fundamental mode in a tailored-gain laser is the lasing
mode at threshold, thus making possible the narrow, single-lobed farfield patterns.
The mode discrimination between the fundamental and higher-order modes may
be controlled by variation of the spatial gain gradient, and varies sublinearly with
it. We also showed that unlike all real index-guided lasers or symmetric gain-
guided lasers, the higher-order modes of asymmetric tailored-gain lasers do not have
nulls in their nearfield patterns, and that the corresponding farfield patterns are all
asymmetric, single-lobed, and only slightly displaced from the fundamental. This
theory therefore provides a satisfactory explanation for the experimental results
presented in Section 3.0. Finally, we made use of halftone asymmetric tailored-gain

lasers to estimate the antiguiding factor.

3.6 Appendix 3A

To calculate the nearfield and farfield patterns when real index antiguiding is
included, we once again first calculate x,, the position of the peak electric field
intensity within the guide. We determine the point at which £ becomes tangent to
the level lines of Ai(z), and rotate the coordinate system so that a Taylor expansion
may be used to evaluate the field distribution. When antiguiding is present (b # 0),
x» no longer lies on the anti-Stokes line. The exact evaluation of the level lines of
Ai(z) yield complicated expressions, so we approximate them in the rotated u — v
coordinate system by a family of hyperbolas:

2

u? ~ % =c?, (34.1)
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Figure 3.17 (a) Hyperbolic approximation to level lines of Ai(2) in the rotated coordinate
system. (b) Geometric construction for approximation to nearfield patterns.

2 is a positive real constant. This family is centered at the origin, and is

where ¢
aéymptotic to (u/v) = +v3. Figure 3.17(a) plots the level lines of Ai(z) (solid
curves) superimposed upon this family of hyperbolas (dashed curve), which shows
that although the approximation is a good one, it may be slightly improved by a
small empirical adjustment to the factor 3 in (3A.1).

Along with this family of hyperbolae, Figure 3.17(a) plots L', the path of the

argument of the Airy function in the rotated coordinate system. Figure 3.17(b)
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shows the geometrical relationships among the various quantities more clearly. The

equations for the lines £}, are

u=u,+mv, (34.2)

where u, is a constant depending on the mode index v through the root —r, of the

Airy function. The slope of this line m is given by
| -
m = tan g = tan §tan b). (34.3)

This line £, is tangent to a level line of the rotated Ai(z) when the two slopes in
the (u,v) plane are equal. From (3A.1), we have

du lv
=30 (34.4)

Setting this equal to m in (3A.3), we obtain an equation for the locus of points at

which the lines £ are tangent to the level lines of the rotated Ai(z):
1
v = —3tan gtan b) u. (34.5)

Note that angle 6 in the figure is given by § = tan™} [3 tan (%tan—lb)], and that
when b = 0, § = 0. In other words, £, (b = 0) corresponds to the positive real
axis (rotated anti-Stokes line) as expected. Furthermore, as b — oo, § — 7/3 and
L;, becomes asymptotic to the rotated Stokes line of Ai(z). For a typical value of
b=2.35,6=>51.5°

Once the tangency point has been located, the geometrical construction shown
in Figure 3.17(b) may be used to determine x,. |w|X,(d) is determined by the Sine

Law:

si::a - slzggiibg) | (34.6)

The two angles 7/3 + 6 and @ = n/2 — (§ + ¢) are known, and so is the side of

length r,, so that
sin(§ + 7/3) r,

T T (3A.7)

Xv(b) =
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Note that when b = 0 we have § = ¢ = 0 and |w|x,(0) = (v/3/2)r, as in (3.22).
Using this latter equation, we can therefore rewrite

2 1 sin(8 + 7/3)
V3 T+ cos(8 % )

Xu(b) = XV(O)- (3‘4'8)

With b = 3, x, increases by a factor of three.

We next determine the nearfield pattern E,(z) by an expansion about the field
maximum X,. We recall that that the path L) is defined by z = p + wz with
0 < z < £ in the unrotated coordinate system. In the coordinate system that has

been rotated by 7/3, this becomes
z=r,e" "3 L ie i |w]z. (34.9)
By adding and subtracting the term i e™*¢ |w| x,, we rewrite (3A.9) as
2= [rye_i”/s FieT w Xy] ie T w|(z - xu) (34.10)

which is of the form

z=z0+140z, (34.11)
where .
 sinlp +7/6) 4 -
¥ cos(6 + ¢) (34.12&13)
Az = e7*|w|(z — xu).
Observe that for b = 0 we have z = u + iv as in (3.26).

20 =

The electric field is given near the anti-Stokes line of Ai(z) by Equation (3.26)
with u + iv replaced by zp + iAz. Making the appropriate substitutions and sim-

plifications, it becomes

. 1.3 — y 2
E,(z) = %e-”/‘fe‘s’fo” Bi(zo) exp [—MJ . (34.14)

423/2

Since z is independent of z, all the lateral field behavior is contained in the last

factor of (3A.13). For the case b = 0, both zp and Az are real, leading to a Gaussian
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field distribution with a linear phase variation as given by (3.28). In the general
case, zg and Az are complex, leading to a cross coupling between the magnitude and
phase terms. However, we may still obtain meaningful insight into the antiguiding
case by examining the “magnitude” and “phase” terms individually.

The phase term corresponding to ¢, (z—, ) of Equation (3.29) is, from (3A.13),

22Az = |l \/ S‘C’L(;EQG:SO")’) e~ e=0/D(z _ y,). (34.15)

Equation (3A.14) is essentially real because the angle (¢ —6/2) is zero for b = 0

and oo, rising to only about 5° in between. When b = 0, (3A.14) reduces to

1/2

2202 = |l [% (z - xu)] : (34.16)

It can be shown that the correction term (—1/2r,) of Equation (3.29) for the case
b = 0 has an associated obliquity factor cos(6 + ), which is very small in the range
b= 2 to 3, and is therefore neglected. We can therefore express the phase gradient

#,(b) in terms of ¢,(0) approximately as

Su(b) ~ (1+ bz)l/z\/ 23:25((7;/ i:)@ 6,(0). (34.17)

From Equation (3.32), we see that the beam angle increases by about the same
amount. For example, taking b = 3, the ratio ©,(5)/0,(0) is 4.

The magnitude term corresponding to (¢ — x,)2/2w? of (3.28) is

A2 (z — x»)? e—i(20+8/2) (34.18)

421/2 B ﬁy\/sin(‘/r/G + )/ cos(8 + p)r,

Of course, it is the real part of (3A.17) that determines the width of the nearfield
distribution in the general case b # 0. The obliquity factor in this case is quite

severe since 2¢ + 6/2 approaches 7/2 quite rapidly as b — oo, thereby implying
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significant broadening of the nearfield pattern. We then write the halfwidth of the

nearfield pattern w,(b) as

V/2sin(n /6 + @)/ cos(8 + ) w2(0). (34.19)

wy(b) = (14b2)/3cos(2¢ +6/2) 7

For example, when b = 3 the nearfield pattern broadens by about a factor of two.
Finally, we note that since (3A.17) has a significant imaginary part, there will
be an additional quadratic correction to the linear phase term of (3A.15). However,
from (3A.13) we observe that this correction is of order Az/4zp. Thus, it is not
expected to contribute much to the absolute angle of beam emission in the farfield,
but it will tend to counteract the effect of narrowing the beamwidth because of the

increased nearfield width.
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4.0 Introduction

Semiconductor lasers can provide broadband tunable, single-frequency, narrow
linewidth sources of radiation when coupled to an external cavity that contains a
frequency-selective tuning element. Tuning of antireflection coated lasers coupled
to a diffraction grating has been demonstrated over bandwidths of 50-60 nm at 0.8
pm'? and 135 nm at 1.5 um3, with the latter measuring linewidths less than 10
kHz. Similarly, 1.3 um lasers coupled to single-mode fiber, evanescent grating re-
flective filters were tuned over 66 nm with linewidths less than 50 kHz*. Recently,
quantum well (QW) semiconductor lasers were shown theoretically and experimen-
tally to possess very wide, flat, gain spectra near the onset of second quantized state
(n=2) lasing®°. Operating a Fabry-Perot laser at this gain-flattened condition is
the basis of our tuning experiment.

Figure 4.1 illustrates gain spectra, as calculated according to Equations (1.7)
and (1.4), for the DH (left) and GRINSCH-SQW (right) structures defined in the
insets. The solid curves represent gain, in inverse ¢m, as a function of photon
energy above the GaAs band gap. The dashed lines represent the mazimum gain
(upper, corresponding to infinite pumping) and mazimum loss (lower, corresponding
to zero pumping) seen by the transverse optical mode in both structures. For
simplicity, the dashed lines were calculated without Lorentzian broadening (i.e., in

(1.4), Xi = 6(w — wo)). Therefore, the gain is directly proportional to the reduced
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Figure 4.1 Gain spectra (solid lines) and density of states (dashed lines) for DH laser
(left) and QW laser (right) as a function of photon energy above the GaAs band gap. Curves
(a), (b), and (c) for the QW laser correspond to quasi-Fermi energies of 75, 270, and 360
meV, respectively. The DH laser gain curve has quasi-Fermi energy 35 meV, corresponding
to an injected carrier density equivalent to curve (b) for the QW laser. Thus, at this carrier
density, the QW spectrum is > 5 times broader than the DH spectrum.
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density of states, p(E) (in (1.7), gain g(wo) = ~(ko/no)p(wo)). In the QW, p(E)
has the familiar staircase shape offset from the GaAs energy gap by the energies
E, and E; of the n=1 and n=2 quantized lasing transitions, respectively. In the
GRIN region, however, p(E) resembles the VE dependence of bulk semiconductor,
as is appropriate for a DH laser. In either laser, the gain available from any spectral
region is proportional to the spatial overlap of the guided optical mode with the
active region. In comparing QW and DH lasers, the GaAs active layer in the QW
laser is typically an order of magnitude smaller. The resulting disparity in transverse
mode - active region overlap is manifest in proportionately disparate transverse
optical confinement factors, I', (defined in (1.10)). That IFow ~ 0.1 x Tpy results
in some of the most important advantages of QW lasers, such as ultralow threshold
QW lasers’, and broadband tunable QW lasers, which we introduce here.

As indicated by the shaded area between the DH gain spectrum (solid, left)
and its unpumped absorption (dashed, lower left) in Figure 4.1, most of the injected
carriers in DH lasers are utilized not in providing gain, but in overcoming the
inherent absorption. This is in marked constrast to the QW laser. Because of
the disparity in T, the maximum gain available from a QW laser is reduced by an
order of magnitude from that of the DH laser. However, by the same token, the
unpumped absorption of a QW laser is also an order of magnitude less than for
DH lasers. Consequently, proportionately fewer carriers are wasted in overcoming
absorption in the QW laser, but are used to provide gain. This disparity is manifest
in two ways: (i) to achieve the same modal gain, an order of magnitude less injected
current density is required of QW than of DH lasers, or (ii) for the same injected
current density, QW lasers have a greater than fivefold increase in gain bandwidth.
The latter property is exploited in this work.

Because of the steplike nature of its density of states, the gain available from

a QW laser at any one energy in the spectral range E; < E < E, is limited to
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a value we define as . That is, higher gain cannot be obtained there by higher
pumping. However, since the density of states doubles above the n = 2 transition
in the QW, additional gain can be obtained in the spectral region E; < E < E,
through bandfilling, via additional injected current density. Curves (a), (b), and (c)
of Figure 4.1 indicate the SQW gain spectrum for 3 increasing values of injected
current density (quasi-Fermi level). At low current density (curve (a)), the QW
spectrum is bell-shaped, similar to DH lasers. At higher injected current densities
(curves (b) and (c)), a second maximum at E > E, arises because of the steplike
onset of the n=2 subband. As curve (b) indicates, the pumping strength can be
adjusted so that the two maxima arising from the n=1 and n=2 subbands are of
equal height. Since gain spectrum (b) is very flat, it is referred to as the gain-
flattened condition. Comparing curve (b) to the gain spectrum of the DH laser,
which was calculated for the same current density (i.e., the same area between
the gain and absorption curves), we find the breadth of the SQW structure to be
increased by a factor of > 5 over the DH laser. Note that while both QW and DH
spectra broaden with increased current pumping, the QW spectrum is flattest at
the gain-flattened condition.

Figure 4.2 illustrates the amplified spontaneous emission as a function of wave-
length measured from an SQW buried heterostructure laser. The device was antire-
flection coated so as to prevent lasing. Spectra are shown as a function of injected
current from 0 mA to 40 mA, which corresponds to several kA/em? of injected
current density. At low currents, the emission spectra are bell-shaped, with a single
peak whose position shifts to shorter wavelengths as the pump level is increased.
This peak is due to n = 1 quantized state transitions. At 20-25 mA, however, a
second peak at substantially shorter wavelength emerges. This peak, from n = 2

quantized state transitions, overtakes the n = 1 peak at a current level of 35 mA.
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Figure 4.2 Amplified spontaneous emission spectra of an SQW buried heterostructure
laser, as a function of injected current. One facet was antireflection coated to suppress
lasing. The appearance of two peaks in the spectrum, of nearly equal height at 35 mA, is
strong evidence for the existence of the gain-flattened condition.

The broad, flat, amplified spontaneous emission spectrum at this current corre-
sponds to pumping at the gain-flattened condition. In this chapter, we optimize the
laser resonator losses so as to induce the gain-flattened spectrum, and we demon-
strate grating-tuning over a range of 125 nm in 0.8 um (GaAl)As uncoated single

QW lasers.
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4.1 Grating-coupled Tuning of Single Quantum Well Lasers

The apparatus used for the tuning experiments is illustrated schematically in
Figure 4.3. The external cavity consists of a collimating lens and a diffraction
grating that together image a spectrally-resolved, spatially inverted nearfield back
onto the rear facet of the semiconductor laser. The grating is oriented to reflect in
first order; as a result, the spectrum is dispersed perpendicular to the plane of the
epitaxial layers. Only the wavelength of a single longitudinal mode of the crystal
cavity, at A = Ao, is refocussed onto the transverse waveguide, as shown in Figure
4.3. This wavelength-selective feedback provides additional gain for the mode at
A = Ag, which is manifest as a lower threshold current for lasing at Ao than for all
other wavelengths. Henceforth, Ag will be referred to as the tuned wavelength. The
resolution of the lens-grating pair, at 2.2 A, is enough to enforce single-longitudinal
mode operation of Fabry-Perot resonators cleaved shorter than approximately 400
pm. Finally, the resultant spectra in the near and far fields were monitored by
intercepting the collimated beam with an R = 8% beamsplitter, while the power
output was measured at the front facet of the laser.

In order to achieve optimum tuning, the uncoupled resonator is designed to have
a loss slightly ezceeding the peak gain at the onset of second quantized state lasing.
At the pump level required to overcome this loss, the gain spectrum is very flat (viz,
curve (b) of Figure 4.1), and only a modest amount of external feedback is required
for grating-tuning from below the n=1 to above the n=2 transition in the QW. The
resonator requirement for broadband tuning can then be expressed by equating the
maximum modal gain, 4¢, available from first quantized state transitions’ to the

modal losses, £, as follows:

1 1 2ruim,
L=« + —1n >~ = ’ 4.1
2L RiRy; ~ Xoeonoh*Winode I (4.1
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Figure 4.3 Schematic diagram of the grating-coupled external cavity configuration. Light
emitted from the rear facet of the laser is dispersed by the grating so that a spectrum is
imaged back onto the facet, providing feedback at the tuned wavelength.

where a is the distributed guided mode loss, L is the length of the Fabry-Perot
resonator, and R; » are the front and rear facet reflectivities, respectively. Both
L and 7y are parameters that can be incorporated into the laser design. Firstly,
Yo is determined primarily by the design of the GRINSCH-SQW transverse laser
structure through Wio4e, the effective width of the transverse optical mode. In
Equation (4.1), u? and m, are the matrix element and reduced effective mass of the
n=1 electron-heavy hole transition, respectively, ¢, is the permittivity of free space,
and ng is the nonresonant refractive index. In actual fact, the gain at the onset of
second quantized state lasing, v, is reduced from v, by finite population inversion
(see Figure 4.1), but is increased by contributions from the electron-light hole (n=1)

transition. Thus, 7, is a reasonable approximation for 7). Typically, vy >~ 60-125
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cm™!; for our wafer, we estimate Wio4e =~ 3500 A, and as a result v¢ ~ 80 cm ™.
Secondly, the resonator loss £ can be varied by changing the cavity length, or the
mirror reflectivities, or by incorporating an aperture within the cavity. In this work,
lasers were simply cleaved short enough to achieve the elevated loss level £ = .

Figure 4.4 shows the result of a detailed numerical calculation of the gain of a
GRINSCH-SQW laser near the gain-flattened condition. In addition, the loss of the
semiconductor crystal cavity coupled to the lens-grating configuration and tuned to
the wavelength A = \q is superimposed. With the grating blocked, the loss curve
intersects the gain curve (b) at a wavelength A = A;. This wavelength (A\; = 785
nm) and the high current density (J; = 1350 A/cm?) required to achieve it is
consistent with lasing from the n = 2 transition. With the grating coupled to the
crystal resonator, the loss level is reduced at the tuned wavelength (Ao = 842 nm,
the wavelength retroreflected by the grating) because of constructive interference
of the reflection from the external cavity with the regular rear-facet reflection. As
such, the loss curve intersects a different gain spectrum, curve (c), consistent with a
reduced current density Jo(= 8504/cm?) < J;. Thus, Jy is the threshold current for
grating-coupled lasing at wavelength Ag. In general, Jo = Jo()). The dependence
of threshold current on the tuned wavelength has been estimated theoretically in
the manner just described, and is illustrated in the lower half of Figure 4.4 over the
broad tuning range.

For the tuning experiments, lasers were coupled to the external cavity without
antireflection coating of the cleaved facets. The loss near the tuned wavelength is
reduced by the selective feedback to a level an estimated 15 cm™! below that of
all other wavelengths (see Figure 4.4). This loss reduction could be increased by
anti-reflection coating of the rear laser facet, but the flatness of the gain spectrum
makes it unnecessary. Hence, no antireflection coating was applied. The grating was

tuned to successive longitudinal modes of the Fabry-Perot laser, and the threshold
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Figure 4.4 Detailed calculation® (upper) of the laser gain and resonator loss as a function
of photon energy encompassing the first and second quantized states. The pump current
densities for the various spectra are: (a) 1830, (b) 1350, (c) 950, (d) 630, (e) 405, and (f) 255
A/cm?. Theoretical prediction (lower) for threshold current density vs. tuned wavelength.
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Figure 4.5 Threshold current measured as a function of grating-tuned wavelength for 10
pm stripe contact lasers cleaved to 3 different lengths. Free-running threshold currents are 90,
130, and 140 mA for devices of length 400, 240, and 160 pm, respectively. The intermediate
length of L = 240 pum is optimized for broadband tuning from below the first (n=1) to above
the second (n=2) quantized states of the single quantum well active region.

current measured as a function of wavelength for operation under low duty-cycle,
pulsed (200 ns, 1 kHz) conditions. In addition, the maximum power output into
each tuned longitudinal mode was monitored with an Si photodetector placed near
the front laser facet.

In order to determine the effect of the uncoupled resonator loss on the tuning
characteristics, lasers of various lengths up to 400 um were tested. For this experi-
ment, oxide-isolated 10 um stripe contact lasers were fabricated from a GRINSCH-

SQW wafer grown by MOCVD. The QW width was estimated from photolumines-
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cence data to be approximately 75 A in width. Figure 4.5 illustrates tuning data
measured for lasers cleaved to 3 different lengths: L =400 xm, 240 pm, and 160 um.
For devices of intermediate length, stepwise tuning was achieved at over 300 con-
tiguous longitudinal modes of the Fabry-Perot laser, spanning the wavelength range
750 nm to 855 nm. This 105 nm span represents a tuning range of 13.1% about the
center wavelength of 800 nm. The threshold current in free-running operation (i.e.,
with the grating blocked) for 10 pum-wide lasers was 130 mA, and corresponded
to emission at 770 nm. This short wavelength and high current density (~ 2.5
kA/cem?) is consistent with lasing from the second quantized state of the quantum
well. The threshold in grating-tuned operation was thus reduced below the free-
running threshold over 90 nm of the 105 nm tuning range (the minimum threshold
current of 50 mA corresponds to a threshold current density of ~ 1 k4/em?, in
reasonable agreement with the theoretical prediction of Figure 4.4). Within this
90 nm span, lasing was observed in a single longitudinal mode at power levels up
to 75 mW for the 10 pm wide devices. As Figure 4.4 indicates, however, devices
cleaved significantly longer or shorter than 240 ym did not exhibit such broad, ef-
fective tuning characteristics. The reason for designing the resonator loss, £, to
be slightly above v (rather than slightly below) is evident from comparison of the
tuning data for the two cases of 240 ym and 400 pm. Only for the 240 um length
was single-longitudinal-mode lasing achieved over most (90 of 105 nm) of the broad

tuning range with ¢ minimum variation in threshold current.

4.2 Variation in Tuning Range with Quantum Well Width

The tuning range in SQW lasers optimized to operate at the gain-flattened
condition scales as the separation between the n = 1 and n = 2 transitions in the
QW. Figure 4.6 shows the wavelengths of the electron-heavy hole transitions (solid

lines) and the electron-light hole transitions (dashed lines) in GaAs QW'’s of varying
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Figure 4.6 Transition wavelength of the electron-heavy hole (solid) and electron-light hole
(dashed) for then =1 and n = 2 states, as a function of GaAs QW width.

width embedded in Gag.¢Alg 4As confining layers. A good indication of the tuning
range is the separation between the n = 1 and n = 2 electron-heavy hole transition,
shown shaded in Figure 4.6. Note that the tuning range increases with decreasing
QW width until the n=2 electron level pops out of the QW at L, ~ 45 A. This
calculation indicates that decreasing the QW width from 120 A to 70 A increases
the effective tuning range by a factor of 2. However, this increase in tuning range
is achieved only at the expense of an accompanying increase in threshold current
density.

To quantify this discussion, we can estimate the current density Ji; at the

onset of second quantized-state lasing as follows:

e Ng_—f
Jop = —2=4 , (4.2)
Top
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where Nz,g__‘{ is the two-dimensional carrier density at the gain-flattened condition.
Ng:{ is estimated, to first order, by totalling up all of the spectral states in the

first step of the QW density of states:

2m,
rh2

E,
Nzg__({ ~ 2/; pg-d(E) dE = (Eg - El) . (4.3)
1

The factor of two accounts for bringing the material from full absorption to full

gain (see Figure 4.1). Thus, the gain-flattened threshold current density is

2mge

Jth >~ (E2 - El) . (44)

e 27',,,
That is, to first order, the threshold current density scales in proportion to the
separation E; — E; between the onset energy of the first and second quantized state
subbands, and thereby in proportion to the tuning range. As inferred from Figure
4.1, this method clearly underestimates the injected carrier density required for
second quantized-state lasing at finite temperatures. However, it does predict that,
although the tuning range can be extended by narrowing the QW, the cost is an
increased current density paid to achieve the gain-flattened condition. Note further
that increasing the number of QW’s while maintaining the same QW width does
not increase the tuning range. In fact, the gain at which lasing switches from the
first to the second quantized state doubles, implying that twice the current density
is required to achieve the gain-flattened condition.

Tuning characteristics were measured for devices fabricated from wafers with
differing QW widths. Broad area lasers were used for these experiments, and were
fabricated from GRINSCH-SQW wafers grown by MBE. Figure 4.7 shows the mea-
sured threshold current density and output power as a function of wavelength for
60 pm-wide lasers fabricated from QW'’s of thickness 115 A4 and 85 A. As can be
seen, the tuning range, output power level, and threshold current density are all

increased for devices with the narrower quantum wells.
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Figure 4.7 Threshold current density (a) and single-longitudinal mode output power (b)
vs. tuned wavelength for 60 pm-wide broad area lasers fabricated from single quantum well

material with L, = 85 A (left) and L, = 115 A (right).

The greatest tuning range to date was achieved with 10 um-wide oxide-isolated
stripe lasers fabricated from a specially designed MBE wafer. The QW was grown
narrow, L, ~ 60 A, to widely separate the n = 1 and n = 2 transitions in energy.
In order to sufficiently confine the n = 2 electron state, it was necessary to increase
the Al content at the edge of the QW to z = 0.4. The GRIN region was graded
parabolically up to z = 0.7 at the edge of the cladding. With this structure, a

pulsed tuning range of 125 nm was achieved, as illustrated in Figure 4.8. This
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Figure 4.8 Tuning characteristic of a 120 pum long, uncoated (GaAl)As laser optimized for
broadband tuning. The 125 nm tuning span represents a 15.7% tuning range, the largest yet
published for a semiconductor laser.

tuning range, 15.7% about the center wavelength of 800 nm, is by far the largest
published to date for any semiconductor laser.

Finally, it is of great practical importance to demonstrate that the broad tuning
ranges obtainable from single quantum well lasers are achieved at current densities
low enough to allow CW operation. CW experiments were performed on SQW lasers
of buried heterostructure geometry. The wafer had a QW width of L, ~ 80 A and

was grown by MBE. A 1 um wide mesa was etched and the appropriate regrowth was
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Figure 4.9 Tuning characteristic of an antireflection coated, buried heterostructure laser
operated with pulsed current (solid line), and with direct current (dashed line). The CW
characteristic nearly duplicates the pulsed characteristic.

made by LPE. The device was cleaved to 250 um length and soldered p-side up onto
a copper mount. The front facet was antireflection coated to about 5% reflectivity,
low enough to force lasing free-running in the second quantized state. Figure 4.9
shows that 95% of the 95 nm tuning range achieved under pulsed operation is
duplicated under CW operation. Furthermore, high-resolution spectroscopy of the
laser output performed with a scanning Fabry-Perot interferometer indicated that

the CW linewidth is less than 7.5 MHz, the resolution limit of the instrument.
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4.3 Coupled-Cavity Model

Previously, we have indicated our theoretical expectations for the threshold
current density as a function of grating-tuned wavelength. The curve so constructed
(Figure 4.4) compared favorably with the experimental results. The current density
required for lasing was determined simply by demanding that the gain provided by
current pumping equalled the reduced loss of the composite cavity at the tuned
wavelength. Although the gain so provided is a continuous function of frequency,
the loss of a cavity of fixed optical path length is not expressed by a curve, but
rather by a sequence of discrete points. This is because, in addition to overcoming
resonator losses, the electromagnetic field must reproduce its phase upon completion
of one round trip in the composite cavity. In addition to reducing the losses at the
tuned wavelength, external feedback alters the longitudinal mode structure of the
laser. In this section, we make a more detailed examination of the gain and phase
requirements for oscillation in a dispersive cavity.

Figure 4.10 illustrates schematically the mode structure of the grating-coupled
dispersive cavity. The composite cavity loss curve away from the tuned wavelength
is, in general, composed of multiplets of spatial modes separated by the longitudinal
mode frequency spacing, ¢/2nL, of the semiconductor cavity. The corresponding
wavelength spacing is typically ~ 4 A. Each spatial mode has its own modal loss
and frequency of oscillation, as shown in Figure 4.10. In the viscinity of the grating-
tuned wavelength Ao, however, the picture is more complicated. Coherent additions
of the reflections from the laser facet and the external cavity combine to modulate
the effective reflectivity of the external cavity with a period of oscillation aproxi-
mately equal to the longitudinal mode frequency spacing, ¢/2L.,, of the external
cavity. Since L., >> L, this frequency spacing is a small fraction of the crystal
cavity spacing. For example, this spacing is typically 1 GHz (equivalent to 0.02 A)

for a 15 cm-long cavity.
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-127-

A question that should be addressed a priori is whether or not it is appropriate
to assume coherent reflections from such a long external cavity. If we assume a
linewidth Af = 10 MHz (typical for a single-mode semiconductor laser), then the
coherence time 7. can be estimated via the uncertainty principle 2rAf - 7. ~1. The
corresponding coherence length L. = c¢r. is ~ 5 m. With external feedback, the
coherence is improved over that of the crystal cavity alone. This improvement is
due to the larger number of photons in the composite-cavity lasing mode, which
‘damps the phase sensitivity to spontaneous emissions. Thus, it is valid to consider
coherent reflections through many round trips in our short external cavity.

Figure 4.11 shows the coupled-cavity configuration with which we propose to
model our grating-coupled external cavity. Let E; and E] be the right-going and
left-going amplitudes of the lasing mode just inside the right crystal facet, and E;
and E; their counterparts in the external cavity, as shown. The following relations

can be written by inspection:

Ef =V1-r2Ef -rE; (4.5a)

E; =te' EF (4.5b)
E[ =rEf +V1-r2E; (4.5¢)
E} = rpelr~®itie g (4.5d)

where rg and r are the modal reflectivities of the left and right crystal facets, ¢(w)
is the amplitude transmission through the external cavity, § = 2wL,,/c is the phase
shift upon traversing the external cavity, v and «a are the distributed gain and loss
of the laser, and ¢ = 2nwL/c is the phase shift upon traversing the semiconductor

cavity. The external cavity can be modeled as a frequency-dependent effective
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reflectivity, ress(w), as shown in Figure 4.10(d). By eliminating Ef and E; from
Equations (4.5a-c), we obtain for r.y¢:

Er N (1—r?)te’®  r4tet?
Ei*' - 1+rte’® 14 rteif

reff(w) = (46)

Together with Equation (4.5d), r.ss defines the following round-trip condition:
roreff(w)e("_")L+""’ =¢e2™™  m an integer , (4.7)

where m is the longitudinal mode index. Solution of Equation (4.7) yields the
oscillation frequency w and the modal gain y(w) of the unknown composite-cavity

modes:

2 -m = Lrepp(w) + (W) , (4.8a)
1 1

w=a+ —=Iln——mr——. 4.8b

1) L roress(w)l (+:50)

Equation (4.8a) does not depend on the modal gain v, and thus may be solved
for the allowable oscillation frequencies wy,. The result is then inserted into (4.8b)
to extract the corresponding modal gain 4., = ¥(wm). For the simplest case of no

external feedback, t(w) = 0 and r.ss = r. Equations (4.8) then give:

c
Wm =M ——
2nL
1,1 (4.9)
’}’m-—a-f"z n;};.

That is, (Wm,¥m) are the usual longitudinal modes of the crystal cavity.

In the non-trivial case ¢ # 0, we infer from Equation (4.6) that ¢t = r defines a
critical condition in the external resonator, since when 8(w) = 7, rs¢(w) = 0. That
is, when r = ¢, it is possible to tune the external cavity so that the reflection that
is due to the grating-coupled external cavity ezactly cancels that due to the facet
reflection. To see the significance of this possibility, consider detuning w away from

a crystal resonance wr, (defined by Equation (4.9)). In order to satisfy the phase
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condition, Equation (4.8a), any detuning in ¢(w) must be compensated by an equal
but opposite éontﬁbution from rff(w) to maintain the same mode index m. As
we will show, in the case r > t (weak feedback), only small detunings (< 7/2) from
the crystal resonance are allowed. Efforts to tune between contiguous longitudinal
modes are greeted with discontinuous jumps, or “mode hops.” On the other hand,
for r < t (strong feedback), all possible detunings can be compensated in principle.
Figure 4.12 plots the locus of r.fs(w) in the complex plane as the phase of the
external cavity is changed (for example, by tuning the frequency), for the two cases
r >t and r < t. In our experiments, |rt| << 1, so we have made the approximation
Teff(w) = r+te'?. The resulting phase and amplitude of refs(w) are also plotted as
a function of §(w) for both cases. It is evident that for the case of r > ¢, the phase
excursions are limited to less than +n/2. For r < ¢, however, the phase excursions
of Lr.s; are not limited by +7/2 but rather they continuously follow the phase
variable f(w) (although not linearly). Hence, r < t defines a necessary (though
not sufficient) condition for the strength of external feedback required to achieve
continuous tuning between crystal cavity resonances.

Equations (4.8) have been solved under various feedback conditions for tuning
within between two longitudinal modes of the crystal cavity. The solution is, in
general, a cluster of modes, within which modes are roughly spaced by the round-
trip frequency through the external cavity, c¢/2L.,. Figure 4.13 shows the gain
and frequency of the mode within this cluster having the minimum threshold gain,
as a function of the tuned frequency. For the case of weak feedback, the cluster is
centered near the crystal resonance rather than the tuned frequency. As a result, the
lasing frequency is not a continuous function of the tuned frequency; it hops from one
crystal resonance to the next. The shaded areas represent the gain discrimination
between the tuned modes and those without external feedback. In the case of weak

feedback, this discrimination is marginal. Thus, the tuned modes are expected to
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be very sensitive to fluctuations in geometry, temperature, or current. Figures 4.13
(c) and (d) illustrate the complementary case of strong feedback. In this case, the
composite mode of minimum threshold gain is pulled away substantially from the
crystal resonance towards the tuned wavelength. The overall tuning characteristics
show that, as a result, the lasing frequency follows the tuned frequency continuously
between crystal cavity resonances, although not linearly.

It should be noted that in bFigure 4.13(c), for example, the lasing frequency
hops beween modes of the composite cavity as the tuned frequency is varied over
a single crystal cavity mode spacing. Since L., > L, the steps in the curves are
too shallow to be resolved in the figure. True continuous tunability requires an
additional degree of freedom with which to vary the optical path length over one
mode spacing of the composite cavity. This can be achieved in practice, for example,
by insertion of a phase-control electrode in series with the current-pumping electrode
of the semiconductor laser. By tuning of the current injected into the phase-control

contact, the effective refractive index of the composite cavity can be changed.

4.4 Conclusions

In conclusion, we have demonstrated stepwise tuning of Fabry-Perot single QW
semiconductor lasers over ranges approaching those of dye lasers. Tuning in an ex-
ternal grating-tuned cavity over 125 nm under pulsed conditions has been achieved
with stripe contact, single QW lasers grown by MBE. The uncoupled resonator loss
has been optimized to access a flattened gain spectrum, and a corresponding re-
quirement, Equation (4.1), for broadband tunability was given. Experiments with
buried heterostructure lasers indicate that CW tuning ranges in excess of 10% can
be achieved at room temperature. With improved contact quality, the CW tuning

range is expected to fully duplicate the 15% pulsed characteristic.
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In addition, we have proposed a coupled cavity model that identifies r < ¢ as a
necessary condition for the strength of external feedback required to achieve contin-
wous tunability. This analysis predicts that the composite cavity mode of minimum
threshold gain can be tuned continuously between crystal cavity resonances. Re-
cently, Petermann has indicated that a stability analysis of the composite-cavity
modes predicts that the mode that lases is not, in fact, the mode of minimum
threshold gain, but that of minimum lnewidth®. This result has yet to be con-
firmed experimentally.

Finally, it should be noted that none of the results presented in this chap-
ter is exclusive to the (GaAl)As material system, but depend only on the unique
properties of quantum wells. It thus appears perfectly feasible that commercial QW
semiconductor lasers based on GalnP, GaAlAs, and GalnAsP will provide compact,
continuously tunable, solid-state sources of radiation in the wavelength region 650-
1500 nm. At moderate output power, and reduced linewidths, these devices could

replace dye lasers in many applications.
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Five
Coupled-Wave Model for Multiple Stripe

Semiconductor Lasers

5.0 Introduction

By design, semiconductor laser arrays consist of a number of single-mode
waveguides placed in close proximity, so that distributed coupling occurs via modal
overlap. The lateral modes of the array are ideally described by superposition of
the modes of the uncoupled waveguides, or “supermodes”!2. Indeed, arrays formed
from index-guided elements are accurately modeled using supermode (i.e., coupled-
mode) theory. However, arrays formed from gain-guided elements, such as oxide-
isolated or proton-bombarded stripes, are not. Since the interelement coupling
is inherently stronger than for the index-guided case®*, the modes of individual
gain-guided waveguides do not constitute a good basis from which to construct the
lateral modes of the multiple stripe composite waveguide. Numerical modeling pre-
dicts mode numbers greater than the number of array elements®®, as was shown
in Figure 1.7. Furthermore, with the advent of injection-seeding techniques® and
external grating-tuned cavities”, the existence of these higher-order modes has been
verified experimentally.

Multiple stripe semiconductor lasers are fabricated by placing together a num-
ber of parallel electrodes, side by side in the lateral direction. Because of the
resulting spatially periodic current injection, the steady-state carrier population
within the active region is modulated in the z-direction. Ultimately, the gain and

refractive index are also so-modulated according to the results of Section 1.2. In
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this chapter, we describe an analytical model of multiple-stripe lasers based on lat-
erally counter;propa.gating plane waves, which are coupled by the periodic gain and
refractive index variation across the device width. The coupling is similar to that
within distributed feedback lasers®, except that here the feedback takes place in the
lateral direction, rather than along the laser axis. In addition to describing the low-
order modes (v < N), our model correctly predicts the existence of lateral modes of
higher order (v > N) than the nﬁmber of injection electrodes, N. Furthermore, the
higher-order modes predicted for multiple stripe lasers agree well with those found
experimentally by injection seeding®.

Equation (1.9) gave the general form of a traveling-wave solution g(m,y, z,t)
within a semiconductor laser resonator. For a symmetric, single-element waveguide,
whether index-guided or gain-guided, the lateral mode E(z) assumes the functional
form cos kz (if even in z) or sin kz (if odd in z). Thus, the traveling-wave solution

(1.9) can be written
E(z, z,t) = #(age™® + boe k=)0t | (5.1)

where, for simplicity, the transverse (y-dependent) part of the mode has been omit-
ted. Note that by = ay for even modes, and by = —aq for odd modes. Equation
(5.1) is, in fact, a plane-wave decomposition > a, exp z'(l-c‘ﬂ - 7 — wyt) of the TE
traveling-wave mode. As shown in Figure 5.1, the traveling wave (5.1) is composed
of two plane waves, with k-vectors £k,.& + 3,2, denoted by E:t. Here k., is the real
part of k, and J, is the real part of 3. These two waves propagate at equal but
opposite angles + tan™!(k,/8,) to the z-axis. Incorporating I:i, Equation (5.1) can

also be written as
g(z,z,t) — j(aoek;z+1z ) ei(E+-F—uot) + boe-—ik;z+7z . ei(F--F—wot)) , (52)

where —k; is the imaginary part of k, and —~ is the imaginary part of 3.
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Index

Figure 5.1 The two constituent plane waves, with wavevectors k4, of the lateral modes of
single element symmetric waveguides.

In a medium with distributed gain or loss, k; and 4 are non-zero. It is common
to further factor out the vector, longitudinal, and temporal dependences of (5.2), so
as to focus on the z-dependent part, E(z). E(z) satisfies the Helmholtz equation,
(1.14); solutions of that eigenvalue equation give rise to the lateral modes E¥(z).
In that case, E¥(z) for our simple waveguide is composed of two laterally counter-

propagating plane waves:

E¥(z) = ageki . e%77 4 pye=kiz . g=ikiz (5.3)
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Figure 5.2 illustrates the nearfield intensity |E¥(x)|?, the nearfield phase ZE*(z),

kiz and bye=*'* for the unsatu-

and the corresponding plane-wave amplitudes age
rated v = 10 lateral modes of 90 ym wide gain and index guides. Observe that
for the index guide, k; = 0; consequently the plane-wave amplitudes are constant.
However, for the gain guide, k; # 0, which gives rise to a slowly varying amplitude
variation in the nearfield, and a softening of the phase front, when compared to the
index-guided solution. In this chapter, we show that the periodic gain and index
modulation induced by the multiple injection stripes couples the two plane waves,
and modifies their slowly varying amplitudes.

The waveguide prototype for this work is shown in the inset of Figure 5.3:
It is a 10-stripe laser with 4.5 um wide stripes situated on 9 um centers. As
discussed above, the gain and refractive index profiles are modulated in the lateral
direction to reflect the spatially periodic current injection. An antiguiding factor
of b = 1.5 is assumed, along with a loss of 85 cm™! at the sides of the composite
waveguide; we éstimate these values to be appropriate for low threshold, single
quantum well wafers grown by MBE. The interchannel gain of 0 cm™! is intended
to model devices with shallow (if any) proton implantation — this model can be
inferred from spontaneous emission profiles” or from diffraction effects in diode
array, traveling-wave amplifiers®.

Figure 5.3 plots the eigenvalues (mode index and modal gain) for the first 14
modes of this waveguide, as obtained by direct numerical integration of the wave
equation. While the v = 10 mode has the highest modal gain, the next highest
modal gains belong to the » = 11 and 12 modes. This shows the inadequacy of
coupled-mode theory when applied to gain-guided devices, since modes with v > 10

are not predicted by that model.
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Figure 5.2 Nearfield intensity, nearfield phase, and composite plane wave amplitudes for
the v = 10 lateral modes of 90 pm-wide gain (left) and index (right) guides.

5.1 Coupled-Wave Theory

'To model the multiple-stripe laser, we take an effective index distribution

ng + 2n? cos(27 - 2z/A), |z| < zo
=2

() ={

2| > zo (5.4)

so that A/2 is the period of the perturbation (i.e., the center-to-center spacing

of the electrodes), 2n? is its amplitude, and 7, is the index of refraction outside
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Figure 5.3 Plot of the lowest 14 eigenvalues (mode index and modal gain) found by
numerical integration for the waveguide shown in the inset.

the laser. With these assumptions, the Helmholtz equation, (1.14), for the lateral

modes can be rendered dimensionless and written as

&E

el + [A+ 5(e?X + e'i2x)]E =0, (5.5)
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where X = 27wz /A is the normalized lateral dimension. As is customary, we have
assumed traveling waves of the form E(z)exp(ikonz), where kg = 21/, is the free-
space propagation constant, and kg7 is the (unknown) propagation constant of the
lateral mode E(z). Respectively, A and « are the normalized eigenvalue detuning

and effective index perturbation:
A= //\\—z(ng -n?) , k= ‘:—znf . (5.6)
0 0
In analogy to the distributed feedback laser, we expect the plane wave coupling to be
distributed along the laser width, and become manifest as X-dependent coefficients
in the plane-wave expansion. We thus take E(X) as the following sum of two

laterally counter-propagating waves:
E(X)=a(X) e +b(X) e™X, (5.7)

When a and b are constant, the wavevector of E satisfies the Bragg condition; since
this does not correspond to wave propagation, we must allow a(X) and b(X) to be
slowly varying in X, and thereby incorporate the necessary wavevector detuning
from w/A. When & = 0, a and b are simple exponentials (viz: age’*i%, bye=iki% in
(5.3)) and reflect the constant gain under the stripe. When & # 0, the spatially
modulated carrier distribution acts as a grating to couple the counter-running waves,
and a and b are X-dependent. Substituting (5.7) into (5.5), making the usual slowly
varying (adiabatic) approximation (neglecting a”, 5"), keeping only the synchronous
terms, and setting the slowly varying coefficients of e!X and e~*X equal to zero®

give the following coupled-mode equations in a and b:

2ia' = (1~ A)a—kb,
(5.8)
~2ib = —ra + (1= Ab.
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All of a(X), &(X), and A are unknown in Equation (5.8). This is a standard
eigenvalue problem, whose general solution is
G(X) — A+eiI‘X +A—e—ir‘X ,
. _ (5.9)
b(X) — B+€'FX + B_e—tFX ,
where A4+ and By are complex constants and I' = I'(A) is a normalized wavevector,

given by:

I'(A) = %\/(1 — A)?2 — &2, (5.10)

From (5.7), we infer that I' gives the wavevector detuning from the Bragg wavevec-
tor. Strict observation of the slowly varying approximation requires IT| < 1in the
solution; however, we shall see that reasonable results are obtained even as T — 1.
Finally, substituting (5.9) into (5.7) gives the general expression for the lateral mode
as

. . B_ .. .
E(X) — [r+ez(1+F)X + e—l(l—r)X] + T‘E [el(l—l")X + 7‘+6_'(1+F)X], (511)

where 7 are the eigenvectors of the system (5.8):

_Ax K
"t =B, T A=A LoA) (5.12)

At this point there are two unknown, complex constants, B_ /B+ and the
normalized modal propagation constant A (or equivalently, the wavevector T'(A)).
Matching our solution (5.8) for E(X) inside the laser to exponentially decaying
solutions of the form E; exp{—iy/A = A; |X-Xo|} outside, where the index is

assumed constant, gives the following two boundary conditions:

!

Elx=+x,

where A, is the complex constant defined by

2
Ay = /—A\‘T(ng —72). (5.14)
0
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Equation (5.13) represents two equations for the two unknowns B_ /B, and ['(A).
Symmetry re(iuires E(-X) = £E(X), and thus from (5.11), we obtain B_/B, =
*r,, corresponding to even and odd modes, respectively. Since, from (5.12), ryr_ =
1, (5.11) reduces to
Eeven(X) =cos(1-T)X +rycos(1 +1)X ,
(5.15)
Eoqa(X) =sin(1 -T)X —rysin(1+ )X .
As Kk = 0, ry — 0 and we recover the modes of the box waveguide. Thus, the
second term embodies the distributed feedback, and I'(A) gives the modal detuning
from the Bragg wavevector.

To illustrate the result of the coupled-wave approach, we compare the modes
(5.15) to those obtained by direct numerical integration of the wave equation. The
appropriate parameters to model the device of Figure 5.3 are k = 0.3 +: 0.2 and
Ag = —4.0 — ¢ 2.67. We have superimposed the analytical results (dashed lines) for
selected lateral modes E¥(X) onto the numerical solutions (solid lines) in Figures
5.4 and 5.5. Excellent agreement is observed for the v = 8,9,10 and 11 modes,
for which |I'| < 1. However, even as |T'| — 1, the agreement is still reasonable, as
illustrated by the v = 1 mode.

As expected, there is a resonance between the v = 9 and v = 10 modes be-
cause their lateral wavevectors bracket the Bragg wavevector, 7/A. The peaks of
the nearfield lie almost exactly under the stripes for the v = 10 mode, while for the
v = 9 mode they lie between the stripes. Thus, the greatest gain discrimination is
achieved between these two modes; this splitting (in the domain of complex-valued
refractive index) is exactly analogous to electron wave propagation in crystals near
the Brillouin zone edge, where a potential energy splitting of twice the potential
amplitude is achieved. Both modes have a “half-cosine”or first-order envelope, how-
ever, being nearly symmetrically displaced from the Bragg wavevector®. Likewise,

we expect the v = 8 and 11 modes to share second-order envelopes, since together
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Figure 5.4 Nearfield and farfield intensities for the v = 1,9 and 10 lateral modes found
by numerical solution (solid lines) compared to the analytical solution (dashed lines). The
injection electrodes are positioned as indicated in the nearfield plots.
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Figure 5.5 Nearfield and farfield intensities for the v = 8 and 11 lateral modes found
by numerical solution (solid lines) compared to the analytical solution (dashed lines). The
injection electrodes are positioned as indicated in the nearfield plots.

they undergo a gain splitting similar to the » = 9 and 10 modes. Figure 5.5 illus-
trates that this is indeed the case. Further, the » = 1 mode has 9 secondary peaks

in the nearfield (not 10, as would be expected from coupled-mode theory) because

it is displaced 9 modes from the Bragg wavevector.
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At this point, we should remark that the general solution of the wave equation
(5.5) in a perAiodic medium (i.e., taking ngff(a:) as a general Fourier series) is a

Bloch function, of the form
Ex(X) = ug(X)e'kX (5.16)

where K is the lateral wavevector, and ux (X) is a function having the same period-
icity as the medium. Expanding u g (X) into a Fourier series, and writing separately
solutions even and odd in X, give

Eepen(X) = Z ancos(K +2n)X ,

-0

- (5.17)
Eoaa(X) =) busin(K +2n)X .

00
These solutions, with particular values of the a, and b,, are known as Mathieu
functions'®. The approximation of our solution (5.15) to the exact solution (5.17)

becomes apparent if we rewrite the former, letting 1 = I' = K , as

Eeven(X) =cos KX + ry cos(K —2)X
(5.18)
Eodda(X) =sin KX + rysin(K —2)X .

That is, to arrive at (5.15), we have taken advantage of the fact that near the
Bragg resonance, K ~ 1, and hence only two terms of the series (5.17) are of
significant amplitude and synchronicity. This is strictly valid only for the v = 9
and v = 10 lateral modes, above. For the v = 1 mode, K ~ 0. The discrepancy
between the dashed and solid lines of Figure 5.4 (v = 1 mode) could be largely
removed by including the (K + 2) term of the summation (5.17) into our solution
(5.18). Including both (K +2) terms is akin to considering both the +1 “diffraction
orders” of grating reflection. It can be appreciated from (5.5), however, that the

term (n?2 75 —n4)- E generates all “diffraction orders,” and hence the general solution
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for E(X) is of the form (5.17). The accuracy of the approximate solution (5.18)
thus depends ﬁpon the number of terms of the summation (5.17) included in it.
To summarize, our analytical coupled-wave model accounts for the lateral
modes both observed in, and calculated numerically for, N-stripe semiconductor
injection lasers. By making an analytical expansion around the Bragg wavevector,
we are able to describe lateral modes of order v = 1 to v = 2N — 1. Modes of higher
order could be accounted for (if they exist), by including more terms in the sum-
mation (5.17), or by expansion around integer multiples of the Bragg wavevector.
In any case, our analysis reveals the lateral modes of multiple-stripe semiconductor
lasers to be determined largely by distributed feedback resonances of the carrier-
induced lateral gain and index perturbation, rather than by superposition of the

modes of individual stripe lasers.

5.2 Broad Area Tandem Semiconductor Lasers

Recently, broad area lasers fabricated from low threshold density, quantum well
material were identified as candidates for stable, single-lobed farfield operation at
high power!!:12. This success has been attributed partly to the excellent uniformity
afforded by state-of-theart crystal growth technology, and partly because the self-
focusing nonlinearity that is due to gain saturation decreases in proportion to the
threshold gain. Both allow nonlinear modes of phase-locked filaments to maintain
spatial coherence over wide apertures at elevated power levels (see Chapter Two).
However, the tolerances required of the material growth, and of the processing con-
sistency, to achieve a satisfactorily high level of uniformity are extremely small. As
a result, only a small fraction of devices exhibit this desirable behavior. In order
to enhance the stability of the nonlinear modes against destabilizing material de-

fects, fabrication inhomogeneities, or temperature gradients, additional steps must
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Figure 5.6 Broad area tandem laser structure. The rear section (B) is a broad area contact
60 pm wide, while in the forward section (A), current is injected through 10 stripes 2 pm
wide on 6 pm centers.

be taken. In this section, we report experimental findings on a broad area laser
structured to provide such enhanced stability.

Our approach to the problem of controlling the mode of oscillation of a wide-
area semiconductor laser is to “seed” the mode at threshold which we expect to be
favored under high-power operation, when gain saturation plays a dominant role.
As shown in Figure 5.6, the proposed laser consists of two longitudinal sections in
tandem. The rear section (B) is a simple gain-guide, broad area structure 60 pm

wide. Ideally, this structure is expected to support lateral modes above threshold
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consisting of an integer number of phase-locked “filaments”!3!¢. However, the
gain discrimination between such modes is small and easily disrupted by material
imperfections; hence complicated, non-reproducible mode patterns usually result.
In the forward section (A), current is injected through 10 closely spaced, parallel
stripes opened in an oxide isolation layer. Allowing for current spreading, this results
in a slight lateral gain modulation (LGM) within the active layer. The modes of
such a multiple stripe structure were calculated in Section 5.1. The present work
was motivated by the resemblance of the fundamental (v = 1) LGM mode, shown in
Figure 5.4, to the gain-saturated, broad area modes of Chapter Two. For example,
the peaks in the nearfield intensity of the fundamental LGM mode correspond to
valleys in the spatial gain profile, being situated as they are between the current
injection stripes. In addition, the wavefront of the LGM mode is modulated in the
same fashion as that of the nonlinear broad area mode, which gives rise to a narrow,
single-lobed farfield. If, therefore, the period of the LGM is chosen to match the
saturated ﬁlameht spacing’®, Az,,y, of the nonlinear broad area mode, we expect
the seeded fundamental LGM mode to remain favored at high pump levels.

To identify important design parameters other than the LGM period, we con-
sider a simple linear model to determine the spatial mode with the highest modal
gain near threshold. Figure 5.7 shows the intensity profiles of the unsaturated v = 1
and v = 10 modes of both the LGM and broad area sections (see inserts) and their
mode intensity gains per pass. Since the LGM is slight, it acts as a perturbation
to the gain; thus the LGM section supports approximately as many modes as the
uniform gain section (=~ 50). In the LGM section, the ¥ = 10 mode has the highest
modal gain because its lateral wavevector closely matches the wavevector of the
complex-valued refractive index grating induced by the LGM!%16, Unfortunately,
as with a gain-guided laser array, this mode is not the fundamental mode, and its

associated farfield is twin-lobed. The modal gain coefficient of the fundamental



-152-

LATERAL GAIN UNIFORM GAIN

MODULATION

o+ L

poannannnn

Ao noonMm

Y
'y

Figure 5.7 Intensity gain per pass of the unsaturated v = 1 and v = 10 lateral modes
of the LGM and broad area sections. The lateral mode intensity profiles are shown in the
insets. Coupling to other modes is small, and for simplicity we neglect it.
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mode (v = 1) is reduced by an amount A<, from that of the v = 10 mode. In the
broad area seétion, the situation is reversed. The unsaturated v = 1 mode is best
confined to the gain region and consequently its losses into the unpumped cladding
regions are lowest. Here, the v = 10 mode has a lower gain coefficient by A-v,.
Numerical simulation shows that the » = 1 modes couple primarily to each other,
as do the v = 10 modes. Since these two composite modes have the highest modal
gains, all others are neglected. As Figure 5.7 indicates, the gain per pass of the
v = 1 composite mode is higher than that of the » = 10 composite mode when the
length, L;, of the broad area section satisfies

Ay,
FARTS

Ly > L, , (5.19)

where L, is the length of the LGM section. Thus, it is the ratio of lengths of
broad area to LGM sections which is the important design parameter. Gain dis-
crimination is achieved simply by varying the distributed modal losses within the
two longitudinal sections. Of course, the analysis leading up to (5.19) is valid only
near threshold; a complete model must take into account spatially nonuniform gain
saturation. Note again, however, that in the LGM section the local intensity peaks
of the fundamental mode lie between the local gain maxima of the LGM. This is in
contrast to the fundamental array supermode!, but is exactly the requirement for
a self-consistent, gain-saturated broad area mode!®!4. Hence, by proper choice of
the LGM period, we expect the seeded mode to be stable at high power.

Broad area tandem lasers were fabricated from standard, low threshold current
density GaAs/GaAlAs GRINSCH-SQW crystals grown by MBE (see Figure 5.6).
After depositing SiO; over the wafer, the broad area and stripe contacts were opened
by standard photolithography. For the LGM section, 2 ym openings on 6 um centers
were chosen. A shallow Zn diffusion was performed to provide ohmic contact to

the p-type upper cladding layer. Cr/Au and AuGe/Ni/Au were evaporated for p-
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Figure 5.8 Farfield pattern of the tandem laser at various current levels above threshold
(Ith =180 mA).

and n-type contacts, respectively. The wafer was then cleaved into bars, each one
consisting of an LGM section and a uniform gain section. The lasers were tested
under pulsed, low duty-cycle conditions to minimize thermal effects.

As expected, lasers having only an LGM section most often yielded a twin-

lobed farfield. Similarly, devices with only uniform gain sections did not reliably
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produce a single-lobed output beam. On the other hand, tandem devices emitted
into stable, siﬁgle-lobed radiation patterns, provided the broad area section was long
enough. For example, lasers with 200 ym-long LGM sections and 140 pm-long broad
area sections operated stably in a single-lobed mode. A typical farfield pattern is
shown in Figure 5.8. The narrowest beam measured, at 1.1° near threshold, was
only 1.4x the diffraction limit for a 60um aperture. The single-lobed radiation
pattern was maintained up to I = 1.5 A, which is ~ 8 I;3 (I;4 = 180 mA). At an
external differential quantum efficiency approaching 42% (0.6 mW/mA) per facet,
this current level translates into output powers exceeding 750 mW.

To summarize, we have introduced a lateral gain modulation section in tandem
longitudinally with a uniform gain section in order to seed the in-phase, lateral
broad area mode which we expect to be favored at high pump levels. We have also
identified the important design parameters as being the ratio of lengths of the LGM
and broad area sections, and the LGM period. This new structure has been tested
on GRINSCH-SQW lasers and has provided stable, single-lobed farfields 1.4x the

diffraction limit when the broad area section was sufficiently long.

5.3 Conclusions

In this chapter, we have introduced a new technique for the analysis of mul-
tiple stripe semiconductor lasers, and applied it to the design of a high-power,
structured broad area laser. This technique, coupled-wave analysis, is predicated
on the strong interelement coupling between adjacent gain-induced waveguides. Un-
like index guides, only a small amount of guiding is provided by the discontinuity in
refractive index between the core and cladding regions of gain guides. Rather, pho-
tons ore generated in the core regions and escape to the cladding regions. Thus, in
multiple stripe, gain-guided lasers, a significant amount of light is coupled between

adjacent waveguides. Since reflections from the refractive index discontinuities are
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small, we have employed a model that embodies the distributed nature of the re-
flections from many waveguides, thereby providing lateral coupling between the
counter-propagating plane waves.

The coupling between gain-induced waveguides is in contrast to that employed
by adjacent index-guided waveguides. There, light within each element is guided
by total internal reflection at the refractive index discontinuities between core and
cladding regions. Coupling between adjacent elements is accomplished via a slow
power leakage through the evanescent fields, in analogy to electron tunneling be-
tween adjacent quantum wells. The theory that describes coupled index-guided
elements, coupled-mode theory, is the dual of that which we have employed to de-
scribe coupled gain-guided elements, coupled-wave theory.

In practice, gain-guided elements are far easier to fabricate than index-guided
elements, because the current injection path defines the waveguide geometry. How-
ever, because then the waveguide profile is entirely dependent upon the steady-state
carrier distribuﬁion, it changes in proportion to the intensity of stimulated emission.
Consequently, the lateral modes of such lasers are, in general, intensity-dependent.
Thus, our approach in the design of the broad area tandem laser was to seed the
mode at threshold that we expect to be self-consistent with a heavily saturated
gain profile. Unfortunately, the broad farfields measured (a few times the diffrac-
tion limit) indicate that the discrimination between different lateral modes is not
yet great enough to ensure single-mode operation.

In the next chapter, we design and fabricate a device of similar geometry, the
diffraction-coupled array. In contrast to the tandem laser, this device is based
on index-guiding. Since the waveguide profiles of index guides are designed to be
minimally dependent upon the carrier population, we expect stable performance at

high powers, provided adequate mode discrimination can be provided.
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CHAP;I‘ER

Six

Supermode Control in Digraction-Coupled
Laser Arrays

6.0 Introduction

High-power operation of wide-area (GaAl)As lasers into a stable, diffraction-
limited output beam remains elusive despite an intensive research effort over the past
15 years. The uncontrolled filamentation inherent in the double heterostructure,
broad area lasers of the 1970’s led to the development of the laser array structure! =3
in the early 1980’s. Conventional semiconductor laser arrays are formed by placing
many single-mode waveguides in close proximity, so that the dominant coupling
mechanism is evanescent overlap. Successful coupling has been achieved up to
modest power levels (~ 100 mW), but the farfield beamwidth has invariably broad-
ened at higher output powers. This is symptomatic of incomplete spatial coherence
and/or multi-lateral mode operation. Furthermore, in practice the eigenmode with
the highest modal gain in these “distributed-coupling” arrays is not the funda-
mental supermode, but that which has adjacent array elements coupled 7 radians
out-of-phase. The result is an undesirable double-lobed farfield.

Diffraction-coupled arrays represent one approach towards achieving fundamen-
tal supermode operation, and consequently have received growing attention~". In
this geometry, illustrated in Figure 6.1(a), the channels of the array are optically
isolated for some length L, and then are allowed to couple by “diffraction” of the

channel waveguide modes in a common end region of length D. Thus, the coupling

is discrete, rather than distributed along the length of the array. Nevertheless, the
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Figure 6.1 Diffraction-coupled array geometry: (a) Definition of parameters. The shaded
areas represent optical isolation. The array channels have width w and length L, while the
diffraction region is of width W and length D. The array period is £. (b) Device unfolded
about the right-hand facet to illustrate the definition of the phase difference A¢p.

lateral modes of diffraction-coupled arrays can each be represented as a coherent
superposition of the modes of the individual array element waveguides; that is, as
supermodes’. As we shall show, gain discrimination between supermodes arises
because of the difference in their Fresnel diffraction patterns. For a given device
geometry, specifically the diffraction cavity length, D, and the center-to-center spac-

ing, ¢, of the array waveguides, one such supermode couples most efficiently back
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into the array elements, after diffraction in the end region and reflection from the
facet. Thus, the array/diffraction region interface acts as a mode-selective aperture,
or spatial filter. In this chapter, we shall show that by proper device design, very
large supermode discrimination can be achieved. Furthermore, the geometry can
be optimized to select the lasing supermode.

A significant advantage of diffraction-coupled arrays over other array structures
is that the interelement coupling is determined not by its growth or fabrication
procedure, but by the device geometry. Figure 6.1(b) shows the single-sided device
of Figure 6.1(a) “unfolded” so that a round trip within the composite resonator
now corresponds to one traverse from the leftmost plane to the rightmost plane. A
critical design parameter is the phase difference Ay, which arises because of the
difference in optical path length traversed by the field diffracting from channel i
and coupling to itself versus coupling into channels ¢ = 1. This phase difference is

illustrated in Figure 6.1(b). To first order, Ay is given by

Tness £
2 AD’

Ap =~ (6.1)

where A is the free-space wavelength, and n.ss is the effective index within the
diffraction region. In deriving (6.1), we have assumed the channel separation £ to
be much smaller than the length D of the diffraction region (i.e., small-angle ap-
proximation). If D is chosen so that the phase difference between the self-reflection
and that from nearest neighbors is 27, for example, adjacent elements are expected
to lock tn-phase and the array should operate in the fundamental supermode. On
the other hand, if D is such that Ay ~ 7, we expect adjacent elements to lock out-
of-phase and the array would operate in the highest-order supermode. Equation
(6.1) indicates that to achieve a given Ay, the diffraction region length D should

be chosen to satisfy
/2

b= (A mess)(Ap/gm)

(6.2)
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In this chapter, we investigate control of the lasing supermode by optimization of
the length of the diffraction region. The remaining sections present a more precise
numerical model for solution of the lateral modes of diffraction-coupled arrays as a

function of D, and describe experiments conducted to test the theory.

6.1 Supermode Theory

For the purpose of analysis, consider an array with N channels, each of suitable
width w and effective index step An. s to support a single waveguide mode, en(z),
where r is the lateral dimension. Let e be an N X 1 column vector whose elements
are the complex amplitude of the field in each channel at the left-hand edge of the
array region. This vector is then propagated down the length of the array and
reflected at its interfaces by suitable matrices P, Ry, and R,, as shown in Figure
6.2(a). Requiring e to reproduce itself after one round trip gives the oscillation

condition:

e=R,PR,Pe. (6.3)

Here P is the propagatic;n matrix in the channeled section and R¢, R, are effective
reflectivity matrices at the left-hand and right-hand edges of the array region (i.e.,
R, includes the effect of the diffraction region). Assuming identical channels of
length L, the propagation matrix is simply P = exp(io0 L)Z, where 7 is the identity
matrix, and o, the unknown propagation constant, is given by ¢ = (ng/c)w—1i(v/2).
Here w is the radian frequency, 7 is the required threshold gain, ng is the effective
index of the channel and ¢ is the speed of light in free space. The left-hand reflection
matrix is simply R, = roZ, where rg is the amplitude reflectivity of each TE channel
mode at the GaAs-air interface (rg ~ VR, R ~ 0.3). The round-trip condition (6.3)

can then be written as

(Toei2aLRr -—I)e -0. (6.4)
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Figure 6.2 (a) Propagation and effective reflection matrices for the supermode theory. (b)
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Hence, ry ' exp(—i20 L) is an eigenvalue of the matrix R, and the array supermodes
are its eigenvéctors. It remains only to compute the effective reflection matrix R,
of the diffraction region, which embodies the interelement coupling.

We model the diffraction region as a cavity of width W, which supports a large
number, M, of “slab waveguide” modes ¢,,(z). Their amplitudes can be described
by an M x 1 column vector ¢. To compute the reflection matrix R., we first couple
the channel modes e into the cavity basis ¢ via an N X M coupling matrix V:
e = Vc. The cavity modes can then be propagated and reflected from a planar
mirror (using their known propagation constants 3,,) via the M x M matrix P’
whose elements are P',,, = ¢ exp(i28m D)émn, where é,,, is the Kronecker delta.
After projecting back onto the channel basis with the transpose VT of the coupling
matrix, egfier = VP’ VT e fore, S0 that the reflection matrix for the diffraction
region is:

R. = VP'VT (6.5)

Note that VVT ~ T (small radiation loss), but VIV % T (reflecting significant
coupling loss). Different array supermodes excite different superpositions of the
cavity modes; the difference in supermode diffraction patterns thus depends strongly
on D through the different round-trip phases 23,,D of the cavity modes.

For our calculations, we have assumed strong effective-index guiding for both
the array and diffraction regions, so that the channel and coupling cavity modes
are described by

en(z) = \/gcos [ﬂ_(_a:‘_—-_n_l)} , € [nlt -;i]

w

em(z) = \/%sin[mn_(x +WV/V/2)J e [i%{]

as is shown in Figure 6.2(b). The propagation constants 8, in the diffraction region

(6.6)

are approximately 32, = kZnZ — m2?72?/W?, where ky = 27/) is the free-space
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Figure 6.3 Theoretical threshold gain and oscillation frequency for the supermodes of a
d-element diffraction-coupled array, as a function of coupling length, D. The v = 1 mode is
the fundamental supermode. The dashed line gives the result for uncoupled lasers.
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Figure 6.3 can be understood more easily by considering a simplified theory.

Numerical calculation reveals R, to be approximately of the tridiagonal form

r k ... 0
k r ... 0

Re~| . . . .1, (6.8)
0 ... ¥ r

where r = v, , is the self-reflection term, and ¥ = v, n4, is that coupled into near-
est neighboring channels n £ 1. Coupling into nezt-nearest neighbors is negligible
compared with «, and is thus neglected. In this simplified case, the eigensolutions
can be determined analytically, and the eigenvectors {e]} and their propagation

constants {0, } satisfy:

; . . v .

e{,=s1n(]N+1), Jj=12,...N (6.9a)
-1 —i20 vm
role™i2 L=r+2ncos(N+1> , v=12,...N, (6.95)

where v is the supermode index (v = 1 is the fundamental supermode, v = N the
highest-order supermode) and j is the channel index. Note that the supermodes
{el} are identical to those of distributed coupling arrays*. Unlike distributed cou-
pling arrays, however, the coupling constant « of a diffraction-coupled array is a
strong function of the length D of the diffraction region. Consequently, the thresh-
old gain 4, and oscillation frequency w, corresponding to each supermode {e}} also
vary strongly with D. Since the eigenvectors {el} in (6.9a) are independent of x,
the actual lateral mode profile is independent of D. Let us examine v, and w, for
the cases of in-phase (v = 1) and out-of-phase (v = N) supermodes. In the limit
of large N, cos(x%y) — 1 and cos(Ni-}_"'—l) — —1. Denoting the v = 1 supermode by
‘+’ and the v = N by ‘~’, Equation (6.9b) reduces to ry ! exp{—i20+L} = r £ 2.

Then v+ and w4 are given by:

1
Y+ L~ln—F 4|-’E] cos L~ ) (6.10a)
[ror| r r
Wt K, . K
J2noL :27r-m+£r0r:§:2[;-|s1né; . (6.100)
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Equation (6.10a) indicates that y4 < y— for cosZx/r > 0; that is, for —7/2 <
Lefr < 7[2, the fundamental supermode has the lowest threshold gain, and will
therefore be the first mode to lase. On the other hand, y- < v, in the comple-
mentary region 7/2 < Lk/r < 3w/2. It can also be inferred from (6.10) that the
frequency splitting w4 —w— is in quadrature to the threshold gain splitting v+ —v—.

These features are all qualitatively evident in Figure 6.3.

6.2 Experiment: Supermode Control

In this section, the predictions of the preceding theory are experimentally
tested. We have fabricated 7-element diffraction-coupled arrays from GaAs/GaAlAs
GRINSCH multiple quantum well material grown by MBE. Figure 6.4 illustrates a
perspective cross-section view through the device. Briefly, the array elements are
4.5 um-wide ridge waveguides formed by wet chemical etching through the contact
and upper cladding layers to within 0.1 to 0.2 um of the active region. A Cr/Au
contact evaporated over the device formed ohmic contacts to the top of the ridge
waveguides, and to the diffraction region (i.e., to the p*-GaAs contact layer), while
a Schottky barrier was formed between the ridges where the p-AlGaAs cladding
layer was exposed!. A final photolithography defined the width of the contact to
the array and diffraction regions.

It is of paramount importance that the diffraction-coupled array be fabricated
in a manner that minimizes the distributed coupling between adjacent array ele-
ments. As such, we have chosen to fabricate air-ridge waveguides by wet chemical
etching through the contact and upper cladding layers to very close proximity to
the active region. To determine how close is desirable, a numerical computation
of the effective index of refraction beneath each ridge was performed. Figure 6.5
illustrates schematically a ridge waveguide etched in the V-groove direction down to

the interface between the p-cladding and p-GRIN layers of the laser structure. The
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Figure 6.4 Perspective view of fabricated diffraction-coupled array. The array elements
(foreground) were formed by etching ridge waveguides down close to the MQW (multiple
quantum well) active region, providing strong effective index guiding. The diffraction region
is gain-guided.

change An,yy in effective index as a function of lateral position z spanning the edge
of the ridge is shown underneath. The lateral waveguide modes of the entire 4.5
pm-wide guide were found numerically, and their effective indices are also shown. If
the etch is stopped just at the edge of the p-GRIN layer, the waveguide supports 4
lateral modes. In order to confine just the fundamental lateral mode, the ridge etch
should be stopped approximately 0.1-0.2 um above the p-GRIN layer. However,
such a mode would not be well-confined; thus, in order to ensure effective isolation

between the channels, a relatively large separation of 9 um was chosen.
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EFFECTIVE INDEX OF RIDGE WAVEGUIDE

-0.01

0.02

Aneff

Figure 6.5 Cross-section diagram of an air-ridge waveguide etched in the V-groove direc-
tion (top), and the lateral effective index profile underneath (bottom). The 4.5 pm-wide

waveguide, etched down to the top of the p-GRIN layer, supports 4 lateral modes, with
eigenvalues as shown.
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D=30pum

NEARFIELD — array side
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—-10 -5 0 5 10
Angle (degrees)

NEARFIELD - diffraction side

Figure 6.6 Experimental result for a diffraction cavity of length D = 30 um. Nearfield
imaged on the array facet (top left), on the diffraction side (bottom left), and farfield on the
diffraction side (right). The broad farfield indicates that emission from the array elements is

incoherent,

Diffraction-coupled array lasers were processed from this wafer and tested under
low duty-cycle, pulsed conditions. The effect of the diffraction region length was
observed experimentally by cleaving devices with D varying up to 150 pm in length.
The array region length was kept constant at approximately 250 pm for all devices.
Figures 6.6, 6.7 and 6.8 show the nearfield intensity as imaged on both array and
diffraction sides of the laser, and the farfield on the diffraction side for devices

cleaved to 3 different diffraction region lengths.
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Arrays with short diffraction regions (D < 50um) showed little or no evidence
of coherence between elements, as inferred from farfields and spectrally-resolved
nearfields. For example, integrated nearfield and farfield images for a device with
D = 30 pm are illustrated in Figure 6.6. The nearfield on the array side shows 7
oval spots, each about 4 um in width, indicating lasing within each of the waveguide
elements. On the diffraction side, the spots are a little wider, since the modes are
allowed to diffract freely in the lateral dimension within the coupling region. The
farfield is broad (=~ 12° FWHM), and featureless. This is consistent with incoherent
emission from a set of 4 um wide emitters. As expected, such a short diffraction
region does not allow enough coupling to dynamically phase-lock the elements of
the array.

On the other hand, devices with longer diffraction regions did exhibit con-
siderable coherence across the array. Figure 6.7(a) shows the two nearfields and
farfield for a device with D = 80 um which, according to Figure 6.3, should oscil-
late in the fundamental (v = 1) supermode. The nearfield on the array side again
shows 4 ym wide spots on 9 pm wide centers. Evidence of spatial coherence is
observed in the diffraction-side nearfield and in the farfield, however, if we compare
the experimental result to the theoretical expectation shown in Figure 6.7(b). The
theoretical calculation shows the nearfield expected on both the array (dashed line)
and diffraction (solid line) sides, and also the farfield (which is identical on both
sides) for a 5-element array of the same geometry as that fabricated. We find that
the diffraction patterns observed in the nearfield and farfield on the diffraction side
of the array agree very well with the analytical prediction. The experimental result
shown in Figure 6.7(a) was recorded at an elevated output power level of 100 m W
to indicate that considerable gain discrimination is available before the deleterious

effects of gain saturation are seen.
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Figure 6.7 (a) Experimental result for a diffraction cavity of length D = 80 pm. Nearfield
imaged on the array facet (top left), on the diffraction side (bottom left), and farfield on the
diffraction side (right), at an output power level of 100 mW . The array elements are phase-
locked in the fundamental supermode. (b) Theoretical expectation for the same device:
nearfield intensity at the array interface (dashed line) and at the diffraction cavity facet
(solid line, shaded), and the farfield.
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The theoretical analysis of Section 5.1 predicts that the lasing supermode can be
controlled by ﬁrying the length of the diffraction region. To verify this prediction,
we have cleaved devices with longer diffraction regions, D = 150 um in length, to
compare with the D = 80 um long devices. The experimental results are shown in
Figure 6.8(a), again at the 100 mW power level. Contrary to the 80 um length,
the farfield does not exhibit a lobe in the forward (0°) direction, but rather two
prominent lobes at +2.75°, which is consistent with adjacent elements on 9 ym
centers phase-locked 7 radians out-of-phase, as in the higher-order supermodes.
Operation in the v = 7 supermode is confirmed by examination of the diffraction
pattern in the nearfield. The experiment shows twice the number of spots (14)
as the number of waveguides, and is consistent with the theoretically calculated

diffraction pattern shown in Figure 6.8(b) (for a 5-element device).

6.3 Discussion: The Cost of Mode Discrimination

Supermode discrimination is not achieved without cost. The mode-selective
filter formed by the array/diffraction region interface causes substantial loss for
even the lowest-loss mode. The resulting high threshold gains necessitate the use
of a multiple quantum well active region; even so, elevated threshold currents and
reduced differential quantum efficiencies are observed from diffraction-coupled ar-
rays. As shown in Figure 6.9, the threshold and differential quantum efficiency of
D = 80 pm devices were 400 mA and 42%, respectively. This is to be compared
with 200 mA and 66% for broad area lasers of comparable size, fabricated from
the same wafer. The simultaneous appearance of increased threshold, lower dif-
ferential quantum efficiency, and clean nearfields and farfields is closely correlated

with achieving a good etch to within 0.1 to 0.2 um of the active region. At this
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Figure 6.8 (a) Experimental result for a diffraction cavity of length D = 150 um. Nearfield
imaged on the array facet (top left), on the diffraction side (bottom left), and farfield on the
diffraction side (right), at an output power level of 100 mW . The array elements are phase-
locked in the highest-order supermode. (b) Theoretical expectation for the same device:
nearfield intensity at the array interface (dashed line) and at the diffraction-cavity facet
(solid line, shaded), and the farfield.
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point, light is strongly confined to the channels of the array region, thereby mini-
mizing evanescent overlap between the channels. However, the coupling loss at the
array /diffraction region interface then becomes significant.

As indicated in Figures 6.7(b) and 6.8(b), the supermode diffraction pattern
expands to fill the coupling cavity, and unit coupling back into the array channels
is not achieved. We re-emphasize that the differing coupling losses experienced
at this interface by the different supermodes gives rise to the gain discrimination
between them. The sketch at the top of Figure 6.9 indicates how the forward
and backward traveling-wave intensity varies as a function of position within the
single-sided diffraction-coupled array. We assume that all of the light couples into
the diffraction region from the channels in the forward direction, but that only a
fraction f (< 1) of the light reflected from the right-hand facet is coupled back into
the channels. Furthermore, the remaining fraction 1 — f is assumed to be scattered
or absorbed. In that case, the effective reflection from the right-hand side is reduced
with respect to the left-hand side. Consequently, the power output P; from the

diffraction side ezceeds that of the array side P, by the factor:

Pa_ 1 sy, | (6.11)

P, Jf -

A measurement of Py/P, therefore determines the coupling factor f. Since Py/P, ~
1.4 for the D = 80 pum device of Figure 6.9, we infer that f ~ 0.5 for the fundamental
supermode. Of course, the coupling efficiencies of all other supermodes are reduced
below this value; this reduction is manifest in the elevated threshold gains of the
v = 2-5 modes in Figure 6.3.

Finally, the gain discrimination af any particular D can be increased or de-
creased by variation of the channel width, w. Figure 6.10 plots the supermode

threshold gain and oscillation frequency of each supermode as a function of w,
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Figure 6.9 Experimental light-current curve for the D = 80 um device. Power output
from the diffraction end exceeds that of the array end by 40%, giving a coupling loss f at
the array/diffraction cavity interface (see top inset) of 50%.
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Figure 6.10 Supermode threshold gain and oscillation frequency as a function of channel
width, w, for the fixed diffraction region length D = 75 um.
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varying between 0 and 6 um, at the fixed cavity length D = 75 ym. As w is in-
creased, the divergence of each channel mode (~ A/w for D > w?/}) is reduced.
There are two effects: (a) the self-coupling r is increased because of greater overlap
of the slowly diverging modes with the wider array channels, which increases the
effective reflectivity and lowers the threshold gains, and (b) the cross-coupling « is
reduced because of the decreased mode divergence, which reduces the supermode
gain discrimination. As w is decreased, the supermode gain discrimination does not
increase indefinitely, but peaks at w ~ 2 ym. Since both the self-coupling r and the
cross-coupling « must ultimately go to zero, all threshold gains approach infinity
and the curves become degenerate as w — 0. While the best gain discrimination
is achieved at a narrow channel width of w ~ 2 um, the corresponding farfield is
far from ideal. The fill factor w/¢ is so small (about 20%) that numerous sidelobes
are visible, and the fraction of total power contained in the central lobe is relatively
small. This fraction can be increased, therefore, only by increasing w/¢; according

to Figure 6.10, this is achieved at a cost of decreased mode discrimination.

6.4 Conclusions

To summarize, we have demonstrated, both theoretically and experimentally,
control of the lasing supermode in diffraction-coupled semiconductor laser arrays.
Operation in the fundamental and highest-order supermodes at an output power
level of 100 mW was achieved by optimizing the length of the diffraction region.
However, the large modal gain discrimination and supermode control are achieved
at the ezpense of significant coupling losses at the array/diffraction region interface,
which results in higher threshold currents and lower differential quantum efficiency
than would be found in broad area lasers or distributed coupling arrays of compa-

rable dimensions.
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Hence, the v = 1 supermode is favored at 2D = Z;/4 (A¢ = 2x), while the v = N
supermode is favored at 2D = Z:/2 (A¢ = 7). Stable fundamental supermode
operation of a two-dimensional array of vertical-cavity, surface-emitting lasers could
therefore be achieved by diffractive coupling through a transparent substrate whose

thickness satisfies the quarter-Talbot plane condition.
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Equation (6.92) stated that the electric field amplitudes that comprise the
supermodes of index-guided laser arrays are not equal across the array. As a con-
sequence, supermodes of the unsaturated array are no longer consistent with the
unequally saturated gain and refractive index profiles above threshold. Figure 7.1
illustrates qualitatively the changes in waveguide parameters that result from gain
saturation, and the self-consistent supermode profiles one might expect a prior:.
In this chapter, we calculate the supermodes that are self-consistent with gain-
saturated, index-guided laser arrays. Because of the nonlinear nature of the prob-

lem, the supermodes so calculated depend on the pumping level above threshold.

7.1 Nonlinear Supermodes of Diffraction-Coupled Arrays

In order to illustrate these concepts, we extend the below-threshold analysis of
diffraction-coupled arrays introduced in Chapter Six to the above-threshold regime.
The propagation constant, o, previously assumed to be identical for all channels in
the array, is modified to reflect the local intensity-dependence of the complex refrac-
tive index. Because of intensity-induced detuning of the phase velocities of adjacent
channel waveguide modes, the interelement coupling is modified. The present anal-
ysis determines the consequences of this modification for the array supermodes.

We begin by recalling the self-consistency equation, (6.3), for diffraction-coupl-

ed arrays:
€

(RePR,P-T)e=0, e=]| : |, (7.1)
EN

where e is the column vector comprised of the electric field modal amplitudes within
the N channels of the array, R;, are the effective reflection matrices of the left
and right diffraction regions, respectively, 7 is the identity matrix, and P is the

propagation matrix in the uncoupled array region. To allow for intensity-induced
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Figure 7.1 The supermode profiles of uniform, unsaturated laser arrays (left) are not
self-consistent above threshold. Mc..ulation of the carrier population by non-uniform stimu-
lated emission introduces gain and index perturbations that modify the supermode intensity
profiles (right).
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detuning of the propagation constant, the propagation matrix P, formerly P =

e'9LT, is modified to

etorl 0 0
0 eto2l 0
P= ; : . : ’ (7.2)
0 0 ... eonk

where 0, = o,(len|?). Implicit in the matrix formalism is the assumption that
each channel can be modeled as a point: that is, within each channel the gain and
index are approximately independent of position. If the channel waveguides are
designed so as to support only a single lateral mode, then the approximation of
constancy in the lateral dimension is valid because higher-order supermodes reach
threshold at lower injected currents than do higher-order channel modes induced
by the nonlinearity. Of more significance is the assumption of index constancy in
the longitudinal dimension. An exact solution requires modeling saturation of the
gain by modes traveling in both the +z and —z directions: g, = o,(le} + e;lz) ~
on(lef|? + e |?). In general, |e}|? + |e; |? is not a constant along the length of the
laser!, particularly in the case of asymmetric devices (in Chapter Six, we considered
devices with single—sideci diffraction regions). However, if the coupling loss at the
array /diffraction region interface is not too high, the approximation is validated.
In general, we should also model diffraction in the coupling cavity as a nonlinear
process. Gain saturation, with its accompanying self-focusing, alters the optical
path length in the coupling cavity (and therefore the phase of coupling constant,
and the modal gain discrimination), as well as reducing the cross-talk between
channels (therefore reducing the magnitude of the coupling constant). To suppress
these deleterious effects, a transparent diffraction region should be employed; we
consider that case here. In practice, transparency can be accomplished by current
pumping with a separate contact?, or by regrowth of a higher bandgap material®.

Thus, as in Chapter Six, we model diffraction of the channel modes as a linear
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Thus, A = ryle ¥ e1192)L is an eigenvalue (i.e., propagation constant), and e is
an eigenvector (i.e., supermode), of T(e), the matrix to be diagonalized. Since
T depends on e through the saturated gain and refractive index, the eigenvalue
equation is nonlinear.

Our next task is to determine the dependence of the nonlinear channel detuning
A(e) on the electric field vector e. The intensity-dependence of the effective index of
refraction n.ss(|E|*) was derived in Chapter Two (Equation (2.13)). The intensity-

dependent propagation constant o(|E|?) = kon.ss(]E|?) is therefore

lElz/Egat - ('] - Jth)/Jsat

: \ ng Y Y .
Ey= —w—i=+ =(b ,
o(|Ef) = —w—iz+5(b+i) T EFTEL, (7.7)
By introducing normalized field point quantities e; and pump level j via
E;=Fu:-€i,
. J=Ju (7.8)
] Jaat ’
then the gain-saturated propagation constant of the i** channel is written
oil|e:]?) = ﬂw—i1+1(b+i)ﬁﬁ:l. (7.9)
’ c 2 2 1+ |e,~|2

Therefore, the mismatch A in propagation constants that is due to nonlinear de-

tuning is:
(1 +5)(lesf* — leal?)
(1 +led)(1 +leaf?)

A=(oy —02)L = 12£(b + 1) (7.10)

Equation (7.10) is a key result. It states that the nonlinear detuning between ad-
jacent channels is proportional to the difference in optical intensities within these
channels. The constant of proportionality is the product of the normalized thresh-
old gain, ¥L, and the antiguiding factor, b. Gain saturation, embodied by the

denominator of (7.10), prohibits A from increasing indefinitely.
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Having determined A(e), we turn to the business at hand of solving the eigen-
value problerﬂ (7.6). The characteristic equation of the round-trip matrix T(e) is,

from (7.5) and (7.6),
(re'd — A) [(re*A —A)(re"tA — 2y = 252] = 0. (7.11)

For the unsaturated case A = 0, the 3 solutions Ay = r + V2., Ay = r, and \; =
r — V/2x give the propagation constants for the lateral modes (e;, ez, €e3) = (1,1, 1),
(1,0,—1), and (1,-1,1), respectively. These modes will henceforth be denoted as
the (+ + +), (+0—), and (+ — +) supermodes. For A # 0, A, = re'4 and its
corresponding eigenvector is (e1,ez,e3) = (1,0,—1); the (+0—) supermode thus
remains unchanged under the influence of gain saturation. This is not the case for
the fundamental (++ +) and highest-order (+ — +) supermodes, however, which are
derived from the quadratic equation within the square brackets of Equation (7.11).

Let us denote Ay = A; and A~ = A3. The solution to Equation (7.11) for A # 0 is:

At =rcos A+ V2 —r?sin® A. (7.12)
The corresponding eigenvectors are determined, via (7.5) and (7.6), by the equation:
Ker+(re”® —A)ey+ke3=0. (7.13)

For the (+ + +) and (4+ — +) supermodes, e3 = e;. By substituting A = A(A4)
from (7.12), Equation (7.13) becomes

e je ; =z’£sinA:i:\/2+(i-£sinA)2. (7.14)
2/¢€1

Equation (7.14), subject to (7.10), is the nonlinear, self-consistent equation for the
eigenvector (ej,ez,e;). At this point there are 3 real-valued unknowns: |e;], [es],
and Ze;. The phase Ze; can be set to zero without loss of generality. Equation

(7.14) represents 2 real equations; an additional equation is required for the solution.
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The final equation is determined by demanding that the e; be chosen so as
to conserve energy. Above threshold, energy is conserved by requiring the modal
gain v to become clamped at its threshold value. In order for the modal gain v to
remain clamped above threshold, the eigenvalue A = ryle™*71+92)L myst assume
the same value for all values of e; and j as it does for ¢; = 0 and j = 0 (s.e., the

below-threshold case). The field-dependent part of A is

~

2_‘ ‘2—.
al+02=2(ﬁc‘lw—i§)+7(b+i) leal? =7 | leal" =7 | (7.15)

1+I€1]2 .1+|62'2

To satisfy energy conservation, Equation (7.15) therefore requires

leal® =5 | Jeal®~J
0. 7.16
T+lel? 1+l (7.16)

Equation (7.16) relates the field amplitudes |e;1| and |ez| to the pump level j, as
required from any statement of energy conservation. This equation is only an ap-
proximation: since the diffraction losses vary slightly as a function of nonlinear
detuning, the complex maodal propagation constant is a weakly dependent function
of the pump current.

Together, Equations (7.14) and (7.16) represent 3 real equations in 3 real un-
knowns. As a result, the nonlinear supermodes (e, e2,€;) can be determined as a
function of pump level j. Figure 7.2 (left) illustrates the solution of these equations
for the (+ + +) supermode at 3 values of excess current density j above threshold.
We find that as the pump current increases above threshold, the intensity envelope
of the (+ + +) supermode becomes flattened (|ez|/e; — 1, e; real), while the phase
of the central, high-intensity channel is advanced relative to the outer channels.
Taking into account our traveling-wave convention, this corresponds to a wavefront
that is retarded in the center for propagation along the +z axis. Figure 7.2 (right)
illustrates the ratios |ez|/e; and Zey/e; as a function of j, for different values of

the normalized coupling constant |«/r|. All curves have £x/r = 0. Figure 7.3 (left)
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Figure 7.2 Nearfield intensity and phase (left; bottom and top) of the (+ + +) supermode
at normalized pump levels (i) 3 = 0, (ii) j = 0.2, and (iii) ) = 2. The amplitude and phase
of ep[ey are shown as a function of j (right; bottom and top) for 3 values of relative coupling
(a) k/r = 00, (b) k/r = 0.6, and (c) «/r = 0.1, The coupling constant is real-valued.

illustrates the corresponding solution for the (+ — +) supermode. For the same
coupling strengths, the (+ — +) supermode has its power concentrated more and
more into the central channel as the pump strength is increased, as illustrated in
Figure 7.3 (right). This power accumulation is accompanied by a phase shift in
the central element opposite to that of the (4 + +) supermode. Note in all cases
that gain saturation causes the supermode envelope to stabilize quite rapidly as the

pump level is increased beyond threshoid.
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Figure 7.4 Amplitude (bottom) and phase (top) of the ratio ez/e; for the (+ + +)
supermode as a function of coupling constant phase, Lk /T, for 3 values of |k/r|: (a) 00, (b)
1.0, and (c) 0.4. The antiguiding factor used was b = 2.5.
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for the (+ + +) supermode at the fixed pumping value j = 2. The phase detuning
Lez /ey is zero at the values of Zk/r for which the amplitude detuning |ez|/e; — V2
is maximized (i.e., |ez|/e1 approaching 1 or oo). Conversely, the phase detuning
Llez|/e1 — mm is greatest (i.e. Lep/e1 approaching £m/2) where the amplitude
detuning is zero. The latter case occurs when /k/r compensates for the phase of

the complex index of refraction in the nonlinear gain term:
Lk/r = —tan™! b + mm, m an integer. (7.17)

It is most desirable in terms of modal stability to operate the (+ + +) supermode
where £k /r = 27 —tan~! b, and the (+ — +) supermode where Zx/r = 7 —tan™! b.
The plot of the (+ — +) supermode corresponding to Figure 7.4 has been omitted

since, from Equation (7.14), e; can be expressed in terms of ej via the relation:
eF (Lr/r) = e (Lejr £ 7). (7.18)

When (7.17) is satisfied, the phase detuning is zero and the amplitude detuning
is such that the supermode envelope is flattened to near uniform intensity. This
corresponds to minimum divergence and maximum Strehl ratio in the farfield, as
we shall see in Section 7.2.

As we have now characterized the general features of the solution, we solve
specifically for the supermodes of diffraction-coupled arrays. Figure 7.5 shows how
the amplitude and phase of the normalized coupling constant x/r vary as a function
of diffraction-region length for the array considered in Chapter Six. As the length D
decreases towards zero, |k/r| falls off very quickly and the phase oscillates through
multiples of 27. Figure 7.6 shows the saturated (+ + +) and (+ — +) supermodes
as a function of diffraction region length. Specifically, we plot |ez|/e; and Zez/e;
at the pumping level j = 2, which is sufficient to ensure near-complete saturation

of the gain. As expected, where {x/r ~ 27 — tan™! b, the (+ + +) supermode
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intensity is flattened and the phase detuning is minimal. This condition is satisfied
at D ~ 90 um. Conversely, the (+ — +) supermode envelope is flattened near
D ~ 200 pm, where {x/r ~ m — tan~! b. Thus, near the diffraction region length
where the linear analysis of Chapter Six predicts one supermode to have the lowest
threshold gain, that same supermode performs optimally in the nonlinear regime.
However, the exact location of optimum nonlinear performance is shifted to longer
D’s with respect to the location of optimum gain discrimination, by the phase of

the complex-valued nonlinear index detuning, — tan™! 5.

7.2 Comments on Supermode Stability

The supermode solutions in Figure 7.6 are not shown for D < 60 ym. This
is because, experimentally, the lateral coherence was observed to be very poor for
devices with such short diffraction regions (see Figure 6.6). As Figure 7.6 indicates,
the normalized coupling constant |x/r| decreases rapidly to less than a few percent
in this region, while its phase {x/r changes from ~ 27 at D = 60 pym to ~ 57 at
D = 0. The resulting supermode discrimination, which varies as |x/r|cos L&/r ac-
cording to Equation (6.10a), is very small and undergoes rapid oscillations in D (see
Figure 6.3). Consequently, competition between supermodes for the available gain is
vigorous within this regime. In addition, through amplitude-phase coupling (4 # 0),
this competition between supermodes can lead to dynamic instability and sustained
pulsations in the laser array output. A stability analysis of diffraction-coupled ar-
rays derived from solution of the time-dependent, coupled-mode equations® shows

that a supermode with threshold gain 4 and oscillation frequency w is stable when:

Y=Y < 0 ’ (7190)

A
f!v—wl : (7.19%)

w —wy l
wo 2nef
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Figure 7.6 Saturated (+++) and (+ — +) supermodes as a function of diffraction-cavity
length, D, at the normalized pump current level ] = 2. Amplitude (bottom) and phase
(middle) of the ratio €3 /ey in the nearfield, and the corresponding Strehl ratio (top) in the
farfield.
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lateral modes of diffraction-coupled arrays. Furthermore, the gain margin |y — 70|
vanishes wherever the supermode gains cross (D = 50, 100 pm in Figure 6.3). Stable
regions of D are therefore restricted to windows, about the optimized values, where
(7.19b) is satisfied. We expect then, for our device, the (+ + +) supermode to be
stable for devices with coupling regions of approximate length D = 754+ 15 um, and
the (+ — +) supermode to be stable for D = 160 £+ 50 pm.

Finally, recent calculations and experiments on distributed-coupling arrays re-
veal regions of instability even within the injection-locking bandwidth®~1!. In par-
ticular, the high-frequency side of the injection-locking bandwidth can be charac-
terized by a locked state in which the optical intensity pulsates chaotically, when
initiated by a step input current, because of competition between supermodes and

amplitude-phase coupling (b # 0) because of fluctuations in carrier density.

7.3 Farfield and Strehl Ratio

In this section, we determine the consequences of gain saturation on the array
farfield pattern. In particular, we characterize the farfield by its Strehl ratio, defined
as the ratio of peak intensity under gain saturation to that just below threshold!2.
Given the complex modal amplitudes (e;, €2, e3) of the nonlinear supermodes in the
nearfield, the farfield can be calculated analytically. For convenience, we assume
that each channel mode is Gaussian in shape, with complex amplitude e;, so that
the supermode nearfield S(z) is:

+1
S(z) = Z e e~ (5T , (7.21)
i=—1
where l1; = +l, the channel separation, and w is the half-width of each channel.
For the (+ + +) and (+ — +) supermodes, e3 = €;; in that case the farfield ©
becomes

O(k) 2 |F(S)F = mw’e™ 7 |e + 2¢, cos KI? (7.22)
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Figure 7.7 Farfield intensity (left) and Strehl ratio (right) of the (+ + +) supermode at
D = 70 pm as a function of pump current j. The farfields are illustrated at the 3 values (i)

=0, (i) j = 0.2, and (iii) j = 2.

where F denotes Fourier transformation, and k¥ = (27 /A)tané is the transform
variable with 8 being the radiation angle in the farfield. The term inside the absolute
value signs in Equation (7.22) represents the grating array factor, which is spatially
modulated by the Gaussian channel factor preceding it.

Figure 7.7 illustrates the farfield intensity and Strehl ratio, as a function of
excess current pumping j above threshold, of the (++ +) supermode at D = 70 um.
For this value of D, the coupling constant phase Z«x/r is 27; thus, maximum gain

discrimination from the (+ —+) supermode is achieved. As a result of the nonlinear
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detuning in the nearfield phase front, the Strehl ratio in the farfield degrades slightly
from 1.0 to a.ﬁproximately 0.95 at J ~ 2J4.

This degradation is worse if we detune Zx/r from the value 27 to ~ 2.17 by
decreasing the diffraction region length from 70 ym to 63 um. Because of enhanced
nearfield phase detuning (approaching —m/2 at J = 2Jy;), the Strehl ratio degrades
very quickly to less than 0.7 times the threshold value. This degradation is illus-
trated in Figure 7.8. Noteworthy is the fact that the full-width-half-maximum of the
central farfield lobe does not change significantly with pump current; rather, addi-
tional energy appears at angles +6 corresponding to interelement phase differences
of kl = £m.

Detuning in the other direction, however, has the opposite effect. Figure 7.8
illustrates again the farfield and Strehl ratio, at D = 90 pm, for the (+ + +) su-
permode ({x/r = 1.67r). Although the nearfield intensity envelope is flattened
as before, the phase detuning from “flat-phase” is negligible. Resulting from the
increased “effective width” in the nearfield, the Strehl ratio actually increases by
a few percent at J = 2Jy, over the below-threshold value. The length D = 90
pm corresponds closely to the condition Zk/r = 27 — tan™! b (b = 2.5), identified
in (7.17) as the point at which the detuning caused by gain saturation is exactly
compensated by the coupling constant. Here, the electric fields of adjacent channels
add constructively upon coupling through the diffraction region. As such, the opti-
mum value of D under the nonlinearity (i.e., that giving the highest Strehl ratio)
is detuned to longer D than the unsaturated case, but at the expense of reduced
gain discrimination. The same effects are apparent for the (+ — +) supermode near
D = 160 um, where Zk/r = m. The Strehl ratio degrades with current pumping
J to shorter D’s, while at longer D (190 pm), it improves to values a few percent

greater than unity.
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Figure 7.8 Strehl ratio (right) of the (+ + +) supermode at D = 70 pm, D = 63 um,
and D = 90 pm as a function of j. Farfields (left) are shown at j = 0 and at j = 1.

7.4 Extension to Distributed-Coupling Arrays

In this section, we show how the formalism (and subsequent conclusions) devel-
oped previously for discretely-coupled diffraction-coupled arrays can be applied, via
a limiting process, to distributed-coupling arrays. As such, the analysis is essentially
a nonlinear coupled-mode theory.

Figure 7.9 illustrates how we will consider a unit cell of the distributed-coupling

array to be an “unfolded” diffraction-coupled array. Let L be the total length of
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Figure 7.9 Model of distributed-coupling arrays constructed via end-to-end coupling of
diffraction-coupled arrays.

the distributed-coupling array; it is divided into an integer number of unit cells,
each of length 2(! + d) where I and d are lengths corresponding to the array and
diffraction regions. If we let the number of unit cells go to infinity, while keeping
the total length fixed, so that L/2(] + d) — oo, then the diffractive coupling within
each unit cell effectively models distributed coupling along the total length L.

The self-consistency equation is again Equation (7.1), with R, = R, = ryZ and
e as before. However, the propagation matrix P will be the product of propagation

matrices within each unit cell. Since the latter are all identical, we have (following

(7.5))

; L/21
. 7‘16'4' Ky 0 /
P = ¢ilo1+oa)l Ki rietd K , (7.23)
0 K] rietdi

where A; = (01 — 02)l is the nonlinear detuning accumulated by propagation along
length [, and x; is the complex-valued cross-coupling within each unit cell. Since

Acxl, as | — 0, we can approximate ¢4 ~ 1 +:A and then

; [
— t(e1+02)L 1: L/t )
P=e¢ }uré {I + TP } , (7.24)
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where
1 A K 0
p=1| £ —14 k ,
0 K 1A
L 7.25
A=A1‘T=(UI—02)L, ( )
andn:ﬂ--é.
r

Here p is the propagation matrix within each unit cell, and A, « are the nonlinear
detuning and diffractive-coupling constant prorated over the finite length L of the
array. The self-coupling term r; has been factored out of the matrix and absorbed
into the expi(oy + 02)L term because it represents a distributed loss and phase

shift common to all channels. Using the identity

: Z\™ .,
im_ (1 + -n—z) = et (7.26)
Equation (7.24) reduces to
P =¢entodl P (7.27)

The eigenvalue equation akin to Equation (7.6) is therefore
(ep _ ro—'ze—i(a’l"i'dz)LI)e =0. (728)

Hence, A = ry 2e™#71+92)L are the eigenvalues of eP. Computation of the matrix

eP is straightforward if we first diagonalize p according to
p=UAUH (7.29)

where A is a complex-valued diagonal matrix whose eigenvalues are the same as
those of p, and U is a complex-valued unitary matrix whose column vectors are the

eigenvectors of p. It is easy to show that

P = UeAUH | (7.30)
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Since A is diagonal, then e® is also diagonal. If the eigenvalues of p are A,, then the
eigenvalues of eP and e® are e*# (that is, A = e*»). The eigenvectors of eP are the
same as those of p. The eigenvalues and eigenvectors of the distributed coupling

array are found from (7.28) and are summarized as follows:

i 1 A
(+0—) supermode : o1+ 03 = -7 In <;§— + f) ,
€3 = —€,
€z = 0 y
i, /1 257 — AZ (7.31)
(+ £ +) supermodes : o1+ 09 = ~1 In (;-g— + —5 ) ,
€3 = €1,

2 A A
=i= /24 (22
e zK:{: 2+(2,g) .

Equations (7.31) are identical to Equation (7.16) with the substitution sin A — A
appropriate for a coupled-mode formulation. Noting that the ratio A/« is inde-
pendent of the array length L, and that A is always small compared to unity,
we conclude that differences between the gain-saturated supermodes of distributed

coupling versus discrete coupling arrays are negligible.

7.5 Conclusions

To summarize, we have calculated the supermodes of index-guided laser arrays
that are self-consistent with nonuniformly saturated gain and refractive index pro-
files. Our results indicate that, in general, the nonlinearity introduces wavefront
aberrations into the supermodes that degrade the Strehl ratio of the farfield pat-
tern. That is, although the beamwidth of the central lobe in the farfield is not a
sensitive function of pump current, the proportion of energy contained within that
central lobe decreases as a function of increasing pump energy. However, freedom
exists in diffraction-coupled arrays to tailor the phase of the coupling constant so as

to compensate for the intensity-induced wavefront detuning. The analysis predicts
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that for optimum Strehl ratio, the length of diffraction region should be shifted
to longer D than that predicted by the below-threshold analysis of Chapter Six.
This improvement in Strehl ratio is achieved at the expense of mode discrimination
between supermodes.

A clearer understanding of the farfield degradation can be gleaned by consid-
ering the intensity-induced changes in gain and refractive index as a spatial per-
turbation tht mixes the unsaturated supermodes. The mixing is consistent with
the predictions of simple perturbation theory for a nondegenerate eigenmode. The
nonlinear eigenfunction |n(j) > (denoting the n**-order supermode) is altered from

the linear one |[n(0) > vial®

< m(0)[W()In(0) >

et Im(0) > +... (7.32)

() >= In(0) > + 3

m#n
where W (j) is the current-dependent perturbation, 3, is the unsaturated supermode
propagation constant, and < m(0)|W(5)|n(0) > is the usual overlap integral. Even
though the nonlinear eigenvalue problem is not self-adjoint, the orthogonality of the
below-threshold eigenfunctions enables the application of perturbation theory here.

It is straightforward to show from (7.32) that
1) > = {1(0) > + a(5)I3(0) > ,
2() > = 1200 > , (7.33)
3(7) > = 13(0) > — a(;)[1(0) > ,
where a(j) =< 1(0)|[W(5)|3(0) > /(B? — B%). When [1(j) > or |3(j) > is the
lasing supermode, the resulting spatial perturbation W (j) is proportional to [3(0) >.
Hence, < 1(0)|W(3)|3(0) ># 0, implying that the (+++) and (+ — +) supermodes
are strongly mixed. All other overlap integrals are negligible. Equation (7.33) states

that for a given fixed D, the (+ + +) and (+ — +) supermode envelopes change in

a complementary fashion. This prediction is borne out by Figure 7.6. The mixing
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of (+ — +) into (+ + +) is manifest with the appearance, in Figure 7.8, of sidelobe
energy at farfield angles +6 corresponding to lateral k-vectors that satisfy kI = L.
This farfield degradation is due not to a breakdown in spatial coherence, but to
wavefront aberrations introduced by the gain saturation nonlinearity. Extension
of this perturbation analysis to N-element arrays would predict mixing of several
higher-order supermodes with the fundamental. Thus, the appearance of a broad
intensity background in the farfield at elevated power levels is to be expected from
even ideally fabricated semiconductor laser arrays.

Coupled semiconductor lasers are mutually injection-locked oscillators. This
analogy is especially evident from the geometry of diffraction-coupled arrays. How-
ever, the natural frequencies of individual array elements must be nearly identical
for the mutual power injection to result in stable phase locking. In practice, this
requirement places stringent tolerances on material growth and device fabrication.
Furthermore, intensity-induced detuning between waveguides of different average
optical intensity can lead to coherence collapse. While acting to the detriment of
coupled laser oscillators, this property may be taken advantage of in the fabrica-
tion of photonic switching devices. For example, the nonlinear directional coupler**
realizes all-optical switching as follows: At low input powers, optical energy is ex-
changed periodically between two coupled, phase-matched waveguides, as in the lin-
ear case!®, Above a critical input power, however, the waveguides become detuned
to such an extent that no switching occurs. Thus, switching can be accomplished
by variation of the input power level. The techniques developed in this thesis may

be applied to the design of, for example, multi-element switching amplifiers.
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Within this thesis, the results of our investigation into broad area structures
have elucjdatéd the duality between gain-guided and index-guided lasers, and can
be summarized as follows:

(1) Gain-guided structures possess inherently strong interelement coupling, but
suffer from poor mode discrimination. The distinction between broad area
laser and laser array is blurred for these devices; in either case, gain saturation
results in multimode operation at current levels just above threshold.

(ii) Conversely, index-guided structures may be designed to possess large mode
discrimination, but generally suffer from weak interelement coupling. As a
result, the tolerances on material growth and device fabrication are formidable.
Commercial devices are highly priced because of low yield.

The achievement of high power into a single mode requires structures that pos-

sess strong interelement coupling and large mode discrimination. For example, as

resonant coupling provides large longitudinal mode discrimination in a distributed
feedback laser, so might a structure based on resonant coupling of waveguides in the
lateral direction provide large lateral modé discrimination. However, such structures
must also be designed so as to desensitize mode shapes and propagation constants
to perturbations caused by temperature or intensity gradients, and by material and
fabrication inhomogeneities. Only then will single-mode, single-frequency semicon-

ductor laser emission persist into the high-power regime.
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