Dynamic Load Balancing and Granularity Control

on Heterogeneous and Hybrid Architectures

Thesis by
Jerrell R. Watts

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1998
(Submitted May 22, 1998)

i

© 1998
Jerrell R. Watts
All Rights Reserved

il

Acknowledgements

This author is deeply indebted to two people who greatly assisted me while I con-
ducted the research described in this thesis. I count both of them not only as col-
leagues, but also as close friends.

I could have asked for no better advisor than Stephen Taylor. Steve’s contributions
extended far beyond commentary and insight. His infallible cheerfulness and support
made graduate life considerably more pleasant than it might otherwise have been. In
the end, I am proudest not of having graduated from Caltech, but rather of having
had Steve as my advisor.

Fellow graduate student and comrade-at-arms, Marc Rieffel, also made major
supporting contributions to this work. It was Marc’s direct simulation monte carlo
(DSMC) application that provided the bulk of the experimental evidence for this
thesis. He assisted in conducting the experiments that provided those results. Finally,
he was always willing to listen to any idea I might have and to offer his thoughts.

I also owe thanks to a number of other players. Mikhail Ivanov and Guenadi
Markelov, of the Siberian Branch of the Russian Academy of Sciences, provided per-
formance results from their DSMC code, which used a variant of the load balanc-
ing techniques presented here. Sergey Gimelshein, also of the Russian Academy of
Sciences, contributed substantially to broader aspects of that collaboration. Robie
Samanta Roy, formerly at the Massachusetts Institute of Technology, provided insight
into his particle-in-cell (PIC) application, which was also targeted by this thesis. Alan
Stagg, formerly of Cray Research, assisted in porting the PIC application to the Cray
T3D. The homogeneous static partitioner used for the majority of the experiments
in this thesis was implemented by John Maweu, an undergraduate at Clark Atlanta
University. Jeremy Monin, an undergraduate at Syracuse University, extended the
partitioner for heterogeneous networks of computers. My fellow graduate students at

Caltech, Daniel Maskit and Michael Palmer, provided valuable comments early on

iv
in my research. I would also like to thank the members of my thesis defense com-
mittee, Jim Arvo, Mani Chandy, and Robert van de Geijn, for their comments and
suggestions.

This research was sponsored primarily by the Advanced Research Projects Agency
under contract number DABT63-95-C-0116. The author was also partially supported
by a Graduate Research Fellowship from the National Science Foundation. Collab-
oration with our Russian colleagues was sponsored by the U.S. Civilian Research
and Development Foundation under award number RE1241. Computing resources
and infrastructure were provided by the Ballistic Missile Defense Organization un-
der contract number DAAH04-96-1-0319 and the National Science Foundation under
contract number AFS-91576590. Additional computing resources were provided by
Avalon Computer Systems, Inc., Silicon Graphics, Inc., and the Intel Corporation.
Access to a Cray T3D was provided by the NASA Jet Propulsion Laboratory. Access
to an Intel Paragon was provided by the Caltech Center for Advanced Computing

Research.

Abstract

The past several years have seen concurrent applications grow increasingly complex,
as the most advanced techniques from academia find their way into production parallel
applications. Moreover, the platforms on which these concurrent computations now
execute are frequently heterogeneous networks of workstations and shared-memory
multiprocessors, because of their low cost relative to traditional large-scale multicom-
puters. The combination of sophisticated algorithms and more complex computing
environments has made existing load balancing techniques obsolete. Current methods
characterize the loads of tasks in very simple terms, often fail to account for the com-
munication costs of an application, and typically consider computational resources
to be homogeneous. The complexity of current applications coupled with the fact
that they are running in heterogeneous environments has also made partitioning a
problem for concurrent execution an ordeal. It is no longer adequate to simply di-
vide the problem into some number of pieces per computer and hope for the best.
In a complex application, the workloads of the pieces, which may be equal initially,
may diverge over time. On a heterogeneous network, the varying capabilities of the
computers will widen this disparity in resource usage even further. Thus, there is
a need to dynamically manage the granularity of an application, repartitioning the
problem at runtime to correct inadequacies in the original partitioning and to make
more effective use of computational resources.

This thesis presents techniques for dynamic load balancing in complex irregular
applications. Advances over previous work are three-fold: First, these techniques are
applicable to networks comprised of heterogeneous machines, including both single-
processor workstations and personal computers, and multiprocessor compute servers.
Second, the use of load wvectors more accurately characterizes the resource require-
ments of tasks, including the computational demands of different algorithmic phases

as well as the needs for other resources, such as memory. Finally, runtime repartition-

vi
ing adjusts the granularity of the problem so that the available resources are more
fully utilized. Two other improvements over earlier techniques include improved algo-
rithms for determining the ideal redistribution of work as well as advanced techniques
for selecting which tasks to transfer to satisfy those ideals. The latter algorithms in-
corporate the notion of task migration costs, including the impact on an application’s
communications locality. The improvements listed above are demonstrated on both
industrial applications and small parametric problems on networks of heterogeneous

computers as well as traditional large-scale multicomputers.

vii

Contents
Acknowledgements iii
Abstract v
1 Introduction 1
1.1 Problem Statement oo 2
1.2 Contributions L 3
1.2.1 Nomenclature 4
1.2.2 Notation 5
2 Basic Methodology and Algorithms 6
2.1 Algorithms. 7
2.1.1 Load Evaluation 7
2.1.2 Profitability Determination 9
2.1.3 Load Transfer Calculation 11
2.1.4 Task Selection Lo o L 14
2.1.5 Task Migration, 20
2.2 Results. e 21
2.3 Related Work 25
2.4 SUMMATY o e e e e e e e 26
3 Improved Load Transfer Calculation 27
3.1 General Diffusion Framework 27
3.2 Algorithms. 30
3.2.1 First-Order Diffusion Algorithm 31
3.2.2 Second-Order Diffusion Algorithm 34

3.2.3 Adaptive-Timestepping Diffusion Algorithm 36

3.3 Results. 37
3.4 Related Work 42
3.5 Summary e e 43

4 Cost-Driven Task Selection 44
4.1 Cost-Driven Algorithm 44
42 Results. 46
4.2.1 Comparison for Communication Cost Metrics 46

4.2.2 Comparison for Other Cost Metries 50

4.3 Related Work 20
4.4 SUMMATY o o vt e e e e e e e 51

5 Vector-based Load Balancing 52
5.1 Algorithmic Modifications 54
5.1.1 Load Evaluation 54

5.1.2 Profitability Determination 54

5.1.3 Load Transfer Calculation 56

5.1.4 Task Selection Lo, 57

5.1.5 Task Migration 64

52 Results 64
5.2.1 Applications with Multiple Phases 65

5.2.2 Applications with Disparate Computation and Memory Re-
quirements L. L e e 68

5.2.3 Applications with Rapidly Changing, but Predictable Compu-

tation Timeso 71

5.3 Related Work 74
5.4 SUMINArY o e e e e e e e e e e e e e 76

6 Dynamic Granularity Control 78
6.1 Algorithmic Modifications, 79

6.1.1 Load Evaluation 79

1X

6.1.2 Profitability Determination 79
6.1.3 Load Transfer Calculation 80
6.1.4 Task Selection oL 80
6.1.5 Task Migration 81
6.1.6 Granularity Adjustment 81
6.2 Vector Extensions L. 8l
6.2.1 Load Evaluation 82
6.2.2 Profitability Determination 82
6.2.3 Load Transfer Calculation 82
6.2.4 Task Selection 82
6.2.5 Task Migration 83
6.2.6 Granularity Adjustment 83
6.3 Results. 83
6.3.1 Synthetic Application. 83
6.3.2 Direct Simulation Monte Carlo Application. 84
6.4 Related Work L 85
6.5 SUMMATY o o v et e e e e e e e e e e 86
Heterogeneous Systems 87
7.1 Algorithmic Modifications 87
7.1.1 Load Evaluation 87
7.1.2 Profitability Determination 89
7.1.3 Load Transfer Calculation 90
7.1.4 Task Selection 92
7.1.5 Task Migration, 92
7.1.6 Granularity Adjustment 93
7.2 Vector Extensions o 93
7.2.1 Load Evaluation 93
7.2.2 Profitability Determination 94

7.2.3 Load Transfer Calculation 95

7.2.4 Task Selection 96
7.2.5 Task Migration, 96
7.2.6 Granularity Adjustment, 96
7.3 Results. 96
7.3.1 Heterogeneous Testbed 96
7.3.2 Parametric Experiments 97
7.3.3 Application Experiments 105
7.4 Related Work 107
7.5 SUMMATY o o e e e e e e e e e e e e e 109
Conclusions 111
Scalable Concurrent Programming Library 113
A.1 Programming Model 113
A.2 Implementation of Dynamic Load Balancing and Granularity Control 116
A3 Related Work 118
A4 Summary e e e 119
Face-based Finite Element Field Solver 120
B.1 Derivation L 121
B.1.1 Overview of the Finite Element Method 121
B.1.2 Face-based Finite Element Method 123
B.1.3 Conjugate Gradient Method 128
B.2 Concurrent Implementation 128
B.3 Validation 130
B.3.1 Infinite Conducting Plates 130
B.3.2 Conducting Box L. 130
B.3.3 Infinite Conducting Plates with Intermediate Charge 131
B.3.4 Conducting Box with Interior Charge 131
B.4 Integration into the DSMC Algorithm 132

B.5 Related Work e 132

B.6 Summary

Bibliography

X1

List of Figures

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

4.1

5.1
5.2
3.3
9.4

3.5

5.6

Example of hierarchical balancing method on 5-computer array.

Example of pseudopolynomial subset sum algorithm.
Example of fully polynomial subset sum algorithm.
Utilization distributions for DSMC application before and after load
balancing.

140,000-tetrahedra grid of the GEC reactor.

Relative load graph for 2 x 2 mesh of computers.
Worst-case total load transfer (top) and execution times (bottom) of
transfer vector algorithms for varying numbers of processors.
Average-case total load transfer (top) and execution times (bottom) of

transfer vector algorithms for varying numbers of processors.

Average distance between communicating tasks as a function of load
balancing steps for various locality metrics (top) and the improvement,

of initially poor locality (bottom).

Example of low efficiency in a “balanced” system.
Example of pseudopolynomial vector subset sum algorithm..
Example of fully polynomial vector subset sum algorithm.
ESEX/Argos geometry and cutplanes for ion density, charge-exchange
ion density and electric field. L.
Variation in memory usage after several load balancing rounds with a
time-only scalar load metric and a time-memory vector load metric. .
Step times without load balancing and with load balancing for three

load metrics. L

23
24

30

40

41

49

93

62

63

68

70

6.1

6.2

7.1

7.2

Al

xiii
Efficiency versus the number of partitions per computer for static and
dynamic partitionings. o 0oL
Performance versus the number of partitions per computer for static

and dynamic partitionings. 0oL

Computer load assignments for single-phase box grid problem on het-
erogeneous testbed. oo
Computer load assignments for memory-intensive box grid problem on
heterogeneous testbed. (Computers are sorted by memory capacity

instead of processing rate.) L

A concurrent graph and the internal structure of one of the nodes in

that graph. oL

99

104

xiv

List of Tables

0.1

9.2

5.3

9.4

7.1
7.2

7.3

7.4

7.5

7.6

Summary of the run time and efficiency for the DSMC application
without load balancing and with the scalar and vector views of load. .
Summary of the run time and efficiency for the PIC application without
dynamic load balancing and with the scalar and vector views of load.
Summary of the efficiency for linear and quadratically varying step
times with different load metrics.
Results without load balancing and before and after load balancing for

three load metrics. e e e e e

Descriptions of computers in the heterogeneous testbed.
Results of load balancing two-phase box grid problem on heterogeneous
testbed.
Results of load balancing rapidly evolving box grid problem on hetero-
geneous testbed.
Results of load balancing box DSMC problem on entire heterogeneous
testbed.
Results of load balancing box DSMC problem on heterogeneous testbed
without computer 1. L oL
Results of load balancing GEC reactor DSMC problem on heteroge-

neous testbed. e

67

69

73

75

97

100

101

106

106

XV

List of Programs

2.1
2.2
2.3
3.1
3.2
3.3
5.1
5.2

5.3

5.4

B.1
B.2

First-order implicit diffusion algorithm for computers.
Second-order implicit diffusion algorithm for computers.
Concurrent DSMC algorithm for a single grid partition.
Generalized first-order implicit diffusion algorithm for computer 7. . .
Generalized second-order implicit diffusion algorithm for computer 4.

Generalized adaptive timestepping diffusion algorithm for computer .
Vector first-order implicit diffusion algorithm for computer ¢.
Vector adaptive-timestepping diffusion algorithm for computer i (part
1) o
Vector adaptive-timestepping diffusion algorithm for computer i (part
) e
Concurrent DSMC algorithm, with self-consistent fields, for a single
partition. L
Sequential preconditioned conjugate gradient algorithm..
Concurrent DSMC algorithm, with integrated field solver, for a single

partition. L

99

60

66
129

Chapter 1 Introduction

Two trends have dominated high-performance scientific computing over the past
few years: Applications have grown increasingly complex as practitioners implement
state-of-the-art numerical simulation techniques on concurrent hardware, and net-
works of workstations and shared-memory multiprocessor computers ever more fre-
quently serve as production computing platforms. The impetus for sophisticated
computational techniques has primarily come from industry, which finds itself faced
with mounting research and development costs. One way to reduce these costs is to
use realistic simulations instead of traditional physical prototyping. Unfortunately,
to achieve a sufficient level of accuracy in such simulations, implementors must incor-
porate a wide variety of physics, chemistry and/or biology, often on disparate spatial
and temporal scales. For example, a simulation of particle flow in a silicon-wafer
etching and deposition chamber (plasma reactor) involves not only tracking the mo-
tion of particles but also the chemical reactions that may occur when particles collide
with one another or with the silicon wafer. Moreover, particles may contribute to and
in turn be influenced by electromagnetic fields. The extent to which the numerical
methods associated with these aspects of a simulation contribute to an application’s
resource requirements, both in terms of processor time and memory, may well depend
on the very unknown quantities that the simulation is attempting to resolve. For ex-
ample, the resource needs for simulating a particular region of a plasma reactor will
depend on the changing concentration of particles in that region—a quantity which
is specified only as an initial condition. Therefore, a static division and mapping of
such a problem will seldom result in uniform resource usage across a set of computers
throughout the duration of the computation.

Disparities in resource usage due to the original problem mapping widen when
the environment is composed of heterogeneous machines. Because of differences in

the capabilities of the machines in such a network, resource usage may vary greatly.

2
Situations will undoubtedly arise in which light computational workloads are assigned
to the most powerful machines and heavy workloads are assigned to the least pow-
erful, effectively magnifying the load imbalance. To handle these situations, a load
balancing framework must take into account the relative capacities of the machines,
both in terms of their computing power and available memory, to guarantee that load
is reassigned appropriately.

Finally, a simple remapping of the existing components of a problem may fail to
balance the loads among computers because the initial problem decomposition is too
coarse. Just as the loads of problem partitions cannot, in general, be determined
a priori, neither can a particular decomposition be deemed adequate because the
load of any particular piece of the problem may become arbitrarily high during the
course of the computation; any computer to which such a task is mapped will find
itself hopelessly overloaded. A solution to this problem is to adjust the granularity
of the problem dynamically, subdividing the problem at runtime to increase options
for reassigning load from one computer to another and to make more effective use of

multiprocessor computers.

1.1 Problem Statement

The load balancing problem as addressed by this thesis is as follows:

Given a set of tasks mapped to a collection of computers, find a remapping of the
tasks, or subdivisions thereof, that results in more uniform utilization of the

resources of the computers.

Note that the concept of a “task” in the above statement is rather loose. A task
need not be an actual thread or process. A task in a fluid dynamics calculation, for
example, might be thought of as an operation on a single grid cell or on a collection
of grid cells. Such decisions affect the degree to which a load balancing framework
must explicitly interact with application data structures. If tasks are considered to

be processes, for example, then it may be possible to automatically transfer them

3
from one computer to another, without assistance from the application developer. If
tasks are individual data structures, the programmer must typically provide support

routines to facilitate their relocation.

1.2 Contributions

This thesis makes a number of practical contributions to the body of work on dy-
namic load balancing, addressing computational problems and environments which
were poorly served by earlier methods. In particular, from the very start, this work
targeted complex, irregular applications. Few assumptions were made regarding the
nature of the tasks comprising a computation: Tasks might be coarse- or fine-grained,
uniform or disparate in their respective loads. They might communicate with one an-
other very intensively or not at all. The algorithms they execute might result in
simple, predictable loads or complex loads with multiple components. The environ-
ments in which these tasks execute might be comprised of many computers or only
a few, be connected by proprietary, high-speed networks or low-speed, commercial
technology. The computers might have available resources which are uniform, or
which vary tremendously, with differing memory and differing numbers of and speeds
of processors. In short, this work addresses load balancing in a more general case,
where the neat assumptions typical of most load balancing algorithms do not hold.

The specific contributions of this thesis are:

1) A well-defined methodology for load balancing, including algorithms for each
step in the load balancing process. [50, 53].

2) Novel methods for balancing multiple types (vectors) of load simultaneously—
for example, both computation time and memory usage across a set of comput-
ers [51, 55].

3) New techniques for handling heterogeneous systems, in which resources available
at each computer may vary greatly. Coupling these methods with the vector
techniques yields a very powerful tool for managing multiple resources in a

heterogeneous environment [52, 56].

4

4) A method for dynamically repartitioning a problem to make more effective use
of computational resources [45, 56).

5) Algorithms for selecting tasks to satisfy the ideal load transfers which take into
account the cost of relocating those tasks, in terms of either the size of their
data structures or the impact of their relocation on the communication topology
of the application [53, 54].

6) A new algorithm for calculating the ideal transfer of load between computers.
This algorithm out-performs existing techniques, either in terms of the judi-

ciousness of work transfer or time of execution [53].

These methods are supported with a body of analytical and experimental study and
have been applied to non-trivial applications in science and engineering [45, 50, 51,
52, 53, 54, 55, 56]. In combination, the techniques provide a comprehensive load
balancing framework capable of serving a wide variety of applications across a broad

array of computational resources.

1.2.1 Nomenclature

Because this thesis targets heterogeneous environments, it is necessary to make clear
distinctions among certain terms. When dealing with homogeneous computing en-
vironments, notions of “load,” “work,” “utilization,” and “runtime” are often used
interchangeably. This is perfectly acceptable because an abstract quantity of work,
say 100 iterations of a fluid flow solver over a 100,000-cell grid partition, presumably
requires the same execution time on every machine. In heterogeneous environments
this is definitely not the case. If a problem is characterized by abstract, algorithmic
considerations such as the number of operations or the count of data structures, this
will translate differently into processor or memory usage depending on the particu-
lar machine on which the problem is run. So, a distinction must be made between
the quantities which are invariant across a set of computers and those which vary
according to the computer in question. We refer to the former, abstract algorithmic

quantities as the load of a computer. For example, in a particle simulation, a par-

5
tition of the problem may contain 125,000 particles. The load for that region could
be taken to be 125,000. On one machine, processing those particles might require
five compute seconds per iteration and on another machine require ten seconds per
iteration. We refer to this variant quantity as the utilization. The degree to which
a particular computer is utilized by a certain load is determined by that computer’s

capacity.

1.2.2 Notation

The following variables and notations are used to denote various quantities in the

system described by the problem statement:

There are P computers in the system.

The number of processors on computer i is denoted Q;.

If the network connecting the computers is a d-dimensional mesh or torus, the

sizes of its dimensions are Ky, K1, ..., K4_1, respectively.

The diameter of the network is denoted D and is the length of the longest path
between any two computers in the network, according to the routing algorithm
used. (E.g., for a d-dimensional mesh, D would be Y%} (K; — 1), assuming
messages are routed fully through each dimension before proceeding to the

next.)

e The mapping function from tasks to their respective computers is called M.

Thus, M (7) is the computer to which task 4 is mapped.
e T; is the set of tasks mapped to computer 7.

e The set of neighbors of either computer ¢ or task 7 is denoted N;, as appropriate
to the context in which ¢ is used. The neighbors of a computer are those adjacent
to it in the physical network. The neighbors of a task are those tasks with which

it communicates.

Chapter 2 Basic Methodology and
Algorithms

This chapter considers load balancing for concurrent computations running on net-
works of homogeneous computers. The goal is to minimize the run time of a computa-
tion by ensuring that no computer is assigned a processing load significantly greater
than the average load. The loads of tasks are characterized in a simple manner and
are assumed to change in a relatively slow fashion with respect to the time scale
on which load balancing is performed. Moreover, it is assumed that resources other
than the processor, such as memory, do not factor into the relocation of the tasks
comprising a computation. Finally, the effects of task migration on an application’s
communication structure are ignored.

To make the load balancing problem more tractable, it is useful to specify a step-
by-step, high-level methodology to address the problem. One such methodology is
the following [49, 50, 53], which is an extension to that in [57]:

1) Load Evaluation: The load of each computer is determined, either by having
the programmer provide an estimate of resource needs of the tasks or by actually
measuring the tasks’ resource usage.

2) Profitability Determination: Based on the total load measured at each
computer, the efficiency of the computation is calculated, and based on the es-
timated cost of reassigning tasks, a profitability calculation is used to determine
if such a remapping is worthwhile.

3) Load Transfer Calculation: Using the loads measured in the first step, com-
puters calculate the ideal degree to which they should transfer load to or from
other computers. Transfers of tasks with resource needs equal to these pairwise,
directed quantities should result in more uniform resource usage.

4) Task Selection: Using the load transfer quantities calculated previously, tasks

7
are selected for transfer or exchange between computers. This phase may be
repeated several times until the transfer quantities have been adequately met.
5) Task Migration: Once the tasks’ new locations are determined, any data
structures associated with those tasks are transferred from their old locations

to their new locations, and the computation resumes.

By decomposing the load balancing process into distinct phases, one can experiment in
a “plug-and-play” fashion with different strategies at each of the above steps, allowing
the space of techniques to be more fully and readily explored. It is also possible to
customize a load balancing algorithm for a particular application by replacing more

general methods with those specifically designed for a certain class of computations.

2.1 Algorithms

There are several algorithms that one could use for each of the phases listed above.
Described here are some of the alternatives, along with motivations for particular

choices in some instances.

2.1.1 Load Evaluation

The usefulness of any load balancing scheme is directly dependent on the quality of
load measurement and prediction. Accurate load evaluation is necessary to determine
that a load imbalance exists, to calculate how much load should be transferred to
alleviate that imbalance and to determine which tasks best fit the ideal load transfer
quantities. Load evaluation can be performed either completely by the application,
completely by the load balancing system or with a mixture of application and system
facilities.

The primary advantage of an application-based approach is its predictive power.
The application developer, having direct knowledge of the algorithms and their in-
puts, has the best chance of determining the future load of a task. In a finite-element

solver, for example, the load may be a function of the number of grid cells. If the

8

number of cells changes due to grid adaptation, news of that change can be immedi-
ately propagated to the load balancing system. For more complex applications, the
disadvantage of this approach is in determining how the abstract load of a task trans-
lates into actual CPU cycles. If the execution time of an application is a function
of several algorithmic variables, determining the relative weighting of those variables
can be difficult. System dependent factors such as the compiler optimizations used,
the size of the cache(s), etc., can easily skew the execution time for a task by a large
factor.

One way to overcome the performance peculiarities of a particular architecture is
to measure the utilization of a task by directly timing it. One can use timing facilities
to profile each task, providing accurate measurements in the categories of execution
time and communication overhead. These timings can easily be provided by a library
or runtime system: Such systems would label any execution time between commu-
nication operations as computation time and any execution time actually sending or
receiving data as communication time. A system-only approach may fall short when
it comes to load prediction, however, because past behavior may be a poor predic-
tor of future performance. For applications in which the load evolves in a relatively
smooth fashion, data modeling techniques from statistics, such as robust curve fitting,
can be used. This is discussed in greater detail in Chapter 5. However, if the load
evolves in a highly unpredictable manner, given that the system has no knowledge of
the quantities affecting the load, the application developer must provide additional
information.

The most robust and flexible approach is perhaps a hybrid of both the application-
and system-only methods. By combining application-specific information with sys-
tem timing facilities, it is much more practical to predict performance in a complex
application. In a particle simulation, for example, the time required in one iteration
on a partition of the problem may be a function of the number of grid cells as well as
the number of particles contained in those grid cells. By using timing routines, the
application can determine how to weight each in predicting the execution time for

the next iteration.

9

Given the limitations of application-only and system-only approaches, a general
purpose load balancing framework must allow the use of an application-specific load
prediction model and provide the profiling routines necessary to make that model
accurate. The system can provide a set of generic models that are adequate for broad
classes of applications. The system should also provide feedback on the quality of the
load prediction model being used. If the load prediction is inaccurate relative to the
actual utilization, the system should generate appropriate warnings.

Whatever the load prediction model used, the output of load evaluation is the
following: For a given task j, the load of that task is determined to be [;. The load

of a computer ¢ is therefore the sum of the loads of the tasks assigned to it

Li=Y 1 (2.1)

JET;
2.1.2 Profitability Determination

For load balancing to be useful, one must determine when to load balance. Doing so
is comprised of two phases: detecting that a load imbalance exists and determining
if the cost of load balancing exceeds its possible benefits.

The load balance (or efficiency) of a computation is the ratio of the average com-

puter load to the maximum computer load, eff = %‘;‘f A load balancing framework

2
might, therefore, consider initiating load balancing whenever the efficiency of a com-

putation is below some user-specified threshold eff In applications where the total

min*
load is expected to remain fairly constant, load balancing would be undertaken only
in those cases where the load of some computer exceeds #“;f;, where L,y is calcu-
lated initially or provided by the application. A similar approach was described in
[28, 33, 57] in which load balancing was initiated whenever a computer’s load falls
outside specified upper and lower limits.

The above method is poorly suited for situations in which the total load is chang-
ing. For example, if a system is initially balanced and the load of every computer

doubles, the system is still balanced; the above method would cause load balancing

10

to be initiated if eff .. was greater than 50 percent. Another method that has been

min
suggested is to load balance if the difference between a computer’s load and the local
load average (i.e., the average load of a computer and its neighbors) exceeds some
threshold [57]. The problem with this technique is that it may fail to guarantee global
load balance. Consider, for example, the case of a linear array. If computer ¢ has load
1Leonst, then the local load average at any of the non-extremal computers would be
gi—_—l-ﬁ%ﬂﬂLconst = 1L¢onst, SO load balancing would not be initiated even for a very
small threshold, despite the fact that the global efficiency is only 50 percent. (Le.,
Linax = PLconst and Layg = £Lcongt.) Load balancing would be initiated by the ex-
tremal computers only if the relative threshold was O((l — eff min)? ‘1), which would
be unreasonably small even for moderate values of eff .;, on large arrays. The same
analysis applies in the case where a computer would initiate load balancing whenever
the relative difference between its load and that of one of its neighbors exceeded some
threshold. Once again, to guarantee an efficiency of eff ., the relative difference
must in general be less than O((l — eff min)?) The problem with such a tight bound
is that, in many cases when it is violated, load balancing may actually be unnecessary.

The reason these ad-hoc methods have been suggested is that they are inexpensive
and completely local. They also introduce no synchronization point into an otherwise
asynchronous application. Certainly these are qualities for which to strive. Given the
increasing availability of threads and asynchronous communication facilities, global
load imbalance detection may be less costly than previously perceived. By using a
separate load balancing thread at each computer, the load imbalance detection phase
can be overlapped with computation in an application. If the load balancing threads
synchronize, this would have no affect on the application. Thus, the simplest way to
determine the load balance may be to calculate the maximum and average computer
loads using global maximum and sum operations, which will complete in O(log, P)
steps on most architectures. Using these quantities, one can calculate the efficiency
directly.

Even if a load imbalance exists, it may be better not to load balance, simply

because the cost of load balancing would exceed the benefits of a better load distri-

11
bution. The time required to load balance can be measured directly using available
facilities. The expected reduction in run time due to load balancing can be estimated
loosely by assuming efficiency will be increased to eff ., or more precisely by main-
taining a history of the improvement in past load balancing steps. If the expected
improvement exceeds the cost of load balancing, the next stage in the load balancing
process should begin [57]. More precisely, load balancing should be undertaken when

the following holds

(eﬁcur < eﬁmin) /\ ((1 - :gcur) Tstep > Tbal) (22)

where eff .., eff min, €ff new are the current efficiency, desired minimum efficiency and
expected efficiency after load balancing, respectively, Tyep is the time until the next

load balancing opportunity, and Ty, is the estimated time for load balancing.

2.1.3 Load Transfer Calculation

After determining that it is advantageous to load balance, one must calculate how
much load should ideally be transferred from one computer to another. In the interest
of preserving communication locality, these transfers should be undertaken between
neighboring computers. Of the load transfer algorithms presented in the literature,
three in particular stand out: the hierarchical balancing method, the generalized

dimensional exchange, and diffusive techniques.

Hierarchical Balancing Method

The hierarchical balancing (HB) method is a global, recursive approach to the load
balancing problem [19, 57]. In this algorithm, the set of computers is divided roughly
in half, and the total load is calculated for each subset. The load transfer between
the subsets is that required to make the load per computer in each equal. I.e., for one

subset of P; computers with total load L, and another subset of P, computers having

Step 1 :| 10 5 7 1 4 0 |
step2 {[10]=i[2]} |8 |4 0|
= 6 = e 4 == = :
Step3 | 4 4 4 |8 :~4>§ 0|
Final | 4 4 4 4 4

Figure 2.1: Example of hierarchical balancing method on 5-computer array.

an aggregate load of Lo, the transfer from the first subset to the second is given by

Py
P1+P2

P,L, - P L,
P+ P

AL(LQ) == Ll - (L1 + LQ) = (23)

Once the load transfer has been calculated, each subset is itself divided and balanced
recursively, taking into account transfers calculated at higher levels. The HB algo-
rithm calculates the transfers required to achieve “perfect” load balance in O(log,(P))
steps. An example of this process is shown in Figure 2.1. In that figure, computers
are represented by squares, with their loads in the centers. The dotted boxes indicate
the subsets at each stage, and the arrows are the load transfers between subsets. Note
that the load of a computer temporarily becomes negative, assuming that the com-
puters at the interface between subsets are responsible for transferring load between
the subsets.

One disadvantage of the HB method is that all data transfer between two parti-
tions occurs at a single point. While this may be acceptable on linear array and tree
networks, it will fail to fully utilize the bandwidth of more highly connected networks.

A simple generalization of the HB method for meshes and tori is to perform the algo-

13
rithm separately in each dimension. For example, on a 2-D mesh, the computers in
each column could perform the HB method (resulting in each row having the same
total load), then in each row (resulting in each computer having the same total load).
This modification is similar to the row/column broadcast approach used in [5]. For
general, d-dimensional meshes and tori, this algorithm requires O(" logQ(Ki))
steps. Note that, in the case of hypercubes, this dimensional hierarchical balancing
(DHB) method reduces to the dimensional exchange method presented for hypercubes

in [11, 57).

Generalized Dimensional Exchange

In the dimensional exchange (DE) method, the computers of a hypercube pair up
with their neighbors in each dimension and exchange half the difference in their
respective loads. This results in balance in log,(P) steps. The authors of [59] present
a generalization of this technique for arbitrary connected graphs, which they call the
generalized dimensional exchange (GDE). For a network of maximum degree |Nmax/,
the links between neighboring computers are minimally colored so that no computer
has two links of the same color. For each edge color, a computer exchanges with its
neighbor across that link A times their load difference. This process is repeated until
a balanced state is reached
ALE?]’;) = ALE:L) + ALY — Lg-t)) for each neighbor j € N;

where

AL%;%) = 0 for each neighbor j € N;

For the particular case where M is 0.5, the GDE algorithm is called the averaging GDE
method (AGDE) [59]. (The AGDE method was also presented in [19] but was judged
to be inferior to the HB method because of the latter’s lower time complexity.) The
authors of [59] also present a method for determining the value of A for which the
algorithm converges most rapidly; they call the GDE method using this parameter
the optimal GDE method (OGDE). While these methods are very diffusion-like and

14
have been described as “diffusive” in the literature [19], they are not based on a

numerical solution of the diffusion equation, as the authors of [59] rightly point out.

Diffusion

9L _— 2[,.

Diffusive methods are based on the solution of the diffusion equation, %;

Diffusion was first presented as a method for load balancing in [11]. Diffusion was
also explored in [57] and was found to be superior to other load balancing strategies in
terms of its performance, robustness and scalability. A more general diffusive strategy
was presented in [16]; it is shown in modified form as Program 2.1. Unlike previous
work, this method uses an implicit differencing scheme to solve the heat equation on a
multi-dimensional torus to a specified accuracy. The advantage of an implicit scheme
is that the timestep size in the diffusion iteration is not limited by the number of
neighbors. For explicit schemes, the timestep size is limited to ﬁ on a d-dimensional
mesh or torus. In [49], an improved, second-order diffusion scheme was derived. That
algorithm is shown as Program 2.2. Derivations of both the first- and second-order
algorithms are given in Chapter 3, as part of the derivation of a faster, more general

diffusion scheme.

2.1.4 Task Selection

Once load transfers between computers have been calculated, it is necessary to de-
termine which tasks should be moved to meet those quantities. The quality of task
selection directly impacts the ultimate quality of load balancing.

There are two options in achieving the desired transfer between two computers.
One can attempt to move tasks unidirectionally from one computer to another, or one
can exchange tasks between the two computers, resulting in a net transfer of work. If
tasks are numerous and fine-grained, a simple one-way transfer using first-fit selection
may suffice. However, if the average task load is high relative to the magnitude of
the transfers, it may be very difficult to find tasks that fit those quantities. By

exchanging tasks one can potentially satisfy small transfers by swapping two sets of

15

diffuse(...)
A; =1+ a|N|
7;’3' =
n = Ina

In [globa]max(.Ai_1 ZjeN,- 77;,]‘)]
ALij) :=0forall j € N;
while eff < eff ,;, do
LEO) = L;
for m:=1ton do
send L™V to all j € N,
receive L™V from all j € N;
L™ = A (L§O) + 2Yjen; %’ngm—n)
end for
ALgj) = ALg g + A7 Ty (L = L) for all j € N
L=r{"
end while
end diffuse

Program 2.1: First-order implicit diffusion algorithm for computer .

tasks with roughly the same total load. In cases where there are enough tasks for
one-way transfers to be adequate, a cost metric such as that described in Chapter 4
can be used to reduce unnecessary exchanges.

The problem of selecting which tasks to exchange to achieve a particular load
transfer is NP-complete, since it is simply the subset sum problem. Fortunately,
approximation algorithms exist which allow the subset sum problem to be solved to a
specified non-zero accuracy in polynomial time [35]. For a given transfer, AL j), the
goal is to find the subset of the n total tasks on computers 7 and j, which, if exchanged,
would result in the net transfer of load closest to AL; j) without exceeding it. Note
that since the tasks on computer j are being considered for transfer from 5 to ¢, rather
than from ¢ to j, their loads are taken as negative. Also, note that if the loads are
measured as real numbers, such as fractions of a second, these values can be converted

to integers by expressing them in round units such as milliseconds.

16

diffuse(...)
.Az‘ =14 %‘Nz‘
B; :=1— g|Ni|
Tij =%
n:= Ina

In [globalmax (Ai_l EjeNi 72,3‘)]
AL(,-,]') =0 for all j € N;
while eff < eff nin do
LY = BiL; + Sjen, TigL
form:=1tondo
send L™V to all j € N;
receive L™ ™Y from all j € N;
LM = A7 (L0 + Shen, T L)
end for
send L; to ally € N;
receive L; from all 7 € N;
ALy = AL + A7 Ty (L = L&YY + 7o (L — Ly) for all j € N;
L;:= LM
end while
end diffuse

Program 2.2: Second-order implicit diffusion algorithm for computer .

To solve the selection problem descibed above, specify a function, F(AL, m),
which is true if a net exchange of AL is possible by the exchange of a subset of the

first m of the n tasks. Let F'(0,0) be true, and let F(AL,0) be false for all AL # 0.

For m > 0, F(AL,m) can be calculated via dynamic programming

F(AL,m+1) = F(AL,m) V F(AL — Ly, m) (2.4)

The desired transfer is the one for which F'(AL, n) is true and for which AL is closest
to AL ;). This process is shown in Figure 2.2. In that figure, the net load exchanges
of subsets are represented by dots on the axis. Initially, there is only the empty set,

for 0 total load exchange. At each step ¢, existing subsets are augmented by adding [;

17
to each subset, as shown by the arrows. This appears to double the number of subsets
at each step, for a total of 2" subsets in the end. Since the loads are integers, however,
the number of subsets is limited by the fact that the load sums of the subsets can only
take O(nlpnax) different values, where [, is the largest absolute value of I; for all j.
The execution time of the algorithm is therefore proportional to the values of /;, rather
than merely the number of values n, making it pseudopolynomial. Specifically, the
run time is O(n%l,y). Approximating the values I; allows one to make the algorithm
fully polynomial for a given level of approximation. Specifically, when the lower b
bits in the representation of each [; are truncated, where b = [log i"n—a’i], the relative
deviation from the optimal transfer, which would be found by the original algorithm,

is at most € = ﬁ%b; This is shown by the following:

>SS >3 U U3 -2)>> 1 —n2 (2.5)

j€S jES' jES j€s jES j€S
where S is the optimal subset under with the original values, /;, and S’ is the optimal
subset under the approximated values, [;. The approximation algorithm therefore has
a run time of O (”—Z%ﬂ) =0 (1‘6—3), which is a polynomial for any given target accuracy,
€. The approximation algorithm is shown in action in Figure 2.3. The effect of the
approximation is that no distinction is made among subsets lying between adjacent
tick marks on the axis.

The next step is to determine ¢, the accuracy of the approximation algorithm. In
general, it may be unnecessary for a computer to fully realize its ideal load transfers.
The load transfers given by the algorithms in the previous section are eager algorithms.
That is, they specify the transfer of load in instances where it may be unnecessary. In
the case of a large point load disturbance, for example, the failure of two computers
far from that disturbance to transfer their own load may have little or no effect
on the global load balance. One way of determining to what extent a computer
must achieve its load transfers is the following. In general, a computer has a set

of outgoing (positive) transfers and a set of incoming (negative) transfers. For a

particular computer i, denote the sum of the former by AL} and the sum of the

18

Step 1

Step 2

+/\
+/\ RN
Step 3 W\k

Final @ 0—+’——0—H——0~

Figure 2.2: Example of pseudopolynomial subset sum algorithm.

Step2

Step 1 T+
e

Step3 11— 15—

Final }}I#II%E!H"'H_#*

Figure 2.3: Example of fully polynomial subset sum algorithm.

19
latter by AL; . In order to achieve the desired efficiency, a computer must guarantee

that its new load is less than %‘lﬁ— Assuming that all of its incoming transfers are

achieved, its new load will be at least L; — AL; . Thus, in order to guarantee that its

new load is less than e%i?—, a computer must leave at most a fraction € of its outgoing

transfers unsatisfied, according to

Lavg >L;— AL; — (1 —¢)AL;}

€JJ min
Solving for the maximum such € gives

L — AL — 2=
emax — 1 —_ + min
AL;

In practice, €nax should have a lower limit of 10~2 or 1073, since a value of zero is
possible, particularly in the case of the computer with the maximum load. Also, note
that using €;,.x in the approximation algorithm does not guarantee that a satisfactory
exchange of tasks will be found. No accuracy can guarantee that, since such an
exchange may be impossible with a given set of tasks. Instead, it merely provides
some guidance as to how hard the approximation algorithm should try to find the
best solution.

Since the selection algorithm cannot, in general, satisfy a particular load transfer
in a single attempt, it is necessary to make multiple attempts. For example, in the
worst-case scenario where all of the tasks are on one computer, only those computers
that are neighbors of the overloaded computer can hope to have their incoming load
transfers satisfied in the first round of exchanges. In such a case, one would expect that
at least O(D) exchange rounds would be necessary. An algorithm for task selection
is thus as follows. The load transfers are colored in the same manner as described for
the GDE algorithm. For each color, every computer attempts to satisfy its transfer
of that color, adjusting €,,,x to account for the degree to which its transfers have thus
far been fulfilled. The algorithm is repeated when the colors have been exhausted.

Termination occurs when progress toward further load transfer ceases. Termination

20

can occur earlier if all of the computers have satisfied the minimum requirement of
their outgoing load transfer quantities (i.e., if €0 is one at every computer). The
first termination condition is guaranteed to be met: For a given configuration of tasks,
there is some minimum non-zero exchange. The total outstanding load transfer will
be reduced by at least that amount at each step. Since the transfer quantities are
finite in size, the algorithm will terminate. This is admittedly a very weak bound. In
typical situations, task selection will seldom require more than a few iterations—at
most it may require O(D) steps in the case of severe load imbalance. A safe approach
would be to bound the number of steps by some multiple of D.

As the above selection algorithm suggests, a task may move multiple hops in the
process of achieving load transfers. Since the data structures for a task may be large,
this store-and-forward style of remapping may prove costly. A better method is to
instead transfer a token, which contains information about a task such as its load
and the current location of its data structures. Once task selection is complete and
these tokens have arrived at their final destinations, the computers can send the tasks’

states directly to their final locations.

2.1.5 Task Migration

In addition to selecting which tasks to move, a load balancing framework must also
provide mechanisms for actually moving those tasks from one computer to another.
Task movement must preserve the integrity of a task’s state and any pending commu-
nication. Depending on the granularity of the tasks, different levels of user assistance
may be required. If tasks are processes, the runtime system can transfer the entire
address space of a task from one computer to another [2, 30]. If tasks are finer-grained
entities, such as individual threads or a collection of data structures, transport of a
task’s state may require assistance from the application, especially when complex
data structures such as linked lists or hash tables are involved. For example, the user
may be required to provide routines which read and write the state of a task from

and to the network, and which free the state once the task has been relocated.

21
2.2 Results

The techniques described above were implemented in the Scalable Concurrent Pro-
gramming Library (SCPlib), which is described in Appendix A. The load balancing
framework therein provides for both empirical utilization measurement and user-
provided load estimates. Load balancing is initiated when the profitability equation
(2.2) is true. Load transfers are determined by diffusion and are satisfied using the
task selection algorithm described in Section 2.1.4. Finally, tasks are migrated asyn-
chronously, with all communication rerouted automatically and task state communi-
cated with user-supplied functions.

One of the applications implemented with SCPlib was a three-dimensional con-
current particle simulation [38, 45]. That application used direct simulation monte
carlo (DSMC), a technique for the simulation of collisional plasmas and rarefied gases.
The DSMC method solves the Boltzmann equation by simulating individual parti-
cles. Since it is impossible to simulate the actual number of particles in a realistic
system, a small number of macroparticles are used, each representing a large number
of real particles. The simulation of millions of these macroparticles is made practical
by decoupling their interactions. First, the space through which the particles move is
divided into a grid. Collisions are considered only for those particles within the same
grid cell. Furthermore, collisions themselves are not detected by path intersections
but rather are approximated by a stochastic model, for which the parameters are the
relative velocities of the particles in question. Statistical methods are used to recover
macroscopic quantities such as temperature and pressure. By limiting and simplifying
the interactions in this fashion, the order of the computation is drastically reduced.

The concurrent DSMC application has been used to model neutral flow in plasma
reactors used in VLSI manufacturing. The DSMC algorithm is executed in parallel
by using a partitioned grid. The concurrent DSMC algorithm for a single partition
is given as Program 2.3. Each task executes the DSMC algorithm, satisfying data
dependencies due to particle transport via communication with its neighbors. Global

communication allows the calculation of domain-wide statistics.

22

dsmc_compute(...)
do
move particles
send away particles that exit current partition
receive particles from neighboring partitions
collide particles
gather/scatter to obtain global statistics
calculate termination condition based on global statistics
while not converged
end dsmc_compute

Program 2.3: Concurrent DSMC algorithm for a single grid partition.

The Gaseous Electronics Conference (GEC) reactor is a standard reactor design
that is being studied extensively. In an early version of the DSMC application, which
used regular, hexahedral grids, a simulation of the GEC reactor was conducted on
a 580,000-cell grid. Of these cells, 330,000 cells represented regions of the reactor
through which particles may move; the remaining “dead” (particle-less) cells com-
prise regions outside the reactor. Simulations of up to 2.8 million particles were
conducted using this grid. As this description details, only 57 percent of the grid
cells actually contained particles. Even for those cells that did contain particles, the
density varied by up to an order of magnitude. Consequently, one would expect that
a standard spatial decomposition and mapping of the grid would result in a very inef-
ficient computation. This was indeed the case. The GEC grid was divided into 2,560
partitions and mapped onto 256 processors of an Intel Paragon. Because of the wide
variance in particle density for each partition, the overall efficiency of the computa-
tion was quite low, at approximately 11 percent. This efficiency was improved to 86
percent by load balancing, including the cost of load balancing. This resulted in an 87
percent reduction in the run time. Figure 2.4 shows the corresponding improvement
in load distribution.

On a more recent version of the DSMC code, which uses irregular, tetrahedral

grids, a simulation was conducted on a 124,000-cell grid of the GEC reactor. This

23

250 T T T T T T T T T
200 | E
before -o—
after &
@
2 150 -
(4]
o
<]
Q
S /D ------ o]
3 i
Q
£ 100 4
=3
=z
50 ; E
I/
&
0 T =< 1 Lo
50 60 70 80 90 100

Percent utilization

Figure 2.4: Utilization distributions for DSMC application before and after load
balancing.

grid is shown in Figure 2.5. The main difference is that this grid is boundary-fitted
and, thus, does not include the particle-free “dead” regions described above. This
problem was run with 1.2 million particles on 128 processors of an Intel Paragon.
Each processor had approximately five partitions mapped to it. Load balancing was
able to maintain an efficiency of 82 percent, reducing the run time by a factor of 2.6.
Load balancing for this problem required, on average, 12 seconds per attempt.

The DSMC application has also been used in the simulation of proprietary reactor
designs at the Intel Corporation. These simulations were conducted on networks of
between 10 and 25 IBM RS6000 workstations. Without load balancing, the efficiency
of these computations was typically between 40 and 60 percent. Load balancing was
able to maintain an efficiency of over 80 percent, increasing throughput by as much
a factor of two.

Many of the load balancing techniques described in this thesis have also been

incorporated into another DSMC code, developed by researchers at the Russian In-

24

Figure 2.5: 140,000-tetrahedra grid of the GEC reactor.

stitute of Theoretical and Applied Mechanics [21]. In this case, however, load was
transferred not by relocating entire partitions from one computer to another, but
rather by exchanging small groups of cells along the partition interfaces between ad-
jacent computers. A feature of this approach is that locality is naturally maintained
since the algorithm is effectively adjusting partition boundaries. For a problem of
space capsule reentry running on up to 256 processors of an Intel Paragon, 80 percent
of linear speedup was obtained with dynamic load balancing, versus 55 percent of
ideal speedup for a random static mapping, and 10 percent of ideal speedup with
no load balancing. It is interesting to note that the random static mapping actually
achieved fairly good load balance, but that the communication between the widely

distributed cells was very costly, reducing scalability.

25
2.3 Related Work

The step-by-step load balancing methodology given at the beginning of this chapter
is based on that in [57]. The latter framework differs, however, in that it makes no
distinction between task selection and task migration. Moreover, the authors consider
only uniform sets of tasks, and largely leave issues of task selection to the application
developer. The authors do, however, consider other aspects of load balancing that
were neglected in this thesis, such as the aging of load information and its effect on
the performance of the load balancing system.

Another methodology for load balancing is given in [40]. There, the authors break
load balancing into information, transfer and location rules. The information rule is
roughly equivalent to load measurement in terms of this thesis; it determines how load
information is collected and stored. The transfer rule is similar to the profitability
calculation, as it determines when a task should be transferred. Finally, the location
rule combines the load transfer calculation and task selection phases, fully determining
where a task should be sent.

Other task-based approaches to load balancing include a scalable task pool [18],
a heuristic for transferring tasks between computers based on probability vectors [13]
and a scalable, iterative bidding model [42]. All of these techniques make assumptions,
such as that of complete task independence or task load uniformity, that are not
applicable in the context of this thesis, where the goal is to improve the performance
of an application divided into communicating, variable-sized tasks.

An alternative to the load transfer algorithms in Section 2.1.3 is the gradient
method. Gradient load balancing methods have been explored extensively in the
literature [28, 33, 57]. As pointed out in [33, 57], the basic gradient model may result
in over- or undertransfers of work to lightly loaded processors. The authors of [33]
present a workaround in which computers check that an underloaded processor is
still underloaded before committing to the transfer, which is then conducted directly
from the overloaded to underloaded processor. While the method does have the

scalability of diffusive and GDE strategies, it has been shown to be inferior in its

26
performance [57].

Recursive bisection methods partition the problem domain to achieve load balance
and to reduce communication costs. Most presentations of these techniques appear
in the context of static load balancing [4, 58], although formulations appropriate
for dynamic domain repartitioning do exist [47, 48]. While many methods exist for
repartitioning a computation, including various geometrically based techniques, the
most interesting methods utilize the spectral properties of a matrix encapsulating
the adjacency in the computation. Unfortunately, these methods have a fairly high
computational cost. They also blur the distinct phases of load balancing presented
at the beginning of the chapter. The combination of these limitations makes such
techniques unsuitable for use in a general purpose load balancing framework.

Another approach for mapping grid-based problems to concurrent hardware in-
volves space-filling curves [34]. These techniques use the curve to generate a map-
ping that preserves the physical locality inherent in the problem. Load balancing is
achieved by assigning different regions of the curve to different computers.

Heuristics for load balancing particle simulations (relevant here because of the
application targeted in Section 2.2) include [15], in which partition boundaries are
adjusted for a one-dimensional decomposition, and [24], in which a diffusion-like tech-
nique is used. While both of these techniques perform well, they are not readily

applicable to more general applications or domain decompositions.

2.4 Summary

This chapter has given a basic methodology and algorithms for load balancing. The
effectiveness of that framework was demonstrated for a large-scale industrial applica-
tion. As mentioned at the start, however, these techniques neglect issues of hetero-
geneity in the computing environment, treat the load of tasks as a simple quantity,
and fail to consider the impact of task migration on communication locality. In gen-
eral, such issues cannot be ignored, and the subsequent chapters take them up, one

by one.

27

Chapter 3 Improved Load Transfer

Calculation

This chapter presents the derivation of a general diffusion algorithm for calculating
the ideal load transfers between adjacent computers. This technique uses adaptive
timestepping to speed convergence once a smooth, low-frequency load distribution
is reached. As part of that derivation, a first-order implicit scheme, similar to that
in [16], is derived. Then, a second-order accurate technique is presented. These
techniques are combined to give the final diffusion algorithm. Finally, the improved
diffusion technique is compared to the other load transfer algorithms described in

Chapter 2.

3.1 General Diffusion Framework

Although a partial differential equation is the model for diffusive load balancing,
the underlying mathematics are actually a system of ordinary differential equations,
since there are no spatial derivatives. (A network of computers is inherently spatially
discrete.) If the load of computer 7 is denoted L;, an equation in a general version of

such a system is given by

dL;
dt

= Y. (Djilj — DiyLi) (3.1)
JEN;

for all 4, where D; ; > 0 and D;; > 0 for all ¢ and for j € IV;. Le., a computer’s load

changes only in response to the loads of its neighbors. Closer examination of (3.1)

reveals that D; ; and D,; have two fundamental features: They seek to establish that

the ratio %}L is equal to the ratio %%"if, and they determine the rate at which those two
)

28

ratios are equalized. This is seen more clearly if (3.1) is rewritten as

dL; . A
dt — Y. (Dij+Djy) (Dj,iLj - Di,jLi) (3.2)
JEN;
where
R D. .
D. . — ij -
Y Dij+Djg (3:3)
and
R D, .
D, = i .
" Dii+ Dy (34)

In this case, it is clear that the coefficients ﬁi,j and ﬁj,i, which always sum to 1,
establish the ratio of L; to L;, and that the rate at which that ratio is established is
proportional to D; ; + D, ;. If (3.1) is rewritten in matrix vector form, the resulting

system of equations is

L et (3:5)
where
Cii=—) Dy, (3.6)
JEN;
and
Cij = Dj; (3.7)

for j € N;; otherwise, C; ; = 0.
(3.5) is actually a compartmental system [3, 60], as it satisfies the following crite-

ria:

1) Diagonal terms are nonpositive: C;; < 0 for all «.
2) Off-diagonal terms are nonnegative: C;; > 0 for all 7 and for all j # i.

3) Column sums are nonpositive: 3, C;; < 0 for all j.

In particular, the column sums of C' are all zero, so the system is a conservative
compartmental system. (Le., total load is preserved.) Compartmental systems have
been used extensively in the study of biological systems, such as oxygen transport in

the bloodstream. The basic concept is to represent a system as a graph, where vertices

29
represent biological entities, such as a cell, and the edges represent pathways, such as
a cell membrane, through which material can pass. The coefficients determine the rate
and gradient of material transmission through the interfaces between compartments.

An interesting property of compartment systems is that they are not, in general,
simply diffusive systems which converge towards some steady state in which material
ceases to be transferred. In fact, depending on the coefficient matrix, D, permanent
flow patterns may exist. This is one reason why compartment systems are useful for
studying biological systems. Persistent flow is not what one seeks to have in load
balancing, however. To guarantee that no flow patterns exist in (3.5), one must not
merely guarantee that %% = CL = 0 for some L # 0, since that implies only that the
system has reached equilibrium. Instead, one must guarantee that D;;L; —D;;L; =0
for all 7 and for all j € N;. This can only occur if the coefficient matrix D is consistent;
that is, it can only happen if the relative loads can actually be achieved. Consider,
for example, a network of three computers. If the ratio %11 is to be 2, and the ratio %
is to be 2, and the ratio %% is also to be 2, then there is an inconsistency; the ratios
cannot be established by any positive Ly, L; and L,. In effect, if each expression
D;;L; — D;;L; is represented by separate row of a matrix ¢ , one seeks to establish
that CL = 0 for some L # 0. C is in general an overspecified system of equations,
which is why inconsistencies are possible.

Attempts to analyze C along standard lines of linear algebra obscure the fun-
damental features that D must have. An alternative procedure is to use graphical
analysis, along the lines of signal flow networks [12, 22], which are used to under-
stand compartmental systems, as well as to study electrical circuits [31]. In signal
flow network analysis, a series of simplification rules are applied to the network; these
transformations are analogous to operations on determinants to find solutions to a
system of equations. A similar analysis can be used to check the consistency of C. In
particular, let G be a weighted directed graph, which has a vertex for each computer,
two edges between each pair of neighboring computers, and a self edge for each com-
puter. Let the edge from computer ¢ to its neighbor j be weighted %iﬁ, and let the

%

edge from computer ¢ to itself be weighted 1. A graph for a 2 x 2 mesh of computers

30

1 D(O,1) 1
D(0) (>
D(L,0)

0 D(1,0) 1
D(0,1)

D(2,0) D(0, 2) D(3 1) D(@,3)
D(0,2) D(2,0) D(l 3) D(@3,1)
D(Z 3)

: \ny ’

O =

D(2,3)

1

Figure 3.1: Relative load graph for 2 x 2 mesh of computers.

is shown in Figure 3.1. What this graph in effect represents is the relative loads that
(3.5) seeks to establish. Note that in order for C to be consistent, the product of the
edge weights along all paths in G from some vertex ¢ to another vertex j must be
the same. If two paths from ¢ to 7 exist which have different products, then the load
ratio of computers ¢ and j is inconsistent, since two sets of equations (those along
the first and second paths) imply different values for that ratio. Note that equality
of path products holds if and only if all cycle products in G have a value of 1. (If the
path product from vertex ¢ to vertex j is p, then the product of any path from j to
118 Il). Therefore, the product of any such cycle is % = 1.) To put it another way, a
computer’s load must be equal to itself. This cycle product property will be used in

a subsequent chapter to show that particular choices of D are valid.

3.2 Algorithms

The diffusion problem described by (3.1) can be approached in a number of ways. In
Section 2.1.3, a first-order approach was given that solved (3.1) for the case where

D;; = D;; = 1. Below are derivations for first- and second-order algorithms for

31
general D. These approaches are combined to yield an adaptive-timestepping method

that dramatically speeds convergence. The former derivations largely follow those in

[16, 49].

3.2.1 First-Order Diffusion Algorithm

The first step to deriving a first-order diffusion scheme it to discretize (3.5), which
yields
AL =aCL (3.8)

where a is the desired accuracy of the diffusion algorithm and, in this case, is the
same as the timestep. (3.8) can be differenced using an explicit (forward-in-time)
scheme

LD - 1O = ocL® (3.9)

or using an implicit (backward-in-time) scheme
AR JOE S A (3.10)
Rewriting (3.9) and (3.10) so that the terms are segregated by timestep yields
LY = (I +aC) LY (3.11)

and

(I—oC) L) =LO® (3.12)

respectively. Solving (3.12) for L+ yields
L) = (T —aC)™' IO (3.13)

The difficulty with (3.11) is that stability of the iteration is achieved only when « is
limited so that the eigenvalues of I + aC are at most 1 [1, 11]. The GerSgorin disk
theorem provides a bound on the eigenvalues of I + aC [43]: The stability of (3.11)

32

is guaranteed if

i — (L+aCiz) | < a Y |Gl (3.14)

JEN;

holds for all i. From the properties of D given above, (3.14) can be rewritten as

Pi — [1 + (|Nz'| - Z)] <ay Ci (3.15)

JEN; JEN;

1]

Eliminating terms in (3.15) and rewriting it gives

1 < 1—alNj| (3.16)
From (3.16), one can see that p; <1 for all ¢ implies that
(3.17)

where Ny is the largest set N;. This is the same result as was given in {11, 59].

Fortunately, (3.13) does not suffer the same restrictions on timestep size as (3.11).
Intuitively, this is because (I — aC)™" is a dense matrix, incorporating load informa-
tion from every computer, whereas I + aC is a sparse matrix that includes only the
load information of a computer’s neighbors. However, provided that the inversion of
I — aC is conducted to an accuracy of «, the radius over which load information must
actually be gathered in an implicit scheme is bounded by a constant [16].

Using (3.12) as a starting point, note that I — aC can be rewritten as A — T,

where A is a matrix with diagonal entries
.Ai =1- O[Ci,i (318)
and where 7 is a matrix with entries

7;,]' = aCi,j (319)

33

Thus, (3.12) can be rewritten as
(A—T)LtY = 1® (3.20)
If (3.20) is multiplied through by A~!, the rewritten result is
LED = A7 (TLED 4 LO) (3.21)
(3.21) can be established by a Jacobi iteration

[L(t+1)](m+1) — 41 (7- [L(t+1)](771) 4 L(t)) (3.22)

where [L(t“)](o) = L®. The Gersgorin disk theorem implies that the eigenvalues
of A7YT are bounded by the row sums of the absolute values of its off-diagonal
entries [43]. The accuracy of the Jacobi iteration (3.22) is a function o = p™ of the
spectral radius. The spectral radius of A~'7 is the maximum eigenvalue, by the

theorem of Perron and Frobenius, since A7 is non-negative [3]

p (A_I) = max (.Az-’l > 7;,]-) (3.23)

JEN;

This implies that the number of iterations n required is

"= [ml (324

Finally, the load transfer from computer 7 to computer 7 is that due to including
the load of computer j in the equations. IL.e., it is the difference between what the load
of computer 7 is with the actual load of computer j, and what the load of computer
¢ would have been if the loads of computers : and j were the same, relative to the
coeflicients D; ; and D;;

D;;

t+D _ AT -1 (t+1)1(© (t+1)](n=1)
ALgj) = ALy + AT (7); (2] =[] (3.25)

34

diffuse(...)
Ai =1+ oY en, Dij
Tij = aDj;
7 = Ina

In [globalmax (A;l Dien; T,)]
AL(i,j) := 0 for all _] € Nz
while eff < eff i, do
L,EO) =L;
for m:=1ton do
send L™V to all j € N;
receive L™ from all j € N;
L™ = A7 (L + Sjen, Tos L)

end for
ALgy) i= ALg) + A7 Ty (FAL° = L7Y) for all j € N,
end while
end diffuse

Program 3.1: Generalized first-order implicit diffusion algorithm for computer 3.

The combination of equations (3.18), (3.19), (3.22), (3.24), and (3.25) results in
the diffusion algorithm in Program 3.1. Note that for the case where D, ; = D;; =1

for all 7 and for all j € NV;, the algorithm is the same as Program 2.1.

3.2.2 Second-Order Diffusion Algorithm

A second-order alternative to the differencing in (3.10) is the midpoint rule

(3.26)

1
LED) _ 10 — o (M)

2

(3.26) can be rewritten as

I - gC)L““) = I+ %C)L(t) (3.27)

35
Substituting A — 7 for I — $C and B+ T for I + $C in (3.27) yields

(A—TLEY = (B+T)LY (3.28)

where A and B are matrices with diagonal entries

Ai=1- %c (3.29)
and
(8
B, =1+ ECM (3.30)

respectively, and 7 is a matrix with off-diagonal entries
Cij (3.31)
Multiplying (3.28) through by A~! and rewriting gives the equation
LOD = A7 [TLHD 4+ (B+T) LY)] (3.32)
A Jacobi iteration establishes (3.32)
[Le] 7 = g [[TL““)] " L (B+T) L(t)] (3.33)

where [L(t“)](o) = (B4 T)L®. The number of Jacobi iterations required to reach
an accuracy of « is the given by (3.24) above.
The load transfer from computer ¢ to computer j is given by
(t+1) _ O] 1 [Dij 17 41)]© (t+1)1(»—1)
ALijy = ALy + AT (5}” L] =)] +
i (20 - 1) 331

Equations (3.29), (3.31), (3.33), (3.24), and (3.34) together comprise the diffusion
algorithm in Program 3.2. When D;; = D;; = 1 for all ¢ and for all j € IV;, this

36

diffuse(...)
A,’ =1 + %ZjENi Di,j
Bi:=1~ 3% en Dij
Tij = 5D
Ina
In [globalma.x (Ai_l ZjeNi 723)]
ALy =0 for all j € N;
while eff < eff ., do
send L; to all neighbors j € N;
receive L; from all neighbors j € N;

LO = BiL; + Yjen; TijL;

for m:=1ton do
send L™ to all j € N;
receive L™V from all j € N;
L o= A7 (L + Sjew, Tis L")

end for

ALgj) = ALgy + A7 Tiy (%‘j‘Lz('O) —L{Y) + Ty (L - Ly)
for all j € N;

Li:=LM™

end while
end diffuse

n =

Program 3.2: Generalized second-order implicit diffusion algorithm for computer :.

algorithm is that in Program 2.2.

3.2.3 Adaptive-Timestepping Diffusion Algorithm

While the algorithms above quickly decimate large load imbalances, they converge
slowly once a smooth, low-frequency state is reached. One way to overcome this
difficulty is to increase the timestep size, dt, as the load imbalance becomes less
severe. A rigorous technique to do this is to apply both of the above methods to
calculate AL for a particular §¢ [36]. The first-order method in Program 3.1 produces
a local error of O(6t?). The second-order accurate method in Program 3.2 produces

a local error of O(6t3). Thus, if a timestep is taken with both methods, the difference

37
between the values produced by each gives an estimate of the error for that d¢. Taking
the maximum such difference at any computer to be denoted errpy,x, the relative error
is erry = %22, Using this error estimate, which is proportional to 0t2, 6t is adjusted

max

to be as large as possible to achieve the desired error

«

Otnew = (5t01d(1 — a)
€T Trel

where @ = 1 — eff ;, is the desired accuracy. (The 1 — o term is a safety factor to

avoid having to readjust the timestep size if the previous adjustment was too large.)

The resulting adaptive timestepping diffusion algorithm is given as Program 3.3.

3.3 Results

Some of the transfer vector algorithms presented in Section 2.1.3 have been previously
compared in terms of their execution times [11, 19, 57, 59]. What has been poorly
studied, with the exception of experiments in [57], is the amount of load transfer these
algorithms require to achieve load balance. The algorithms in Section 2.1.3 were im-
plemented using the Message Passing Interface (MPI) [41] and were run on up to 256
processors of a Cray T3D. The hierarchical balancing (HB) algorithm was mapped
to the three-dimensional torus architecture of the T3D by partitioning the network
along the largest dimension at each stage and transferring load between the proces-
sors at the center of the plane of division. The dimensional hierarchical balancing
(DHB) technique treated the network as a three-dimensional mesh. The averaging
and optimal generalized dimensional exchanges (AGDE and OGDE) and diffusion
algorithms took advantage of the wrap-around connections. Figure 3.2 compares the
total load transfer and execution times for the above transfer vector algorithms on
varying numbers of processors. (diff-1 denotes the first-order diffusion algorithm, Pro-
gram 3.1, and diff-2 is the adaptive-timestepping diffusion algorithm, Program 3.3.)
In this case, a randomly chosen computer contained all of the load in the system, and

the transfer vector algorithms improved the efficiency to at least 99 percent. This

38

diffuse(...)
0=«
ALi’j := (for all _7 € Ni
while eff < eff i, do
send L; to all j € N;
receive L; from all j € V;
LEO) =L
Lgo) := Lj from all j € N;
do
A =1 +62j€Ni 'Di,j
71] = 6Dj;

n = Ina _
In lglobalmax (Ai—l zjeNi 7:])J
L = BiLi + ¥ jen, TigL
for m:=1tondo
(m—1) 7F{m-1) :
send (L, L)toall j € N;
receive (Lgm 1 L(m 1)) from all j € N;

(m) .A_ L(O + z]EN, T’]L(m 1)
Lgm) = At LEO) + 2jen; z,JLg'm b
end for
err; 1= |f,§n) - Lgn)l

€TTmax := globalmax(err;)
if e—’zmi > « then

6 = 4(1—a),/aﬁa—£

end if
while £7Mmax > o
ALy, = ALy + A7VT:; (BLL® = L8Y) + Toj (Li — L) for all j € N;
Li:=1IM
if %ﬂ{-‘fﬁ < « then
0:=46(1-a) agf—rmmaf;
end if

end while
end diffuse

Program 3.3: Generalized adaptive timestepping diffusion algorithm for computer <.

39

scenario was intended to illustrate the worst-case behavior of the algorithms and is
the case for which much analysis of the algorithms has been done. As that figure
shows, with the exception of the HB method, all of the algorithms transferred a fairly
judicious quantity of load. The diffusion and AGDE algorithms transferred the least
load, with the DHB and OGDE algorithms transferring up to 30 and 12 percent more
load, respectively. In this case, the AGDE algorithm seems to be the best bet, trans-
ferring the same load quantity as the diffusion algorithms and doing so at least ten
times faster. It is on such basis that the GDE algorithm has been considered superior
to diffusion [59].

In Figure 3.3, the same quantities are compared, except that the load assignments
were uniformly distributed between 0.8 and 1.2. The goal here was to illustrate the
algorithms’ performance characteristics in a more realistic situation—in particular,
that of balance maintenance. This experiment tells a somewhat different story than
the point disturbance scenario. In this case the diffusion algorithms transferred the
least load. Specifically, the other algorithms transferred up to 127 percent more load
in the case of the HB method, 80 percent more for the DHB technique, 32 percent
more for the AGDE and 60 percent more for the OGDE. As the number of processors
grew, however, the speed advantage of the non-diffusive algorithms was much less
apparent than in the point disturbance scenario. Given that the transfer of tasks
can be quite costly in applications involving gigabytes of data, the small performance
advantage (at most 14 milliseconds in this case) offered by the non-diffusive algorithms
is of questionable value.

A few other important points to note are these: Although the OGDE algorithm
was somewhat faster that the AGDE algorithm, as its proponents in [59] have shown,
it transferred around 20 percent more load in the above test cases. Also, despite the
speed of the HB algorithm, which was the primary consideration in [19], the algorithm
transfers an extraordinary load volume in order to achieve load balance, as was also
illustrated in [57]. There thus appears to be little to recommend it, except perhaps

in the case of tree or linear array networks.

40

16.0 . i ' ‘ .
8
2
s
x
o
2
s
(=]
e
150
Number of processors
1.00 T . . : I
osof e]
L -
0.80]
o HB o—
DHB ——
T AGDE -5
OGDE
! diff-1 -a
eer diff-2 -%-- -
T
o ’
2 H
o 0.50 H |
E !
= i
040 F]
0.30)— |
020} A |
.
o.10 [P TR * |
3 we
_*"
0.00 &im- & . .
50 100 150 200 250 300

Number of processors

Figure 3.2: Worst-case total load transfer (top) and execution times (bottom) of
transfer vector algorithms for varying numbers of processors.

41

0.18 T T T T T
3
o
i
x
o
2
=
O
A4
0.02 1 1 1 1 1
50 100 150 200 250 300
Number of processors
0.16 T —T T T T
o014 | . {
..
0.12 - .a HB o
_____________________ DHB —+—
e AGDE -&-
i OGDE -x--
o0} difi1 o
diff-2 -%--
< H
2 i
o 008 .
£ A
[
006 £ i
004 [t i
0.02 | 4
T
{'
0.00 1 ' .) L

50 100 150 200 250 300
Number of processors

Figure 3.3: Average-case total load transfer (top) and execution times (bottom) of
transfer vector algorithms for varying numbers of processors.

42
3.4 Related Work

An implicit scheme for diffusion was presented in [16]. That algorithm was specifically
designed for a three-dimensional torus. With minor modifications, the algorithm there
can be adapted to arbitrary graphs, as was shown in Program 3.1, and with more
substantial changes, its performance can be significantly improved.

A diffusion model model similar to that in (3.1) was presented in [11]. That work
modeled diffusion by the equation

dL;
T > aij (L — Ly) (3.35)

JEN;

(Actually, the model was expressed in a completely explicit form

LY - L = 3 oy (LY - 1Y) (3.36)
JEN;

However, (3.35) is more appropriate, since it does not imply a particular differencing
scheme.) Thus, this method has fewer degrees of freedom than (3.1), since each
neighbor difference is weighted with a single coefficient. While that limitation is
unimportant for homogeneous systems, it presents problems for the heterogeneous
case considered in Chapter 7. The diffusion algorithm based on (3.36) was found to
be inferior to the dimensional exchange (DE) on hypercubes, due to the latter’s faster
convergence.

The authors of [59] give a lengthy comparison of the explicit diffusion and GDE
algorithms. Their model of diffusion is essentially the same as that in (3.35), except
that they make the simplifying assumption that «; ; is the same for all ¢ and for
all 7 € N;. Based on comparisons of the number of iterations required to reach
a globally balanced state and the reduction in load variance as a function of the
number of iterations, they conclude that the GDE algorithm is superior to diffusion.

In [57], the authors compare an explicit diffusion-like technique to the HB, DE
and gradient methods. They conclude that diffusion is superior since it transfers less

work than the HB and gradient methods and is more general than the DE technique,

43
in that it applies to arbitrary graphs rather than simply hypercubes. They also prefer

the locality and potential asynchrony of diffusion to the global approach used the DE
and HB methods.

3.5 Summary

This chapter presents an improved diffusion algorithm that converges faster than
previous algorithms, is applicable to arbitrary graph networks, and has generalized
coefficients for load transfer between pairs of adjacent computers. That algorithm
compares very favorably to other techniques, requiring significantly lower transfers of
load to achieve a balanced state. The effectiveness of diffusion demonstrated here is
contrary to that in other analyses. That discrepancy is due both to improvements in
the diffusion technique used here, as well as the more realistic metrics of comparison

that were applied.

44

Chapter 4 Cost-Driven Task Selection

In many applications, task selection cannot be conducted without accounting for the
transfer costs of the tasks involved. Dynamic load balancing algorithms that fail to
consider costs in their task relocation decisions may have a detrimental effect on an
application. For example, if tasks are moved arbitrarily, communication overhead
may dramatically increase, exceeding the run time improvement due to better load
distribution. Also, if tasks are disparate in the sizes of their states, ignoring that
fact in task selection may result in significantly higher task migration times than are
necessary. To avoid such difficulties, one must consider task transfer costs in the load
balancing process.

This chapter presents a method for reducing the cost of task transfers. Whereas
the task selection technique in Chapter 2 sought to establish whether a particular
transfer was possible, this method also determines the cost at which a transfer can be
achieved. The algorithm is then shown to limit the degree to which load balancing ad-
versely affects an application’s communication structure. Furthermore, experiments
demonstrate that the techniques can even reduce existing communication costs by
moving tasks closer to those tasks with which they communicate. Other experiments
illustrate the reduction in tasks migration time that results from consideration of the

number and size of tasks involved in a transfer.

4.1 Cost-Driven Algorithm

As mentioned in Chapter 2, the task selection problem is weakly NP-complete, since
it is simply the subset sum problem. An approximation algorithm was presented in
Section 2.1.4 which solved the selection problem to a specified non-zero accuracy in
polynomial time. That algorithm failed to account for transfer costs, however. In

general, one would like to associate a cost with the transfer of a given set of tasks

45

and find the lowest cost set for a particular desired transfer. This problem can be
attacked by considering a problem related to the subset sum problem, namely the
0-1 knapsack problem. In the latter problem, one has a knapsack with a maximum
weight capacity W and a set of n items with weights w; and values v;, respectively.
One seeks to find the maximum-value subset of items whose total weight does not
exceed W. In the context of task selection, one has a set of tasks each with loads
[; and transfer costs ¢;. It is important to note that [; can be negative if task ¢ is
being considered for transfer in the direction opposite to the ideal transfer quantity.
For example, consider a case where AL units of load need to be transferred from one
computer to another. The task loads of the first computer would be positive, since
their inclusion in the transfer set contributes to achieving the ideal transfer quantity.
The task loads of the second computer would be negative, since their transfer to the
first computer would actually increase the load difference between the computers.
Similarly, the cost ¢; can be negative if it is actually advantageous to transfer task
between two computers, as it would be, for example, when the transfer of that task
improves communication locality.

For a given transfer, AL, ;), one wishes to find the minimum-cost set of tasks
whose exchange achieves that transfer. One can specify a cost function, C(AL,m),
which is the minimum cost of a subset of tasks 0 through m — 1 that achieves a net
transfer of AL. Letting C(0,0) be zero, and C(AL,0) be co for AL # 0, one can find

the values of C(AL,m) by computing, in order of increasing m, the following:
C(AL,m + 1) = min{C(AL,m),C(AL = lpy1,m) + Cmy1}

Put simply, the iteration establishes whether or not including task ¢ reduces the cost
for each possible transfer AL. In the end, the lowest cost for a transfer AL is given
by C(AL,m). As was the case in Section 2.1.4, this algorithm is pseudopolynomial;
the run time is O(n%lp,.y), where ln., is the largest absolute value of any I;. This
difficulty is circumvented by approximating the values [;. If the lower b bits of each

[; are truncated, where b = [log d—’;‘fi], the relative deviation from the optimal load

46

n2b

lmax ’

transfer is at most € = The proof of this follows in same manner as the proof
given for the subset sum approximation algorithm in Section 2.1.4. The run time is
thereby reduced to O(’ﬂ——é‘l%“) = O("Ts), which is a polynomial for any given non-zero
€.

Now that function C'(AL,n) has been calculated, the question becomes which
transfer to use. The value of C(AL,n) which is finite and for which AL is closest
to AL j), without exceeding it, is lowest cost of a transfer within € of the transter
actually closest to AL ; (i.e., the transfer that would have been found by an exact
search). One might be tempted to take the subset that yielded that value. However,
by using a subset that is somewhat further away from AL j, one can potentially
achieve a much lower cost. A rigorous approach for this is as follows: Given a target
accuracy €, define ¢ = 1—+/1 — €. If the above approximation algorithm is performed
to accuracy €, the result, AL’, is lowest cost of the transfer closest, within an accuracy
of €, to AL(; ;. Taking the subset with the lowest cost that is within €' of AL transfer
gives the lowest cost subset that is within €2 = € of the transfer actually nearest to

AL ;). € itself is determined as specified in Section 2.1.4.

4.2 Results

The cost-driven selection algorithm described above was incorporated into the load
balancing framework from Chapter 2 and applied to both real and synthetic appli-
cations. In those tests, both the maintenance and improvement of communication

locality are demonstrated, as well as the reduction of task transfer costs.

4.2.1 Comparison for Communication Cost Metrics

A primary concern in the transfer of tasks is that such transfers not disrupt the com-
munication locality of an application. If the communication costs of an application
are significantly increased by relocating tasks far from the tasks with which they

communicate, it may be better not to load balance.

47
Under random load conditions, several locality-preserving cost metrics were com-
pared. In the first case, a task’s transfer cost was taken to be the change in the
distance from the actual location of its data structures to its proposed new location.

I.e., the transfer for task 7 was
c; = diSt(Mnew(i), Mold(i)) — diSt(Mcur(i), Mold(i))

where dist is a function which gives the network distance between any two computers,
and Mg, Mcyr and M., are the original task mapping, the current proposed task
remapping and the new proposed task remapping, respectively. In short, the cost of a
transfer is positive if it increases the distance between the proposed new location of a
task and its old location, and the cost is negative if that distance decreases. This cost
metric takes nothing into account regarding the location of a task’s communicants.
So, once a task has moved away from its neighbors, there is no encouragement for it
to move back. Thus, one would expect this metric to retard locality degradation but
not to prevent it.

Another metric considered was that the cost be the change in a task’s distance

from its original location when the computation was first started
¢; = dist(Mhew (), Morig(1)) — dist(Meur(2), Morig(1))

In this case, a task is encouraged to move back to where it began. If the locality was
good at the beginning, one would expect this metric to preserve that locality. One
would not expect it to improve locality that was poor initially.

The final cost metric used was based on the idea of a center of communication.
Specifically, for each task, the ideal computer at which to relocate it was determined

by finding M enter which minimized

Z ‘/i,jdiSt(Mcenter('I;) - Mold(j))

JEN;

where V] ; is the volume of communication between tasks 7 and j. In a two-dimensional

48
mesh, for example, one would calculate the weighted average of the row/column
locations of a task’s neighbors. The cost of moving a task is then the change in

distance from its ideal location.

¢ = diSt(Mnew(i), Mcenter(i)) - diSt(Mcur(i), Mcenter (l))

Of course, a task’s neighbors are moving at the same time, so the ideal location is
changing somewhat during the selection process. In most cases, however, one would
expect the ideal location of a task not to change greatly even if its neighbors move
about somewhat. One would expect that this metric would improve poor locality as
well as maintain existing locality.

The three metrics described above were compared with the zero-cost metric in
a synthetic computation. The computation was begun on a 16 x 16 mesh of Intel
Paragon nodes with 10 tasks each. The tasks were connected in a three-dimensional
grid, with each task having an average of two neighbors on the local computer and
one neighbor on each of the four adjacent computers. Thus, the initial locality was
high. After load balancing had brought the efficiency to 90 percent, the task loads
were changed so that the efficiency was reduced to around 70 percent, and each task
calculated the average distance between itself and its neighbors. Figure 4.1 shows
this average distance as a function of the number of load balancing steps. As one can
see, locality decays rapidly if no attempt is made to maintain it. The first cost metric
slows that decay but does not prevent it. The second and third metrics limit the
increase in the average distance metric to factors of 2.1 and 2.6, respectively. Figure
4.1 presents a case in which the locality was poor initially—tasks were assigned to
random computers. The third metric was used to improve the locality, and ultimately
reduced the average distance between communicating tasks by 79 percent. This is
within 23 percent of the locality obtained when the problem was started with high
locality. As these figures show, a cost metric can have a tremendous impact on the
locality of an application. The metrics used were fairly simple; more complex metrics

might yield even better results.

49

12.0 —T L L T
100 +
80} 7 zero-cost o—
dist-cur —+—
3 dist-orig -&--
S dist-center -x---
J
©
o 60
o
[
H
4.0 1
2.0 ¥ SYRURVEY) X 36966 HHH KKK XK XK 36 66 26 63 3¢
O BpoaEe0REEE8080R0RERRDERERERERREEERRDRDERBEREBEE]
00 1 1 1 1
0 200 400 600 800 1000
Number of load balancing steps
12~0 T T T T T T T
10.0 -‘x\ —
X\
X,
8.0 % dist-center -x-— -
x\
8 X,
< ™,
8 X
@D ™,
© X,
2 ool .]
o X,
o %
; S
.
40 b X 1
*e
e
i N,
TR e 5t 5 m Hm -y X 36K
20 F - =2 -4)(_
00 1 1 1 1 1 1 1
0 100 200 400 500 600 700

300
Number of load balancing steps

Figure 4.1: Average distance between communicating tasks as a function of load
balancing steps for various locality metrics (top) and the improvement of initially
poor locality (bottom).

50
4.2.2 Comparison for Other Cost Metrics

If cost is not used to constrain task movement, a prodigious number of tasks will
often be transferred. The following experiments demonstrate that cost functions can
dramatically reduce the number or total size of tasks migrated during load balancing.
If task movement is deemed “free,” a large number of tasks will often be transferred
in order to achieve load balance. For example, in 100 trials of an artificial computation
on 256 nodes of an Intel Paragon with 10 tasks per node and a mean efficiency of 70
percent, an average of 638 tasks were transferred to achieve an efficiency of at least
90 percent. Certainly one would not expect that 25 percent of the tasks needed to be
transferred for such an improvement. By setting the transfer cost of a task to be one
instead of zero, the average number of tasks transferred was reduced to by a factor
of four to 160. This is approximately six percent of the tasks in the system.
Reducing the size of the tasks transferred may prove more important than reducing
the number of tasks transferred. For example, it may be less expensive to transfer
two very small tasks than a single, but much larger one. In an experiment the same
as the above where the size of the tasks’ data structures were uniformly distributed
on the interval between 128 and 512 kilobytes, taking a task’s transfer cost to be the
size of its data structures reduced the average time to migrate all of the tasks from
8.4 to 3.8 seconds. Similar results were obtained in the simulation of a silicon wafer
manufacturing reactor running on a network of 20 workstations. This application was
briefly described in Section 2.2. In that case, using unit task transfer cost reduced the
transfer time by 50 percent over zero cost, and using the tasks’ sizes as the transfer

cost reduced the transfer time by 61 percent.

4.3 Related Work

In [44], the authors describe a global optimization approach to task assignment. These
techniques consider the costs of placing tasks on the same or different computers. The

methods used to optimize this NP-hard problem include simulated annealing, tabu

51
search and a stochastic probe.

Another load balancing technique that addresses communication costs is recursive
spectral bisection [4, 47, 48, 58]. In this method, the adjacency of tasks in the commu-
nication graph is captured by a matrix. The tasks are partitioned among computers
based on the spectral properties of that matrix. While this method performs well,
especially for problems involving irregular grids, it is a costly, global approach. The
techniques presented here have the advantage of being asynchronous and completely
local in nature.

Finally, space-filling curves have been used to map grids to computers in a way that
preserves existing spatial locality [34]. In the context of this chapter, the assignment

due to the space-filling curve could be used in a manner similar to the M epter mapping.

4.4 Summary

This chapter has presented a task selection algorithm that considers the transfer costs
of the tasks involved. The method is a variant of an approximation algorithm for the
0-1 knapsack problem. The effectiveness of the technique is demonstrated, both for
maintaining and improving the communication locality of an application, as well as

for reducing the cost of task migration.

52

Chapter 5 Vector-based Load Balancing

Dynamic load balancing techniques currently in the literature characterize resource
utilization by a single number. While such a representation is adequate for many
applications, there are broad classes of computations whose resource needs are not
accurately captured by a scalar. Examples of such applications include those that are
comprised of multiple, rapidly alternating computational phases, each with different
load distribution properties. In such computations, an equal combined load does not
necessarily imply equal loads for the individual phases; the efficiency may remain
low even though the computation is “balanced.” A simple example illustrates the
problem: Consider a two-phase computation running on only two computers, as shown
in Figure 5.1. The first phase of computation takes 10 seconds on computer 1 and
20 seconds on computer 2. The second phase of computation requires 20 seconds on
computer 1 and 10 seconds on computer 2. If resource usage (time) is measured as
a scalar, it appears that each computer is being used for 30 total seconds; thus, the
computation seems efficient. If a synchronization point exists between the phases,
however, then the computation is not actually balanced. Computer 1 must wait 10
seconds for computer 2 during the first phase, and computer 2 must wait 10 seconds
for computer 1 during the second phase. Hence, the computation is only 75 percent
efficient. Because the phases are brief, tasks cannot necessarily migrate whenever
the phases alternate; the cost of doing so would exceed the benefits of a better load
distribution. Instead, tasks must be remapped in such a way that both phases are
equal.

Another class of application that is poorly served by the scalar load view includes
those with disparate computation and memory requirements. Migrating tasks to re-
duce the variance in the computation requirements at each computer may increase the
variance in memory usage, causing problems in memory-constrained environments.

Other applications not addressed by the scalar load view are those with rapidly evolv-

53

| Phase 1

Add synchronization
—_——

Phase 2

Phase 2

Computer 1 Computer 2

Computer 1 Computer 2

Figure 5.1: Example of low efficiency in a “balanced” system.

ing, but predictable loads. Balancing the current load will not, in general, guarantee
a balance in the future (and vice-versa). For these classes of applications, a more
comprehensive characterization of resource usage is required.

One solution is to view the load of a computer as a vector, rather than a scalar,
where each component of the vector captures a different aspect of a computer’s load.
A load balancing scheme using such an approach would jointly redistribute all of
the load components. For example, in the case of a multiphase computation, if the
resource usage at a particular computer is characterized by a vector, where each
vector component represents the computation time of one of the phases, equality of
the vector across the computers would guarantee a uniform load distribution for the
individual phases.

This chapter presents the vector dynamic load balancing technique as a refinement
to methods presented in previous chapters. The vector-based technique is applied
to each of the three classes of applications outlined above, providing performance
results on real and synthetic applications that demonstrate the improvements made
over traditional techniques. These results confirm that the vector-based dynamic load

balancing offers a dramatic advantage for certain types of applications.

54
5.1 Algorithmic Modifications

Incorporation of the vector methodology primary involves replacing scalar load vari-
ables with vector load variables. In some instances, however, more extensive changes
are required. Below are the modifications necessary to each of the phases described

in Chapter 2.

5.1.1 Load Evaluation

Under the scalar model, the computational requirements of a task could be deter-
mined by using standard operating system routines to measure its resource usage, by
having the application programmer provide an estimate of a task’s load based on algo-
rithmic considerations, or by a combination of the system- and programmer-provided
information. While such facilities still prove useful for the vector model, in many
situations, the application developer must explicitly determine what the components
of the load vector should be. Section 5.2 gives the specifics of load measurement for
the three classes of applications presented there.

Whatever the method for determining the loads of the tasks mapped to a com-

puter, in the end, the task loads are summed to yield the computer’s total load

Li= Z l—; (5.1)
JET;
where I_:, is the total load vector at computer 2, T; is the set of tasks mapped to that

computer, and l_; is the load vector associated with task j.

5.1.2 Profitability Determination

Once the total load has been determined at each computer, the computers must
communicate to detect the presence of a load imbalance. In the scalar case, the

efficiency is given by
1 «P-1
_ P Zi:o Lz . Lavg
- o — =
max;._o Lz Lmax

eff

(5.2)

95

where P is the number of computers. In the vector case, each component of the
efficiency is given by
%Zf:_ol Li,k _ La.vg,k

P-1 E - E
max,_o Lik max,k

-
eff, =

(5.3)

Once the efficiency has been calculated, the next step is to determine if the efficiency
improvement possible by load balancing merits the cost. In cases where the run time
is inversely proportional to the efficiency, a useful criterion on which to remap tasks
is

(eﬁcur < eﬁmin) /\ ((1 - :gﬁ) Tstep > Tbal) (54)

where eff v €ff mins €ffnew are the current efficiency, requested efficiency and esti-
mated post-load balancing efficiency, respectively, and Tge, and Ty, are the time
between load balancing opportunities and time required by load balancing, respec-
tively [57]. This means that load balancing will be undertaken when the efficiency
is below the user threshold, and when the expected reduction in run time, which is
proportional to 1 — %—W—, exceeds the cost of load balancing. (eff ,ew and Tpa can
initially be taken as equeexvi to eff i, and zero, respectively, until they are determined
by an actual attempt at task remapping.) The problem with applying this criterion to
the vector case is that the run time may not be inversely proportional to the efficiency.
For example, in the case where one of the efficiency vector components represents the
distribution of memory usage, an improvement in that aspect of the efficiency may or
may not improve run time. Moreover, even when run time is inversely proportional
to the efficiency, the decrease in run time between a single pair of load balancing
opportunities may not merit the cost of task reassignment. A more useful criterion

is the following

- o Tepoch
< . N—e—-—"—7 9.5
(\k/ Bﬁcur,k eﬁmm,k) Tep()ch T Tbal < eﬁmax ()

where Tepoen 1S the time since the last load balancing attempt (or since the compu-
tation began) and eff, ., is the maximum time-based efficiency desired by the user,

taking into account that some time must be spent in relocating tasks. In this case,

56
load balancing is undertaken if the efficiency is less than the user-specified limit for
any of the load components and if the maximum time efficiency would still be possible
given the cost of load balancing. For example, if the user wants a time-based efficiency
between 90 and 95 percent, the time-based components of ;ﬁ”min would be 0.90, and
eff max Would be 0.95. The remaining components of e?fmin could characterize the

balance in the use of memory or other resources.

5.1.3 Load Transfer Calculation

If load balancing is deemed profitable, the computers next calculate the ideal load
transfers. In Section 2.1.3, three algorithms, the hierarchical balancing (HB) method,
the generalized dimensional exchange (GDE) and diffusion, were presented. For each
of these algorithms, the vector modifications generally entail replacing all of the scalar

load quantities in the calculation with vector values.

Hierarchical Balancing Method

In the HB method, the computers are divided into two subsets, and work is transferred
between the subsets so as to make their relative loads equal. These subsets are
then recursively subdivided and balanced. Extended to the vector case, the transfer
between two subsets of computers becomes

P,L, — P,L,

AL(l,?) = Pl + P2

(5.6)

where l—;1 and EZ are the total loads of the two subsets of computers being balanced,

and P; and P, are the numbers of computers in the respective subsets.

Generalized Dimensional Exchange

The GDE method uses an iterative approach to calculate the load transfers. The
network links between adjacent computers are minimally colored so that no computer

has two links of the same color. For each color, the computers at the ends of a link

57
of that color exchange load equal to some fraction, A, of their load difference. The
vector GDE iteration is
AEE:J;)U = AEE:L‘) + A(igt) — Egt)) for each j € N;
where

AI_:S,)J.) = 0 for each j € N;

Diffusion

Like the GDE method, diffusion is an iterative approach to determining the amount
of load to be transferred. Program 5.1 is the vector version of the first-order, implicit
diffusion algorithm from Chapter 3. The only subtle change is that the number of
Jacobi iterations required may be different for each vector component. Thus, the
number of iterations actually performed is the maximum required by any component.
Also, as in the scalar case, dynamic variation of the timestep size can dramatically
improve the performance of this algorithm. The adaptive timestepping version is
given as Programs 5.2 and 5.3. The only additional complications arise from the
adjustment of the timestep size. In this case, the timestep becomes a vector, each

component of which may be increased or decreased independently.

5.1.4 Task Selection

If load is measured as a scalar, task selection may consider either one-way transfers
of tasks or two-way exchanges. (The latter potentially allows satisfaction of small
transfer quantities by exchanging two subsets of tasks with roughly the same total
load.) The vector model, however, actually necessitates bidirectional exchanges since
components of the load transfer may in general occur in different directions. For
example, in Figure 5.1, load must be transferred in both directions to achieve load
balance.

In Chapters 2 and 4, two techniques for selecting tasks were presented. The

former technique simply sought to determine the exchange of tasks closest to the

58

diffuse(...)
A’i,k =1+ ax ZjeNi ﬁi,j,k for all &k
Tijx = 0xDj;y for all k

- In &
k=T lglobalmax(ﬁ;é v, ﬂ,j,k) J for all &
Nmax ‘= Maxg Mg
Ai(i §) = 6 for allj € N;
while V, eﬁk < eﬁmmk do
O .= L,
for m := 1 to Nyay do
send L™V to all j € N;
receive L™V from all j € N;
L(m) = A} (L) + Sien, 71,,,;ng],c) for all &
end for
AL@)k = AL(% gk T ‘Az kT] k __LEE(Q - E('?cmx—l))
for all j € N; and for all k& "
L= [
end while
end diffuse

St

Program 5.1: Vector first-order implicit diffusion algorithm for computer <.

desired load transfer; the latter also incorporated the costs of task transfers. Both of
those algorithms can be adapted for vector loads.

The task selection algorithm from Section 2.1.4 used dynamic programming. Ap-
proximation of the task load values made the algorithm polynomial. In the vector
case, for a given transfer, Af(i,j), the goal is to find the subset of the n total tasks on
computers ¢ and j whose exchange would result in the net transfer of load closest to
AI_:(,',]-), without exceeding any component of it. As before, a function, F(AE, m), is
specified, which is true if a net transfer of AL is possible by the exchange of a subset

of tasks 0 through m — 1. F(0,0) is true, and F(AL,0) is false for all AL # 0. The

59

dlffuse()
§:=a
AL; ;=0 for all j € N;
while eff < eff i, do
send fz to all j € N;
receive Ej from all j € N;

9.=r
L := L; from all j € N;
do

{*j =1+ 8k Xjen, Dij for all k
Tijk 6k’DJ ik for all &

JL,k L+ % %jen, Digu for all &
B % Sjen, i for all &

Tijk = %— .k for all &

i, 1= In g, for all &
g - or a
k In lglobalmax(ik Z]G ﬁ)] \’
Nmax = MaXg T_ik
(0) =
Liy =BixLix + jen, Tixlx for all k

for m := 1 to nymax do

=y =(m-—1
send (Ll(-m U,Lgm)} toall j € N;
. “ m-—l) :(m—l) .
receive (LJ L) from all j € N;
(m) ‘ (0)

— YN, k‘ (+ Z]EN ,g,kL‘g k b for all &
(m) =-1 "(0) : =(m
= Aix \ Lix + 2Zjen; Tij, kL] & for all k

end for

(max)

errl ki=|Liy — Eg}c‘“a")] for all k
errmax,k = globalmax(&i’,-,k) for all &
for all k£ do

err
if =2k > Gy then

max,k

L
O = Op(1 — @) | |Gy ek
errmax,k

end if
end for

err -
Whlle vk TM > [0

max,k

Program 5.2: Vector adaptive-timestepping diffusion algorithm for computer 4 (part

1).

60

- - -—1= ’51 . =(0) =(Nmax—1) = - -
AL jyk = ALG gy, + A Tijk \ 525 Lig — Ljg + Tk (Lz‘,k - Lj,k)

ik
for all j € N; and for all k

— :’(nmax)
Lz = L’L
for all £ do

err
if Simaxk o 5 then
max,k

-

= 2 ~y [~ Lmaxk
O 1= 0 (1 — @x), | O =m2xk
errmax,k

end if
end for
end while
end diffuse

Program 5.3: Vector adaptive-timestepping diffusion algorithm for computer ¢ (part
2).

values of F(AE, m) are computed in order of increasing m by the following
F(AL,m+1)=F(ALm)V F(AL — Iy, m) (5.7)

The best transfer is that for which the value of AL is closest to AI_:(,-,J-) and for which

F(AL,n) is true. The “closest” transfer is that which minimizes

- - 2
AL iyg — AL
> (N) (5.8)

% AL,j)k

(Division by AE(i,j),k normalizes the distance with respect to the scales of the transfer
components.) An example of the algorithm for a length-2 vector is shown in Figure
5.2. In that figure, sets are represented by dots. Initially, the only set is the empty
set, which lies at the origin. New subsets are created at each step by adding a task to
all existing subsets. This algorithm is pseudopolynomial, however, with a run time
proportional to O (n Ik nl_;nax,k) =0 (n‘i“ Ik l:nax,k), where d is the dimension of the

vector, and where fmax is the component-by-component absolute maximum of all fm

61
(i-e., fmax,k is max™_}, |fm,k| for all k). This difficulty is overcome by approximating

the values l:n The lower Ek bits in the representation of each l_'m,k are truncated,

gk lmax,k

o -‘, the relative deviation from the optimal transfer is at most

where by = [log

. 3 ..)
& = 22* This is true since

jEZS G > ,Zs G > > 0> > by > j;s(l},k — 9 > JEZS Ge—n2% (5.9)
holds for all k£, where S is the optimal subset using the original values, l;, and S’ is the
optimal subset with the approximated values, l_; The run time of the approximation
algorithm is thus O (n‘”l I Z"ﬁﬁ) = O("ﬁi%), a (potentially large) polynomial for
any given d and €. An example of the approximation algorithm appears in Figure 5.3.
New subsets are created at each step only when they fall within an empty rectangle.
As was shown in Chapter 4, the algorithm above can be modified to incorporate the
costs of task transfers, such as the effect of moving a particular task on communication
locality. Such an algorithm calculates not only the ability to achieve a particular
transfer, but also the minimum cost of achieving it. In this case, a cost function,
C (Af:, m), is defined as the minimum cost of a subset of tasks 0 through m — 1 that
achieves a net transfer of AL. Let C(0,0) be zero, and let C(AL, 0) be oo for AL # 0.

The values of C(AL,m) are computed via
C(AL,m+1) = min{C(AL,m), C(AL — L11,m) + Cms1}

The run time of this algorithm in its exact and approximated versions is the same as
the cost-invariant algorithm above.

For vector loads, the selection algorithm accuracy, €, is determined by the following
considerations. A computer generally has a set of outgoing (positive) transfer quantity
components and a set of incoming (negative) transfer quantity components. For a
particular computer %, denote the sum of the former by AE;" and the sum of the latter
by AL;. (Le., let AL, be the sum of positive AL j for all j € Nj; similarly, AL,

is the sum of negative AE(i,j),k for all j.) To achieve the desired vector efficiency,

62

Sfep 1 /

Step 2 —

Step 3 /Q]
°
° °
Final * o
° °
°

Figure 5.2: Example of pseudopolynomial vector subset sum algorithm.

63

——
Step 1 /
v \
Step 2
.
O~
Step 3 9 i
/ / e
v
.
®
Final ®
° ®
°

Figure 5.3: Example of fully polynomial vector subset sum algorithm.

64

eff min, €ach computer must guarantee E,-yk < #EL, for all k. Assuming that all

eff min,k

of the incoming components of the transfer quantities are satisfied, the new load of
computer ¢ will be at least L;— AI_;;-F . Thus, in order to guarantee that its new load

L .
components are at most —2&* for all k, respectively, a computer can leave no more

eﬁ min,k

than € of its outgoing transfer vectors unsatisfied, according to

I_: v — - -
28R > Lo — ALy, — (1- &) ALY, (5.10)
eﬁmin,k

Solving (5.10) for the maximum such € gives

1 (= . Lay
grna.x,k =1- = (Li,k - ALz_,k - —»a L) (511)
ALiak eﬁmin,k

As before, the selection algorithm will not, in general, achieve the desired load
transfers in a single attempt. Multiple task selection rounds will typically be required

to sufficiently reach the load transfer quantities.

5.1.5 Task Migration

The task migration phase is unaffected by the vector modifications and is conducted

as described in Section 2.1.5.

5.2 Results

The vector dynamic load balancing methods described above were implemented in
terms of the Scalable Concurrent Programming Library. This library is described
in Appendix A. The improved load balancing framework that resulted was in turn

applied to the three classes of applications mentioned at the beginning of the chapter.

65
5.2.1 Applications with Multiple Phases

Dynamic load balancing techniques already in the literature have concentrated en-
tirely on single-phase computations. That is, they work only for applications which
are comprised of a single mode of computation between synchronization points. Ex-
amples of such applications include Navier-Stokes flow solvers and particle simulations
without self-consistent electromagnetic fields. As concurrent simulation techniques
become more advanced, however, multiphase computations will appear with increas-
ing frequency. Such applications involve two or more tightly interleaved computa-
tional phases separated by synchronization points. Failure to jointly balance each of

the phases will potentially result in poor efficiency.

Direct Simulation Monte Carlo Application

The vector dynamic load balancing technique was applied to the direct simulation
monte carlo (DSMC) application described in Section 2.2. When the particles being
simulated in DSMC are ions, they contribute to and are influenced by an electromag-
netic field. Consequentially, an electrostatic field solver has been incorporated into
the application. This solver uses a face-based finite element (FEM) technique, taking
as its input the charge density in each grid cell and returning the electric field. A
preconditioned conjugate gradient method is used to solve the system of equations
that results from the FEM. This field solver is described in greater detail in Appendix
B.

The spatial decoupling at the core of the DSMC method makes it an ideal can-
didate for parallelization, since two partitions of grid cells interact only along their
boundaries. The same applies to the field solver. The grid for a problem is prepared
for parallel simulation by first dividing it into five to ten partitions per computer.
Uniform execution time across computers is achieved by dynamically remapping the
partitions. For the particle transport phase, dynamic load balancing is necessary be-
cause the concentration of particles in a region of the grid changes during the course

of the simulation. The grid may be refined in areas of high particle concentration in

66

dsmc_compute(...)
do
do
send field boundary information to neighbors
receive field boundary information from neighbors
calculate updated field
gather/scatter to determine convergence
while not converged
move particles
send away particles that exit current partition
receive particles from neighboring partitions
collide particles
gather /scatter to obtain global statistics
calculate termination condition based on global statistics
while not converged
end dsmc_compute

Program 5.4: Concurrent DSMC algorithm, with self-consistent fields, for a single
partition.

order to preserve the integrity of the DSMC model. This in turn affects the run time
of the field solver, which operates on the same grid used in the particle transport
phase. The schematic multiphase algorithm is given in Figure 5.4.

The necessity of dynamic load balancing to this application’s efficiency was illus-
trated during a 1.2 million-particle simulation on a 140,000-cell grid of the Gaseous
Electronics Conference (GEC) reactor. (See Figure 2.5.) This simulation was run on
128 nodes of an Intel Paragon. Each node had approximately five partitions mapped
to it. Without load balancing, the first 150 timesteps required 1,762 seconds, for an
efficiency of 31 percent. A scalar view of resource usage, which considered the particle
transport and field calculations in aggregate, improved the situation somewhat: real
efficiency was improved to 45 percent, and execution time reduced to 1,217 seconds.
(83 of those seconds were required by two rounds of task remapping.) Because the
load distribution characteristics of the particle transport and field calculation phases

were quite different, the scalar approach failed to generate much of an improvement.

67

| load metric | none | scalar | vector |
run time (secs) | 1,762 | 1,217 787
efficiency 31 45 70

Table 5.1: Summary of the run time and efficiency for the DSMC application without
load balancing and with the scalar and vector views of load.

Although the scalar efficiency as given by Equation 5.2 was high (the library esti-
mated it to be over 75 percent), the actual efficiency, in terms of available computing
resources being usefully employed, was much lower. To use the vector load balanc-
ing methods described above, timing calls were inserted before and after both the
particle transport and field solver phases. The times of these two phases where then
passed on to the load balancing routine. As a result of the additional information
provided by the time vector, the efficiency improvement was much greater. The run
time was reduced to 787 seconds, for an overall efficiency of 70 percent. (98 seconds
were required by two instances of load balancing.) These are summarized in Table

5.1,

Particle-in-Cell Application

The advantages offered by the vector load view were also seen in a particle-in-cell
(PIC) simulation of ion thruster backflow around a satellite [39, 45]. (See Figure
5.4.) Like the DSMC application, this simulation involved particle transport and
field calculation phases. The primary differences between the two applications were
that the PIC code simulated collisionless plasmas and used a regular grid on a simpler
geometry. (The skeleton algorithm is the same as that in Program 5.4, without the
“collide” step.) The satellite grid was divided into 1,575 partitions and mapped
onto 256 processors of a Cray T3D. As with the GEC reactor simulation described
above, the efficiency was quite low, at 54 percent. Techniques based on scalar load
reduced the run time for 100 timesteps of this simulation from 2,374 seconds to 2,014
seconds, for an improved real efficiency of 63 percent. An even greater improvement in

efficiency was offered by the vector-based algorithms. The vector approach improved

68

Figure 5.4: ESEX/Argos geometry and cutplanes for ion density, charge-exchange ion
density and electric field.

the efficiency to 72 percent, reducing the run time to 1,775 seconds. A detailed
breakdown revealed that vector load balancing had improved the field calculation
efficiency from 73 percent to 94 percent and the particle transport efficiency from
29 percent to 43 percent. These results are summarized in Table 5.2. A larger
improvement in the particle transport efficiency was impossible because the time for
that phase in one of the partitions was so high that no matter what computer it was
assigned to, that computer was overworked, slowing down the entire computation.
This suggests that dynamic granularity control (i.e., the ability to divide and merge
tasks during execution) must be coupled with vector load balancing to achieve higher

efficiency in such cases.

5.2.2 Applications with Disparate Computation and Mem-

ory Requirements

In many applications, computation and memory requirements are highly correlated—

run time is proportional to the size of the data structures operated upon. If this is

69

| load metric | none | scalar | vector |
run time (secs) 2,374 | 2,014 | 1,775
total eff. 54 63 72
field solve eff. 73 78 94
particle trans. eff. 29 41 43

Table 5.2: Summary of the run time and efficiency for the PIC application without
dynamic load balancing and with the scalar and vector views of load.

not the case, however, and in fact, the computation and memory needs of tasks are
relatively independent of one another, reassigning tasks to reduce the variation in
computation time across computers may increase the variation in memory usage. In
environments where memory is constrained, this may slow a computation down (due
to virtual memory paging) or even cause it to terminate due to memory allocation
failure. To circumvent this difficulty one can consider the computational and memory
requirements of a task together, as a vector. By balancing the time-memory vectors
across computers, one would guarantee that both computation time and memory
usage are well-distributed.

A situation in which tasks’ computation and memory requirements varied in pro-
portion occurred in a DSMC simulation of neutral flow in the GEC reactor. (Le.,
no electromagnetic fields were used.) The grid density throughout the reactor varied
according to the complexity of its internal features. However, the particle density
was uniform throughout the reactor. Thus, the number of particles in a partition
was proportional to the total volume contained by that partition, not the number
of cells. Some partitions had a large number of grid cells, but comparatively few
particles. As a result, they were memory-intensive, but required little computation
time. Other partitions contained more particles but fewer grid cells, making them
more compute-intensive and less memory-intensive. When the simulation was run on
12 processors of an Avalon A12, the load balancing algorithm speeded execution as
one would expect; specifically, it maintained an average time per step of about 2.0

seconds versus 2.5 seconds per step without load balancing. However, the amount

70

50.0 T T T T T T T T T

time only re—
with mem H—
45.0 |- .

400 | - -
350 | .
300 | .

il | 1 |

20.0 b

Memory usage (MB)

15.0 + 4

10.0 |- | 4

50 | 1

00 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Timestep number

Figure 5.5: Variation in memory usage after several load balancing rounds with a
time-only scalar load metric and a time-memory vector load metric.

of memory used on each computer, which was initially quite uniform, varied increas-
ingly with each load balancing attempt. Initially, the memory usage per computer
was between 24 and 27 megabytes. After the first round of load balancing, 16 and
30 megabytes were the lower and upper limits. In subsequent rounds, these extrema
increased to 10 and 38, 9 and 40, and 9 and 42 megabytes, respectively. While this
posed no difficulties on the A12, due to the large amount of memory available at each
processor (512 megabytes), it could pose a problem on a network of workstations,
where individual memory capacities of 32 to 64 megabytes are more typical. In a
second experiment on the A12, a load vector was used that included both computa-
tion time and memory. In this case, the time per step was reduced to 2.2 seconds on
average. The memory usage remained much more balanced, however, increasing to
upper and lower limits of 24 and 29 megabytes, respectively, in the worst case. These
memory disparity results are shown in Figure 5.5. So, while the quality of balance in
computation achieved with the vector metric was somewhat lower, that balance was

achieved with a significantly reduced disparity in memory usage.

71
5.2.3 Applications with Rapidly Changing, but Predictable

Computation Times

In some applications, the computational requirements of tasks may change quickly,
but fairly predictably. Under such circumstances, remapping tasks so that the current
computation time is nearly equal at each computer will not, in general, guarantee that
the computation time will be equal in the future. Similarly, guaranteeing that the
computation time will be equal in the future may not result in an equal distribution
at present. An initial approach at overcoming this difficulty would be to consider
the average future computational requirements of tasks and to reassign them based
on that basis. While one would expect this method to offer some advantages, room
remains for further improvement. In particular, consider the case where the load of

a given task j evolves from step ¢y to step t; according to the following linear model

(tr — O + (¢ — to)I{V
t — to

1(t) = (5.12)

The computation time for a particular computer ¢ at a particular step ¢ is thus

Lit) = ¥ (2 (5.13)
JET;

Note that since the computational requirements vary linearly, if they are equal every-
where at both steps ty and ¢, respectively, then they are equal at all steps in between.
To guarantee that both L;(t9) and L;(t;) are equal everywhere, respectively, one must
find an assignment of tasks that jointly makes 3 ,cr, l;o) and 3 ;eq, l§1) equal every-
where, respectively. This is the same situation as was encountered for two-phase
computations in Section 5.2.1 above; there are two quantities which must be simul-
taneously balanced by task relocation. So, let the load vector for a particular task be

I = (10,1,
The vector technique can, in fact, be applied to any situation in which the step

times of tasks can be accurately modeled by a polynomial. If the step times vary

quadratically, then a 3-vector containing the times at unique steps %y, t 1 and tq,

72
completely characterizes the time at all other steps, since a quadratic function is
uniquely specified by values at three different points. In general, if a task’s step time
is accurately described by an n-degree polynomial, an (n + 1)-size vector will capture

the behavior of that task.

Synthetic Application

The advantages of the vector approach were illustrated in parametric experiment
conducted on 256 processors of a Cray T3D. Each computer began with 5 tasks
(0)
I

assigned to it. The tasks’ initial times per step, l;"’, were random values uniformly

distributed on (1,4). The tasks final step times, l;l), were distributed uniformly over
the interval (1,8). So, the variance in resource requirements was increasing with
each step. As the tasks were originally assigned, the efficiency for 100 steps was
73 percent. Task migration based on the scalars l§0) yielded a small improvement
(1)
lj

to 75 percent. Using instead the scalars [;’, for which the times were highest and

1O 4y

most varied, improved the efficiency to 81 percent. Using the average time, +—-—,

improved the efficiency even further, to 86 percent. However, by considering the load
vector, l;-, described above, an efficiency of 93 percent was obtained. These results
are summarized in Table 5.3.

A second parametric experiment was conducted just as above in which each task
had step times at tg, t1, and t, that were uniformly distributed on (1,4), (1,6)
and (1, 8), respectively. Between these points, the tasks’ loads varied quadratically.
Leaving the tasks in place resulted in a base efficiency of 72 percent. Using the starting
step times reduced efficiency to 68 percent, and using the ending step times reduced it
to 67 percent. Using the average step time, calculated by integrating the polynomial
and dividing by ¢, —to, improved efficiency to 80 percent. Using a 2-vector of only the
starting and ending times improved efficiency slightly, to 73 percent. Finally, using
the 3-vector that also included the intermediate step time value improved efficiency
to 88 percent. These results are also summarized in Figure 5.3.

Of course, in the above situations, it was assumed that a load model existed a

priori. In real applications that may not be the case. For applications in which the

73

load efficiency for | efficiency for
metric linear loads | quadratic loads
none 73 72
19 75 68
1% 81 67
I3ve 86 80
), l“) 93 73
@12 [y n/a 88

Table 5.3: Summary of the efficiency for linear and quadratically varying step times
with different load metrics.

time complexity of the algorithms is readily analyzable, one can develop a model
using that analysis. For more general applications, a better technique would be to
sample the load of a task at each step in the computation. Then, by maintaining a
history of past samples, statistical properties such as the mean and variance can be
calculated, and more importantly, a technique such as least mean squared deviation
or least mean absolute deviation (the latter being more robust for noisy data [36])

can be used to model the load.

Direct Simulation Monte Carlo Application

A DSMC simulation of the GEC reactor demonstrated the usefulness of load modeling.
In this problem, neutral particles were injected through one of the small, corner inlets
of the reactor. As a result, the load was increasing locally around the inlet at a rapid
rate, and increasing globally at a slower rate. Four experiments were conducted on
a 12-processor Avalon A12. First, no load balancing was used. In that case, the
wall clock time per simulation iteration increased from 1.8 seconds to 3.2 seconds
over 500 iterations, as the particle count rose from 1.1 to 1.2 million. In the next
three scenarios, load balancing was considered every 100 steps and was initiated if
the estimated efficiency was below 90 percent. For the first test, the average CPU
time per step over the previous 100 steps was used as a task’s load. This resulted

in some improvement in run time. Load balancing was conducted at three of four

74
opportunities and reduced step time by an average of 0.15 seconds per attempt,
resulting in a time of 2.6 seconds for step 500. Next, the CPU time for the most
recent step was used—equivalent to using the l;-o) load metric above. In this case,
load balancing made a more dramatic difference, reducing step time by an average
of 0.28 seconds for a final time per step of 2.4 seconds. The step time reduction
quickly dissipated in each case, though, since the load estimate was most accurate
immediately after load balancing. In the final case, a least mean absolute deviation
fit was calculated, and a load vector of the initial and predicted load at 100 steps in

1O)

the future was used. This is the same as using the (/;”,;

) vector above. In this
final case, load balancing was only attempted once, reducing the time per iteration
by 0.6 seconds, for a final time per step of 2.1 seconds. In all three load balancing
tests, load balancing required an average of 10.5 seconds per attempt. Table 5.4
and Figure 5.6 give the complete results. In the former, only one number is given if
load balancing was not conducted. In the latter, sharp drops in the run time mark
the points at which load balancing occurred. In these experiments, the vector load
balancing method not only yields a lower time per step, but also required the fewest
load balancing attempts, due to the higher accuracy of the load metric. Note that
had field calculations also been performed, the load vector should have had three
components, assuming that the field solver time remained relatively constant, or

four components, assuming that any grid adaption associated with increased particle

density increased the field solver’s run time as well.

5.3 Related Work

The need for alternative load measurement schemes is also addressed in [14]. The
authors point out that load measurement based only on processor utilization neglects
the use of other resources, such as memory and disk space. The authors address this
problem by combining the time demands on these resources into a single number,
rather than considering them separately.

In [25], simultaneous balancing of multiple types of resource utilization is also

75

timestep step time before/after 1b
number | nolb | avglb | last Ib | pred Ib
0 1.8 1.8 1.8 1.8
100 23 |23/21]23/1.8|23/1.7
200 26 |24/23]22/1.8 1.8
300 3.0 |2.6/24]22/2.0 1.9
400 3.1 2.5 2.3/2.0 2.0
500 3.2 2.6 2.4 2.1

Table 5.4: Results without load balancing and before and after load balancing for

three load metrics.

35 |

Time per step (sec)

1 1

nolb o—
avglb -+-- |
last b -8--
predlb -

1 1

1
0 50 100 150

200

250

300

350

400

500

Timestep number

Figure 5.6: Step times without load balancing and with load balancing for three load
metrics.

76

considered. As above, however, the author’s technique is to combine separate load
values into a single aggregate value via a weighted sum. Ironically, these load values
are considered separately for the purpose of profitability determination: The author
describes the alternatives of “or” and “and” balance initiation. In the former case,
load balancing is undertaken if any category of load exceeds its threshold; in the latter
case, it is undertaken only if all categories exceed their respective thresholds. Neither
of these aggregate load metrics performs very well, and the author concludes that “al-
though these two experiments do not cover the area of combined workload descriptors
comprehensively, we conclude that major performance improvements can hardly be
expected when more complex workload descriptors are used.” That conclusion is
contradicted by the experiments in this chapter.

The authors of [15] note a lack of efficiency improvement for their concurrent PIC
application whenever the run time for the field solver phases is roughly the same as the
particle transport phase. Their load balancing technique considers only the particle
distribution, so one would not expect an improved load balance in the field phases.
The authors suggest no solution to the problem, other than noting that, in many
scenarios, the particle concentration increases over time, making the particle phase
dominant. Thus, as the steady state of such problems is reached, a particle-based

scalar approach performs fairly well.

5.4 Summary

Load balancing techniques that attempt to capture the load characteristics of tasks
with a single number may perform poorly for certain types of applications. Applica-
tions with multiple computational phases, each with a different load distribution, will
be balanced either so that only one phase is balanced or so that all phases are semi-
balanced. In applications with large variations in the memory and computational
requirements, reassignment of tasks to balance the computation may skew memory
usage. Finally, applications in which the load changes rapidly may either be balanced

in the present or in the future, but not both. A solution to these difficulties is to

7
consider load to be a vector, where each component of the vector captures a differ-
ent aspect of the load—one phase versus another, computation versus memory, and
present versus future load. The effectiveness of this approach is demonstrated for

each of the application categories described above.

78

Chapter 6 Dynamic Granularity Control

Dynamic load balancing is required when an application developer cannot determine
a priori the resource requirements of the tasks comprising a computation. Such situa-
tions are especially common in simulation, where resource usage is often a function of
the unknown quantities being resolved by the computation. A similar difficulty arises
in partitioning a problem into tasks. It may not be readily apparent to what level a
given problem should be divided. A partitioning that is initially adequate may not
remain so as the computation progresses. In Section 5.2.1, the efficiency achieved for
the particle-in-cell application was limited by the fact that one of the partitions con-
tained so many particles that any computer to which it was assigned was overloaded.
One workaround would be to uniformly divide the problem into many more tasks
so that such situations would be less likely to occur. Unfortunately, communication
costs are roughly proportional to the number of tasks in many applications, so such an
approach could dramatically reduce scalability. Moreover, in some applications, the
tasks represent regions of the problem, between which data dependencies are relaxed.
Increasing the number of tasks in such circumstances could reduce accuracy and/or
slow convergence.

An alternative to placing the full burden of finding an adequate partitioning on the
application developer is to partition the problem dynamically. Instead of relying on
a static decomposition to be sufficient for the entire duration of the computation, the
problem would be redivided as needed. For example, if a particular task overworks
any computer to which it is assigned, that task could be further subdivided so that it
could be spread over more than one computer. In general, whenever the granularity
of tasks is too coarse to achieve load balance, dynamic task division may allow an
improved load distribution.

Another problem addressed by dynamic adjustment of task granularity occurs in

hybrid computer systems. Such platforms are networks of symmetric multiprocessors,

79

combining both shared memory and distributed memory paradigms. In this chapter,
only hybrid systems in which computers have a uniform number and speed of proces-
sors are considered; this restriction is lifted in Chapter 7. In such environments, even
if a task does not overwork a computer as a whole, it may overwork an individual
processor. For example, if a computer has four processors but only one task assigned
to it, it will be only 25 percent utilized, even though its load may be the same as
all other computers. In such situations, tasks must be divided to make full use of
available processors.

This chapter presents the algorithmic modifications required to incorporate dy-
namic granularity control, along with results from applying those techniques to real

and synthetic applications.

6.1 Algorithmic Modifications

The changes to the load balancing framework necessary for dynamic granularity con-
trol involve determining whether tasks should be divided, and, if so, choosing the tasks
to divide. These techniques are presented independently of the vector techniques from

Chapter 5. They are combined in Section 6.2, below.

6.1.1 Load Evaluation

The loads of tasks are determined as previously described in Section 2.1.1.

6.1.2 Profitability Determination

Load balancing initiates based on the criteria outlined in Sections 2.1.2. If load
balancing is unnecessary, it may still be necessary to divide tasks to utilize all available
processors on a computer—therefore, the “granularity adjustment” phase described

below is conducted in any case.

80
6.1.3 Load Transfer Calculation

Calculation of load transfers is the same as described in Sections 2.1.3 and 3.2.

6.1.4 Task Selection

As pointed out in Sections 2.1.4 and 4.1, the task selection algorithms therein cannot,
in general, achieve the desired load transfers in a single attempt. While multiple
rounds of task selection may attain the desired quantities, it is possible that a load
balanced state will not be reached. Failure to satisfy load transfers are particularly
likely when the tasks are very coarse-grained. In such circumstances, it may be
impossible to achieve load balance, simply because there are too few options for task
selection. To increase the number of options, one can divide the existing tasks, given
some rudimentary support from the application programmer. For example, in a finite
element calculation, where a task is represented by a single partition of the problem
grid, the partition could be further subdivided to yield two or more additional tasks.

A useful criterion for selecting which tasks to divide is to choose a load threshold.
A practical starting point for such a threshold is half the maximum computer load.
Any tasks with loads over that threshold should be divided, and the selection process
repeated. If the division of tasks significantly improves the load balance achieved,
but still does not reach the minimum desired efficiency, divisions can continue using
a reduced threshold.

Of course, there is a trade-off between achieving a higher load balance and increas-
ing the communication overhead due to the greater number of tasks. In particular,
let the fraction of time spent communicating be C'. Assume that the communication
overhead increases by a factor of fc(%'), where n is the current number of tasks and
n' is the number of tasks that would result if another round of divisions were made.
If the efficiency with the current set of tasks is eff and the efficiency achievable with
an increased number of tasks is eff’, then tasks should actually be divided only when
the following holds

(1-0) (1 - :g,) >C' - C (6.1)

81

where C' = fg(";’)C. (Note that C’ is the fraction of communication relative to
the original execution time.) In other words, the reduction in run time, which is
proportional to the efficiency change, 1 — fg—,, multiplied by the percent execution
time, 1 — C, must exceed the change in communication overhead, C' — C

The above analysis neglects changes in communication overhead due to the disrup-
tion of communication of locality, nor does it consider communication cost reductions
that might result from using the locality-improving communication cost functions

from Chapter 4. If such effects are noticeable, then an application- or platform-

dependent heuristic can be used to improve the selection criterion.

6.1.5 Task Migration

Task migration is the same as described in Section 2.1.5, with the exception that a

task’s neighbors must not only be notified if it has relocated, but also if it has been

divided.

6.1.6 Granularity Adjustment

Assuming that a task can only be executed on one processor at any given time, if the
tasks on a multiprocessor computer are too heavily loaded, they will make poor use
. : Lav 1
of the processors. In general, if the load of a task is greater than m, where (@ is
the number of processors per computer, then some processor on that computer will
still be executing that task while the other processors are idle. So, tasks should be
. . . Lav . ..
divided until their loads are less than m. Once again, when tasks are divided,

those tasks with which they communicate must be notified.

6.2 Vector Extensions

The combination of vector techniques and dynamic granularity control primary in-
volves the replacing the scalar criteria for selecting tasks to divide with vector criteria.

Below are the details of these changes for each phase of load balancing.

82
6.2.1 Load Evaluation

Task loads are evaluated as detailed in Section 5.1.1.

6.2.2 Profitability Determination

The criteria from Section 5.1.2 are used to determine when to load balance. As men-
tioned above, whether or not load balancing is undertaken, the granularity adjustment

phase must be conducted.

6.2.3 Load Transfer Calculation

Load transfers are calculated as described in 5.1.3.

6.2.4 Task Selection

If tasks are very coarse, it may be necessary to divide them. In particular, if the
desired efficiency is not achieved for one or more of the vector components, then a
vector threshold should be chosen. The components of this threshold should be infinite
if the desired efficiency was achieved for that component. For example, if memory
balance is achieved, but not computation balance, tasks should be divided based only
on their computational loads. Tasks should be divided if any of their load components
exceed those of the vector load threshold. If the efficiency is improved for one of the
components, then that component of the threshold should be lowered. As mentioned
in Section 6.1.4, above, there is a trade-off between achieving better load balance
and incurring higher communication costs due to having more tasks. This trade-off
is less clear in the vector case since the balance of some vector components, such as
memory, may not affect run time in a readily analyzable way. A practical approach
would be to use the time-baéed components to justify increased communication costs
and to have communication-independent policies for other load components. Tasks
might always be split, for example, if memory remains unbalanced, or they might be

split only if the memory balance falls outside some range.

83
6.2.5 Task Migration

Task migration is unchanged from Section 2.1.5.

6.2.6 Granularity Adjustment

If the time-based load components of a task are too high, the task may overwork a
processor in a multiprocessor computer. So, a task should be divided if one of its load

L
components exceeds Qe‘“ 5 for some k.

min,k

6.3 Results

The load balancing framework from previous chapters was augmented with the dy-
namic granularity control techniques described above. The resulting framework was
applied to both real and synthetic applications to demonstrate the advantage of dy-

namic partitioning over static partitioning.

6.3.1 Synthetic Application

In a synthetic application, 16 computers were assigned random total loads, uniformly
distributed on the interval (0,1). The initial eﬁ"iciency averaged 52 percent. With a
single task per computer, load balancing yielded no improvement. When static sets
of 2, 4, 8 and 16 tasks were assigned to each computer, load balancing increased
efficiencies to 63, 78, 84 and 93 percent, respectively. In the final experiment, a single
task was assigned to each computer, and the task was split on demand by the load
balancing algorithm. In this case, an average efficiency of 91 percent was achieved,
with an average of only 4.6 tasks per computer. These results are summarized in
Figure 6.1. As these experiments show, by dynamically splitting the largest tasks
rather than statically dividing all tasks, a higher efficiency was achieved with fewer
total tasks. Achieving load balance with the fewest tasks possible is important be-
cause communication costs typically increase with the number of tasks, as the next

experiment shows.

84

static o—
dynamic +

60

Efficiency

40 | -

20 | -

Tasks Per Computer

Figure 6.1: Efficiency versus the number of partitions per computer for static and
dynamic partitionings.

6.3.2 Direct Simulation Monte Carlo Application

The direct simulation monte carlo (DSMC) application described in Section 2.2 was
found to benefit from dynamic granularity control [37]. The problem addressed was
once again the Gaseous Electronics Conference (GEC) reactor. Using a 140,000-
cell grid of the reactor, simulations of 3.2 million particles were conducted on 128
processors of a Cray T3D. In those simulations, the number of partitions per processor
was varied from 1 to 16 in multiples of two, and the performance was measured
before and after load balancing in each case. Finally, a case was run in which a
single partition was assigned to each computer. Any further partitioning was guided
by the algorithms described in Section 6.1 above. The results of that experiment
are shown in Figure 6.2. As that graph shows, the highest performance was achieved
with dynamic granularity control. In particular, dynamic granularity control required
only 5.84 partitions per computer, and achieved 10 percent better performance than
the best-case static partitioning (8 partitions per computer) with 27 percent fewer

partitions. Although the performance gain was not particularly large, the fact that

85

1.3e+06 T T

1.2e+06 Unbalanced -— 1

Balanced -+--
Auto. Gran. Cntrl. O - .
1.1le+06 e e .

le+06 | .y
900000 [e -
800000 [g

700000 [e i

Particles Per Second

600000 | 4
500000 | 7 .

400000 v\—o\:

300000 L
1 10
Partitions Per Processor

Figure 6.2: Performance versus the number of partitions per computer for static and
dynamic partitionings.

it was achieved with no additional effort on the part of the user makes it quite
significant. This is important, because as Figure 6.2 shows, there is a significant
performance penalty for under- or overestimating the number of partitions needed.
In particular, beyond 8 partitions per computer, the additional communication costs

begin to outweigh the improvements provided by load balancing.

6.4 Related Work

In [32], the authors examine demand-driven task creation /division for tree-based com-
putations such as branch-and-bound algorithms. They find that lazy task creation
significantly outperforms eager task creation, reducing the total number of tasks by
a very large factor. The task division criterion used is similar to that described here.

Recursive spectral bisection also provides a method for dynamic repartitioning [4,
47, 48, 58]. An advantage of this approach is that it creates no additional tasks;

tasks are rebalanced by redistributing data structures among the tasks rather than

86
redistributing the tasks themselves. Unfortunately, these methods are designed for
grid-based problems and are not readily adaptable to other types of computations.
Moreover, the techniques here have the advantage, as they did in previous chapters,
of being asynchronous and local in nature. A computer can decide to divide its tasks
independently of other computers and need only notify those computers on which

neighbors of its tasks reside.

6.5 Summary

Dynamic granularity control lessens the burden on the application developer by al-
lowing a problem decomposition to be improved at runtime. Tasks which are too
large are divided into smaller tasks to provide more options for task relocation or
to make more effective use of multiple processors within a computer. In practice,
dynamic task partitioning outperforms static partitionings, because the division of
tasks is demand-driven and is taken only to the necessary level. This is important

since communication costs typically increase with the number of tasks.

87

Chapter 7 Heterogeneous Systems

The use of networks of personal computers, workstations and symmetric multiproces-
sors as a computing platform requires improved dynamic load balancing techniques.
Unlike traditional multicomputers, such as the Cray T3D/E or the Intel Paragon,
the computers in a typical local area network are often not of the same processing
performance nor do they have the same available memory. As a result, the tech-
niques from previous chapters of this thesis, which consider computing resources to
be homogeneous, are insufficient. This chapter extends those algorithms through a
relatively simple set of modifications. The resulting load balancing framework allows
users to leverage a wider variety of machines for a computation than previously pos-
sible. Experiments conducted on a network composed of personal computers running
Windows NT, together with workstations and multiprocessor servers running various
versions of Unix, demonstrate the effectiveness of these techniques. These results also
motivate further work in the area, by exposing deficiencies in current algorithms with

respect to simultaneously balancing both processing and memory requirements.

7.1 Algorithmic Modifications

Presented here are the changes to the scalar load framework described in Section
2.1, including improvements from Sections 3.2, 4.1 and 6.1. Merger with the vector

techniques from Chapter 5 is described subsequently.

7.1.1 Load Evaluation

Before load balancing can begin, each computer must determine how much load has
been assigned to it and at what rate it can process that load. In determining the load

of a task, there are two options. One method is to use abstract quantities such as

88

the number of operations in an algorithm or the count of data structures. Whatever
the quantity used, the number must accurately reflect the utilization that will result
from executing the task. For example, if the run time for a step of a multibody
gravitational simulation is O(n?), where n is the number of bodies, then the load
should be n?, since that is the quantity to which the utilization (execution time) is
proportional. The memory load, on the other hand, would be n, assuming that no
n? intermediate data structures are used in the calculations. Note, however, that this
section considers balancing either processor time or memory usage, but not both; the
details of balancing multiple resources simultaneously are described below.

If the load of task j is taken to be [;, then the load of computer i is

JET;

where T; is the set of tasks mapped to that computer. In that case, the utilization of
computer 7 is given by

Li
C;
where C; is the computer’s capacity.

An alternative to using algorithmic quantities is to measure the utilization directly
using system facilities. For example, one might use system calls to obtain the CPU

time or amount of memory used by a task. In that case, the task utilizations are

summed to give the computer utilization

JET;
and (7.2) is rearranged to give the computer’s load

L; = CiU; (7.4)

Of course, in both of the above cases, it is assumed that one knows the resource

capacity of a given computer. There are a number of ways to determine a computer’s

89

capacity. If the capacity measured is processing speed, a benchmarking program—
possibly the target application with a smaller test problem-—can be used to determine
the relative speeds of a set of computers. These offline performance numbers, along
with other statistics, such as the computers’ individual memory capacities, can be put
into a file which is read at the start of the computation. Such machine description
files, without the capacity data, are already commonly used to list the names or
addresses of the machines on which the computation is to be run along with the
locations of the binaries to load on each machine.

Another approach to capacity determination is to measure both the loads and
utilizations of the tasks. For example, in a particle simulation, one would count
the number of particles as well as measure the CPU time required to process those
particles. By dividing the former quantity by the latter, one could dynamically cal-
culate the particle processing rate (capacity). This approach combines well with load

prediction using sampling and extrapolation, as described in Section 5.2.3.

7.1.2 Profitability Determination

Once load measurement is complete, the computers must collectively determine if a
load imbalance exists and whether the cost of remedying that imbalance is exceeded

by the cost of allowing the imbalance to persist. The degree of load balance (efficiency)

is given by
Ubal
= 7.5
eff 0 (7.5)
where Uy, is the utilization with perfect load distribution
_ Zz Uz
Ubal - Zz Cz (76)

and where Up,x is the maximum computer utilization. Note that the Uy, is in general
different from U,,, the average computer utilization, which would have been the
numerator in the efficiency calculation for the homogeneous case. Once the efficiency

is calculated, the criteria from Section 2.1.2 can be applied to determine whether or

90

not to load balance.

7.1.3 Load Transfer Calculation

If a commitment to load balance is made, the next step is to calculate the amount of
load that must be transferred between computers to achieve a balanced computation.
A number of algorithms have been proposed for this task, including the hierarchical
balancing method, the generalized dimensional exchange and heat diffusion methods.
Described here are the modifications required to each of those algorithms to support

heterogeneous systems.

Hierarchical Balancing Method

The hierarchical balancing (HB) method is a global, recursive approach to the load
balancing problem [19, 57]. The set of computers is partitioned into two subsets, and
the total load is calculated for each subset. The load transfer from the first subset to

the second is that required to make their loads per computer equal

Pl — P L,

AL = P 1 P,

(7.7)

where L; and L, are the loads of the two subsets, and P, and P, are the numbers
of computers in each subset. The two subsets are then recursively subdivided and
balanced, taking into account the load transfers that occurred at higher levels.

In the case of a heterogeneous system, the goal is to establish an equal load
per capacity (i.e., an equal utilization) in each subset of computers. Thus, the load

transfer becomes
CQLl — Cle

AL(I’Q) - Ci+Cy

(7.8)

where C} and C, are the total capacities of two subsets.

91

Generalized Dimensional Exchange

The generalized dimensional exchange (GDE) is a simple, iterative scheme for calcu-
lating load transfers [59]. In this algorithm, the “links” between adjacent computers
are colored so that no computer has two links of the same color. For each color, com-
puters transfer load to or from their neighbors along the links of that color until an
adequately balanced state is reached. The load transfer accumulated from computer

¢ to computer j at step t of the algorithm is

ALY = ALE Y + ALY — LY) (7.9)

J) T

where Lg?,)j) is 0, and A is a constant between 0 and 1.

For the heterogeneous case, the transfer must be weighted to account for the

relative capacities of the two computers. The resulting transfer iteration becomes

(7.10)

c; LY — oLl
ALY, = ALGY +2)\(I L

Ci—l-Cj

The factor of 2 before A is required so that A has the same meaning as in the homo-
geneous case. L.e., if all of the capacities are equal, the factor of two will be canceled

out.

Diffusion

Like the GDE, heat diffusion is an iterative technique for determining how much load
to transfer between computers. For the heterogeneous case, the goal is once again
to transfer load between computers so as to make their respective utilizations equal.
Thus, the change in load for computer 7 is that which moves its load closer to being

in balance with respect to its neighbors’ loads and their respective capacities

- C;L;
dt O‘Z C+C

JEN;

(7.11)

92
This equation bears a substantial resemblance to the general diffusion equation (3.1)

in Chapter 3. In fact, the particular choices of

Cj
=) 12
Di; Ci+ C; (7.12)
and
C;
D;; = 1
PG+ Cy (7.13)

make (3.1) equal to (7.11). This choice of D is valid by the arguments in Section
3.1, since the presence of a non-unit product cycle in the derived graph described
there would imply that C; < C; < ... < Cy < Cj, for some ¢, j and j', which is a

contradiction.

7.1.4 Task Selection

The algorithms from Sections 2.1.4 and 4.1 can be used unmodified to select tasks to

satisfy the load transfers.

7.1.5 Task Migration

Once the computers have resolved the new locations of their tasks, the actual data
structures of those tasks are transferred from their old locations to their new locations.
If tasks are taken to be whole processes and the architecture and operating system of
the machines is the same, task migration can be accomplished by directly transferring
the address space of a process from one machine to another [2, 30]. If a task is a smaller
unit of work, say a thread within a process or a collection of data structures to be
acted upon, or if the machines in the system are of mixed architecture, then additional
support must be provided in the task migration phase. For example, the user could
provide code to write the state of a task to the network on the sending computer and
another routine to read the state of a task from the network and recreate it on the
receiving computer. These routines must be typed so that basic data types (integer,

character, floating point) can be converted between the respectivé machines. In some

93
environments, these state transport routines can be made to look very much like
the checkpointing routines that are normally required for long-running concurrent

computations—an example of this is given in Appendix A.

7.1.6 Granularity Adjustment

Once tasks have arrived at their new locations, it may be beneficial to increase or
decrease the number of tasks on a given computer. For example, on a computer
with more than one processor, there may be too few tasks to fully utilize all of
the processors. In that case, tasks whose utilizations exceed the balanced computer
utilization will prevent the desired efficiency from being achieved. By dividing any
task with a utilization higher than ——gﬁﬂxlm—n, where (J; is the number of processors on
computer %, this problem is eliminated.

7.2 Vector Extensions

The load balancing methods described above redistribute a single type of load over a
set of heterogeneous computers. When multiple types of load, such as computation
and memory, are to be jointly reassigned, a different approach must be used. In par-
ticular, by considering the loads, utilizations and capacities of computers as vectors,
simultaneous management of multiple resources becomes possible. Presented here
is the incorporation of the vector techniques from Chapter 5 into the heterogeneous

framework described above.

7.2.1 Load Evaluation

In the vector case, the load of a task contains multiple components for different load
categories. For example, consider a particle simulation with an integrated electro-
magnetic field field solver, in which the particles move through a grid over which the
field is solved. The computational load of such an application is characterized by

both the number of particles, on which the particle movement phase most directly

94
depends, and the number of grid cells, which determines the time for the field solu-
tion phase. A third component could be the memory used—a weighted sum of the
particle and cell counts. Determination of the capacities for each of these components
is essentially the same as in the scalar case. For the computational phases, either an
instrumented test problem can be used to calculate the relative phase-specific speeds
of various machines or these quantities can be calculated by the instrumented appli-
cation at run time. (“Instrumented” means that timing calls are introduced into the
application to determine the breakdown of execution time for the various phases.)

So, given that the load of a particular task j is l;-, the load of a computer is

Li=Y 1 (7.14)

JET;

The utilization of a computer is given by

Ui = il (7.15)
Cik
for all k.
7.2.2 Profitability Determination
In the vector case, the degree of imbalance becomes a vector as well
effp = =2k (7.16)
max,k
for all k£, where the components of ﬁbal and U’max are given by
3 i Li
Ubalk = 2 L (7.17)
2iCik
and
ﬁmax,k = max (ji,k (718)

respectively. The decision to load balance is based on the criteria in Section 5.1.2.

95
7.2.3 Load Transfer Calculation

To calculate the ideal load transfer, the scalar loads and capacities in the transfer

algorithms must be replaced by vectors.

Hierarchical Balance Method

For the HB method, the vector transfer between two partitions of computers becomes

= CoxLyi — Crxl
ALy, = L2kLlik C_'},k 2,k (7.19)
Crk+ Cog
for all k.
Generalized Dimensional Exchange
For the GDE algorithm the transfer is now
_ L G EED — G D
AL, = AL + 22 (2 zé ek (7.20)
ik +Cik

for all k.
Diffusion

For diffusion, the values of D for the general diffusion algorithms in Section 3.2 are

-

g C'
Di,j,k = '_.———]’E_.—— (721)
Ci,k + C"}C
and .
- C;
Djik = F—om— (7.22)
Ci,k + Cj,k

for all k.

96
7.2.4 Task Selection

The cost-indifferent and cost-driven task selection algorithms from Section 5.1.4 apply

to the heterogeneous case without modification.

7.2.5 Task Migration

Task migration is the same as described in Section 7.1.5.

7.2.6 Granularity Adjustment

If a processor-related utilization component of a task is too high, the processor to

which it is assigned may be overworked. Task division should occur whenever a

. e 1§
task’s processing utilization component exceeds —22:— for some k.

Qieﬁmin,k

7.3 Results

The methods described above were implemented in the Scalable Concurrent Program-
ming Library, which is described in Appendix A. Using that framework, a number
of experiments were conducted, involving both real and artificial applications. The
results of those experiments are presented here along with a description of the envi-

ronment in which the experiments were performed.

7.3.1 Heterogeneous Testbed

The testbed for the experiments described below was a network of 10 personal com-
puters, workstations and multiprocessor servers. This network included single- and
dual-processor Dell PCs, a two-processor Silicon Graphics Origin 200 server, two
Indigo 2 and three Indy workstations, a Sun SparcServer and a Digital Equipment
AlphaStation. Included in that list are machines with both 32- and 64-bit words as
well as big- and little-endian byte orderings (i.e., most significant bit first and least

significant bit first, respectively). These machines are described in greater detail in

97

Num Processor Type Operating Memory | Relative | Memory to
System (MB) Speed Speed
1 30 MHz Sparc SunOS 4.1.3 128 1.0 128.0
2 150 MHz Alpha Digital UNIX 3.2 64 4.4 14.5
3 133 MHz R4600 IRIX 5.3 64 6.0 10.7
4 133 MHz R4600 IRIX 6.2 64 6.0 10.7
5 133 MHz R4600 IRIX 6.2 64 6.0 10.7
6 150 MHz R4400 IRIX 6.2 288 6.8 42.4
7 200 MHz R4400 IRIX 5.3 128 8.6 14.9
8 200 MHz Pentium Windows NT 4.0 64 13.0 4.0
9 180 MHz R10000 (x2) IRIX 6.4 128 38.0 3.4
10 | 266 MHz Pentium II (x2) | Windows NT 4.0 256 39.0 6.6

Table 7.1: Descriptions of computers in the heterogeneous testbed.

Table 7.1. Note that the performance of the machines for a benchmark problem var-
ied by a factor of almost 40, and the available memory varied by over a factor of four.
The benchmark problem used to determine the relative speeds was a small test case

for the particle simulation application described in Chapter 2.

7.3.2 Parametric Experiments

To demonstrate the effectiveness of the heterogeneous load balancing framework, tests
were conducted using synthetic computations on the heterogeneous testbed described
above. In particular, four scenarios were covered, including computations with sin-
gle phases, computations with multiple phases, computations with rapidly changing
loads, and computations with high memory requirements. In each of these experi-
ments, a simple tetrahedral grid was partitioned among the computers in the testbed.
A “task” in the context of the load balancing framework was thus a grid partition

and the operations performed on it.

Single-Phase Computations

In many types of computations, such as electromagnetic and fluid flow finite element

solvers, the processing time for a grid partition is proportional to the number of fun-

98
damental grid structures, such as cells, faces, edges or points, that it contains. So,
for the first test case, the load for a partition was taken to be the nufnber of cells
within it. A 12,540-tetrahedra box grid was partitioned for the 10 machines. The
number of cells per computer initially varied from 1,006 to 1,633, due to the fact that
the grid was more dense in the corners of the box. (A simple geometric partitioning
was used.) The utilization, determined by dividing the number of cells on a com-
puter by its capacity from Table 7.1, varied from 41 to 1,553, with an efficiency of
6 percent. After homogeneous load balancing, the variance in the loads was signifi-
cantly reduced, ranging from 1,205 to 1,428, which would have yielded an efficiency
of 88 percent had the machines actually been homogeneous. However, because the
machines were heterogeneous, the efficiency remained very low, at 7 percent, with
the utilization varying from 32 to 1,417. With heterogeneous load balancing, the
resulting efficiency was 93 percent, with utilizations ranging from 88 to 105. The
computer load assignments are summarized in Figure 7.1. As the graph shows, the
loads under heterogeneous balancing were very close to the scaled processing rates of
the computers, whereas the initial loads and those that resulted from homogeneous

load balancing exceeded several computers’ load capacities.

Multi-Phase Computations

The time complexity of different phases in a computation may depend on different
variables. Consider for example, a uniform-density particle simulation with coupled
electromagnetic fields. In phases such as particle transport and collision, the particle
count in a partition would dominate its computation time. Since the particle density is
assumed to be uniform, the number of particles would be proportional to the volume
of the partition. For the field solver phases, the computation would depend most
heavily on the number of grid elements, such as cells. Assuming that all cells are of
roughly equal size, the ratio of these two quantities should be equal in each partition.
They might not be proportional, however, if the grid cells are smaller in some regions
than others. Since small cells may be needed to capture complex geometric features,

a disproportion of partition volume to cell count is possible. The resulting disparity

99

| CINo LB

5
8 I Homogeneous
= LB
8 Il Heterogeneous
) LB
15 ~ Relative Speed

(Scaled)

123 4567 8 910
Computer Number

Figure 7.1: Computer load assignments for single-phase box grid problem on hetero-
geneous testbed.

would carry over to the loads for the particle- and field-related phases.

The computers Vin the testbed were assigned partitions from the 12,540-cell box
grid used above. Although the geometry is uniform, the cells are more dense in the
corners of the grid, as was described above; thus, one would expect that cell count and
volume would not be in equal proportion for each partition. The problem was then
balanced, assuming that the processing rates of the computers were the same with
respect to both the cell- and volume-driven phases. When the problem was balanced
using only cell counts as the load metric, an efficiency of 90 percent was achieved
for the cell-driven phase. However, the distribution of volume was worse, with an
efficiency of 52 percent. Conversely, when volume was used as the load metric, 90
percent utilization was achieved for the volume phases, versus only 69 percent for the

phases depending on cell counts. To remedy this problem, one can consider the loads

100

Load Balancing Cell Phase | Volume Phase
Scenario Efficiency Efficiency

None 6 8

Scalar (Cell) 90 52

Scalar (Volume) 69 90

Vector (Cell/Volume) 85 83

Table 7.2: Results of load balancing two-phase box grid problem on heterogeneous
testbed.

of the tasks to be a vector, where the components are the cell counts and total volume
of the grid partition for that task, as was described in Chapter 5 and Section 7.2,
above. When the problem was balanced using these vectors, efficiencies of 85 and 83
percent were reached for the cell- and volume-dependent parts of the computation,

respectively. These results are summarized in Table 7.2.

Rapidly Evolving Computations

In some applications, the loads of tasks may change too rapidly for load balancing
to keep up, due to the prohibitive cost of load balancing as often as needed. In such
situations, balancing based on a vector of both the current, actual load and the future,
predicted load can result in a superposition of loads that varies in the same way at
each computer, allowing a better load balance to be maintained for a longer period
of time, as was seen in Section 5.2.3. In a heterogeneous environment, the problem
of tasks with rapidly changing loads is magnified, since the utilization distribution
would change greatly if such tasks were assigned to slow computers.

An experiment was conducted in which the 12,540-cell grid used above was parti-
tioned for the 10 computers in the testbed. Each task was assigned a random number
between 1 and 2, which represented the factor by which its load would grow during
the rest of the computation. In a real application, such load changes might be due
to grid adaption, for example. If tasks were reassigned based only on their initial
loads, the initial efficiency was 90 percent, and the final efficiency was 74 percent. If

they were reassigned based on their final loads, the efficiency was 73 percent at the

101

Load Balancing Initial Final
Scenario Efficiency | Efficiency
None 6 6
Scalar (Initial) 90 74
Scalar (Final) 73 94
Vector (Initial/Final) 87 91

Table 7.3: Results of load balancing rapidly evolving box grid problem on heteroge-
neous testbed.

beginning but increased to 94 percent by the end of the computation. If the initial
and final loads of the tasks were combined into a vector, and the computation was
balanced based on that, the initial and final efficiencies were 87 and 91 percent. Table

7.3 summarizes these results.

Memory-Intensive Computations

In a homogeneous computing environment, as long as the memory and processing
requirements of tasks are highly correlated, there is no need to balance these two re-
quirements separately. In a heterogeneous environment, however, one has to contend
with the fact that the relative memory and processing capacities of the machines may
not be proportional. As is shown in Table 7.1, the memory to processing speed ratio of
the machines varies from 3.4 to 128.0, with a median of 10.7. This variation is a result
of the fact that the processing speeds of computers have been increasing much more
rapidly than their memory capacities. Thus, the newest machines in the testbed (the
last three) have the least memory relative to processing performance. This presents a
problem for memory-intensive applications. For example, while computers 9 and 10
in Table 7.1 comprise 60 percent of the total processing capacity, they contain only 31
percent of the total memory. In fact, for any problem requiring over 434 megabytes of
memory, the memory capacity of the computer 9 would be exceeded, since roughly 30
percent of the work would be assigned to it. So, the practical problem size would be
limited to 434 megabytes, even though there is a total of 1,248 megabytes of memory

available. To circumvent this difficulty, one can reassign work to balance processor

102
utilization, subject to constraints on memory use.

To illustrate the benefits of trading off memory versus computation, an experiment
was conducted in which a 200,000-cell box grid was partitioned for the 10 computers
described above. Assuming that there are 4 kilobytes of data structures associated
with each cell, this grid would require approximately 800 megabytes of memory. Thus,
if the problem were rebalanced only on the basis of computational costs, one would
expect that the memory capacities of some of the computers would be exceeded. That
was, in fact, the case: When the grid was balanced based only on the computers’
speeds, the memory capacities of computers 8, 9 and 10 were all exceeded. The
situation was particularly bad for computer 9; roughly 58,000 cells were relocated to
it, occupying 227 megabytes of memory, almost twice that computer’s actual memory
capacity. This problem was balanced again, accounting for the available memory
capacities of the machines, which were assumed to be 75 percent of the values in
Table 7.1. In this case, none of the memory capacities were exceeded. However, the
computational efficiency was poor, at 6 percent. Balancing on both memory and
processor loads also met all of the memory capacities, but improved the processing
efficiency only slightly, to 7 percent. As one can see from the summary of these results,
in Figure 7.2, the fastest computers were not assigned as many cells as they could have
been. This was due to the fact that balancing memory and processor utilization was
contradictory. For example, when balancing memory, computer 1 would be assigned
approximately 10 percent of the load, whereas it would be assigned less than 1 percent
when balancing processor utilization. So, the load transfer quantities for computer
1 would generally contain components that transferred load both away from it and
onto it. Since the unit of both processing and memory load is a cell, such transfers
cannot be met entirely.

An algorithm for determining the best assignment of load with constrained mem-
ory is as follows: Distribute load among computers according to their processing
capacities only. If the memory capacities of any computers are exceeded as a re-
sult, assign loads to them equal to their memory capacities and remove them from

consideration. Then, recursively reassign the excess load among the computers with

103

available memory, removing “full” computers at each step until all work has been
assigned. This algorithm could only be incorrect if it were possible to reassign load to
a non-full computer so that the maximum processor utilization would be lowered (i.e.,
the efficiency would be raised). That would be possible only if a full computer had a
processor utilization less than some non-full computer, or if the processor utilizations
of any two non-full computers were not equal. That contradicts the invariant that
the algorithm maintains at each step: The initial assignment on processing capacities
makes the utilizations equal; reassignment of excess load from the full computers to
the non-full computers can only make the latters’ utilizations higher. If any comput-
ers are not full, their utilizations would be made equal in the last load assignment
made by the algorithm.

The algorithm described above can actually be implemented using the HB method
from Section 7.2.3. The procedure is as follows: Assign load to computers using the
HB algorithm with the full processing capacities of the computers. If the memory
capacities of any computers are exceeded, set their capacities to zero, and reassign the
excess work using the HB algorithm. Repeat the reassignment of excess work until
none remains. For this to work, the HB algorithm must be modified slightly: The
recursion should terminate not only when a one-computer partition is reached, but
also when a zero-capacity partition is reached. Since at minimum one computer could
become “full” at each step, the HB algorithm must be repeated at most O(P) times.
The above algorithm was implemented and gave the results shown by the rightmost
bar for each computer in Figure 7.2. As that graph shows, the load assignments are
very close to the ideal assignments, which were calculated by hand. The achieved
processor efficiency with the memory-packing HB algorithm was 35 percent versus an
ideal efficiency of 38 percent.

The modified HB algorithm assumes, of course, that the total memory capacity of
the machines is higher than that required by the problem. If the problem exceeds the
total memory capacity, the best approach is probably to balance based on memory
only, so that each computer’s capacity is exceeded by the same fraction. The algo-

rithm also assumes that processing and memory requirements for tasks are highly

104

60000 |
50000 | |
\]
‘ 40000 -
C—JNolB
30000 — ZZZAProc-based LB

I Mem-based LB

Grid Cell Count

Assignment

S Proc/mem-
20000 . procer
N § S Mem-packing
o d N 7 N LB

10000 M NN (AR o Nemoy

% N | § Capacity

N N ’ N --¢--Ideal

N 111 N |

N ’ N

SSSSSY
i)
s

2 3 45 8 1 7 9 10 6
Computer Number

Figure 7.2: Computer load assignments for memory-intensive box grid problem on
heterogeneous testbed. (Computers are sorted by memory capacity instead of pro-
cessing rate.)

correlated. If this is not the case, vector methods might be able to perform well, as
they did in Section 5.2.2 for homogeneous environments.

Note that the simple trick of setting the full computers’ capacities to zero and
reassigning the excess load will not work with the GDE and diffusion algorithms from
Section 7.2.3. Because load transfer decisions are made only using local information, a
zero-capacity computer can prevent the transfer of load between two non-full comput-
ers. (In terms of heat diffusion, a zero-capacity computer is a perfect insulator.) For
example, consider a linear array of computers in which the middle computer has zero
capacity. Load cannot be transferred from computers on its left to those on its right,
or vice-versa, since the middle computer will not accept additional load, even if that

load is to be immediately transferred away. Another practical problem occurs when

105
zero-capacity computers are adjacent: The algorithms produce divide-by-zero errors.
It is possible that these algorithms can be modified to handle zero-capacity computers

correctly so that load can be redistributed in memory-constrained environments.

7.3.3 Application Experiments

The direct simulation monte carlo (DSMC) application described in Section 2.2 was
applied to a small test problem, as well as a large reactor simulation. Presented here
are the results of those tests, which were conducted on the heterogeneous testbed

described above.

Small Box Problem

The DSMC application was used for a simulation of a 54,000-cell box grid containing
432,000 particles. Four experiments were conducted using this problem. First, the
problem was run without load balancing. In this case, time steps required an average
of 14.1 seconds each. Next, a homogeneous load balancing strategy was used with
CPU time as the task loads. Although CPU time is actually a utilization metric and
not a load metric, it can be used as the load if the computers are considered to be
homogeneous. If a capacity-invariant quantity such as the particle count were used,
no tasks would have been moved, since all of the computers initially had the same
number of particles. After homogeneous load balancing, simulation steps required
6.5 seconds each. Also, in subsequent load balancing steps, computers continued to
transfer large numbers of tasks, without improving the step time. This was due to
the absence of computer capacity estimates; the utilizations of the computers did
not vary as the load balancing algorithms expected. For example, transferring 10
seconds of work from one computer to another might change the utilization of the
latter computer by much more or much less that 10 seconds. In the third test case,
the capacities from Table 7.1 were used, reducing the time per step to 2.5 seconds.
Unlike the homogeneous case, the number of tasks transferred dropped off rapidly

after the first two load balancing rounds. A few tasks continued to be transferred

106

Load Balancing Step Time | Improvement
Scenario (sec) Factor

None 14.1 None
Homogeneous 6.5 2.2x
Heterogeneous 2.5 5.6x
(static capacities)
Heterogeneous 2.0 7.1x
(dynamic capacities)

Table 7.4: Results of load balancing box DSMC problem on entire heterogeneous
testbed.

Load Balancing Step Time | Improvement
Scenario (sec) Factor

None 4.3 None
Homogeneous 5.2 None
Heterogeneous 24 1.8x
(static capacities)
Heterogeneous 2.0 2.2x
(dynamic capacities)

Table 7.5: Results of load balancing box DSMC problem on heterogeneous testbed
without computer 1.

in subsequent load balancing rounds, however, due to the differences between the
capacity estimates and the actual capacities of the computers. In the final test,
the computers’ capacities were calculated dynamically by dividing the total number
of particles on each computer by the CPU time required to process them. This
improved performance even more, reducing the average step time to 2.0 seconds. No
further task transfers took place after the third load balancing round, as the capacity
estimates were quite exact. These results are summarized in Table 7.4. Because the
improvement numbers in Table 7.4 were skewed by the presence of computer 1, which

made the unbalanced case extremely slow, another round of tests were conducted in

which that machine was omitted. The results from those tests are given in Table 7.5.

107

Large Reactor Problem

The Gaseous Electronics Conference (GEC) reactor also provided a test case for het-
erogeneous load balancing. Using a 140,000-tetrahedra grid of this reactor, a 1.1 mil-
lion particle simulation was conducted on the machines in the heterogeneous testbed.
When the grid was partitioned with a naive partitioner, which treated all machines
as equal, the problem failed to load, because it immediately exceeded the available
memory on some of the machines. A more sophisticated partitioner was devised which
divided the grid according to the machines’ memory capacities. Each computer was
assigned a partition with a cell count proportional to its available memory. When the
problem was run using this partitioning, a time step of the simulation took an average
of 44.1 seconds. Dynamic load balancing based on processor speeds alone failed, as
the memory capacities of computers 8 and 9 were exceeded. Dynamic load balancing
using both processor speeds and memory capacities improved over the initial parti-
tioning somewhat, reducing step time to 32.5 seconds. A greater improvement was
achieved in this instance than in the parametric memory-balancing case above; this
was due to the fact that, because of the variance in particle and grid density, the
memory and processing requirements of tasks were not perfectly correlated. So, bal-
ancing memory and processor utilization were not necessarily contradictory, as they
were when processing and memory were in the equal proportions. Finally, balancing
the problem with the memory-packing HB algorithm described above gave an even
lower average step time—7.8 seconds using static processor capacities and 6.1 sec-

onds using dynamic processor capacities, respectively. These results are summarized

in Table 7.6.

7.4 Related Work

The authors of [27] investigate the static assignment of a series of tasks to a collection
of heterogeneous machines using list scheduling. They analyze the worst-case behavior

of their algorithm, assuming that the capacities of the computers and computational

108

Load Balancing Step Time | Improvement
Scenario (sec) Factor

Homogeneous Failed N/A
Partitioning
Heterogeneous 44.1 None
Partitioning
Proc-based LB Failed N/A
Proc/mem-based LB 32.5 1.4x
Mem-packing LB 7.8 9.7X%
(static capacities)
Mem-packing LB 6.1 7.2%
(dynamic capacities)

Table 7.6: Results of load balancing GEC reactor DSMC problem on heterogeneous
testbed.

requirements of the tasks are known beforehand.

The dynamic assignment of tasks in a heterogeneous environment is considered in
[8]. The authors address the problem of communication costs, in that their approach
tends to assign processes which communicate heavily with one another to nearby
computers. The basic idea of their approach is to cluster tightly coupled processes
and computers and to map clusters of the former to clusters of the latter.

In [29] a manager-worker approach is expounded, in which a central agent dis-
patches jobs to a collection of heterogeneous machines. The load balancing method-
ology used there is the same as that in [40]. Just as the manager-worker scheme works
fairly well for scheduling independent tasks on small homogeneous networks, it also
works well on heterogeneous networks. The uncertainty in the processing rates of
heterogeneous computers is not fundamentally different from the existing uncertainty
of the tasks’ execution times on a homogeneous network.

Presented in [61] is a sophisticated manager-worker scheme for very large networks
of heterogeneous machines. Task assignment is static, but takes into account the
resource needs of the task as well as the resources available at the target computer.

As the authors of [26] rightly point out, simple load balancing, with the goal of

maximizing processor utilization, may not be the best approach for all applications

109

running in heterogeneous environments. In particular, if the application is itself
heterogeneous, in that different tasks do different kinds of work, it is better to assign
tasks to the computers that do their particular type of work fastest. The authors’
solution is make tasks have an affinity for which they are best suited. This affinity
increases the likelihood that tasks will be mapped to the appropriate computers. Note
that a similar affect can be achieved with the vector approach from Section 7.2. If
each type of computation is a separate vector component, then appropriate capacities
can be assigned to computers so that tasks migrate towards the computers with the
highest relative capacity.

In [10], an explicit finite difference calculation is executed on a network of het-
erogeneous machines. The authors compare the performance of homogeneous and
heterogeneous static partitionings of the problem grid, as well as for heterogeneous
dynamic load balancing. In the dynamic load balancing scheme, processes on differ-
ent computers periodically exchange grid elements to balance their execution times.
The authors do not specify how they determined the number of grid cells to transfer.

The authors of [17] use a manager-worker algorithm for the simulation of vis-
coelastic fluid flow. Unlike the approach used here, the entire grid is replicated at
each computer, and tasks are given work assignments for particular parts of the grid,
for which they report results on completion of their calculations.

An alternative to the datatype translation scheme for task migration in Section
7.1.5 is given in [46]. There the authors describe a technique based on recompilation
that would allow the state of a running process to be migrated between computers
of different architecture. Their methods are preliminary, however, and many details,
such as the handling of complex, dynamically allocated data structures are not fully

worked out.

7.5 Summary

This chapter has presented new methods for load balancing in heterogeneous en-

vironments. In particular, it introduced new versions of the hierarchical balancing

110
method, the generalized dimensional exchange, and heat diffusion, all of which take
into account the load capacities of the target computers. These modified algorithms
are presented in the context of a larger framework, which includes determination of
when to load balance and selection of tasks to transfer or divide to achieve a better
load distribution. Finally, another set of modifications allows multiple types of load
to be simultaneously reassigned. These vector techniques perform well in one of two
circumstances: They work when the load vector components are uncorrelated, or if
they are correlated, when they relate to the same capacity on each computer. The
methodology fails in instances where load components are tightly coupled, but de-
pend on uncorrelated capacities. In such situations, there is essentially a “conflict of
interest” between meeting one set of capacities versus meeting another. A preliminary
algorithm is given which addresses the case of balancing processing requirements in

the presence of memory constraints.

111

Chapter 8 Conclusions

This thesis has considerably extended the scope of dynamic load balancing techniques.
Applications and environments which were poorly served by previous efforts are now
addressed. In particular, techniques are introduced which allow the simultaneous
reassignment of multiple types of load. These techniques provide load balancing for
applications with multiple phases, with rapidly changing loads, and with disparate
computation and memory requirements. Also addressed are applications with insuffi-
cient task decompositions. In such circumstances tasks are dynamically repartitioned
to make more effective use of available resources. The above methods are in turn
extended to provide load redistribution in heterogeneous systems. Included in that
effort is a preliminary algorithm for memory-constrained environments. Together,
these techniques allow concurrent computations to run efficiently on a wider variety
of platforms than previously possible.

The thesis also considers the effect of load balancing on the communication struc-
ture 6f applications by proposing mechanisms that take into account the costs of
relocating tasks to different computers. This technique not only maintains existing
communication locality; it also improves locality that was initially poor. Finally,
an improved load transfer algorithm is developed which either transfers less work or
executes more rapidly than earlier algorithms.

Further work remains to be done, however. While the memory-packing hierarchi-
cal balancing method in Section 7.3 works well enough, in Section 3.3, the hierar-
chical balancing method was shown to transfer more work than necessary in highly
connected networks, such as meshes and tori. As a result, a modified version of the
generalized dimensional exchange or diffusion algorithm would probably perform bet-
ter in such cases. Moreover, a general framework in which zero-capacity computers
are allowable would be useful for networks of workstations that become idle. When a

user is logged on, the workstation would have a capacity of zero; when the user logs

112
off, the capacity of the workstation would be raised to allow tasks to migrate onto it.
A potential method for handling such cases can be found in Chapter 3. The coeffi-
cients D can be chosen so that permanent load flow patterns do exist. In particular,
load could be routed away from zero-capacity computers using such flow patterns. In
addition, other capacity adjustments could be made to account for competition with
other applications. For example, one might divide the baseline processing capacity

7

for a given computer by its “load average,” which is a measure of the average number
of processes competing for CPU time over some recent history.

Another area of investigation relates to dynamic granularity control. This thesis
considered the division of tasks to better satisfy the ideal load transfer quantities or to
make more effective use of multiple processors within a computer. Another alternative
is to merge tasks. This would eliminate extraneous options in task selection and
reduce scheduling and communication overhead. The criteria for task agglomeration
would look much like those for task division; a utilization threshold would be chosen
below which tasks should be merged, and specific tasks would be selected for merger
based on the expected benefits that their amalgamation would provide. Note, too,
that tasks could be logically merged rather than physically merged. In other words,
a collection of tasks could be treated as a single metatask for the purpose of task
selection and migration, similar to [8]. This would reduce selection overhead as well as
improve communication performance if the tasks within that collection communicate

with one another.

113

Appendix A Scalable Concurrent

Programming Library

The Scalable Concurrent Programming Library (SCPlib) provides basic programming
technology to support concurrent, irregular applications. Like its predecessor, the
Concurrent Graph Library [45], SCPlib has been applied to a variety of large-scale in-
dustrial simulations and is portable to a wide range of platforms. Applications imple-
mented using SCPlib include particle simulations for non-continuum gas and plasma
flows [37, 38], an electrostatic field solver (see Appendix B), a continuum fluid flow
solver, a tensor math package, and proprietary applications at the Intel Corporation.
Platforms on which SCPIib runs include distributed-memory multicomputers such as
the Cray T3D/E, Intel Paragon and Avalon A12, shared-memory systems such as the
SGI PowerChallenge and Origin 2000, as well as networks of workstations running
Unix and PCs running Windows NT. On each of these platforms, the library pro-
vides an optimized, portable set of low-level functionality, including message-passing,
thread management, synchronization, I/O, and performance monitoring. The library
also provides a higher level of functionality, which includes heterogeneous communi-
cation and file I/O, load balancing, and dynamic granularity control. This appendix
briefly describes the SCPlib programming model and summarizes the implementation

of dynamic load balancing and granularity control.

A.1 Programming Model

The SCPIlib programming model is based on the concept of a concurrent graph of
communicating tasks, called nodes. This model is designed to abstract the mapping
of work away from particular computers by encapsulating computation within these

nodes. Each node is comprised of a thread of execution, a set of named user state

114

Figure A.1: A concurrent graph and the internal structure of one of the nodes in that
graph.

data, and set of named communicators, the latter of which each contain one or more
communication ports. This structure is shown schematically in Figure A.1. “Named”
states and communicators are those which have been specifically bound to a node.
The reason that a node might have multiple states and communicators is due to the
use of layered libraries or the presence of multiple computational phases. For example,
when the DSMC application described in Section 2.2 is coupled with the field solver
from Appendix B, it is useful to have a separate set of communication ports for each,
so that their messages do not interfere with one another.

In the process of binding states, the user specifies the names of routines to write
and read that state to and from a communication port, to free the state, and to split
the state when the node is divided. (Like states, functions are bound to names, since
function pointers are not valid across heterogeneous architectures.) Together, these
user-supplied routines allow a node’s state to be transported from one computer to
another and to be divided during granularity adjustment. Likewise, when a commu-
nicator is bound to a node, the user provides routines to partition the communicator
in conjunction with the associated state. For example, in a grid-based computation,
once the grid state has been divided, the communicator must be split among the child

nodes and new ports created for communication along new partition interfaces.

115

In addition to providing communication facilities, ports also provide other func-
tionality. SCPIlib ports are similar to Unix descriptors in that the same routines
can be used to write to a communication port or to a file port. This allows con-
siderable reuse of application code, since the same routines used to read and write
a data structure can be used for both communication and file I/O. A particularly
beneficial reuse of application code involves checkpointing routines—procedures used
to write the state of an application to a file for later resumption. These same routines
can be reused for load balancing; node movement is essentially checkpointing a node
through the network rather than to a file. Furthermore, communication through
ports is typed; when a port is created, the writer first inputs a header describing
its data type sizes, etc. The reader can then transparently perform the appropriate
data transformations, if necessary. This allows communication between tasks running
on heterogeneous architectures, as well as the ability to read checkpoints written on
different platforms.

Another feature ports provide is global communication. A global sum, for exam-
ple, is implemented by two ports at each node—an input port, into which a node’s
value is written, and an output port, from which the sum is read. Note that split-
phase nature of global communication makes it asynchronous. A node can do useful
work between inputting a value and reading the result.

Since all communication between nodes occurs through the port abstraction, the
mapping of nodes to computers is transparent to the user. The library can thus move
a node dynamically, using the user-supplied routines to transport the state. Similarly,
the library can divide a node by calling the user state and communicator split routines.
Node movement and splitting are used in conjunction to provide portable dynamic
load balancing and granularity control, both of which are discussed in greater detail

below.

116

A.2 TImplementation of Dynamic Load Balancing

and Granularity Control

SCPIlib implements the methodology described in Chapter 2, along with the exten-

sions from Chapters 3 through 7. A summary of that implementation is as follows:

1)

Load Evaluation: A node’s load is determined either by a user-supplied load
function, or in the homogeneous case, by measuring the node’s utilization (CPU
time). In the heterogeneous case, the user may also provide a utilization routine
to allow the capacity to be calculated dynamically.

Profitability Determination: Based on the computers’ loads, utilizations,
and capacities, load balancing is undertaken if the minimum desired efficiency
is not met, and if the estimated time for load balancing will not exceed some
fraction of the total wallclock time for the computation.

Load Transfer Calculation: Ideal load transfers are calculated using diffusion
on highly-connected networks and the hierarchical balancing method on single
bus and linear array networks. In both cases, vector heterogeneous versions are
used.

Task Selection: Task selection either uses the cost-free, subset sum approxi-
mation algorithm, or, if a user-supplied node move cost function is given, the
cost-driven, 0-1 knapsack-based algorithm. If the nodes are too coarse-grained,
they are divided based on their utilizations, assuming that the user has sup-
plied the necessary support routines in the binding of the node’s states and
communicators.

Task Migration: Once the new locations of nodes are determined, the nodes’
states are relocated using the user-supplied routines to read/write the state
from/to a port. Also, the nodes’ communication ports are transparently recon-
figured.

Granularity Adjustment: If any node’s utilization is too high, it is divided

so that the processors within its computer will be more fully utilized. (This

117
assumes, once again, that the user has provided the required routines.) The

computation then resumes.

Load balancing is undertaken when all nodes call one of four load balancing func-

tions. Those variants are:

1)

Simple homogeneous/static heterogeneous: The user provides a vector
load function, a minimum time efficiency (the load components are assumed to
all be time-based and are subject to the same minimum efficiency), a maximum
time efficiency, and the name of the function to continue the node’s execution
if it is relocated. Capacity is set statically outside of load balancing.
Complex homogeneous/static heterogeneous: The user provides a vector
load function, the load components’ units (i.e., whether the load components
are computation, memory, etc.), a minimum vector efficiency, a maximum time
efficiency, a node transfer cost function, and the name of the node continuation
function. Capacity is static.

Simple dynamic heterogeneous: The user provides a vector load function,
a vector utilization function, a minimum time efficiency (the utilization com-
ponents are assumed to be time-based and are subject to the same minimum
efficiency), a maximum time efficiency, and the name of the node continuation
function. Capacity is determined dynamically by dividing load by utilization.
If the cither the load or utilization functions are not passed in, then a static
capacity is used to calculate the other. (Note that in the latter case, this is the
same as the first instance above.)

Complex dynamic heterogeneous: The user provides a vector load func-
tion, the load components’ units, a vector utilization function, the utilization
components’ units (i.e., whether the utilization is seconds, percent of memory,
etc.), a minimum vector efficiency, a maximum time efficiency, a node transfer
cost function, and the name of the node continuation function. Capacity is
calculated dynamically, unless the load or utilization function is not passed, in

which case a static capacity is used. (Without the utilization function, this case

118

is the same as the second case above).

In addition to the load balancing routines above, SCPIlib provides a set of utiliza-
tion profiling functions. These functions allow the user to measure CPU time and
memory used, whether by the nodes entire execution or by a particular part of its
execution. For example, the user could segregate computation time into several vec-
tor components by inserting profiling calls at appropriate points in the code. SCPlib
also provides mechanisms to track changes in utilization quantities, and based on
those utilization samples, to model future utilization. Finally, the library provides
a set of communication cost functions based on the original location and “center of

communication” concepts described in Section 4.2.1.

A.3 Related Work

The Concurrent Graph Library is the predecessor to SCPlib. While the high-level
abstraction is the same as in SCPlib, the programming details are quite different.
Instead of FIFO streams of data, the Graph Library uses low-latency remote proce-
dure calls (RPCs). Similar to SCPlib, the destination of these RPCs is hidden from
the user. However, the RPCs are conducted using function pointers and arguments
are passed in native data format, so the library cannot operate in heterogeneous
environments.

Two other libraries that provide a similar level of support for concurrent com-
puting are CHAOS and Cilk. CHAOS provides a framework for data and control
decomposition of irregular, adaptive array-based codes via index translation and
communication schedules [20]. This library differs from SCPlib in that it is only
appropriate for regular data structures and in that the communication structure is
determined by the data reference patterns in the code. In fact, CHAOS is designed
to work in conjunction with High-Performance Fortran.

Cilk provides a multithreaded programming environment with integrated load

balancing [6]. In many respects, the programming model is very similar to the Con-

119
current Graph Library. It is designed for tree-structured computations, however, and

does not fit the single-program, multiple-data style of most scientific applications.

A.4 Summary

SCPlib provides a high-level concurrent programming abstraction and implements
the load balancing and granularity control mechanisms described in this thesis. The
library is based on the concept of a concurrent graph of tasks that can dynamically
relocate and divide themselves. Communication between tasks is implemented by
FIFO streams that automatically convert data types in heterogeneous environments.
Together these facilities provide dynamic load balancing and granularity control for

irregular applications on a wide variety of platforms.

120

Appendix B Face-based Finite Element
Field Solver

An important technique used in particle dynamics is that of direct simulation monte
carlo (DSMC) [38]. The technique involves the direct simulation of particles, as
opposed to techniques such as Navier-Stokes flow solvers, which consider gases and
plasmas to be fluids. The simulation of individual particles is made feasible by the
fact that the domain in which the particles move is divided into a grid. At any given
point in the simulation, interactions between particles are only considered for those
particles that are in the same grid cell. This spatial decoupling drastically reduces the
complexity of the problem. Furthermore, within a single grid cell, collisions are calcu-
lated using a stochastic model based on the relative velocities of the particles rather
than by calculating actual path intersections. Once again, the necessary computation
is reduced.

For an important class of particle dynamics problems ranging from plasma reactors
used in silicon wafer fabrication to satellites using ion thrusters, the incorporation
of a self-consistent electric field model is essential for accurate simulation. When
DSMC simulations involve ions, these particles are affected by and contribute to
the electric field. Nearby conducting surfaces also affect the field. If the electric
field is changing on a time scale that is much lower than that of particle motion,
this field calculation can typically be performed by alternately calculating the field
based on the charge density of the particles and moving the particles under the
updated field. Since the field is considered to be fixed during particle movement,
the electrostatic field, described by the Poisson equation, is used. This appendix
describes a concurrent Poisson solver and the incorporation of that solver into the
concurrent DSMC application described in Section 2.2. The solver itself is based

on a novel, face-based finite element method that avoids problems associated with

121

traditional vertex-based methods. This solver has been validated on several test

problems, which are also described herein.

B.1 Derivation

The equation for the electrostatic potential ¢ on a three-dimensional domain V' with

surface S is the Poisson equation:

—V-(eVe)=p (B.1)

where p and € are the charge density and permittivity functions, respectively. As-

suming e is constant in the domain of interest, equation (B.1) can be rewritten as

~V2 = g (B.2)
where
0%¢ 0%¢ 0%
2,
Vg = 522 + By + 552 (B.3)

in Cartesian coordinates. Having solved for ¢, the electric field E is simply

E=-V¢ (B.4)

B.1.1 Overview of the Finite Element Method

In the finite element method (FEM), the partial differential equation (PDE) of interest
is reformulated as a variational problem [23]. For boundary-value problems with the

form

L= f (B.5)

where L is a differential operator and f is some function, the problem is one of
minimization. In particular, one describes the “energy” (i.e., error) of a solution by

a “functional” F' and attempts to find ¢ for which F(¢) is minimal. Such a ¢ is a

122
solution to the PDE for which F' was designed. A specific procedure for doing this is
the Rayleigh-Ritz method. First, define the bracketed inner product for real-valued

problems as
@)= [[[spav (B.6)

For an operator £ that is self-adjoint

(L6, 9) = (8, 1)) (B.7)
and positive definite
0 if 0
(Lo,) g 1 7 (B.8)
=0 ifp=0
an appropriate functional is
1
F(9) = 5(£6,%) = {1, 6) (B9)

To make the above minimization problem tractable, one must restrict the dimen-
sionality of the space from which candidate solutions are chosen. This can be done
by approximating ¢

o~ Y ¢°N° (B.10)

eEVh

where ¢° is the value of ¢ at element e, and N€ is the element’s value for N. N itself
is a set of piecewise polynomial functions defined over V},, the discretized version of V.
In a three-dimensional domain, this discretization often takes the form of tetrahedral
elements, which are chosen because they can capture complex geometries and because
they can be readily coarsened or refined through a process called grid adaption.

In traditional FEM, values of ¢ in V}, are associated with vertices of these tetrahe-
dra. Unfortunately, there are several problems with vertex-based function values. In
particular, associating values with the vertices of a grid has negative implications for
concurrent implementation and for the elegant handling of heterogeneous boundary

conditions. The former is a result of the fact that the number of tetrahedra sharing

123
a vertex may be quite large. Within a partition of the grid, this is no great difficulty,
but for vertices that lie on a partition boundary, it means that a large number of
messages may need to be sent between adjoining partitions. Furthermore, this con-
nectivity information may not be provided by automatic grid generation tools. An
even less tractable problem is that of appropriately handling boundary conditions.
In particular, for boundary-fitted grids, the boundary conditions associated with a
spacecraft surface, for example, are associated with the faces of tetrahedra. However,
since multiple faces share a vertex, the boundary conditions must be interpolated or
local continuity requirements must be relaxed. This is nontrivial. One way to resolve
these difficulties is to associate values with the centers of the faces of tetrahedra rather

than the vertices thereof.

B.1.2 Face-based Finite Element Method

First, consider the choice of basis functions for a face-based scheme. Specifically,
define N by a set of functions
1 ifi=j
N; = (B.11)
0 ifi+#7
for each ¢ and j in V},. In other words, N; takes the value 1 at face center i of the
grid and the value 0 at all other face centers. The support of V; consists of the two

tetrahedra sharing face ¢. This gives the representation for ¢(z,y, 2)

b2 = 3 (2 4N (09)) (B.12)

eeV; \i=1

That is, ¢(z,y, z) for an arbitrary point in V}, is a linear interpolation/extrapolation
of the values of ¢, at the face centers of the tetrahedron containing the point (z, y, z).

These interpolants/extrapolants are given by

1
_6Vc‘f

N{(z,y,2) (de; +dg x +dy .y +d; ;z) (B.13)

124

where the coefficients df ;, d ;, d7 ; and dj; are given by the formulae

¢, T,

T 95 ¢S5 ¢f
€ L€ [€ € e € (€ x? :Eg xg :I:Z
dc,1¢1 + dc,2¢2 + dc,3¢3 + dc,4¢4 = e e e e (B14)
Yl Y2 Y3 Y,
2 23 23 %
1 1 1 1
7 @5 ¢35 &5
dy 191 + d; 205 + dg 305 + di 405 = e e e . (B.15)
Y1 Y2 Ys Yy
2 25 23 %
1 1 1 1
e (2 e € e € (4 € xi iL'S .Tg :L.Z
dy,lqsl -+ dy,2¢2 + dy,3¢3 + dy,4¢4 - (B.16)
5 5 95 &4
2 Z3 235 %
1 1 1 1
€ e e e e € € e $1 1:5 xg xi
d; 107 + d, 205 + d; 505 + d 4,05 = e e e (B.17)
Y1 Y2 Yz Yq
T b5 95 ¢4
and where
1 1 1 1
1| z¢ =5 z§& x¢
Ve =2 toros (B.18)
YT Y Y3 s
2 73 25 %

and z¢, y¢ and 2{ are the coordinates of the center of face i. Note, however, that
because the potentials of adjacent cells are made to be the same only at the face
centers, discontinuities in the potential can exist across face boundaries. Resolution
of this difficulty is beyond the scope of this work.

Because the differential operator in (B.2) is self-adjoint and positive definite, the

125

solution to that equation can be obtained by minimizing the functional

=G+)+ ()

On a discretized domain V}, this functional is approximated by

dv — // Loav (B.19)

~ Y P (8.20)

ecVy

where the functional on a particular tetrahedral element e is

=315+ () + (5)

and where the potential within that tetrahedron is

dV—// . SQSEdV (B.21)
¢° (2, y, 2 ZaﬁeNe z,Y, 2) (B.22)

Equation (B.21) is minimized when its derivative with respect to each of its face

centers ¢7 is zero

1[5 <o s

Using equation (B.22), rewrite (B.23) as

L Gagw m

OF(¢°)

s = Bl et

/// ng 1% (B.24)

126

Equation (B.24) can be viewed as a matrix problem

OF*(¢°)
— A — be
0¢e A9
where
Nf ONy BNZ? ON; ON;g ON;
///e(@x 8:5 dy 8y+8z 8z)dv
and

- JJ).txvar

For the basis function (B.13) defined above, (B.26) and (B.27) are

Ve

A;j = 36(‘/;3) (dae: ld;_] + d; de] + di zdz])
and
Ve pe
be = 2
! 4 €

(p is taken to be constant within a grid cell.)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

The above definition of b only applies in the interior of the mesh, however. On the

outer elements, additional complexities arise due to the incorporation of boundary

conditions. The two boundary conditions that are of interest are Dirichlet (fixed

potential) and Neumman (fixed normal component of the field). One can specify the

latter by
—E-fi=q

(B.30)

where 7 is the unit normal to the face in question. The resulting functional is some-

what more complex

ro=- 3113 (3" (2

av— /// Poav— //q¢dS B.31)

As was done with equation (B.19), (B.31) can be defined for a particular tetrahedra.

When this restricted functional is differentiated with respect to a surface element ¢¢,

127

the result is

OF¢($ [Z 5 / / / (aNe ON; ONfON; ONf aN;) W

a¢e 5r ow Ty oy T oz -
/// gNiedV_//Ss gN; dS (B.32)

where s is the surface triangle centered around ¢$. Once again, equation (B.32) can

be rewritten as a system of equations. In this case, A remains as in (B.26), and b is

_ / / / ENeav+ / /S _gN;dS (B.33)

Note that for one of the most common Neumman boundary conditions, the plane of

given by

symmetry, g is zero. (Le., there is no gradient in ¢ with respect to the normal.) Using
(B.13), (B.33) can be expressed explicitly as
Ve AS

="y

$ B.34
1 4 € \/gq (3)

(g is taken to be constant within a face.)
The full system of equations to be solved is obtained by assembling all the small

systems of equations for individual tetrahedra

A=Y A (B.35)

ecVy

and

b= be (B.36)

e€V;,
where A¢ and b¢ denote the expanded matrices and vectors, respectively, that result
from converting from local to global element numbering. Finally, it is necessary to
adjust for Dirichlet boundary conditions. If the potential is fixed at p on face 7, one

can eliminate that face’s equation from A and b

Aij 0, forj € {1M} (B37)

128

and

b <0 (B.38)

and incorporate it into the other equations, 7 # ¢

and

bj — bj — Aj,-p (B40)

B.1.3 Conjugate Gradient Method

The conjugate gradient (CG) method is an iterative method for solving symmetric,
positive definite systems of equations [3]. It has important properties of robustness
and rapid convergence. The condition number of a matrix—the ratio of the largest to
smallest eigenvalue—directly impacts the convergence of the CG algorithm. For the
matrix resulting from FEM applied to the Poisson equation, the condition number
is O(h~2), where h is the length of the shortest edge connecting two vertices of a
tetrahedron. By finding a preconditioner (in this case, a matrix M ~! approximating

A~Y), the equivalent system becomes
M 'Az =M (B.41)

This system potentially has much more favorable spectral properties, and the CG
algorithm will converge faster as a result. The exact choice of M~!, however, is a

matter for future investigation. The preconditioned CG algorithm is given as Program
B.1.

B.2 Concurrent Implementation

Solving the Poisson equation on a grid involves the following:

(i) Calculating the values of p at the face centers.

129

1=0
r® =p— Az
while [|r®|| >=EPS - (||A]| - [|]| + [|b]]) do
t=14+1
solve Mz(=1) = (-1)
iy = p=DT L G-D)
if i =1 then
P = (0
else
Bi1 = ’Yz‘—l/’)’i—z
p(® = z(=1) 4 By(=1)
end if
¢® = Ap®
Q; = ’Yi—l/(p(i)T -q™)
2 = =D 4 g;p(0)
r® = p(=1) _ q,q®
end while

Program B.1: Sequential preconditioned conjugate gradient algorithm.

(ii) Calculating the potential at the face centers by solving the system of equations

Az = b described in Section B.1.2.

Note that the entries of A need not be calculated explicitly, but can rather be calcu-
lated “on the fly” during grid traversal. This has the advantage of interacting nicely
with grid adaptation or other deformations.

Once the charge density at each face center has been calculated, a concurrent CG
algorithm is used to calculate the potential. The sequential CG algorithm, Program

B.1, has four points of communication in its parallel implementation. These are

(i) Calculating the matrix-vector products Az(® and Ap®. This involves nearest
neighbor communication to satisfy data dependencies in the vector dot products
between rows of A and the z(®) and p® vectors. Here, “nearest neighbors” are

the partitions sharing a grid face.

130
(ii) Preconditioning the CG iteration. This may involve no communication in the
case of a simple D! Jacobi preconditioner , or considerable communication for
a no-fill incomplete Cholesky preconditioner.
(iii) Calculating the vector dot product r@=D" . z() Since r and z are mapped
conformally, this requires only a global sum for a single value.
(iv) Calculating the the vector dot product p®” - ¢®). Once again, a simple global

sum is all that is needed.

B.3 Validation

The following test problems were used to validate the Poisson solver. The simula-
tions were run in parallel on a small network of workstations and in each case the
analytic potential was calculated to the highest accuracy possible given the level of

discretization in the underlying grid.

B.3.1 Infinite Conducting Plates

This problem involves two infinite conducting plates located at z = 0 and z = 1 with
potentials —¢y and +¢y, respectively. The problem was validated on a 1 x 1 x 1 cube
with the faces at 2 = 0 and z = 1 set as described and with the remaining faces set
to the symmetric boundary condition. Analytically, the potential between the plates
is given by

B.3.2 Conducting Box

This problem involves a 1 X 1 x 1 conducting box in which the face at z = 0 has
potential ¢y, and the remaining faces have zero potential. This problem was validated

on a box grid with boundary conditions set exactly as described. Within the box, the

131

analytical function for the potential is

1 1 h TS 1 - . .
¢(z,y,2) = ——6—(3—0 i Szojdd SmrsZirfh e ?) sin rwT sin sTY (B.43)
where
Yrs = TV r2 + 52 (B44)

B.3.3 Infinite Conducting Plates with Intermediate Charge

This problem involves two infinite conducting plates located at z = 0 and z = 1 with
potentials —¢y and +¢y, respectively. The charge density between the plates is given
by

p(z,y,2) = po(1 — 2°) (B.45)

This problem was validated on a 1 x 1 x 1 box grid with the 2 = 0 and z = 1 faces
set as described above, the remaining faces set to the symmetric boundary condition
and the interior charge density set accordingly. Between the plates, the analytical

function for the potential is

d(z,,2) = do(2z — 1) + 2 (2* — 622 + 52) (B.46)
1260

B.3.4 Conducting Box with Interior Charge

This problem involves a 1 x 1 x 1 conducting box in which the faces are have potential

¢o. Within the box, the charge density is given by
p(z,y, 2) = 3pem? sin(mx) sin(7y) sin(7z) (B.47)

This problem was validated on a 1 x 1 x 1 box grid with the potential on the faces

and with the interior charge density set as described above. Within the box, the

132

analytical function for the potential is

o(z,y,2) = ¢o + 52 sin(7z) sin(7y) sin(7 2) (B.48)
0

B.4 Integration into the DSMC Algorithm

The final parallel DSMC algorithm, with the face-based field solver integrated, is
shown as Program B.2. As described in the introduction, the electrostatic field is
calculated given the charge densities within each cell. Particles are then moved and
collided under the influence of that field. Finally, the new charge densities are calcu-

lated, and the process repeats.

B.5 Related Work

The derivation of the face-based finite element scheme above borrows the notation
from [23] and substantially follows the derivation given there for a traditional, vertex-
based approach. An alternative to a face-based scheme is also presented in [23]; that
scheme uses a vector, edge-based approach. While this approach works well and does
not have the same inter-cell continuity problems as the face-based approach above,
the degree of information sharing around an edge is not fixed, complicating concurrent
implementation.

In [9], the authors consider a face-based approach as well as an edge-based method.
Their face-based approach differs, however, in that the normal components are spec-

ified on each face.

B.6 Summary

This appendix has given the derivation of a face-based finite element method for cal-
culating the electrostatic potential and electric field within a tetrahedral grid given

the charge densities within that grid and any boundary conditions. The system of

133
equations that results is solved using the conjugate gradient method, the concurrent
implementation of which is described in the context of a particle simulation applica-
tion.
Work remaining to be done on the field solver includes enforcing continuity of the
potential along face boundaries. Also needed is an effective preconditioner to speed

convergence of the CG iteration.

134

dsmc_compute(...)
while time not exhausted do
calculate charge density b; at each face ¢

begin field solver

send and recv charge densities for faces of tetrahedra
along partition interfaces
calculate local residual r = b — Au
while ||r[| < EPS - (||A[| - [lz]| + [[b]]) do
solve Mz =r
calculate local vector dot product 77 - z
scatter/gather to get global vector dot product r7 - z
update local vector p
send and recv p values for faces of tetrahedra
along partition interfaces
calculate local matrix-vector product Ap
calculate local vector dot product pT - ¢
scatter /gather to get global vector dot product p” - ¢
update local vectors u and r
end while

calculate E = Vu for each cell
end field solver

while particles still moving do
calculate acceleration g + ;’;—E_]’ for each particle
move particles
send and recv particles

end while

collide particles

end while
end partition

Program B.2: Concurrent DSMC algorithm, with integrated field solver, for a single
partition.

135

Bibliography

[1]

2]

[3]

[5]

[6]

8]

[9]

W. Ames, Numerical Methods for Partial Differential Equations, New York,
NY: Academic Press, 1992.

E. Alard and G. Bernard, “Preemptive process migration in networks of Unix
worstations,” Proceedings of the 7th International Symposium on Computer and

Information Sciences, 1992.

O. Axelsson, Iterative Solution Methods, New York, NY: Cambridge University
Press, 1996.

S. Barnard and H. Simon, “A fast multilevel implementation of recursive spec-
tral bisection for partitioning unstructured problems,” Concurrency: Practice

and Ezperience, vol. 6, pp. 101-117, 1994.

M. Barnett, D. Payne, R. van de Geijn and J. Watts, “Broadcasting on meshes
with wormbhole routing,” Journal of Parallel and Distributed Computing, vol.

35, pp. 111-122, 1996.

R. Blufome, et al., “Cilk: an efficient multithreaded runtime system,” Proceed-
ings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 207-216, ACM Press, 1995.

J. Boillat, “Load balancing and Poisson equation in a graph,” Concurrency:

Practice and Ezperience, vol. 2, pp. 289-313, 1990.

N. Bowen, C. Nikolaou and A. Ghafoor, “On the assignment problem of arbi-
trary process systems to heterogeneous computer systems,” IFEE Transactions

on Computers, vol. 41, pp. 257-273, 1992.

F. Brezzi and D. Marini, “A survey of mixed finite element approximiations,”

IEEFE Transactions on Magnetics, vol. 30, pp. 3547-3551.

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

136
C. Cap and V. Strumpen. “Efficient parallel computing in distributed worksta-
tion environments,” Parallel Computing, vol. 19, pp. 1221-1234, 1993.

G. Cybenko, “Dynamic load balancing for distributed memory multiproces-

sors,” J. Parallel and Distributed Computing, vol. 7, pp. 279-301, 1989.

M. Eisen, Mathematical Methods and Models in the Biological Sciences: Linear
and One-dimensional Theory, Englewood Cliffs, NJ: Prentice-Hall, 1988.

D. Evans and W. Butt, “Dynamic load balancing using task-transfer probabil-
ities,” Parallel Computing, vol. 19, pp. 897-916, 1993.

D. Ferrari and S. Zhou, “An emperical investigation of load indices for load
balancing applications,” Proceedings of Performance ’87: the 12th International
Symposium on Computer Performance Modeling, Measurement and Evaluation,

North Holland, pp. 515-528.

R. Ferraro, P. Liewer and V. Decyk, “Dynamic load balancing for a 2D concur-
rent plasma PIC code,” Center for Research on Parallel Computing Technical

Report CRPC-91-6, 1991.

A. Heirich and S. Taylor, “A parabolic load balancing algorithm,” Proc. 24th
Int’l Conf. on Parallel Programming, vol. 3, CRC Press, pp. 192-202, 1995.

P. Henriksen and R. Keunings, “Parallel computation of the flow of integral
viscoelastic fluids on a network of heterogeneous workstations,” International

Journal for Numerical Methods in Fluids, vol. 18, pp. 1167-1183, 1994.

H. Hofstee, J. Lukkien and J. van de Snepscheut, “A distributed implemen-
tation of a task pool,” Research Directions in High Level Parallel Progamming
Languages, J. Banatre and D. Le Metayer, eds.. New York, NY: Springer-Verlag,
1992.

G. Horton, “A multi-level diffusion method for dynamic load balancing,” Par-

allel Computing, vol. 19, pp. 209-218, 1993.

[20]

[21]

[22]

[23]

24]

[25]

[26]

[27]

[28]

[29]

137
Y .-S. Hwang, et al., “Runtime and language support for compiling adaptive

irregular problems on distributed-memory machines,” Software: Practice and

Experience, vol. 25, pp. 597-621, 1995.

M. Ivanov, G. Markelov, S. Taylor and J. Watts. “Parallel DSMC Strategies for
3D Computations,” Proceedings of Parallel CFD 96, pp. 485-492, 1996.

J. Jacquez, Compartmental Analysis in Biology and Medicine, Ann Arbor, MI:
University of Michigan Press, 1985.

J. Jin, The Finite Element Method in Electromagnetics, New York, NY: John
Wiley and Sons, 1993.

G. Kohring, “Dynamic load balancing for parallelized particle simulations on

MIMD computers,” Parallel Computing, vol. 21, pp. 683-693, 1995.

T. Kunz, “The influence of different workload descriptions on a heuristic load
balancing scheme,” IEEE Transactions on Software Engineering, vol. 17, pp.

725-730, 1991.

C. Leangsuksun, J. Potter and S. Scott, “Data placement analysis for a dis-
tributed heterogeneous high performance computing environment,” Proceedings

of the High Performance Computing Symposium, 1995.

K. Li and J. Dorband, “A task scheduling algorithm for heterogeneous pro-
cessing,” Proceedings of High Performance Computing ’97, SCS, pp. 183-188,
1997.

F. Lin and R. Keller, “The gradient model load balancing method,” IEEFE
Transactions on Software Engineering, vol. 1, pp. 32-38, 1987.

H.-C. Lin and C. Raghavendra, “A dynamic load-balancing policy with a central
job dispatcher (LBC),” IEEFE Transactions on Software Engineering, vol. 18,
pp. 148-158, 1992.

[30]

[33]

[34]

[35]

[36]

[38]

[39]

138
M. Litzkow, M. Livny and M. Mutka, “Condor: a hunter of idle workstations,”

Proceedings of the 8th International Conference on Distributed Computing Sys-
tems, 1988.

S. Mason and H. Zimmerman, Electronic Circuits, Signals and Systems, New

York, NY: John Wiley & Sons, 1960.

E. Mohr, D. Kranz and R. Halstead, “Lazy task creation: a technique for
increasing the granularity of parallel programs,” IEEE Transactions on Parallel

and Distributed Systems, vol. 2, pp. 264-280, 1991.

F. Muniz and E. Zaluska, “Parallel load-balancing: an extension to the gradient

model,” Parallel Computing, vol. 21, pp. 287-301, 1995.

J. Oden, A. Patra and Y. Feng, “Parallel domain decomposition solvers for
adaptive hp finite element methods,” SIAM Journal for Numerical Analysis,
vol. 34, pp. 2090-2118, 1997.

C. Papadimitriou, Computational Complezity. New York, NY: Addison-Wesley,
1994.

W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical Recipes in
C. New York, NY: Cambridge, 1992.

M. Rieffel, S. Taylor and J. Watts. “Automatic granularity control for load
balancing of concurrent particle simulations,” Proceedings of High Performance

Computing ’98, pp. 115-120, Society for Computer Simulation, 1998.

M. Rieffel, S. Taylor, J. Watts and S. Shankar. “Concurrent simulation of plasma
reactors,” Proceedings of High Performance Computing ’97, pp. 163-168, Soci-
ety for Computer Simulation, 1997.

R. Samanta Roy, D. Hastings and S. Taylor, “Three-dimensional plasma paricle-
in-cell calculations of ion thruster backflow contamination,” Journal of Com-

putational Physics, vol. 128, pp. 6-18, 1996.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

139
N. Shivaratri, P. Krueger and M. Singhai, “Load distributing for locally dis-
tributed systems,” IEEE Computer, vol. 25, pp. 33-44, 1992.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, MPI: The
Complete Reference, Cambridge, MA: MIT Press, 1995.

J. Song, “A partially asynchronous and iterative algorithm for distributed load

balancing,” Parallel Computing, vol. 20, pp. 853-868, 1994.

J. Stoer and R. Bulrisch, Introduction to Numerical Analysis, New York, NY:

Springer-Verlag, 1993.

L. Tao, B. Narahari, and Y. Zhao, “Assigning task modules to processors in a
distributed system,” Journal of Combinatorial Mathematics and Combinatorial

Computing, vol. 14, pp. 97-135, 1993.

S. Taylor, J. Watts, M. Rieffel and M. Palmer, “The concurrent graph: basic
technology for irregular problems,” IEEE Parallel and Distributed Technology,
vol. 4, pp. 15-25, Summer 1995.

M. Theimer and B. Hayes, “Heterogeneous process migration by compilation,”
Proceedings of the 11th IEEE Conference on Distributed Computing Systems,
IEEE Press, pp. 18-25, 1991.

R. Van Driessche and D. Roose, “An improved spectral bisection algorithm and
its application to dynamic load balancing,” Parallel Computing, vol. 21, pp.

29-48, 1995.

C. Walshaw and M. Berzins, “Dynamic load-balancing for PDE solvers on adap-
tive unstructured meshes,” Concurrency: Practice and Fzperience, vol. 7, pp.

17-28, 1995.

J. Watts. “A practical approach to dynamic load balancing,” Caltech master’s

thesis, CIT-CS-TR-95-16, 1995.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

140
J. Watts, M. Rieffel and S. Taylor. “Practical dynamic load balancing for irreg-

”

ular problems,” Parallel Algorithms for Irregularly Structured Problems: IR-
REGULAR ’96 Proceedings, Springer-Verlag LNCS, vol. 1117, pp. 299-306,

1996.

J. Watts, M. Rieffel and S. Taylor. “A load balancing technique for multiphase
computations,” Proceedings of High Performance Computing ’97, pp. 15-20,
Society for Computer Simulation, 1997.

J. Watts, M. Rieffel and S. Taylor. “Dynamic management of heterogeneous re-
sources,” Proceedings of High Performance Computing '98, pp. 151-156, Society
for Computer Simulation, 1998.

J. Watts and S. Taylor. “A practical approach to dynamic load balancing,”
IEEE Transactions on Parallel and Distributed Computing, vol. 9, pp. 235-248,
1998.

J. Watts and S. Taylor. “Communication locality preservation in dynamic load
balancing,” Proceedings of High Performance Computing '98, pp. 186-190, So-
ciety for Computer Simulation, 1998.

J. Watts and S. Taylor. “A vector-based strategy for dynamic resource alloca-

tion,” submitted to Concurrency: Practice and Ezperience, 1998.

J. Watts and S. Taylor. “Dynamic management of heterogeneous resources,”

submitted to Journal of Parallel and Distributed Computing, 1998.

M. Willebeek-LeMair and A. Reeves, “Strategies for dynamic load balancing on
highly parallel computers,” IEEE Trans. on Parallel and Distributed Systems,
vol. 4, pp. 979-993, 1993.

R. Williams, “Performance of dynamic load balancing algorithms for unstruc-
tured mesh calculations.” Concurrency: Practice and Ezperience, vol. 3, pp.

457-481, 1991.

141
[59] C. Xu and F. Lau, Load Balancing in Parallel Computers, Boston, MA: Kluwer
Academic Publishers, 1997.

[60] E. Yeargers, R. Shonkwiler and J. Herod, An Introduction to the Mathematics
of Biology, Boston, MA: Birkhauser, 1996.

[61] S. Zhou, X. Zheng, J. Wang and P. Delisle. “Utopia: a load sharing facility
for large, heterogeneous distributed computer systems,” Software: Practice and

Ezperience, vol. 23, pp. 1305-1336, 1993.

