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Abstract

This thesis is on the application of 3-D photorefractive crystals disks
for holographic optical data storage and optical neural networks.

Chapter 1 gives some introductory background and motivation for
the materials given in this thesis. In Chapter 2, the coupled-mode anal-
ysis and Born’s approximation in anisotropic crystals is reviewed. The
results are similar to that of isotropic materials. However, there are
approximations that are often neglected in the literature.

Chapter 3 starts with the description of the hdlographic 3-D disk
for data storage, and analyzes the various alignment errors and tolerance
problems for a 3-D disk system. Of particular interest is the effects in
image reconstruction caused by rotational angle error. An optimum
configuration is found that minimizes this error.

Chapter 4 examines the data storage density of 3-D disks and vol-
ume holographic storage systems that utilize wavelength /angle and spa-
tial multiplexing. The maximum storage density and the geometry that
achicves this density is derived. |

Chapter 5 discusses the diffraction efficiency of 3-D disks fabricated
with photorefractive crystals. Practical geometries and crystal orien-
tations for achieving maximum uniform diffraction efficiency are given
and compared to the maximum obtainable diffraction efficiencies using
arbitrary cut crystals. Experimental results are shown.

Also derived in this chapter are the double grating effect from crystal
anisotropy, and the optimum configuration for getting maximum diffrac-
tion efficiency using the 90 degree recording geometry. The Kuhktarev
band-transport model of the photorefractive effect is examined briefly
with emphasis on the anisotropy of the material. The proper expression

for the permittivity term in the space-charge field formula is derived.
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Chapter 6 gives an example of an optical neural network that uses
photorefractive crystals. It is the real time face-recognition system. The
sctup and experiments are described. Some properties of volume holo-

graphic correlators are given in the Appendix.
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Chapter 1

Introduction

Holography and volume holography have been known since Gabor first in-
vented the subject in 1948 [1]. Using photorefractive crystals as a recording
medium for volume holograms began once people realized that “optical damage”
in photorcfractive crystals could be used for real-time holography [2-4].

It has long been known that photorefractive crystals can record volume holo-
grams in real time (i.e., without the need for any processing, chemical or other-
wisc). Much study has been done on the properties of photorefractive crystals as a
holographic recording material since the early sixties [5-11]. In recent years there
has been increasing interest in recording volume holograms in photorefractive
crystals for optical data storage and artificial ncural networks. 'As with photore-
fractive crystals, neither of these subjects are new. However, it is fair to say that
both have undergone a revival in recent years.

The idea of optical data storage using holograms also began‘in the 60’s and
early 70’s. Despite the effort and results of early researchers, no practical system
emerged, partly because of lack of proper components (e.g., lasers, spatial light
modulators, etc.) and partly because of competition from magnetic recording.
Although it was realized early that optical holographic storage could provide very
high storage density, the difficulties for making a practical system far outweighed
the needs at that time, which were modest by todays standard and could be better
addressed by other emerging technologies.

Artificial neural networks suffered a similar fate. Early studies had shown
interesting results, but they failed to live up to the great expectations people
had in them. One of the problems with neural networks then (and today) was

that it was often difficult or impractical to scale up the networks. Even when
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1arger networks could be built (usually with much effort), it was difficult to pre-
dict their behavior based on studies of smaller networks. Many ideas that scemed
promising on a small scale did not work satisfactory when tested on larger prob-
lems. Because of the limited capacity of computers at that time, simulations and
experiments with larger networks and real-life problems were difficult. Another
problem was the lack of adequate algorithms (e.g., back error propagation [12])
for training multilayer networks. The realization of the limitations of singlc layer
networks [13] contrasted sharply with the initial enthusiasm and promises. The
disappointment was all the greater because of this, and the field gradually faded
into the background.

At the same time, digital electronic computers and computing were advancing
quickly. Although traditional artificial intelligence (AI) also failed to deliver true
“mechanical intelligence,” electronic computers were extremely useful in many
other areas which did not require such “intelligence.” For the next two decades the
studies of neural networks and holographic data storage practically disappeared
from the mainstream of research activities.

Since the days of these initial efforts in optical data storage and neural net-
works, great advances have been made in computer and their supporting tech-
nology, as evidenced by the situation today. Interestingly enough; these advances
have only increased the demand for more computing power and more data storage
capacity. The combination of electronics, semiconductor, digital computing, and
magnetic storage had proven superior to optical data storage and neural networks
in the early days, but now they, too, were hard pressed to answer the demands
for more computing power and more data storage.

As the tasks which computers were called upon to handle became more and
more complicated, programming became more difficult and error prone. Many
problems that require certain amount of intelligence have still not been solved
by traditional AI, and in the middle 80’s people again turned to neural networks
[14-18]. With the revival of artificial neural networks, some of the problems

encountered in the early studies have reemerged. In particular, although present
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day computers are orders of magnitude more powerful than their predecessors,
the large number of -interconnections is still difficult to simulate by software or
build as hardware. A new development in implementing artificial neural networks
is the combination of optics and ncural networks. In particular, using holograms
as the interconnection weight between neurons. Although similar ideas had been
conceived in the 60’s {6,19-20], it was not until much later that the study of
optical neural networks became a field of its own [21-27]. Photorefractive crystals
.became the natural candidate for this application, not only because of its capacity
for storing huge number of interconnections as holograms, but more importantly
because holograms stored in them can be recorded and modified in real time.
With the demand for more data storage, optical data storage has reappeared
as compact discs (CD) and magneto-optic disks (MO). But the storage capacitics
of these storage media are also approaching their limits. As was realized in the
carlier effort, holographic data storage has the potential of higher storage densities
than conventional CDs. Another element in the growing interest in holographic
data storage is the speed at which the data may be read out. The requirement
of data storage lies not only in capacity but also accessibility. As the speed of
computers increase, the rate at which data can be transferred from hard disk to
RAM has become a serious bottleneck. In this respect, holographic memories
also satisfies the demand for high readout speeds with its capability of reading

out whole pages of data in parallel.

Despite all the progress made since the 60’s and 70’s, the recording material is
still a problem in holographic recording. Photopolymers and photorefractive crys-
tals remain the most promising materials. What has changed in the intervening
years 1s not only a better understanding of the material, but also improvements in
supporting components such as lasers and spatial light modulators (SLM). In ad-
dition, new types of photorefractive crystals have been synthesized which improve

the speed and efficiency of recording,.

This thesis is on the application of photorefractive crystals in holographic
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6ptical data storage and optical neural networks. The main topic is the analysis
of one particular volume holographic data storage system — the 3-D holographic
disk system [28]. Although we have in mind photorefractive crystals as the record-
ing media, many of the results in this thesis apply to any volume holographic
recording system.

The organization of this thesis is as follows: In Chapter 2, we start by re-
viewing two theories used for analyzing volume holograms: coupled mode analysis
and Born’s approximation applied to light diffraction from a volume hologram in
an anisotropic (uniaxial) crystal.

In the first part of Chapter 2, the first-order Born’s approximation 1s applied
to the problem of volume holography. The effect of material anisotropy is shown to
be minor, however some of the approximations needed are often neglected in the
literature. In the second part, the coupled-mode theory of volume holography
is examined, and is shown (in the un-depleted pump limit) to agree with the
predictions of Born’s approximation. The emphasis is again on the anisotropy of
the recording material, and the results are shown to be similar-to the results for
isotropic materials.

In Chapter 3, we describe the 3-D holographic disk (HD) system, and ap-
ply the results in Chapter 2 to analyzing this system. We examine the various
sources that cause alignment errors upon readout of the hologram. Of particular
interest is the rotation alignment sensitivity of holographic disks. It will be shown
how an optimum configuration may be set up so that the alignment sensitivity is
minimized with respect to disk rotation. We also analyze how Bragg-matching in
volume holograms affects image reconstruction when there is rotation misalign-
ment.

In Chapter 4 the geometry for obtaining maximum storage density in volume
holograms using angle or wavelength multiplexing is derived. It will be shown that
the maximum storage density is obtained for image or Fourier plane holograms.
A recording geometry that achieves both maximum storage density and minimum

rotation alignment sensitivity is shown. We then discuss some of the issues that
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need to be considered when designing a 3-D holographic disk for data storage.

In Chapter 5, we analyze the effect of crystal orientation on the diffraction ef-
ficiency of volume holograms stored in photorefractive crystals. This is especially
important for the 3-D HD system since the crystal is anisotropic and needs to be
rotated. We start with a short review of the Kukhtarev band-transport _Inoclél,
also with attention to the anisotropy of photorefractive crystals, and derive the
proper expression for the permittivity used in the space-charge ficld formula.

Next, practical geometries and crystal orientations for achieving maximum
uniform diffraction efficiency are given and compared to the maximum obtainable
diffraction efficiencies from the crystals. An experimental 3-D disk system and
its results arc shown. Also derived in this chapter are the double grating effect
due to crystal anisotropy, and the optimum configuration for getting maximum
diffraction efficiency using the 90 degree recording geometry.

The last part of this thesis, Chapter 6, is on the real time face-recognition
system. This system uses the real time recording property of photorefractive
crystals, and demonstrates the capabilities of photorefractive crystals used as
the interconnection of an optical neural network. The algorithm that 1s used
for training the network is described, and experimental results are given that
demonstrate the capabilities of the system. In the appendix, W(—‘ é,nalyze in some
detail the volume holographic correlator, which is the basic building block of the

network.
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Chapter 2

Diffraction From Anisotropic Materials

In this chapter, we review two theories describing diffraction from a volume
hologram inside an anisotropic material. The first is Born'’s approkimation, and
the second is coupled-mode analysis. The coupled-mode analysis is the usual
method for analyzing diffraction for volume holograms. For holographic optical
storage systems, a large number of holograms is multiplexed within the same
volume. In this case, the individual holograms are weak, and an alternative
way of analyzing volume holograins is the first-order Born’s approximation. As
expected, the results from Born’s approximation agree with that of coupled-mode
analysis under the undepleted-pumping beam approximation.

In either model, the anisotropic aspect of the material is usually neglected.
In this chapter, it will be shown that if certain approximations are rﬁade, then
the usual results (derived under the assumption that the material is isotropic)
are still applicable, provided minor changes are made. Although the results are
essentially the same, the details are interesting, and are often neglected in the

literature.

2.1. Born’s Approximation

2.1.1. Born’s Approximation in Isotropic Materials

We start by considering the first-order Born’s Approximation [1] for isotropic

media. In MKSA units Maxwell’s equations are

V-B =0, | (2.1)



V-D =p, (2.2)
OB
= —— 2.
VxE 5 (2.3)
oD
= —_— 2.
VxH=J+ ET (2.4)
where
D =¢E (2.5)
and
B = uH. (2.6)

We assume that € and g can have spatial variations.

From the four Maxwell’s equations and the vector identity
VD = -VxVxD+V(V-D)=-VxVxD+Vp, (2.7)

we get the wave equation

5

&

. oD oJ 0
VZD—GO/LOW = (V,{) + €0 [to "5;) —VXVX(D—G()E>+€Q EVX(B—HQH), (28)

where we use ¢y and p to denote the unperturbed permittivity and permeability
of the material !, and D — ¢E, etc., give the perturbation. The above equation
1s exact, when ¢y and po are scalars; no approximations have been made up to

this point. Assuming a time dependency of e77**, Eq. (2.8) becomes ?
(V2 + k%D = (Vp — jwegiind) — VxVx(D — 6E) — jwepV x (B — o H), (2.9)

where k% = w?eppg. The right-hand side of Eq. (2.9) contain the “source” terms
to the wave equation.
For the rest of this chapter, it will be assumed that pg is a scalar and B —

poH = 0. We will also drop the Vp — jwegpod term. This can be done for the

! Not to be confused with the permittivity and permeability of vacuum.

% See for example Eq. (9.102) (page 420) of J. D. Jackson’s Classical Electro-
dynamics (John Wiley & Sons, New York, 1962) [1].
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following reasons: in photorefractive crystals, the total charge is neutral, and is
practically static. Thus it does not contribute to the diffracted light that is at
much higher frequencies. Similarly, the currents are small and slow varying.

We now assume that the perturbation is linear, i.e.,
D = (e + A€)E, - (2.10)

(where Ae may be a tensor). In the (first-order) Born’s approximation, we take

Ae

€0

D — ¢FE = AeE ~ AeE(®Y = —D©), (2.11)

where the superscript (0) is used to denote the solution to the unperturbed inci-
dent wave equation (i.e., when Ae = 0).

The Green’s function for the operator (V2 + £2) is [2]

1 ejk‘x_xll

G(x,x') = — (2.12)

4r? |x — x|
We can formally write the solution to Eq. (2.9) as

D(x) ~ D) + = [ax' o] [ vy [Aepw s

D000+ [ G (TGt} e

From physical considerations, we include only outward propagating waves and
discard the converging wave solution. (Recall that the time dependency is e~7%!.)
We now expand the spherical wave e/#*l /|x| in terms of its plane wave com-

ponents 3

JkIXI :
6' X //dk dk Z ’k | e](ka:m""kyy‘l"kz,az)’ (2.14)

where k; o = /k% — k2 — k?/ for o =1 and k, o = —/k? — k2 — k; for o = 2,

The components with a = 1 give plane waves traveling in the positive z direction,

and those with o = 2 give plane waves traveling in the negative z direction. In

3 See for example reference [5]. A proof is given in Appendix A,
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the z > 0 region, only the forward waves (o = 1) exist, and in the 2z > 0 region,

only the backward waves (a = 2) exist. Using this, we can write Eq. (2.13) as

D(x)

€]k“ X

. Ae
~D(°)(x)+8 > Z //dk dk, ol dx' ¢mikex {VXVX[JD(°>(X')]}

€o
=D (x) + A(ky) %% dk, dk,, (2.15
Y
' a=]

where k, = (k;, ky, k2, a), and

A(ka):m-/dx’ e~ Tkax’ {VXVX[ DO (x )]} (2.16)

Thus the diffracted wave is decomposed into its plane wave components, A(k, ).
Note that A(k,) is just the 3-D Fourier transform of V x V x {%Dm)(x')} mul-

tiplied by a constant.

2.1.2. Diffraction from an Isotropic Medium

We now counsider the case where the incident wave is a plane wave. Let the

(unperturbed) incident wave be *
DO)(x) = Dye’k2* e, (2.17)

where e; is a unit vector that gives the polarization of the plane wave, and satisfies
ey - ky = 0. We first analyze the situation for a simple grating.

Assume that inside the region V there is a simple grating given by

Ae = egAe e KX 4 ¢, (2.18)

1 We will use the subscript 1 in the wave vectors and polarization vectors to
denote the scattered, or diffracted wave (the signal beam) and subscript 2 to

denote the incident wave (the reference beam).
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where K is the grating vector and Ae may be a tensor. (c.c. here means complex
conjugate. We assume Ac to be recal.) In the following we will consider only the
e IKX term of Ae, since we can get the contribution from its complex conjugate

by substituting K for —K and then use superposition to find the final answer.

Let -

ki = -K + k. (219)
‘Then
Ae (0) iky x
'f—D (X) = DO(AeTeg)e’ : (220)
0
and
V XV x [éf-D(O)(x)] = —Dy k; x (k1 X (Aepey))el®r ™, (2.21)
€0

Note that the expression in Eq. (2.21) is perpendicular to ky. If we let v = k; /k;
be the unit vector in the direction of ki, and u; the unit vector in the direction

of

—k1 X (k] X (AE,~€2)) = kf[(AEreg) - (V . AGTGQ)V], (222)
then we have °
Ae (0) 2 | Ky
V xV x E—D (X) = leg (ul . AE-,-GQ)GJ t 4. (223)
0

Substituting this into Eq. (2.16), we have

jkiD (ke —Ka)ox! [ — K _
A(ka):m-u](ul - A€, eg) /Ve i(ka —k2) (e 7K ) dx', (2.24)

where the integration is over the region V.

For a general Ae, we write it as a sum of simple gratings

Ae(x') = Z eoAege KX (2.25)

a

S Ifs=w—(w-v)v=su, where |v|=1and ju|=1,then s> =s-s =s5-Ww =

w? —(w-v)? and s = su = (u-w)u.
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In this case we have

3 D¢ (K —ko)x! KX
Aka) = g0 Z k2, a1 (a1 - Acges) L e—ilka=ka)x' | —iKox' gt
(2.26)
where
k, = k2 - Ka; (227)

and u, is the unit vector in the direction of —k, x (ka X (Aeaeg)). The integral
in BEq. (2.26) gives the amplitude of the plane wave component of the diffracted
wave that has wave vector k.

In general the expression in Eq. (2.26) cannot be simplified further. However,
if we assume that all k, and u, are approximately the same in the summation in

Eq (2.25) and (2.26), then we can approximate

k, ~ k; (2.28)

U, =~ Uy (229)

to be constants, and move them outside the summation. Eq. (2.26) then becomes

Ak,) ~ M cup (ur - Uka)ez) o (2.30)
Y 87{'2|kz’a| 1 1 o 2 b .
where _
. ’ /
Ulky) = / ! =10k x' BX) (2.31)
v €0

is the (tensor) 3-D Fourier transform of the perturbation Ae/es. Eq. (2.30) and
(2.31) are exact (within the Born’s approximation model) for a single grating, but
are only approximately true when the assumptions in Eq.s (2.28) and (2.29) hold.
For the applications we arc interested in (namely, holographic data storage and
optical neural networks), the conditions are true. For the general case, however,
it is necessary to go back to Eq. (2.26).

We now apply these results to the case of a single grating inside an infinite

slab. We take V' to be the region between z = —L/2 to L/2, and use Eq.s (2.30)
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and (2.31) (or Eq. (2.24)). The result is

.2 L »
D(x) = DO(x) - j (—";Z”L ) sine (§(k;z - klz)) (ur - Aeyer) M4 u,
1z
.2 L -
(Dol sine { —(ki, +k1z) ) (W5 - Aeyer) €™ % uy,  (2.32)
2k, 2
where
k1. = \/“ — k. — Ky, . (2.33)
kIl = (kltﬂv k1y7 "12)7 (234)
and
k;’ = (k]:mk]yv _k;z)- ‘ (235)

The second term in Eq. (2.32) is a forward propagating plane wave (when x
is in the z > L/2 region outside the crystal) while the third term is a backward
propagating plane wave (when x is in the z < —L/2 region outside the crystal).
The sinc function gives the familiar Bragg-mismatch factor. When k;, (the z-
component of ky ) is close to k7, (the z component that satisfies the propagating
condition, Eq. (2.33)), the backward propagating wave (the third term) is negli-
gible. Earlier we had ncglected the complex conjugate part of Ae in Eq. (2.15).
We can go back and repeat the process above to yield a similar expression for
the contribution from the complex conjugate term in Ae. However, since we are
assuming that k; (Eq. (2.19)) is close to Bragg-match, the two terms we get from
the complex conjugate term will be far from Bragg-match conditions, and are
therefore negligible.

As mentioned before, u; is perpendicular to ky, but not perpendicular to kj.
However, the amplitude of the forward propagating wave approaches zero when
the z components of k] and k; differ more than 1/L, thus u; will be approximately
perpendicular to k.

The diffraction cfficiency at Bragg-match angles (i.e., when Ak, = 0) is from
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Eq. (2.32) 6

k2L ? kL 2
n= {2k Aere2|} {QCOSG |U1 . A6T82|} (236)

where 6, is the angle between the z-axis (normal to the crystal surface) and k;.
On the other hand (for transmission type holograms), coupled-mode analysis

gives us (at Bragg-matched angles) [3]

) kL kL ?
i - Ae, ~ - Ae, ,
s ( 2+/cos 8y cos b, le1 - Ae e2|> {2cos 8, le1 - Ae ezl}
(2.37)

for weak holograms, where 6, is the angle between k, and the z-axis, and e; is the

polarization of the diffracted wave in the k; direction. Comparison of Eq.s (2.36)
and (2.37) show that the predictions of coupled-mode analysis for weak holograms
are identical to the results derived using Born’s approximation if we take u; = e;.
Noted that in coupled-mode analysis, we start out by postulating a polarization
vector ey, whereas in Born’s approximation, the polarization vector u; comes out
of the equations. In both cases, the Bragg-angle sclectivity is given by the same
sinc factor in Eq. (2.32). For reflection type holograms, the sine in Eq. (2.37) is
replaced by a hyperbolic tangent, but for weak holograms, the result is the same.

As a second example, we consider the situation of a simple grating in the
regionz = A/2tox =—-A/2, y=B/2toy=—-B/2,and z = L/2 to z = —L/2.
Using Eq. (2.24), §ve get

k2D ABL
D()IWN)+] WJ-NWﬂW'//ﬂ'“ Zﬂ% |

sinc (—E%Akz,ﬂ) sinc (—I;Aky’o) sinc (gAkz’a) }ejk“'x, (2.38)

where ko = (kg, ky, k2 o), and

Akq = ko —ki. (2.39)

6 We used € = ¢y + Ae e 7E* 4 ¢.c.. whereas in some definitions, people use
€= ¢+ %Ae e~1Kx 4 ¢ ¢ instead.
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Thus the diffracted wave given by the second term in Eq. (2.38) is a combination
of plane waves centered around k; where the “spread” in the spectrum is given
by the sinc functions. In the limit where A — oo and B — o0, the sinc’s for =
and y become delta functions, and the expression reduces to the expression in
Eq. (2.32). |
We can simplify the expression in Eq. (2.38) if we approximate the integral
by integrating over only the central lobe of the sinc functions for k; and k,. We
will assume that k; has a positive z component, and consider only the a = 1
components (i.e., plane waves that travels in the positive z direction) since for
the @« = 2 components Ak, is large. In the following, we will drop « from the
notation. Note that the range of k, and k, are 27/A and 27 /B. From Eq. (2.39),

we have

Ak, =k, — kix (2.40)
Aky = ky — kuy. (2.41)

We now change variables to Ak, and Aky,. We have

SO R B = B = (b, — AR — (kyy — AR 2]

ki :
: AkﬁﬁAky,  (242)

) 4, ——
=k 2T L! !
12 1z

where kf, is given by Eq. (2.33).

The approximation above assumes that

k] d k]
k’2 T ¥ .
lz>>47r(A-{—B>, (2.43)

which is satisfied if we assume that k; is approximately pointing along the positive
z direction (paraxial approximation) and A and B are not too small. We also

approximate 1/lk;| by 1/|k:.| and

Ak, ~ K, — kys. (2.44)
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Thus Ak, gives the mismatch of k; along the z direction. We can now write the

integral in Eq. (2.38) (with only the a = 1 term) as

// dk, dk, {%sinc (gAkz) sinc (?Al@) sinc (g—AkZ> } elkx

R,’ABL /¥ sine P—(kiz —kiz)
ki, 2

/d(Ak,,,) sinc éAkz exps—j |z — klzz Ak,
2 Kk,
. /d(Aky) sinc (gAky) exp {—] (y — I];}y z) Aky}
1z
2
:47T L sinc (-Ii(ﬂz - kz)> ekix.
vlz 2
(1 B 1 ki,
rect (A (;c kiz~)> rect (B (y kbz)) . (2.45)

Note that the rect functions are just the geometrical projections of the cross-

section of the z—y plane along the ki direction at z (where the field is being
measured). Eq. (2.45) is therefore the familiar Bragg-mismatched plane wave
truncated by the geometrical projection of the finite x—y plane cross-section of
the hologram. Since we have only assumed the paraxial approximation of k} along
the z-axis, the above formula is valid also for the 90-degree recording geometry
(this will be described in more detail in more detail in later Chaptérs). For exam-
ple, we can have the incident wave (in the ky direction) traveling approximately
along the positive z direction, and the diffracted wave (in the ki =~ k; direc-
tion) traveling approximately along the positive z direction. From Eq. (2.45),
the angle selectivity is determined by the thickness of the hologram L and the

Bragg-mismatch k], — k;. along the z direction.

2.1.3. Born’s Approximation for Anisotropic Crystals

In the wave equation (Eq. (2.8)), it was assumed that both €y and po were
scalars. In the case of anisotropic crystals ey (the unperturbed permittivity) is

a tensor constant, and the wave equation, Eq. (2.8), is no longer true since in
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genefal:

Vx(eE) # €V xE. (2.46)

Because of this, the z, y, z components of the fields are no longer separable and
the scalar Green's function e/¥*~*'l/|x — x| cannot be used. Nevertheless, the
systein is linear, and there exists a Green’s function for the solution. For the
anisotropic material, however, the Green’s function is a tensor.

To derive Born’s approximation for the general casc of anisotropic crystals,

we again start with Maxwell’s equations

V.B =0, - (2.47)
V.D =0, | (2.48)
Vx(e'D) = juwpH, - (2.49)
VxH = —jwD, (2.50)

where we assumne the ¢ /%! time factor, and assume that therc is no current
or charge. (As remarked earlicr, the charge distribution in the material 1s very
closc to static and therefore does not contribute to the diffracted light field.) We
assume that _

€ =€y + Ae, | (2.51)

where ¢ is the unperturbed permittivity tensor. For small Ae (also a tensor), we

have 7

Ale™y = —eTAee™?, ' (2.52)

and we can write Eq.s (2.47) to (2.50) as

V.B=0, (2.53)

V.D=0, (2.54)

T We have (e + Ae)™! = [e(I + e 1Ae)]™! = (I + e 1Ae) te™!. But for
small Ae, we have (I + e 'Ae)™ ~ (I — €71 Ae). Therefore (e + Ae)™! =
el —eTAee! and A(e™ ) m e T Aee™!.
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Vx(eg'D) = jwupH — M, (2.55)
VxH = —jwD, (2.56)

where
M= -Vx(—e'Aee D). (2.57)

Born’s (first-order) approximation is obtained when we approximate D by D)

the unperturbed solution to Eq.s (2.53)-(2.56). Thus we take

M=~ —Vx(—e1Ae e ID®)
= —Vx(—e"1Ae E®) | (2.58),

and the problem is reduced to finding the solution for (the anisotropic) Maxwell’s
equations for a given magnetic current M. Since the system is linear, if we can
find the dyadic (or tensor) Green's function (impulse response) to the system,
G(x,x') (where G is a tensor), then in principle we can find the solution given
any source M by superposition.

As noted earlicr, for isotropic materials the problem could be scalarized since
the components of D could be decoupled, and each component actually has the
same (scalar) Green’s function. In the gencral caée of anisotropic materials, the
components are coupled through the permittivity tensor e, and we must use a
dyadic (tensor) Green’s function. Unfortunately, there is no simple expression
for the dyadic Green’s function for Maxwell’s equations. It can be shown that
the dyadic Green’s function G can be expressed in terms of some scalar Green'’s
function, g. However, no analytic solution to g is known [4]. Another approach is
to express GG directly in terms of plane wave components that are eigenmodes of
the unperturbed anisotropic material [5--8]. This is the method that will be used
below. We will consider only uniaxial crystals. Note that this method can also
be used in the isotropic case, and would work even if we did not know that the
Green’s function for isotropic materials is the spherical wave.

First, recall that in a uniaxial crystal there are two propagating eigenmodes

in any direction of propagation [9]: they are the extraordinary mode (e-mode)
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where H ¢ = 0 (also called the TM mode), and the ordinary mode (o-mode) where
E. = 0 (also called the TE mode). Here E., etc., are the component of the fields
along the direction of the optical axis. Usually the optical axis is the z axis.
However, in this chapter, we assume an arbitrary crystal orientation and in this
case z 1s not necessarily in the direction of the optical axis.

Given any transverse wave veetor ky = (k¢, ky), we can find four plane wave
modes having wave vector ko = (ky, ko) (i-e., k; = ko, where k, depends on k)
that satisfy Maxwell’s equations. Each a here corresponds to an eigenmode plane
wave: 2 traveling in the positive z direction (e = 1: o-mode/TE, and o = 2:
e-mode/TM), and 2 traveling i.n the negative z direction (o« = 3: o-mode/TE,
and « = 4: e-mode/TM). 8 For any E that satisfies Maxwell’s equations, we can

then express E in terms of the plane wave solutions:

E(X) = /dkf {Z ejkazfa(kt_)ea} 6jkt -p, (259)

a=1
where p = (z,y) and each k, is a function of k;.
Now consider a point source M = u,8(x) (where u, is the unit vector along
the z-axis). Let the solution be G, and write this :11_1 terms of the plane wave

components
4

Ga(x) = / dki {Z c-""‘“a(mkt)ea} TP, (2.60)

o=1

where the a,’s are as yet unknown. Similarly, we have

4 .
G,(x) = / dk, {Zefkazz)a(kt)eo} c/keP (2.61)
a=1
and

4
G.(x) = / dk, {Z eikazc(,(ki)ec,} eik+ P (2.62)

a=1

as the solutions to point sources M = u,6(x) and M = u.§(x), respectively (u,

and u, are the unit vectors in the direction of y and z). The aq’s, by’s, and ¢o’s

8 Of course if k; is too large, the waves will not propagate.
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are unknown at this point. In the next subsection, we will show how they can
be found. For now, we will assume that they are known. We can then write the

dyadic (tensor) Green’s function G as
4

G(x,x') = {G3,Gy, G} = /dkt {Z ejka(z—z,)eaqg} ejk"(P—p’)’ (2.63)

a=1

where qo = (@a,ba, ca), and g, is the transpose of the column vector qq (the

éxpression e,q’, is then a tehsor). For arbitrary source M, the solution is then
E(x) = EO(x) +/ G(x,x"M(x') dx’, | (2.64)
\'4

where integration is over the region V in which the grating is present (e.g., from
z==L/2to z=L/2), and E(® is the unperturbed incident beam. The second
term is then the diffracted wave from the grating.

It should be noted that in region z > z', only the modes propagating in the
positive z direction (o = 1,2) cxist, whereas in the region z < 2/, only the modes
propagating in the negative z direction (a = 3,4) cxist.

As before, we assume that the incident wave is of the form
E()(x) = cikazXe,,, - (2.65)

and is an eigenmode. (Note that in anisotropic crystals, the polarization e, of
the electric field is in general not perpendicular to the wave vector ky). We also

assume that the perturbation is of the form
Ae= Ac'e B> L cc., ' | (2.66)
and let
ko, = " K + kg, (2.67)

For the rest of this section, we will write Ae for A¢€'.
As before, we will consider only the first term in Eq. (2.66) since it will be
obvious later that the contribution from the second term will be far from Bragg-

match conditions. We now have
M = -V x (e 1 Ac eq, e’k X)

= —jkq, X (e_lAe ea2ejk.,,1-x)_ (2.68)
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" Let
b = —jka, x (e 'Ace,,), (2.69)

and write M as

M = be/kir PHika, 2 (2.70)

The diffracted wave is then

' 4
E(x) = / dk, {Z e’*7e, (qo - b)c"kt‘p/ dx! el (ker—ke) P’ +i(kay —ka)?’
| a=1 / v
(2.71)
For the case of the infinite slab where V' is the region between z = —L/2 and

z = L/2, the integral over dx’ gives us
1 gk =k ) p'+i(ka, —ka)z' 2 - : L ‘
dx' el ey =Fa)® — 47* L §(ky — ky) sinc §Aku,z ,  (2.72)
1%

where Akq,. = ko, — ko is the mismatch in the z dircction (normal to the crystal

surface). The expression for the diffracted wave in Eq. (2.71) then reduces to

4
, L - : .
E(x) = 4" ) L sinc <§Aka,z> e/t Ptikeie (qq - b), (2.73)
a=]

where k, corresponds to the transverse wave vector k, = ke. Note that k =
(k¢1, ko) corresponds to a propagating eigenmode and has the same transverse
wave vectors as ko, = (ku1, kq, ), differing only in the 2z component (normal to
the crystal surface). Thus the diffracted wave is in the form of four propagating
eigenmode plane waves. As before, if X is in the region z > L/2 outside the crystal,
then only the forward propagating components (o = 1 and 2) are present; if x is
in the region z < —L/2 outside the crystal, then only the backward propagating
components (« = 3 and 4) arc present.

The angle-selectivity of each eigenmode is the familiar sinc function, and at
Bragg-match angles (when Ak, . = 0) the amplitude of each eigenmode plane

wave 1s

4m? [ etk Ptikaz(q b)), (2.74)
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where by Eq (2.69), we have

Ja - b= Qo * [—‘jkal X (E—l - Ae eag)]
= _j(qa X kal) ' (6_1 - Ae eaZ)- (275)

Now since € is a symmetric tensor, so is €', 2 We may then write Eq. (2.75) as
Qo -b = —jle7w,) - A€ eqn, (2.76)

where

Wo = Qo X Kq, | (2.77)

is perpendicular to ky,. It remains now to find the qq vectors.

2.1.4. Solution to the q.’s

To solve for the q, vectors, we will use a Reciprocity Theorem given in
reference [7]. Let Ey, Hy and E,, Hy be two solutions to the anisotropic Maxwell’s

equations (Eq.s (2.47) to (2.50)). We use F1(x,1) to denote

Fi(x,t) ¥ F(-x, —1). . (2.78)

Thus the fields that have the supecrscript “1” have a time dependency of e*?

instead of e~7**. The reciprocity theorem states that (see Appendix B)
j[dA (E; xH! + E, xH) = / dx (Hy - M} — H} - M,), (2.79)
s v

where integration is over the region V and its surface S.

Consider the case where the magnetic current source is

M =P x-x'), (2.80)

® The property of symmetry for a tensor is independent of coordinate systems;
i.e., if a tensor is symmetric in any particular coordinate system, then it is

symmetric in all coordinate systems.
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where P = (P,, P,, P;) is an arbitrary constant vector, and x' = (¢',3',2') is an

arbitrary fixed point. Using the dyadic Green’s function, we have solution

4
By(x) = G x) P = [ dk, {Z ey (g P>} ) (281)
a=1
and

1
H](X) :_jT,UVXEl(x)
1 4
— jka(z=2") Ao - ke (p—p')
=on dk; {a_s_:le’ (ko X €0){qa P)} el¥t\PTPY - (2.82)

Note that k, x e, is perpendicular to ko (direction of propagation), but in general

e, is not perpendicular to k,. Let
E,(x) = e.ikto-p+jk,azeﬂ — E;(x) — (_,v—.?.k:o‘P—J.kﬁZeﬂ,. (2.83)

where kg corresponds to the transverse wave vector ky and E; is the At propa-

gating eigenmode plane wave with transverse wave vector ky. We then have
L o codikns . ‘ 1 ok
Hy(x) = —efkoPtikes(ks xe5) = H;(x) = —e ke P=ikaz (ks x ep).
wi Wik
(2.84)
Since this is a plane wave solution, the corresponding magnetic source M is zero.

Consider the region between z = 2/ + A and z = z/ — A. In the limit where

A — 0, the left-hand side of Eq. (2.79) gives us

/ (Ele.‘;+E;xH1)-uzdp+/ (BE; x HI + Bl x Hy) - (—u,) dp

Z% = e=PoP =14+ u, - fes x (ka X €a) — (€ X Kg) X €a](qa - P)
472 op ik -
~on 0/=36 u, - [eg x (ko x €4) — (€5 X kg) X €5](qa - P).
(2.85)
The right-hand side gives us
/V(—H; x M;) dx = —H}(x')- P
= L eikop-ikez(e y ky) - P. (2.86)

Wk
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Substituting these results into Eq. (2.79), and using the fact P is arbitrary, we

conclude that

-——(eg xkg) = Zuz [eg x (ka X €a) — (€5 x kg) X €4]qa

a=1

- Z u; - [eg % (ko X €4) — (e5 X kg) X €4]qa, - (2.87)
a=3

where all the e,, kq, etc., are for the particular transverse wave vector kqp.

Define the 4 x 4 matrix

4
A= {aﬂa}ﬁ,a:l, (2.88)
where
[ 4u.-leg x (ko xea) —(eg x kg) X eq], ifa=12;
Apo = { —u, - [eg x (ko X €a) — (ep x kg) x &q], if a=3,4. (2.89)
Assume that A is invertible, and write its inverse 471 as
- 4
U= {bap} s amr- (2.90)
The solution to Eq. (2.87) is then
1 &
Qo = 4—- z—: a8 eﬂ X kﬁ) (2.91)

Note that eg X kg is parallel to the direction of the magnetic field of the Btk
eigenmode plane wave (for the transverse wave vector kqy).

The diagonal terms of the matrix A are

Goa = 22u; - ko — (€4 - ko)eq]
= 42u; - (eq X (€q X ka))[ka| sin ¢, (2.92)
where we take plus for o = 1,2, and minus for & = 3,4. ¢, is the angle between

k., and e,. Note that e, x (e4 x Kq) is in the direction of the Poynting vector

(which is not necessarily the same direction as k).
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For o = 1,3, the modes are ordinary modes (TE), and ey x ko = 0 (thus

®a = 90° and sin ¢, = 1). We therefore have

tao = F2u, -k = £2|k,| cos by,

(2.93)

where 8, is the angle between the z-axis and the Poynting vector (for ordinary

waves, this is in the same direction as ko). For @ = 2,4, however, we have the

‘extraordinary modes (TM), and in general e, x ko # 0. In this case, we get

oo = 12|ky| cosby sin ¢g.

Thus if the diagonal terms dominate, we have approximaitely

Qo ~ (eq X kqy)

~ 2
A% a0
€n X ka
8n2|k,|cos by sing,

Applying this to the results in Eq.s (2.74), (2.76), and (2.77), we get

Wo = Qo X Ka,
_ (eq X ka) X kq,
Sn2lky|cos B,y sindy

At exact Bragg-match angles, we have ko, = k4, and

(eq X ko) X ko = —|ko|? sin oy da,

(2.94)

(2.95)

(2.96)

(2.97)

where d, is the unit vector in the direction of the D field of the a'* eigenmode

plane wave. 1® Using this result, we then have at Bragg-match angles

kel

872 cos b,

(o X Ko, ) € 'Aceq, = (e7'dqa) - Aceq,.

(2.98)

10 From Eq. (2.49), VXE, = jkq X eq = jwprH, and from Eq. (2.50), VxH, =
ZJLuk" X (ko X €4) = —jwD4. Therefore (eq xkq) X Ky 1s in the same direction

as D,.
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Now let
1 1

€ = = .
le=lda| ~ (/die2d,

(This can be done since € is symmetric.) Then €, is the permittivity seen “along

(2.99)

the direction” of do (at the optical frequency). ! Since dg is in the direction of
D,, €7 1d, is in the dircction of the electric field E,. Let e,, be the unit vector

in the direction of E,, then we have from Eq. (2.98)

Ko

—1 _
(Qa X Ko, ) - € " A€ ey, = —871”260 po—

(eq, - A€ egy,), (2.100)
and from Eq.s (2.74) and (2.75), the amplitude (electric field) of the scattered

wave is then

kolL
"

€, cos b,

lea, A€ eqy]. (2.101)

This is similar to the result we obtained for the isotropic case in Section 2.1.2.
When the permittivity tensor e becomes a scalar, the results are identical. These
results arc similar, but slightly different from the predictions of couple-wave anal-

ysis, which will be discussed in the next section.

In general, of course, the off-diagonal terms in A are non-zcro and there
is no simple solution to the inverse matrix A~!. For the special cascs where
z (the normal of the crystal surface) is either parallel to the crystal axis, or
perpendicular to the crystal axis, it turns out that the off-diagonal terms are
exactly zero. These are of course the most commonly used cuts for recording

reflection and transmission type holograms.

As remarked earlier, e3 x kg is parallel to the direction of the magnetic field

of the B** eigenmode plane wave. Let hg = kg x e5 . It can be shown that for

11 Strictly speaking, this is ambiguous since E is not parallel to D. What

we have here is that sincc E = Eye, = ¢7'D = ¢ 1D,d,, therefore E? =

E-E =D?(d, - ¢ %d,), and Do /Ey = 1/vdq - €7 2d,.
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these two special cases

((el)<112)'llz:0, (e2><h1)'uz:07 )

(e; x hy) -u, =0, (e4 x hy)-u, =0,
) , (2.102)
(e3 x hg)-u, =0, (e2 x h3)-u, =0,

L (e3 x hy) - u, =0, (e4 X h3)-u, =0, )

and

{[(el X h3)+(e3 X h])] | P 0,}
. (2.103)

[(e2 x hy) + (eq x hy)] - u, =0.
Thus only the diagonal terms of the matrix A remain, and the solution is given

by Eq. (2.95).

2.2 Coupled-Mode Analysis

Although it is possible to extend the treatment in Section 2.1 to higher order
Born’s approximation, coupled-mode analysis offers an alternative for analysis
when the effect of the media on the incident beam can no longer be neglected.

The geometry of the coupled-mode analysis is shown in Figure 2.1. 6; (6;)
is the angle between k; (k;) and the positive z direction. HO\;&reVer, k;, k2 and
the z-axis do not necessarily lic in the same plane. As before we assume that ks
is the incident (reference) beam, and k; is the diffracted (or signal) beam. The
grating vector is K = ko — ky, and the time dependency is e_j“’_t. The normal
to the crystal surface is designated the z-axis, however this is not necessarily the
crystal c-axis (i.e., the crystal slab has an arbitrary cut). 6, 1.na,y be larger than
90°, in which case we have reflection type holograms.

The coupled-mode analysis starts out by assuming that
E = e, E;(2)e’ ™ + ey By(2)el*2 ™, (2.104)

where e; and e, are polarization vectors. In the coupled-mode analysis, it is

assume that ko gives an exact propagating wave, whereas k; does not. For



Figure 2.1. Geomectry for coupled-mode analysis

anisotropic crystals, the e;’s are assumed to be eigen-polarizations. But this
is somewhat ambiguous for e; since k; does not correspond exactly to a propa-
gating wave. We will assume that k; is “close” to a propagating wave, and that
_— . . . .
e 1s “close” to the corresponding eigen-polarization.
In isotropic crystals, the polarization vectors are perpendicular to the k vec-
tors, so that k; - €; = 0 (for 7 = 1,2). In anisotropic crystals, however, this is no

longer true, and instead we have
ki -ee; =0 (2 = 1,'2), : (2.105)

where ¢ is the permittivity tensor. In a source-less media, p and J are zero, and

we have
VxVXE = w?ueE. | (2.106)
Now
VxVxE
= —kq x (k1 x e1)E1e/™ ™ + j {u, x (k; x e1) + ki x (u; x e;) %%_ efHi
d’E .
'?21 (uz X (uz X € ))6'7k1'x
—ka x (k2 X €2)Epe™™ + j {u, x (ky X &3) + ko X (u, X e3)} % efkex
d’E . .
—d.,22 (ux x (us x eg))el*2™, (2.107)
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where u, is the unit vector in the positive z direction. The second derivative
terms (Edzi:,) in the above equation are dropped under the assumption that the
E;’s are slow varying functions of z.

Since e; corresponds to an eigen-polarization, it is a solution to the wave

equation Eq. (2.106) when there is no perturbation. Thus we have
—kz X (k2 X 62) = wzﬂéoez, (2108)

where ¢ is the unperturbed constant permittivity tensor. We assume that the

perturbation is of the form !2

e=¢y + Aee’E* 4 cc., (2.109)
where c.c. stands for complex conjugate, and Ae is also a tensor. We then have

w?ueE =w? e E + w? pAe e Eqefkax

+ W pAe *ea Bye?®1* 4 (higher order terms). . (2.110)

Substituting Eq.s (2.107), (2.108) and (2.210) into Eq. (2.106), matching the terms

of e/¥i"* and then taking the dot product with e;, we arrive at the coupled-wave

equations
dE : .
cld—zl = jEE1 + jT2E, (2.111)
dE .
Cz—d—z3 =]F1E1, . (2112)
‘where
C; = (kl X ei) . (uz X e,-)
= 2k; cos 0; — 2(k; - e;)(u, - €;) (1=1,2), (2.113)
I =wiu(es - Acey), (2.114)
Ty = w?u(e; - Ae *es), (2.115)
and |

12 See comment in footnote 6.
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£= wzp(el . 6081) +e- [k] X (kl X el)]

= w?p(e; - eper) — |ki x eq|? (2.116)

Note that in isotropic crystals, k;-e; = 0 in the ¢; factors. For anisotropic crystals,
this is true only for the ordinary mode. In practice, however, the imaginary part
of ¢; is usually small and can be neglected. For an uniaxial crystal, it can be

shown that for extraordinary modes, the cosine of the angle between k; and e; is

"y NG

cos(si, ;) = W = — " e N sin2¢;, (2.117)
n# nt

where ¢; is the angle between the c-axis and k;, and s; = k;/k;. (For ordinary
mode, k; - e; is zero). Notc that cos(s;,e;) = k; - e;/k; is zero Wheﬁ k; is per-
pendicular or parallel to the c-axis, and reaches maximum around ¢; = 45°. For
LiNbO3, An/n is about 4%, while for BaTiOjs, it is about 3%.

At Bragg-match angles, k; is a propagating wave, and using the result in
Eq. (2.108) with the subscripts changed to 1, we get £ = 0. The solution for
£ = 0 is well known. For transmission type holograms, the boundary conditions

are E1(0) = 0 and F2(0) = Eq, and we have at z = L

E](L) . 62F2 . I‘J’z . PZ
—————=',/— sin L)~j—L, 2.118
Eao J ey c1¢2 J ] ( )

for weak holograms. For reflection type holograms, the boundary conditions are

E1(0) = 0 and Ey(L) = Eyp, and we have at z = L

E(L) = j4 /_ﬁ?_ tanh _hl L= 2 L, (2.119)
Esy il c1C2 1

for weak holograms (note that for reflection type holograms, 6; > 90° and ¢; < 0).

If we neglect the second term in ¢; and assume that Ae is real, then we have

(from either Eq. (2.118) or (2.119))
El(L) . kl(el . AG 62)

—N7

Eao

L, (2.120)

2€1 cos B4
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where w?p/ky = k1/e1, and e; is the permittivity associated with the wave vector
k.

It should be noted that if we define the diffraction efficiency as the ratio of
intensities (in power per unit area), then Eq. (2.118) gives us (assuming that the

second term in c; is zero, etc.)

cosfy| . o [ ki(ey-Aees)L )
= | 90802 , 2.121
7= cos 0, s (261 V/cos 8y cos b, ( )

while Eq. (2.119) gives us

. . A .
p = |80 wmﬁ(hwl e”w), | (2.122)
cos 6y 2€14/cos by cos B,

If 8; =0, or §; = 7 — 85, then the factor | cos 6/ cos 61| is one. But in general it

i1s not.

For the non-Bragg-matched situation £ # 0. If we assume that Ey =~ Eyp is

approximately a constant, then Eq. (2.111) gives us

E] (Z) B FQZ . ( £Z ) ]£ /2 ’
— 7 g 7 ——sinc | =— ) e!5?/°1, 2.123
Ey J c1 1 . ( )

The angle selectivity is therefore determined by the factor

£z _ wlp(er - eper) — |er x kq? - (2.124)
201 4k‘1 COS 61 — 4(k1 - €1 )(uz . e1)
For isotropic materials, this becomes
&z k% — k2 Ak 1
= = Ry ~ —=Ak, z, 2.125
2¢1  4kqcosb, ‘ 2cos ‘ 2 ? ( )

where k% = w?ueq is the wavenumber for the propagating wave, Ak = ko — ki,
and Ak, is the mismatch of ky in the z direction (See Figure 2.2). The width of
the Bragg-selectivity is determined by setting £z/2¢y = .

If we compare the result in Eq. (2.120) with the corresponding result ob-
tained using Born’s Approximation, they are seemingly the same. There is, how-

ever, a subtle difference. In the Born’s approximation (Section 2.1.3), the ¢ in
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Figure 2.2. Bragg-mismatch of diffracted wave-vector

Eq. (2.120) was given by *
1

€1 = 2 3
\/dl € dl

where ¢q is the permittivity tensor, and d; is the unit vector in the direction of D.

(2.126)

As explained in the previous section, €; is the ratio of the magnitude of D;/E;
(note that in general Dy and E; are not parallel). In the coupled-mode analysis,

however, €; is given by

Lt (2.127)
€1 = .
1 w2l,l, k) -
and is the effective permittivity for obtaining the k-vector of the eigenmode. To
see the difference between these two, let ¢; be the angle between the c-axis and

k;. Then for the extraordinary wave, Eq. (2.126) (for Born’s Approximation)

gives us
1 cos? ¢y  sin’ ¢y
- > > (2.128)
€] €2 €2

where the permittivity tensor is €g = diag{es, €z,€,}. On the other hand, it can

be shown that for the coupled-mode result !4

1 cos? ¢y N sin? b1

€] €z €z

(2.129)

13 See Eq. (2.99). The notations have been modified to be consistent with those
used in this section.

14 See for example Yariv & Yeh’s Optical Waves in Crystals, Eq. (4.6-4) on
page 87 [9].
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For the ordinary waves, there is of course no difference, and for isotropic materials,
€; = €, and the two results are identical. For general uniaxial crystals, however,
the definitions are, although the difference is practically zero. To sce why this is

true, we write Eq.s (2.128) and (2.129) as

1 cos® ¢y sin? ¢y
— = 2.130
ni ni + ni ( )
and ,
1 cos? ¢y sin® ¢y .
= , , 2.131
n? n2 + n? ( )

where n, and n. are the ordinary and extraordinary index of refraction (note that
€ = eon?). If we assumec that An = n, —n, is small compared to n, and n., then

to first order, both Eq.s (2.130) and (2.131) give us
n? = nZ(1 + 2n,An sin ¢1). (2.132)

As mentioned earlier, for LiNbO3, An/n, is approximately 4%, and for BaTiOs,

it is about 3%. The two formulas give essentially the same results. '°

Finally, there is one last approximation that was made in asserting the diffrac-
tion efficiency in Eq.s (2.121) and (2.122). For isotrdpic materials, the index of
refraction does not depend on direction, and therefore the magnitude of the Poynt-
ing vector is just proportional to the square of the electric field. However, since

the magnitude of the Poynting vector is

S=[ExH|=,/2nE, (2.133)
p |

where p is the permeability of the material (assumed to be a scalar), and since
for anisotropic matcrials the index depends on direction, the expression for n
in Eq.s (2.121) and (2.122) should actually be multiplied by a factor of n;/na,

where n; is the effective index of refraction for a plane wave propagating in the

15 Nevertheless, the difference is fundamental, and would show up if An/n were

large.
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k; direction. In practice, the factor ny /ng is different from 1 by at most An/n,

which is only 3% to 4% for LiNbO3; and BaTiOs;.

In sumnmary, the results derived from coupled-mode analysis for anisotropic
crystals are essentially the same as the results for isotropic materials (assuming
that k; and e; are approximately perpendicular to each other). |

In the limit of wéa,k holograms, the results from coupled-mode analysis are
similar, but slightly different from the results derived from Born’s Approximation.
In practice, however, the difference for anisotropic crystals such as LiNbO3 and

BaTiO3; is negligible, and for isotropic materials, the difference disappears.
Appendix

A. Plane Wave Representation of Spherical Waves

The plane wave representation of a spherical wave, as given in Eq. (2.14), was
obtained in reference [4] indirectly through arguments on radiation fields, etc. In
this Appendix, we will derive it in a more straight forward fashion.

Consider the expression |

b= L i Z// dkydly Ag(ke,ky)el ket tbyytha:2) (2.134)

4rr

where r = /% + y? + 22, and

K2—k2—k2, ifa=1;
ka,: = (2.135)

’ —\ k2 — k2 — k2 fa=2

The component with o = 1 gives us the forward propagating wave (which exists
only for z > 0), and « = 2 gives us the backward propagating wave (which exists

only for z < 0). It is casy to show that ¢ satisfies

V26 + k2o = 6(x), (2.136)
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Let
P = e ikox — ed(koz x+koyyt+ko: Z)’ (2.137)

where k3, + ki, + k5, = k*. We will assume that ko, = \/k2 — k3, — k¢, > 0.

From Green’s theorcm,

[ 5576 - 69%p)ix = § 96— 6vu) nas, (2.138)
o JdV S

where S is the boundary surface of V and n is the unit vector normal and pointing

outwards from the surface S. From Eq.s (2.135)-(2.137) we have
WV2e — oV = é(x), (2.139)

so that the left-hand side of Eq. (2.138) is 1 if V includes the origin. On the other

hand, we have

2
YV¢ — oV = Zj / / dkydky Ag(kyz, ky)(kq + ko)e?(ka—ko)x (9 140)
a=1

We now take V' to be the region between z = —A and z = A. In the limit where

A — 0, the right-hand side of Eq. (2.138) becomes

% (V¢ — 6Ves) - n dA
JS

= // dkdk, Ak, ky) {// dady j(ky . + k(,z)ej(kl —ko)-x}
. Jz=0+
—_ // dk,(lky A2(km,ky) {// d"(?dy .7.(']‘72,-2 n koz:)e]'(kz—ko)-x}
z=0~— )

:j8772k02.:41(k01,k0y). (2141)

Note that in the region z > 0 only the @ = 1 component exists, and in the
region z < 0 only the « = 2 component cxists. We are assuming here that
ko, = \/kz — k2, - kgy > 0. If we take kg, = —\/k2 — k2, — kgy < 0 instead,
then the above expression reduces to 7872k 2A2(kosz, koy). Since the left-hand

side of Eq. (2.138) is 1, we have

1
[ 4 kﬂl, k = S o597 . 2.



37

for both a = 1 and 2, and from Eq. (2.134), we get

e]kr

— ‘]_ _:_]'__ J(koz+kyytk, z)
—=1 / / e ’ dk,dk,, (2.143)

where r = \/@? + y? + 2% and k, = /k? — k2 — k2 > 0. We take the plus sign if

z > 0 and the minus sign if z < 0.

From this result, we have the 2-D Fourier transform pair:

1 TSV R B 1 IVFRE 2|
Va2 +y? + 22 2m  Jk? — k2 — k2 o

(2.144)

B. Reciprocity Theorem

In this Appendix, we derive the reciprocity theorem used in subsection 2.1.4.

in a slightly more general form than Eq. (2.79): [7]
]{dA-{El x H! + E; x H}
S
:/ dx (H; -M} -H} .M, +E} .3, - E, - J}). (2.145)
V .

~To derive this result, we start with Maxwell’s equations. We have 16

VxE; = jwB; — My, |  (2.146)
VxH; = —jwD; + Jy, (2.147)
~VxEl = —jwB} —MI, | - (2.148)
—VxH} = jwD] + 3], | (2.149)

Then

V-(E; xH})=H} . VxE; —E, - VxH}

= —H}  (—jwB;) - E; - (jwD}) — H} - M, + E; - J}(2.150)

16 Recall that the superscript “1” is used to denote a reversal in position as

well as time; ie., x — —x and t — —t. In this case, Vx — —Vx and

d/dt — —d/dt.
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and

V-(El xH)=H; - VxE] - E!. VxH;

= —H, - (jwB;) — El - (—jwD,) + H; - M} — Ef - J;. (2.151)
Since € is symmetric, we have
Ei-D} =E; - (E]) = (E1)-E} =D, - Ef. (2152)
We also assume that 4 is symmetric (or a scalar), so that we have
H, - B} = B;-H]. : (2.153)
Using these results, we get
V(E; xH}+E} x H{) = —H} M, + E, - 3} + H, - M} - E} - 3,. (2.154)
Now apply the divergence theorem to both sides of Eq. (2.154). We then have
j[s dA - (E; x H} + B! x Hy)
=/V dx (—H} -M; +E, -3} +H, - M} —E! . 1,). (2.155)

In the case where Jy and J; are zero, Eq. (2.155) reduces to Eq. (2.79).
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Chapter 3

Alignment Sensitivity of
3-D Holographic Disks

The holographic recording system considered in this thesis is the 3-D holo-
graphic disk. In this Chapter, we begin by describing the 3-D holographic disk sys-
tem that combines spatial and angle or wavelength [1,2] multipiexing for recording
data. The rest of the thesis will be mainly devoted to analyzing various issues
associated with the 3-D disk system. After describing the 3-D disk system, the

remainder of this chapter concentrates on the question of alignment sensitivities

of 3-D disks.

3.1. Introduction

The theoretical upper limit on the storage density of volume holography is
V /A%, where V is the volume of the hologram and A is the operating wavelength of
light. This limit is in the order of 10'? bits per cm®, however in practical systems
only 10°-10'° bits per cm?® is achievable due to the finite numerical aperture
of the optical system that transfers the data into the optical system and the
dynamic range of the crystal. For example, typically 10%® holograms can are
superimposed at the same location, each hologram consisting of 10% x 10% pixels,
giving a total memory of 10% bits per location. To be competitive with magnetic
and semiconductor memories, which are becoming cheaper and better all the time,
1t 1s necessary to further increase the capacity of holographic storage systems.

This is done by recording on multiple locations; i.e., by spatial multiplexing. One
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el Werteference
beam
(reflection

type)

reference beam
(transmission type)

Figure 3.1. The 3-D holographic disk (HD).

of the simplest systems for performing spatial multiplexiﬁg is the 3-D holographic
disk [3,4].

As in all spatial multiplexing schemes, the most crucial component of the 3-D
holographic disk is the scanning mechanism that steers the readout mechanism
to different locations of the disk. In the 3-D HD disk, spatial multiplexiﬁg is done
in a disk configuration with rotation used to access different recording locations,
as shown in Figure 3.1. Two light beams (a signal and a refereﬁce) interfere
inside the photorefractive crystal to create a phaée grating via the photorefractive
effect. Multiple holograms are recorded at the same location By changing the
reference beam angle (angle multiplexing) or by changing the Waveleﬁgths of the
reference and signal beams (wavelength multiplexing). Because of the Bragg-
matching requirement of volume holograms, individual holograms can be read
out by changing the direction of the reference beam (for angle multiplexing), or

the wavelength of the reference beam (for wavelength multiplexing).

In the holographic data storage system, high readout speed and capacity
are achieved by reading out whole pages at a time. To convert this information
to electronic signals for further processing by computers, etc., the hologram is
imaged onto devices such as RAM chips with detectors or CCD cameras. For
the data to be transferred correctly, it is necessary to position the reconstructed

holographic image accurately. For data retrieval, even shifting the data page (the
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reconstructed image) by one bit could be disastrous. Since we wish to store data
at very high density (and therefore requiring small pixels), alignment errors can
be a serious problem. It is therefore important to reduce alignment sensitivity for
both spatial and angle/wavelength multiplexing.

Of course the conditions upon readout can not be precisely the same as duriﬁg
recording. Most of this alignment error comes from multiplexing. For exﬁmple,
_because wWe use angle multipléxing, there is likely to be some error in the reference
beam angle during readout, and this will cause the position of the reconstructed
image to change. In addition, there are other sources of error such as disk wob-
bling from spinning the disk at high speed. For any spatial/angle/wavelength
multiplexing holographic recording system, we can summarize all the possible

sources of alignment errors into the following categories:

. change in reference beam angle
. change in reference beam wavelength

1

2

3. hologram rotation

4. translation (or shift) of hologram
5

. tilt of hologram

The main sources of error, however, come from the changes used in the mul-
tiplexing s’cheme. -Thus for a 3-D disk system that uses angle multiplexing, the
main concerns are disk rotation and reference beam anglé (and translation if we
also scan in the radial direction). For a 3-D disk system that uses wavelength
multiplexing, the coﬁcern is error in reference beam wavelength instead of refer-
ence beam angle. In this chapter, we examine the effect of these five sources of
error on alignment sensitivity. For the main part of the paper we will assume
that the reference beam is a plane wave.

The general holographic recording system that we consider is shown in Fig-
ure 3.2. We have some linear passive optical system L1 that maps each point
source in the input plane into some wave-form (the impulse response of L1). At

the holographic recording plane, this wave (the signal beam) interferes with a ref-
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Figure 3.2. The general holographic recording system

erence beam to form an interference pattern that is recorded as the holograph. !
Upon applying the same reference beam, the original wave-form is ’reconstructed
and passes through another passive optical system L2 to be imaged to a point at
the output plane. The mapping of the‘ two optical systems is such that the irﬁage
at the input plane will be reproduced at the oﬁtput plane, possibly with scaling
and/or inversion. _

In this chapter, we analyze the effects of small changes in the holograph
-on image reconstruction. Strictly speaking, the treatment is for thin (or pla-
nar) holograms, but the results also hold for thick (volume) holograms within
the Bragg-match regime. The effect of the Bragg-selectivity property of volume
holograms will Be éxamined briefly in each section, and then in more detail at the
end of this chapter. | |

We will consider only two types of passive optical systems: (1) the Fourier-
transform lens, where the impulse response is a plane wave (e.g., Fourier plane
hologram recording systéms), and (2) free space, where the impulse response is

a spherical wave (e.g., image plane hologram recording systems). Almost all

1 In this chapter, the term “holograph” will be used to denote the recorded
interference pattern on the material, and the term “hologram” will be re-
served to mean the reconstructed, or diffracted wave form emerging from the

recording material when the reconstructing reference beam is applied.



44

bractical imaging systems are equivalent to one of the two cases. The holograms
are assumed to be either transmission type or reflection type holograms. We do

not consider the 90-degree recording geometry here.

3.2. Angle Alignment Sensitivity

In this section we will assume that the reference beam is a plane wave, and
consider the effect of error in the angle of the readout reference beam. The impulse
response of the imaging system L1 is the signal beam, which can be either a plane
Wa\.fe or a spherical wave. We will assume that for case 1, the wave Vectérs of
the reference beam, signal beam, and the normal to the (volum'e) hologra.phic
recording medium lie in the same plane. For case 2, we assume that the wave
vector of the reference beam, the normal to the holographic recording medium,
and the point source of the spherical wave signal beam lie in the same plane. We

will refer to this condition as the co-planar geometry.

(x,3,) y

S§\/

z=0

Figure 3.3. Recording system with plane wave reference beam and

plane wave signal beam.

3.2.1. Plane Wave Signal Beam

We first examine the situation for case 1, shown in Figure 3.3. The input

plane is at the plane at z = —I, and the image is in a region centered at a point
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on the z axis (ie., y = 0). We consider a particular point (zo,yo) of the input
image. The signal beam coming from this point source is converted into a plane
wave by the Fourier transform lens. It forms an interference pattern with the
reference beam plane wave at the recording plane (at z = 0), which is at some
distance away from the Fourier transform lens, but not necessarily at the Fouriér
plane. We will initially assume that the hologram is planar.

We >assu1ﬁe that both reference and signal beams are propagating in the
positive z direction, ? and that the wave vector of the reference beam plane wave
R iies in the z—z plane. The wave vector of the signal beam plane wave S lies
close to the z—z plane (sinée thé image lies near the z axis).

Let the signal S and reference R beams be
R = 4 elFluestuyytus), | (3.1)
S = B eiksrtvyyto.2), | (3.2)

The wave vectors are then ku and kv. Let the angle between u (reference beam)
and the z axis be 8, and the angle between v (signal beam) and the z axis be

0s. Under paraxial approximations, we have

%z%zm%,' . - (3.3)
vy A %9 ~ 0, (3.4)
v, = cos g, . (3.5)
uy = —sinfp, | o (3.6)
uy =0, (3.7)
u, = cosfp, (3.8)

where F' is the focal length of the Fourier transform lens. The grating vector K
18

K=Fk(u-v), » ' (3.9)

2 This corresponds to a transmission type recording geometry. The results

turn out to be the same for reflection type recording geometry.
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where

K; =k(uz —vg), (3.10)
Ky = k(uy — vy). (3.11)

When R changes angle in the z—z plane by Afg, the wave vector of R changes

from ku to ku’', where |
W = (—sinfi — cos b A, 0, cos O — sin b Ag). (3.12)
The reconstructed hologram becomes at z = 0 (the holographic recofding plane),
R'T|z=0 = C‘exp {7k(ve + u;A0R)x + vyy}, - | (313)

where T = R*S|,=¢. Comparing this with the original signal beam, the wave

vector of the reconstructed signal beam has changed to kv’', where'

v = (sin 0s + cos8s Abg, 0, cosfs — sinfg AGS)

sinfs cosfp

= (sinﬂs — cosfr Afg, 0, cosfs + A()R> , | (3.14)

cosfg
and Afg is the angle by which the signal beam wave vector kv has rotated (in
the z—z plane). Note that [v/| = 1. The z, y components of kv' are the same
as ku' — K, however there is a mismatch in the z component. The angle Afs
satisfies the relation

—cosfs Abs = cosOp ABg, ' (3.15)

which at the input plane corresponds to a shift in the point source (zq, o) by
Az = Fcosfs A8s = —Fcosfr AOp. (3.16)

For volume holograms, the above relation is still true within the Bragg-
selectivity angle, which is given by [5] 3

2\ cosfg

nL sin(fg +8s)’ (3.17)

AeR,Br'a_qg =

% This angle corresponds to the full width of the sinc function between the first
nulls. See Eq. (2.32) or (2.123).
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e {;vheré L is the thickness of the hologram, ) is the wavelength, and n is the index

of refraction of the recording material. Thus the point source at (2o, o) will move

by
2cosfp cosfs AF
Azx = - - —_
n Sln(()R + 05) L

before disappearing due to Bragg-mismatch. For the image of the point’ source

(3.18)

at (zo,y0) to disappea_r.beforcf it moves by é (the inter-pixel distance), we require

that
' gAF o
—<é 3.1
L 9 (3.19)
where
_ 2cosfgr cosfg

= . 2
n sin(OR + 95) (3 0)

In the preceding analysis, the effect of refraction at the interface.of the record-
ing medium and air was ignored. To use the results above, we should first change
to angles inside the recording medium. Roughly speaking, when seen from inside
the recording media, distances from the object to the interface of the récording
media will appear to be n times the actual distance (under paraxial approxima-
tions). Thus the focal length F of the lens should be replaced byvnF and the
quantity ¢ in Eq. (3.20) should be changed to |

_ 2cosfp cosbs
Sin(eR -|—95) ’

(3.21)

where all angles are inside the recording media. Note that from Eq. (3.19), in-
creasing the thickness of the recording media L increases the alignment sensitivity
(i.e., the system becoines more sensitive to alignment errors).

The value of g is typically around 1. For example, if we take n = 2.2 (ap-
proximately the index of refraction of lithium niobate), s = g = 30° outside
the recording media, then 6s = g = 13.1° inside the recording media, and g is
approximately 4.3. If we have F' = 10 cm, A = 500 nm, and L = 1 cm, then from
Eq. (3.19), 6 should be larger than 21 pm for the image to disappear before mov-
ing by the inter-pixel distance due to change in the reference beam angle. If we

take 05 = 0 and 6r = 30° (outside the recording media) instead, then ¢ = 8.57,
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and & has to be larger than 42 pm. The condition in Eq. (3.19) is usually satisfied.
For example, a typical liquid crystal TV such as the Epson LCTV has pixel sizes
of around 40 pm.

We now consider the implications of Eq. (3.19) in terms of storage density
of holograms. * Under paraxial approximations, the spatial extent of the Fouriér

transform 1is

A
= —. 22
= (322)
Substituting this into Eq. (3.19), the condition becomes
gs < L. : ; (3.23)

Thus given the optimum recording size s (in terms of recording density), the
thickness of the recording media L should be at least a factor of g larger than s
in order for the image to disappear before it moves by the inter-pixel distance, é,

due to change in the reference beam angle.

GRS, y
L —] ]
$ P

o z

// R /" '
(
/ -
/ l .
= z=0

Figure 3.4. Recording system with plane wave reference beam and

spherical wave signal beam.

4 Please see Chapter 4 for more details.
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3.2.2. Spherical Wave Signal Beam

We now turn to case 2 where the signal beam is a spherical wave, as shown
in Figure 3.4. The reference beam is again a plane wave, and the signal beam
is assumed to originate from the point source at (z¢,y0,—!), where yo ~ 0. The
holographic recording plane is again at z = 0, so that the point source lies in the

z-z plane. Under paraxial approximations, we have
R=A ejk(uzz+uyy+uzz)’ . i (324)
B in k 2 2
§=—eM expig[(@=20)" +(y-w)]p, (3.25)

where uz, uy, and u,, are given by Eq. (3.6)—(3.8). The hologram at z = 0 then

becomes ‘
k
T = Texp {ig; [te = + (v~ 0]} (3.26)
where Ty is a constant, and

a=1xq— ugl. (3.27)

When the reference beam changes angle by Afg (in the z—z plane), the wave
vector becomes ku', where u' is given by Eq. (3.12). The reconstructed hologram

(at z = 0) is then
/ ! B’ k 1N\2 2
§'=RT =" expijzll@—) +u—w)], (3.28)
where B’ is some constant, and

Ty = zo — | cosfr Abpg. (3.29)

Comparing Eq. (3.28) with (3.25), the reconstructed image of the point source

(z0,y0) appears to have shifted in the = direction by
Az =1 cosfr Abg. (3.30)

On the other hand, the Bragg-angle selectivity is given approximately by

Eq. (3.17), where 85 is the angle between the z axis and the line connecting the
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V;.)oint. source (g, Yo, —!) to the origin (the center of the holograph). ® For the

reconstructed image to disappear before it moves the distance §, we require that
— < §, (3.31)

where g is given by Eq. (3.21). As before, all angles are inside the recording
media. If we consider the effect of refraction, the angle 85 is approximately

2 2
fs = tan ! ('770”‘%) . ‘ : (332)

Since [ is comparable to F, the conditions given by Eq. (3.19) and (3.31) are
about the same. '
In the limit where we record in the image plane, [ = 0, the shift Az = 0 to

first order. 6

3.2.3 Perpendicular Angle Changes

Up to now, we have assumed that the reference beam angle changes direction
-within the same plane formed by the reference and signal beams. We now consider
the effect when the angle change is perpendicular to this plane.

If the angle changes by A#, then for case 1, the image will shift by Az = FA#,
where F' is the foéal length of the Fourier transform lens. For case 2, the shift
will be approximately Az = A6, where [ is the distance from the image plane to
the holograph. Since image reconstruction of volume holograms ié not sensitive
to angle changes in this direction, the reconstructed image moves a considerable

amount before disappearing from Bragg-angle mismatch.

® The wave front of the signal beam spherical wave recorded near the origin
— the center of the holograph — is approximately a plane wave traveling in

the direction from (zg,0, —!) to the origin.

6 Strictly speaking the formulasin Eq. (3.25) are only valid when [ is sufficiently
large. Nevertheless the conclusion that Az is zero when [ = 0 is true.
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3.3. Wavelength Alignment Sensitivity

In this section we consider the effect of wavelength crrors in the reference
beam on the reconstruction of holograms. We assume that the reference beam is

a plane wave reference beam that changes in wavelength A, but not in direction.

3.3.1. Plane wave signal beam

We assume as before the expressions in Eq.s (3.1)-(3.11). When the wave-
length of the reference beam changes by A, k changes by Ak = —27AM/A2, and

the wave vector of the reference beam changes to
Eu= (kug, k'uy, k'), ' (3.33)
where k' = k + Ak. The wave vector of the reconstructed signal is then
kv =ku—-K = (kvy, kv, k'v), (3.34)

where v}, = v, + Awv,, etc., and

A’Ux - (
Avy = (
Av, = (

Note that here |v'| is in general not equal to 1. Following the same line of argu-

) (s o), | | (3.35)
)(uy Vy), (3.36)

TR

>(u,— o | (3.37)

ments as before, the reconstructed image of the original point source at (zg,%yo)

will appear to have moved in the & direction by

Az = FAv,

=— (%) (sinfg +sinfg) F

= (A\)\) (sin fr + sin 95‘) F . (3.38)

4
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™ since vy =sinfs = z¢/F by Eq. (3.3).
On the other hand, the mismatch of the z component of the wave vector k'v’

as given by Eq.s (3.34)-(3.37) is

Akzzk'(v'z—— l—vf—v?)

~ {(uz —v,)+ g—z—(uz — vz)} Ak
© Ak

=~ osts [1— cos(6s — 0r)] |
2mnA ’
f m []. ot COS(GS — HR)] . . (339)

The wavelength-selectivity (fuli—width) is given by %—Akz = 2x, and for the case
where g = 180° and g = 0 (reflection holograms), Eq. (3.39) gives us the

familiar formula

AP A
—_— = —. 3.4
ey (3.40)
In general the Bragg-selectivity is given by
6
Ak =T ORTs (3.41)

- L 1- cos(fs + 6r)’
To avoid having the point source move by more than § before disappearing due to
Bragg-mismatch, we require that Eq. (3.19) hold, where g is now given by (after
adjusting for refraction)

_ 2cosfs (sinfg + sin fs)
B 1 —cos(fs + 6r)

As before, all angles are inside the recording media. When recording wavelength

(3.42)

multiplexed holograms, it is advantageous to record reflection type holograms
with g = 180° and s =~ 0, which gives us ¢ = 0. In contrast, if we had taken
Or = s = 30° (outside the recording media) and n = 2.2, then ¢ = 8.6, which is
twice that of angle multiplexing.

Thus compared to angle multiplexing, a system that uses only wavelength
* multiplexing is less sensitive to multiplexing error if we use the counter-propa-
gating reflection geometry. For §r = 180°, ¢ &~ z¢/F under paraxial approxima-
tions, and Eq. (3.19) becomes

ALy

T < 8. | (3.43)
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For wavelength multiplexing, g (for wavelength alignment sensitivity) is zero for

the counter-propagating reflection geometry (6g = 180° and s = 0), while the

angle selectivity for this geometry is at a minimum.

3.3.2. Spherical Wave Signal Beam

We now consider spherical wave signal beams. For spherical wave signal

beams, we assume the same gebmetry as case 2 for angle multiplexing (Figure 3.4),

except that here the wavelength rather than the direction of the refereﬁce beam

is changing. As before, the hologram at the recording plane z = 0 is (from

Eq.s (3.26) and (3.27))

T =Ty exp {]%[(m —zo +ugl)? + (y— yo)Z]}

for some constant Tp. Illuminating with the reference beam

! Tk a-x
R =A¢ ,

where k' = k + Ak, we get the reconstructed hologram at z = 0 to be -

!

! k V »
S'=RT=C exp{Jg[(w—wb)zﬂy—yo)z]}v-

where

l’=l+Al=(1+é;-),

, Ak
g = To + T lux.

(3.44)
(3.45)

(3.46)

(347)

(3.48)

Thus the point source will appear to have moved from (zy, yo, —!) to (z§,yo, —1").

It will not only have shifted by

Az = <%) lu,,

in the z—y plane, but also its depth will have changed by

Ak
l=—)L
ai=(4h)1

(3.49)

(3.50)
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This has the effect of defocusing, and the situation is therefore more complicated.
If we require that Az < 8, for the change in the Ak given by Eq. (3.41) (where 6g
is the angle between the z axis and the line connecting the point source (zg,0, —1)

to the origin), then we again have the condition given by Eq. (3.19), where now

_ 2sinfg sinfs
T 1-— COS(GS + BR)

g .(3.51)

As in case 1, g & 0 for the reflection geometry where g = 180° and 6s = 0.
The concern for wavelength multiplexing therefore is primarily on the defocusing
effect. However, since we are interested in high density storage, we would like to
store at the image plane, where I = 0. This is exactly where the defocusing effect

1s zero.

3.4. Rotation Alignment Sensitivity:

Plane Wave Reference Beam

We now consider the effect of spatial multiplexing in a 3-D disk system, which
is done by rotating the disk. In this scction we assume that the reference beam

is a plane wave.

3.4.1. Plane Wave Signal Beam

We first consider case 1 where the signal beam is a plane wave, as shown in
Figurc 3.3. As in Section 3.2.1, we consider a point source at (zg, yo ) on the input
plane, and the signal and reference beams are plane waves given by Eq.s (3.1)

and (3.2). Under paraxial approximations, we have

vy =x9/F (3.52)

vy = Yo/ F (3.53)

v, =4 /1—vi—vl, | (3.54)
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o Wheré F' is the focal length of the Fourier transform lens. Following the same

analysis as before, the holograph at z =0 is
T = Tyel Ko+ Kyy) (3.55)

where K, and K, are given by Eq.s (3.10) and (3.11). When T is rotated about
(z¢,yc) by Aé, it becomes

T' = Ty exp {j[(K: — KyAd)a + (K, + KoAgpl}, — (3.56)

for some constant 7. Illuminating with the reference beam R to T reconstructs

the hologram, which is

RT' = C exp {jk(vyz +vyy + vi2)}, . (3.57)

where
0, = va — (vy — uy)Ad, (359)
v, = vy + (vz — Uz )A. . (3.59)

Comparing this to the expression for S in Eq. (3.2) and using Eq.s (3.52) and

‘(3.53), the reconstructed hologram appears to originate from a po‘int source at
Ty = zo — (Yo — Fuy)A¢ - (3.60)
Yo = o + (20 — Fuz)Ad. : BRC22)
This is just the original point source rotated about the center at
z., = Fu,, | (3.62)

Yo = Fuy. (3.63)

Thus upon rotating the holograph T by A¢, the image will appear to have rotated
also by Aé about the center (z,y,) = (Fug, Fuy). This center is independent
of the actual center of rotation (z.,y.) of the holograph and also independent of

the distance ! between the holograph and the Fourier transform lens.
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Since the center of rotation of the (reconstructed) image (z!,y.) is different
from the actual center of rotation of the disk (z., y.), the radius of rotation of the
image (Ry) could be larger or smaller than the radius of rotation of the holograph

(Ru). In the present case, the radius of rotation of the image is

Rr=F,/ul +ul. - (3.64)

It is ihteresting to note that the apparent direction of motion of the reconstructed
image is determined only by the reference beam angle, and is independent of the

direction of motion of the holograph itself.

3.4.2. Spherical Wave Signal Beam

We now consider case 2 where the signal beam is a spherical wave, as shown

in Figure 3.4. We assume the same situation as in Section 3.2.2, where R is given

by Eq. (3.24) and S is given by Eq. (3.25). The holograph T is then

k .
T = Tyexp {75 [(z —a)® + (y — b)*] } ) . (3.65)
where
a=z9+ ugl (3.66)
b=1yo + uyl. _ (3.67)

If we rotate T" about (z.,y.) by a small angle A¢ (counter-clockwise), the

point (z,y) moves to (z',y'), where
=z — (y —y:.)A¢ (3.68)

y' =y +(z—2)Ad. (3.69)

The transparency function 7' then becomes

r=Tiew{igle-dP+o-¥71l @)



for some constant 7 s, and
a=a—(b-y.)A¢ (3.71)

¥ =b+(a—z:)Ad. (3.72)

Applying the original reference plane wave R to read out the hologram, we

have at z = 0 (immediately after the transparency/holograph)

RT' = AT, exp {?ﬂ

£ [(z—a)2+(y—b) + 2,z + 2luyy]}
= Cexp {7% [(1: —a Flu Y +(y -V + luy)z] } , (3.73)

where C is some constant. Comparing this with the expression for the original
signal beam (Eq. (3.25)), the reconstructed wave RT' is a spherical wave that

appears to have originated from the point (zg,y§, —!), where

2o =0 — (Yo — Yo ) A (3.74)
Yo = Yo + (z0 — 2, )Ad - (3.75)
and
2l =z, — ugl (3.76)
Yo = Yo — Uyl. | (3.77)

The original point source at (zy,y¢) thus appears to have rotated by A¢ (counter-
clockwise) about the point (z},y.), and for any image, when the holograph T
rotates by A¢, the reconstructed image will appear to have rotated by the same
angle about the center (z.,y!).

When [ = 0, the hologram is recorded at the image plane, and (z.,y.) coin-

cides with (z.,y.). 7 In this case Ry = Ry.

" Strictly speaking, the paraxial approximation that leads to Eq. (3.63) does

not hold for !/ = 0. Nevertheless the conclusion above is valid.
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In general, from Eq.s (3.76) and (3.77), the radius of rotation of the recon-

structed image is

Rr={Ry + (2 + u?l)l2 —2l(zcuy + ycuy)}l/2 . (3.78)
Comparing the R of the image planc hologram (which is equal to Ry) to
the Ry of Fourier tr‘ans.form holograms, the ratio of the two is

R _ F

= —./u? 2 ' 3.79
RH RII u:t + “‘y ( )

3.4.3. Optimum Configuration

In either case — Fourier plane or image plane holograms — the reconstructed
image will appear to rotate around some center by the same angle that the holo-
graph rotates. The best that can be done then, is to make R; = 0; i.e., have

the reconstructed hologram rotate about the center of the image itself. From

Eq.s (3.76) and (3.77), this can be done if we set
Te=ugl, (3.80)

Yo = uyl. (3.81)

(It is assumed herc that the center of the image is at * = 0, y = 0. If this
is not true, then the conditions given above change, but the idea is the same.)
A realization of such an arrangement is shown in Figure 3.5. In this optimum
configuration, the pixels at the edge of the image will move the most, and in the
worst case the radius of rotation is r, where r is the distance from the center of
the image to the outermost pixel. This can be much less than the actual radius
of rotation of the disk (Rpy).

Of course, once [ and (x.,y.) are fixed, there is only one reference beam
angle that will give the optimum configuration. For angle multiplexing where the

reference beam angle changes, we would set the center of the reference beam angle
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Figure 3.5. An optimum recording configuration system with minimum

alignment sensitivity.

swing to be at the optimum angle. For wavelength multiplexing, the angle of the

reference beam does not need to be changed, so this is not a problem.

In Figures 3.6, we show experimental data demonstrating the effek;t of holo-
‘graph rotation. In Figure 3.6(a), a point source was recorded as an image pla,ne
hologram (Figure 3.7(a)). Upon rotation of the holograph, the imége of the point
moves hofizontally in the same direction that the holograph is mdving. The
picture shown in Figure 3.6(a) was taken by making multiple exposures of the
reconstructed image of a point source moving (due to disk rotation) at intervals
of A¢p = 0.4°. In the next experiment, the image of the point was recorded as
a Fourier transform hologram (Figure 3.7(b)). Figure 3.6(b) shows the recon-
structed image upon rotation of the holograph at A¢ = 0.4° intervals. Note that
the point appears to move in a vertical direction even though the holograph itself
is moving horizontally. In general, of course, the direction of motion will be nei-
ther horizontal nor vertical, but will depend on the distance between the image

and the holograph.

In these experiments, the images were recorded as volume holograms on a



Figure 3.6. Experimental data:

(a) reconstruction of image plane hologram using the cohﬁguration in
Figure 3.7(a). (A¢ = 0.4°)

(b) reconstruction of Fourier plane hologram using the configuration in

Figure 3.7(b). (A¢ = 0.4°) sensitivity.
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Figure 3.7. Recording geometries for the experiments in Figure 3.6.

(a) Recording geometry for image plane holograms. Ry = 1.7 cm and
6 = 27° (outside the crystal).

(b) Recording geometry for Fourier plane holograms. Ry = 1.7 cm and
6 = 27° (outside the crystal). The holograph is 4 cm before the

Fourier transform plane.



62

5 mm thick lithium niobate crystal. As mentioned above, although the analysis
here was carried out for pia.nar holograms, within the Bragg-sensitivity angle the
results still hold for volume holograms, as experiments have confirmed.

Figure 3.8 shows the effect of holograph rotation on the reconstruction of
recorded images stored as (a) image plane holograms, (b) Fourier plane holo-
grams, and (c) optimum configuration holograms. In all cases, the reconstructed
holographic image rotates a,sl"‘the holograph (disk) rotates. For the optimum con-
figuration, however, the reconstructed image rotates around the center of the

image instead of moving out of the field of view.

Figure 3.8. Reconstructed images from rotated holograph.

(a) 1st row: Totation of image plane hologra,rﬁ. |

(b) 2nd row: rotation of Fourier plane hologram.

(c) 3rd row: rotation of hologram using optimum configuration for min-

imizing alignment sensitivity.

3.5. Rotation Alignment Sensitivity:
Spherical Wave Reference Beam

In the previous section, we assume that the reference beam is a plane wave.
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One Iilight ask whether using some other wave form as the reference beam would
make any difference in terms of rotational alignment sensitivity. The next simplest
possible wave-form is the spherical wave. In this section, we apply the same
method used in the previous section to the situation where we have spherical
waves reference beams instead of plane waves reference beams. It will be shown
that as before, the reconstructed image will rotate by the same anglc as the disk
_fotates, but in general with a different radius.

Since the analysis is almost identical to the last section, some of the details

will be omitted.

3.5.1. Plane Wave Signal Beam

The analysis for case 1 for a spherical wave reference beam is similar to case 2
when the reference beam is a plane wave; we just exchange the role of R and S

and write

S = A efFvsztvyytoez) (3.82)
B u  k 2 21 |
R = e exp iy [(z =22 + (v —y2)*] ¢, (3.83)

where v, etc., are given by Eq.s (3.52)-(3.54), and (22, y2, —{) is the point where
the reference beam spherical wave originates.

The expressions for T and 7" are then the same as the expressions given in
Eq.s (3.65) and (3.70), with v, replacing u,, etc. The details of the rest of the
derivation are similar and will not be repeated here. The conclusion is that the
image will again rotate around some center (z,y.), which in this case is given

by

To = 7 (2e — 22), (3.84)

F |
Ye = 7(¥e — 2)- (3.85)
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3.5.2. Spherical Wave Signal Beam

For case 2, we assume that the point source for the spherical wave reference
beam is at (x2,ys,—[2) and consider a point source at (z;,y1,—[1) on the input
planc. The holographic recording plane is again at z = 0. Taking the paraxial

approximation, we have at z = 0

A, k , ;

S = =ikl exp ) — [(:v - 9«"2)2 + (v — yz)z] ) (3.86)
lz 2l2
B E o

R= Ec*’“‘ exp{iq (€ $‘$1)2+(y—y1)2]}- (3.87)

The holograph/transparency T is proportional to SR*, and is of the same form

as the expression in Eq. (3.65), with

11 1 -
7 = E — 72_’ (388)
{ l
a=—x; — &, (3.89)
I I
l l
b= —y — (3.90)
I lz

Rotating T by A¢, T becomes T, which is of the same form as the expression in
Eq. (3.70), with
a'=a—(b—yc)Ag, (3.91)

W =b+(a—z:)Ad. | (3.92)

Applying R (Eq. (3.87)) to T', we get the reconstructed hologram T'R as

T'R=C exp{ 2% [(z —a")? + (y — ¥") ]} (3.93)
where
a" =21 — (1 — y.)AS, (3.94)
V' =y + (z1 — z)Ag, (3.95)
and

l .
T =z.+ l—l(’C2 - z.), (3.96)
2
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l
yh = ye + i(yz — Ye). (3.97)

Comparing these results to those in the previous section, we see that the recon-
structed image rotates about the center (z',z'), where !, and y! are given by

Eq.s (3.96) and (3.97).

3.5.3. Condition For Rotational Invariant Holograms

In view of the results on rotational sensitivity using plane wave reference
beams and spherical wave reference beams, one might ask whether it is po‘ssible
to design the system L1 (in Figure 3.2) and choose the reference beam wave form
such that, upon rotation of the holograph T, the reconstructed image does not
change (at least for small angles). We will now analyze this more carefully. Let
g(z,y) be the field distribution of the reference beam R at the recording plane
z =0, and let h(z,y) be the field distribution at z = 0 of the impulse response of
‘a point source at (2o, yp) on the input plane. The holograph is then

T(z,y) = g*(z,y)h(z,y), (3.98)

and upon rotation by an angle A¢, T becomes

T(z - (y—y)A¢, y +(z —zc)Ag)
~th= D) - A+ 5 (0T B dAg (399

If we reconstruct the hologram by applying the reference beam g, we get

9(z, )T (z — (y — yo)Ad, y + (x — z.)AQ)
o
~gg*h — ga—w(g*h) (y — o)A+ g-a%(g*h) (z —zc)Ad.

OF OF
=|g|*h —(y—yc)57—A r— )7 , ' .
lg] {1 (¥ = ye) 5 D¢+ ( )ayA¢} | ‘wimn

where

F=InT = ln(¢*h). (3.101)
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For faithful reconstruction of h, we require that |g|2 be approximately a constant
and that the expression in Eq. (3.100) be approximately the same (within a pro-
portionality constant) to the original impulse response h(z,y). This requires that

for all z and y,
OF OF
—(y — y,)— —z.)— =C, (3.102
(v =ye)- + (2 w)ay Cc | 4(3 02)
where C' is some cohstant.
In particular, for z = z., we have

OF _
(W=¥)5-=C (3.103)

for all y. Therefore C' = 0, and Eq. (3.102) becomes
oF ‘
¥ =) 5 = (& - wc)a—y. (3.104)

We now change variables from z, y to u, v, where

1 1
u= (§y2 — ycy) + (512 — a:cas) , o (3.105)

(1 1, , -»
v = (2y ycy) (233 : a:c_x) , (3.106)

and consider F as a function of u and v. From Eq. (3.104) we then get

OF

2 =0 | ‘ (3.107)

Thus F' is a function of u only, and we have

rer((3 o) (3 -2)

_F (%cc )t (- w4 yz>) . (3.108)

~ This implies that T has circular symmetry about the center of rotation (z.,y.),
which is what we would expect. Note that for the optimum configuration geom-
etry discussed in the previous section, the holograph T' (Eq. (8.65)) is circularly

symmetric about the point (z.,y.) if the point source is at o = 0, yo = 0 (from
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Eq.s (3.66), (3.67) and (3.80), (3.81)). Thus the point (0,0) does not move when
the holograph rotates, while neighboring points rotate around it. There are of
course impulse responses that satisfy the condition in Eq. (3.108). A trivial solu-
tion is to encode information as concentric rings of different intensity and radii.
What we would really like, however, is an optical system where the impulse re-
sponses of all the points in a 2-D arrangement give rise to circularly symmetric
holograms T(:ﬁ, y). Tt is not clear how such a system can be implemented.
Throughout Section 3.4 and 3.5, we have ignored the effect of refraction. To
apply the results derived in these sections, the angles and lengths should first be
converted to that seen from inside the recording media. As mentioned earlier, the
distance from the object to the interface of the recording media will appear to
be n times its actual distance, where n is the index of refraction of the recording

material.

3.6. Translation And Tilt

Alignment Sensitivity

We now turn to the effects of tilt and rotation of the holograph (by small an-
gles) on image reconstruction. We assume in this section that the reference beam

is a plane wave and assume the co-planar geometry described at the beginning of

Section 3.2.

3.6.1. Translation Effects

We first consider the effect of transverse translation; i.e., when the holograph

(the recording media) is translated by a small amount in the z-y plane (Figure 3.3
or 3.4).

| In case 1, both the signal and reference beams are plane waves. We record the

hologram and translate the holograph sideways (in the z—y plane), and then apply

the reference plane wave. This will read out a plane wave in the same direction

as the original recording plane wave, and therefore the position of the original
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f)oint source does not change when it passes through the Fourier Transform lens.
If the holograph is not positioned exactly one focal length away from the lens, the
phase of the reconstructed image will change, but the intensity pattern does not.
For case 2, the signal beam is a spherical wave, and when the holograph moves
by Az, the reconstructed image will also appear to move by Az. ,

Next we consider translation in the 2 direction (normal to the holograph). For
case 1 (where ‘the signal beam is a plane wave) the direction of the reconstructed
plane wave signal beam again does not change, and as before the intensity pattern
of the reconstructed image remains the same. For case 2 (where the signal beam
is a spherical wave) the effect ié the same as defocusing. |

It should be noted that, whereas in the case of wavelength misalignment
(Section 3.3), the change in depth depends on the distance ! between the holograph
and the image (Eq. (3.50)), in the case of translation errors it is independent of
. For high density storage, we usually try to record with the smallest possible
pixels size (at the image plane). ® However, to obtain small §, it is necessary
to increase the numerical aperture (or equivalently, reduce the F/number) of the

imaging lens. This in turn decreases the range in which we have good -focus.

.
I

NEnN

X

Figure 3.9. System for estimating depth of focus.

The range in which we have good focus can be found as follows [6]: consider

8 This will be covered in more detail in Chapter 4.
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the sy'stem shown in Figure 3.9. A lens of focal length F' and aperture A is
illuminated by a plane wave from the left. Because the finite aperture of the lens,
at the back focal plane the image is not a perfect point, but instead has a width
of § = 2AF/A. This gives the resolution of the system. If we observe at a distance
of Al away from the back focus plane, then according to the Fresnel diﬂl'ractio'n

theory, the intensity distribution is proportional to

P k.2 Pk (g
/e—]ﬁ” - ¢f Eran (7 2) rect( )

)?/ i B (-4 = zrect(A> dz. ( 3.109)

(For simplicity, we have taken only one dimension, and assumed a rectangular

=P

zej*%(l_

aperture instead of a circular one.) In the limit where Al goes to zero, Eq. (3.109)
gives us the familiar sinc function of width § = 2AF/A. When Al is not zero, we

have the extra factor
Al
exp {]%xz} (3.110)
in the formula. In order for this factor not to produce too much distortion, we
require that Al be less than

A (F\? 1 62
Al~—(z> == o (3111)

T

where we have used the fact that § = 2\F/A. °

The calculations made above implicitly assume that we are taking the parax-
ial approximation. This is of course not true when the pixel size § becomes very
small. Nevertheless, the exercise above indicates the issue here: namely that the

depth of focus decreases rapidly as we go to finer resolutions.

® A similar estimate can be obtained heuristically by considering the angle of
the highest spatial frequency, which is approximately A/§. If we take the
geometrical projection of one pixel, which is of width &, then the projected
area grows to 2§ at a distance Al = §2/2). This is larger than the estimate
given by Eq. (3.111).
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3.6.2. Tilt Effects

The effect of tilting the holograph is similar to changing the reference beam
angle. We can consider tilt as rotation of the hologram around some axis in
the z-y plape. Suppose that the hologram tilts by an angle A¢. For case 1,
the signal beam is a plane wave. Upon applying the readout reference beam to
the holograph, the direction of the reconstructed signal beam and the original
recording beam will differ by .an angle of approximately A¢. The reconstructed

image will therefore appear to shift by
Az =~ FA¢, | ‘ (3.112)

where F' is the focal length of the Fourier transform lens. Similarly for case 2,

the reconstructed image will appear to shift by
Az = [AP, (3.113)

where [ is the distance from the holograph to the image plane. In the special case
where we record i1 the image plane, [ is zero, and the effect of tilt is a second-order
effect. |

As before, the angles here arc inside the recording material. If we consider
the effect of refraction, we should replace [ and F by nl and nF in the expres-
sions above. Although this may seem to make the sensitivity worse, the effect of
refraction is such that the change of angle inside the recording material is roughly

1/n times the change in angle outside. The two effects therefore cancel.

3.7. Effect of Bragg-mismatch on

Image reconstruction

The treatment in the preceding sections assumes that the holograms are
planar. As mentioned earlier, volume holograms behave similar (in terms of image

positions, but not intensity distributions) to planar holograms for small changes.
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For reference beam angle/wavelength errors and tilt errors, if the error is large
and in the direction of Bragg-selectivity, not only will the reconstructed image
shift, but it is possible that the wrong hologram (page of data) will be read out.

Although changes caused by rotation misalignment are not as sensitive as
angle or wavelength misalignments, there are still cffects due to Bragg-mismatch,
as evident by the pictures shown in Figure 3.8. These effects can be explained by
considering the Bragg-mismafches that occur when the holograph rotates.

We start with case 1, where the signal beams (impulse responses) are plane
waves. As explained earlier, each point in the input plane corresponds to a plane
wave (Figure 3.3). In this section, we assume that the central plane wave is
incident normally to the recording material (i.e., in Figure 3.3., the image is
centered at the z = 0, y = 0). Under paraxial approximations, the wave vector

of the signal beam plane wave corresponding to (z,y) is

2 2
kS-_—k(i”- Loyf1-1 +y), (3.114)

PR F?
where F is the focal length of the Fourier transform lens. The wave vector of the

reference beam plane wave is again given by
kg = k(0, —sinfg, cos GR), o (3.115)
and the grating vector is

IR S Y 2ty
K =kp ks_k( i sinfp fal cos g 1 72 > (3.116)

When the disk rotates along the z axis by A¢, K becomes (to first order of Ag)

K' = k(— % + (sinfg + %)Aqs, —sinfp — < — ZA,

F F
.’I?2 +y2
F? '

cosfp —4/1— (3.117)

The wave vector of the reconstructed signal plane wave is then
T2 + y2
Ag, 1-— 72 .
(3.118)

b8

z . Y Y
’S:kR+KI:k(—F—_(8m9R+F)A¢’ F"‘
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Thus the Bragg-mismatch along the z direction is (to first order of A¢) approxi-
mately 10 ’
kz

Ak, = ya sinfgr Adg. (3.119)

The Bragg-mismatch is given by the sinc function

. (L, . (kLz '
sinc (EAkz) = sinc ( 2; sinfg AQS) , | (3.120)

where L is the thickness of the recording material.

When A¢ = 0, the sinc function is equal to 1, and the whole image is
reconstructed as expected. As A¢ increase, the sinc function (as a function of z)
becomes narrower, and the points further from the center (the larger z’s) decreases
in intensity more because of the sinc function. The center !! of the image (z = 0)
however, remains 1. Note that since the argument of the sinc function depends

“only on z, but not on y, the change in intensity occurs as strips parallel to the y

axis. These conclusions are verified by the images shown in Figure 3.8(b). Note
that as the disk rotates, the visible part of the image becomes narrower, and is
‘centered around the head of the person. Eventually, of course,b the holograph
rotates outside the region of illumination, and the image disapf)éars.

For case 2, where the signal beams (impulse responses) are spherical waves,
the situation is slightly more complicated. For image plane holograms, we can
apply the results above if we change the variable z to AFu,, where u, is the

spatial frequency component of the image in the = direction. The sinc factor then

10 More accurately, it should be

_ ke sinfg A¢
- F \1-(z*+y)/F?

Ak,

However, for small 2% + y?, the expression in Eq.» (3.119) is good enough.

11 “Center” here refers to the center of the rotated image, not the original
center.
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becomes

sinc(rLu, sinfp Ag). (3.121)

In this case, the result of Bragg-mismatch is not a point-wise effect, but a modifi-
cation in the spatial frequencies. For small Ag, the sinc factor cuts off the higher
spatiéml. However, as the rotation A¢ becomes larger, the “spatial spectrum” (i.e.,
the Fourier transform of the image) starts to shift in the same way that the im-
age shifts for case 1. At the same time, the width of the sinc function decreases.
When A¢ is large enough, the central lobe of the sinc function becorﬁes SO NAIrTOW
and shifts so much that the spatial spectrum has no DC component. In effect the
reconstructed image appears to be edge enhanced, as shown in the sequence of

pictures in Figurc 3.8(a). From Eq. (3.120), the width of the central lobe is

20F
= — 3.122
v Lsinfp A¢’ ( )
while the shift is
s = Fsinfg A¢. | (3.123)

Thus we expect the edge enhancement effect to begin at s = w/2

X 1 |
Agp=14/— . 124
P L sinfp (3.124)

3.8. Discussions and Conclusions

Although we are interested primarily in 3-D holographic recording systems,
and specifically the 3-D holographic disk systems, most of the results in this chap-
ter apply equally well to any volume holographic recording system that employs
spatial and angle/wavelength multiplexing, as well as 2-D holographic disks [7-9].

Holograph rotation, however, is unique to the 3-D (or 2-D) disk system.
In this chapter, it has been shown that for a wide range of practical systems,
the reconstructed holograms always rotate by the same angle as the holograph.

However, the radius of rotation of the image is in general different from the radius
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" of rotation of the holograph. It is possible to design the system for minimum

alignment sensitivity by placing the center of rotation at the center of the image.

Multiplexing error is a more serious problem for angle multiplexing than for
wavelength multiplexing recorded in the counter-propagating reflection geometry.
Wavelength multiplexing has the additional advantage that we can choose a fixed
reference beam angle such that the rotation center of the image is at the center
éf the irﬁage. For angle 'multiﬂplexing, the angle of the reference beam needs to be
changed, and the optimum configuration is satisfied only at one angle (which we
would set at the center of the angle swing). To minimize rotation alignment sensi-
tivity, however, we need to‘record at angles off the counter-propagating reflection
geometry for wavelength multiplexing. In this case, the alignment sensitivity
is often worse for wavelength multiplexing. For example, as calculated in Sec-
tion 3.2.1, for s = 0, 6r = 30° (outside the recording material), and n = 2.2,
the ¢ factor (described in Section 3.2.1) is 5.6 for angle multiplexing and 17.4 for
wavelength multiplexing. |

For tilt alignment errors, image plane holograms are better than qurier
plane holograms. For translation alignment errors, the opposite is true.

For rotation alignment errors, image plane holograms are the worse, while
the optimum configuration yields the best result. Although not imfnediately obvi-
ous from the results in Section 3.4, Fourier transform holograms give results that
are comparable to the optimum configuration. This depends of course on how
we store the image plane hologram and Fourier plane hologram. Since compari-
son 1s meaningful oniy after these are specified, we will postpone the discussion
till Chapter 4 where we analyze the storage density of the 3-D disk (see subsec-
tions 4.3.4 and 4.3.5).

Overall, Fourier transform holograms are less sensitive to alignment errors.
However, recording multiple Fourier transform holograms is also more difficult be-
cause of the dynamic range problem. The higher spatial frequencies (where most
of the information is) are usually much weaker than the lower spatial frequen-

cies. For good image reproduction, we would like all the spatial frequencies to be
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recorded linearly. Since the intensities at higher spatial frequencies are weaker,
the holograms recorded earlier tend to have their lower spatial frequencies erased
more than their higher spatial frequencies. The result is that the reconstructed
images are edge enhanced. Random phase diffusers may be used to compensate
for this.

Recoring multiple holograms in the image plane is in comparison much easier,
since the variation in intensity tends to be more distributed. On the other hand,
image plane holograms are not only more susceptible to alignment errors, but also
to material imperfections. For the Fourier transform hologram, the information of
each pixel is distributed throughout the recording volume, whereas for image plane
holograms the information is more localized. Localized imperfections in and on
the material (such as scratches and dust, etc.) therefore affect the reconstructed
image more seriously.

Further comparison between image plane and Fourier planc holograms will
be given in Chapter 4 (Section 4.4) where we discuss the storage density and

readout time of holograms.

Appendix
Conditions for Shift Invariant Holograms

The samec reasoning used in Section 3.5.3. to analyze rotation invariant
holographic recording systems may also be employed to analyzing the problem of
shift invariant holographic recording systems. In this appendix, we examine the
conditions necessary for the reconstructed image to be stationary (to first order)
when the holograph T shifts by small amounts.

Consider a (planar) holograph T recorded in the same way as described in
Section 3.5.3 (Eq. (3.98)). Let T be shifted by Az and Ay in the z and y direction.
T then becomes

T(z 4+ Az,y+ Ay) = {(g*h) + 2(g*h)A;zc + 2(g*h)Ay . (3.125)
Oz Jy
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Upon reconstruction by applying the reference beam g, we get
* a * a *
9(z,)T(z + Az,y + Ay) = 1 99°h + g5 -(9"h)Az + ga—y(g h)Ay . (3.126)
To have faithful reproduction of the original h, we require
g9* = |g|* ~ constant, : (3.127)

and to have shift invariance (to first order), we require that the expression in

Eq. (3.126) be proportional to the original impulse response A(z, y) Thus
0, . '
ga(g h) =~ C.h(z,y), : (3.128)

) ‘
96—y(g*h) ~ Cyh(z,y), (3.129)

where C, and C), are constants.

We may rewrite Equations (3.128) and (3.129) as

, 0 1 dqg*
{Iglza—r +lgf? (g—* 73?;) } h = C;h, (3.130)
, 0 1 9g* '

and think of this as an eigenvalue problem, where C; and Cy are the eigenvalues,
and the corresponding  is the eigenfunction or eigenmode of propagation. Any
image would then be decomposed into these eigenmodes. If the optical system
L1 in Figure 3.2 is designed such that these eigenmodes correspond to impulse
responses, then the reconstructed image will have the same intensity distribution
(but not neccssarily the same phasc distribution) as the original image.

Eqs. (3.130) and (3.131) can be solved if we assume that Eq. (3.127) is true.
We then have

h(z,y) =

A exp {C‘”‘”—J“C‘”i} . (3.132)

———— X}

9*(x,y) lg1?
In the simplest case, both ¢ (the reference beam) and % (the signal beam) are
plane waves, which can be realized by recording Fourier transform holograms with

a plane wave reference beam.



7

References

1. F T.S. Yu, S. D. Wu, A. W. Mayers, and S. M. Rajan, “Wavelength Mul-
tlplexed Reflection Matched Spatial Filters Using LiNbO3,” Opt. Comm.,
81(6), 343-347 (1991).

2. G. A. Rakuljic, V._Leyva, and A. Yariv, “Optical-data Storage by usiﬁg Or-
thogonal Wavelength-Multiplexed Volume Holograms,” Opt. Lett., 17(20),
1471-1473 (1992). | L

3. Demetri Psaltis,“Parallel Optical Memories”, Byte, 17(9), 179-182 (1992).

4. H-Y. Li and D. Psaltis, “3-D Holographic Disks,” submitted to Applied
Optics. -

5. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell
Syst. Tech. J., 48(9), 2909-2947 (1969). |

6. J. W. Goodman, Introduction to‘Fourier Optics (McGraW—Hill Books, New
York, 1968).

7. M. A. Neifeld, S. Rakshit, A. A. Yamamura, S. Kobayashi, and D. Psaltis,
“Optical Disk Implementation of Radial Basis Classifiers,” SPIE 1990 In-
ternational Symposium on Optical and Optoelectronic Applied Science and
Engineering, SPIE 1347-02, San Diego, 1990.

8. D. Psaltis, M. A. Neifeld, A. Yamamura, “Image Correlators usmg Optical
Memory Dlsks 7 Opt. Lett. 14 (9), 429431 (1989).

9. M. A. Neifeld and D. Psaltis, “Optical Implementatlons of Rachal Basis Clas-
sifiers,” Appl. Opt. 32 (8), 1370-1379 (1993).



8

Chapter 4
Storage Density of 3-D Holographic Disks

In the 3-D disk system, data is stored and retrieved in parallel blocks or
pages, cach page consisting of approximately one million bits. As mentioned in
Chapter 3, the actual storage density of a practical holographic storage system
is often much less than the V/A3® upper limit. Various factors that limit the
storage density include the numecrical aperture of the lenses and dynamic range
of recording material.

In this chapter, we will examine the storage capacity of the 3-D disk system.
Although the system we have in mind is the 3-D holographic disk, the results
derived in this chapter apply equally well to any volume holographic storage
system that uses spatial and angle (or wavelength) multiplexing.

The storage density will be derived as a function of recording material thick-
ness, pixel size of the spatial light modulator (SLM), page size (i.e., number of
pixels of the SLM), and scanning parameters of the reference beam. The lim-
itations considered in this chapter are “geometric” in nature, where we do not
consider dynamic range. We will assume throughout this chapter that the image
beam is at normal incidence to the recording material, and that we are recording
either transmission type or reflection type holograms.

It will be shown that optimum storage density is approximately 100 bits/um?
to 190 bits/um?, depending on the resolution of the imaging system. Thus, a 3-D
HD stores the equivalent of more than a hundred conventional 2-D disks of the

salne area.

4.1. Angle Multiplexed Holographic Disk

In this section we address the following question: What is the maximum
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number of bits, N, that can be stored in a 3-D HD of area A using angle multi-
plexing? We will show that in order to maximize N we must properly select the
thickness of the HD (L), the magnification of the optical system that transfers the
data to the disk, and the angles of incidence for the reference beam. In what fol-
lows we derive these optimum parameters. The limits to storage capacity in this
chapter are due to geometrical constraints. The dynamic range of the recording
material imposes a limit on storage density independently. We will sce that the
capacity due to the geometric constraints is more restrictive than the material

limitations in the 3-D HD system.

We can express N as follows:
N = NsNyN} . (4.1)

In the above equation Ng is the number of scparate locations on the disk where
holograms are superimposed, Ny is the number of holograms that are angularly
multiplexed at the same location, and NI? is the number of pixels in each stored
hologram. We will derive an expression for each of the three quantities and then

maximize their product with respect to the various parameters of the system.

4.1.1. Maximum Number of Angularly Multiplexed Holograms

We derive an expression for the maximum number of holograms, Ny, that
can be angularly multiplexed at a single location. We assume that data is stored
by recording either reflection or transmission holograms. The reference beam is
a plane wave whose incident angle is 8g. The signal beam can be considered as
a superposition of plane waves that spans a range of angles. We can calculate
Ng from the angular separation between adjacent holograms, which we take to

be Afg, the full width of the Bragg angular selectivity of each hologram. An
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approximate expression for Afg is [1} !

8\ cosfg

Or = .
Abr =TT |sin(8x + 05)]’

(4.2)

where X is the wavelength, L is the thickness of the hologram, n is the index, and
fs is the incident angle of the central plane wave component of the signal beamn
(see Figurc 4.1). For transmission holograms 0 < || < 7/2, and for reflection
holograms 7/2 < |fg| < 7. The signal beam is assumed to be in the range

0 < |6s| < m/2.

REFERENCE
L BEAM

Figure 4.1. The recording geometry.

Eq. (4.2) is only an approximate estimate for the angular selectivity of the
entire grating since different plane wave components have different Afr. However,
Eq. (4.2) is commonly used for setting the angular separation between reference
beam angles. The cross-talk resulting when holograms are angularly multiplexed
in this way has been calculated recently [2].

To calculate the number of holograms that can fit into a range of reference

beam angles g spanning from 6; to 6, (each hologram being separating from its

! The criterion used here is slightly different from that used in Eq. (3.17),

however the changes are minor. (8/m = 2.5 is slightly larger than the factor
of 2 used in Eq. (3.17).
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adjacent holograms by a corresponding Afr), we observe that

|sin(fg + 8s)|Abr = SAL cos g, (4.3)

nm

which is valid for all possible 8 angles. If we add together Ny — 1 such equations,
one for each value of 8, and approximate the left-hand side of the summation

by an integral, we obtain the following expression:

62 T .
f (sin(6r + 85)|dop = 20 =D ca (4.4)

9, nwL

Solving for the number of reference angles, we get

(4.5)

Ny =14 nmtL\ |cos(8s + 6;) — cos(0s + 82)|’
8A cosfg

where it is assumed that either 0 < s+ 61 < 8s+6; < 7, 0or —7/2 < s+ 8, <
fs + 6; < 0. Physically, this means that the reference beam is always to one
side of the signal beam. The above calculations were carried out for angles inside
the recording material. We can use Snell’s law to convert to angles outside the
recording material.

In the following, we will assume that the image beam has normal incidence

(8s = 0). In this case, Eq. (4.5) becomes

L .
Ny=1+ (1187;\ ) | cos 6 — cos 62|, (4.6)

where we have 0 < 8; < 62 < 7/2 for transmission holograms. We can increase
N by a factor of 2 by recording a second set of angularly multiplexed holograms
in the range —#; to —#8,, since the number of holograms that can be angularly
multiplexed in the same range of angles is equal to the expression in Eq. (4.6). It
is also possible to simultaneously angularly multiplex reflection and transmission
holograms, as shown in Figure 4.2. Therefore, the geometric limit on the total
number of holograms that can be superimposed in the same location is four times

the expression in Eq. (4.6) .
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TRANSMISSION
REFLECTION HOLOGRAMS
HOLOGRAMS B2
01
< SIGNAL BEAM
_e 1
_e 2

Figure 4.2. Angular multiplexing by reflection and transmission holo-

grams from both sides of the signal beam.

4.1.2. Spatial Multiplexing

The number of non-overlapping spatial locations on a disk with area A is

Ng = A = i, (4.7)
where & = w x w' is the area of each location. To find w and w' we need to
consider the fact that the stored images can be in exact focus at only one plane in
the volume of the recording material. As the thickness of the recording material
increases, the area occupied by the defocused image at the surface of the hologram
also increases. Moreover, the size of the area that is illuminated by the off-axis
reference beam increases in one dimension as the recording material thickness
and the angular sweep increase. We will derive expressions for w and w' with
reference to the geometry of Figure 4. We assume that the images to be stored
are at normal incidence and are focused at the middle of the recording material.
We can calculate the extent of the defocused image on the surfaces by tracing
the rays corresponding to the highest spatial frequency of the focused image. Let
6 be the resolution or pixel spacing of the focused image. Then the maximum

spatial frequency is approximately 1/6, corresponding to a diffracted plane wave
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- fraveling at an angle # = sin"!'(\/né). We use the ray optics approximation
to trace this maximum spatial frequency component and obtain the size of the

defocused image at the faces of the recording material:

L

V(N -1

w=N,6+ Ltan8 = N,6 + 4.8).
P p

Figure 4.3. Angle multiplexing: extra area taken up by defocusing and

reference beam angle change.

As shown in Figure 4.3, in order for the reference beam to fully illuminate
the volume of the recording material that the signal beam occupies, it must
illuminate a width larger than w in the direction of reference beam sWeep. From

the geometry of Figure 4.3, this width is
w' = w + Ltan 6,. (4.9).
The total area that must be devoted to each recording location is therefore
a =ww' = w(w + Ltan 92); ' (4.10)

where w is given by Eq. (4.8).
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4.1.3. Optimum N, 6;, and §

We can now write an expression for IV, the total number of bits stored, b
b S

using Eqgs. (4.7)-(4.10) and Eq. (4.1):

N =an? Mo
P oow!
1+n7rL cos 8 — cos &
= AN? 5 8 (oo ;) (4.11)
N,b Npé Ltané
ot V(né/2)? —1] [l ot V(né/N)? -1 T otan b

We wish to maximize the above expression by optimally selecting N,, L, 6, 63,
and 8, which are the parameters we can control.

First of all, wc note t-ha.t N dccreases monotonically as #; increases (in our
analysis 0 < 6; < = /2), therefore §; = 0 is the optimum value. However, since
the angular selectivity is very poor around 6, = 0, in practice the minimum angle
of the reference is set at #; ~ 10° inside the recording material. Next we consider
the optimum number of pixels, N,. Taking the derivative of N with respect to N,
shows that N is a monotonically increasing function of N,. This result confirms
our intuition since the increase in the disk area required to store the holograms
due to defocusing and angular multiplexing can be thought of as an “edge” effect.
The use of larger images implies fewer recording locations on the same disk area,
and therefore fewer edges. In practice N, is limited by the number of pixels of
the spatial light modulator (SLM) to approximately N, = 1,000. For the rest of
this section, we will consider #, and N, as given and fixed.

The determination for the three remaining variables (L, 62, and §) is more
difficult. We first consider the optimum pixel size §. For a given L, N is maximized
with respect to é when w is minimized with respect to §. To find the optimum §
1t is convenient to write w as

AN, 13/2
w= 2P (y3/2 + ——r———) , (4.12)

y= (%‘2)2/3 | (4.13)

where
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nL 2/3
= () 4.
¢ (ANP) (4.14)

To minimize w with respect to §, we differentiate w with respect to y (since y

and

increases monotonically with 8) and set the derivative to zero. This yields the

folloWillg equation for y

y =cy + 1. (4.15)

The solution to this cubic equation is

1 T )" (1 AR
c (&
y—{f\/z—ﬁ} +{§*'\/1—§%} (4.16)

which can be evaluated for a given L to yield the optimum §. Once y is determined

we can solve for the optimum pixel spacing, é,, from the following équation:
. A 3
bo = = /2, (4.17)
n .

It can be shown that §, increases as L increases.

The above solution, however, may not always be realizable. In any practical
system, the minimum 6 (denoted as d,nin) is limited by the imaging system to a
value larger than the wavelength A. If we use an imaging lens of F/number z,

the smallest resolvable spot is

Smin = AV/422 + 1, | (4.18)

which corresponds to the highest spatial frequency plane wave traveling at an

9; = sin™? (—2—) . (4.19)

Inside the recording material, this becomes (from Snell’s law)

1
6, = sin~? (— sin 91’)
n

:sin_l( A ) - (4.20)

N min

angle
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" Therefore the smallest resolvable spot size inside the recording material is also

Smin as given by Eq. (4.18).

8min is the lower bound for the size of é. If L is too small, §, (from Eq. (4.16)
and (4.17)) becomes less than épmin. In that case, we set § = dmin. Since 8,
increases as L increases, we can use Eqs. (4.13)-(4.17) to find the smallest L for

which &, is larger than&m,-n:&

AN, [y 1\
Lmin = np (y";;n ) ) . ) (421)
whére ‘ 23
namin : .
Ymin = (T) . _ ‘ (422)

We will refer to the condition where the optimum § is less than é,,:, as the “thin”
disk regime. If, on the other hand, the optimum pixel spacing is lz;rgér than the
resolution limit of the lens, this corres‘ponds to the “thick” regime. For example,
for n = 2.2, A = 500 nm, N, = 1000, and using an F/3 imaging lens (i.e., z = 3),
we get Omin = 3.04 pm and L,,;;, = 40.36 mm. Note that L,;, does not depend
on 6,. | .

To summarize, if L > Ly, (thick disk), we use § = §, (from Eq. (4.15)),
and if L < Lymin (thin disk), we use 6 = é;nin (as given by Eq. (4.18)).

4.1.4. Optimum Thickness L

Our problem is now reduced to maximizing N with respect to the two re-
maining variables L and 6;. We first treat 8, as fixed, and find the optimum L
that maximizes N/A.

In the range L < Ly, We use dpmin as the optimum 6, and write N/A from
Eq. (4.11) as
1 1+ oax

NA= & AT a0+ 7o)

(4.23)
where

.= ﬂ, C(424)
AN, |
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N,
a= 7r8p(cos 0, — cosb;), (4.25)
1
B= , (4.26)
yi'L/z?n Ymin — 1
and
t 9 . L
v =f+ 5. (4.27)
mn

We can solve for the optimum L by differentiating the expression in Eq. (4.23)

with respect to . The maximum N/A turns out to be

1 o/ By

Coin (1 _1_ /TC
g« Y
which occurs at
A 1 1 '
L=1,=2 (—l+\/(l—1) (—— —)) (4.29)
n «@ 8 « Y o))

assuming of course that L, < Lyin. If Ly > Ly this means that the optimum

N/A = ’(4.28)

Ql—
v .
[ ]

thickness is outside the thin regime where the anzﬂysis' used to derive L, is valid.
Within the thin regime the maximum thickness L occurs at the 1‘boundary since
N/A is mbnotonically increasing with L for L < L;,. To obtain ‘the overall
optimum thickness L we must compare the maximum obtained from this regime
(i.e., L < Lp;y,) with the optimum thickness obtained from the thick regime
(L > Lmpin) and finally select the thickness that yields the larger density N/A.
As an example, we continue with the previous example where 6,,;, = 3.04 pm
(for an F/3 lens). If we take 6; = 10° and 6, = 20°, we find L, to be 16.74 mm,
which is less than L.,;, = 40.36 mm. Therefore, the solution obtained from
the thin regime is the valid optimum thickness. Note that as N, increases, so
does «, and therefore the expression in Eq. (4.28) increases. For large N,, the
maximum N/A as given by Eq. (4.28) increases approximately linearly with N,

or the square root of the total number of pixels Ng.



88

For L > Lpin, we can use Eq. (4.17) for § and using Eqs. (4.12)—-(4.15),
Eq. (4.11) can be written as

\ 2 14 ac3/?
:3/2 c3/2

3/2_|________) ( 3/2+——-—+c3/2tan9)
(y Ve —1) " vy -1 ’

The above expression may be evaluated numerically to find the value of L which

wia- (5

(4.30)

maximizes N/A. We can also derive a relatively simple asymptotic expression
(for large L) by observing that as L — oo, y — +/c. The asymptotic expression
for N/A is

n)2 TNp(cos by — cosby) [AN,

N/A = (_ 16 tan 6, nL

. (4.31)

The above expression predicts that the density will decrease as the disk thickness
becomes very large. This is confirmed by the numerical results we present in the

following section.

N/A for various values of 0,
, N,=1000, n=2.2, ©,=10°, A=500 nm
10 . : . : -

N/A (bits/um?)
p—
[ow]}

107% 107t 10° 10* 102 10°
L (mm)

Figure 4.4. Angle multiplexing: N/A vs. L for various values of 0.
We take N, = 1000, n = 2.2, A = 500 nm, and 6§; = 10°.
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4';.1.5. Optimum 6§; and the Maximum Storage Density

The final step in the optimization of the storage density N/A, consists of
optimally selecting 6,. Since we cannot analytically derive the optimum angle,
we resort to numerical methods. In Figure 4.4 we plot Eq. (4.23) in the thinv
regime (solid line) and Eq. (4.30) in the thick regime (dotted line) as a function
of- L for various values of 02 ﬁsing the optimum value for §. The vertical line
indicates the transition from one regime to the other. The optimum values for
L and 6 are those that yield the maximum density. The parameters used in
- plotting Figure 4.4 are A = 500 nm, N, = 1,000, n = 2.2 (the index of refraction
for LiNbOj crystals), and 6; = 10°. 62 = 30° is the maximum value for which
N/A is plotted since 27.04° is the largest angle that can be supported inside
the recording material (due to Snell’s law) without resorting to the use of index

matching fluids.

From Figure 4.4, we see that the maximum N/A is obtained near L =‘1.5 cm
and increases monotonically with 6 for the parameters we selected. In this case,
the optimum thickness is in the thin regime (L, < Lmin). Since it is not practical
to use 85 = 30° inside the recording material (the critical angle is 27.04°), we get a
realistic estimate for the achievable density by using 6 = 20°. The corresponding
angle swing’ outside the recording material is then 22.5° to 48.8° (total angular
swing of 26.3°), which is practically achievable. The maximum density N/A is
29.3 bits/um?, which is obtained for a hologram thickness of L = 16.74 mm using
Ny = 1306 angularly multiplexed holograms. This density can be increased by a
factor of 4 (giving us N/A = 117.2 bits/um?) if we simultaneously record reflection
and transmission holograms in the same reference angle range from both sides of
the signal beam, as shown in Figure 3. The area for each recording location is
wx w = 4.3 x 10.4 mm?. Figure 4.5 is a plot of the optimum density and
also the number of angularly multiplexed holograms, Ny, as a function of L. For
the thickness that yields maximum density, Ny = 1,306 holograms. Since more

than 5,000 holograms have been recorded and faithfully reproduced in.Lithium
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Niobate [3], the geometric factors considered in this chapter limit the recording
more severely than the material dynamic range. As another example, if we record
only 100 holograms at each location, then the optimum thickness is a little over
1 mm and the corresponding storage density is about 8.8 bits/um? (compared to
about 30 bits/um? for the optimum design). This density can be increased by a

factor of 4 as we already described in Figure 4.2.

Np=1000, n=2.2, A=500 nm

" ©,=10°, 8,=20°

10° |
10° |
10!

100 N/A (bits/um?)

107?
1072 107 10° 10' 10® 10°

L (mm)
Figure 4.5. Angle multiplexing: optimum N/A (optimized with respect

to §) and N, as functions of thickness L. We take N, = 1000, n = 2.2,
A =500 nm, 6; = 10°, and 6, = 20°.

4.2, Wavelength Multiplexing

Wavelength multiplexing [4,5] is an alternative method for multiplexing holo-
grams in a single location on the HD. In this section we calculate the capacity of a
wavelength multiplexed HD using a similar derivation as for angular multiplexing.

The number of bits that can be stored is expressed as

N = NsN\NZ, (4.32)



91

" where N A 1s the number of wavelength multiplexed holograms. We assume that

the wavelength A sweeps from A; to Az, with A1 < As.

Figure 4.6. Wavelength multiplexing: extra area taken up because of

defocusing and wavelength change.

For wavelength multiplexing, we again assume that the imdgé is at normal
incidence and focused at the middle of the recording material (Figure. 4.6). We
also assﬁme that the reference beam is counter—propagz;nting with the image beam
and zﬂso at normal incidence. In this case, the problem of image defocusing at
the crystal surface is the same, and we get Eq. (4.8) for the width w as before.
However, since the reference beam is co-linear with the signal beém for all wave-
lengths, there is no extra width taken up by the Ltan 6, term in the expression
for w' in Eq. (4.9). On the other hand, as A sweeps through \; to Az, w changes.
For any choice of §, the largest w is for A = \y. Therefore we have .

A

w?’

Ng = (4.33)

where

(4.34)

RN YT

is a function of A,.
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To find N), we note that the half-width of the (frequency) selectivity Awv is

(1]
_ Ye
 nL’

Av (4.35)

where v, is the speed of light in vacuum. As A sweeps over A\; to Az, the number

of wavelength multiplexed holograms that can be stored is therefore

v — Vs nL (1 1
N ! — = =_ = 4.36
A 1+ 2Av 1+ 2 ()\1 )\2) ’ . ( )

where we take the separation between adjacent holograms to be the full width,

2Av. Using Eqgs. (4.33), (4.34), and (4.36), we then have

1+8L (L - L
N = AN? ¥ (%) ;. (4.37)
N6 L
[ P +\/(n6/)\2)2—1]

4.2.1. Optimum N,, Ay, and ¢

We now want to maximize N with respect to N,, L, Ay, Ay, and §. As before,
N increases monotonically with N,, which is limited by the SLM to about 1,000.
N also increases as the minimum wavelength A; decreases. This ‘Wﬂl be limited
by the shortest usable wavelength we can get out of a tunable laser and/or the
spectral sensitivity of the material. For the remainder of this section, we will
assume that N, and A, are given and fixed.

The three remaining parameters A, L, and § are more complicated. We first
take L and X, as fixed, and find the optimum é. Considering N/A as a function
6, we find as before that the maximum N/A is obtained when w is minimized
with respect to 6. We then get the same set of equations as Eqs. (4.13)-(4.17),
except with A replaced by A;. We also have the same ép,in, and Lo, (with A
replaced by Az) conditions as given respectively by Eqs. (4.18) and (4.21). Note
that both é,,in and Lp,i, scale linearly with wavelength (since y,i, depends only

on n and z, the F/number of the imaging lens). It should be emphasized, that
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.6m,'n is the resolution of the imaging system using wavelength A;. The resolution
of the system using A; (which is less than Az) is of course better.

In summary, if L > Luin, we use § = §, (from Eq. (4.15)), otherwise we use
8§ = bmin (as defined in Eq. (4.18)); in these equations, A is replaced by A2. As
an example, for Az = 540 nm and an F/3 imaging lens, we have dpin = 3.28 pm
and Lpin = 43.59 mm. For Ay = 750 nm, these become 6, = 4.56 pm and

Lm,'n = 60.34 mm.

4.2.2. Optimum L and X,

We now find the optimum thickness L that maximizes N/A. In the thin

regime (L < L, ) we take 6 = 6pin, and write N/A as

1 1+ azx

N/A = 4.38
4 / mzn (1 + ﬂ:c)Z’ ( )
where
nL
T NN’ (4.39)
_ Np )\2 .
@ = _é— (x - 1) , - (440)
and
B = | (4.41)

Umzn V ymm

By differentiating the cxpression in Eq. (4.38) with respect to z, we find the

maximum N/A to be
1 o?

N/A = 4.42
/ mm 4,3((! - ﬁ) ( )
which occurs at
_ _ AN, g 1
L=L,= - ( + ﬁ) ) (4.43)

For example, for Ay = 500 nm, A; = 540 nm (A2/X; = 1.08), n = 2.2, and
N, = 1000, we get L, = 43.82 mm. If ); increases to 750 nm, Lo increase
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t.o 60.88 mm. In both cases, L, is larger than L.;p (43.59 mm and 60.54 mm
respectively). This means that there is no maximum in the thin regime and
therefore in the range L < Ly, N/A is monotonically increasing with L. In this
case, we would select the boundary value (L, ) for the best thickness obtainable
from the thin regime. Notice that for wavelength multiplexed storage the optimum
thickness of the disk can become quite large. Although we are not considering
materials issues in this chaptér, it should be pointed out that the useful thickness
of the material in practice can be limited by absorption. In some materials (e.g.,
Lithium Niobate) it is possible to reduce the absorption by properly preparing
the material (e.g., by adju\sting‘ the dopant and reduction/oxidation level). The
reduced absorption will typically reduce the recording speed of the material for
a given light intensity. Therefore, when materials considerations are included in
the design process, this tradeoff between speed and density will emerge. v

In the thick regime, L > Lin, we use Eqgs. (4.15) and (4.17) (with A replaced
by A2) to obtain §, and write N/A as ‘

2 . ’
n 1—l—ozc3/2
N/A = | — : 4.44
/ (AQ) ( 3/2 )27 : ( )

3/2+ (&
i

where « is given by Eq. (4.40). As before, as L — oo, y — +/c. For wavelength
multiplexihg, however, the asymptotic behavior of N/A is different. As L — oo,

N/A saturates and approaches

n?N, 1 /1 1 .
N/A»—2 - [—__—~}). :
/ 8 ()\1 )\2) (4.45)

Thus for the range L > Lpin, N/A also increases monotonically with L.
Note that the saturation value of N/A increases as N, increases and Ay

decreases. Also, for any choice of A\y/)\;, we have

1 /1 1 1

i R : i

Az ()\1 )\2) T 4X20 (4 46)
with equality at | |
22 T (447)
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Thus; even if it is possible to have a light source with such a large range of
wavelength tunability, the optimum setting for A2/); in order to obtain maximum
saturation density is 2 (provided we use the same ;). For practical systems,
A2/)1 is smaller than 2, and in this range the saturation value of N/A increases
as Ay/\; increases. In the case where AX = Ay — A1 < A (A2 ® A1), the
saturation value given in Eq. (4.45) is approximately ' ‘

n’Ny AA
8 A3’

CNJA~ (4.48)

which is proportional to AA.

In practice, the range of usable wavelengths is determined by the laser system.
For instance, dye lasers can be tuned in the range from 370 nm to 890 nm, which
gives us a Aa/A; of 2.40, in excess of the optimum A;/A\; = 2 requirement. It
should be noted, however, that it is necessary to use several diﬁ'erenf dyes in order
to obtain this range of wavelengths. For a typical broadband laser dye such as
Coumarin 6, the range is from 510 nm to 550 nm, which only gives us a A2 /A; of
1.08. For Ti:Sapphire lasers, the range is 690 nm to 1025 nm, which gives us a
Aa/A; of 1.48. 2 |

As a specific example, consider the case where N, = 1000, n = 2.2, and A\; =
500 nm. We plot N/A as a function of L (where N/A has been optimized with
respect to §) for various values of A2/\;1. The result is shown in ‘Figure 4.7. We
see that N/A saturates for large L (around 5 cm) as expected, and the saturation
value is largest for A3/A; = 2. In Figure 4.8, we plot N /A and N as functions
of L for A\2/A; = 1.08 and A;/A; = 1.5 using the same N, n, and )\;. For
A2/ = 1.08, N/A approaches 166.0 bits/um?  while for X3/A\; = 1.5, N/A
approaches 537.8 bits/um?.

4.2.3. Storage Density and Optimum ), for “Thin” Disks

The point where L causes N/A to reach saturation is of the order of 5 cm.

2 Although this is the tunability of the laser in terms of the lasing media, it is
necessary to change mirrors and output couplers to get this range.
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N/4 for various values of )\2/}\1
N,=1000, n=2.2, A;=500 nm

10°
A/A =15
P N 7
2

é 10 /A =2.0
3 Ao/A,=3.0
L0
I 10t i
é Ae/A,=1.08
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10% 10' 10° 10 10° 10°
L (mm)

Figure 4.7. Wavelength multiplexing: optimum N/A (optimized with
respect to 6) as a function of L for various values of Ay2/\;. We take

A1 =500 nm, N, = 1000, and n = 2.2.

At this thickness, it becomes questionable about what we mean by a “disk.” In
practice 1t may be desirable or necessary (e.g., because of a,bsofption) to keep
the thickness small. In this case we are in the L < L,;, range (éven though L,

may be larger than Ly, ), and N/A is given by Eq. (4.38). We can approximate
Eq. (4.38) by '

n (1 1 1 /1 1 '
N/A ~ = e S VL= ——-=2). 44
AR 55 <,\1 )\2) by (,\1 A2>’ (4.49)

if we assume that
az > 1> fz. » (4.50)

In the previous example, a = 40 for A\y/A; = 1.08, and a = 250 A\y/\; = 1.5,
~ while B = 5.60 x 1072 for both cases, so the condition is satisfied.

If we limit z (and therefore the disk thickness L) to the range required by

Eq. (4.50), the optimum A, can be found by taking the derivative of the expression

in Eq. (4.49) with respect to A2 and setting it to zero. In this case, it .is easy to
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- N,=1000, n=2.2, A;=500 nm

— X\,/A\,=1.08 7
— A /A=1.5 S

10* |
108 ¢
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10t L7 /" N/4 (bits/pm®?)]
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Figure 4.8. Wavelength multiplexing: optimum N/A and N, as func;
tions of thickness L for A;/A; = 1.08 and Ay;/)\; = 1.5. We take
A1 = 500 nm, N, = 1000, n = 2.2.

show that the maximum N/A occurs for A2/\; = 1.5 (again assuming that we
are using the same A;). This is very close to the range provided by Ti:Sapphire

lasers. Therefore, in this case the density does not increase indefinitely with AM.

Finally we can also calculate the “knee” of the N/A curve, which we define
as the point were the expression given by Eq. (4.48) reaches the saturation value.
This is given by

min

4y 4

N..&62 2
L:L[(:np =4z +1

nANp, (4.51)
which is proportional to A2. For A;/A; = 1.08, Lx = 11.0 mm, which gives us
N/A =106.5 bits/um? and Ny = 1,794. For \y/\; = 1.5, Lx = 15.3 mm, which
gives us N/A = 34.46 bits/pm? and Ny = 11,221. In both cases, L is less than
Lmin, and the corresponding values of N/A is slightly over half the saturation
values for N/A (i.e., approximately a 3 dB drop). |
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4.3. Design Considerations

Having derived the maximum storage densities for angle and wavelength
multiplexing holograms, we now turn to various design considerations based on

the results derived so far.

4.3.1. Angle vs. Wavelength Multiplexing

The values for the various parameters discussed so far in this chapter are
summarized in Table 4.1, and the storage densities N/A are plotted in Figure 4.9

where we denote the densities of angle multiplexing and wavelength multiplexing

by (N/A)s and (N/A)a, respectively.

Table 4.1. Value of Parameters used in Figure 4.9

(Assuming an F/3 imaging lens)

Parameters Angle multiplexing Wavelength multiplexing

Index of Refraction n=22 ' n =22

Number of Pixels NZ =106 N} =10°

Wavelength A =500 nm A1 = 500 nm, Az = 540 nm
Angles 61 = 10°, 6, = 20°, —

Pixel Size bmin = 3.04 pm 6m,i.n = 3.28 um

Critical Thickness Lmin = 40.36 mm Lnin = 43.59 mm
Optimum Thickness L, =16.74 mm L, ~ 30 mm

Maximum Density N/A =4 x 29.3 bits/um? N/A = 166.0 bits/um?
Number of Holograms Nyg =4 x 1306 Ny % 5000

In Figure 4.9, the curves for (N/A)s using just the angle range 6; to 6
(either as transmission or reflection holograms) is marked as (x1). We see that it

is about a factor of 2 smaller than (N/A),. However, if we angle-multiplex from
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both sides of the signal beam, (N/A)g increases by a factor of 2 (denoted by the

x2 curve in Figure 4.9). If we further record both reflection and transmission
holograms (as in Figure 4.2), this increases by a factor of 4 (denoted by the x4
curve in Figure 4.9). In this case, (N/A)s becomes larger than (IN/A)y until L
reaches about 12.5 mm, where both (N/A)x and (N/A)g are about 115 bits/pum?.

s V,=1000, n=2.2, A=A;=500 nm

(N/4)y

(=Y
o
™

N/A (bits/um?)
)

107% 107' 10° 10* 10* 10°

L (mm)

Figure 4.9. Comparison of angle multiplexing and wavelength multi-
plexing. We take X = \; = 500 nm, Ap/A; = 1.08, n = 2.2, N, = 1000,
6, = 10°, and 6, = 20°. The density using angle multiplexing is denoted
by (N/A)g, and the density using wavelength multiplexing is denoted by
(N/A)x. | o

~ 4.3.2. Image Plane vs. Fourier Plane Holograms

One might ask whether it is possible to get higher density by recording in the
Fourier plane instead of the image plane. It turns out that the storage density is

the same. This is because the space-bandwidth-product is a constant. Speciﬁcally,
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" consider an image of extent a = N,6, where 6 is the pixel spacing and N, is the
number of pixels along one dimension. Let b be the extent of the Fourier transform

of this image (by a lens of focal length F'), and let 1/é' be the highest spatial

frequency of the Fourier transform. Then within the paraxial approximations
=2 O (452)

This shows that recordiﬁg in either the image plane or the Fourier plane will give
the same minimum width. |

 If we record holograms at off-image or off-Fourier planes, the required width w
increases. However, it is sometimes desirable to do this for purpose of noise, image
quality, and alignment sensitivity. > The tradeoff between these requirements and
storage density must be considered in the design of a practical system.

We next consider the problems involved in obtaining the small spatial extent
necessary for maximum storage density. Image plane holograms require demag-
nifying the SLM in order to reach the optimum pixel size (typically, a factor of
20 to 30), which is at the diffraction limit. Note that we require th only high
resolution, but also a fairly large area of view. Although possible to do, it requires
very expensive optical systems. In addition, the- space required for the defnag-
nification system tends to be large. Fourier transform holograms, on the other
hand, are relatively easy to shrink down in size. However, the space-band-width
product requirement is the same, so the question of lens aberration still needs
to be addressed. Also, as mentioned in Chapter 3, multiple Fourier transform

holograms are also more difficult to record.

4.3.3. Storage Density vs. Alignment Sensitivity

In Chapter 3, it was shown that the condition for minimum rotational align-

ment sensitivity requires that the disk be placed some distance away from the

3 Please see the discussion in Section 3.8.
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h ifhage plane. This requirement is incompatible with the condition for maximizing
the storage capacity, which requires the disk to be at the image plane or Fourier
plane. -

Although it turns out that the rotational alignment sensitivity of Fourier
transform holograms is very close to the optimum configuration, * it is/possi—v
ble to simultaneously get both the minimum rotational alignment sensitivity and
r_ﬁaximurri storége density. Furthermore the configuration that we propose has
several advantages over the usual image plane or Fourier plane recording config-

urations.

Figure 4.10. The Vander Lugt imaging system |

The imaging system shown in Figure 4.10 was proposed by Vander Lugt
for recording planar holograms [6]. The transparency or spatial light modulator
(SLM) with transmittance f(z,y) is placed at P1, immediately after the condenser
lens L1. When illuminated with a plane wave, the condenser lens L1 provides
a converging spherical wave that illuminates the SLM, and produces the Fourier
transform of f(z,y) (with an additional quadratic phase) at the back-focal plane
(P2). The Fourier transform of f(z,y) is then recorded as a hologram with a

4 This will be discussed later in this section.
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reference plane wave. A second lens L2 with focal length F3 is placed immediately
after the hologram at P2, and is used to form the (inverted) image of f(z,y) at
the image plane P3, where P3 is determined by the familiar imaging condition

1 1 1 '
— 4 == 4.53

and F} is the focal length of the condenser lens L1.

~ On the ot‘her, point sourﬁes on the SLM at P1 are still converted to spherical
Wave impulse responses. Therefore it is possible to design the system according
to Section 3.4.3 to set the center of rotation of the hologram at the center of the
reconstructed image. | |

The minimum aperture required of L2 can be found as follows: let 4., be

the highest spatial frequency of f(z,y). Then the (spatial) extent of the Fourier
transform at L2 (within paraxial approximations) is @ = 2umez AF1. Since all the
information of the original image f(z,y) is contained within this region, this is
- the minimum aperture required. If the pixel spacing of the SLM is §, and N, is
the number of pixels along one dimension, then ., = 1/6, and we can write a
as
Fy

2AF, | |
= = = 20N, (N,,Ts) =ANpz, (4.54)

where z is the F-number of the lens if the aperture of L; is the same as the size

of the SLM, which is N,6. Thus if the ratio z = F}/N,é is kept fixed, then a is

a

a constant even when the image size Npé changes (of course F ) also needs to be
changed).

It is interesting to compare this system (which we will refer to as the Van-
der Lugt system) with the conventional 4-F /Fourier transform system shown in
Figure 4.11. If the focal length of the Fourier transform lens L1’ is also F}, then
the spatial extent of the Fourier transform is also a = 2AN,(F; /N,6). But here
' the lens aperture of L1’ needs to be larger than N6 (the aperture of L1) to allow
for all the spatial frequencies from f(z,y) to pass through. Thus the F-number
of L1' is less than L1. In addition, the aberration corrections for L1' are consid-

erably more complicated than the condenser lens L1, which need only produce a
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good converging spherical wave (a practical implementation would probably use
an aspherical lens for L1). The requirements for L2' are similar to L1, and is
more difficult than for L2 or L1. To increase the storage density, it is desirable
to reduce a as much as possible. This requires that the F-number be as small as
possible. Lenses with small (& 1) F-numbers are available but are expensive, es-
pecially if the apertureis large. Note that the space-bandwidth-product depends

not only on the F-number, but also the aperture size.

PI LI P2 L2’ ~ P3

Figure 4.11. The conventional 4-F imaging system

In Vander Lugt’s paper, the holograms were assumed to be planar. The
system is of course also usable for volume holograms. Since the recorded pattern
is essentially a Fouriér transform hologram (except for the quadratic phase factor),
the maximum storage density as analyzed in the previous sections is the same.
However, since point sources at the input SLM give rise to spherical waves instead
of plane waves (i.e., the impulse response of the system is a spherical wave), it is
now also possible to adjust the reference beam angle to get minimum rotational
alignment error without sacrificing the storage density.

As discussed above, since the space-bandwidth-product of the image and

its Fourier transform is the same, the maximum achievable storage densities are
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" ‘the same. To apply the formulas for Fourier transform holograms, we need only
exchange the role of pixel spacing and spatial extent. »

We will assume that the focal length of L1 (F}) is fixed, and consider the
pixel spacing é as the variable. Given §, the spatial extent is given by the expres-
sion in Eq. (4.54). The corresponding maximum spatial frequency of the Fourier

transform is
. 61 - f—}‘f (4.55)

Where §' = AF/N,6 is the corresponding “pixel size” of the Fourier transform.
If the F-number of L1 is sufficiently small, then we will always be in the “thick
regime” discussed in Section 4.1.

We can now apply the results in Section 4.1 and 4.2 to find the conditions
for maximum storage density by replacing all occurrences of § by é'.

The Vander Lugt system can be used so that the storage density in volume
holograms is maximized, and the rotational alignment sensitivity is minimized.
In addition the requirements on the lenses are modest, and the space needed
(distance between the lenses, etc.) are small. In practice, however, there are
some problems that need to be solved. First, as mentioned in Chapter 3, multiple
‘Fourier transform holograms are in general more difficult to record because of
the generally larger variation in intensity throughout the transfo‘fm plane. Well
designed phase diffusers can be used to compensate for this. |

The second problem is the question of the reference beam. It is desirable
to place the imaging lens L2 as close to the hologram as possible to reduce the
requirement on the F—number (i.e., small aperture). If we record transmission
type holograms, the reference beam will pass through the recording material and
hit L2. Even with anti-reflection coating, the reflected/scattered light from L2
will add noise to the system. This can be a problem since the diffraction efficien-
cies of the holograms are low and the reference beam is much stronger than the
reconstructed signal beam. If we record reflection type holograms, then the refer-
ence beam needs to pass through L2 to reach the recording material. This is not

unsolvable, but the design of the optical system for reference beam‘stéering (for
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ﬁngle' multiplexing) would be more complicated. For wavelength multiplexing,
the situation is simpler, and one solution is to provide a point source at the focal
plane of L2. In either cases, however, the lens aperture of L2 needs to be larger
than the image beam in order for the reference beam to cover the entire signal
beam inside the recording material. Because of these considerations, it is proba-
bly better to place L2 some }distance away from the hologram, at the expense of
a somewhat lérger aperture. .

The most serious problem with the Vander Lugt system, however, is the SLM.
Most presently available (electrically or optically addressable) SLMs depend on
liquid crystal (LC) technblogy. In the Vander Lugt system, the illumination
is a spherical wave. This makes it very difficult to build the LC device with
the appropriate LC layer spacing and polarization filters to get good contrast
throughout the image. One solution is to place the SLM immediately before
(instead of after) the condenser lens (L1), however this might require an additional
lens with L2 to correct for aberrations. Although this makes the design of L2
more complicated, it might be worth the trouble if there is no simple solution to

the SLM problem.

4.3.4. Alignment-Limited Maximum Readout Time

Having derived the configuration for minimum rotation alignment sensitivity
(Chapter 3) and the configuration for maximum storage density (Chapter 4), we
now address the pro‘blem of data transfer rate from a 3-D disk system designed
for maximum storage density. We will assume that the disk is rotating at a
constant speed. In this subsection, we first examine the limit in readout time due
to misalignment from disk rotation. In the next subsection, we examine the limit
due to detector noise.

Given the rotational speed of the disk, we want to calculate how long the
reconstructed image will stay within half a pixel size. This will be the maximum

amount of time we can use to read out the hologram if the disk is ‘cdntinuously
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’épinning. This time will of course depend on the way the holograms are stored
(e.g., as Fourier transform holograms or image plane holograms). The comparison
here is made under the assumption that in all cases (image plane, Fourier plane,
or the optimum configuration shown in Chapter 3) the holograms are stored for
maximum density. 4

For image plane holograms, the reconstructed image will rotate as the disk
rotates. Let 6 be the pixel spacing at the image plane inside the crystal and let
.R be the radius of rotation; i.e., the distance from the center of the hologram
(in'this case the image plane) to the disk rotation axis. If the disk rotates by an
angle of A¢, then the image in11 rotate by the same angle and move a disfance

of RA¢. For this to be less than half the pixel-spacing, we require that
1
Az = RA¢ < 56. to (4.56)

If T is the period of rotation of the disk, then the time in which the reconstructed

image remains within half a pixel spacing is

T T 6 T [Ny
— A< .2 N 5 L N _
"= 2S5 3R T 2an, (2R> (4:57)

Note that 7 is independent of image magnification (i.e., the actual size of the

image at the readout plane). The value of the pixél—spacingﬁ is that which
achieves maximum storage density, as explained earlier in this chapter.

For the optimum configuration (Chapter 3), the reconstructed image rotates
around the center of the image at the same rate as the disk rotates. The center
pixels of the ‘image will therefore move very little, and the pixels that shifts the
most will be the outermost pixels. Since the image size is (Np6) X (Npd), the most
that the pixels will move when the disk rotates by Ad is -;—Np6 Ad. TFor this to
be less than 6/2, we have

A¢ < NL,, (4.58)
and the maximum amount of time in which the hologram can be read out (when

the disk is in continuous rotation) is

T
- 27er'

T

(4.59)
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It is interesting to note that this is independent of the pixel spacing é, and in
particular is true for the Vander Lugt recording configuration described in the
previous subsection.

For Fourier plane holograms, we assume normal incidence for the signal beam.
Let 6 be the angle between the reference beam and the normal to the hologram
surface. When the hologram rotates by Ag, the grating rotates also by the same
amount. In this case the reconstructed wave vector tilts by an angle of sin 8 A¢

and the reconstructed image of the pixel will therefore appear to move by
Ay =FA¢ = Fsinf Ag, 4 (4.60)

where F' is the focal length of the Fourier transform Lens for reconstructing the
image from the hologram. On the other hand, the spatial extent of the Fourier
transform hologram is 2A\F/é', where §' is the pixel size of the reconstructed
image. For optimum storage density, the spatial extent of the Fourier transform
-should be the same as N8, where § is the (optimum) pixel size for ovbtaining

maximum storage density in the case of image plane holograms; i.e.,
N6 =2)\F/§. » - (4.61)

The optimum pixel size for Fourier transform holograms is therefore

2 \F

8 == L,
N5 (4.62)
and for Ay to be less than have of this value, we get
A
(4.63)

Ap < ——
¢ < Npbsinf

The maximum readout time is therefore

T A
"T 9N, (6sin0) > | (4.64)

which is independent of the focal length F.

Note that although the displacements for the image plane hologram, Az
(Eq. (4.56)), and the displacements for the Fourier transform hologram, Ay
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o (Eq (4.61)), are about the same (see also Eq. (3.78)), the pixels sizes which
they are compared to (i.e., § and ¢') are very different. For Fourier transform
holograms to have the same storage density as image plane holograms, the spa-
tial extent of the Fourier transform hologram needs to be small. This implies that
the pixel size of its reconstructed image is large. Thus although Az and Ay are
about the same, the pixel size of the image plane hologram § is in general much

smaller than §'. Assuming the following parameters:

Rotation speed: 3600 RPM, or T' = 1/60 sec = 17 msec.

- Optimum pixel size: 6 =~ 3 pm. This is for the image plane -hologram,
assuming we use an F'/3 lens. The corresponding optimum pixel size for the
Fourier plane hologram is §' = 33 pm, assuming F' = 10 ¢m.

Radius of rotation: R = 60 mm.

Number of pixels per page: Ng = 1,000 x 1,000.

Reference beam angle: § = 15° (inside the holographic recording material).

Wavelength: A = 500 nm.

| The results are

- Image plane: 66 nsec
- Fourier plane: 1.7 psec

- Optimum configuration: 2.7 psec

4.3.5. Noise-Limited Minimum Readout Time

By noise-limited minimum readout time, we refer to the time it takes for
the detector to accumulate enough photons from the light diffracted from the
hologram, so that the detector signal rises significantly above noise level. As
a typical example, we consider a CCD camera manufactured by DALSA. The
spec-sheets quote a noise equivalent exposure of 45 pJ/cm? for a CCD that has

a 16 pum pixel spacing. For a wavelength of A = 500 nm, this is approximately
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4 x 107!® J per photon. Thus each pixel requires about 26 photons to generate
a signal equivalent to detector noise.

Let M as the number of required photons, n as the diffraction efficiency, N. Z
as the number of pixels, and I;,. as the reference beam intensity. If the time it
takes to accumulate M photons per pixel is 7, then

Nine Mhe

= 4.65
= (465)
where h is Planck’s constant and ¢ is the speed of light. This gives us
MhcN?
=— P 4.66
’ nIinc)\ ’ ( )
and the maximum data transfer rate is
jVZ Iin('/\
v _ NlincA _ (4.67)

T Mhe
If we take

Number of pixels per page: N, = 10°,

Readout reference beam intensity: ;. = 10 mW,

- Minimum number of photons required: M = 1, 000,

Diffraction efficiency: n = 1077, 5

then we get a transfer rate of 2.5 Mbits/sec and a readout time of 7 = 400 msec.
If we are more optimistic and take n = 1079, we get a transfer rate of 25 Mbits/sec

and a readout time of 7 = 40 msec.

4.4. Discussions and Conclusions

We have derived the optimum conditions for obtaining the maximum storage
density of a 3-D HD disk using either angle multiplexing or wavelength multi-

plexing. Such optimally designed disks can store information with area densities

5 If we take 1,000 holograms, then under symmetric read/write the individual
hologram should have only 107° times the saturation diffraction efficiency

[7].
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more than 100 bits/um? with disk thickness approximately 1 cm. However, the
limits to storage density derived in this chapter are only due to the geometry of
the system. The storage density can also be limited by noise (cross-talk, detec-
tor noise, media defects, etc.) and the limited dynamic range of the recording
medium. These limits to N/A prove less restrictive than the geometric limits
derived here. This is supported by recent experiments by Mok [8] where 1000
holograms were supefimposed and reconstructed with extremely low probability
of error in a lithium niobate crystal with 1 cm thickness. The parameters of this
experiment were reasonably close to the optimum parameters given here.

We can increase the storage density further if we use lenses with smaller
F/numbers. The practical limit is probably around 1, which is simple with the
condenser lens. We had based most of the calculations in this chapter assuming an
F/3 lens. If we had used an F/1 lens, then the density increases to 190 bits/um?:

we assumme as before

- Wavelength: \ = 500 nm,

- Index of refraction: n = 2.2,

- Number of pixels: N}? = 1,000 x 1,000,

- Reference beam angle swing: 10° to 20° inside the crystal (this corresponds

to 22.5° to 48.8° outside the crystal, a total angle swing of 26.3°).

For F'/1 optics, the minimum resolvable spot size is §pmin = 1.12 pm and
Lyyin = 5.16 mm. The optimum crystal thickness is L, = 3.21 mm, which gives

us

- Optimum thickness: L = 3.21 mm,

- Number of holograms: Ny = 251 (one “quadrant” only; with 4-side multi-
plexing, the number of holograms is 1004),

- Area per location: a = 1.78 x 2.95 mm? = 5.27 mm?.

- Storage density: N/A = 47.68 bits/um? (if we multiplex from four sides, as
shown in Figure 4.2, then the density is 190.72 bits/um?).
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The alignment-limited rcadout time (Section 4.4) for image plane holograms
of course becomes shorter as we increase the storage density, since the pixel size
6 decreases. However, it increases for Fourier plane hologram, while it does not
change for the optimum configuration (which is of course always longer than that
of the Fourier transform hologram).

From the discussions on the readout time in Section 4.3, the readout time
limit due to rotation if we require fast, random access ® is far too short for
the detectors to pick up. One solution to this problem is to use pulse lasers,
which have higher peak power than CW lasers. Taking M = 1000, Ng = 108,
a diffraction efficiency of 10_6; and 4 x 107'? J per photon, the total energy

required to readout one page, which consists of 1 Met, is 0.4 mJ of laser light.
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Chapter 5

Crystal Orientation and Diffraction
Efficiency of Photorefractive Crystals

In the two previous chapters, we discussed what might be called the geomet-
rical aspects of 3-D holographic disk systems. We have ignored for the most part
the question of dynamic range and diffraction efficiency. The diffraction efficiency
obtainable from photorefractive crystals depends on the orientation of the crystal
and the polarization of the incident light. This problem is of interest in gencral to
holographic recording using photorefractive crystals, since it is always desirable to
maximize the diffraction efficiency. It is particularly relevant to 3-D disks, since
the orientation of the crystal changes as the disk rotates.

In this chapter, we analyze the diffraction efficiency of photorefractive crys-
tals as a function of crystal orientation. We begin with a review of the Kukhtarev
band-transport model {1] with special attention to the anisotropic aspect of pho-
torefractive crystal. |

Throughout this chapter we will use the usual coordinate system that diag-

onalizes the electrooptic tensor. Thus the z-axis will also be the crystal c-axis.

5.1. The Photorefractive Effect in
Anisotropic Crystals

The saturation space-charge field in a photorefractive crystal in the absence
of the photovoltaic effect [2] and external applied field is given by the well known

formula [1,3,4]
E : eTK E (5.1)
sc =M ———F—F/7— = Mdligat, .
1+ k8T
e“N 4
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Where m is the modulation depth, kp is Boltzmann’s constant, T' is the tem-
perature in Kelvins, N4 is the density of acceptor sites in the material, K is
the magnitude of the grating vector, and € is the permittivity. In the case of
anisotropic crystals, however, € is a tensor, and it is not immediately clear what
value to use for e. It turns out that the correct value is not given by either

Eq. (2.128) or (2.129), but instead is given by
€ = €, sin ¢ + €, cos® @, (5.2)

where ¢ is the angle between the grating vector K and the c-axis. It should
be noted that the permittivity we use for the photorefractive effect is the low
frequency or DC permittivity, whereas the permittivityvused for coupled-mode
analysis are in the optical frequencies. For crystals such as lithium niobate, the
difference between €, and e, is significant, differing in some cases by more than a
factor of 2. For example, for lithium niobate, €, = 78 and e, = 32. The different
formulas used to calculated e can give very different answers.

In this section, an outline will be given for the derivation of the space-charge
field based on the Kukhtarev band-transport model for anisotropic crystals. We
‘will assume that there is only one species of charge carriers (the electron) and
that there is only one species of trap sites. We also assume thét'the mobility p
of the crystal is a scalar, ! but assume that the permittivity € is a tensor. We
will also ignore the effects of beam-coupling, and assume that the light intensity
distribution is not affected by the grating. ,

According to the Kukhtarev model, the following equations describe the dy-

namics of the photorefractive effect when electrons are the only species of carriers

N}, .
¢ = SI(Np = Nj5) — yon.Nj, | (5.3)

J = pen.E + kgTuVn, + p(Np — N})Ic (5.4)

1 Not to be confused with the permeability. The assumption that u is a scalar
is not really true. However to simplify the analysis, we will assume in the
treatment here that p is a scalar.
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V-J= —e% (Nf = Na—ne) (5.5)
V-(E)=e(N{ — N4 —n,) (5.6)

where Np is the density of trap sites (donor ions), Nj, is the density of the
vacant trap sites, N4 is the density of the compensating ions (to maintainlcha,rgve
neutrality), I is the light intensity, s is the photon-absorption cross-section, vp is
the recorhbinafion constant, J is the current density, y is the electron mobility, e
is the electron charge, n. is the free electron density, kg is Boltzmann’s constant,
T is the temperature in Kelvin, p is the photovoltaic constant, c is the umt Vector
in the direction of the photovoltaic field, and € is the permittivity tensor.

We assume that the intensity grating is of the form
I=I+Le ®*yce, o (5)

where K is the grating vector. As mentioned earlier, we assume that beam-
coupling effects are negligible, and take I as a constant of time.

Let u be the direction of the grating vector K, and ¢ be the direction of the
photovoltaic field. We assume that

N} = Do+ Dye > 4 cc. o (5.8)
Ne = Neo + ny e—iK-x + c.c. ‘v (59)
E=E;+E e ®* tcec. : (5.10)

Here E is not necessarily parallel to the grating vector K. We also assume that
Np > N§ > neo, - (1)

and that the time response of n (the free electron density) is instantaneous com-

pared to that of Np (dny/dt < dD,/dt).
Substituting Egs. (5.7)—(5.10) into Egs. (5.3)-(5.6), and collectmg the zeroth
and first-order terms, we get from Eq. (5.6)

Dy == N4 = const. ‘ (5.12)
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Substituting this result into Eq. (5.3), we get

SIo(ND —NA) - slgyNp
YpNa " 4pN4’

Neg ~

(5.13)

which is a constant.

Now write the electric fields as
 Ei = Ei,u+ Eppv, o (5.14)

-Wheré v is an unit vector perpendicular to u. From Eq. (5.6), the first-order terms
give us »

—K - eEq = e(Dy —ny) =~ eDy, (5.15)
where it is assumed that Dy > n;. Using the fact that K = Ku, the above

equation gives us

%Dl = ¢ Eyy + "By,  (516)
or ‘
Eie = EfZ,Dl . Z—,,,El,,,  (5.17)
where
¢ =u-eu, O (518)
and | .
€' =u-ev. , (5.19)

Note that the expression for ¢ in Eq. (5.18) is exactly the value given by Eq. (5.2).
Next we substitute Eq. (5.4) into (5.5). we get |

V-J=pe(nV-E+Vn,-E)+kpTuVin, +aVI-c

6} .
= —e= (N}~ Na—n.). - (5.20)
ot
The first-order terms give us (assuming dD; /dt > dn; /dt)
1 d ) 1 dD,
pKdt ' TV TR T

eneo - .plo

= |(Ba+ iBou)ns — (e’K +i;(u-c)> Dl]

4+ iPVD = Na)hy
pe

6I

(u-c)—i (EH) neo iy, (5.21)



Where

Ey= kBZI‘ , (5.22)
and

E()-u = Eo . (523)

On the other hand, the first-order terms in Eq. (5.3) give us (by using
Eqgs. (5.11) and (5.13)) '

dD
d_tl = —(SIQ + ")’Dneo)Dl + .S(JVD - Do)Il —_ ’)’DD()’I’L]
I\TD
N neo'p \ NN, Dy + s(Np — Na)l1 —vpNam
1
= _t_Dl +s(Np — Ng)I; —ypNani, (5.24)
0
where
.NA 1 ]\rI) — JVA
ty = = . . .25
0 slyNp YDMNeo Np (5.25)

Eliminating n; from Eqs. (5.21) and (5.24), we get

) dD 1
(E;m + Ed + 'ZEOu)_d—tl =

. N
-7 [EA’ + Eq+1 (EOu + R%Eph,u)] D,

ty
} Np—-N mN,
+ [Ed + 3(E0u, + Eph,u)] ( DN - A) A
D to
€ .NA IVD - 1VA
— = —— 2 ) Ei, 5.26
: (6') to ( JVD ! ( )
where
_ YpN4
_eNg (Np—Ny
En = K ( o ) , (5.28)
Io(Np— N
Epp =2 oNp = Na) (5.29)
HeNep
Eph,u = Eph - U, (5.30)
and
I
m=2 (5.31)

=1
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Here,. m is the modulation depth and E,j, is the photovoltaic field. We can write

Eq. (5.26) as
dD,

T = D1+ mfNa—igNa, (5.32)

where we define

T =10 . )
Ex + Ea+i (Bou+ ¥ Eph,u
f= (ND - NA) Eq+i(Eou + Eph,u) , o (5.34)
No ) En+Ea+i(Bou+ N4 Epna) o
and |
= (E—"> (ND _NA) Eio . (535)
¢ Np En+E;+: (EOu + %Eph,u)

This gives the dynamics of the space-charge field. Assuming that E,, is known, we
can solve for D,, and then find E4, using Eq. (5.17). Note that since NA/ND <1
from Eq. (5.11) (typically 107*), the photovoltaic term (Na/Np)Eph,y in the
denominators is negligible, and the factor (Np — N4)/Np is approximately 1.
In particular the time constant 7 is practically independent of the photovoltaic
field. (It does, however, effect f, and hence the séturation field.) 4Intuitive13.r, the
presence of the photovoltaic current is equivalent to an applied field, even if the
crystal is ‘;short circuited” and there is no voltage drop across the crystal.

In practice, the crystal is finite, and we need to cons-ider the boundary con-
ditions. As the space-charge field develops inside the crystal, the electrons also
start to migrate towérds the surface of the crystal or towards the edge of illu-
mination, and get trapped at the boundaries. The charge built-up creates an
additional electric field. The case where the c-axis is parallel to the crystal sur-

face and the grating vector, and where the charges accumulate at the boundaries
" of illumination has been treated in reference [4].

From Eq. (5.32), assuming that E, is a constant, the solution to Dy is

Dy = (mf —ig)Na (1—e77),  (536)
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" which gives us

"

Eru = En(g + imJ) (1 - e-t/f) - (‘Z—,) Er. (5.37)

The value of E;, should be determined by the boundary conditions and how
the charges accumulate at the boundaries, etc. If we assume the “short circuit”
condition in the direction perpendicular to the grating, then E, is zero, and g is

Z€ero. .Eq. (5.37) then becomes (since (Np — N4)/Np ~ 1)
By, =imfEy (1-e7/7), (5.38)

and the space-charge field is parallel to the grating vector K. When there is no
applied field Ey, and no photovoltaic field E,p , in the K direction, the expression
in Eq. (5.38) becomes Eq. (5.1) as t — co.

Typically, En is much larger than F; and Ey,, and E,, is approximately

Bru = ~m[(Bou+ Epna) — iEa] - (1—7/7). (5.39)

5.2. Diffraction from Photorefractive Crystals

In this section, we will apply the results from the previous section and the
results from Chapter 2 to analyze the diffraction efficiency from photorefractive
crystals. For éimplicity, we will assume that there is no photovoltaic effect and no
externally applied field. This approximation is good for crystals such as SBN and
BaTiO;z. For lithium niobate, however, the photovoltaic effect is quite strong, and
strictly speaking should not be neglected. As mentioned in the previous section,
the effect is similar to having an applied field. In the analysis given here, we
will ignore the photovoltaic effect and later discuss how it effects the diffraction
efficiency. We will also assume that Eq, = 0. With these approximations and
assumptions in mind, we now proceed to calculate the diffraction efficiency from

photorefractive crystals.
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From Chapter 2, the diffraction efficiency of a weak transmission- or reflec-

tion-type volume hologram is given approximately by

Pom | (Wip)?(er - Acey)?

n
N9 4k? cos? 6

£
Ey

L2 (5.40)

=
where k; is the magnitude of the wave vector k;, Ae is the change in the per-
mittivity tensor, and L is the thickness of the crystal. 8} is the angle between k;
and the normal of the crystal (the normal is not necessarily the z-axis, which in
this chapter is set to be the same as the c-axis). e; and e; are the unit vectors
in the direction of the electric fields of the optical waves. As mentioned béfore,
in general e; is not perpendicular to k;. It is assumed that both the incident
wave and the diffracted wave are eigenmodes; i.e., they are either drdinary or
extraordinary waves.

For anisotropic crystals, the change in the permittivity tenéor € in the pres-

ence of an electric field is given by 2

Ae = —e[n?(rE**)n?]
1
= ——[e(rE*“)e], - (5.41)
€0 i : .
where ¢ is the vacuum permittivity, r is the electrooptic coefficient tensor, E*¢

is' the space-charge field, and n is the index of refraction tensor. Note that both

n and € are symmétric tensors. We can now write e; - Ae ey as
1 sc .
e Neey = —6—(662) - (rE®°)(eez). : (5.42)
0

Since e; is the direction of the electric field, ee; is in the direction of the displace-

ment vector Dj, and is therefore perpendicular to the wave vector k;. Let d; be

2 We have A(1/n?) = rE®® (where 1/n? is a tensor) and €(1/n?) = I (the
identity matrix). Therefore (Ae )(1/n?) + eA(1/n?) =0, and

Ae =»—6A(1/n2)n2 = —eo[n*A(1/n?)n?], ‘

since € = eyn?.
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T the uhit vector in the direction of D;, which is parallel to ee;. We then have

ee; = enid;, (5.43)
where (from Eq. (2.130)) n; satisfies

n7? = /d; - n—id;. o (5.44)

On the other hand, we have

_ po1 , _
=wy B = (5.4
where (from Eq. (2.131)) n; satisfies

n! 7! =4/d; -n-2d,. © . (5.46)

As mentioned in Chapter 2, for ordinary waves n; = n, = n,, where n, is the
ordinary index of refraction. For extraordinary waves, if the difference between
the ordinary index n, and extraordinary index n. is small, then both n; and n!

are approximately (from Eq. (2.132))
n; & n; = ny(l 4+ 2n,An sin¢;), - (5.47)

where An = ne — n, and ¢; is the angle between k; and the c—axis. We will
therefore approximate n by n; for the remainder of this chapter.
With these results, we can now write the diffraction efficiency in Eq. (5.40)

as
L2
4 cos? 6}’

where kg = wy/li€g, u is the unit vector in the direction of E*¢, and E,. is the
)

n = knin}[d, - (ru)d,]* B2, - (5.48)

magnitude of E®°.
If we assume that Ey, = 0in Eq. (5.37), then the space-charge field is parallel
to the grating vector K, and the magnitude of the space-charge field is given by

Eoo = mEgas (1 - e-t/f) - ﬂ (e1 - €2) Eyar (1 _ e_t/T)? (5.49)
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\;vheré m is the modulation depth, I; is the intensity of the k; beam, 7 is the time
constant (which may be complex), and E,q¢ is the saturation space-charge-field.
It is assumed here that the beams used for recording and the beams for reading
out the hologram have the same polarizations. Although it is possible to record
with beams that have polarizations different from that of the reading beams, thi‘s
will create problems for simultaneously Bragg matching all the spatial freqﬁencies.
Similarly, we assume that orﬂy eigenmodes are used for recording and reading,
so that we do not have the complication of “double gratings” [5]. This will be
discussed in more detail in Section 5.4. -

In the absence of applied fields and photovoltaic effect, the saturation space-
charge-field E,,; is given by Eq. (5.1). From Eq. (5.2),vthe permittivity, €, is
given by

¢ = eoles(u + ul) + e;u?]. - (5.50)
Here, € is the vacuum permittivity, and e, and €, are the dielectric constants
perpendicular and parallel to the c-axis (2-axis). Note that these are the DC or
low frequency dielectric constants, and not of optical frequencies.

Putting these results together, Eq. (5.48) becomes

' 2
n ={k0nf/2n§/2 [dz - (ru)dy] - Esailen '62)} o

LI L?
(Il + I2)2 4:COS2 9’1
where n; and n; are given by Eq. (5.44).

9 ,
‘l—e_t/" , (551

Our goal is to maximize the diffraction efficiency 1. The diffraction efficiency
of course increases as we increase the crystal thickness L and the modulation depth
m = I I /(I; + I). These are independent of crystal orientation, and therefore
will not be considered in the subsequent discussion. 6} is the angle between the
k; wave vector and the normal of the crystal, and is also independent of crystal
orientation. In the following discussions, we will therefore also neglect the factor
L/cos;. Note that for the same crystal thickness L, if the diffracted signal
beam is at a larger angle 6], then the interaction length along the direction of

propagation is L/ cos 6], and not L.
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'Another consideration is the surface area occupied by the signal beam, which
is proportional to 1/cos 8]. The storage density (in bits per unit surface area)
is inversely proportional to the area occupied by the hologram, and is therefore
proportional to cos#]. On the other hand, from Eq. (5.51), diffraction efficiency
is proportional to (1/cos@))?. The number of holograms that can be ,stored,
however, is proportional to the square root of the diffraction eﬂ’iciéncy,; 3 and
_ﬁhereforé to 1/ cosé}. The effects therefore tend to cancel out.

With these considerations in mind, we will therefore concentrate on the quan-
tity | | |

G = kon**n3%(dy - (ru)dy ) Eear(er - €2), (5.52)

which is proportional to the square root of the diffraction efficiency, . Our goal
will be to maximize |G| by choosing an optimal crystal orientation. We assume
that the incident and diffracted waves are both eigenmodes (e- or o-modes). Note
that the unit of G is 1/m.

| To calculate the value of G, we first write the directions of the wave vectors,

k; and k,, in spherical coordinates:

~

i

= (sing; cosf;, sing; sin6;, cosg;), . (5.53)

el

i
where ¢; is the angle between k; and the z-axis. k; is the magnitﬁde of the
wave vector, k;, along the direction of the unit vector on the right-hand side of
Eq. (5.53).

To find the polarization vectors, we note that the extraordinary wave polar-

ization is in the direction perpendicular to the wave vector k;, and lies in the same

plane as the wave vector and the c-axis. The ordinary wave polarization vector is

3 It can be shown that if we record multiple holograms on the same location,
the diffraction efficiency of the individual holograms scale as 1/M?, where
M is the number of holograms [6]. Given a minimum diffraction efﬁciericy,
the number of holograms M that can stored is therefore proportional to the
square root of the diffraction efficiency.
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perpendicular to the wave vector and the extraordinary wave polarization vector.

Thus the ordinary mode polarization vector is given by
d; = (sin#;, —cosb;, 0), (5.54)
and the extraordinary mode polarization vector is given by |
d; = ( —cos¢; cosf;, —cos¢; sinf;, sin qﬁz) (5.55)

We can then use Eq. (5.46) to find the values of the n;’s (or n!’s), and from these,
the %;’s (from Eq. (5.45)) and the wave vectors k; and k.

Next, we calculate the grating vector K = kg — ky, from which we determine
the unit vector u. We also need to calculate E,q4, as given by Eq. (5.1). Note
that in Eq. (5.1), the permittivity € (given by Eq. (5.50)) is not a 'constant, but
depends on the direction (u) of the grating vector, K.

Assuming that r is known, we can finally substitute thesc values obtained
above into Eq. (5.52) to get G. The expression is complicated, and for the gencral
case no simple expression has been found for their maximum. However the value

of G can be readily calculated numerically using a computer.

5.3. The Co-Planar Geometry

Although no simple expression for G is known (in terms of the 8; and ¢i) for
the general case, it can be reduced to a simple form for the special case where
ki, k and z-axis are in the same plane. We will call this configuration the co-
planar geometry. * The co-planar geometry is especially convenicnt for recording
holograms on a 3-D disk in either the transmission or reflection geometry (where
the c-axis is the disk rotation axis), since the eigenmode polarizations are either

in the same plane as ki, k; (0-mode) or perpendicular to it (e-mode), regardless

* This agrees with the definition given in Section 2.1, since in the discussion

to follow, the z-axis is the normal of the crystal.
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;)f the disk rotation angle. In terms of getting uniform diffraction efficiency as the
disk rotates, choosing the c-axis as the rotation axis is a reasonable choice, since
the c-axis is the axis with the highest symmetry.

In this section, we will apply the results derived in Section 5.2 to two par-
ticular categories of crystals that have special symmetry properties: those that
belong to the 3m symmetry group, and those that belong to the 4mm ssrmme—
_fry grouf). These are of spec‘ial interest because the majority of photorefractive
crystals being used today (lithium niobate, barium titanate, SBN, etc.) belong to
one of these two categories. Gallium arsanide, which belongs to crystals having
the 43m symmetry group and exhibits some photorefractive effects, also has the
3mm symmetry. It can be shown, that under coordinaté transformations (with
the [111] direction as the new z-axis), the electrooptic tensor of the 43m. symmetry

group has the same form as that of the 3mm symmetry group.

5.3.1 Crystals From the 3m Symmetry Group: LiINbO;

Lithium niobate is an example of a crystal having 3-fold symmetry about
its c-axis. It belongs to the crystal group having the 3m symmetry [7]. In the
contracted indices notation, the electrooptic coefficient tensor (in the ‘,coordina,te

system that diagonalizes the permittivity tensor) is given by [8]

0 —T292 13 0 — ,3

0 Tez T3 0 a B

. 0 0 33 _ 0 0 Y
- o o o1l 0 5 d (5.56)

42 0 0 6 0 0

~—7T292 0 0 — 0 0

For lithium niobate, the coefficients are [9]: a = ry2 = 6.8 pm/V, 8 = r;3 =
9.6 pm/V, v = r33 = 30.9 pm/V, and § = ryy = 32.6 pm/V, with n, = 2.286,
ne = 2.200, e, = 78, and ¢, = 32. In the calculations below, the wavelength is
500 nm. |
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Assuming the co-planar geometry, k;, ks and the z-axis are in the same

plane, and we have 8; = 6, = 6. The grating vector K is then

(ng sin ¢y — ny singy)cos
K=k, —ki =k | (n2sin¢gs —nysin¢g;)sinf | . (5.57)

Ng COS 3 — N1 COS Py
We now make the approximation that ny = ny; & n,, where n, = (n. +n,)/2.
For lithium niobate the difference between n. and n, is about 4%, so the approx-

imation is fairly good ®>. We then have

K = 2kgn, sin ¢2—;ﬂu, -~ (5.58)
where ;
u= (uz,uy,uz) = (cos¢2—;ﬂ cosf, cos ¢2;¢1 sin 6, —Siné?—-—;ﬁ)
(5.59)
is the unit vector in the K direction. We then have (after expanding the contracted
indices)
—auy + pu, —Quy, bug ’
ru = — —QUy auy + Pu,  buy | . (5.60)
by duy YU , :

‘Depending on which polarizations we are interested in, we subétituting either
Eq. (5.54) or (5.55) for d; and d; in the expression for G (Eq. (5.52)), and after

simplifying the expressions, we obtain

dy-(ru)d; = A+ Bsin36 (5.61)
if d; and d, are the same mode (i.e., both o—rﬁodes or both e—mod'es),vor

dz - (ru)d; = A + B cos 30 | (5.62)

if d; and d; are different modes (i.e., one is o-modes and the other is e-modes).
Note that we have the expected three-fold symmetry about the z-axis in the sine

and cosine terms. The coefficients A and B for the various coupling modes are:

® From Eq. (5.44) or Eq. (5.46), it is easy to show that n; and n} are between
n, and n..
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1. dy = o-mode, d2 = o-mode: (0-o coupling)

A= fsin %—;ﬁl (5.63)
B = —acos ¢2 ;— é1 (6.64)
‘2. dy = e-mode, d; = e-mode: (e-e coupling) - |
A= 6s_ih(¢2 + ¢1) cos i ;— ¢1 + vsin ¢y sings sin %—;ﬂ
+ f cos ¢y ‘cos $o sin ?—2;;451 | (5.65)
"~ B =acos¢; cospy cos ¢2 —; é1 (5.66)
3. d; = o-mode, d; = e-mode: (o0-e coupling)
A=0 | (5.67)
B = acosgy cos ?”;—‘bl (5.68)
4. dy = e-mode, d; = o-mode: (e-o coupling)
A=0 | (5.69)
B = accos ¢y cos g2t | (5.70)

2

The coeﬂicient A multiplied by the other factors in G give the average value of
G, while B multiplied by the other factors in G gives the variation with respect
to rotation angle 6. For e-o and o-e coupling, the average value of G is zero. This
means that for these two coupling schemes, G will cross zero af some rotation
éngle, and thérefore there is considerable variation in the diffraction efficiency as
the disk rotates.

In Figure 5.1(a) to (d), we plot the average and variation of G ‘in lithium

niobate for the four various polarization couplings. ® These values are plotted as

% From coupled-mode analysis (Chapter 2), the sign of G signifies the direction
of two-wave mixing [8], or beam-coupling in the crystals. The sign of G is
important if we are interested in optical gain from two-wave mixing. How-
ever, since we are primarily interested in optical storage here, and therefore

diffraction efficiency, we are more concerned with the absolute value of G.
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functions of ¢2 — #1, which is the angle between ks and k;. Recall that kq, ko,
and the z-axis lie in the same plane.

Note that the angles ¢; and ¢, are the angles inside the crystal. Since the
largest angle we can have inside lithium niobate (due to refraction) is about 27°,
the values of ¢ in Figure 5.1 have been plotted only up to 30°. Similarly, certain
values of ¢2 — ¢1 shown in Figure 5.1, can not be supported inside the crystal.

For c-o and o-e coupling, we have plotted only the variation, since the aver-
ages are zero. Strictly speaking, from Eq. (5.52), the values of G are zero for e-o
and o-e coupling, since for these two cases, €; - e, is zero. In Figures 5.1(c) and
(d), the results were calculated by ignoring this, and taking e; -e; to be 1 instead.
The fact that e; - e = 0 means that if we use mixed polarizations, we can not
form interference patterns, since the modulation depth (which is proportional to
e; - e7) is zero. It is of course possible to record with one polarization, and then
read out with another. However, the angle of the readout beam now changes
because of crystal anisotropy. In order for the grating to be Bragg matched, the
reference beam needs to be adjusted. For images however, it is often difficult to
simultaneously Bragg match all the spatial frequencies. As a result, the recon-
structed image is distorted. In any case, the results in Figures 5.1(c) and (d) have
lower values than those of e-e and o-o coupling, and the averages are zero.

For o-o coupling, the polarization vectors (the direction of the electric fields)
are perpendicular to the incident plane (the plane formed by k; and ki). As
shown in Figure 5.1(a), the absolute value of the average of G for small values
of ¢2 — ¢1 is less than the variation. This implies that for transmission type
holograms, we have large variation in diffraction efficiency as the disk rotates.
For o-o coupling, it is therefore better to record in the reflection geometry. For
example, if the image beam incidents normally on the crystal, we have ¢; = 0.
In this case, we record in the reflection geometry where ¢, is nearly 180°. In this
configuration, the variation is also low.

For e-e coupling, the polarization vectors lie in the incident plane. As shown

in Figure 5.1(b), the average is higher than for o-o coupling. For ¢; = 0 (signal
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Figure 5.1. The average (solid lines) and variation (dashed lines) of

G for: (a) o-o coupling, and (b) e-e coupling in lithium niobate.



130

lithium niobate
e-o coupling

150 T T T T r

[
A
_____ o P
100 | ¢~0 A :
_____ -— o L] W
¢=10 "\\\\\
----- o §NY
..... —=30° AR
¢=30 W
50 }+ PN 4
.
A \‘ \\\\
NN NN
SN NS
L Y 3 >
— LN RN
g NN
= 0 s NN
~— \ RS
O \\\ \\ \\ AY
N hY
M
s0F Ny
- L s
A\
N
. AN
\:;;
]
-100 ‘J.l k
"
. . ;

-150 : .
-180° -120 -60 0 60 120 180

( C ) (pz‘—(Pl (deg)

lithium niobate

o-e coupling
150 T v . T .
\
o I
_____ — "\
100 | 9=0 Ay .
----- — o
(Pl"lo ’Q\I\ \
..... —=20° M
(Pl_20 N \‘-\‘|
..... —30° A,
(Pl— LAY
L LR N -
50 (L L
Vil
\ |\\\\
3 Wiy -
P Ayt
_ NN VAN s
NN LAY ’
=] . DN AR Sy
= 0 AN LS )
~ \“\‘ . DN v
6} N \“‘\\ el
\\\‘\ \
LR A
A\
R
50 + Y g
W
LYY
e
\\\‘\
A
1Y
W
-100 ' j 4
A}
\ .
'y
N

-150 : e ——
-180 -120 -60 0 60 120 . 180
( d ) (Pz"(P ] (deg)

Figure 5.1. (cont’d) The variation of G for: (c) e-o coupling, and

(d) o-e coupling in lithium niobate. The average in both cases is zero.
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h Beam at normal incidence), the average and variation are approximately the same
for small ¢ — ¢1 (transmission holograms). This means that there is large varia-
tion inn as the disk rotates. As we move to larger ¢;, the average increases while
the variation decreases (for the same ¢ — ¢;). However there is a large change
in G as ¢ — ¢1 changes (i.e., as the reference beam angle changes). This needs
to be taken into account if we want to record multiple holograms with uniform
_diffractidn efficiency. |

For e-e coupling, recording reflection holograms is less favorable since the
diffraction efﬁciency varies more over a smaller range of ¢, — ¢, angles compared
to that of o-o coupling.

In conclusion, although the diffraction efficiency is higher with e-e coupling,
a larger incident angle presents some problems, such as reflection from the crystal
surface. Another problem is the larger variation in the diffraction efficiency as
¢2 — ¢1 changes. In comparison the “bandwidth” for 0-o coupling with reflection
holograms is larger. Thus it is more convenient to record reflection type hoiograms

in lithium niobate 3-D disks.

5.3.2. Crystals From The 4mm Symmetry Group: BaTiOz and SBN

BaTiO3 and SBN have a 4-fold symmetry around the c-axis, and belong to
the crystal group with the 4mm symmetry. In the contracted indices notation,
the electrooptic coefficient tensor (in the coordinate system that di’agohalizes the
permittivity tensor) is given by [8]

T13

0

0 T13
0 T33
4

0

0

.0 (5.71)

0
0

(oIS SO e B e B en B @’
SO OO o
OO ™™

Comparing this to the r coeflicients for the 3m crystals, the forms are identical if

we take v = 0. The results given in Eq. (5.61)—(5.70) (for the co-planar geometry)
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;Lre therefore still valid. But now since « is zero, B is zero, and this means
that there is no variations with respect to change in 6, the rotation angle. In
the context of 3-D disk geometry, this means that there is no variation in the
diffraction efficiency with respect to disk rotation. Note also that there is no
coupling between the o- and e-modes, since both A and B are zero for e-o or o-e
coupling (Egs. (5.67)—(5.70)).

ForvBaTiOp,, the coefficients are [8]: 7 8 = ri3 = 8 pm/V, v = r33 =
23 pm/V, § = rys = 820 pm/V, with n, = 2.437, n. = 2.365, ¢, = 4300, and
€, = 106. In the calculations below, the wavelength is 500 nm. We plot the values
of G for e-e coupling and o0-o coupling in Figures 5.2(a) and (b). -

From these results, we see that it is preferable to use e-e coupling with trans-
mission geometry in the case of barium titanate. The diffraction efficiencies are
much larger than for lithium niobate. However, the variation in diffraction effi-
ciency as ¢ — ¢1 changes is larger.

For SBN, the coefficients are [10]: 8 = r13 =55 pm/V, vy =rs3 = 224 pm/V,
8 = ryo = 80 pm/V, with n, = 2.3, n. = 2.27, ¢, = 470, and €, = 1100. In the
calculations below, the wavelength is 500 nm. We plot the values of G for e-e

coupling and o-o coupling in Figures 5.3(a) and (b) ’

The result for SBN with e-e coupling is similar to the situa;fion for barium
titanate, But with lower diffraction efficiency. As with barium titanate‘, it is advis-
able to record in transmission geometry using e-e couplirig. Again, the variation
in diffraction efficiency with respect to ¢ — ¢; is larger than for lithium niobate.

Note that for both crystals, the diffraction efficiency increases dramatically

as @1 increases (i.e., the signal beam incidents at a more oblique angle). This

T Strictly speaking, the values for r, €., and €, listed here are for high frequency
[9]. For calculating the photorefractive effect, we should actually use the
low frequency values. Thus the results shown here should not be trusted
completely. Nevertheless, these results will give us an adequate estimate of
the situation. In reference [19], the authors also used the high frequency

values.
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Figure 5.2. The values of G for: (a) o-o coupling, and (b) e-e coupling

in barium titanate.
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is due to the fact that the diffraction efficiency increases as the direction of the

grating vector K is closer to the direction ofs the c-axis.

5.3.3. Demonstration of a 3-D Disk System

Having discussed some of the design considerations of the 3-D disk, we now

present some results éf holographic recording on an experimental 3-D disk.
" The disk is an 0.01%-iron doped lithium niobate crystal (from Deltronics),
with a thickness of 5 mm and a diameter of 1.5 inches. Lithium niobate was
selected because it is commercially available in large sizes, and has good optical
quality. |

The holograms were recorded as near-image plane holograms using the reflec-
tion geometry, with the signal beam at normal incidence on the crystal surface,
and the reference beam coming in from the other side of the crystal. The crys-
tal was mounted on a rotation stage, and different recording locations aﬂong the
rim of the crystal were accessed by rotating the crystal. Each recording location
was approximately 5 x 5 mm?, and a total of 20 locations were recorded along

‘the rim of the crystal. At each location, 100 hoiografns were recorded by .angle
multiplexing. A computer-controlled stepper motor was used to rétate the mirror
that changed the reference beam angle. The reference beam passed through a 4-F
imaging system so that the reference beam would always fall on the same location
‘on the crystal as the angle changed. (This is the same as that usved in the setup
shown in Figure 6.1 in Chapter 6.)

The images used for recording were stored on a VCR, and a computer ad-
vanced the pictures frame-by-frame for recording. The VCR was connected to a
liquid crystal TV (LCTV) taken from an Epson TV projector, é,nd the LCTV was
used as a transparency to bring the image onto the crystal. A recording sched-
ule [6] was used for writing the holograms to ensure uniformity of the diffraction
efficiencies in the individual holograms.

In Figure 5.4, we show the diffraction efficiency of 100 holograms recorded at
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Figure 5.5. Some of the reconstructed pictures from the 100 holo-

grams.
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Figure 5.6. Diffraction efficiency as a function of rotation angle. Each
hologram was exposed for 100 seconds during recording. The intensities
of the recording beams are 20.5mW for the reference beam, and 2.5mW

for the signal beam.

one location. The holograms were recorded in the reflection type geometry, and
then thermally fixed [11]. ® The diffraction efficiencies are shown as a function
of reference beam angle. They are not completely uniform for two reasons. First,
the images were taken from a segment of a cartoon, and the total intensity of
the pictures changed from frame-to-frame. Another reason is that the estimate
of the time constant was not accurate. It is known that the time constants for
writing and erasing are not the same. In the experiment shown in Figure 5.4,
the recording schedule was, for simplicity, calculated by assuming that the time
constants were the same. This caused additional error in the uniformity.

In Figure 5.5, we show some of the reconstructed images from the 100 holo-

8 Baked at 130° C for approximately 30 minutes.
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grams recorded on the crystal. The reconstructed images were captured by a
CCD camera and printed out from a Sony video printer. In Figure 5.6, we show
the diffraction efficiency of holograms as the disk rotates. Note that as expected,
we have the 3-fold symmetry due to the particular crystal property of lithium

nicbate.

5.4. Double Gratings

As mentioned briefly in Section 5.2, if we record holograms using polarizations
that are not eigenmodes, we record “double gratings.” This can be a problem
when recording multiple holograms because of cross-talk. In this section, we
examine this issue in more detail.

Because photorefractive crystals such as lithium niobate are anisotropic,
plane waves that are not eigenmodes split into the ordinary wave (o-wave) and the
extraordinary wave (e-wave). When this occurs, double gratings are written for
each plane wave pair, each grating being associated with one of the eigenmodes
(polarizations). This can be a problem for optical storage using angle mﬁltiplexing
in voluine holograms. In these systems, cross-talk between the various holograms
is avoided by the angular Bragg selectivity of volume holograms. The width of
the Bragg matching angle (which depends on the crystal thickness) dictates how
far apart the reference beam angle needs to change from frame-to-frame to avoid
cross-talk between the holograms.

In the usual setup for recording holograms in lithium niobate crystals, the
c-axis lies on the plane of incidence (defined by the wave vectors of the signal and
reference beams), and the optical (electric) field is polarized either in-plane (hori-
zontal polarization) or perpendicular (perpendicular polarization) to the plane of
incidence. When the signal and reference beams are plane waves, they are eigen-
modes, and the beams do not split upon refraction. Therefore, a single grating
is written, and the problem does not arise in this simple case. Cross-talk then

depends only on the width of the Bragg matching angles.
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For the 3-D disk, however, the disk rotates in order for the system to access
different recording locations. The crystal orientation changes, and in general the
incident beams are not eigenmode. If one or both of the recording beams (which
are planc waves) are not eigenmodes, then double gratings are recorded instead of
a single grating. Upon reconstruction of the holograms by scanning the reference
beam angle, it is possible for each of the gratings to be Bragg matched at more
_fhan one angle. Thus there are three angles at which each hologram (consisting
now of a double grating pair) can be potentially Bragg matched, and this results
in additional cross-talk between the various holograms when we try to do angle

multiplexing.

5.4.1. Theory

We describe an experiment that demonstrates the double grating effect. The
geometry of our experiment is shown in Figure 3.7. The coordinates z, y, and
z are the crystal axes. The c-axis (z) is tilted at an angle ¢ with respect to
the plane of incidence. The direction of propagation of the signal beam is in
the z direction, perpendicular to the surface of the crystal, the y-z plane. The
reference beam is at an angle 8 with respect to the signal beam. The recording
beams are horizontally polarized, and have both e-wave and o-wave components.
The angle between k; and k; is denoted as 6. This geometry was chosen only for
convenience of analysis. The results are similar for other recording geometries.

Upon entering the crystal, the two eigenmodes refract according to Snell’s
law. The direction of the refracted beam depends on the index of the crystal,

which can be found from the normal surfaces of the e- and o-waves. These are

22y 22
—?;:2,_+;§+n_§:1 (5.72)

for the ordinary wave normal surface, and

.2 2 2
R  (5.73)

2 2 2
nz n? n2
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Figure 5.7. Geometry of recording and measurement. (a) Recording
geometry.

(b) Setup for experiment in Fig. 5.12 and Fig. 5.13.

for the extraordinary wave normal surface.

The refracted beams remain within the incident plane since the signal beam
‘is perpendicular to the crystal surface. Therefore we need only consider the
intersections of the two normal surfaces with the incident plane. ‘The intersections
are two ellipses, as illustrated in Figure 5.8. They do not touch each other because
the incident plane is at an angle ¢ with respect to the c-axis (z-axis). The

equations for the two ellipses are readily found to be:
i =1 | (5.74)

for o-waves, and
z? (sin2 @ + cos?

— )2 =1 (5.75)

for e-waves. (z lies in the incident plane. 2z’ is the direction on the incident plane
perpendicular to z.)
Each beam splits into two eigenmodes according to Snell’s law. The situation

is shown in Figure 5.8. For our particular case, the two components for the signal



141

ORDINARY NORMAL SURFACE
\ ORDINARY GRATING

]
Y
Y
L]

[

. EXTRAORDINARY

GRATING
.~ Ke
EXTRAORDINARY
NORMAL SURFACE
(a) Recording of gratings.

» Original reference beams

Anisotropic diffraction

(b) reconstruction of signal beams.

Figure 5.8. Normal surfaces and grating vectors.

beam are actually in the same direction since we have selected for convenience the
direction of the signal beam to be along the crystal axis z. (In Figure 5.8, they
are scparated for clarity.) The two eigenmodes are perpendicular to each other
in polarization, but it should be noted that the eigenmode polarizations are in
general neither parallel nor perpendicular to the crystal axes. One of the reasons
for choosing the signal beams to propagate along the direction of the crystal axis
z, is because the eigenmode polarization directions are exactly along the other
two crystal axes, y and z. Figure 5.9 shows the calculated slant angle, defined as
the angle between the e-wave polarization and the direction normal to the plane
of incidence, for several values of ¢. The derivation of the slant angle is given in
Appendix A.

The four refracted signal and reference beams inside the crystal form inter-

ference patterns which write gratings on the crystal via the photorefractive effect.
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Figure 5.9. Slant angle between e-wave polarization and direction

normal to incident plane.

The e-wave components form the grdting K., which we will call the extraordi-
nary grating. The o-wave components form the grating K,, which we. will call
the ordinary grating. From the geometry of Figure 5.8, and the application of
Snell’s law, we can calculate the directions of the refracted bearﬁs, and hence the

.two gratings:

) sin? ¢  cos? @ ) |

K. = (ne\/l — sin® §( > + — ) = ne, sinf) (5.76)
sin? @ X : ‘

K, = (no 1-— 5~ Mo, sm9). , (5.77)

o

In addition to the two gratings K. and K,, we also get gratings from in-
terference between the e-wave/o-wave component of the reference beam and the
o-wave/e-wave component of the signal beam. However these two “cross gratings”
are much weaker than K, and K. since the o-wave and e-wave modes are polar-
ized orthogonally to each other for the same beam, and are almost perpendicular
to each other for the signal and reference beams. Estimates of the modulation
depths for K., K,, and the cross gratings show that the modulation depths of
the cross grating is less than 5% of that of K. and K,. (In fact, it turﬁs out that
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fhe e-wave of the signal beam and the o-wave of the reference beam are exactly
perpendicular to each other. See Appendix A.)

Once the gratings are recorded in the crystal, the signal beam can be recon-
structed by the rcference beam. The angle at which the signal can be reproduced
is determined by the Bragg condition k; = k; + K. Since we have two gratings,
it is possible to satisfy the Bragg condition at more than one angle. In addition
_fo the original recording angle (where K. is read out by the e-wave and K, is
read out by the o-wave), we can get Bragg matching when K, is read out by the
o-wave and also when K, is read out by the e-wave, as shown in Fig. 2(b). It
is also possible that one of the two gratings can also satisfy the Bragg condition
for anisotropic diffraction [12-15]. The anisotropic Bragg matching condition for
K. is also shown in Figure 5.8(b). We will not consider anisotropic diffraction for
the rest this section. However, it can be treated in a way completely analogous

to the isotropic case we will treat.
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Figure 5.10. Deviation angle of the side-peaks from the recording

reference beam angle as a function of 8 for various values of ¢.

The angles where the additional Bragg matching conditions occur are very
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;:lose fo the original recording angle (the dotted lines in Fig. 5.8(b)). The deviation
of the Bragg angle of the reconstructing beam from the original recording angle,
denoted as A8, (for e-wave) and A8, (for o-wave), can be calculated as a function
of § and ¢ from the geometry of Fig. 5.8. The calculation is shown in Appendix B,
and the result is plotted in Figure 5.10 for lithium niobate where n, = 2.208 and
no, = 2.286. Note that Af depends only on the orientation of the crystal with
_fespe‘ct to the writing beams (i.e., § and ¢). Inside the crystal, the Bragg angle

is
A

2nL sin %‘-‘L

AGBragg,inside ~ A/L = 5 (578)

where, 6;, here is the angle inside the crystal. Outside the crystal, because of
Snell’s law, we have

n2 —sin? 4

AGBmgg ~ AeB'rag_q,in.sidea (579)

cos @

where n is the index of refraction, and L is the interaction length. Fof lithium
niobate (n & 2.2) with L = 8mm, and using A = 488nm and 6 = 30>°, we
get Abpyqgy about 0.01°. For ¢ = 30° and 6 = 30°, we get from Figure 5.10
‘AGC ~ A6, ~ 0.25°, which is much larger than AHBT,;gg. This implies thaf n a
system where we store images using angular multiplexing, the doﬁble grating will

interfere with an image stored approximately 25 positions away.

5.4.2. Experiments

The experimental setup is shown in Figure 5.7(b), with 8 = 34° and ¢ = 30°.
Both signal and reference beams are polarized in the plane of incidence. We
record a hologram in a lithium niobate crystal (grown by Deltronics; 20 x 20 x
8mm, 0.01% Fe doping) using two plane waves, then block the signal beam. The
detected intensity for the reconstructed beam (which has both e-wave and o-wave
components) as a function of Af is shown in Figure 5.11. As expected, there
are three peaks. In addition to one at the original angle (A8 -= 0°), there are

two side-peaks. The side-peaks are measured to be at Af, = +0.36° +0.01° and
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T “AHO = —0.35°40.01°. The theoretical prediction is +0.31° for both Af. and Ad,.
The central peak in Figure 5.11 has both e-wave and o-wave components, while

the side-peak on the right is an e-wave, and the peak on the left is an o-wave.
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Figure 5.11. Measured intensity of reconstructed beam as a function
of deviation of reference angle. Reference beam has both e-wave and

o-wave components.

If we reconstruct the signal beam with a reference beam that has only e-wave
components, we Bragg match K, at one angle (the original recording angle), and
| K, at a different angle. This gives us two peaks (both of which are e—wavés), as
shown in Figure 5.12(a). Similarly, we get two peaks when the reference beam
has only o-wave components (Fig. 5.12(b)).
The relative heights of the two peaks shown in Fig. 5.12(a) and (b) can
‘be estimated as follows. The diffraction efficiency of a thick phase grating is
proportional to the square of the index change An of the grating (Chapter 2).
This in turn is proportional to the modulation depth of the interference pattern
for weak holograms. We can measure experimentally the e-wave components of
the signal (I.;) and reference beam (I.2), and the o-wave components of the
signal (I,1) and reference beam (I,2) that are transmitted through the crystal.
From this we estimate the ratio of the modulation depths of K. and K, to be

v Ie1lea[Io1 1,2 = 2.94, so the height of the two peaks (for both Fig. 6(a) and (b))
should have a ratio of 2.942 = 8.67. (Strictly speaking, the diffraction efficiency
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- Figure 5.12. Measured intensity of reconstructed beam as a function
of deviation of reference angle. (a) Reference beam has e-wave only.

(b) Reference beam has o-wave only.

also depends on two-wave-mixing coupling coefficients [8] that are functions of 8
and beam polarization. However Af is < 0.5°, so the change is negligible.) The
actual measured ratios were 5.96 for the two e-wave peaks (Figure 5.12(a)) and

10.37 for the two o-wave peaks (Figure 5.12(b)).

The discrepancy between theory and measurement might be due to the fact
“that we do not actually have an infinite plane wave. Because of this, we have
a spread of spatial frequencies centered around the K. and K, vgrating vectors
(Figure 5.’28). We can not Bragg match all these spatial frequencies‘v simultane-
ously at the side-peaks, which is evident from the fact that at the side-peaks dark

bands appear across the reconstructed image.

Instead of using plane waves, we can also record images. We recorded two
images on a photorefractive crystal using the setup shown in Figure 5.13. The
images 1 and 2 are photographic plate transparencies. The incident plane wave is
split by the polarizing beamsplitter (PB) into horizontal and vertical components.
Each illuminates one of the transparencies, and the two images are recombined
by a second PB. The hologram is recorded with a reference beam that has both
horizontal (e-wave) and vertical (o-wave) polarization. The first image consisted

only of e-wave, and the second image consisted only of o-wave. After the holo-
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Figure 5.13. Setup fof'recording two images of orthogonal polariza-
tions. Image 1 has only o-wave component. Image 2 has only e-wave
~ component. (PB: polarizing beamsplitter. POL: polarizer. PR: pho-

torefractive crystal. M: mirror.)

gram was recorded, we observed the image reconstructed by the same reference
beam used for recording. As we change the polarization of the reference beam,
images 1 and 2 appear and disappear in turn, since the former is recorded as K,
gratings, and the latter is recorded as K, gratings. The results are shown in Fig-
ure 5.14. Figure 5.14(a) shows the reconstructed image when both o- and e-wave
components are present in the reference beam. Figure 5.14(b) and Figure 5.14(c)
shows that only one of the two images appears when tlie reference beam is o-wave
or e-wave only. Note that there is some cross-talk: there is a trace of image 2
in image 1. This is probably because the polarizations were not exaétly aligned
with the c-axis of the crystal, so there was some o-wave component in the e-wave
image of 1. The pictures were captured by a CCD camera, then taken off the

monitor by a polaroid camera.

5.4.3. Design Considerations and Applications

Double gratings are written in photorefractive crystals when the recording
beams have both e-wave and o-wave components. As a result, it is possible to
satisfy the Bragg matching condition at more than one reference beam angle.

This can be a problem when we record multiple holograms by angle multiplex-
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(a)

{b)
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Figure 5.14. (a) Reconstructed image when both e- and o-wave are
present in reference beam. (b) Reference beam has e-wave only. (c) Ref-
erence beam has o-wave only. The images were captured by a CCD

camera, then taken off the monitor by a polaroid camera.
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ing. When we read out one of the holograms recorded at a new reference beam
angle, the new reference beam can coincide with one of the side-peaks of previous
holograms, even though the new reference beam angle is separated from the other
reference beam angles by more than several Afprqgq-

To avoid this problem, we might limit the range of § and ¢ that we are work-
ing with, so that Af. and A6, are larger than the range of reference beam angles
fhat we want to use.. In this case, the side-peaks and central-peaks effectively

coincide.

Asan example, consider a crystal that has thickness of 8mm, index n = 2.2,
and § = 30°. We have Afp,qqy = 0.01° from Eq. (5.79). Taking twice this value
as the separation between reference beam angles, storing 1000 holograms would
require a range of § of about 20°. We can calculate A8, and A8, for various
values of ¢ at § = 20°, § = 30°, and 8 = 40° (see Appendix B). The result is
plotted in Figure 5.15. In lithium niobate we would like to work near ¢ = 0, where
the c-axis is close to the incident plane, and the diffraction efficiencies are high.
A6, and A8, in this region are about 1°, which means that we can place in about
0.5°/0.02° = 25 holograms before we start hitting the side-peaks. In this example,
we would have to record 25 adjacent, angularly multiplexed holograms, and then
leave a blank of 25 slots for the cross-gratings. It is in principlelpossibl'e to use
the system in Figure 5.13, to record two separate images in two polarizations
in such a way that the cross-gratings that appear in the “empty” slots would
actually be new images. With this scheme, there is no loss in storage density,
at the expense of considerable added complexity. As ¢ increases, the number of
adjacent holograms that can be recorded before we must leave a gap decreases.

The second alternative is to squeeze the side-peaks as close as possible around
the central-peak. As shown in Figure 5.15(b), around ¢ ~ 44.1°, all three peaks
actually coincide. However, for the separations of the side-peaks and central-
peaks to be much smaller than Afg,.4y throughout the whole working range of
8 (about 20° to 40°), we see that we are limited to a range of ¢ (tilt) of only one

or two degrees. This puts a rather strict constraint on system design. In general,
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Figure 5.15. (a) Deviation angle of the side-peaks as a function of ¢
for § = 20°, 30°, and 40°. (b) Enlargement of the region where A§, and

A8, are zero.

either we have to limit the number of holograms we carnl store, or limit the amount
of tilting allowed. The example above shows that neither cases is very satlsfactory
There is, however, one situation where the side-peak problem does not occur for
the range of angles used in angle multiplexing. This is when we go to reflection
‘type holograms, where 8 > 90°. In this case, calculations similar to those shown
in Figure 5.10 and Figure 5.15 show that the o-wave peak disappears (Af, — o)
and the e-wave peak is far from the original reference beam angle. The result is
plotted in Figure 5.16. For ¢ = 20°, A8, is larger than 20° for § > 110°, enough
room to store the 1000 holograms in the previous example without hitting the
side-peaks.

Another possible way to avoid cross-talk due to double grating formation, is
to have at least one of the recording beams (preferably both) being only e-wave or

o-wave during recording, and using only one polarization during reconstruction of
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Figure 5.16. Deviation angle of the o-wave side-peak from the record-

ing reference beam angle as a function of 8 for § = 20°, 30°, and 40°.

the hologram. In a spatially multiplexed holographic memory, this means that we
have to change the polarization as we scan the writing beams from one location
‘to another. If the scanning is done by moving the crystal, we can accorhplish
this by using circularly polarized waves, and attaching a pola,rizef in front of the
crystal (aﬁ the expense of losing half the light). |
It should be pointed out that as long as the writing beams are not eigenmodes
(e- and o-waves), double grating formation can occur, even when the crystal is not
tilted with respect td the incident plane (¢ = 0). In addition, if the signal beam is
not a single plane wave but an image consisting of a spectrum of plane waves, then
the condition ¢ = 0 cannot be satisfied for most of the plane wave components.
The results of this section can be used to predict the expected cross-talk for this
case as well, but the remedies that we outline above do not necessarily apply.
In some cases, the double grating effect might be of some use instead of a
nuisance. As we have shown, by controlling the patterns that are e-wave and

o-wave, it is possible to store two images (at the same reference beam angle) in
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Figure 5.17. Possible setup for implementing bipolar input/output
signals in a optical neural network. Signals at both the training and

input plane have e-wave and o-wave components.

one single exposure. We can select which image to be readout by controlling
| the polarization at either the reference beam or‘ reconstructed signal bearﬁ. An
example of the usage of this double storage scheme is the representation of positive
and negative numbers in optical neural net architectures (e.g., perceptron learning
[16,17]) by the two orthogonal polarizations. Thisis shown in Figure 5.17. Here we
take the e-wave polarization to represent the “positive” part of the connection, and
the o-wave polarization to represent the “negative” part. For each connection from
the input plane to the output plane, thereis a K, and a K, grating. Upon readout,
the signal from the input plane has both e-wave and o-wave components (this can
be done by the same setup used in Figure 5.13). The e-wave component, however,
will diffract only off the K. grating, while the o-wave component will diffract
only off the K, grating. The two components in the diffracted light are detected
separately, and the difference of the two intensities are taken (electronically) to

be the bipolar signal.
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5.5. Maximum Diffraction Efficiency

In Section 5.3, the c-axis was chosen as the rotation axis for the 3-D disk.
Severai questions that immediately come to mind are: how do they compare with
that of the usual recording geometry for transmission type holograms (where
the c-axis is parallel to the crystal surface)? And how do they compareﬁ‘to the
maximum obtainable diffraction efficiency for arbitrary cut crystals? What is the
‘geometry that gives us this diﬁ'raction efficiency? ‘ |

~ In this section, we will try to answer these questions. We will consider only
the 3mm crystals here. The results for 4mm crystals may be obtained by taking
a=0.

5.5.1. Heuristic Argument

Before we present the results from the numerical calculations of the diffraction
efficiency, it is instructive to first look at the problem from a more heuristic point
of view. Given the electrooptic coefficient tensor r, we would like to know what
geometry gives us strong diffraction efficiency.

| In order to get large diffraction efficiency from a photorefractlve crystal the
polarlzatlon and geometry should be such that the factor d; - (ru)d; in Eq. (5.52)
is as large as possible. To be precise, we should also consider the other coefficients
in G also. However, the dominant variation comes from"d2 . (rﬁ)dl and e; - es.
In our estimate, we will concentrate only on dj - (ru)d;, and later compare this
to the numerical results that include all the other factors.

As a crude estimate, we consider the non-zero coefficients of r one at a time
while ignoring the others. If the crystal has a dominant coefficient, then the
result should be a good indication of what is needed. For example, to make full
use of the coefficient r42 = ry.y (the largest in lithium niobate), we need the

grating vector K to be parallel to the y-axis, ° and the polarization vectors d;

9 Recall that K is parallel to u.
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" and d; to be parallel to the y-axis and z-axis. We also require the wave vectors

k; and ks to be perpendicular to the polarization vectors, and satisfy the relation
ko — k; = K. After a little thought, it is obvious that the geometry that uses rqo
most efficiently is the configuration shown in Figure 5.18(a), where the crystal is
z-cut, and transmission type holograms are recorded. Note that in this case the
grating vector K is perpendicular to the c-axis instead of parallel to it.

| The’ other coefficients in- the electrooptic coefficient tensor for 3mm crys-
tals may be explored in the same fashion, and the results are summarized in
Figures 5.18(a) through (f). Because of the symmetry properties of the crys-
tal, many of the coefficients are the same, and the results for those that are
not listed may be obtained simply by exchanging the axes. For example, since
T4z = Tyzy = T's1 = T'z;g, We may exchange the r and y-axes.

Note also that (by symmetry) k; and k, may be exchanged without affecting
the value of G.

The largest coefficient for lithium niobate is r42. Although the geometry
shown in Figure 5.18(a) is expected to yield large diffraction efficiency, it is rarely
used in practice for recording images. The main problem is that the polarization

vectors are perpendicular to each other. As mentioned earlier in Section 5.3, this

creates problems for recording and reconstructing holograms beéause of the dif-
ficulty in éimultaneously Bragg-matching all spatial frequency components. The
next largest coefficient for lithium niobate is r33, which can be used in the config-
uration shown in Figure 5.18(b). This is of course the geometry most commonly
used.

The configurations shown in Figure 5.18 are all suitable for recording trans-
mission holograms, where the angle between the two wave vectors are small. To
record reflection holograms (increasing the angle between the wave vectors in the
figures to near 180 degrees), the geometries in Figure 5.18(c) and (e) are more
efficient. Of course, we need to take into account the value of the r coeflicients
also. Although in lithium niobate ry and r33 are larger than rys (byva factor of

about 4), it is wasted because of the angles necessary to have reflection geometry.
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Figure 5.18. Best recording geometry for various electrooptic coefficients.
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F'As a‘result, there is not much advantage in trying to use those instead of rss.
This is confirmed by the results shown in Figures 5.1(a)-(d). *°

For barium titanate and SBN, the coefficient rs3, r12, and rg; are zero. The
dominant coefficient in barium titanate are r4s = r51, and for SBN, it is r33. The
qualitative conclusions for lithium niobate hold more or less for these crystals also.
However, the geometry that works best for reflection type holograms in barium
v.titanatevis nof (c) (0-o coupling), but turns out to be a modification of (b) (e-e
coupling). From Figure 5.2, the diffraction efficiency is larger if we take larger
#1 and record in the reflection geometry (where ¢o — ¢; is close to 180 degrees).

The reason is because ri3 is much smaller than rys.

5.5.2. Numerical Results

The G factor given by Eq. (5.52) can be calculated readily following the
procedure listed in Section 5.3. It is not easy to find the maximum of G since
there are many degrees of freedom (k; and kp can be in any direction) and also
many implicit constraints (the triangle relation ks —k; = K needs to be satisfied,
~and the polarization vectors d; and d; need to be eigenmodes).

Because of the complexity, no analytic solution was attempted, and an ex-
haustive search was done on computer to find the maximum G vé,lue.- The search
was done in several steps. We first picked a polarization coupling (eQe, 0-0, €-0,
or o-¢), and for a fixed direction of k;, we allowed kj to vary (in increments of
0.9° in € and @, where 8 is the angle to the é—axis). The maximum G was then
found, and the procedure was repeated for a different k;. We then compared the
maximum G’s associated with each k;, and picked out the largest value. The
increments in k; was set at 1° for the 6; angle, and 1.5° for #1 (Eq. (5.53)).

The whole procedure was done for e-e, e-o, and o-o coupling. It was not

necessary to do the o-e coupling because from symmetry, it is equivalent to the

10 The geometry for reflection type holograms occurs in the region in Fig-
ures 5.1(a)—(d) near ¢, — ¢ = 180°.
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é—o coupling. The crystal symmetry properties were used to reduce the amount
of search needed. For example, since lithium niobate has the 3-fold symmetry,
it was only necessary to search through 120° of the #; angle instead of the full
360°. (Actually, it is only necessary to search through 60°, since in addition to
the 3-fold rotation symmetry, there is also a mirror symmetry.) Although the
symmetry properties greatly reduced the amount of parameter space that needed
to be coirered, the whole process still required considerable computation time. !

In these calculations, it has becn assumed that there is no photovoltaic effect
and external applied field. As noted earlier, this is not always valid. Note that
unless the E;, component in Eq. (5.37) is non-zero, the space-charge field is still
parallel to the grating vector K. Thus the effect of ignoring the photovoltaic effect
and external applied field on the diffraction efficiency is through the space-charge
field E,..

The results for the numerical calculations will be presented by giving the
directions of the wave vectors k; and k; in € and ¢. The polarizations may be
found according to the method outlined in Section 5.3.

The results are as follows: (the parameters used in the calculations are the

same as those used in Section 5.3)
Lithium Niobate:

1. e-e coupling: (both k; and ko are e-mode)
6y = 90°, ¢ = 138.6°, 6, = 90°, ¢y = 118.8° = Gpar =758 m™ ..

In this case the wave vectors and polarization vectors all lie in the y-z plane,
and the grating vector K is approximately at 39° with the c-axis. The wave
vectors are 48.6° and 28.8° with the y-axis, and the angle between them is

about 20°. (All these angles are inside the crystal.) Because we are neglecting

11 The modulation depth factor e; - e; in this case was not discarded in calcu-

lating the results for e-o coupling.
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the photovoltaic effect, we expect that the maximum diffraction efficiency to
occur when the direction of the grating vector K is closer to parallel to the
c-axis. In this case, the angles ¢; and ¢, are closer to 90°.

2. e-o coupling: (k; is e-mode and k; is o-mode)
6, = 30.5°, ¢1 =27°, 6, =120.1°, ¢y = 0.41° = Gmaz =344 m™L.

For e-o coupling, the wave vectors ki, ks and the z-axis do not lie in the same

. plane. The wave vectors are almost perpendicular to each other. However,
their polarization vectors are not since k; is e-mode polarized while k; is
o-mode polarized. (They lie in the plane formed by the z-axis and kj.) It
should be noted that the result here is degenerate: the ky wave vector is also
(approximately) an extraordinary wave. Therefore the conﬁgufation may
also be considered as e-e coupling. It turns out that this is true also for
barium titanate and SBN (to be presented below).

3. o-o coupling: (both k; and k; are o-mode)

61 =90°, ¢1 =88.5° 6, =90° ¢ =59.7° == Gpes =303m™ L

For o-o coupling, the wave vectors again lie in the y—z plane, but the polar-
ization vectors are in the z direction. The K vector is approximately 14°

with the c-axis, and the angle between the wave vectors is about 29°.

Because of the 3-fold symmetry of 3mm crystals, we obtain the same diffrac-
tion efficiency if we rotate around the z-axis by 120°. In addition, there are
other mirror symmetry planes and inversion symmetries. Thus the same maxi-
mum diffraction efficiencies can be obtained if we change angles according to these
symmetries.

From the results above, the maximum diffraction efficiency is obtained for
e-e coupling with a crystal cut of approximately 50°. The polarizations are “in-

plane.” As mentioned before, since we have neglected the photovoltaic effect, the
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Figure 5.19. The average and variation of G near the conventional
recording geometry in lithium niobate. The holograms are recorded in

the transmission geometry using e-e coupling.

" actual optimum cut should be somewhat smaller than 50°. For practical purposes,

a 45° cut should be used.

Asa Comparison to the commonly used geometry, where the c-axis is parallel
to the crystal surface, we plot the results shown in Figure.5.19 for lithium niobate.
In this case, the signal beam angle ¢; is approximately perpendicular to the c-axis.
Note that the variation in G with respect to rotation around the z-axis is relatively
small. Thus the difference between the z-cut and y-cut is not significant. Note,
however, that the diffraction efficiency in this case is not significantly smaller than

the maximum value calculated above.

The maximum G for lithium niobate is 758 m~1. In the 3-D disk system using
lithium niobate, the recommended recording configuration using 0-o coupling and
reflection type geometry gives us about G = 130 m™!. This is about 17% of the

maximum G. Although this is a significant reduction in diffraction efficiency, one
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benefit is the fact that fanning does not occur along the direction of the signal

beam, since the maximum gain is not along this direction.

For 4mm crystals, there is invariance (as far as diffraction efficiency is con-
cerned) with respect to rotation around the c-axis. This can be seen by considering
a coordinate transform for such a rotation. It can be shown that the -elecﬁfooptic
tensor and the permittivity tensors do not change upon such rotations. Thus in
‘the results below, the same diffraction efficiencies can be obtained for any rotation

angle around the c-axis.
Barium Titanate:

1. e-e coupling: (both k; and k; are e-mode)
b1 =46.5°, ¢y =429° 6 =6; = Gmas =2365m™".

In this case, the wave vectors and the c-axis lie in the same plane. The
angle between the wave vectors are about 4°, and the angle between the
grating vector K and the c-axis is about 45° [19]. The reason the optimum
angle between the wave vector is so small is because the permittivity is'much
larger than for lithium niobate. Because of this, the denominator term in
E.q: quickly becomes large when K increases. The same effect can be seen
also from Figure 5.2. |

2. e-o coupling: (k; is e-mode and k; is o-mode)
$1 = 13.5°, ¢ =0.2°, 6, — 6 =270.4° = Gaz =196 m~ L.

The polarization vectors both lie approximately in the z—z plane, and the
angle between them is about 13.5°. The wave vectors are both approximately
parallel to the c-axis, so the grating vector is perpendicular to it. The angle
between the wave vectors is about 14°. |

3. o-o coupling: (both k; and ks are o-mode)

$1 =82.5° ¢y =97.8° 0, =60; = Gmes =153 m™ L.
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In this case we have the co-planar geometry again, and the wave vectors are
approximately perpendicular to the c-axis. In this case, however, the angle
between the wave vectors is slightly larger (about 15°).

The optimum crystal cut for barium titanate is therefore the well known 45°
cut. In practice, however, the optical gain is so large for this crystal cut that thefe
is serious fanning problem. For lithium niobate, the diffraction efficiency using
_fhe conventional geometry is not much smaller than that of the maximum value.
For barium titanate, however, this is not true. It turns out that there is véry
significant increase in diffraction efficiency if the grating vector moves towards

the 45° angle between the c-axis. The result is shown in Figure 5:20.
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Figure 5.20. The values of G near the conventional recording geometry
in barium titanate. The holograms are recorded in the transmission

geometry using e-e coupling.

The results for SBN are sumnmarized below:
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SBN:
1. e-e coupling: (both k; and k; are e-mode)
$1=93° ¢ =87.6° 6, =6, => Gmas=1066m™".

We have the co-planar geometry here. The wave vectors are approximately
perpendicular to the c-axis, and the angle between the wave vectors is about
5°. The reason for the small angle is again because of the large permittivity.

2. e-o coupling: (k; is e-mode and k; is o-mode)
¢1=18° ¢2=0° 62— 6, =90.12 = Gmaes =166 m™".

The wave vectors in this case are almost parallel to the c-axis, with an angle
of approximately 18° between them. The polarization vectors both lie in the
z—z plane, and the angle between them is about 18°.

3. o0-o coupling: (both k; and k; are o-mode)
$1=87°, ¢ =924° 6, =0; = Gmea=2T4m™ "

We have the co-planar geometry here. The wave vectors are approximately
perpendicular to the c-axis, and the angle between the wave vectors is also

about 5°.

5.5.3. Results for the 90 Degree Recording Geometry

There has been interest in recent years of recording holograms using the 90
degree geometry. It can be shown [18] that the expression for G is valid also for
the 90 degree recording geometry if we take 8] = 0 in Eq. (5.48).

From Figure 5.18, the configuration that work for reflection type holograms
also work for the 90 degree geometry. These are the configurations of Fig-
ures 5.18(c) and (e). For lithium niobate, 73 is slightly more than 1/4 of the

maximum coefficient, 42, thus we expect a configuration similar to Figure 5.18(c)
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to work well. This agrees with the result shown in Figure 5.1(a) (o-o coupling),
where the maximum at ¢y — ¢; = 90° is near ¢; = 45°. This is also confirmed by

numerical result, where we have
Lithium Niobate:

1. e-e coupling: (both k; and k; are e-mode)
01 = 32°, ¢y = 52.5°, 8, = 86.5°, ¢ = 127.1° = Gimazeo = 54.9m™ L.
2. e-o coupling: (k; is e-mode and k; is o-mode)
6, = 00, ¢1 = 00, 6, = 900, ¢2 = 90° — Gmax,go =133 m_l.
(k; is degenerate: it is also an ordinary wave. Thus this is also an o-o
coupling.)
3. o-o coupling: (both k; and ks are o-mode)
01 = 900, q51 = 34.5°, 92 = 900, ¢2 = 124.5° > Gmaz,go =192 m_l.
(Thus for o-o coupling k; and k; are both in the y-z plane). |
For lithium niobate, the best result is obtained by using o-o coupling, with a
crystal cut at 34.5°. If we had used a 45°-cut crystal instead of the optimum
34.5°, we would have gotten G = 179.8 m~!, which is 94% of the maximum value
for 90 degree geometries. In the calculations above, it was assumed that there is
‘no photovoltaic effect. In reality the photovoltaic effect is significant in lithium
niobate crystals. Because of this, we expect an increase in diffraction efficiency
when K is closer to parallel to the c-axis. Thus the 45°-cut (which should make

K exactly parallel to the c-axis) should work even better than indicated by the

calculations shown above.
Barium Titanate

1. e-e coupling: (both k; and k; are e-mode)

6, = 0°, ¢1 = 61.5°, 6 = 73.2°, 3 =118.1° = Gaze0 = 63.73m ™.
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2. e<o coupling: (k; is e-mode and k; is o-mode)

61 =0° ¢1 =51° 6, =37.9°, ¢ =134.3° = Gimas0 =97.20 m™".

(In this case, however, none of the wave vectors are degenerate.)

3. 00 coupling: (both k; and k; are o-mode)
6, = 0°,V $1 = 45°, é2,= 0°,¢2 =135° = Gmaze0 =56.18 m™".
~ (Thus for o-o coupling ky and k; lie in the z-z plane.)
SBN:
1. e-e coupling: (both k; and k, are e-mode)
6; = 0°, ¢1 =69°, 6 =81.6°, ¢y =111° == Gumaz,e0 = 60.74 m ™.
2. e-o coupling: (k; is e-mode, k; is o-mode)
6; =0°, ¢1 =0°, 6 =270° ¢ =90° — Gmaz,9§ :'33..57 m™t,

(k; is again degenerate: it is also an ordinary wave.)

3. o-o coupling: (both k; and k; are o-mode)

6, =0°, ¢y =T75° 0, =0° ¢ =165° = Gmazo=3428m .

Compared to the results for lithium niobate, the maximum G for barium
titanate and SBN turns out to be less than that of lithium niobate. Part of the
reason is because the dielectric constants of these crystals are larger, and therefore
Eq: is smaller when the magnitude of the grating vector is larger. For BaTiOs3,
the maximum G occurs for e-o coupling, while for SBN, the maximum G occurs
for e-e coupling. Note, however, that these results require peculiar crystal cuts
which are more difficult to fabricate. Another problem is getting the eigenmode

polarizations correct.
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For more reasonable orientations for SBN, consider the case where k; is
required to be parallel to the y-axis (§; = ¢; = 90°). Using e-e coupling and al-
lowing ks to vary (but perpendicular to k;) the best we can get is G = 45.79 m™1,
which occurs at 6, = 0°, ¢ = 59.4°. This is only 75% of the maximum (but is
still larger, however, than the maximum G obtainable using o-o or o-¢ coupling).

For barium titanate, the situation is more awkward, since the maximum G
_6ccur‘s for o-e coupling. To obtain a simpler orientation, if we try having k;, ks
and z-axis lie on the same plane (i.e., the co-planar geometry), then it turns out
that for e-o coupling, G is zero (Eq. (5.67) or (5.70)). If we use 0-o0 or e-e coupling
instead, the best we can gét is 57.7% of the optimum G if we use 0-o coupling, or
65.6% of the optimum G if we use e-e coupling.

It is interesting to compare the maximum diffraction efficiency for the 90
degree recording geometry with the results for the conventional transmission ge-
ometry. For lithium niobate, the diffraction efficiencies are only slightly lower than
the diffraction efficiencies obtained for the reflection geometry using o—o‘coupling
(about 17% of the maximum). For barium titanate and SBN, however, the results

are significantly lower than that of the conventional recording geométfy.

5.6. Discussions and Conclusions

In this chapter, we have analyzed the diffraction efﬁéiency of photorefractive
crystals for use in a 3-D holographic disk system. The c-axis was chosen to be the
rotation axis because it is the highest symmetry axis. One might ask, however,
whether using the c-axis as the rotation axis is the best choice. With transmission
holograms, the gratings formed inside the crystal is almost perpendicular to the
c-axis, and the diffraction efficiency is low. If we record in the reflection geometry,
the gratings are closer to parallel to the c-axis. However, in this case, the magni-
tude of the grating vector is larger, and the K? term in the denominator in the
expression for Es,¢ (Eq. (5.1)) causes the diffraction efficiency to be lower. If we

use the z-axis or the y-axis as the rotation axis, the diffraction efficiency is much
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Better. However, now there is also larger variation in the diffraction efficiency as
the disk rotates.

In Section 5.3, the criterion for a desirable recording geometry was one that
was high in diffraction efficiency, but preferably changes little as the angle of
the reference beam changes and the disk rotates. The c-axis is a natural -choicé
because it has the highest axis of symmetry. From the point of view of stoﬁng as
many hoiograms as possible, ‘however, it might be argued that we should look at
the total amount of diffraction efficiency. Thus even if there are some locations on
the disk that yield lower diffraction efficiency, it is preferable as long as there are
locations on the disk that have higher diffraction efficiency to compensate for the
low efficiency areas. In this case, using the x or y-axes as fotation axis would be a
better choice. The tradeoff of course, is that the control of the hologram recording
schedule [6] to get uniform diffraction efficiency of the individual holograms is
more complicated because of the larger variation with respect to disk rotation
and reference beam angle change. |

If we use the number of holograms as the figure of merit, then we are con-
cerned with the total amount of diffraction efficiency (measured by summing or
integrat'ing the diffraction efficiency over all rotation angles). As shown in Sec-
tion 5.5, the geometry that gives the highest diffraction efﬁcieﬁcy turn out to
be the co-planar geometry for all of the three crystals we have diséussed. For
obtaining the maximum total amount of diffraction efﬁciency, however, it is not
obvious that the z or y-axes are the optimum choice. More work needs to be done
to answer this question.

For lithium niobate, it has been shown that using the c-axis as rotation axis
and recording reflection holograms with o-o coupling gives us a diffraction effi-
ciency of about 17% of the maximum obtainable diffraction efficiency. Although
there is a significant loss in diffraction efficiency, there are several advantages.
One is that the problem of double gratings is easily avoided, since having the po-
larization vectors perpendicular to the incident plane (the plane that contains the

signal and reference beams) will guarantee that we have o-o coupling regardless
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ef how the reference beam angle changes or how the disk rotates. The second
advantage is that fanning does not occur in the direction of recording.

If the loss of the diffraction efficiency using the c-axis is not acceptable for
implementing a 3-D holographic disk system, then we need to consider other
crystal orientations. The disadvantage is that the variation in diffraction efficiency
with respect to disk rotation and reference beam angles is larger. Polarization is
_also a problem since we would like to avoid having double gratings. A solution
might be to use sheet polarizers glued on to the crystal surface and use circularly
polarized light, however such solutions do not work very well. An alternative to
the problem of uniformity versus diffraction efficiency is to use not a single >piece
of crystal, but to put together several pieces into a single disk. This takes care
of the problem with crystal orientation and light polarization, and. also allows us
to have larger 3-D disks. The disadvantage is that the crystal needs to be cut to

the appropriate fan shapes, and then assembled into a single piece.

Appendix
A. Derivation of Slant Angle

Figure 5.21 shows the geometry used in our experiment. The signal beam k;
propagates along the +x direction. Its e-wave polarization is in the z direction,
“and its o-wave polarization is in the y direction. For the reference beam, k;, the
eigenmode polarizations are q (e-wave) and r (o-wave). It can be shown that ks,
q and r are perpendicular to each other. Also, r lies in the x-y plane. To see
why this is true, consider rotating ko about the z-axis until ko lies in the x-z
plane. q and r will now rotate with k,. But when k; lies in the x-z plane, it
is readily seen that r is parallel to the y-axis. This shows that r lies in the x-y
plane. Given this fact, we see that q lies in the plane formed by the z-axis and
k,. We are interested in the angle between q and p, the direction perpendicular

to the incident plane formed by k2 and k;.
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Figure 5.21. (a) Geometry of reference (k) and signal (ki) beams
with respect to crystal axes. (b) Reference beam and its two eigenmode

polarization directions, q (e-wave) and r (o-wave).

Note that since r (the o-wave polarization of k;, the reference beam) lies in
the x-y plane, and the e-wave polarization of k; (the signal beam) is in the z

direction, they are perpendicular to each other.

We have
p = (0,— cos g, sinyp) _ (5.80)

Thus the slant angle O414n¢ 18
Batant = cos I(u - p) = cos™!(—uy cosp + u; sin p) (5.81)

where, u is the unit vector parallel to q. It is easy to show that within a propor-

tionality constant

q; = —sin6 cos@ cosp _ (5.82)
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gy = —sin’ @ sing cos¢ (5.83)

g, = cos? 6 + sin? 8 sin’ . (5.84)

This is all we need to calculate the slant angle for various values of 6 and .

B. Bragg Matching ‘Angle

The problem of finding the Bragg matching angle, given a grating vector,
can be stated as follows: given a normal surface (in 2-D) described by the ellipse

r

x y : .
=z + 7= 1 (5.85)
and a grating vector
K= (K,,K,) (5.86)

we want to find (z,y) such that both (z,y) and (K, + =, Ky +y) both lieon T'.
We have

| ::_2 n z_2 —1 - (5.87)
and | |
(K,g(:2r 2’ | (Kyb-; ) N O (5.88)
which gives us |
e G CeP+ (G =0 o
Let
"= g, v — _3;_ (5.90)
and
A=%, B=£{5”-,, | B - (5.91)
then

u?+o0? =1 | | (5.92)
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and

2Au +2Bv + A% + B*> = 0. (5.93)

There are two solutions:

s =B y()/N+B2 1 | fm%)
K, K. b 4
5 75 NWare b (5.95)

From these, we can calculate the angle between (z,y) and the z- axis.

Y

Given the recording geometry of the crystal, we can find K, and K from
6 and ¢ (Eq. (5.76) and Eq. (5.77)). The problem then becomes finding the
Bragg matching angle for K, on the e-wave normal surface, and ﬁnding the Bragg
matching angle for K, on the o-wave normal surface (see Figure 5.8). Once these

are found, the corresponding incident angles using Snell’s law can be found. We

then subtract them from 6 to obtain A8, and A#6,.

C. Traveling Gratings for Recording Multiple

Holograms in Photorefractive Crystals -

For angle multiplexed volume holograms, different holograms can be read out
by varying the reference beam angle. The speed of accessing different locations
depends on the time needed to change the reference beé.m angle. Using acous-
tooptic (AO) deflectors, we can achieve transit times of 1 to 10 usec. However
these devices also Doppler-shift the frequency of the deflected light, and unless
the frequency of the signal beam is also changed to the same frequency as the
reference beam, the interference pattern that forms inside the crystal will not be
stationary, but will be “moving” or “traveling.” ’

The theory of moving gratings inside photorefractive crystals has been devel-
oped by Valley [20] and Refregier et al. [21]. It is found that when the frequency
of the running grating is matched with the characteristics of the crystal, it is

possible to achieve a resonance effect and enhance the diffraction efficiency of the
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holograms. However, although the saturation diffraction efficiency is enhanced,
the time constant of growth is also affected. For multiple holograms, it turns out
that the effects cancel each other, and do not increase the diffraction efficiency
of individual holograms. In this appendix, we will give the derivation of these
results.

Consider the interference pattern formed by two plane waves with frequency

difference of w. The pattern is of the form
I=1I,+ Le {Kz—wt) 4 ce (5.96)

where K is the grating vector. The interference grating moves with velocity
v = w/K (in the 4z direction). We will assume that E;, = 0. Following the
same line of argument as described in Section 5.1, the space-charge field E; inside

the photorefractive crystal due to the interference pattern in Eq. (5.96) is governed
by (cf. Egs. (5.17) and (5.32))

dE;

B g pimfEy e, (69)

where m is given by Eq. (5.31), 7 is given by Eq. (5,33), En is given by Eq. (5.28),
and f' is given by

f/ Ed + Z(EOu + Eph,u)

= ,  (5.98)
Ex + Ea+i (Bou + ¥4 Epnu)

(cf. Eq. (5.34)). T is the time constant of the grating development when w = 0.
g g

In general, it is a complex number of the form

1 1. .
i + twy, | (5.99)

where 7, and w, are real numbers. As described in this Chapter, the induced
change in index of refraction is proportional to the space-charge field, and thus
we get a phase grating in the photorefractive crystal. The diffraction efficiency
can then be calculated, and for weak holograms it is proportional to the square

of the magnitude of E;.
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' Assuming zero initial condition (when we first record a hologram), Eq. (5.97)

gives us
Ey = imE\f (1 - et/f’) et (5.100)
where
= (5.101)
1 —wr
and
. En
El = . : 5.102
N7 —jwr - )

The magnitude of the steady-state E; is modified by a factor of

1+ 2,2 .
- \/ Yols (5.103)

‘ 1

1 —wT

1+ (w-— wg)27'92

while the time constant has changed to give

1 1 .

== ™ + t(wy — w). (5.104)
For a decaying hologram, the time constant is just 7.

For a single hologram, the quantity in Eq. (5.103) enhances the saturation

diffraction efficiency by a factor of

V31t wir? - (5.105)

when w = w, (resonance). For multiple holograms, however, thé final diffraction
efficiency depends not only on the saturation space-charge field maghitude, but
also on the rise time of the space-charge field.

For multiple holograms, we want to adjust the exposure times of the holo-
grams such that all the holograms come out to have the same strength at the
end of the recording. The exposure schedule can be worked out as follows. As-
sume that at a certain point, the previously recorded holograms all have the same

strength mEN fA. The next hologram should be written such tha,t

1~ et/ emiten=ant| = gemilm, " (5.106)

1 —wr

. 1
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Solviﬁg for t gives the recording time needed for the next hologram. In this
way, given an initial exposure time, all subsequent exposure times can be found.
Eq. (5:106) can not be solved analytically, but is not difficult to find the solution
numerically once the various parameters are given.

One case where Eq. (5.106) can be solved exactly is when w = w, = 0 [6]. In
this case, it can be shown that the magnitude of E; drops as mEN f /N , where N
_is the nﬁmber of holograms fecorded. For wy # 0, but w = 0 (i.e., complex time

constant without traveling gratings), Eq. (5.106) becomes

I-l _ e—t/rg 6—iwgt

= Ae~t7s, . (5.107)

and the asymptotic behavior can be shown to be

£J14+ wg'rg2 .
Y mEN, (5.108)

|E1,n| — i

| where the subscript ‘1, N’ denotes the N-th hologram recorded. The magnitude
of E; turns out to be enhanced by the factor in Eq. (5.105).. Intui'tively, the
reason for this is that the slope of |[E1/mENf| at t = 0 is the quantity shown in
Eq. (5.113), whereas the time constant for decay is always 7,. When the slope at
t = 0 increases, it takes a shorter time for the new hologram to reach the value
of the previously recorded holograms. ‘

When w # 0 (traveling gratings), the inverse of the time constant changes
from Eq. (5.98) to Eq. (5.104). If we ignore the |1 — iw7|™! factor in Eq. (5.106),
then the enhancement factor would change from /1 + w272 to

\/1 + 72 (wg — w)?. ' (5.109)

However, because of the |1—iwT|™! factor, the enhancement for recording multiple

holograms is actually

1 g
ll e \/1 + 12(wy —w)? = \/1 + T2w2, | (5.110)
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Which is the same as for w = 0. Intuitively, although the saturation value of E;
has changed, the time constant has also changed, and the slope of E;(t) at t =0
is a constant regardless of the value of w.

The preceding results show that for recording multiple holograms, using trav-
eling gratings does not help increase the diffraction efficiency. In fact, the asymp-
totic value of diffraction efficiency for large number of holograms is the same. On
_fhe other hand, this means that if for some reason the intensity pattern (grating)
were drifting at a steady rate, the rise time of the holograms would not change,
and thus the recording results would not be affected.

Theoretically, although it is true that the asymptotic value of diﬁ'réction
efficiency for “large number of holograms” is the same, in practice the reduction
in the saturation diffraction efficiency by the factor in Eq. (5.103) is very severe.
For example, a typical AO deflector would work at 500 M H z, whereas the time
constant (which depends on the light intensity) of a photorefractive crystal such
as BaTiO; or SBN would typically be greater than milliseconds. In this case,
wy —w would be dominated by the the acoustic frequency, and we would have
(wy —w)Ty = 5 x 10° at best, whereas 74w, would be about 1. From Eq. (5.103),
" the saturation value would be reduced by a factor of 5 x 10°5. This would not be
practical for recording multiple holograms unless we record more than 1 million
hologramé. For time constants on the order of seconds, the saturation value
would be reduced by a factor of 5 x 108. The moral to all this is that if we use

AO deflectors, we still need to compensate for the frequency differences.
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Chapter 6
The Real Time Face-Recognition System

In this chapter an optical network is described that can recognize at standard
video rate the identity of faces it has been trained to recognize. The system
usés photorefractive crystals (lithium niobate) as the interconnecting weights (or
synapses). It shows how the real time recording property of the crystal may be
used to implement and train large number of interconnections or neural nctworks.

Such a system may be implemented with a 3-D disk system, where we allocate
each location to a person. By rotating the disk, the system can attempt to
recognize and identify the input face with the faces stored on the disk. Such a
system is shown in Figure 6.1, where a 3-D disk is used to implement the first
layer of the network and a 2-D disk is used to implement the second layer.

In this chapter, we will concentrate only on one location. The problems
associated with rotating the 3-D to the correct anglé for readout have aiready
been discussed in Chapter 3.

The implementation of the interconnection weights in optical neural networks
uses the holographic optical correlator. In the appendix, we examine in more
detail the volume holographic correlator and determine the factors that affect the

shift invariance property.

6.1. Introduction

The optical face recognition system that will described in this chapter is
basically a two layer feedforward network. The adaptable interconnections of
the network are implemented with holograms stored in a photorefractive crystal.

The optical system is the standard holographic multi-layer architecture [1-6].
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Figure 6.1. Optical Network implemented with a 3-D disk.

The second layer has fixed weights and a simple ad-hoc procedure is used to train
the network. Choosing a training algorithm that is well suited to the optical
implementation is the most crucial step carrying out a successful éxperiment. The
back error propagation (BEP) algorithm [7] and its variants are the most popular
procedures for training multi-layer optical networks [1,3,4,5]. Back propagation
‘is an example of a learning algorithm that yields distributed representations in
the hidden layers of a network. In a distributed representation a large portion
(typically half) of the hidden units responds when the input is one of the training

samples.

In contrast, in a local learning algorithm each hidden unit is trained to re-
spond to only a small number of training examples. The Radial basis function
(RBF) classifier is an example of a commonly used local learning algorithm. An
optical RBF system has been recently demonstrated [8]. The advantage of local

algorithms is that the training process is relatively easy. If an input training sam-
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ple dées not cause any of the existing hidden units to respond sufficiently, a new
hidden unit is added and devoted to the new sample. The disadvantage of local
algorithms is the large network size that is typically obtained. The disadvantage
of distributed representation learning algorithms is that the training is difficult,

typically requiring a large number of training cycles.

~ Inselecting an algorithm for training an optical neural network, we can argue
that distributed algorithms are well suited for optics because the computational
épeed of optics can be effectively used to speed up the training. However, the op-
tical implementation of algorithms such as BEP requires a dynamic holographic
medium that can be accurately controlled. In the experiment described in this
chapter we use photorefractive crystals to implement the adaptive interconnec-
tions. When a new hologram is recorded in a photorefractive crystal the previously
recorded signal is partially erased. This “weight decay” in effect limits the number
of cycles a training algorithm can run on an optical system, since earlier exposures
are erascd as the training progresses. Dynamic copying [9-12] can overcome this
problem by restoring the strength of the hologram through feedback. However,
dynamic copying is still at the early stages of development and it is premature to
construct a large scale network using this approach. Another way for bypassing
the weight decay problem is to use local algorithms since they do not require long
training sequences. In this case the large storage capacity of 3-D holograms can

be used to synthesize the large networks that are required.

The algorithm used for training the face recognition is a hybrid. It has
features of local algorithms in that each hidden unit is trained separately and
the training method is not iterative. On the other hand, the representations that
result are distributed. The distributed representation is crucial for two reasons.
First, when the optical network was trained with purely local representations,
it was found that the system became extremely susceptible to noise and the
performance deteriorated very rapidly as the number of hidden units increased.
This is because in a purely local representation, only one hidden unit is on at a

time. Since the output is formed as a linear combination of all the hidden units, a
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.sv,mallv amount of noise from each hidden unit will ultimately overwhelm the signal
term as more hidden units are added. Poor generalization performance is the
second reason to avoid purely local representations. By switching to distributed
representations, the system performs much better when presented with images it
had never seen before. / |
In the following, we first describe the optical architecture and the overall
_éxperiméntal setup, and then the training algorithm and the details of the training
procedure. In the last section, we describe the performance obtained with the

network.

NN 4-F SYSTEM FOR
HEY/ REFERENCE BEAM
\ STEERING
-

o -

. ~
S

" N

o ~

FOURIER Ny
LCTV  TRANSFORM
LENS SPATIAL @ PR CRYSTAL (14)
4

FILTER

y y/A CCD CAMERA
% x 6 9 .....:‘ 9 | |
A 1 DR 1 % IO | DU S DRSNS o
12 W
@ (P3)

®1) (L1) 2

N N\
SN )
LINEAR
DETECTOR
ARRAY '

Figure 6.2. Optical setup of the face-recognition system.

6.2. Experimental Apparatus

The optical setup is shown in Figure 6.2. It is a 2-layer network with an op-
tical pre-processing stage that performs edge enhancement. The input device to
the network is a liquid crystal TV (LCTV) that has 320 by 220 pixels resolution
and 2x2.5 cm? clear aperture. This device was extracted from an EPSON tele-

vision projector. The LCTV is illuminated with collimated light frprh an Argon
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1aser .()\ = 488nm). Lens L1 produces the Fourier transform of the input image
at plane P2. A spatial filter is placed at P2 to perform two functions. First, it
blocks the higher diffracted orders that result from the pixelation of the LCTV.
The removal of the higher orders gives a smoother, less noisy image but it reduces
the light efficiency of the LCTV. The second function of the spatial filter is to
block the low »fre_quéncy components of the input image. This enhances the edges
bf the iﬁput image and drarilatically improves the ability of the system to dis-
éri_minate between inputs from different classes. A photograph of the spatial filter
is shown in Figure 6.3. It consists of a cross-hair and a DC block fof high pass
filtering. The purpose of the cross-hair is to remove the diffraction pattern at P2
that comes from the boundary of the LCTV image. This boundary, when edge
enhanced, yields a very strong rectangle that is common to all inputs and makes
discrimination difficult. The diameter of the DC block is 260 microns. Given the
wavelength of light and the focal length of L1 (Fr,; = 50 cm), the cutoff frequency
18 approximateiy .533 lines/mm. Roughly speaking, features in the input plane
that are smaller than 1.9 mm are highlighted in the edge enhanced image. An
iris (not shown in Figure 6.3) is used to block the higher orders not blocked by
" the cross-hair. An example of an image of a face and the edge enhanced version

of it that was produced by the optical system is shown in Figurel 6.4.

Lens L2 images with magnification 1 plane P2 onto plane P3, the plane of
the hologram. The size of the spectrum on the holograni is approximately 5 mm
in diameter. The hologram is formed by introducing a plane wave reference. The
angle between the signal and reference beam varies from 29 to 31 degrees, outside
the crystal. The reference beam is reflected off a mirror mounted on a COmpliter
controlled rotation stage. The rotating mirror is imaged onto the crystal with
a unit magnification 4-f system. This allows the angle of theb reference beam to
be scanned without moving the position of the reference beam on the crystal.
The crystal is an iron doped LiNbOj, with doping level 0.01%. The c-axis of the
crystal is in the horizontal direction in Figure 6.2. The crystal dimensions are

20 x 20 x 8 mm3.
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Figure 6.3. Spatial filter used in plane P1 of Figure 6.2.

Figure 6.4. Edge enhanced image and original face.
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Lens L4 is a Fourier transform lens that produces an image of the edge
enhanced input image on a CCD for visual assessment. Lens L3 is also a Fourier
transforming lens that produces the response of the first layer at the output plane
P4. A linear detector array is placed at P4, where it is used to detect this response.

A beamsplitter placed in front of the array diverts a portion of the light to
a CCD camera so that the output of the first layer can be visua,llyr monitored.
_Functioﬁally, the system from the input plane P1 to P4 is an array of ‘image
correlators with 1-D shift invariance. To understand this consider the case where
a single hologram is recorded in the crystal at a particular angle of the reference
beam. |

In this case the system is a classic Vander Lugt [13] correlator except that a
volume hologram is used and the input has been high-pass filtered. The effect of
the volume hologram is to eliminate shift invariance in the horizontal direction in
Figure 6.2. This happens because a horizontal shift at plane P1 will change the
angle of incidence at plane P3 and cause the hologram to be Bragg mismatched

[14,15,16]. Specifically, the light distribution at plane P4 is given by [14] 1

g(z',y") = // f(z,y)h(z — ',y —y') dz dy -sinc(az'), - . (6.1)

where f (a: y) and h(z,y) are the input and filter functions, respectlvely The input
coordlnates are (z,y) and the output coordinates are (z',y'). The thickness of

the crystal is I, 0 is the angle of the reference beam, 2 and

7L siné
M

o =

(6.2)

We see from Eq. (6.1) that the effect of the thick hologram is to mask off the

2-D correlation pattern except for one vertical strip whose position depends on

! Please also see the discussion in the appendix of this chapter.

2 The definition of sinc used in this chapter is

sinc(z) e sma:.
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'vt‘he the angle of the reference beam. The amount of shift invariance that can be
tolerated in the horizontal direction is approximately equal to 1/« plus the width
of the correlation peak in the horizontal direction. The system retains its shift
invariance in the vertical direction. If we change the reference beam angle and
record a different hologram at each angle, then we will have at each horizontal
location a 1-D strip from a different 2-D correlation function. In the experiment
that we will des?:ribe; hologr“ams are recorded at 40 separate angles separated by

-0.05°, yielding a system that has 40 correlators with 1-D shift invariance.

B A

Figure 6.5. Experiment showing the position of the corfelation peak

to be proportional to the size of the input face.

The experiment in Figure 6.5 shows the operation of this part of the system.
In this case each filter was a recording of the face of the same person at different
scales. Figure 6.5 shows the input to the network for 4 different size images,
along with the corresponding response at the right-hand side of each picture. As
the size of the face increases, the strongest response of the system is at different
vertical positions. In the optical setup, the correlation responses shown at the

right-hand side of each picture is actually horizontal. This was done by rotating
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the CCD camera by 90 degrees. *

The second layer performs two tasks. The first task is to take advantage of
the vertical shift invariance of the first layer, and the second task is to combine
the outputs of the 40 correlators and make the final classification. We will dis-
cuss first the shift invariance. Suppose that an image at a particular location ét
the input produces a strong correlation peak somewhere at the ou’vcput.; If the
input is horizontally tfanslat’ed by approximately 0.4 mm then the correlation
peak disappears. If the input is translated vertically then the correlation peak
moves vertically also. What we really need for shift invariant recognition is a
system whose output does not change as the input shifts. To do this we use long
detector elements in the vertical direction as shown in vFigure 6.2. These long
detectors collect the correlation peak and continue to produce a strong output
signal as the input image shifts vertically. Unfortunately, we cannot use arbitrar-
ily long detector elements to obtain full shift invariance vertically, because then
the detector would simply collect all the diffracted energy from the corrésponding
filter stored in the hologram. Roughly speaking, all input signals with thé' same
total energy would yield the same response. A shorter detector responds more
selectively to the correlation peak, and hence the degree of match between the
input and the reference, but it sacrifices shift invariance. Thuslthere is a basic
tradeoff between -shift invariance and discrimination capability. In our network
we made this compromise by trial and error. By repeatirig the experiment with a
horizontal slit of varying width placed in front of the detector array, the amount

of shift invariance in the vertical direction is found to be roughly 3 mm. This is

3 Since the LCTV and the CCD are rotated 90 degreés, up and down in the
picture become horizontal in the actual system. To avoid confusion, for
the rest of this chapter we will use the terms “vertical” and “horizontal” to
mean the directions in the actual optical setup. We will use the (admittedly
awkward) term “side-to-side” and “up-and-down” to mean the directions for
the people sitting in front of the camera. Thus side-to-side motion in front
of the camera and in the pictures is really horizontal in the optical setup.
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épprdximately 12 percent of the size of the input image. As we will see later, this
choice yields good discrimination capability.

The second layer also puts together all the vertically integrated responses
from the first layer and produces the final output. Since the output of the de-
tector array in plane P4 is electronically available the second layer can be irﬁ-
plemented either electrbnically or optically. We have done both with Comf)arable
performance. The opticdl implementation of the second layer is realized by thresh-
oiding the output of the detector array and then feeding it to a sécond LCTV.
The inner productvbetween the signal recorded on the LCTV and a weight vector
stored in the form of a transparency is then optically formed. This inner product
is electronically thresholded to produce the final output.v In the current system
we describe in this chapter, the operations of the second layer are so simple that
it was easier to do them electronically. Specifically, all the weights of the second
layer have the same value. In other words, the second layer simply integrates the
output of the first layer. The electric signal from each detector is the square of the
light amplitude of the total signal incident at each element. The signal froin the
detector can be thresholded electronically. However, we get the best performance

| by simply using the square-law non-linearity. In this case, the system becomes
similar to a quadratic associative memory [17,18]. Notice that the nonlinearity
performed at plane P4 is crucial in this system.

If the outputs of all the correlators from the first layer were somehow co-
herently added without the inclusion of the nonlinearity, then the overall system

would simply be equivalent to a single correlator.

A schematic diagram of the overall system is shown in Figure 6.6. The input
images are detected by a standard television camera. The video signal is either
stored on a video cassette recorder (VCR) to form a training set or fed directly to
the LCTV during real time operation. The 2-layer optical network is the system
we described above. A personal computer controls the experiment during the
training phase by instructing the VCR to advance the video by one frame, and

then pauses the frame so that the training algorithm can be executed. The output
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Figure 6.6. Schematic diagram of overall system.

of the hidden layer determines whether the hologram should be modified by the
current input image. If a holographic exposure is needed, the cdmputer Opens
“two shutters (one for the signal and one for the reference beam) for a specified
time. The hologram is thus recorded. During the execution of the algorithm the
com‘putervalso controls the angle of the reference beam, so that different hidden
units can be trained. After the training is completed, the computer is no longer

involved in the operation of the system except to record the outpﬁt data if desired.

6.3. Training Procedure

The training algorithm that we use is partially motivated by the tiling al-
gorithm [19]. In the tiling algorithm, individual units are trained separately for
a fixed number of iterations. Once a unit is trained, the algorithm moves on to
a new unit. The new unit is then trained to make up for the deficiencies in the
performance obtained with the previous units. In this way networks with multiple

layers and many neurons per layer can be built-up and trained. In the standard
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’Vcilingvalgorithm each unit is trained with the perceptron algorithm with the entire
training set. In our algorithm each unit is trained by a subset of the training set
that consists of similar images. This similarity measure is enforced by training
each unit to respond to a contiguous short segment of the training video. In this
way, each unit is trained to respond to a specific aspect of the input face. This
simplifies the training of individual units and the training procedure results in
_ﬁetWOrké of predictable size. .

" The flow chart for the algorithm we use is shown in Figure 6.7. We describe
more specifically the algorithm. Let f* denote the k-th image in the training
sequence stored in the VCR, and let w;; denote the weight of the first layer
connecting the ¢-th input pixel to the j-th hidden unit. The training algorithm is

as follows:
set e=0 (e is the number of exposures per hidden unit)
set =1 (j enumerates the hidden units)

while (¢‘there are more training examples’’)

do { (go through the training set one frame at a time

h=0 (h is the number of hidden units turned on)
for j'=1 to j, if Zf,/j_l-/zlzi fFw;_y j|> >0 then h=h+1
(count the number of hidden units that are on)

if (h<H and Y32 1, |30 fFwioioi? < 6)

i'=

(less than H hidden units are on, and the current unit is off)

then w;; = w;; + fF and e=e+1 (make an exposure)
if (e> E) (more than E exposures on current unit)
then j=3j+1 and e=0 (create new hidden unit)

‘‘go to next frame’’

The user must select the parameter 6, H, and E before the algorithm begins.
The variable j counts the hidden units. We begin training the first unit (j = 1)
by presenting frames to the system in sequence (incrementing k). The k-th input

is added to the weights of the first unit if the response of the first hidden unit is
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Figure 6.7. Flow chart for the algorithm used to train the network.
(HU means “hidden unit”).
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below a threshold 6. Notice that in the optical system the response of the hidden
unit is not simply the inner product between the input and the weight vector,
but an integration over I pixels of the center of the correlation function, as we
described earlier. If 6 is set too high then the units become very highly tuned
to respond to the particular images they are trained for. If the threshold is teo
low then too much cross talk with unfamiliar faces results leading to erroneous
_classifications. Ideally, 8 should be lowered as the training proceeds and hidden
units are added, since this weakens all the stored holograms. In the experiment
described we used a constant 6. The first unit continues to accumulate training
examples in this way until a total of E exposures have been made to it. At
that point a new hidden unit is created (j is incremented) by rotating the mirror
that controls the angle of the reference beam. We would like to have E large in
order to have each unit be responsive to as many training examples as possible.
However, since we are only presenting positive examples to the system (i.e., we
never subtract anything from the weights but always add to them), if too many
examples are accumulated, the weight is simply the average of the subject’s faces,
which is similar to the average of anybody’s face. The unit Would then lose its
discrimination capability. The first H hidden units are trained in exacvt‘ly the
same manner as the first. |

When j exceeds H, the current input frame is added into the Weights of the
j-th hidden unit only if fewer than H units are above threshold. If H is set to 1,
then the training of the early units is identical to the rest. However, this results
in a hidden layer reeponse that has only one unit on at a time. We have already
commented that we found that this results in poor performance on the training
set due to susceptibility to noise and poor generalization.

By requiring that at least H hidden units are on at any one time for the
training set, we improve the robustness of the system and improve generalization.
If H becomes too large, we would need too many hidden units to enforce this
requirement, and the encoding becomes inefficient.

The discussion above describes the basic trends that we predict and exper-
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imentally observe as the parameters E, H, and 6 are adjusted. The experiment
that we will describe in this chapter was carried out with H = 3, E = 6, and
8 was set equal to 3 times above the noise background level. These values were
arrived at empirically by running the experiment several times and measuring the
generalization performance. The system performance is sensitive to the setting
of 6 (it should be set relatively low), but not as sensitive to changes in H and
E . These settings worked best for all the face recognition experiments we tried.
Unfortunately, there is no guarantee that these settings are the best for other
problems.

The most attractive feature of this algorithm is that it can be easily imple-
mented with the optical system described in the previous section.

At the same time, it gives remarkably good classification performance, as we
will see in the next section. The algorithm requires two basic operations from
the optical system: (1) evaluation of the response of the hidden units to an input
image, so that the computer can compare it to a threshold, and (2) addition of the
current image into the hologram corresponding to the weights of that unit. We
have already described how the system evaluates the response of the hidden units.
We will discuss here how the weight updates are performed. When a hologram is
exposed to light the strength of an individual holographic gra,ting'(or connection)
w;; is modified according to the following equation [3]:

dw;;
dt

where 7 is the time constant of the holographic recording in the photorefractive

T + w;j = Bmij, (6.3)

crystal, 8 is a constant that depends on the crystal properties, and m;; is the
modulation depth of the frequency component (of the illuminating light) corre-
sponding to the grating w;;. For a short light exposure of duration At, we can

approximate the change in the hologram by

At At
Awij ~~ —Twi]‘ + —;ﬂmij. (6.4)

In other words, each exposure reinforces each weight in proportion to the strength

of the corresponding frequency component of the illuminating light. However,
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each exposure also erases all the weights in proportion to their current strength.
This is the well known weight decay problem that plagues photorefractive memo-
ries [20] and photorefractive neural networks [3]. Several solutions to this problem
have been proposed [9,10,21]. We use a simple exposure schedule in our experi-
ment, in which later exposures are linearly shortened to compensate for the deca,y
of the earlier holograms Th1s results in an approximately uniform final recording.
Spec1fically the m-th exposure tm, is set equal to ¢, = 3 —m /240 seconds. Thus
the_ exposures varied from 3 seconds at the beginning of the exposure sequence
to 2 seconds at tho end, with a total light intensity equal to 10 mW/cmZ and a
modulation depth approxifnately 0.1.

The training set for the experiment was a video recording of the‘face of my
colleague, Yong Qiao, moving his head in front of the camera, turning, nodding,
tilting his head, smiling, etc. The total number of images in the training set 1s
5,400 frames. The execution of the algorithm modified the hologram with only
240 of these images. The rest produced an acceptable hidden lziyer response.
Since each hidden unit receives 6 exposures, a total of 40 h'idd'evn units were

| created. The maximum number of hidden units that the system can support is
limited by two factors. One is the dynamic range of the photorefractive hologram.
In this case a total of 240 holograms are superimposed. If we assume that all
these exposures are statistically uncorrelated (i.e., each exposure simply erases
all the previously recorded holograms and does not eve‘1~ reinforce them), then
the diffraction efficiency of each hologram would fall by a factor of (240)? [9]
compared to the efficiency with which a single hologram is stored. Since up to
5,000 [22] holograms have been superimposed in lithium niobate crystals, the
dynamic range was not a problem in our experiment. The second limitation is
the numerical aperture of the optical system to allow all the reference beams to
enter the crystal. The system we used in the experiment had the capability to
implement in excess of 100 units and it is possible to build systems with more
than 1,000 units. Therefore, this particular training set did not stretch the limits

of the system’s capabilities. The entire training cycle lasted about 40 minutes,
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" which includes the time for hologram exposure and controlling the system by

computer.

Figure 6.8. Photographs showing part of the training session.

Shown in Figure 6.8 is a composite photograph showing ‘a short sequence
of the training session. Each picture in the composite shows the current input
frame and on the right, displayed from top to bottom, is the optical response of
the hidden units. The first event in the sequence is on the top left in Figure ‘6.8
and it shows the frame shortly after the hologram is exposed. As time progresses
the hidden layer response changes (upper right corner) and gradually dims (lower
right corner). Ultimately, there are fewer than 3 units on and the system is
triggered to make another exposure (lower right corner). When the region in
the picture where the hidden layer normally appears becomes a white ribbon, it

means that the crystal is being exposed to light.
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6.4. Classification Performance

In this section we describe the performance of the trained network. Once the
network is trained it operafes in real time, i)rocessing 30 frames per second directly
from the input TV camera. The outputs from the detector array are simply
added together electronically and this sum is then thresholded to f)rodﬁce the
final output. The holograms will decay when exposed to light during the testing
phase. We can overcome this by either thermally fixing the hologram [23] or by
usiﬁg dynamic copying [10-12]. In this experiment we adopted a simpler'route
that temporary overcomes this problem. By reducing the readout light intensity to
1/20 of the total writing intensity, we calculate that the holograms will bdecay after
several hours of constant illumination. The holograms were sufficiently strong that
the reduction in the readout intensity yielded sufficient signal at the detector.
The system was tested with the original training set and a wide variety of test
sets, including videos of Yong presented to the system under various conditions,
and other people attempting to confuse the system. Shown in Figure 6.9 is the
signal at the output of the system before final thresholding. The entire recorded

| presentétion shown in Figure 6.9 lasts for about 10 minutes. The first minufe isa
portion of the training set. The next 2 minutes is a real-time inplut of Yong who
looks into the TV camera and moves around in a manner similar to the training
set. While he does this, he does not have access to aﬁy information from the
network. The rest of the sequence is the response of the system to two other
persons (Allen Pu and myself, Sid). We see that the average response is highest
for the training set, and is almost as high for the rest of the time where Yong
is the input. The average response for the other two subjects is markedly lower.
The variance of the response is higher for Yong, because he was exhibiting a wider
range of head perspectives to test the limits of the system. Similar behaviors were

observed for all 14 members of our group.

To make the final classification, we need to threshold the signal shown in

Figure 6.9. In the actual system, this is done electronically in real time. The
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Figure 6.9. System response before thresholding.

optimum threshold was determined from the data shown in Figure 6.9} Shown in
Figure 6.10 is a plot of probability of error as a function of the output threshold
level. The three curves correspond to the probability of error féf Yong, Allen,
and myself (Sid) estimated by classifying the data in Figure 6.9 With different
thresholds. If we want to minimize the overall probabilitby of error, the optimum
“threshold level is approximately 2.5 nW, giving a probability of error of about
12%. If we set the t‘hreshold slightly above 3 nW, then we almost never make a

false recognition while correctly identifying Yong approximately 70% of the time.

We can improve the performance of the system further by using the time
domain. If the input face is moving and presents different views to the system,
we can eliminate many of the errors by integrating over a time interval longer than
the duration of a single frame, and then perform the classification. Specifically,
we classify the current frame to be Yong if M out of the N frames give us a

positive response. In implementing such an algorithm, we need to select N, M
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h ‘a,nd‘tvhe threshold level. Shown in Figure 6.11 is a plot of probability of error on
the same three data sets as before as a function of the threshold level for M = 7
and N = 25. Notice that if the threshold level is selected in the range of 2.75 nW
to 3 nW, the estimated probability of error is zero. In this example, the decision
is made based on observation of the input video for 6 seconds (the computér
sampled the output at 4 samples/second). In general, there is a tradeoff between

performance and observation time.

The next sequence of experiments we describe were carried out to evaluate the
kind of generalization obtained by the network. In this case, the subjects (Yong
and others) were allowed to look at the output of the network. Adjustments were
made to test the limits of the system. Examples from this series of éxperiments
are displayed in the composite of Figure 6.12. The pictures are arranged in a4 x 4
matrix. We assign to each picture a pair of numbers (¢,75). The picture at the
upper left corner is designated (1,1), and the one at the upper right corner is (1,4).
" The small black circle within each picture displays the final output of the system
after thresholding. If the bright dot appears in the circle, the system makes a
positive identification of Yong. Picture (1,1) is an example of Yong being correctly
recognized by the system. Picture (1,2) shows Yong illuminated from beloﬁv and
the side, whereas during training the illumination was from above. We can see
that the system is sensitive to the direction of illumination because of the edge-
enhancement that is performed by the system. As the directioh of illumination
changes, the‘edges move around. To obtain invariance to illumination direction,
we need to include in the training set examples of different lighting. Picture
(1,4) and (2,1) show that key features such as the mouth and the eye are crucial
for recognition. However, as picture (2,2) shows, the eyes alone are not enough
for a positive identification. Picture (2,3) is meant to display the invariance of
the system to up and down motion. It is difficult to assess this from the still
photo. However we measured a tolerance to up-and-down shifts of about 5% of
the whole scene. As mentioned earlier, the optical system was arranged such that

up-and-down shifts of the input image become horizontal shifts on the LCTV.
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’i'We did this because we need more tolerance to side-to-side shifts (people move
side-to-side much more than up-and-down) and the optical system provides shift
invariance in the vertical direction at the LCTV plane. Prior to the training, the
tolerance to up-and-down input shifts was 2% of the whole scene. Training more

than doubled the tolerance of the up-and-down shift.

Figure 6.12. Examples demonstrating the generalization capabilities

of the system. A bright dot in the circle at the lower-right corner of each
photograph indicates that the system classifies the input image as the

person it was trained to recognize.

The tolerance of the system to nodding up and down was recorded by mea-
suring the up-and-down motion on the screen of a fixed point on Yong’s forehead,
as he nodded up and down. According to this measure, the spot on his forehead
can move by 1 cm without loss of recognition. From this measurement, and by
measuring the dimensions of Yong’s head, we obtain a crude estimate of 5 de-
grees for the maximum tolerable angle of forward head tilt. Picture (3,3) shows

an example of the tolerance of the system to side-to-side shifts of the input im-
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age. In this direction the optical correlator provides considerable shift invariance.
We measured the maximum side-to-side shift to be about 13 percent of the total
extent of the input frame. Overall, the system has more than 3 times better
tolerance to shifts in the side-to-side than the up-and-down direction. Pictures
(3,4) and (4,1) shows the system’s ability to tolerate turning of the head, which
we measured to be 30 degrees in either direction. The maximum tilt of the head
_(pictUrev(4,2)) was measured to be 12 degrees in either direction. We did not

seriously test the response of the system to scale changes.

6.5. Discussions and Conclusions

The main goal of this experiment was to use a combination of existing optical
techniques and algorithmic ideas to build a trainable real time face recognition
system that works. This system gave us remarkably good performance and yet
it greatly under-utilizes the full capabilities of the optical network. On the other
hand, there are many ways we can seek to improve the perfofmaﬁce. of the system.
» For instance, to incorporate invariance to scale or illumination, we would need to
expand bthe training set to include all possible combinations of scale and illufnina—
tion conditions of interest, as well as all the invariances that the current system
incorporates. For example to accommodate 5 different scales, we would need to
expand the size of the training set by roughly a factor of 5 The number of hidden
units that afe needed with the approach we use usually scales proportionally to
the size of the training set. Expanding the size of the optical system from the cur-
rent 40 hidden units to approximately 1,000 is within reach. It should therefore
be possible to expand the variety and range invariances accordingly. In addition,
we can seek ways to build in some of the invariances, in additioﬁ to the 1-D shift
invariance afforded by the Fourier transform holograms. For instance we can have
an adaptive optical system that is trained to recognize eyes independently of the
identity of the face. This feature detector can then be used to normalize the input

for up-and-down position or head rotation.
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Appendix
Volume Holographic Correlators

In this appendix, we will analyze more carefully the correlation operation
using volume holograms. The approach we use here is basically the Born’s ap-
proximation method used in Chapter 2. We consider one slice of the volume
hologram at a time, and then add the diffracted light from each slice to obtain
the total diffracted field. As mentioned in Chapter 2, this method assumes that

the incident light is not affected by the holograms.

PI P2

|
I

1 FI z

I
<

Figure 6.13. The volume holographic correlator.

Consider the Fourier transform system shown in Figure 6.13. The image
f(z,y) is placed at the Fourier plane (back-focal plane) P1, a distance of one
focal length (F}) away from the Fourier transform lens. The origin of the 2z axis
is taken to be at the front focal plane P2, also at a distance Fy away from the
Fourier transform lens. It can be shown that under paraxial approximations, the

field distribution at z is proportional to *

// f(xl)ejfrkzuze,ﬂ?ru-x dx", (65)

4 The implicit time dependence factor is e™7%*.
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where
x = (z,y), (6.6)
x' = (z',y"), (6.7)
X,
u= (ux,uy) = )\—R, (68)
and
u? = ui + u; (6.9)

Note that here the vectors X', etc., are 2-D vectors instead of 3-D. In the following,
we will work with the spatial frequency variables u, and u,. To simplify the
notation, we will write f(u) to mean f(AFju), etc.

We first record a hologram using the signal

S = // f(v)cj‘lﬂ'v-xe—jﬂ')\zvz dV, (610)

and the reference beam

R = 6j2wu-xe—.i1r,\zu2' | . (611)

The hologram is recorded in a volume from z = z. — L/2 to z =z + L/2 We
consider the infinitesimal segment lying between 2z = zg and 2z = z5 + Az. We

may treat it as a planar hologram. At z = zg, the hologram recorded is
RS*\z=zo = // f*(v)6j27r(u—v)-xe——j'lr)\zo(uz—vz) dv. (612)
If we now apply a second signal

SI:// g(vr)ej27rv’.xe—jﬂ'sz’2 dV’, (613)

then at z = zg, the hologram is

RS*S'|,_, =/ FH(v)g(v')ed?mlu—vivi)x

eI (WP =) gy gyt | (6.14)
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Let
Av=v' —v, (6.15)

then assuming Av is small, we have to first order
v'? = v? 4 2v - Ay, (6.16)
and
w? —v? vt mul4+2v- Av. - (8.17)
We can then write Eq. (6.14) as °

RS*S'|,_, = / { / (V') F(v' — Ay)emimli+av-av) dv'}
Ced?muFAVIX gAY, ' (6.18)

If we assume that the widths of f and g are sufficiently small, then we may male

the approximation

u? +2v - Av x u? + 2vg - Av, (6.19)

where vy is at the center of the functions f and g. We may then approximate

Eq. (6.18) by

RS*S’|z=zO

=~ [ { [ o) 7w = vy av]

) e—ijzo(u2+2V0'AV) efZ”(“+AV)'x d(AV),

:/ (g*f)(Av) e—jrAzg(u2+2vo-Av) ej21r(u+Av)-x d(AV), (620)

where

9+ 5)6v) = [ o) (v = Av) d’ (6.21)

5 Actually, the right-hand side of Eq. (6.18) should be the negative of what is
written here. However, since this is just an extra constant phase, it is not
important and will be omitted for simplicity.
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is the cross-correlation function of ¢ and f.

At z > 2o, the field RS*S'|,=, becomes (through plane wave propagation)

Ue) = [ dlaw) {(g plav) ermtmeravy foteanx
) e—jw)\z(u2+2u'AV)}. / (6.22)

The expréssioﬁ above gives the field diffracted from the slice of the volume holo-

gram at z = 2. To find total field at z, we integrate over all the slices:

z.+L/2
Utotat :/ U(Z()) dZo
z.—L/[2

- / d(Av){(g * F)(AV) Lei2m™ze(a=vo) AV gine [AL(u = vo) - AV] }

{ej2w(u+Av)-x e—.ifrAz(u2+2u'AV)}_ (6.23)

The factor

ei2m(utAv)x —jmAz(u?+2u-Av) (6.24)

is a plane wave with spatial frequency u + Av. When the diffracted light 1s

collected by a second Fourier transform lens, the image formed by this lens is °

(g f) (/\in) . {Leﬂm(“—"o)"‘/F2 sinc [w%(“ — Vo) - X]}
1\’ N S R A |
) [t
{ [ ei2rze(u—vo)x/Fs g . [W%(u‘_ vo) - X] } ,  (6.25)

where F} is the focal length of the second Fourier transform lens, and M = F; /Fi.
In Eq. (6.25), we have translated the coordinate system to the point AFzu of the

original coordinate system.

6 The second Fourier transform lens does not have to be exactly one focal
length away from the hologram, since we are interested only in the intensity
distribution.
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The diffracted light from volume hologram is therefore the cross-correlation
of f and g multiplied by a sinc function. If we assume that u and vo are both
parallel to the z axis, and let 6 (8s) be the angles between the z axis and the

reference (signal) beam wave vectors, then

sinfgr + sinfs
b\ €y,

(6.26)

u—vg=
where e, is the unit vector in the z direction. The sinc function then becomes
. L . . v :
sinc { m~—(sinfg + sinfgs)z ; . (6.27)
A, : A

For the special case where 85 = 0 (i.e., the signal beam incidents norm‘ally on the
hologram surface), the expression Eq. (6.27) becomes Eq. (6.1).

As mentioned in Section 6.2, the sinc function in Eq. (6.25) creates a “mask”
over the correlation function g+ f. This mask is a slit parallel to the y axis. Thus
we have shift invariance in the y direction, which is perpendiculaf to the plane
spanned by the reference beam and the signal beam. But we have Very little shift
‘invariance in the « direction. Note that from Eq. (6.27), the width éf the sinc
functioﬁ is inversely proportional to L, but independeht of the position z. (which
contfibutevs only a constant phase factor).

According to the results above, we have shift invariance in the y direction,
regardless of whether the hologram is placed at the Fourier transform plane.
In reality, of course, the amount of shift invariance in the y direction is finite,
and decreases as the hologram is placed further away from the Fourier transform
plane. This is true not only for volume holographic correlators, but also for plaﬁar
holographic correlators. The discrepancy with the predictions of Eq. (6.25) is due
to the approximation made in Eq. (6.19). Instead of the exact cross-correlation

g * f, we have

h(Av) = // dv g(v)f*(v — Av) l2mAze(u-viav) Ay
sinc{mAL(u — v+ Av) - Av}. ‘ (6.28)
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" If f and ¢ have the same center vg, then the peak (or center) of the function

R(Av) is at Av = 0, where we have

h(0) = / / g(V)f*(v) dv. (6.29)

This is the same as the correlation function g x f at Av = 0. For nonzero Av,
the function h st.arts to devia“‘tve from the value of g x f. However, if ¢ and f have
strong correlation, then the value of g+ f drops close to zefo rapidly as we move
away from Av = 0. This is also true for h, so the difference is not significant.
Suppose now that f and g do not have the same center. Let v be the center
of f, and let vo+ Avg be the center of g. If f and g have strong correlation, then
since h behaves similaf to g * f, the peak of h is at Av = Avg. In this case there

are two factors that cause the peak value of h to deviate from g * f. The first is

01 — ej21r)\zc(u—v+AVo)'AVo, (630)

and the second is
0O, = sinc{rAL(u — v + Avy) - Avo} — (6.31)

As Avy increases; the frequency of the O; factor increases. At the same time,
the O, factor drops toward zero. Both factors cause the value of h to be less than
gx*f.

The O; factor is 1 when the hologram is at the Fourier plane (2. = 0). How-
ever, we still have the O, factor. In any case, as Avg increases (i.e., as the cenfer
of g moves away from the center of f), the function h drops toward zero. From
Eq. (6.30), we note that the value of Avy where h approaches zero, becomes
smaller as L becomes larger. Thus the range of shift invariance decreases as L
increases, as we would expect.

Similarly, O oscillates more rapidly for larger values of |z.| (for the same

Avy). This means that the peak of h decreases more rapidly to zero as the center
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of g moves away from the center of f. Thus the range of shift invariance decreases

as the hologram moves away from the Fourier plane. 7

The amount of shift invariance depends primarily on the factors O, and O,
which in turn depend on the thickness L and the position z.. The second Fourier
transform lens just magnifies (the spatial extent) of the correlation function g %
f (or rather its'approkimation, h), so Fy does not affect the amount of shift
invariance. The focal length of the first Fourier transform lens, (Fy) however,
does have an effect on the amount of shift invariance. Recall that in Eq (6.28)
above, g(Av) should actually be g(AFyv). When F; decreases by a factor of m,
the spatial extent of f(AF1Av) and g(AF1Av) (in Eq. (6.28)) are magniﬁed by
a factor of m. (The size of the Fourier transforrﬁs, on the other hand, shrink by
a factor of m.) The amount of shift invariance Avo, however, is approximately
independent of the magnification m (and hence Fy). If we project Avg back

through the first Fourier transform lens, the corresponding amount of shift is
| AFyAvy. Since we have not changed the actual f and ¢ functions, and F; has
decreased by a factor of m, the (relative) amount of shift invariance has decreased
by an amount of m. This is also true if we keep F fix and magnify f and g by
a factor of m. (In this case, the amount of shift, AFlAvo, does not change, but

since f and g are larger, the relative amount of shift invariance has decreased.)

Thus when (the spatial extent of) the Fourier transform is sfnaller; the
amount of shift invariance (in the perpendicular direction) decreases proportion-
ally. In practice, it is desirable to increase the recording speed ‘of the system,
which can be done by shrinking the Fourier transform. The tradeoff, as shown

above, is that the amount of shift invariance drops.

7 For planar holograms, O = 1. Nevertheless, if the the hologram is not placed
exactly at the Fourier plane, O; still causes the range of shift invariance to
decrease.
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