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We are perhaps not far removed from the time when we shall be able to

submit the bulk of chemical phenomena to calculation. [1]
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Abstract

The exponential growth in computer power over the past few decades has been a

huge boon to computational chemistry, physics, biology, and materials science. Now,

a standard workstation or Linux cluster can calculate semi-quantitative properties

of moderately sized systems. The next step in computational science is developing

better algorithms which allow quantitative calculations of a system’s properties.

A relatively new class of algorithms, known collectively as Quantum Monte Carlo

(QMC), has the potential to quantitatively calculate the properties of molecular sys-

tems. Furthermore, QMC scales as O(N3) or better. This makes possible very high-

level calculations on systems that are too large to be examined using standard high-

level methods.

This thesis develops (1) an efficient algorithm for determining “on-the-fly” the

statistical error in serially correlated data, (2) a manager-worker parallelization al-

gorithm for QMC that allows calculations to run on heterogeneous parallel comput-

ers and computational grids, (3) a robust algorithm for optimizing Jastrow func-

tions which have singularities for some parameter values, and (4) a proof-of-concept

demonstrating that it is possible to find transferable parameter sets for large classes

of compounds.
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Chapter 1

Overview

The underlying physical laws necessary for the mathematical theory of

a large part of physics and the whole of chemistry are thus completely

known, and the difficulty is only that the exact application of these laws

leads to equations much too complicated to be soluble. [2]

P. A. M. Dirac, 1929

The ultimate goal of computational quantum chemistry and computational molec-

ular physics is to quickly and quantitatively predict the properties of molecular sys-

tems before performing any experiments. This will allow the design and optimization

of new materials and catalysts before investing in expensive and time-consuming lab-

oratory work.

New algorithms for electronic structure calculations, coupled with the continued

exponential growth in computing power, have converted the previously esoteric field of

computational quantum chemistry into a useful tool for laboratory scientists. For ex-

ample, Density Functional Theory (DFT) [3, 4, 5] has made possible semi-quantitative

calculations [6] on a huge range of important systems [7].
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Though much progress has been made, standard methods, such as DFT, coupled

cluster, and many-body perturbation theory, are still unable to quantitatively cal-

culate properties of molecular systems [8, 9, 10]. Furthermore, the linear algebra

involved in standard methods limits the number of processors that ultimately could

be utilized in a single calculation, which limits in turn the system size which can be

examined.

A relatively new class of algorithms for performing electronic structure calculations

shows promise in quantitatively calculating properties of molecular systems. The

algorithms in this class all fall under the broad category of Quantum Monte Carlo

(QMC). Instead of using a linear algebra-based approach to solve the Schrödinger

equation, as is done in standard electronic structure algorithms, QMC algorithms

utilize a stochastic (also known as Monte Carlo) approach.

Presented in this work is a collection of new algorithms which:

• allow the convergence of a QMC calculation to be examined as the calculation

progresses (Chapter 5);

• allow QMC to fully utilize the next generation of supercomputers (Chapter 6);

• facilitate the stable, robust optimization of potentially singular variational QMC

wave functions (Chapter 7); and

• reduce the time required to optimize variational QMC wave functions before

performing diffusion QMC calculations (Chapter 8).

Each of these new algorithms enable QMC calculations to utilize computational re-
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sources more efficiently. Additionally, the new algorithms allow more processors to be

used than has previously been possible. These improvements allow the examination

of larger systems while consuming less computational time.

Furthermore, the new algorithms permit the utilization of less expensive computer

hardware. The algorithms require very little inter-processor communication, very

little RAM, and often no hard drive. This eleminates expensive components such as

Myrinet, fast switches, and large RAM. Furthermore, the most fault-prone component

of a computer, the hard drive, is eliminated, making such a QMC cluster far more

reliable than a standard cluster. These improvements make the hardware necessary

to perform QMC calculations affordable to many more researchers.

Chapter 2 provides a very basic introduction to quantum mechanics as it applies

to electronic structure calculations. Chapter 3 covers the standard algorithms used

to generate random numbers, which will later be used in QMC calculations. Finally,

Chapter 4 is an introduction to QMC algorithms. This chapter focuses on variational

QMC and diffusion QMC, which are the most important for electronic structure

calculations.

All Quantum Monte Carlo calculations presented here were performed using QM-

cBeaver. The source code for this software, developed by Michael T. Feldmann and

myself, is listed in Chapter 9.
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Chapter 2

Introduction

It turns out to be very difficult to predict precisely what will happen in a

chemical reaction: nevertheless, the deepest part of theoretical chemistry

must end up in quantum mechanics. [11]

R. P. Feynman, 1965

This chapter provides an extremely elementary introduction to quantum mechan-

ics. For a more detailed coverage of this material, see References [12], [13], [11], [14], [15],

and [16]. Standard algorithms for quantum-mechanical calculations of molecular sys-

tems are covered in References [17] and [3].

2.1 Introduction to Quantum Mechanics

To correctly describe the physics of atomic and molecular systems, quantum mechan-

ics must be used in place of classical, Newtonian mechanics. In quantum mechanics,

the state of a system is completely defined by an abstract vector, |Ψ(t)〉, known as

the wave function or state of the system, where t is time. |Ψ(t)〉 can be represented

as a function of variable x as Ψ(x, t) = 〈x|Ψ(t)〉.
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To calculate the value of an experimentally measurable quantity, a Hermitian

operator, Ô = Ô†, must be constructed which corresponds to the quantity. Ô† is

the adjoint of Ô and is equal to the complex conjugate of the transpose of Ô in the

matrix representation. The details of constructing such an operator are beyond the

scope of this text [13, 12]. Using the operator, the expectation value of the calculated

property for a system in state |Ψ(t)〉,
〈
Ô(t)

〉
, is

〈
Ô(t)

〉
=
〈Ψ(t)| Ô |Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

=

∫
Ψ(x, t)∗ÔΨ(x, t)dx∫
Ψ(x, t)∗Ψ(x, t)dx

(2.1)

where 〈Ψ(t)| = |Ψ(t)〉† and Ψ(x, t)∗ is the complex conjugate of Ψ(x, t).

As an example, the probability of finding a particle within dx of x, P (x, t)dx, can

be calculated using Ô = |x〉 〈x| dx.

P (x, t)dx =
〈Ψ(t)|x 〉〈x |Ψ(t)〉 dx

〈Ψ(t)|Ψ(t)〉
=

Ψ(x, t)∗Ψ(x, t)dx∫
Ψ(x, t)∗Ψ(x, t)dx

(2.2)

Similarly, the expectation value of the total energy for the system can be calculated

using the Hamiltonian operator, Ĥ, for the system.

〈E(t)〉 =
〈Ψ(t)| Ĥ |Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

=

∫
Ψ(x, t)∗ĤΨ(x, t)dx∫
Ψ(x, t)∗Ψ(x, t)dx

(2.3)

For the above formalism to be useful, it must be possible to calculate the wave

function for a system. This is done using the time-dependent Schrödinger Equation,
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the wave function’s deterministic equation of motion,

i
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.4)

where i is
√
−1 and t is time. The solution to the time-dependent Schrödinger Equa-

tion can be expanded as

|Ψ(t)〉 =
∑
j

cje
−iEjt |Φj〉 (2.5)

where cj = 〈Φj|Ψ(0)〉 are complex coefficients and Ej and |Φj〉 are the eigenvalues

and eigenvectors, respectively, of the time-independent Schrödinger Equation.

Ĥ |Φj〉 = Ej |Φj〉 (2.6)

The |Φj〉 are a set of special wave functions, known as stationary states, eigenstates,

or eigenfunctions, which do not change in time. Each eigenfunction of Ĥ, |Φj〉, has

an associated eigenvalue, Ej, which is a constant and can be interpreted as the total

energy of the stationary state.

Because Ĥ is a Hermitian operator, its eigenvalues, Ej, are real numbers, and the

eigenfunctions are orthogonal to one another, 〈Φi|Φj〉 = δi,j. δi,j is the Kronecker

delta and equals 1 for i = j and 0 otherwise.

From this point forward, it is assumed that the stationary states are ordered so

that E0 ≤ E1 ≤ E2 ≤ · · ·. By convention, the lowest energy state, |Φ0〉, is called

the ground state.
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2.2 Wave Function Particle-Interchange

Symmetry

All known subatomic particles can be divided into two classes: fermions and bosons.

Bosons are particles with spins of 0, 1, etc., such as photons and deuterium atoms,

while fermions are particles with spins of 1/2, 3/2, etc., such as electrons and protons.

The quantum-mechanical behavior of bosons and fermions is very different. Wave

functions for bosons are totally symmetric so that interchanging the positions of any

two identical particles does not alter the wave function.

Φboson(. . . , xi, . . . , xj, . . .) = Φboson(. . . , xj, . . . , xi, . . .) (2.7)

On the other hand, the wave function for fermions is totally antisymmetric so in-

terchanging the position of any two identical particles changes the wave function’s

sign.

Φfermion(. . . , xi, . . . , xj, . . .) = −Φfermion(. . . , xj, . . . , xi, . . .) (2.8)

The Pauli exclusion principle (no two electrons in a system can be at the same

time in the same state or configuration) is a direct result of the antisymmetry of

fermionic wave functions.
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2.3 Cusp Conditions

The time-independent Schrödinger Equation for an N-particle Coulombic system is

−1

2

N∑
i=1

1

mi

∇2
i +

N∑
i=1

j<i∑
j=1

qiqj
rij

Φ = EΦ (2.9)

where mi is the mass of particle i, rij is the distance between particles i and j, and

qi and qj are the charges on particles i and j. The Coulomb terms in the potential

energy diverge as two particles approach one another; therefore, for the total energy

of the system, E, to be finite, divergence in the kinetic energy must exactly cancel

the divergence in the potential energy. Satisfying the cusp conditions achieves this

exact cancellation.

The cusp condition for particles i and j approaching one another is

lim
rij→0

∂Φ̄

∂rij

=
µijqiqj
l + 1

lim
rij→0

Φ (2.10)

where Φ̄ is the average of Φ over an infinitesimally small sphere centered at rij = 0,

µij = mimj/(mi + mj) is the reduced mass of particles i and j, and l results from

the symmetry of the wave function (Section 2.2). l is 1 for identical fermions and 0

otherwise. Derivations of this result can be found in References [18] and [19].

Using Equation 2.10, it is straightforward to show that the electron-nuclear cusp

condition is −Z, in atomic units, where Z is the atomic number of the nucleus. The

electron-electron cusp condition, in atomic units, is 1/2 for opposite-spin electrons

and 1/4 for same-spin electrons.
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2.4 Quantum-Mechanical Variational Principle

The eigenstates of the Hamiltonian operator span the space of all possible wave func-

tions for the system. Therefore, a wave function |Ψ〉 can be expanded in terms of the

eigenstates of the Hamiltonian for the system, |Φi〉,

|Ψ〉 =
∑

i

ai |Φi〉 (2.11)

where ai = 〈Φi|Ψ〉 are complex numbers.

Evaluating the expected energy of the wave function gives

〈E〉 =
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

(2.12)

=

∑
i,j a

∗
i aj 〈Φi| Ĥ |Φj〉∑

i,j a
∗
i aj 〈Φi|Φj〉

(2.13)

=

∑
i,j a

∗
i ajEj 〈Φi|Φj〉∑

i,j a
∗
i aj 〈Φi|Φj〉

(2.14)

=

∑
i |ai|2Ei∑

i |ai|2
(2.15)

It is then trivial to show that

〈E〉 ≥ E0 (2.16)

where E0 is the energy of the ground state.

The variational theorem provides a means by which to approximate the ground

state wave function of a system. First, a parameterized wave function is constructed.

Then the wave function parameters are adjusted to give the lowest expected energy.

This approximates the ground state wave function.
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Approximations for excited state wave functions can be obtained by requiring that

the parameterized wave function is orthogonal to all lower energy states. In this case,

the expected energy of the approximate wave function is greater than the true energy

of the excited state. Because the exact wave functions for lower energy states are

typically unknown, approximate wave functions must be used. Thus, the expected

energy of the approximate excited state wave function is not guaranteed to be greater

than the true energy of the excited state.

2.5 Quantum Mechanics of Atoms and Molecules

Atoms and molecules are composed of nuclei and electrons, where the position of

nucleus A is represented by XA and the position of electron i is represented by xi. The

distance between electron i and nucleus A is riA = |xi −XA|. The distance between

electrons i and j is rij = |xi − xj|. Finally, the distance between nuclei A and B is

RAB = |XA −XB|. Using these coordinates, the non-relativistic Hamiltonian for a

system of N electrons and M nuclei, in atomic units, is

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A +

N∑
i=1

N∑
j>i

1

rij

−
N∑

i=1

M∑
A=1

ZA

riA

+
M∑

A=1

M∑
B>A

ZAZB

RAB

(2.17)

where MA is the ratio of the mass of nucleus A to the mass of an electron, ZA is the

atomic number of nucleus A, and Laplacian operators ∇2
i and ∇2

A respectively involve

differentiation with respect to the coordinates of electron i and nucleus A.

This Hamiltonian operator can be broken into kinetic energy, T̂, and potential
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energy, V̂, operators

Ĥ = T̂ + V̂ (2.18)

which can be further broken down into

T̂ = T̂e + T̂n (2.19)

and

V̂ = V̂ee + V̂en + V̂nn (2.20)

where T̂e and T̂n are the electronic and nuclear kinetic energy operators and V̂ee, V̂en,

and V̂nn are the potential energy operators for electron-electron, electron-nuclear, and

nuclear-nuclear interactions.

T̂e = −1

2

N∑
i=1

∇2
i (2.21)

T̂n = −1

2

M∑
A=1

1

MA

∇2
A (2.22)

V̂ee =
N∑

i=1

N∑
j>i

1

rij

(2.23)

V̂en = −
N∑

i=1

M∑
A=1

ZA

riA

(2.24)

V̂nn =
M∑

A=1

M∑
B>A

ZAZB

RAB

(2.25)

The time-independent Schrödinger equation for atoms and molecules (Equations

2.6 and 2.17) is an inseparable (3N + 3M)-dimensional partial differential equation.

Because the Hamiltonian (Equation 2.17) is real and Hermitian, the eigenvalues are
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real constants, and the eigenfunctions can be chosen to be real functions. This prop-

erty greatly aids in numerically solving the Schrödinger equation.

For a “simple” case such as benzene, C6H6, the differential equation is 162-

dimensional (M = 12, N = 42). If a standard grid-based PDE solver was applied

to this problem using an absurdly coarse grid with only 2 points in each dimension,

2162 ≈ 1049 grid points would be required for the calculation. Due to the grid’s

coarseness, such a calculation is both computationally infeasible and would yield ex-

tremely poor-quality results. As a result, standard PDE solvers are not applicable to

high-accuracy solutions of the Schrödinger equation for general atomic and molecu-

lar systems, so other algorithms must be used. Quantum Monte Carlo is one such

algorithm and is the focus of this work.

2.5.1 Born-Oppenheimer Approximation

A nucleus’s mass is much greater than that of an electron. For the lightest nucleus,

hydrogen, the ratio of the mass of the nucleus to the mass of the electron is 1836.

Because nuclei are so heavy relative to electrons, electrons move much more quickly

than nuclei. This situation allows the employment of an adiabatic approximation.

First, the positions of the nuclei are fixed and the eigenstate of the electrons,

|Φj(X)〉, corresponding to the fixed configuration of nuclei, is calculated using

[
T̂e + V̂ee + V̂en + V̂nn

]
|Φj(X)〉 = Ee,j(X) |Φj(X)〉 (2.26)

where Ee,j(X) is the energy of the jth electronic eigenstate at fixed nuclear coordi-
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nates, X. The eigenstate for the entire system, |Ψ〉, is then a tensor product of a

nuclear eigenstate, |Υk〉, and an adiabatic electronic eigenstate, |Φj(X)〉.

|Ψ〉 = |Υk〉 ⊗ |Φj(X)〉 (2.27)

Substituting into the Schrödinger equation for the entire system, Ĥ |Ψ〉 = E |Ψ〉,

[
T̂n + Ee,j(X)

]
[|Υk〉 ⊗ |Φj(X)〉] = Ejk [|Υk〉 ⊗ |Φj(X)〉] (2.28)

is obtained, where Ejk is the total energy for the system, which is in the jth electronic

state and kth nuclear state. T̂n operates on both the nuclear state, |Υk〉, and the

electronic state, |Φj(X)〉. As long as the amplitude of the relative motion of pairs

of nuclei is small compared to the distance between them, T̂n |Φj(X)〉 ≈ 0. The

Born-Oppenheimer approximation assumes that T̂n |Φj(X)〉 = 0. This approximation

yields an eigenvalue equation for the nuclear wave function which is not coupled with

the electronic wave function.

[
T̂n + Ee,j(X)

]
|Υk〉 = Ejk |Υk〉 (2.29)

The adiabatic potential, Ee,j(X), determines the motion of the nuclei. Its local-

minimum values corresponds to the system’s equilibrium geometries.
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2.5.2 Approximate Solution of the Nuclear Schrödinger

Equation

Using the Born-Oppenheimer approximation (Section 2.5.1), it is possible to separate

the electronic and nuclear degrees of freedom in a quantum-mechanical calculation

of a molecular system. The nuclear degrees of freedom correspond to the molecule’s

translations, rotations, and vibrations. This separation produces a Schrödinger equa-

tion for the nuclear part of the system (Equation 2.29).

The adiabatic potential, Ee,j(X), can be expanded in a Taylor series around a

particular set of equilibrium nuclear coordinates, Xeq,

Xeq = arg
{
min
X

Ee,j(X)
}

(2.30)

such that

Ee,j(X) = Ee,j(Xeq) + ∆XT∇nEe,j(Xeq) +
1

2
∆XT [∇n : ∇nEe,j(Xeq)] ∆X +O

(
∆X3

)
(2.31)

where ∆X = X − Xeq and ∇n is the gradient with respect to all of the nuclear

coordinates.

For Equation 2.30 to be true, ∇nEe,j(Xeq) must vanish. Using this fact and

assuming that nuclear displacements are small (∆X ≈ 0), the adiabatic potential can
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be simplified.

Ee,j(X) = Ee,j(Xeq) +
1

2
∆XT [∇n : ∇nEe,j(Xeq)] ∆X (2.32)

Ee,j(Xeq) is the energy of the jth electronic state calculated with the nuclei fixed at

the equilibrium geometry. Because this is a constant, it only shifts the final eigenvalue

of Equation 2.29 and can therefore be subtracted from the Hamiltonian. This yields

a 3M-dimensional Schrödinger equation for the nuclear portion of the system

[
T̂n +

1

2
∆XT [∇n : ∇nEe,j(Xeq)] ∆X

]
|Υk〉 = En,jk |Υk〉 (2.33)

where M is the number of nuclei and En,jk is the nuclear energy for the system which

is in the jth electronic sate and kth nuclear state.

Because the potential energy for a molecular system (Equation 2.20) is invariant

to rotations and translations of the entire system, it can be shown that Ee,j(Xeq) and

∇n : ∇nEe,j(Xeq) are also invariant to rotations and translations of the entire system.

Using this result, the nuclear Hamiltonian (Equation 2.33) can be broken down into

translational, rotational, and vibrational Hamiltonians.

Ĥn,j = Ĥt,j ⊕ Ĥr,j ⊕ Ĥv,j (2.34)

The nuclear wave function for the system is now the tensor product of a translational,
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a rotational, and a vibrational wave function.

|Υjklm〉 = |ψt,k〉 ⊗ |ψr,l〉 ⊗ |ψv,m〉 (2.35)

This manipulation allows the translational, rotational, and vibrational portions of the

nuclear Schrödinger equation to be solved independently.

Ĥt,j |ψt,k〉 = Et,jk |ψt,k〉 (2.36)

Ĥr,j |ψr,l〉 = Er,jl |ψr,l〉 (2.37)

Ĥv,j |ψv,m〉 = Ev,jm |ψv,m〉 (2.38)

(2.39)

These Schrödinger equations are 3-dimensional, 3-dimensional, and (3M−6)-dimensional,

respectively, and can be solved analytically.

2.5.3 Summary

Sections 2.5.1 and 2.5.2 have shown the approximations necessary to break the (3M+

3N)-dimensional molecular Schrödinger equation into a more manageable 3N -dimensional

electronic Schrödinger equation, a (3M−6)-dimensional vibrational Schrödinger equa-

tion, a 3-dimensional rotational Schrödinger equation, and a 3-dimensional transla-

tional Schrödinger equation. These approximations significantly reduce the effort of

calculating molecular properties.

Of these Schrödinger equations, the electronic Schrödinger equation is by far the
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most difficult to solve. Because of this, it will be used in examples of methods

throughout this work.
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Chapter 3

Random Number Generation

God not only plays dice. He also sometimes throws the dice where they

cannot be seen. [20]

Stephen Hawking, 1975

Many types of numerical simulations, including Quantum Monte Carlo, require the

generation of random numbers with respect to a given probability density function.

This happens to be significantly more difficult on a computer than one might initially

expect.

The result of an inherently random physical process, such as the decay of radioac-

tive nuclei, yields truly random results. Computers, on the other hand, are precise

and deterministic; therefore, “random” numbers generated by computers are often

called pseudo-random numbers. Pseudo-random numbers are generated by determin-

istic computational processes, but the numbers satisfy one or more statistical tests for

randomness. The more statistical tests for randomness a sequence of pseudo-random

numbers passes, the higher the quality of the pseudo-random numbers. For many

problems, high-quality pseudo-random numbers are overkill, but, for other problems,
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high-quality pseudo-random numbers are critical to obtaining the correct results for

a calculation.

3.1 Uniform Random Numbers

Virtually all schemes to generate random numbers with respect to a given proba-

bility density function rely on uniform random numbers. Uniform random numbers

are random numbers that fall between 0 and 1, with all numbers having an equal

probability of being generated.

The most commonly used algorithms for generating uniform pseudo-random num-

bers are based on linear congruential generators. A sequence {Ii} of nonnegative

integers is generated by means of the fundamental congruence relationship

Ii+1 = aIi + c (mod m), (3.1)

where the multiplier a, the increment c, and the modulus m are nonnegative integers.

From Equation 3.1, it is easy to show that Ii < m for all i. Because of this, the

sequence {Ii} contains at most m distinct numbers. Using this result, a set of uniform

pseudo-random numbers, {Ui}, can be obtained by letting

Ui =
Ii
m
. (3.2)

Because Equation 3.1 is deterministic and because Ii is bounded, the sequence

{Ii} is composed of repeating subsequences. The period of the sequence {Ii}, p, is
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equal to the length of the repeating subsequence. As an example, consider the case

where a = c = I0 = 3 and m = 5. Here the generator, Ii+1 = 3Ii + 3 (mod 5),

produces the sequence {3, 2, 4, 0, 3, 2, 4, · · ·}. This sequence is composed of repetitions

of the subsequence {3, 2, 4, 0} and has a period of p = 4.

Obviously when generating pseudo-random numbers, a and c should be chosen so

that the sequence {Ii} has a maximum period (p = m). This ensures that the uniform

pseudo-random number generator produces the maximum number of distinct pseudo-

random numbers. This full period occurs if and only if [21]:

1. c is relatively prime to m (or equivalently gcd (c,m) = 1).

2. a ≡ 1 (mod g) for every prime factor g of m.

3. a ≡ 1 (mod 4) if m is a multiple of 4.

Because current computers use binary numbers, m is typically chosen to be close

to 2β, where β is the length of a long integer on the computer.

The quality of sequences generated using linear congruential generators is deter-

mined by the period length and the results of standard statistical tests for pseudo-

random numbers. Details of these tests will not be covered here but can be found in

Reference [21]. Values of a, c, and m which perform well can be found in Numerical

Recipes [22, 23] and the literature.

Modifications can be made to linear congruential generators to improve the algo-

rithm’s results in standard statistical tests [23]. One such modification simply shuffles

the sequence generated by a linear congruential generator.
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In addition to linear congruential generators, uniform random numbers can be

created using multiplicative congruential generators. These generators are the same

as the linear version except c = 0. In this case, it is not possible to choose a so

that the sequence {Ii} has a full period; however, to optimize the method, it is

possible to choose a and I0 so that the sequence has a maximum period. Because

fewer operations are performed, multiplicative congruential generators are faster than

linear congruential generators.

3.2 Transformation Method

The transformation method of generating random numbers transforms uniform ran-

dom numbers to random numbers with a given probability distribution, ρ(x).

The cumulative distribution function, F (y), is defined as

F (y) =
∫ y

−∞
ρ(x)dx (3.3)

where F (−∞) = 0 and F (∞) = 1, because ρ(x) is normalized.

To generate a random number, y, distributed with respect to ρ(x), a uniform

random number, ζ, is generated. Then y = F−1(ζ), where F−1 is the inverse of F .

Often it is impossible to determine F−1 either analytically or numerically. Other

times, F−1 is prohibitively expensive to evaluate. In these cases, the transformation

method is not applicable, and another algorithm must be used.
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Figure 3.1: Example comparison function, f(x), to generate random points distributed with

respect to ρ(x).

3.3 Rejection Method

The rejection method generates random numbers with respect to a given probabil-

ity distribution, ρ(x), which is known and computable. Unlike the transformation

method (Section 3.2), evaluating the cumulative distribution function or its inverse

is not required. This allows distributions of random numbers to be generated which

were impossible using the transformation method.

A function f(x), called the comparison function, is constructed so that it has a

finite area and lies everywhere above ρ(x) (Figure 3.1). The transformation method

(Section 3.2) is then used to generate a random number, y, distributed with respect
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to ρf (x).

ρf (x) =
f(x)∫∞

−∞ f(x)dx
(3.4)

A uniform random number, ζ, is then generated. If ζ > ρ(y)/f(y), y is rejected;

otherwise, y is accepted and is a random number distributed with respect to ρ(x).

With the rejection method, it is possible to generate random numbers distributed

with respect to essentially any distribution encountered in calculations of physical

systems. Unfortunately, the algorithm is not always efficient. If it is impossible to

construct a comparison function, f(x), which closely approximates the probability

distribution, ρ(x), a large fraction of the random numbers generated with respect to

ρf (x) will be rejected, rendering the algorithm very inefficient.

3.4 Metropolis Algorithm

The Metropolis algorithm [24] begins by assuming the master equation:

∂ρ(x, t)

∂t
=
∫

[T (y → x)ρ(y, t)− T (x→ y)ρ(x, t)] dy (3.5)

∫
T (x→ y)dy = 1 (3.6)

where ρ(x, t) is the probability distribution at time t and T (x→ y) is the transition

probability for moving from x to y. From this, it is then assumed that the system is
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in equilibrium (∂ρ(x, t)/∂t ≈ 0), and the time dependence in ρ(x, t) is dropped.

∫
[T (y → x)ρ(y)− T (x→ y)ρ(x)] dy = 0 (3.7)

There are many possible solutions to Equation 3.7. The Metropolis solution [24] is

the most simple and has proven to be the most efficient in actual use.

T (y → x)ρ(y) = T (x→ y)ρ(x) (3.8)

This is also known as the detailed balance solution.

Using Equation 3.8, the probability for accepting an attempted move from x to y

is given by

A(y, x) = min

(
1,
T (y → x)ρ(y)

T (x→ y)ρ(x)

)
. (3.9)

In Equation 3.9, it should be noted that the ratio ρ(y)/ρ(x) is calculated, rather than

ρ(x) and ρ(y) separately. As a result, ρ is not required to be normalized.

In the most simple implementation of the Metropolis algorithm, T is chosen so

that T (y → x) = T (x → y). More elaborate choices for T (x → y) can be used to

increase the probability of accepting an attempted move and, therefore, to improve

the algorithm’s efficiency.

The above machinery provides all of the components necessary to produce random

numbers distributed with respect to a given distribution, ρ(x), no matter how com-
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plex the distribution. The random numbers distributed with respect to ρ(x) are the

numbers xi. Begin by choosing an initial point x0. To generate the (i+ 1)th random

number, choose a new random point, yi, and generate a uniform random number, ζ.

If ζ > A(yi, xi), xi+1 = xi; otherwise, xi+1 = yi. This process is repeated until the

desired number of random points have been calculated.

The Metropolis algorithm assumes that the system is in equilibrium (∂ρ(x, t)/∂t ≈ 0).

Because the initial point x0 is arbitrary, this assumption is not necessarily valid for

the first random points which are generated. For example, if random points are gen-

erated with respect to a Gaussian distribution and x0 is chosen to be in the tail of

the distribution, the next random points will likely be near to x0. Since x0 and its

neighboring points have a low probability of occurring, because they are in the tail of

the distribution, this region is oversampled compared to the distribution ρ(x). As the

algorithm iterates, it reaches equilibrium, and the random points are generated with

respect to ρ(x). Therefore, some number of initial random points must be discarded

while the calculation reaches equilibrium. This is an initialization expense inherent

in this algorithm. Intelligent choices for x0 can shorten this equilibration period.
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Chapter 4

Introduction to Quantum Monte
Carlo

Insofar as the laws of quantum mechanics are correct, chemical questions

are problems in applied mathematics. [25]

H. Eyring, J. Walter, and G. E. Kimball, 1944

Quantum Monte Carlo (QMC) is becoming the method of choice for high-accuracy

quantum-mechanical calculations of atomic and molecular systems [26, 27, 28, 29,

30]. QMC scales as O(N3) while other very high-level methods, such as coupled-

cluster, scale as O(N6) or worse. Additionally, a new algorithm by Williamson,

Hood, and Grossman makes QMC scale as O(N) for systems with localized electrons

and more than about 20 electrons [31]. QMC’s favorable scaling makes possible

the high-accuracy examination of compounds too large to study with other methods.

Furthermore, QMC is a stochastic method, so it is possible to parallelize a calculation

over a large number of processors.

QMC refers not to one specific method but rather to an entire class of methods.

These methods have been applied to problems covering everything from chemistry to
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quantum field theory.

Two flavors of QMC are the most important to electronic structure theory calcu-

lations: variational QMC (VMC) and diffusion QMC (DMC). Sections 4.1 and 4.2

will discuss these methods.

4.1 Variational Quantum Monte Carlo

Variational Quantum Monte Carlo (VMC) is conceptually very simple. A parame-

terized wave function is constructed; the parameters are then adjusted to minimize

the energy expectation value or the variance in this quantity. The variational theo-

rem (Section 2.4) proves that minimizing the energy expectation value provides an

approximation to the ground state wave function given the wave function’s particular

parameterization. Minimizing the energy expectation value’s variance can be used to

approximate any eigenfunction.

When using the Born-Oppenheimer approximation (Section 2.5.1), the energy

expectation value for an atomic system, 〈E〉, is

〈E〉 = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (4.1)

=
∫

Ψ∗(x)ĤΨ(x)dx3N∫
Ψ∗(x)Ψ(x)dx3N (4.2)

where Ψ is a wave function, Ĥ is the electronic Hamiltonian operator for the system, N

is the number of electrons in the system, and x is a 3N -dimensional vector containing
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the positions of all N electrons. Manipulating this expression yields

〈E〉 =
∫

Ψ∗(x)ĤΨ(x)dx3N∫
Ψ∗(x)Ψ(x)dx3N (4.3)

=

∫
|Ψ(x)|2 ĤΨ(x)

Ψ(x)
dx3N∫

|Ψ(x)|2dx3N (4.4)

=
∫
ρV MC(x)Elocal(x)dx3N (4.5)

where

ρV MC(x) ≡ |Ψ(x)|2∫
|Ψ(x)|2 dx3N

(4.6)

is the probability for the electrons to have positions x and

Elocal(x) ≡ ĤΨ(x)

Ψ(x)
(4.7)

is the energy for electrons with positions x.

There are many approaches to solve Equation 4.5. Hartree-Fock uses an inde-

pendent particle approximation to break the 3N -dimensional integral into N easily

evaluated 3-dimensional integrals. The accuracy of this approach suffers because it

replaces explicit electron-electron interactions with average interactions. It is also pos-

sible to apply standard integration algorithms to Equation 4.5, but such approaches

scale as O(2N), rendering them computationally infeasible for all but the simplest

problems.

On the other hand, VMC employs Monte Carlo integration [15] to evaluate Equa-

tion 4.5. In Monte Carlo integration, M random vectors, xi, distributed with respect
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to ρV MC(x), are generated. The energy expectation value is then found to be

〈E〉 =
1

M

M∑
i=1

Elocal(xi)±O

(
1√
M

)
. (4.8)

Here the standard deviation in the calculated expected energy falls off with the square

root of the number of random samples used. This error is independent of the problem’s

dimensionality; thus, Monte Carlo integration is faster than standard integration

algorithms when the integral’s dimensionality is greater than about 7 [15, 23]. For

atomic and molecular systems, the Metropolis algorithm (Section 3.4) is used to

generate xi since ρV MC(x) is a complicated 3N -dimensional function.

Optimizing the wave function parameters is difficult. Because Monte Carlo in-

tegration is used to evaluate the energy expectation value and its variance, these

quantities are stochastic, and therefore result in a hard to optimize noisy objective

function. In order to minimize this noise, a correlated sampling optimization proce-

dure [32] is often used.

4.1.1 Variational Quantum Monte Carlo Wave Functions

Any antisymmetric wave function may serve as the electronic wave function for VMC

calculations of atomic and molecular systems. Nonetheless, the closer the wave func-

tion is to the desired, exact eigenfunction, the faster the VMC calculation converges

and the less parameter optimization is required to obtain the optimal solution.

A good general purpose VMC wave function, ΨV MC , can be constructed with the
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form

ΨV MC =
∑

i

ciψiJ (4.9)

where ci are constants, ψi is a determinantal wave function which is the product of a

Slater determinant for the up-spin electrons and a Slater determinant for the down-

spin electrons, and J is a symmetric function of the electron-electron and electron-

nuclear distances called the Jastrow function (Section 4.1.2). This gives an overall

wave function which is antisymmetric and includes explicit electron-electron correla-

tions. {ci} and {ψi} can be obtained from standard electronic structure calculations

such as Hartree-Fock (HF), Density Functional Theory (DFT), Multi-Configuration

Self Consistent Field (MCSCF), and Configuration Interaction (CI).

There are many adjustable parameters in this general-purpose wave function.

These include the ci, the parameters in ψi, and the parameters in J . Although

optimization of the determinantal wave function parameters is possible, this is often

a poor strategy because finding derivatives with respect to these parameters adds

poorly scaling steps to the calculation.

4.1.2 Jastrow Functions

A Jastrow function (Equation 4.9) is a symmetric function of all of the electron-

electron and electron-nuclear distances. This function introduces explicit particle-

particle correlations into the wave function.

The Jastrow function can be expanded as a sum of 1-body, 2-body, etc., terms. It

has been shown that the most important terms are the electron-nuclear and electron-
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electron terms [26, 33]; therefore, the majority of calculations employ only these

terms. Such a Jastrow function can be expressed as

J = exp
(∑

uij(rij)
)

(4.10)

where the sum is over all electron-electron and electron-nuclear pairs, rij is the dis-

tance between particles i and j, and uij(r) is a function describing the correlations of

particles i and j in the wave function.

If the determinantal wave functions are constructed using Gaussian orbitals, it is

straightforward to show that the cusp condition (Section 2.3) for particles α and β

simplifies to

lim
r→0

∂uαβ(r)

∂r
= −µαβqαqβ

l + 1
(4.11)

where µαβ = mαmβ/(mα + mβ) is the reduced mass, qα and qβ are the charges of

the particles, and l is 1 for same-spin electrons and 0 otherwise. This simple result

is obtained because the radial derivative of a Gaussian orbital, averaged over an

infinitesimally small sphere centered at r = 0, is zero at r = 0.

Constructing the VMC wave function (Equation 4.9) to obey the cusp conditions

removes all singularities from Elocal(x). This yields a smaller variance in Equation 4.8

and thus faster convergence of the VMC calculation.

Many functional forms for uij(r) have been used. The most common form for
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finite atomic and molecular simulations is the Padé-Jastrow function

uij(r) =

∑N
k=1 aij,kr

k

1 +
∑M

k=1 bij,kr
k

(4.12)

where aij,k and bij,k are constants. To satisfy the cusp conditions, aij,0 must be set to

the value of the cusp condition for particles i and j; other parameters are not affected.

If N > M , limr→∞ uij(r) = ±∞. This can cause problems with numerical stability

when implemented on a computer. M and N are typically chosen so that N ≤M to

ensure that the limit is finite.

The wave function’s symmetry (Section 2.2) can be used to simplify the Jastrow

function. Because the Jastrow function is totally symmetric, interchanging the posi-

tions of two identical particles must not alter the wave function. Therefore, if particles

i and j are identical, uik(r) = ujk(r).

4.2 Diffusion Quantum Monte Carlo

Diffusion Quantum Monte Carlo (DMC) has the potential to calculate “exact” ex-

pectation values for N -body quantum-mechanical problems. The increased accuracy,

relative to VMC, comes at the expense of additional complexity and computational

effort.

Beginning with the time-dependent Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = (Ĥ− ET ) |Ψ(t)〉 (4.13)
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where Ĥ is the Hamiltonian operator for the system and ET is an arbitrary constant

that changes the phase of the wave function, a change of variables to “imaginary

time”, t → − iτ , gives a diffusion equation.

− ∂

∂τ
|Ψ(τ)〉 = (Ĥ− ET ) |Ψ(τ)〉 (4.14)

As long as Ĥis time-independent, the formal solution to Equation 4.14 can be

written as

|Ψ(τ)〉 = e−(Ĥ−ET )τ |Ψ(0)〉 . (4.15)

This solution can be expanded in terms of the eigenfunctions of the Hamiltonian

operator as

|Ψ(τ)〉 =
∑
j

cje
−(Ej−ET )τ |Φj〉 (4.16)

where cj = 〈Φj|Ψ(0)〉 are constant coefficients and Ej and |Φj〉 are the jth eigenvalue

and eigenfunction of Ĥ. Because E0 < E1 < E2 < · · · (Section 2.1),

lim
τ→∞

|Ψ(τ)〉 → lim
τ→∞

cαe
−(Eα−ET )τ |Φα〉 (4.17)

where α is the lowest energy state that is not orthogonal to |Ψ(0)〉. Furthermore, if

ET is chosen to equal Eα

lim
τ→∞

|Ψ(τ)〉 = cα |Φα〉 . (4.18)

It is clear from the above analysis that contributions to |Ψ(τ)〉 from excited states

higher in energy than α decay exponentially with τ . DMC is built upon this mathe-
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matics.

Because it is easy to construct a wave function which is not orthogonal to the

ground state by using a standard method, such as HF, DFT, MCSCF, CI, etc., and

because the ground state is a system’s lowest energy state, DMC calculations on the

ground state are relatively straightforward to perform. Calculations of excited state

properties for atomic and molecular systems are possible, but they are beyond the

scope of this text. For details on such methods, see Reference [34].

The rest of this section discusses details on the implementation and convergence

of DMC.

4.2.1 DMC Energy Evaluation

The DMC energy, EDMC , is evaluated using a mixed estimator

EDMC =
〈Φα| Ĥ |Ψ〉
〈Φα|Ψ〉

(4.19)

=

∫
Φα(x)ĤΨ(x)dx3N∫
Φα(x)Ψ(x)dx3N

(4.20)

where |Ψ〉 is an approximation to the desired eigenstate |Φα〉 and x is a 3N -dimensional

vector of the coordinates of all N particles. Because Ĥ is Hermitian and |Φα〉 and |Ψ〉

are real, 〈Φα| Ĥ |Ψ〉 = 〈Ψ| Ĥ |Φα〉, and it is easy to show that EDMC = Eα. Further

rearrangement of Equation 4.20 yields

EDMC =

∫
Φα(x)Ψ(x) ĤΨ(x)

Ψ(x)
dx3N∫

Φα(x)Ψ(x)dx3N
(4.21)
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=
∫
ρDMC(x)Elocal(x)dx3N (4.22)

which is of the same form as the VMC energy expression (Equation 4.5). Just as in

VMC,

Elocal(x) ≡ ĤΨ(x)

Ψ(x)
(4.23)

but now

ρDMC(x) ≡ f(x)∫
f(x)dx3N

(4.24)

where

f(x) ≡ Φα(x)Ψ(x). (4.25)

In VMC, interpreting ρV MC(x) as a probability distribution is very straightfor-

ward, but the same interpretation in DMC has technicalities. Using symmetry (Sec-

tion 2.2), it is easy to prove that the ground state wave function for a system of

bosons, Φ0(x), is positive (or negative) for all x. Then, if Ψ(x) is constructed to have

the same sign as Φ0(x) for all x, f(x) will be positive for all x, and ρDMC(x) can be

interpreted as a probability distribution.

Excited states of the bosonic ground state wave function have nodes and thus

regions of positive and negative values. If, somehow, Ψ(x) is constructed to have

the same nodal structure as Φα(x), f(x) will be non-negative for all x and can be

interpreted as a probability distribution. Unfortunately, the paucity of mathemati-

cal analysis of the nodal structure of many-particle wave functions in the literature

renders the task of constructing Ψ(x) with the same nodal structure as Φα(x) nearly
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impossible at this point.

If Ψ(x) and Φα(x) have different nodal structures, f(x), and thus ρDMC(x), will

posses both positive and negative regions, so ρDMC(x) can not be interpreted as a

probability distribution. This is known as the nodal problem. Because the ground

state of a system of fermions is the lowest-energy totally-antisymmetric state of a

system of bosons (Section 2.2), the nodal problem is very important in calculating

atomic and molecular properties.

The most simple and commonly used solution to the nodal problem is the fixed-

node approximation. In this approximation, Φα(x) is assumed to have the same nodal

structure as Ψ(x). ρDMC(x) can then be interpreted as a probability distribution.

The energy resulting from fixed-node calculations lies above the exact energy and is

variational in the nodal structure of Ψ(x) [35]. Furthermore, the difference in fixed-

node energy from the exact energy is second order in (Φα(x)−Ψ(x)) [36]. A posteriori

comparisons with experimental and known, exact results show that standard wave

functions (e.g., HF, DFT, MCSCF, CI), and therefore standard VMC wave functions,

typically have “good-enough”-quality nodes for DMC calculations of small molecular

systems to have errors significantly less than 1 kcal/mol. In some cases, such as Be,

multi-configuration wave functions must be used to obtain high-quality nodes.

Other solutions to the nodal problem exist [37, 38, 39, 40], but thus far, they have

proven neither to scale well nor to be robust enough for routine calculations.

Assuming that ρDMC(x) can be interpreted as a probability distribution, Monte
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Carlo integration [15] can be used to evaluate Equation 4.22

EDMC =
1

M

M∑
i=1

Elocal(xi)±O

(
1√
M

)
(4.26)

where xi are M random 3N -dimensional points distributed with probability density

ρDMC(x). Section 4.2.2 covers the generation of xi.

To calculate the expectation value of an operator which does not commute with

Ĥ, [Ô, Ĥ] 6= 0, a correction must be applied to the mixed estimator calculated using

DMC [41, 38, 35].

〈Φα| Ô |Φα〉
〈Φα|Φα〉

= 2
〈Φα| Ô |Ψ〉
〈Φα|Ψ〉

− 〈Ψ| Ô |Ψ〉
〈Ψ|Ψ〉

+O
(
[Φα −Ψ]2

)
(4.27)

Here the desired result is two times the DMC result minus the VMC result.

4.2.2 DMC Random Point Generation

For a DMC calculation (Section 4.2.1), it is necessary to generate random points with

respect to a probability distribution ρDMC(x) (Equations 4.24 and 4.25), where care

has been taken to address the nodal problem (Section 4.2.1).

The non-dimensionalized Hamiltonian for a system of N identical particles is

Ĥ = −1

2
∇2 + V (4.28)

where V is the potential energy and the derivatives are with respect to all of the
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particles’ 3N coordinates. From the Hamiltonian in Equation 4.28, it is possible to

construct, with a significant amount of algebra, a new Hamiltonian, L̂, which has

eigenvalue-eigenfunction pairs of Ei and Φi(x)Ψ(x); Ei and Φi(x) are the eigenvalue-

eigenfunction pairs from Equation 4.28, and Ψ(x) is the approximate wave function

discussed in Section 4.2.1.

L̂ = −1

2
∇2 +∇ • (∇ ln |Ψ(x)|) + Elocal(x) (4.29)

Elocal(x) ≡ ĤΨ(x)/Ψ(x) is the local energy of a given configuration of electrons for

the approximate wave function Ψ(x).

Just as was discussed in Section 4.2, the time-dependent Schrödinger equation for

L̂

i
∂

∂t
|f(t)〉 = (L̂− ET ) |f(t)〉 (4.30)

can undergo a change of variables to “imaginary time”, t → − iτ , to give

− ∂

∂τ
|f(τ)〉 = (L̂− ET ) |f(τ)〉 (4.31)

which, if Ĥis time-independent, has the formal solution

|f(τ)〉 = e−(L̂−ET )τ |f(0)〉 (4.32)

where ET is an arbitrary constant that changes the phase of the “real time” wave

function. The formal solution can be expanded in terms of the eigenfunctions of L̂ to
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give

f(x, τ) =
∑
j

cje
−(Ej−ET )τΦj(x)Ψ(x) (4.33)

where cj =
∫

Φj(x)Ψ(x)f(x, 0)dx3N . As was the case in Section 4.2, the high-energy

components die out exponentially with τ . Once again, because E0 < E1 < E2 < · · ·,

lim
τ→∞

f(x, τ) → lim
τ→∞

cαe
−(Eα−ET )τΦα(x)Ψ(x) (4.34)

where α is the smallest value for which cα 6= 0. If ET is chosen to equal Eα,

lim
τ→∞

f(x, τ) = cαΦα(x)Ψ(x). (4.35)

This is proportional to ρDMC(x). Therefore, random points generated with the dis-

tribution f(x, τ), as τ → ∞, are also distributed with respect to ρDMC(x). This is

what is required to evaluate the DMC energy using Monte Carlo integration (Equa-

tion 4.26).

Equation 4.32 can be expressed in the functional representation as

f(y, τ) =
∫
G(y,x, τ)f(x, 0)dx3N (4.36)

where

G(y,x, τ) = 〈y| e−(L̂−ET )τ |x〉 (4.37)

is the Green’s function for the problem. For nearly all quantum-mechanical problems

of physical importance, it is impossible to efficiently evaluate G(y,x, τ) for arbitrary
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τ . Fortunately, for small τ , δτ , G(y,x, τ) can be factored into easy to evaluate pieces

G(y,x, δτ) = Gdiffusion(y,x, δτ)Gbranching(y,x, δτ) +O(δτ 2). (4.38)

Gdiffusion(y,x, δτ) is a function describing the probability of the point x moving to

y in δτ imaginary time

Gdiffusion(y,x, δτ) = (2πδτ)−3N/2 e−[y−x−δτ∇ ln |Ψ(x)|]2/2δτ , (4.39)

and Gbranching(y,x, δτ) is a function describing how the value of f changes in going

from (x, τ) to (y, τ + δτ)

Gbranching(y,x, δτ) = e−δτ(Elocal(y)+Elocal(x)−2ET )/2. (4.40)

Using the small τ approximation, Equation 4.36 is

f (y, (n+ 1)δτ) =
∫
Gdiffusion(y,x, δτ)Gbranching(y,x, δτ)f(x, nδτ)dx3N +O(δτ 2).

(4.41)

For large τ , f(x, τ) can be obtained by iteratively applying Equation 4.41.

Using the above results, it is now possible to produce an algorithm which generates

random points distributed with respect to ρDMC(x). Because Equation 4.41 is 3N -

dimensional, for most interesting problems, Monte Carlo integration is the fastest way

to evaluate the integral. In the stochastic evaluation of this integral, a correspondence
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can be established where f(x, τ) is represented by

f(x, τ) →
∑
k

wk,τδ(x− xk,τ ) (4.42)

where wk,τ is a statistical weight and δ(x−xk,τ ) is a Dirac delta function centered at

xk,τ . The pair (xk,τ , wk,τ ) is known as a walker. Combining Equations 4.41 and 4.42

gives

f (y, (n+ 1)δτ) =
∑
k

wk,nδτGdiffusion(y,xk,nδτ , δτ)Gbranching(y,xk,nδτ , δτ). (4.43)

Equation 4.43 can be returned to the delta function form (Equation 4.42). To do

this, each of the new delta function locations, xk,(n+1)δτ , is randomly chosen from the

distribution Gdiffusion(y,xk,nδτ , δτ). The new weights are then

wk,(n+1)δτ = Gbranching(xk,(n+1)δτ ,xk,nδτ , δτ)wk,nδτ . (4.44)

This new set of walkers is a stochastic representation of f(x, (n+ 1)δτ). The new set

of random points, xk,(n+1)δτ , given the appropriate statistical weights, wk,(n+1)δτ , are

random points distributed with respect to f(x, (n+ 1)δτ).

By choosing f(x, 0) to be |Ψ(x)|2, a stochastic representation of f(x, 0) can be

generated by setting wk,0 = 1 and xk,0 equal to random points generated with respect

to |Ψ(x)|2 using the Metropolis algorithm. After many applications of Equation 4.41,

the walkers will provide a stochastic representation of f(x,∞), which Equation 4.35
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showed to be proportional to the distribution we are trying to sample, Φα(x)Ψ(x).

This produces the random numbers needed to evaluate the DMC energy.

As the calculation progresses, it is possible to improve upon the initial guess for ET .

This will ensure that the sum of the statistical weights remains relatively constant and

does not exponentially decay or grow. Should the weights exponentially decay, they

will become smaller than the machine precision on the computer used to calculate

them and will contribute little or no information (due to the negligible statistical

weights) to subsequent iterations. On the other hand, if the weights exponentially

grow, a situation will be reached where the computer used for the calculation does

not have enough memory to hold all of the walkers, or the statistical weights for

the walkers will become larger than the machine’s floating points. Neither situation

results in a numerically stable, accurate calculation.

Because the small τ approximation has been made (Equation 4.38), it is necessary

to extrapolate the DMC results to δτ = 0 to compensate for the approximation.

Unfortunately, small values of δτ yield inefficient calculations since the generated

random numbers are highly serially correlated.

Other schemes exist for factoring the Green’s function (Equations 4.37 and 4.38)

and for recovering the delta function representation of f(y, (n + 1)δτ) from Equa-

tion 4.43. The details of these algorithms and their advantages and disadvantages

are covered in the literature [38, 27, 35]. In my experience, Umrigar’s algorithm [27]

is the most stable, robust, and has the smallest time-step bias.
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Chapter 5

Efficient Algorithm for
“On-the-fly” Error Analysis of
Local or Distributed Serially
Correlated Data

The Dynamic Distributable Decorrelation Algorithm (DDDA), which efficiently cal-

culates the true statistical error of an expectation value obtained from serially corre-

lated data “on-the-fly,” as the calculation progresses, is presented [42]. DDDA is an

improvement on the Flyvbjerg-Petersen renormalization group blocking method [43].

This “on-the-fly” determination of statistical quantities allows dynamic termination

of Monte Carlo calculations once a specified level of convergence is attained. This is

highly desirable when the required precision might take days or months to compute,

but cannot be accurately estimated prior to the calculation. Furthermore, DDDA al-

lows for a parallel implementation which requires very low communication, O(log2N),

and can also evaluate the variance of a calculation efficiently “on-the-fly.” Quantum

Monte Carlo calculations are presented to illustrate “on-the-fly” variance calculations

for serial and massively parallel Monte Carlo calculations.
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5.1 Introduction

Monte Carlo methods are becoming increasingly important in calculating the prop-

erties of chemical, biological, materials, and financial systems. The underlying al-

gorithms of such simulations (e.g., Metropolis algorithm [24]) often involve Markov

chains. The data generated from the Markov chains are serially correlated, meaning

that the covariances between data elements is non-zero. Because of this, care must

be taken to obtain the correct variances for observables calculated from the data.

Data blocking algorithms to obtain the correct variance of serially correlated data

have been part of the lore of the Monte Carlo community for years. Flyvbjerg and

Petersen were the first to formally analyze the technique [43], but at least partial

credit should be given to Wilson [44], Whitmer [45], and Gottlieb [46] for their earlier

contributions.

A new blocking algorithm, Dynamic Distributable Decorrelation Algorithm (DDDA),

which gives the same results as the Flyvbjerg-Petersen algorithm but allows the un-

derlying variance of the serially correlated data to be analyzed “on-the-fly” with neg-

ligible additional computational expense, is proposed. DDDA is also ideally suited for

parallel computations because only a small amount of data must be communicated

between processors to obtain the global results. Furthermore, an efficient method is

presented for combining results from individual processors in a parallel calculation

that allows fast “on-the-fly” result analysis for parallel calculations. Example cal-

culations showing “on-the-fly” variance calculations for serial and massively parallel

calculations are also presented.
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All current blocking algorithms require O(mN) operations to evaluate the variance

m times during a calculation of N steps. DDDA only requires O(N + m log2N).

Furthermore, current algorithms require communicating O(N) data during a parallel

calculation to evaluate the variance. DDDA requires only O(log2N).

5.2 Theory

Computer simulations of physical systems often involve the calculation of an ex-

pectation value, 〈f〉, using a complicated high-dimensional probability distribution

function, ρ(x).

〈f〉 ≡
∫
ρ(x)f(x)dx (5.1)

This expression is simple and elegant, but in many physical systems, ρ(x) is too

complex for Equation 5.1 to be useful computationally. Instead, simulations typically

calculate the “time average” of f , f̄ .

f̄ ≡ 1

n

n∑
i=1

f(xi) (5.2)

Here i is related to the Monte Carlo step number, and xi is sampled from the distri-

bution ρ(x). Then, assuming ergodicity, 〈f〉 and f̄ can be related through

〈f〉 = lim
n→∞

f̄ = lim
n→∞

1

n

n∑
i=1

f(xi) (5.3)

On modern computers, very large samplings are used to approach this limit. How-
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ever, since such sampling is necessarily always finite, f̄ will fluctuate as the calculation

progresses because it has a non-zero variance, σ2(f̄). This variance can be expressed

as

σ2(f̄) =
1

n2

n∑
i,j=1

[〈f(xi)f(xj)〉 − 〈f(xi)〉〈f(xj)〉] (5.4)

=
σ2(f)

n
+

2

n2

n∑
i=1

n∑
j>i

cov(f(xi), f(xj)) (5.5)

When the {f(xi)} are uncorrelated, the covariance terms are zero, and Equation 5.5

reduces to the typical variance relation.

σ2(f̄) =
〈f 2〉 − 〈f〉2

n
=
σ2(f)

n
(5.6)

Calculations which use Markov chains to generate {xi}, such as Metropolis algo-

rithm [24] based calculations, produce {f(xi)} with non-zero covariances. This results

because the probability of picking xi is dependent on the value of xi−1. If Equation 5.6

is used to calculate the variance of such systems, the result will be incorrect because

the covariances between samples are not included.

Without loss of generality, Equations 5.2 and 5.5 can be expressed in terms of the

random variate xi instead of the random variate f(xi). This gives

x̄ =
1

n

n∑
i=1

xi (5.7)

σ2(x̄) =
1

n2

n∑
i,j=1

γi,j (5.8)
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where γi,j = cov(xi, xj).

Then, if it is assumed that a Markov chain method with stationary transition

probabilities, such as Monte Carlo or molecular dynamics at equilibrium, was used

to generate {xi},

σ2(x̄) =
1

n
ξ0 +

2

n

n−1∑
t=1

(n− t)ξt (5.9)

where ξt is the covariance between data points t steps apart.

ξt ≡ γi,j t = |i− j| (5.10)

In this representation, it is possible to define a blocking transform that takes

{xi} → {x′i}.

x′i =
1

2
{x2i−1 + x2i} (5.11)

n′ =
1

2
n (5.12)

In performing this transform, it can be shown [43] that

x̄′ = x̄ (5.13)

σ2(x̄′) = σ2(x̄) (5.14)

ξ′t =


1
2
ξ0 + 1

2
ξ1 for t = 0

1
4
ξ2t−1 + 1

2
ξ2t + 1

4
ξ2t+1 for t > 0

(5.15)
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Furthermore, from Equation 5.9, we see

σ2(x̄) ≥ ξ0
n
, (5.16)

and from Equations 5.12 and 5.15, it can be shown that ξ0/n increases as blocking

transforms are applied, unless ξ1 = 0, in which case ξ0/n is invariant. Further analysis

shows that with repeated application of the blocking transforms in Equations 5.11

and 5.12 a fixed point is reached where σ2(x̄) = ξ0/n. Therefore, the variance of

a data set can be evaluated by performing blocking operations until ξ0/n remains

constant with further blocking operations.

During a calculation, χ can be used to estimate ξ0/n.

χ =
1
n

(
∑n

i=1 x
2
i )− 1

n2 (
∑n

i=1 xi)
2

n− 1
(5.17)

When enough blocking transforms have been applied to reach the fixed point, the

blocked variables are independent Gaussian random variables making χ also a Gaus-

sian random variable with standard deviation χ
√

2/(n− 1).

The above analysis deals with serially correlated data from Markov processes.

Branching processes, such as diffusion or Green’s function QMC, also generate data

that have parallel correlation. This can be removed by averaging the data from each

iteration to make new data elements [47]. These new data elements are still serially

correlated and must then be analyzed appropriately to obtain the true variance of

the calculation.
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5.3 Algorithms

5.3.1 Flyvbjerg-Petersen Algorithm

The Flyvbjerg-Petersen algorithm [43] is conceptually very simple. The average,

x̄, and χ, for the data, {xi}, are calculated using Equations 5.7 and 5.17. A new

blocked data set is generated from this data using the block transforms described in

Equations 5.11 and 5.12. The average and χ of these data are then evaluated. This

process is repeated until no more blocking operations can be performed. The true

variance is the value of χ obtained when further blocking operations do not change

the value.

Overall, this algorithm requires O(N) operations, where N is the number of un-

blocked data points, to evaluate the true variance of the calculation. The state of the

algorithm is given by an array of all unblocked data elements and is therefore of size

O(N). For many calculations, N is very large (> 109) forcing the state to be saved to

disk because it does not fit in the machine’s RAM. Because of this, an additional slow

O(N) cost is often incurred from reading the data in from disk in order to analyze it.

The Flyvbjerg-Petersen algorithm is an inherently serial algorithm. To use it for

a parallel calculation, all of the unblocked data must be sent to one processor where it

is concatenated and analyzed as above. Such an operation requires an O(N) commu-

nication, where N is the number of unblocked data elements. Furthermore, the entire

burden of error analysis is placed on one processor, making the variance calculation

expensive for very large samplings. Also, the large amount of data communicated to
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one processor can potentially saturate the bandwidth available to this processor.

During a stochastic simulation, it is desirable to evaluate the variance of calculated

quantities periodically to determine when the calculation is converged and can be

terminated. If the variance is to be evaluated m times during the calculation, the

Flyvbjerg-Petersen algorithm requires O(mN) operations, to accomplish this. This

can be prohibitively expensive for large N or m.

A summary of the computational costs is listed in Table 5.1.

5.3.2 Dynamic Distributable Decorrelation Algorithm (DDDA)

The equations implemented by DDDA are exactly the same as those presented by

Flyvbjerg and Petersen. DDDA is a new algorithm to evaluate these equations. The

new algorithm involves two classes:

5.3.2.1 Statistic Class

(Pseudocode is listed in Section 5.6)

The Statistic class stores the number of samples, n, running sum of xi, and running

sum of x2
i for the data that is entered into it, {xi}. This allows straightforward

calculation of the average, x̄, (Equation 5.7) and χ (Equation 5.17).

5.3.2.2 Decorrelation Class

(Pseudocode is listed in Section 5.7)

The Decorrelation class stores a vector of Statistic objects, where the ith element

of the vector corresponds to data that has been partitioned into blocks 2i long, and
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a collection of data samples waiting to be added to the vector. The variance and

average for the ith element of the vector can be evaluated by calling the corresponding

functions in the appropriate Statistic object.

As data is generated during the calculation, it is added to a Decorrelation object.

It is first added to the 0th element of the vector of Statistic objects (vectors numbered

from 0). If there is no sample waiting on the 0th level, this sample is stored as the

waiting sample for the 0th level; otherwise, this sample and the waiting sample for

the 0th level are averaged to create a new sample, and the waiting sample is removed.

This new sample is then added to the 1st level in the same fashion as above.

This process repeats until a level is reached with no waiting samples. By adding

data this way, new data blocks are generated as soon as there is enough data to

create them. Furthermore, because the newly generated data blocks are added to

Statistic objects as they are generated, the variance for a particular block size can

be immediately evaluated with very few operations (O(log2N)). Using these data,

it is straightforward to evaluate the true variance as is done with standard blocking

methods.

During a parallel calculation, each processor will have a Decorrelation object to

which it adds data. The global results are then obtained by combining the Decor-

relation objects from each processor into a global Decorrelation object. This can be

accomplished using a binary operator to add two Decorrelation objects together. The

first step in this process adds the Statistic vectors, from the two Decorrelation objects,

element by element to form a new Statistic vector. Then, beginning with the 0th
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level, the waiting samples are combined to create either new waiting samples or new

averaged samples to be added to the new Statistic vector and combined with waiting

samples from the next higher level. Evaluating this binary addition requires only

O(log2N) operations, where N is the number of samples.

5.3.3 Analysis of DDDA

The equations implemented by DDDA are exactly the same as those presented by

Flyvbjerg and Petersen; both require O(N) operations to evaluate the variance of N

data samples. In contrast to Flyvbjerg and Petersen, the state (minimal set of data an

algorithm must store) of DDDA is only of size O(log2N). The small size of this state

(log2 109 ≈ 30) means that all necessary data can be stored in RAM, avoiding the

read-in expense often encountered with the Flyvbjerg-Petersen algorithm. Also, the

small state yields a very small checkpoint from which calculations can be restarted.

If an upper bound is known on the block size, then the algorithm can be modified

slightly to give a state size of only O(1).

One major advantage of DDDA over the Flyvbjerg-Petersen algorithm, is its abil-

ity to efficiently evaluate the true variance of a calculation “on-the-fly.” If the vari-

ance is to be evaluated m times during the calculation, the Flyvbjerg-Petersen al-

gorithm requires O(mN) operations to accomplish this while DDDA requires only

O(N +m log2N). The improved computational complexity makes convergence based

termination practical to implement.

DDDA’s other major advantage over the Flyvbjerg-Petersen algorithm is its per-
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Flyvbjerg-Petersen Dynamic Distributable
Algorithm Decorrelation

Algorithm (DDDA)
Operations O(mN) O(N +m log2N)
State Size O(N) O(log2N)
Parallel Communications O(N) O(log2N)
Parallel Variance Evaluation O(N) O(log2N log2 P )

Table 5.1: Comparison of computational costs. N is the number of data points analyzed, m

is the number of times the variance is evaluated during a calculation, and P is the number of

processors.

formance on parallel calculations. Because the state of DDDA is so compact, only

O(log2N) data elements must be communicated between processors. Furthermore,

because two Decorrelation objects can be added with O(log2N) operations, a binary

tree can be used to evaluate the global variance of the parallel calculation in only

O(log2N log2 P ) operations, where P is the number of processors. The expense of

the additions is distributed over a large number of processors. This low complexity

evaluation makes possible “on-the-fly” variance determination for massively parallel

calculations.

A summary of the computational costs is listed in Table 5.1.
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5.4 Computational Experiments

5.4.1 “On-the-fly” Variance Determination for a Single

Processor Variational QMC Particle-in-a-Box

Calculation

To illustrate DDDA, variational quantum Monte Carlo (VMC) [26] is used to calculate

the energy for a one-dimensional particle-in-a-box of length one. For this illustration,

the exact ground state wave function, ΨExact =
√

2 sin(πx), is approximated by a

normalized wave function, ΨT .

ΨT =
√

30
(
x− x2

)
(5.18)

The expected energy of the system is given by

〈E〉 =
∫ 1

0
ΨT ĤΨTdx

=
∫ 1

0
Ψ2

T

(
ĤΨT

ΨT

)
dx

=
∫ 1

0
ρT (x)EL(x)dx, (5.19)

where Ĥ is the Hamiltonian for the system, EL(x) is the local energy, and ρT (x) is the

probability distribution of the particle. Since the ΨT is not an eigenfunction for this

system, the local energy will not be constant and the calculated energy expectation

value will fluctuate as the calculation progresses.
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Equation 5.19 can be evaluated in two ways:

• One option (Method 1) is to generate points distributed with respect to ρT (x)

by directly inverting ρT (x) and use these points to sample EL(x). Because ρT (x)

is directly inverted, this method will produce uncorrelated data.

• A second option (Method 2) is to generate points distributed with respect to

ρT (x) using the Metropolis algorithm [24] and use these points to sample EL(x).

Because the Metropolis algorithm employs a Markov chain, this method will

produce serially correlated data.

Performing 106 Monte Carlo steps gives expected energy values of 4.9979(23) for

Method 1 and 4.9991(59) for Method 2. Both values agree with the analytic value of

5. Also note that the error estimates of the correlated and uncorrelated calculations

are different. These error estimates illustrate that serially correlated data does not

provide as much information as uncorrelated data, resulting in a larger standard

deviation for the correlated case (Method 2) than the uncorrelated case (Method 1)

when using the same number of samples.

Figures 5.1 and 5.2 show the calculated standard deviation vs. block size for un-

correlated (Method 1) and correlated (Method 2) VMC calculations. In both cases,

the plateau in the plot corresponds to the true standard deviation value. Fluctuations

associated with large block sizes result from dividing the data into a small number of

blocks making the data very noisy.

Evaluating the standard deviation in the correlated VMC calculation without data

blocking yields an estimate of the standard deviation that is much too small. This
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Figure 5.1:
√

χ (Equation 5.17) as a function of block size for a variational QMC “particle-in-a-

box” calculation using uncorrelated data points (Method 1). The Flyvbjerg-Petersen algorithm

and DDDA yield exactly the same results.

corresponds to log2(BlockSize) = 0 in Figure 5.2 and illustrates the potential dangers

in reporting error estimates without accounting for the serial correlation that may

exist in the data.

The ability of DDDA to evaluate the standard deviation “on-the-fly” for a single

processor calculation is demonstrated in Figure 5.3. During the VMC particle in a

box calculations, the standard deviation was evaluated every 100 Monte Carlo steps.
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Figure 5.2:
√

χ (Equation 5.17) as a function of block size for a variational QMC “particle-

in-a-box” calculation using serially correlated data points (Method 2). The Flyvbjerg-Petersen

algorithm and DDDA yield exactly the same results.

5.4.2 “On-the-fly” Variance Determination for a Massively

Parallel Variational QMC Calculation of RDX

To illustrate the ability of DDDA to evaluate the variance from a large parallel Monte

Carlo calculation “on-the-fly,” a series of 1024 processor massively parallel variational

quantum Monte Carlo (VMC) calculations on the high explosive material RDX (Fig-

ure 5.4), cyclic [CH2 − N(NO2)]3, were performed. Of the three calculations per-

formed, one was the ground state structure, and the other two were unimolecular

decomposition transition states for the concerted dissociation and N − NO2 bond

fission reactions. Geometries of the species were obtained from previous DFT calcu-

lations on the system [48].
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Figure 5.3: Standard deviation as a function of number of Monte Carlo steps for a variational

QMC “particle-in-a-box” calculation. The standard deviation was evaluated “on-the-fly” using

DDDA.

The VMC wave function, ΨV MC , used for the calculation is the product of a

Hartree-Fock wave function, ΨHF , and a Padé-Jastrow correlation function, JCorr.

ΨV MC = ΨHFJCorr (5.20)

JCorr = exp

∑
i

∑
j<i

ui,j

 (5.21)

ui,j =
ai,jri,j

1 + bi,jri,j

(5.22)

ΨHF was calculated using Jaguar [49, 50] with a 6-31G** basis set [51]. The Padé-

Jastrow parameters (Table 5.2) were chosen to remove singularities in the local energy.

Furthermore, they maintain the structure of the Hartree-Fock wave function every-

where except where two particles closely approach one another. Though much work
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Figure 5.4: The RDX molecule, cyclic [CH2-N(NO2)]3.

a b
u↑↓ 0.5 3.5
u↑↑, u↓↓ 0.25 100
u↑H , u↓H -1 100
u↑C , u↓C -6 100
u↑N , u↓N -7 100
u↑O, u↓O -8 100

Table 5.2: Padé-Jastrow correlation function parameters for RDX.

has been done on wave function optimization techniques [32, 26, 52, 53, 30, 28, 54,

55, 56, 57], the Padé-Jastrow parameters are not optimized because this calculation is

to demonstrate DDDA and not to obtain a high-accuracy VMC energy, which would

require parameter optimization.

Calculations were performed on the ASCI Nirvana supercomputer at the Los

Alamos National Laboratory using 1024 MIPS 10000 processors running at 250 MHz.

Each calculation took approximately 8 hours to complete and was composed of

roughly 3 × 107 Monte Carlo steps. Of the three calculations, two were run to

completion while the third calculation was stopped a fraction of the way through

the run and restarted from checkpoints to verify the ease and efficiency with which

these new data structures allow for checkpointing of the program state variables. The

RDX calculations successfully completed independently of whether they were run to
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RDX Species Hartree Fock Variational Quantum Monte Carlo
Ground state -892.491 -893.35(4)
Concerted dissociation -892.369 -893.29(5)
N −NO2 bond fission -892.259 -893.20(4)

Table 5.3: Total energies (Hartree) for the various calculations on RDX. The HF results were

obtained from Jaguar 4.1 with the 6-31G** basis set Variational Quantum Monte Carlo based

on 3× 107 points.

completion or checkpointed and restarted.

Energies for the Hartree Fock and variational quantum Monte Carlo [58] calcula-

tions are presented in Table 5.3. The VMC energies are presented for completeness

and should not be taken to be highly accurate energies because the variational pa-

rameters have not been optimized.

Figures 5.5 and 5.6 show the evolution of the standard deviation of the total

energy for three different RDX species as the Monte Carlo calculations progress. In

Figure 5.5, notice that the plateau in the plot of standard deviation vs. block size,

indicating the true variance, is reached for a block size of roughly 28. Results from

the RDX transition state structures are similar and require a block size of 28 to 213,

depending on the system. Figure 5.6 shows the standard deviations evaluated “on-

the-fly” for the massively parallel calculations. These values are found to decrease

roughly with the square root of the number of samples, as is expected.

5.5 Conclusions

The above analysis has shown that DDDA is significantly more efficient than standard

blocking algorithms at evaluating the variance of a quantity multiple times, “on-the-
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Figure 5.5: Evolution of
√

χ as a function of block size as a variational QMC calculation of the

RDX ground state progresses. Shown here are the results for five cases with 62122, 2137179,

6283647, 14566309, and 31163746 total Monte Carlo steps.

fly”, during a calculation (O(N + m log2N) vs. O(mN)). Additionally, the state

needed to checkpoint the calculation or evaluate the variance in a parallel calculation

is only O(log2N) for DDDA and O(N) for current algorithms. This leads to smaller

checkpoints and significantly less communication for parallel calculations. The small

state size will facilitate calculations on computational grids where many processors

are used but bandwidth is limited.

Because DDDA efficiently evaluates the variance “on-the-fly” for both serial and

parallel calculations, it is now possible to use a convergence-based termination scheme.

Instead of prespecifying the number of data points a calculation will use, points

are generated until the observed quantities are converged to the specified tolerance.

This eliminates calculations terminating before they are completed or running too
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Figure 5.6: Standard deviation as a function of number of Monte Carlo steps for a 1024

processor variational QMC calculations of RDX. The standard deviation was evaluated “on-the-

fly” using DDDA.

long and wasting computational resources. Additionally, specifying a desired level of

convergence is much more natural than specifying the number of Monte Carlo steps

for a non-expert user.

Often when blocking is used for error analysis, the data is preblocked before it

is analyzed. This consists of blocking the data before any data analysis takes place.

Because the correct block size is not known a priori, the Flyvbjerg-Petersen algorithm

must then be used to analyze the preblocked data. Preblocking does reduce the

amount of data that must be stored, analyzed, and communicated, but it does not

change the complexity of the computational costs of the Flyvbjerg-Petersen algorithm

(Table 5.1) making it inferior to DDDA. It is possible to preblock and then use DDDA,

but this is not necessary. Because the storage and communication costs of DDDA are
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O(log2N), reducing N by a constant factor makes only a small change in the state

size negating the benefits of preblocking.

5.6 Statistic Class Pseudocode

5.6.1 Pseudocode for Statistic.initialize()

# Initialize a new instance of the Statistic class

Statistic.initialize()

NSamples = 0.0

Sum = 0.0

SumSq = 0.0

5.6.2 Pseudocode for Statistic.addData(new sample)

# Add a new data element to this Statistic object

Statistic.addData(new sample)

NSamples = NSamples + 1

Sum = Sum + new sample

SumSq = SumSq + new sample*new sample
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5.6.3 Pseudocode for Statistic.addition(A,B)

# Add two Statistic objects and return the result

Statistic.addition(A,B)

C=new Statistic()

C.NSamples = A.NSamples + B.NSamples

C.Sum = A.Sum + B.Sum

C.SumSq = A.SumSq + B.SumSq

return C

5.7 Decorrelation Class Pseudocode

5.7.1 Pseudocode for Decorrelation.initialize()

# Initialize a new instance of the Decorrelation class

Decorrelation.initialize():

Size = 0

NSamples = 0

BlockedDataStatistics = [new Statistic()]

waiting sample = [0]

waiting sample exists = [false]
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5.7.2 Pseudocode for Decorrelation.addData(new sample)

# Add a new data element to this Decorrelation object

Decorrelation.addData(new sample):

NSamples = NSamples + 1

# Lengthen the vectors, when necessary, to accommodate all entered data

if NSamples >= 2Size:

Size = Size + 1

BlockedDataStatistics =

BlockedDataStatistics.append(new Statistic())

waiting sample = waiting sample.append(0)

waiting sample exists = waiting sample exists.append(false)

BlockedDataStatistics[0].add Data(new sample)

carry = new sample

i = 1

done = false

# Propagate the new sample up through the data structure

while (not done):

if waiting sample exists[i]:

new sample = (waiting sample[i] + carry)/2
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carry = new sample

BlockedDataStatistics[i].addData(new sample)

waiting sample exists[i] = false

else:

waiting sample exists[i] = true

waiting sample[i] = carry

done = true

i = i+1

if i > Size:

done = true

5.7.3 Pseudocode for Decorrelation.addition(A,B)

# Add two Decorrelation objects and return the result

Decorrelation.addition(A,B):

C = new Decorrelation()

C.NSamples = A.NSamples + B.NSamples

# Make C big enough to hold all the data from A and B

while C.NSamples >= 2C.Size:
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C.Size = C.Size + 1

C.BlockedDataStatistics =

C.BlockedDataStatistics.append(new Statistic())

C.waiting sample = C.waiting sample.append(0)

C.waiting sample exists =

C.waiting sample exists.append(false)

carry exists = false

carry = 0

for i from 0 to C.Size-1:

if i <= A.Size:

StatA = A.BlockedDataStatistics[i]

waiting sampleA = A.waiting sample[i]

waiting sample existsA = A.waiting sample exists[i]

else:

StatA = new Statistic()

waiting sampleA = 0

waiting sample existsA = false

if i <= B.Size:

StatB = B.BlockedDataStatistics[i]
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waiting sampleB = B.waiting sample[i]

waiting sample existsB = B.waiting sample exists[i]

else:

StatB = new Statistic()

waiting sampleA = 0

waiting sample existsA = false

C.BlockedDataStatistics[i] =

C.BlockedDataStatistics[i].addition(StatA,StatB)

if (carry exists & waiting sample existsA & waiting sample existsB):

# Three samples to handle

C.BlockedDataStatistics[i].addData(

(waiting sampleA+waiting sampleB)/2)

C.waiting sample[i] = carry

C.waiting sample exists[i] = true

carry exists = true

carry =(waiting sampleA+waiting sampleB)/2

else if (not carry exists & waiting sample existsA &

waiting sample existsB):

# Two samples to handle

C.BlockedDataStatistics[i].addData(
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(waiting sampleA+waiting sampleB)/2)

C.waiting sample[i] = 0

C.waiting sample exists[i] = false

carry exists = true

carry = (waiting sampleA+waiting sampleB)/2

else if (carry exists & not waiting sample existsA &

waiting sample existsB):

# Two samples to handle

C.BlockedDataStatistics[i].addData(

(carry+waiting sampleB)/2)

C.waiting sample[i] = 0

C.waiting sample exists[i] = false

carry exists = true

carry = (carry+waiting sampleB)/2

else if (carry exists & waiting sample existsA &

not waiting sample existsB):

# Two samples to handle

C.BlockedDataStatistics[i].addData(

(carry+waiting sampleA)/2)

C.waiting sample[i] = 0

C.waiting sample exists[i] = false

carry exists = true
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carry = (carry+waiting sampleA)/2

else if (carry exists or waiting sample existsA or

waiting sample existsB):

# One sample to handle

C.waiting sample[i] = carry +

waiting sampleA + waiting sampleB

C.waiting sample exists[i] = true

carry exists = false

carry = 0

else:

# No samples to handle

C.waiting sample[i] = 0

C.waiting sample exists[i] = false

carry exists = false

carry = 0

return C

5.8 Simple Example Calculation Pseudocode

for all processors:

# Initialize error analysis data structure for each processor
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LocalErrorAnalysisDataStructure = new Decorrelation()

while generating new data points:

# Generate new data and add it to the local error

# analysis data structure

new data = generateNewDataPoint()

LocalErrorAnalysisDataStructure.addData(new data)

if want global results:

Obtain the global results for the calculation with a binary tree

parallel reduction operation using Decorrelation.addition(.,.)

to add LocalErrorAnalysisDataStructure from each processor
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Chapter 6

Manager–Worker-Based Model for
Parallelizing Quantum Monte
Carlo on Heterogeneous and
Homogeneous Networks

A manager–worker-based parallelization algorithm for Quantum Monte Carlo (QMC-

MW) is presented and compared to the commonly used pure iterative parallelization

algorithm [59]. The new manager–worker algorithm performs automatic load balanc-

ing, allowing it to perform near the theoretical maximum speed even on heterogeneous

parallel computers. Furthermore, the new algorithm performs as well as the pure it-

erative algorithm on homogeneous parallel computers.

When combined with the Dynamic Distributable Decorrelation Algorithm

(DDDA) [42], the new manager–worker algorithm permits the termination of QMC

calculations upon obtaining a desired level of convergence, rather than when a given

number of steps are performed (as is common practice). Additionally, a derivation

and experimental verification are given to show that standard QMC implementations

are not “perfectly parallel” as is often claimed.
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6.1 Introduction

There is currently a great deal of interest in making Quantum Monte Carlo (QMC)

methods practical for everyday use by chemists, physicists, and material scientists.

Everyday application of QMC is very attractive since methods, such as variational

QMC, diffusion QMC, and Green’s function QMC, exist which can calculate an atomic

or molecular system’s energy to within chemical accuracy (< 2 kcal/mol). High-

accuracy quantum-mechanical methods generally scale very poorly with problem size,

typically O(N6 to N !); however, QMC scales fairly well, O(N3), but with a large

prefactor.

Current research efforts exist to improve QMC’s scaling further [31]. Density

Functional Theory (DFT) scales well, O(N3), and could potentially provide highly

accurate solutions. Nevertheless, with the current generation of functionals, DFT

typically has an accuracy of only 5 kcal/mol or more for typical systems. The results

can not be systematically improved.

The primary issue facing the QMC community is that, although QMC scales

well with problem size, the method’s prefactor is generally very large, often requiring

CPU months to calculate moderately sized systems. The Monte Carlo nature of QMC

allows it to be easily parallelized, thus reducing the prefactor with respect to the wall

clock.

Applying QMC to physically interesting systems almost always requires using

supercomputers to enable calculations to complete in a reasonable amount of time.

Currently, however, supercomputing resources are very expensive and can be difficult
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to gain access to. To make QMC more useful for the average practitioner, algo-

rithms must become more efficient, and/or large inexpensive supercomputers must

be produced.

A current trend in large-scale supercomputing [60] is assembling “cheap super-

computers” with commodity components using a Beowulf-type framework. These

clusters have proven to be very powerful for high-performance scientific computing

applications [61]. Clusters can be constructed as homogeneous supercomputers if the

hardware for each node is equivalent or as heterogeneous supercomputers if various

generations of hardware are included.

Another interesting development is the use of loosely coupled, distributed grids of

computational resources [62] with components that can even reside in different geo-

graphic locations across the globe. Such “grids” are upgraded by adding new compute

nodes to the existing grid; this results in continuously upgradable supercomputers,

which are inevitably heterogeneous. Ultimately, computational grids may provide

computational resources on demand, just as electrical grids now provide electricity

on demand.

To efficiently utilize the next generation of supercomputer, whether heterogeneous

cluster or grid, a parallelization algorithm must first require little communication be-

tween processors and second must be able to efficiently use processors that are running

at different speeds. We propose a manager–worker-parallelization algorithm for QMC

(QMC-MW) designed for just such systems. This algorithm is compared against the

pure iterative parallelization algorithm (QMC-PI), which is most commonly used in
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QMC implementations [63, 64, 65].

6.2 Theory

Because QMC is a Monte Carlo method and thus stochastic in nature, it is one of

the easiest algorithms to parallelize and can be scaled to large numbers of processors.

In a parallel calculation, each processor performs an independent QMC calculation,

and the resulting statistics from all the processors are combined to produce the global

result.

QMC calculations can typically be broken into two major computationally expen-

sive phases: initialization and statistics gathering. Points distributed with respect to

a complicated probability distribution, in this case the square of the wave function

amplitude, are required during a QMC calculation. In efficient implementations, this

is almost always done using the Metropolis algorithm [24].

The first points generated by the Metropolis algorithm are not generated with re-

spect to the desired probability distribution, so they must be discarded. Additionally,

points generated for diffusion QMC and Green’s function QMC must be discarded

if there are significant excited state contributions which have not yet decayed. This

represents the initialization phase.

Once the algorithm begins to generate points with respect to the desired distri-

bution, the points are said to be “equilibrated” and can be used to generate valid

statistical information for the QMC calculation. This represents the statistics gath-

ering phase and is the phase where useful data is generated.
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To obtain statistically independent data, each processor in a parallel calculation

must perform its own initialization procedure, which is the same length as the initial-

ization procedure on a single processor. When large numbers of processors are used,

the fraction of the time devoted to initializing the calculation can be very large and

will eventually limit the number of processors that can be used effectively in parallel

(Section 6.2.3).

Sections 6.2.1 and 6.2.2 theoretically analyze the pure iterative (QMC-PI) and

manager–worker (QMC-MW) parallelization algorithms for QMC. The analyses as-

sume that an O(log2(Nprocessors)) method, where Nprocessors is the total number of

processors, is used to gather the statistical data from all processors and return it

to the root processor [42]. To simplify analysis of the algorithms, the analysis is

performed for variational QMC (VMC) with the same number of walkers on each

processor; however, it is possible to extend the results to other QMC methods.

6.2.1 Pure Iterative Parallelization Algorithm

The pure iterative parallelization algorithm (QMC-PI) is the most commonly imple-

mented parallelization algorithm for QMC (Algorithm 6.5) [63, 64, 65]. This algo-

rithm has its origins on homogeneous parallel machines and simply allocates an equal

fraction of the total work to each processor. The processors execute their required

tasks and percolate the resultant statistics to the root node once every processor has

finished its work.

In this algorithm, the number of QMC steps taken by each processor during the
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statistics gathering phase, StepsPI,i, is equal to the total number of QMC steps

taken for the calculation, StepsRequiredTotal, divided by the total number of processors,

NProcessors.

StepsPI,i =
StepsRequiredTotal

NProcessors

(6.1)

The number of QMC steps required to initialize each walker during the initial-

ization, StepsInitialize, is taken to be a constant. An optimally efficient initialization

algorithm would determine how many QMC steps are required to equilibrate each

walker, but in current practice, each walker is generally equilibrated for the same

number of steps.

The wall clock time required for a QMC calculation using the QMC-PI algorithm,

tPI , can be expressed as

tPI = tInitialize
PI,i + tPropagate

PI,i + tSynchronize
PI,i + tCommunicate

PI , (6.2)

where tInitialize
PI,i is the time required to initialize the calculation on processor i, tPropagate

PI,i

is the time used in gathering useful statistics on processor i, tSynchronize
PI,i is the amount

of time processor i has to wait for other processors to complete their tasks, and

tCommunicate
PI is the wall clock time required to communicate all results to the root node.

These components can be expressed in terms of quantities that can be measured for
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each processor and the network connecting them.

tInitialize
PI,i = Nw(tGenerateWalker

i + StepsInitializetQMC
i ) (6.3)

tPropagate
PI,i =

(
StepsRequiredTotal

NProcessors

)
tQMC
i (6.4)

tCommunicate
PI = log2(NProcessors)(t

Latency + βL) (6.5)

Here Nw is the number of walkers per processor, tGenerateWalker
i is the time required

to construct a walker on processor i, tQMC
i is the time required for a QMC step on

processor i, tLatency is the latency of the network, β is the inverse bandwidth of the

network, and L is the amount of data being transmitted between pairs of processors

when data is percolated to the root node.

The way this algorithm is constructed, all processors must wait for the slowest

processor to complete all of its tasks before the program can terminate. Therefore,

tSynchronize
PI,slowest = 0, and the wall clock time to complete the QMC-PI calculation is

tPI = tInitialize
PI,slowest + tPropagate

PI,slowest + tCommunicate
PI . (6.6)

Furthermore,
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tSynchronize
PI,i = (tInitialize

PI,slowest + tPropagate
PI,slowest)− (tInitialize

PI,i + tPropagate
PI,i ). (6.7)

Similarly, the total CPU time required for a QMC calculation using the QMC-PI

algorithm, TPI , can be expressed as

TPI = T Initialize
PI + T Propagate

PI + T Synchronize
PI + TCommunicate

PI , (6.8)

where T Initialize
PI is the total time required to initialize the calculation, T Propagate

PI is

the total time used in gathering useful statistics, T Synchronize
PI is the total time used in

synchronizing the processors, and TCommunicate
PI is the total time used to communicate

all results to the root node. These components can be expressed in terms of quantities

that can be measured for each processor and the network connecting them.

T Initialize
PI =

NProcessors∑
i

tInitialize
PI,i (6.9)

T Propagate
PI =

NProcessors∑
i

tPropagate
PI,i (6.10)

T Synchronize
PI =

NProcessors∑
i

tSynchronize
PI,i (6.11)
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TCommunicate
PI = (NProcessors − 1)(tLatency + βL) (6.12)

6.2.2 Manager–Worker-Parallelization Algorithm

The manager–worker algorithm (QMC-MW) offers an entirely new method for per-

forming parallel QMC calculations (Algorithm 6.6). This algorithm makes the root

node a “manager” and all of the other nodes “workers.” The worker nodes com-

pute Monte Carlo steps until they receive a command from the manager node. The

command either tells the worker to 1) percolate its results to the manager node and

continue working or 2) percolate its results to the manager node and terminate. The

manager periodically collects the statistics that have been calculated. If the statistics

are sufficiently converged, the manager commands the workers to send all their data

and terminate; otherwise, the manager will do some of its own work and repeat the

process again later.

Unlike QMC-PI, QMC-MW dynamically determines how much work each proces-

sor performs. This allows faster processors to do more work, so the calculation is

automatically load balanced.

The wall clock time required to perform a QMC-MW calculation can be broken

into the same terms as were used for a QMC-PI calculation (Equation 6.3).

tMW = tInitialize
MW,i + tPropagate

MW,i + tSynchronize
MW,i + tCommunicate

MW,i (6.13)

Because MW dynamically determines how many steps each processor performs,
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each of the constituent terms has a more complicated form than in QMC-PI. Allowing

τ̂ to be the minimum wall clock needed to achieve convergence on a given network

and τ to be the approximate wall clock time minus communication time during the

run, one can easily derive the following expressions. Once τ plus communication time

exceeds τ̂ , the QMC-MW algorithm will terminate.

tInitialize
MW,i = Nwt

GenerateWalker
i + StepsInitialize

MW,i (τ̂)tQMC
i (6.14)

tPropagate
MW,i = StepsPropagate

MW,i (τ̂)tQMC
i (6.15)

tCommunicate
MW,i =

⌈
StepsTotal

MW,0(τ̂)

NwStepsReduce

⌉
log2(NProcessors)(t

Latency + βL) +⌈
StepsTotal

MW,i(τ̂)

NwStepsPoll

⌉
tPoll
i (6.16)

tSynchronize
MW,i ≤ NwSteps

PolltPoll
slowest

⌈
StepsTotal

MW,0(τ̂)

NwStepsReduce

⌉
, (6.17)

where

τ = tMW −
⌈
StepsTotal

MW,0(τ)

NwStepsReduce

⌉
log2(NProcessors)(t

Latency + βL) (6.18)

≈ tMW − tSynchronize
MW,i − tCommunicate

MW,i

= tInitialize
MW,i + tPropagate

MW,i
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StepsTotal
MW,i(τ) =

⌈
τ

Nwt
QMC
i

⌉
, (6.19)

StepsInitialize
MW,i (τ) = min(StepsTotal

MW,i(τ), NwStepsInitialize), (6.20)

StepsPropagate
MW,i (τ) = StepsTotal

MW,i(τ)− StepsInitialize
MW,i (τ), (6.21)

and

τ̂ = min τ 3


∑NProcessors

i StepsPropagate
MW,i (τ) ≥ StepsRequiredTotal

τ/(StepsReducetQMC
0 ) ∈ Z+

. (6.22)

StepsRequiredTotal is the minimum number of steps required to obtain the desired level

of convergence, StepsPoll is the number of QMC steps that take place on a worker

processor between checking for a message from the manager, and StepsReduce is the

number of QMC steps that take place on the manager processor between sending

commands to the workers. Unlike tPI , tMW can not be simply expressed in terms of

individual processor speeds.

The total time required for the MW algorithm, TMW , can be expressed as

TMW = T Initialize
MW + T Propagate

MW + T Synchronize
MW + TCommunicate

MW , (6.23)
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which contains the same components as Equation 6.9.

T Initialize
MW =

NProcessors∑
i

tInitialize
MW,i (6.24)

T Propagate
MW =

NProcessors∑
i

tPropagate
MW,i (6.25)

T Synchronize
MW =

NProcessors∑
i

tSynchronize
MW,i (6.26)

TCommunicate
MW =

⌈
StepsTotal

MW,0

NwStepsReduce

⌉
(NProcessors − 1)(tLatency + βL) +

∑NProcessors
i

⌈
StepsTotal

MW,i(τ̂)

NwStepsPoll

⌉
tPoll
i (6.27)

6.2.3 Initialization Catastrophe

QMC algorithms are described as being “embarrassingly parallel” and linearly scaling

with respect to the number of processors used [66]. While these statements are true for

a large fraction of Monte Carlo calculations, they are not true for QMC calculations

which employ the Metropolis algorithm [24].

To obtain independent statistical data from each processor, at least one indepen-

dent Markov chain must be initialized on each processor (Section 6.2). This gives

an initialization cost, T Initialize, which scales as O(NProcessors). The time devoted to

generating useful statistical data during the calculation, T Propagate, scales as O(1)
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because a given number of independent Monte Carlo samples are required to obtain

a desired statistical accuracy no matter how many processors are used. From this,

the efficiency, or fraction of the total calculation time devoted to useful work, ε is

ε =
T Propagate

T Initialize + T Propagate + T Synchronize + TCommunicate
(6.28)

≈ O(1)

O(NProcessors) +O(1)
. (6.29)

This clearly demonstrates that QMC calculations using the Metropolis algorithm

are not linearly scaling for large numbers of processors as is often claimed. This

results from the initialization of the Metropolis algorithm and not the parallelization

algorithm used.

For QMC calculations to efficiently use > 104 processors, new algorithms to ef-

ficiently generate equilibrated, statistically independent walkers are required. The

effort to generate such walkers for the global calculation scales linearly with the num-

ber of processors, because NProcessorsNw walkers are required. Thus, the initialization

catastrophe can not be eliminated, but it can be minimized.

6.3 Experiments

Computational experiments comparing QMC-PI and QMC-MW parallelization algo-

rithms were performed using QMcBeaver [58, 42], a finite all-electron QMC software

package developed in conjunction with Michael Feldmann. Variational QMC was

chosen as the particular QMC flavor to allow direct comparison with the theoretical
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results in Section 6.2.

QMcBeaver percolates statistical results from all nodes to the root node using the

Dynamic Distributable Decorrelation Algorithm (DDDA) [42] and the MPI Reduce

command from MPI [67]. This combination provides an O(log2(NProcessors)) method

for gathering the statistical data from all processors, decorrelating the statistical data,

and returning it to the root node.

The time spent initializing, propagating, synchronizing, and communicating dur-

ing a calculation was obtained from timers inserted into the relevant sections of QM-

cBeaver. During a parallel calculation, each node has its own set of timers which

provide information on how that particular processor is performing. At the comple-

tion of a calculation, the results from all processors are combined to yield the total

CPU time devoted to each class of task.

6.3.1 Experiment: Varying Levels of Heterogeneity

For this experiment, a combination of Intel Pentium Pro 200 MHz and Intel Pentium

III 866 MHz computers connected with a 100 Mb/sec network was used. The total

number of processors was kept constant at 8, but the number of each type of processor

was varied over the whole range. This setup provided a series of 8-processor parallel

computers with a spectrum of heterogeneous configurations. For calculations with

the current version of QMcBeaver, the Pentium III is roughly 4.4 times faster than

the Pentium Pro at performing QMcBeaver on these test systems.

Variational QMC computational experiments were performed on a Ne atom using
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Figure 6.1: Time required to complete an 8-processor variational QMC calculation of Ne using

the manager–worker (QMC-MW) and pure iterative (QMC-PI) algorithms. The 8 processors are

a mixture of Pentium Pro 200 MHz and Pentium III 866 MHz Intel processors connected by 100

Mb/s networking. The theoretical optimal performance for a given configuration of processors

is provided by the curve.

a Hartree-Fock/TZV [68] trial wave function calculated using GAMESS [69, 70]. For

the parallelization algorithms, the following values were used: StepsRequiredTotal =

2.5× 106, StepsInitialize = 1× 103, StepsPoll = 1, StepsReduce = 1× 103, and Nw = 2.

The time required to complete the QMC calculation for the QMC-PI and QMC-

MW parallelization algorithms is shown in Figure 6.1. Each data point was calculated

five times and averaged to provide statistically relevant data.

The time required for the QMC-PI algorithm to complete is determined by the

slowest processor. When between 1 and 8 Pentium Pro processors are used, the

calculation takes the same time as when 8 Pentium Pro processors are used; yet, when

8 Pentium III processors are used (homogeneous network), the calculation completes
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much faster. This matches the behavior predicted by Equation 6.6. This figure also

shows that MW performs near the theoretical speed limit for each of the heterogeneous

configurations. This is a result of the dynamic load balancing inherent in QMC-MW.

The total number of QMC steps performed during a calculation is shown in Fig-

ure 6.2. The QMC-PI method executes the same number of steps regardless of the

particular network because the number of steps performed by each processor is deter-

mined a priori. On the other hand, QMC-MW executes a different number of steps

for each network configuration. This results from the dynamic determination of the

number of steps performed by each processor. The total number of steps is always

greater than or equal to the number of steps needed to obtain a desired precision,

StepsRequiredTotal.

Figures 6.3 and 6.4 break the total calculation time down into its constituent

components (Equations 6.8 and 6.23). QMC-MW spends essentially all of its time

initializing walkers or generating useful QMC data. Synchronization and communi-

cation costs are minimal. On the other hand, QMC-PI devotes a huge portion of the

total calculation time to synchronizing processors on heterogeneous networks. This

is very inefficient and wasteful.

One should note that the value of StepsRequiredTotal required to obtain a desired

precision in the calculated quantities is unknown before a calculation begins. QMC-PI

requires this value to be estimated a priori. If the guess is too large, the calculation is

converged beyond what is required, and if too small, the calculation must be restarted

from a checkpoint. Both situations are inefficient. Because QMC-MW does not
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Figure 6.2: Number of variational QMC steps completed during an 8-processor calculation

of Ne using the manager–worker (QMC-MW) and pure iterative (QMC-PI) parallelization al-

gorithms. The pure iterative algorithm always calculates the same number of steps, but the

manager–worker algorithm dynamically determines how many steps to take. The 8 processors

are a mixture of Pentium Pro 200 MHz and Pentium III 866 MHz Intel processors connected by

100 Mb/s networking.

determine StepsRequiredTotal a priori, an optimal value can be determined “on-the-

fly” by examining the convergence of the calculation. This provides the outstanding

performance of QMC-MW on any architecture.

6.3.2 Experiment: Heterogeneous Network Size

Variational QMC computational experiments were performed on a Ne atom using a

Hartree-Fock/TZV [68] trial wave function calculated using GAMESS [69, 70]. The

network of machines used was a heterogeneous cluster of Linux boxes. The 5 processor

data point was generated using an Intel Pentium Pro 200 MHz, Intel Pentium II 450
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Figure 6.3: Percentage of total calculation time devoted to each component in the pure

iterative parallelization algorithm (QMC-PI) during an 8-processor variational QMC calculation

of Ne. The 8 processors are a mixture of Pentium Pro 200 MHz and Pentium III 866 MHz Intel

processors connected by 100 Mb/s networking.

MHz, Intel Pentium III Xeon 550 MHz, Intel Pentium III 600 MHz, and Intel Pen-

tium III 866 MHz. The 10 and 20 processor data points represent 2 and 4 times as

many processors, respectively, with the same distribution of processor types as the 5

processor data point. All computers are connected by 100 Mb/sec networking. For

the parallelization algorithms, the following values were used: StepsRequiredTotal =

2.5× 106, StepsInitialize = 1× 103, StepsPoll = 1, StepsReduce = 1× 103, and Nw = 2.

The time required to complete the QMC calculation for the QMC-PI and QMC-

MW parallelization algorithms is shown in Figure 6.5. Each data point was calculated

five times and averaged to provide statistically relevant data.

The results illustrate that QMC-MW performs near the theoretical performance



90

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

%
 o

f T
ot

al
 C

al
cu

la
tio

n 
T

im
e

Number of Pentium III 866 MHz CPUs

Initilization
Propagation

Synchronization
Communication

Figure 6.4: Percentage of total calculation time devoted to each component in the manager–

worker-parallelization algorithm (QMC-MW) during an 8-processor variational QMC calculation

of Ne. The 8 processors are a mixture of Pentium Pro 200 MHz and Pentium III 866 MHz Intel

processors connected by 100 Mb/s networking.

limit as the size of a heterogeneous calculation increases. Because all three data

points were calculated with an Intel Pentium Pro 200 MHz as the slowest processor,

the QMC-PI calculations perform like 5, 10, and 20 processor Pentium Pro 200 MHz

calculations. The scaling is essentially linear, but there is a huge inefficiency illus-

trated by the separation between the theoretical performance limit and the QMC-PI

results.

6.3.3 Experiment: Large Heterogeneous Network

Variational QMC computational experiments were performed on NH2CH2OH using

a B3LYP(DFT)/cc-pVTZ [71] trial wave function calculated using Jaguar 4.0 [72].
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Figure 6.5: Wall time required to complete a variational QMC calculation of Ne using the

manager–worker (QMC-MW) and pure iterative (QMC-PI) algorithms on a heterogeneous Linux

cluster. The theoretical optimal performance for a given configuration of processors is provided

by the line. The specific processor configuration is discussed in Section 6.3.2.

The calculations were run on the Parallel Distributed Systems Facility (PDSF) at the

National Energy Research Scientific Computing Center (NERSC). This machine is a

heterogeneous cluster of Linux boxes with Intel processors ranging from Pentium II

400 MHz to Pentium III 1 GHz.

Two calculations were performed on the cluster. The first used 128 processors with

an average processor clock speed of 812 MHz, and the second used the whole cluster,

355 processors, with an average processor clock speed of 729 MHz. Both calculations

were done using only the QMC-MW algorithm. For the parallelization algorithm,

the following values were used: StepsRequiredTotal = 1× 107, StepsInitialize = 2× 103,

StepsPoll = 1, StepsReduce = 1× 104, and Nw = 1.
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The 128 and 355 processor calculations completed in 6426656 ms and 2644823 ms,

respectively. These results can be crudely compared by assuming that all processors

used in the calculation perform the same amount of work per clock cycle. Using this

assumption, the calculation is 98% efficient in scaling up from 128 to 355 proces-

sors. This demonstrates the ability of QMC-MW to efficiently deal with very large

heterogeneous computers.

6.3.4 Experiment: Homogeneous Network

The QMC-PI algorithm was originally designed to work on homogeneous supercom-

puters with fast communication while the QMC-MW algorithm was designed to work

on heterogeneous supercomputers with slow communication. To test the QMC-MW

algorithm on the QMC-PI algorithm’s native architecture, a QMC scaling calculation

(Figure 6.6) was performed on the ASCI-Blue Pacific supercomputer at Lawrence

Livermore National Laboratory. This machine is a homogeneous supercomputer com-

posed of 332 MHz PowerPC 604e processors connected by HIPPI networking.

Variational QMC computational experiments were performed on a Ne atom using

a Hartree-Fock/TZV [68] trial wave function calculated using GAMESS [69, 70]. For

the parallelization algorithms, the following values were used: StepsRequiredTotal =

1× 106, StepsInitialize = 2× 103, StepsPoll = 1, StepsReduce = 1× 103, and Nw = 2.

Figure 6.6 shows that the QMC-MW and QMC-PI algorithms perform nearly

identically on Blue Pacific. The QMC-MW calculation is consistently slightly slower

than the QMC-PI algorithm because the QMC-MW calculation performed more QMC
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Figure 6.6: Wall time required to complete a variational QMC calculation of Ne using the

manager–worker (QMC-MW) and pure iterative (QMC-PI) algorithms on the ASCI Blue Pacific

homogeneous supercomputer. The theoretical optimal performance for a given configuration of

processors is provided by the line.

steps. This results because the QMC-PI calculation performs a predetermined number

of steps while the QMC-MW calculation performs at least this same predetermined

number of steps for this experiment. Again, this assumes the user knows a priori

exactly how many steps to complete for QMC-PI, in order to obtain the desired

convergence, while QMC-MW requires no a priori knowledge of StepsRequiredTotal.

This experiment is an absolute best-case situation for the QMC-PI algorithm. This

discrepancy can be reduced by decreasing StepsReduce.

Figure 6.7 plots the ratio of the total computational resources used by each algo-

rithm. This shows that both algorithms perform within 2% of each other; therefore,

they can be considered to take roughly the same time and expense on homogeneous
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Figure 6.7: Ratio of wall time for QMC-MW/QMC-PI on ASCI Blue Pacific.

machines.

Both algorithms do not perform near the linear scaling limit for large numbers of

processors. This is a result of the initialization catastrophe discussed in Sections 6.2.3

and 6.3.5.

6.3.5 Experiment: Initialization Catastrophe

To demonstrate the “initialization catastrophe” described in Section 6.2.3, a scal-

ing experiment was performed on the ASCI-Blue Mountain supercomputer at Los

Alamos National Laboratory (Figure 6.8). This machine is a homogeneous super-

computer composed of MIPS 10000 processors running at 250 MHz connected by

HIPPI networking. Variational QMC calculations of RDX, cyclic-[CH2NNO2]3, us-

ing the QMC-MW algorithm with StepsRequiredTotal = 1×105, StepsInitialize = 1×103,



95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

e

Number of Processors

Figure 6.8: Efficiency of a variational QMC calculation of RDX as a function of the number

of processors used. The calculations were performed using the manager–worker-parallelization

algorithm (QMC-MW) on the ASCI-Blue Mountain supercomputer, which has 250 MHz MIPS

10000 processors connected by HIPPI networking. A similar result is produced by the Pure

Iterative parallelization algorithm. The data is fit to ε(NProcessors) = a/(a + NProcessors) with

a = 104.203.

StepsPoll = 1, StepsReduce = 1 × 102, and Nw = 1 were performed. Jaguar 4.0 [72]

was used to generate a HF/6-31G** trial wave function.

The efficiency of the scaling experiments was calculated using Equation 6.28, and

the results were fit to

ε =
a

a+NProcessors

(6.30)

with a = 104.203. The efficiency at 2048 processors is better than the value pre-

dicted from the fit equation. This is an artifact of the QMC-MW algorithm which

resulted from this calculation taking significantly more steps than StepsRequiredTotal.

Decreasing the value of StepsReduce would reduce this problem.
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The excellent fit of the data to Equation 6.30 clearly shows that QMC calcula-

tions using the Metropolis algorithm are not linearly scaling for large numbers of

processors. This result holds true for both QMC-MW and QMC-PI because it re-

sults from the initialization of the Metropolis algorithm and not the parallelization

of the statistics gathering propagation phase. Furthermore, longer statistics gather-

ing calculations have better efficiencies and thus better scaling than short statistics

gathering calculations. This can be seen by examining Equation 6.28.

6.4 Conclusion

The new QMC manager–worker-parallelization algorithm clearly outperforms the

commonly used Pure Iterative parallelization algorithm on heterogeneous parallel

computers and performs near the theoretical speed limit. Furthermore, both algo-

rithms perform essentially equally well on a homogeneous supercomputer with high-

speed networking.

When combined with DDDA, QMC-MW is able to determine, “on-the-fly,” how

well a calculation is converging, allowing convergence-based termination. This is

opposed to the standard practice of having QMC calculations run for a predefined

number of steps. If the predefined number of steps is too great, computer time is

wasted, and if too short, the job will not have the required convergence and must

be resubmitted to the queue, lengthening the total time for the calculation to com-

plete. Additionally, specifying a calculation precision (2 kcal/mol for example) is

more natural for the application user than specifying a number of QMC steps.
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QMC-MW allows very low cost QMC-specific parallel computers to be built.

These machines can use commodity processors, commodity networking, and no hard

disks. Because the algorithm efficiently handles loosely coupled heterogeneous ma-

chines, such a computer is continuously upgradable and can have new nodes added as

resources become available. This greatly reduces the cost of the resources the average

practitioner needs access to, bringing QMC closer to becoming a mainstream method.

It is possible to use QMC-PI on a heterogeneous computer with good efficiency

if the QMC performance on each processor is known. Determining and effectively

using this information can be a great deal of work. If the user has little or inaccurate

information about the computer, this approach will fail. QMC-MW overcomes these

shortfalls with no work or input on the user’s part. Also, when new nodes are added

to the computer, QMC-MW can immediately take advantage of them, while the

modified QMC-PI must have benchmark information recorded before they can be

efficiently used. The benefits and displayed ease of implementation of QMC-MW

clearly outweigh those of QMC-PI supporting its adoption as the method of choice

for making QMC parallel.

For calculations with > 104 processors, a modification to the presented QMC-MW

algorithm could yield a large performance increase. This modification involves two

threads of execution per processor. A lightweight “listener” thread would manage all

of the communication between the manager and worker nodes, while a heavyweight

thread would perform the actual QMC calculation.

The prediction and verification of the initialization catastrophe clearly highlights
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the need for efficient initialization schemes if QMC is to be scaled to tens of thousands

or more processors. Producing such algorithms must be a focus of future work.

6.5 Pure Iterative Algorithm (QMC-PI)

for Processori; i = 0 to NProcessors − 1

StepsPI,i = StepsRequiredTotal/NProcessors

Generate Nw walkers

for StepsInitialize steps

Equilibrate walkers

for StepsPI,i steps

Generate QMC statistics

Percolate statistics to Processor0

6.6 Manager–Worker Algorithm (QMC-MW)

for Processori; i = 0 to NProcessors − 1

done = false

counter = 0

Generate Nw walkers

while not done:
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if counter < StepsInitialize:

Equilibrate all local walkers 1 step

else:

Propagate all local walkers 1 step and collect QMC statistics

if i = 0:

if statistics are converged:

done = true

Tell workers to percolate statistics to Processor0 and

set done = true

else if counter mod StepsReduce = 0:

Tell workers to percolate statistics to Processor0

else:

if counter mod StepsPoll = 0:

Check for commands from the manager and

execute the commands.

counter = counter + 1
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Chapter 7

Robust Jastrow-Function
Optimization Algorithm for
Variational Quantum Monte Carlo

The functional forms for some Jastrow functions used in variational Quantum Monte

Carlo (VMC) allow unwanted singularities for some parameter values. These func-

tional forms are used because, with a small number of parameters, an unknown func-

tion can be closely approximated. Unfortunately, the possible singularities can make

numerical optimization of the wave function difficult. Presented here is a numerically-

stable, robust algorithm to numerically optimize wave functions during a VMC calcu-

lation, which avoids parameters which produce singularities in the Jastrow function.

7.1 Introduction

Variational Quantum Monte Carlo (VMC) is becoming a popular method for ac-

curately calculating the properties of atomic and molecular systems (Section 4.1).

In VMC, a parameterized wave function is constructed; then, the parameters are

optimized to yield an approximation to a wave function of the many-body quantum-



101

mechanical system.

The optimization problem for VMC can be formulated as

min
p
f(p) (7.1)

where f(p) is the objective function for the problem. The most commonly used

objective function for VMC optimization is

f(p) =
∫
ρV MC(x;p) (Elocal(x;p)− EG)2 dx3N (7.2)

where ρV MC(x;p) and Elocal(x;p) are defined in Section 4.1 and EG is a guess for the

energy of the state we are interested in. The integral is evaluated using Monte Carlo

integration (Section 4.1) with correlated sampling [32] to reduce the statistical error

in f(p1)− f(p2).

The most common wave function used for VMC calculations of atomic and molec-

ular systems is (Sections 4.1.1 and 4.1.2)

ΨV MC =
∑

i

ciψiJ (7.3)

where ci are constants, ψi is a determinantal wave function which is the product of a

Slater determinant for the up-spin electrons and a Slater determinant for the down-

spin electrons, and J is a symmetric function, called the Jastrow function, of the

electron-electron and electron-nuclear distances, which introduces explicit particle-
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particle correlations into the wave function.

The Jastrow function can be expanded as a sum of 1-body, 2-body, etc., terms. It

has been shown that the most important terms are the electron-nuclear and electron-

electron terms [26, 33]; therefore, the majority of calculations employ only these

terms. Such a Jastrow function can be expressed as

J = e
∑

uij(rij ;p) (7.4)

where the sum is over all electron-electron and electron-nuclear pairs, rij is the dis-

tance between particles i and j, uij(r;p) is a function describing the correlations of

particles i and j in the wave function, and p is the set of parameters which can be

adjusted to modify uij(r;p) and, therefore, optimize the wave function.

Numerous functional forms for uij(r;p) have been used in practice [32, 73, 74, 75].

Many of these, including the Padé-Jastrow function, have singularities for certain

values of p. For VMC calculations, only non-negative singularities are important

because r is the distance between two particles, and r ≥ 0.

The above singularities make the VMC optimization difficult. Because Monte

Carlo integration is used to evaluate f(p), there is only a very small probability that

a singularity will be sampled during the integration; therefore, the value of f(p),

evaluated using Monte Carlo integration, is significantly less than the true value of

f(p) if there is a singularity in the Jastrow function. This can lead to very unstable

numerical optimization calculations.

Presented here is a numerically stable, robust algorithm to numerically optimize
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Figure 7.1: Poles of the Jastrow function. If any poles fall within the region of size ε, the

Jastrow function is considered to be singular.

VMC calculations using Jastrow functions which have unwanted singularities for some

values of p.

7.2 Algorithm

To construct a numerically stable, robust VMC optimization algorithm, it must be

possible to determine for which values of the parameters, p, uij(r;p) has a singularity

in the range r ∈ [0,∞). To accomplish this, the poles of uij(z;p), where z is a complex

number, are determined. A parameter set is then said to be singular if uij(z;p) has

a pole within a small distance, ε, of the positive real axis (Figure 7.1).

The distance from any point in the complex plane, z, to the positive real axis,
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d(z), is

d(z) =


|=(z)| if <(z) ≥ 0,

|z| otherwise.

(7.5)

where <(z) is the real component of z and =(z) is the imaginary component of z.

This is pictorially represented in Figure 7.2.

Using the above results, the VMC optimization problem (Equation 7.1) can be

reformulated as a constrained optimization problem.

min
p
f(p) subject to d(zi(p)) > ε for all poles, zi(p), of the Jastrow function (7.6)

There are a number of methods to solve constrained optimization problems of

the same form as Equation 7.6. These include the augmented Lagrangian method,
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logarithmic-barrier method, and the sequentially linearly constrained methods [76].

Of these methods, the logarithmic-barrier method is most natural and simple to

implement in this case.

The logarithmic-barrier method can be used to solve Equation 7.6 by transforming

the constrained optimization problem into the unconstrained optimization problem

min
p
F (p;µ) (7.7)

where

F (p;µ) = f(p)− µ
∑

zi∈P(p)

log (d(zi)) (7.8)

is the new objective function, µ is a real constant known as the barrier parameter,

and P(p) is the set of all poles of the Jastrow function for parameter set p. It can

be shown that the solution of Equation 7.7 as µ → 0 is equal to the solution of

Equation 7.6 [76].

By solving Equation 7.7 instead of Equation 7.1, the numerical optimization will

be much more stable and robust, since no parameter sets will be chosen which produce

a singular Jastrow function. Furthermore, this algorithm is very easy to implement

in existing software by selecting a small value for µ and adding a logarithmic barrier

(Equation 7.8) to the objective function being optimized.
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7.3 Example: Padé-Jastrow Function

The Padé-Jastrow function (Section 4.1.2) is the most commonly used Jastrow func-

tion in QMC. It is a rational polynomial

uij(r) =

∑N
k=1 aij,kr

k

1 +
∑M

k=1 bij,kr
k

(7.9)

where aij,k and bij,k are parameters.

The poles of uij(z) are equal to the zeroes of the denominator

1 +
M∑

k=1

bij,kz
k = 0 (7.10)

and can be evaluated efficiently using Laguerre’s method [23].

It is possible for a zero of the numerator to cancel a zero of the denominator. This

case will be ignored because the calculation takes place on a finite precision com-

puter. When the rational polynomial is evaluated, the numerator and denominator

are calculated separately, and then division is performed [23]. Evaluating the Jastrow

function at this zero will yield a division by zero. This can be avoided by treating all

zeroes of the denominator as poles.

Using this machinery, the robust Jastrow-function optimization algorithm can be

applied to wave functions using Padé-Jastrow functions.
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7.4 Conclusion

This new algorithm provides a robust and stable means of optimizing wave functions

in VMC if the Jastrow function has possible singularities for some parameter values.

The new algorithm can be easily added to current software simply by appending a

logarithmic barrier to the objective function.

Implementing this algorithm for Padé-Jastrow functions is very easy. Details are

provided in Section 7.3.
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Chapter 8

Generic Jastrow Functions for
Quantum Monte Carlo
Calculations on Hydrocarbons

A Jastrow function with parameters which are transferable to large classes of hy-

drocarbons is demonstrated [77]. Such a Generic Jastrow function can lead to im-

proved initial guesses for variational Quantum Monte Carlo (VMC) wave function

optimizations. Furthermore, with more development, it may be possible to construct

wave functions for diffusion Quantum Monte Carlo (DMC) calculations without first

performing a VMC wave function optimization. Both possibilities will significantly

reduce the time necessary to perform a Quantum Monte Carlo (QMC) calculation of

a molecular system.

8.1 Introduction

QMC methods are gaining popularity for high-accuracy quantum-mechanical calcu-

lations of molecular systems. Methods, such as DMC [55, 35, 78, 79], can potentially

provide accuracies better than coupled-cluster methods while scaling significantly
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better [31].

The standard approach to accurately calculate molecular properties using QMC

involves performing DMC on a high-quality wave function obtained from a VMC

calculation [32, 26, 52, 53, 30, 28, 54, 55, 56, 57]. The better the VMC wave function,

the faster the DMC calculation will converge and the smaller the error in observables

which do not commute with the Hamiltonian. During typical QMC calculations,

obtaining a high-quality VMC wave function often requires 50% of the computing

resources devoted to the problem [80].

Presented here is the first indication that it may be possible to construct wave

functions of high-enough quality for efficient DMC calculations without performing

a VMC calculation. This is done, first, by choosing a parameterized form for the

wave function and then by finding parameter sets which are transferable between

different molecular systems. This is analogous to the contraction coefficients used in

contracted Gaussian basis sets such as 6-31G [51] or cc-pVTZ [71].

For a system of N electrons, VMC evaluates the 3N -dimensional energy expecta-

tion integral for the system

〈E〉 =
∫

Ψ∗
V MC(x;p)ĤΨV MC(x;p)dx3N (8.1)

using Monte Carlo integration. Ĥ is the Hamiltonian operator for the system, x is

the position of all electrons, ΨV MC(x;p) is a parameterized wave function, and p is a

set of parameters. The parameters are variationally optimized to yield a high-quality

wave function [32]. These high-quality parameters minimize 〈E〉 and the variance in
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〈E〉 in some sense.

In practical applications of VMC, ΨV MC(x;p) is often chosen to be

ΨV MC(x;p) = ΨTrial(x)J(x;p) (8.2)

where ΨTrial(x) is a wave function obtained from a standard quantum-mechanical

calculation (Hartree-Fock, Density Functional Theory, etc.) and J(x,p) is a Jastrow

function, which introduces particle-particle correlations.

Electron-nuclear (one-body) and electron-electron (two-body) interactions in the

Jastrow function are the most important terms. Although the addition of three-

body terms results in a large reduction in the fluctuations of the local energy and a

lowering of the energy [32], only a simple one-body and two-body Jastrow function

is considered here.

The Jastrow function containing one- and two-body interactions can be expressed

as

J(x;p) = exp
(∑

uij(rij;p)
)

(8.3)

where the sum is over all pairs of particles (electron-nuclear and electron-electron),

rij is the distance between particles i and j, and uij(r;p) is a parameterized function

describing the correlation between particles i and j.

For the work presented here, we have chosen to use a Hartree-Fock wave func-

tion for ΨTrial(x) and the popular, for finite systems, Padé-Jastrow function [26].

Because both Hartree-Fock and VMC energies are variational, this combination (HF-
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GJ) provides an objective method for examining the quality of different transferable

parameter sets.

The Padé-Jastrow function uses

uij(r) =
aijr

1 + bijr
(8.4)

where short range interactions are determined by aij and the range for the interactions

is determined by bij. By using the cusp condition [18, 19] to determine the value of

aij, singularities in the local energy are removed, greatly decreasing the variances of

calculated quantities.

8.2 Computational Experiments

As a proof of concept, we examine the possibility of a Generic Jastrow for hydro-

carbon systems using the Hartree-Fock/Padé-Jastrow wave function described above

(Equations 8.2, 8.3, and 8.4). The dominant electron correlations not described by

a Hartree-Fock wave function are expected to be from spatially similar opposite-spin

electrons. These electrons do not actively avoid one another, leading to significant

fluctuations in the local energy. On the other hand, antisymmetry forces same-spin

electrons to avoid one another, leading to smaller local-energy fluctuations.

Using the cusp condition and the fact that opposite-spin electron correlations are

the most important, a “generic” Jastrow function can be constructed (Equations 8.5-
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8.8).

u↑↓(r) =
1
2
r

1 + b↑↓r
(8.5)

u↑↑(r) = u↓↓(r) =
1
4
r

1 + 100r
(8.6)

u↑H(r) = u↓H(r) =
−r

1 + 100r
(8.7)

u↑C(r) = u↓C(r) =
−6r

1 + 100r
(8.8)

Here, aij is chosen so that the cusp condition is satisfied, making the local energy non-

singular. The range of the correlations between opposite-spin electrons is determined

by an adjustable parameter, b↑↓, and the range of all other correlation functions is

limited by a large bij = 100 value. This Generic Jastrow function corrects the Hartree-

Fock wave function as two particles approach one another but leaves the wave function

undisturbed at longer range where the Hartree-Fock wave function performs well. The

one free parameter, b↑↓, can then be explored to find a value which is transferable to

all hydrocarbon compounds.

8.2.1 Generation of Transferable Hydrocarbon Parameters

To examine the transferability of b↑↓ values, a set of hydrocarbons with a variety of

bonding was used (Table 8.1). This set has compounds with single, double, and triple

bonds as well as delocalized π-systems. Optimal geometries and trial wave functions

were obtained using Hartree-Fock calculations with the 6-31G** basis set [51, 81].

They were performed using the Jaguar program suite [72]. Quantum Monte Carlo
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methane ethane
ethylene acetylene
allene benzene

cis-butadiene trans-butadiene

Table 8.1: Compounds used to determine transferability of hydrocarbon Generic Jastrow pa-

rameters.
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Figure 8.1: Correlation energy (Hartree) recovered divided by total nuclear charge.

calculations were performed using QMcBeaver [82].

The results of varying b↑↓, for these simple hydrocarbons, are shown in Figures 8.1

and 8.2. Figure 8.1 shows the correlation energy recovered per electron for various

b↑↓ values. This shows a clear minimum with b↑↓ between 2 and 4. The minimum

for all compounds, except for methane, is 3; methane’s minimum is 2. Figure 8.2

shows the ratio of the variance in energy of a HF-GJ wave function and a HF wave

function evaluated using VMC. Again, there is a minimum for all compounds with

b↑↓ between 2 and 4. For b↑↓ = 3 the variance in the energy is reduced by a factor
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Figure 8.2: Reduction of the QMC variance for a wave function containing a Generic Jastrow

compared to a Hartree-Fock wave function.

of 18 for methane, 3.2 for ethane, 2.6 for ethylene, 4.8 for acetylene, 3.8 for allene,

2.3 for trans-butadiene, 2.7 for cis-butadiene, and 2.7 for benzene. A wave function

is generally considered to be of “good enough” quality to efficiently use DMC if the

variance is reduced by a factor of 3 [80] over a Hartree-Fock wave function. With no

optimizations, the Generic Jastrow with b↑↓ = 3 comes close to accomplishing this for

all of the test compounds in Table 8.1.

To test the transferability of these generic Jastrow parameters to other hydrocar-

bons, two different conformations of [10]annulene (C10H10) were examined. Standard

quantum-mechanical calculations have problems correctly evaluating the relative en-

ergies of conformers of [10]annulene [8] making it an interesting case for future QMC

calculations.
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For these validation calculations, Schaefer’s geometries [8] were used with a HF/cc-

pVTZ [71, 72] trial wave function and a Generic Jastrow function with b↑↓ = 3. VMC

calculations recovered (5.6 ± 0.4) × 10−3 Hartree per electron of correlation energy

for the naphthalene-like conformer and (6.0 ± 0.4) × 10−3 Hartree per electron for

the twist conformer. These values fall within the same range as the test compounds

(Figure 8.1), indicating that the Generic Jastrow could be extended to hydrocarbons

not in the test set.

8.2.2 Generic Jastrow for DMC

To examine how well the Generic Jastrow parameters transfer to DMC, fixed-node

DMC energy calculations were performed. The DMC algorithm used is the small time-

step error algorithm of Umrigar, Nightingale, and Runge [27]. During a calculation,

105 time steps were performed after the walkers were equilibrated.

To assess how rapidly the DMC calculation converges, and hence the quality of

the HF-GJ wave function, the standard deviation of the energy at the end of the

calculations is analyzed (Figure 8.3). The standard deviations and the associated

error bars are calculated using the DDDA algorithm [42].

Figure 8.3 shows that the standard deviation in the fixed-node DMC energy has

a minimum when b↑↓ is between 2 and 4. This is the same range as for VMC.
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8.3 Conclusion

The work presented here shows that it is possible to find parameter sets for Jas-

trow functions which are transferable between different compounds. For a simple

1-parameter Padé-Jastrow function (Equations 8.5-8.8), a parameter value of 2 to 4

is optimal when calculating the properties of hydrocarbons.

Transferable parameter sets can be used as initial guess parameters for VMC

calculations. These parameters are, in some sense, near the optimal parameters for a

system; therefore, fewer optimization steps would be required to optimize the VMC

wave function. This would lead to significantly shorter VMC calculations.

Additionally, transferable parameter sets could be used to skip the VMC wave

function optimization before a DMC calculation. For this approach to work in gen-
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eral, more work must be done to find “generic” Jastrow parameters for better func-

tional forms of the Jastrow function than were used here. The need for higher-quality

Generic Jastrow functions, when skipping the VMC wave function optimization, re-

sults from DMC evaluating a mixed estimator of an observable. The error in the

calculated value of a non-commuting observable is second order in the difference

between the exact wave function and the trial wave function for the DMC calcula-

tion [41, 38, 35]. This requires trial wave functions to be of very high quality to

minimize this error.

This work is a proof-of-concept showing that it is possible to construct Jastrow

functions with parameters that are transferable to many compounds. A great deal

of further study is necessary to fully explore the possibilities of Generic Jastrow

functions.
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Chapter 9

QMcBeaver

I can’t think of a job I’d rather do than computer programming. All day,

you create patterns and structure out of the formless void, and you solve

dozens of smaller puzzles along the way. The wit and ingenuity of the

human brain is pitted against the remorseless speed and accuracy of the

electronic one [83].

Peter van der Linden, 1994

The QMC calculations presented in this work were performed using QMcBeaver.

This software package was designed and implemented by myself and Michael T. Feld-

mann while graduate students at the California Institute of Technology (1999-2003).

Unlike existing QMC software, QMcBeaver uses object-oriented design principles.

This allows the software to be easily modified, so that new ideas can rapidly be

evaluated without extensive, time-consuming modifications to the source code. This

has proven to be very beneficial in evaluating the ideas presented in the previous

chapters.

As of 2003, QMcBeaver has become Open Source and has been released under the
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GNU General Public License (GPL). The Open Source project is being hosted by

SourceForge.net. To obtain the most current release go to:

http://qmcbeaver.sourceforge.net

or

http://sourceforge.net/projects/qmcbeaver

9.1 QMcBeaver Copyright Statement

Copyright 2003 California Institute of Technology.

To contact the authors, write to:

drkent@users.sourceforge.net

or

mtfeldmann@users.sourceforge.net

This program is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Foun-

dation and so long as the above copyright notice, this paragraph and the following

three paragraphs appear in all copies.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. In no event shall Cal-

ifornia Institute of Technology be liable to any party for direct, indirect, special,

incidental or consequential damages, including lost profits, arising out of the use of
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this software and its documentation, even if the California Institute of Technology

has been advised of the possibility of such damage. Lastly, the California Institute

of Technology has no obligations to provide maintenance, support, updates, enhance-

ments or modifications.

To receive a copy of the GNU General Public License, go to

http://www.gnu.org/licenses/gpl.txt

or write to

The Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA 02111–1307 USA
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