
Distributed Averaging and Efficient File Sharing on
Peer-to-Peer Networks

Thesis by

Mortada Mehyar

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended August 21, 2006)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Theses and Dissertations

https://core.ac.uk/display/11809109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

c© 2007

Mortada Mehyar

All Rights Reserved

iii

To my mom, dad, and brother.

iv

v

Contents

Acknowledgements xiii

Abstract xv

1 Introduction and Background 1

1.1 What is Peer-to-peer? . 1

1.2 A Peer-to-peer Revolution . 2

1.2.1 Napster . 2

1.2.2 Gnutella . 3

1.2.3 DHT-based Systems . 5

1.2.4 BitTorrent . 5

1.3 What This Thesis Entails . 6

2 Distributed Averaging 9

2.1 Introduction to Distributed Averaging . 9

2.1.1 What Is Distributed Averaging? . 9

2.1.2 Related Work . 10

2.2 Problem Setup . 11

2.3 Algorithm A1 . 13

2.3.1 Convergence of Algorithm A1 . 15

2.3.2 Implementation and Deadlock Avoidance 21

2.3.3 Simulation of A1 . 22

2.4 Dynamic Topology: Joining and Leaving of Nodes 23

2.5 Algorithm A2 . 26

2.5.1 Convergence Rate . 32

2.5.2 Experimental Results . 32

vi

2.5.3 Simulation of A2 . 34

2.6 Applications and Extensions . 35

2.6.1 Calculating the N-th Moment of Measurement Distributions on Sen-

sor Networks . 35

2.6.2 Tracing Dynamic Network Averages 35

2.6.3 Dynamic Node Counting in a Transient Peer-to-peer Network 36

2.6.4 Improving Peer Selection Algorithms in BitTorrent 37

2.7 Summary and Conclusion . 38

3 Modelling BitTorrent-like Peer-to-peer File Sharing 39

3.1 Introduction to Peer-to-peer File Sharing 39

3.1.1 Demand for Large Content . 39

3.1.2 The BitTorrent Protocol . 39

3.2 Model Setup . 41

3.3 Last Finish Time . 43

3.4 Other Optimality Criteria . 46

3.4.1 Average Finish Time . 46

3.4.2 Min-Min Finish Times . 48

3.5 General Properties . 48

3.6 Optimal Average Finish Time . 52

3.6.1 Optimal Average when M = N . 52

3.6.2 Network of Two Peers . 53

3.6.3 Optimal Average when M = N − 1 55

3.6.4 Networks of Three Peers . 57

3.6.5 Networks of Four and More Peers . 60

3.7 Min-min Finish Times . 62

3.8 Selfish Peers . 64

3.9 Summary and Conclusion . 66

4 Future Directions 69

4.1 Selfish vs. Altruistic Peers . 69

4.2 Data Identity vs. Network Coding . 70

4.3 Fairness Objectives . 70

vii

Bibliography 73

viii

ix

List of Figures

1.1 An illustration of the schematic of Napster. The central server keeps a direc-

tory of what peers have what files. Peer queries the server to obtain the IP

addresses of the peers who have files matching the query keywords. 3

1.2 An illustration of the schematic of Gnutella. Unlike Napster, there is no central

server that keeps an index of the files. Peers form an overlay network of small

connections. A peer can send queries to its neighbors to see if they have any

files it desires. If a match is not found locally, the queries will be forwarded

and propagate many hops through the network. In this figure, the red arrows

represent the original queries. The forwarded queries are represented as the

blue arrows. 4

2.1 An example network for distributed averaging. Each node is associated with

a value and the goal is to calculate the average of these values in a distributed

fashion. 12

2.2 Illustration of the message-passing scheme. 14

2.3 An example network consisting of four nodes in a “star” topology. 17

2.4 The four-node network embedded on the real line according to node value xi.

The bold lines indicate segments, i.e., intervals on the real line separating two

adjacent values. The dashed curves indicate the communication topology from

Figure 2.3. Thus, an update on the link between node 1 and node 3 will claim

two segments, [x3, x2] and [x2, x1]. 19

2.5 The graph H for the example network, where the node indices are taken as

the UIDs. 22

x

2.6 Three different topologies for simulations of A1. The top left topology is a

ring network, the top right is a ring network plus 8 connections, and the top

topology is a ring network plus 12 connections. 23

2.7 Simulation results of A1 on a ring topology. On the top graph, each color

represents a trajectory of one state value over time. Half of the nodes start

with initial value 100 and the other half with 0. Note that all state values

eventually converge to the target average of 50. On the bottom, the potential

function is also plotted. Note the rapid convergence of the potential function. 24

2.8 Simulation results of A1 on a ring topology plus 8 extra connections. On

the top graph, each color represents a trajectory of one state value over time.

Again, half of the nodes start with initial value 100 and the other half with 0.

The behavior of the potential function over time is plotted on the bottom. . 25

2.9 Simulation results of A1 on a ring topology plus 12 extra connections. On the

top graph, each color represents a trajectory of one state value over time. The

behavior of the potential function over time is plotted on the bottom. 26

2.10 State histories from a simulation of algorithm A1 on a fifty-node network.

Round-trip delays on each link were assigned randomly, between 40 (ms) and

1000 (ms). Note that all states converge towards the average value .5. . . . 27

2.11 An illustration of the joins and leaves of peers on a peer-to-peer network.

Existing peers can leave the system either voluntarily or due to failure. New

peers can join the network by connecting to any of the existing peers. 28

2.12 A snapshot of the PlanetLab world-wide research network. Our experiments

were carried out on overlay networks of these nodes. 33

2.13 Sample histories from an experiment on the PlanetLab network, using 100

nodes and algorithm A2. Round-trip times on this network ranged between

tens of milliseconds to approximately one second. Note the rapid convergence

of the estimates. 34

2.14 An example network for the counting application of distributed averaging.

Notice that one and only one peer has an initial value of 1, and the remaining

peers have a value of 0. The average value of this particular network is 1/7,

the reciprocal of the number of peers. 37

xi

3.1 A schematic for the BitTorrent protocol. New peers first obtain a torrent file,

and then ask the tracker for IP addresses of existing peers to connect to. . . 40

3.2 A schematic for the rarest-first policy employed by the BitTorrent protocol.

Pieces that are “rare” in the network have a higher chance of being uploaded

than pieces that are commonly found among peers. Here, the top peer chooses

to send piece 3 instead of piece 2 to the peer on the bottom right, because

piece 3 is less common in the local network than piece 2. 41

3.3 A file segment B is uploaded by three nodes in this graph. It can be regarded

as the data traversing three hops in the flow. 49

3.4 A file segment is divided into two disjoint segments of equal size, B1 and B2.

Notice that each sending node still uses the same upload capacity, and each

receiving node still receives the same segments. This flow is now “two-hop.” . 49

3.5 An illustration of the finish times that are optimal for average. The parameters

chosen are Cs = 500, C1 = 200, C2 = 80, and C3 = 70. The optimal values of

TA and TL are also plotted. 61

3.6 An illustration of the behavior of the finish times that are optimal for average,

with different multiplicities. There are three intervals Cs can be in, and they

are illustrated on top. The intervals are marked with their corresponding

value of multiplicity. An illustration of the different behaviors for different

intervals is on the bottom. Notice how the peer finish times “spread out” as

Cs increases. The optimal value of the last finish time, T ∗L, is also drawn for

comparison. 62

xii

xiii

Acknowledgements

I would like to thank my advisor Steven Low for his support all these years. Without his

support and encouragement, this thesis simply would not exist. I am grateful for having

such a great advisor.

I would like to thank everyone in Netlab, especially Christine Ortega, Raj Jayaram,

Hyojeong (Dawn) Choe, Cheng Jin, Ao (Kevin) Tang, Xiaoliang (David) Wei, Lun Li,

Jiantao Wang and John Pongsajapan. I would also like to thank the committee members

Richard Murray, John Doyle, Mani Chandy and Tracey Ho.

It has been a wonderful experience at Caltech, for being able to work with some of

the smartest people I have ever met. I would like to especially thank Demetri Spanos and

Weihsin Gu, with whom I have collaborated closely through out the years. Without their

inputs, many of the ideas would not have been thought of, and many of the results would

not have been discovered.

A lot of what I learned during the years at Caltech is not actually possible to summarize

by the equations and theorems in this thesis. I would like to thank all my friends who have

made everything more rewarding. I would like to especially thank Sotirios Masmanidis,

Jonathan Harel, Jeremy Thorpe, Lin Han, Fuling Yang, Kelvin Yuen for their friendship.

I would like to thank my girl friend Bernice Yeh for all the wonderful memories that we

share. Finally, I would like to thank my uncle, my brother, and my parents for their love

and continuous support.

xiv

xv

Abstract

The work presented in this thesis is mainly divided in two parts. In the first part we study

the problem of distributed averaging, which has attracted a lot of interest in the research

community in recent years. Our work focuses on the issues of implementing distributed

averaging algorithms on peer-to-peer networks such as the Internet. We present algorithms

that eliminate the need for global coordination or synchronization, as many other algorithms

require, and show mathematical analysis of their convergence.

Discrete-event simulations that verify the theoretical results are presented. We show that

the algorithms proposed converge rapidly in practical scenarios. Real-world experiments

are also presented to further corroborate these results. We present experiments conducted

on the PlanetLab research network. Finally, we present several promising applications of

distributed averaging that can be implemented in a wide range of areas of interest.

The second part of this thesis, also related to peer-to-peer networking, is about modelling

and understanding peer-to-peer file sharing. The BitTorrent protocol has become one of the

most popular peer-to-peer file sharing systems in recent years. Theoretical understanding

of the global behavior of BitTorrent and similar peer-to-peer file sharing systems is however

not very complete yet. We study a model that requires very simple assumptions yet exhibits

a lot structure. We show that it is possible to consider a wide range of performance criteria

within the framework, and that the model captures many of the important issues of peer-

to-peer file sharing.

We believe the results provide fundamental insights to practical peer-to-peer file sharing

systems. We show that many optimization criteria can be studied within our framework.

Many new directions of research are also opened up.

1

Chapter 1

Introduction and Background

1.1 What is Peer-to-peer?

The Internet has become such an integral part of our lives. We find all kinds of information

on the Web, and communicate with people through email and instant messaging every day.

This thesis that you are reading now is probably more accessible online than in a library.

We have seen revolutions on the Internet ever since it started. The Web has exploded

since 1994 and continues to be a significant part of our world. Numerous applications,

including voice over IP, streaming video, and electronic commerce are now being carried

out on this remarkable network of millions of computers every day.

Peer-to-peer applications have also become an important phenomenon on the Internet

in recent years. Since the advent of Napster in 2000, peer-to-peer applications have seen

a great deal of demand from users. A large number of different peer-to-peer systems has

been developed over the last five years.

Peer-to-peer applications are a set of systems that break away from the traditional

client-server paradigm. Conceptually, a peer-to-peer system is a system whose functionality

is decentralized among equally capable components. These equally capable components are

called “peers” and they can be, for example, the PCs of the users.

It is worth noting that the original Internet was fundamentally designed as a peer-to-

peer system in the 1960s [31]. The ARPANET connected the first four nodes (UCLA,

UCSB, SRI, and the University of Utah) not in a client-server way, but in a peer-to-peer

way. With the commercialization of the Internet, the client-server division became more and

more significant, with consumer clients being connected to a set of much more specialized

and powerful servers.

2

The Domain Name Service (DNS) has been an essential part of the Internet for a long

time, and it can be considered a peer-to-peer system as well. DNS is the system that maps

human-readable domain names into machine-readable IP addresses. Name servers can be

both clients and servers, when a query is propagated through the system.

1.2 A Peer-to-peer Revolution

Despite many existing systems that could be regarded as peer-to-peer, Napster is gen-

erally considered the first peer-to-peer application which started the revolution in 2000.

Many other peer-to-peer file sharing systems appeared after Napster, including Kazaa [20],

Gnutella [16], and BitTorrent [10].

Numerous structured peer-to-peer systems have been developed and studied, including

Chord [45], Tapestry [51], Pastry [37], and CAN [38]. There has been a great number of

peer-to-peer computing systems as well, including SETI@home [40]. It is estimated that

peer-to-peer traffic accounts for 60% of the total traffic on the Internet in 2005. We are

certainly in an ongoing peer-to-peer revolution.

There have been several generations of peer-to-peer systems. We will give a brief intro-

duction to some of the more important and representative systems in each generation, and

discuss their design.

1.2.1 Napster

In very simple terms, Napster is a file sharing system that lets users look up files that reside

in other users’ PCs, and download them. This is not easily achievable by the design of the

Internet, since end users do not have fixed IP addresses. It is therefore not easy to establish

direct connections between peers. In the Napster system, a centralized server (or a cluster

of centralized servers) maintains a directory of all the files that the connected peers have

on their PCs.

In order for a peer to find a file, it sends a query to the Napster server, and the server

looks up the directory to figure out if there are peers in the system who have files matching

the query string. The server then returns a list of matched files to the peer, and then the

peer can decide to download these files by establishing a direct connection to the peers

holding these matched files. A schematic of Napster is illustrated in Figure 1.1.

3

Napster

server

peer

peerpeer

peer

directory

of files

que
ry

c
o
n
n
e
c
ti
o
n

re
q
u
e
s
t

Figure 1.1: An illustration of the schematic of Napster. The central server keeps a directory
of what peers have what files. Peer queries the server to obtain the IP addresses of the peers
who have files matching the query keywords.

Napster was first released in 1999 and it quickly became popular. It was reported to

have millions of users in 2000. The MP3 music downloading on Napster created a lot of

copyright issues. Napster was basically shut down in 2001 due to legal pressure from the

RIAA, the Recording Industry Association of America [18].

1.2.2 Gnutella

The Gnutella [16] protocol was developed in 2000. Napster’s legal demise enhanced the pop-

ularity of Gnutella in 2001. Instead of using a centralized directory like Napster, Gnutella

replaces directory lookup altogether, and implements the meta-data search by creating an

overlay network and flooding queries across the network. LimeWire [25] and BearShare [5]

are two of the commercial implementations of the Gnutella protocol.

When a peer wants to search for content, it sends a request to each peer it is connected to.

The overlay is designed such that the number of neighbors for each peer is small (typically

five). If a peer, upon receipt of a query, can not find any match, it forwards the query to all

of its neighbors, and so on. This flooding behavior can use up a lot of network resources,

and therefore the number of times a query can be forwarded is capped at less than some

time-to-live value (typically seven).

4

If a query matches, the peer who has the match contacts the peer that initiates the

query with a response message. The response is usually sent back along the same route the

query arrived through. It is therefore possible to cache such search results for later.

If a peer decides to download the matched file, the peer tries to establish a connection

directly. If the peer who has the matched file is not behind a firewall, a connection can

be established directly and the file can be transferred. However, if the peer with the file is

behind a firewall, then that peer will not accept incoming connection requests. In this case

the querying peer needs to ask the the server to ask the other peer to initiate the connection

instead. Figure 1.2 is a schematic of the Gnutella protocol.

q
u
e
ry

q
u
e
ry

q
u
e
ry

q
u
e
ry

q
u
e
ry

q
u
e
ry

q
u
e
ry

m atched

file

Figure 1.2: An illustration of the schematic of Gnutella. Unlike Napster, there is no central
server that keeps an index of the files. Peers form an overlay network of small connections.
A peer can send queries to its neighbors to see if they have any files it desires. If a match
is not found locally, the queries will be forwarded and propagate many hops through the
network. In this figure, the red arrows represent the original queries. The forwarded queries
are represented as the blue arrows.

Gnutella is a lot more decentralized than Napster. Napster relies on a centralized direc-

tory service, but Gnutella does not have a single point of failure. It is therefore a lot harder

to shut down a Gnutella network than a Napster network.

In practice, the flooding search of Gnutella is not very reliable. Flooding can waste

a lot of network resources, and it is possible that the queries only propagate to a small

5

fraction of peers. A system called Gia [8] is proposed to address these issues by replacing

Gnutella’s flooding algorithm by random walks. Without tight control of overlay topologies,

Gnutella is considered to be an unstructured system, and it motivated a lot of the structured

peer-to-peer systems based on distributed hash tables.

1.2.3 DHT-based Systems

Distributed hash tables (DHTs) implement the functionality of a hash table in a network of

peers connected through an application layer overlay [27]. Unlike a centralized hash table,

a DHT partitions the ownership of keys to different peers in the system. When values

need to be looked up, the DHT system routes queries to peers who are responsible for the

keys. DHTs are more scalable than Gnutella’s flooding algorithm, but they only support

exact-match searching, rather than keyword search of the meta data.

Numerous structured peer-to-peer systems have been developed based on DHTs. Chord

[45] is a DHT-based system that hashes each peer and each file into a one-dimensional ring.

In an N -node Chord network, each peer maintains O(log(N)) number of connections to

other peers. Chord guarantees that a query travels no more than a logarithmic number

of hops to get to its destination, i.e., the peer who is responsible for answering the query.

Chord has been used as a basis for a file system [12] and as a tool to serve DNS [11].

The Content Addressable Network (CAN [38]) uses a fixed constant d and uses a d-

dimensional Cartesian coordinate space to implement distributed hashing. The number of

connections for each peer to maintain is fixed to be the constant d regardless of the network

size, as opposed to O(log(N)) in Chord.

Tapestry [51] is another DHT-based system that addresses the issues of locality. Since

the application-layer overlays that peer-to-peer systems construct are not necessarily related

to the underlying network topology, one hop in the overlay can possibly correspond to many

hops in the network layer. Tapestry addresses this issue by taking into account the locality

of each peer, when forming the routing overlay. Tapestry has enabled the deployment of

storage applications such as OceanStore [24].

1.2.4 BitTorrent

In addition to the unscalable flooding search, Gnutella suffers from the problem of free-riding

[1]. Free riding occurs when a peer shares the resources of a peer-to-peer network, but does

6

not contribute to other peers altruistically. It is reported that 70% of Gnutella peers share

no files, and nearly 50% of all responses are returned by the top 1% of sharing peers. Free

riding is therefore a very serious problem that can lead to performance degradation of the

entire Gnutella system.

The essential cause of the free riding problem on Gnutella is that there is no incentive

mechanism to encourage sharing. A Gnutella peer does not benefit itself by uploading

to other peers in the network. The BitTorrent protocol aims to eliminate the free-riding

problem by creating an incentive for peers to share [10, 17]. BitTorrent was introduced in

2001 and became extremely popular by 2003.

Unlike Napster and Gnutella, BitTorrent separates the meta-data search from its file-

sharing protocol completely. There is no notion of searching for a file in a BitTorrent

network, since there is a separate BitTorrent overlay network (also called a “swarm”) for

each file. In BitTorrent, the problem of searching for a file therefore becomes a problem of

searching for a network that distributes such a file. A peer can join a BitTorrent network for

the desired file after it obtains a “torrent” file, which is something that contains information

about where to find the network, and it is usually published on the Web.

BitTorrent creates an incentive for peers to share by its “tit-for-tat” algorithm. The basic

idea is for each peer to reciprocate to the peers who have uploaded to it most. Therefore the

more a peer uploads, the more chances other peers would choose to upload to it. BitTorrent

therefore creates an incentive for altruistic sharing. In Chapter 3, we will discuss in more

detail how BitTorrent works, and we will study a file-sharing model that is closely related

to BitTorrent.

1.3 What This Thesis Entails

Decentralized designs are desirable in many situations for their simplicity, robustness, and

fault-tolerance. However, simple interactions between the components can often result in

complex global behavior. It is therefore very important to understand the behavior of the

system as a whole.

TCP congestion control, for example, is a distributed way of regulating sending rates of

TCP connections. When TCP connections share network resources and interact, complex

global behavior can arise. It turns out that the whole system can be understood as a

7

global optimization problem [21, 26]. Optimization techniques can be extremely useful

for understanding distributed systems. We make use of many methods and ideas from

optimization theory in this work.

In this thesis, we study problems related to peer-to-peer computation and peer-to-peer

file sharing. In Chapter 2 we present our work on distributed averaging and show that it

can be applied to many applications on different kinds of networks. Distributed averaging

is a versatile method for many kinds of peer-to-peer computations. We believe distributed

averaging can be a promising framework for numerous applications.

In Chapter 3, we study a peer-to-peer file sharing model and show that it can provide

new insights to practical systems such as BitTorrent. We show that despite the simplicity

of the model, it captures many of the important issues and exhibits a rich structure. We

show that it is possible to study different kinds of design objectives for file sharing under

this framework. The peer-to-peer file sharing model that we study opens up a new set

of research problems, and we believe it provides fundamental understanding of file-sharing

systems.

In Chapter 4, we discuss various future directions of the peer-to-peer file-sharing model.

8

9

Chapter 2

Distributed Averaging

2.1 Introduction to Distributed Averaging

2.1.1 What Is Distributed Averaging?

“Distributed averaging” is a distributed iterative procedure for calculating averages over

a network. This style of asynchronous computing has seen a renewed interest in recent

years. While asynchronous iterative computing is not new in itself (see the classic references

of Bertsekas and Tsitsiklis [6] and Lynch [28]), new issues arise when one attempts to

implement such schemes on unstructured, packet-switched, communication networks such

as the Internet.

Averaging serves as a useful prototype for asynchronous iterative computations both

because of its simplicity, and its applicability to a wide range of problems. On a sensor

network, one may be interested in calculating the average of physical measurements over the

entire network. In problems that concern vehicle formation, the quantities being averaged

can be the coordinates of the vehicles, and the average can represent the center of mass of

the whole system. A network of Web servers may wish to calculate the average processor

load, in order to implement some load-balancing scheme. This is currently usually done

with dedicated centralized load-balancers, but it is conceivable a distributed solution can

be beneficial in many aspects.

A peer-to-peer file-sharing system on the Internet (e.g., BitTorrent [10] and Kazaa [20])

may wish to compute other application-specific averages as well. In peer-to-peer systems,

it is usually desirable to eliminate centralized components as much as possible. However,

it is also important for a peer-to-peer system to know some global information about the

10

network. We believe distributed averaging can be a very powerful tool that enables peer-

to-peer systems to extract global information in a decentralized fashion.

In principle, one can choose to calculate averages by flooding the entire network with all

the values, in order to calculate the average. It is also possible to use a structured messaging

scheme over a specially designed overlay topology (e.g., a spanning tree). These are both

natural methods for calculating averages on a network, but the former has very large mes-

saging complexity, and the latter has very little flexibility for dynamic topology changes.

More importantly, these possible alternative solutions usually require global exchange of

information. While it is not clear that this is necessarily a problem in the applications we

have discussed above, it seems likely that a distributed scheme involving only local exchange

may be desirable.

The iterative procedure of distributed averaging usually does not provide an exact aver-

age, but asymptotic convergence to the average instead. In many scenarios an exact average

is not required, and one may be willing to trade precision for simplicity. The scalability,

robustness, and fault-tolerance associated with distributed averaging can be superior in

many situations where exact averaging is not essential. These schemes also resolve issues of

global information exchange, as they only require communication among local neighbors.

In this paper, we will present two distributed averaging algorithms and show their

convergence in a general asynchronous environment. Our analysis is verified by simulation

and experiments on a real-world TCP/IP network. In combination, these results show that

the method proposed is both analytically understandable and practically implementable.

2.1.2 Related Work

Much recent research has focused on various distributed iterative algorithms. Distributed

averaging, also known as the distributed consensus problem, has been studied in the context

of vehicle formation control by Fax and Murray (e.g., [14, 34]). Similar algorithms have been

applied to sensor fusion by Spanos, Olfati-Saber, and Murray ([42], [44]), as well as Xiao,

Boyd, and Lall [49]). Previous works in the gossip algorithm context utilize probabilistic

frameworks and analyze global behavior (see the work of Boyd et al. [7], Kempe et al.

[23, 22], and references therein). The “agreement algorithm” was proposed in the work

of Tsitsiklis [46] and [47], and it is concerned with letting a distributed set of processors

converge to some common value.

11

Other authors have considered similar iterative mechanisms, including Xiao and Boyd

[48], who examine the possibility of link weight optimization for maximizing the convergence

rate of the algorithm. The issues of asynchronism have also been studied. An asynchronous

time model is analyzed in Boyd et al. [7] which assumes that each node has a clock ticking

at the times of a Poisson process. In comparison, the asynchronous model we will use in this

paper does not assume any stochastic properties. Also, we do not assume that neighboring

nodes can simultaneously exchange values, as is implicit in Boyd et al [7].

The Push-Sum algorithm (discussed in Kempe et al. [22]) is a gossip algorithm that

can be used to calculate sums and averages on a network. In the synchronous settings

of Push-Sum, some probabilistic characterization of the convergence rate can be obtained.

The convergence rate of Push-Sum is shown in [22] to depend on the logarithm of the size

of the network. In comparison to Push-Sum, our algorithms do not assume a gossip-like

randomized communication scheme. Instead, we propose message-passing mechanisms to

enable communication among nodes. Also, the convergence rate of our algorithms does not

in general depend on the size of the network, but only on the algebraic connectivity of the

network. These points will be explained in detail in the later sections.

2.2 Problem Setup

Consider a network, modeled as a connected undirected graph G = (V, E). We refer to the

vertices (elements of V) as nodes, and the edges (elements of E) as links. The nodes are

labeled i = 1, 2, . . . , n, and a link between nodes i and j is denoted by ij.

Each node has some associated numerical value, say zi, that we wish to average over

the network. We will refer to the vector z whose ith component is zi. Each node on the

network also maintains a dynamic variable xi, initially set to the static value zi. We call xi

the state of the node i.

When we wish to show the time dependence, we will use the notation xi(t). We use the

notation x to denote the vector whose components are the xi terms. Intuitively each node’s

state xi(t) is its current estimate of the average value
∑n

i=1 zi/n. The goal of the averaging

algorithm is to let all states xi(t) go to the average
∑n

i=1 zi/n, as t →∞.

An example of a network of nodes and their values is shown in Figure 2.1. Notice we

assume that the network is a connected graph, and the initial value can be any value for

12

each node.

1.5

1.0

0.7

0.4

0.0

-3.2

-0.9

Figure 2.1: An example network for distributed averaging. Each node is associated with a
value and the goal is to calculate the average of these values in a distributed fashion.

The work of Olfati-Saber and Murray [34] proposes the following discrete-time system

as a mechanism for calculating averages in a network:

x(t + 1) = x(t)− γLx(t), (2.1)

where γ is a stepsize parameter, and L is the Laplacian matrix associated with the undi-

rected graph G (see, e.g., [30].)

The Laplacian matrix L is defined as

Lij =





di if i = j,

−1 if there is a link between i and j,

0 otherwise,

where di is the degree or the number of neighbors node i has. The algorithm (2.1) can be

viewed as an iterative gradient method for solving the following optimization problem:

min
x∈Rn

1
2x

T Lx

s.t.
∑

i xi =
∑

i zi.

13

Therefore it is not hard to show that this algorithm drives all states xi to the average,

provided the stepsize γ satisfies

0 < γ <
1

2dmax
,

where dmax is the maximum of all the node degrees di.

These results implicitly assume synchronization, however. Real-world networks such

as the Internet constitute an inherently asynchronous environment with dynamic network

delays. Synchronization is usually very hard to achieve, and it is in most cases impractical

and undesirable. Another problem with the algorithm (2.1) is that each node must use

exactly the same stepsize. The allowable stepsize bound depends on global properties of

the network. This information is not available locally and therefore global coordination

must be involved.

Without synchronization, nodes cannot update their values exactly at the same time in

order to carry out algorithms such as (2.1). Instead, state information from other nodes

can only be obtained through the exchange of messages. Therefore, we will need to have a

message-passing scheme if we hope to calculate the average on a real network.

In the following sections, we will present our algorithms along with their message-passing

schemes and convergence analysis.

2.3 Algorithm A1

In this section we will introduce our first algorithm, A1. At each node i there is a local

stepsize parameter γi, 0 < γi < 1, upon which the node’s computation is based. These

parameters do not need to be coordinated globally.

The basic “unit” of communication in our scheme is a pairwise update between two

nodes. We require two (distinguishable) types of messages, identified in a header. We refer

to these two types as state messages and reply messages. An update is initiated whenever

a node sends out a state message containing the current value of its state.

An overview of the message-passing scheme that will enable the pairwise update is as

follows:

14

MP1: At some time, node i initiates a state message containing its current state value to

some other node j. At some later time, node j receives this message.

MP2: Node j implements a local computation based on the value it receives. It records the

result of this computation in a reply message and sends this message back to node i.

MP3: At some later time, node i receives j’s reply and implements a local computation

based on the content of the reply message.

x
i

x
j

t
1
: STATE message from node i to node j

t
3
: REPLY message from node j to node i

t
2
: Local computation

 at node j

t
4
: Local computation

 at node i

Figure 2.2: Illustration of the message-passing scheme.

In addition to the message-passing scheme, in order to make sure that communications

between different pairs of nodes will not interfere, we require that the nodes implement

blocking. Whenever a node sends out a state message, it blocks any other incoming state

messages until it receives a reply from the receiver. If a node receives other STATE messages

while it is blocking, it sends back a negative acknowledgement (NACK) indicating that it

already has a pairwise update in progress. It also does not initiate any other updates while

blocking.

Whenever a node receives a NACK, the update terminates prematurely with no effect

on either of the local variables, and the node stops blocking. With the blocking mechanism

15

in place, a pairwise update is specified as follows:

PW1: Node j receives a state message from node i. If it is blocking, it does nothing and

sends a NACK to node i.

PW2: Otherwise, it sends a reply message containing the numerical value γj(xi−xj) to node

i and then implements xj ← xj + γj(xi − xj).

PW3: Node i receives the reply message and implements xi ← xi − γj(xi − xj).

Note that node i does not need to know γj ; all it needs to know is how much change

node j has made, which is contained in the reply message. Also note that at the end of a

pairwise update, node i has exactly compensated the action of node j, in the sense that the

sum of the states is conserved.

For the moment, we do not specify the timing or triggering for this event; we will propose

one possible scheme (implementation) in section 2.3.2. We will merely make the following

assumption:

Eventual Update Assumption: for any link ij and any time t, there exists a later time

tl > t such that there is an update on link ij at time tl.

This assumption is very similar to the totally asynchronous timing model in [6]. It

turns out that this very general asynchronous timing assumption is sufficient to guarantee

convergence of the state values to the correct average under algorithm A1.

2.3.1 Convergence of Algorithm A1

Because of the blocking behavior, updates that happen on one link will never interfere with

updates on another. This generates a property that is very useful for analysis:

With blocking, although updates on different links can span overlapping time

intervals, the resulting state values of the network at the conclusion of each

pairwise update will be as if the updates were non-overlapping, and therefore

sequential in time.

16

Thus, aside from the timing details of when updates are initiated, it is equivalent to

consider a sequence of pairwise updates enumerated in discrete time T = {0, 1, 2, ...}, and

there is only one update at each time instant. We will do so in the analysis to follow. The

evolution of each state xi under A1 can therefore be understood by considering the following

update equations:





xi(t + 1) = (1− γj)xi(t) + γjxj(t),

xj(t + 1) = γjxi(t) + (1− γj)xj(t),

xk(t + 1) = xk(t), ∀k 6= i, j,

(2.2)

where xj is the receiver and thus its local γj is used instead of γi.

Theorem 1 If the Eventual Update Assumption is satisfied, the A1 algorithm guarantees

that

lim
t→∞xi(t) =

1
n

n∑

i=1

zi, ∀i ∈ {1, 2, ..., n}, (2.3)

i.e., all node states converge to the average of the initial states of the network.

Similar convergence results can be found in [47] in the context of agreement algorithms.

Our proof of Theorem 1 will make use of the following “potential” function:

P (t) =
∑

∀(i,j)
|xi(t)− xj(t)| , (2.4)

where the sum is over all n(n−1)
2 possible pairs (i, j). For instance, the potential function

for the network in Figure 2.3 is

|x1 − x2|+ |x1 − x3|+ |x1 − x4|

+ |x2 − x3|+ |x2 − x4|+ |x3 − x4| .

It can be shown that the potential function decreases in the following manner.

Lemma 1 If nodes (i, j) update at time t with node i being the sender, then at the next

17

x
1
 = 0.7

x
2
 = 0.5

x
3
 = 0.2 x

4
 = 0.9

Figure 2.3: An example network consisting of four nodes in a “star” topology.

time unit t + 1

P (t + 1) ≤ P (t)− 2min{γj , 1− γj}|xi(t)− xj(t)|. (2.5)

Proof 1 We can see from (2.2) that besides the term |xi − xj |, n − 2 terms of the form

|xk − xj | and n− 2 terms of the form |xi − xk|, k 6= i, j in the potential function P (t), are

affected by the update. We also have

|xi(t + 1)− xj(t + 1)| = |(1− 2γj)||xi(t)− xj(t)|. (2.6)

Now consider the sum of two of the affected terms |xk(t)− xi(t)|+ |xk(t)− xj(t)|. If we

look at the relative positions of xi(t), xj(t), and xk(t) on the real line, then either xk is in

between xi and xj or it is not. Therefore as long as 0 < γi < 1, it is clear geometrically in

18

both cases that we have

|xk(t + 1)− xi(t + 1)|+ |xk(t + 1)− xj(t + 1)|

≤ |xk(t)− xi(t)|+ |xk(t)− xj(t)|.

Therefore, together with (2.4) and (2.6) we have

P (t + 1)− P (t) ≤ |xi(t + 1)− xj(t + 1)|

−|xi(t)− xj(t)|

≤ −2min{γj , 1− γj}|xi(t)− xj(t)|.

The quantity min{γj , 1−γj} can be thought of as an effective stepsize for node j since a

stepsize of .6, say, is equivalent to .4 in terms of reducing the relative difference in absolute

value.

Lemma 2 At any time t, there exists a later time t′ > t such that at time t′ there has been

at least one update on every link since time t. Furthermore,

P (t′) ≤
(

1− 8γ∗

n2

)
P (t), (2.7)

where γ∗ = mini min{γi, 1− γi}.

Proof 2 Without loss of generality, suppose at time t we have x1(t) ≤ x2(t) ≤ ... ≤ xn(t).

We call the n − 1 terms of the form |xi(t) − xi+1(t)|, i ∈ {1, 2, ..., n − 1}, segments of the

network at time t. By expanding every term in the potential function as a sum of segments,

we see that the potential function can be written as a linear combination of all the segments:

P (t) =
n−1∑

i=1

(n− i)i |xi(t)− xi+1(t)| . (2.8)

We say that a segment |xi(t) − xi+1(t)| at time t is claimed at time t′ > t, if there is

an update on a link of nodes r and s such that the interval [xs(t′), xr(t′)] (on the real line)

contains the interval [xi(t), xj(t)]. For instance, for the network in Figure 2.3, the segments

are |x3 − x2|, |x2 − x1|, and |x1 − x4|, as shown in Figure 2.4. Thus, an update on the link

19

between node 1 and node 3 will claim segments [x3, x2] and [x2, x1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
3

x
2

x
1

x
4

x
i

Figure 2.4: The four-node network embedded on the real line according to node value xi.
The bold lines indicate segments, i.e., intervals on the real line separating two adjacent
values. The dashed curves indicate the communication topology from Figure 2.3. Thus, an
update on the link between node 1 and node 3 will claim two segments, [x3, x2] and [x2, x1].

Clearly by using the Eventual Update Assumption on each link, the existence of t′ is

guaranteed. From Lemma 1 it is clear that whenever a segment is claimed, it contributes a

reduction in the potential function proportional to its size (see (2.5)). Referring to Figure

2.4, it is clear an update that does not claim a segment can only leave the segment unchanged

or make it larger. Therefore, no matter when a segment is claimed after time t, it will

contribute at least 2γ∗|xi(t)− xi+1(t)| reduction in the potential function.

Now connectedness of the network implies that for each segment there is at least one link

such that an update on that link will claim the segment. Therefore, by time t′ all segments

will be claimed. Thus the total reduction in the potential function between t and t′ is at least

20

2γ∗
n−1∑

i=1

|xi(t)− xi+1(t)| .

It follows that

P (t′) ≤ P (t)− 2γ∗
n−1∑

i=1

|xi(t)− xi+1(t)|

=

(
1−

∑n−1
i=1 2γ∗ |xi(t)− xi+1(t)|∑n−1

i=1 (n− i)i |xi(t)− xi+1(t)|

)
P (t)

≤
(

1− 8γ∗

n2

)
P (t),

where in the last inequality we use the fact that i(n− i) ≤ n2/4.

Proof 3 (of Theorem 1) Repeatedly applying Lemma 2, we see that

lim
t→∞P (t) = 0. (2.9)

Therefore

lim
t→∞ |xi(t)− xj(t)| = 0,∀i, j. (2.10)

Now by the conservation property (which can be derived from (2.2))

n∑

i=1

xi(t) =
n∑

i=1

zi, ∀t, (2.11)

we see that

lim
t→∞xi(t) =

1
n

n∑

i=1

zi. (2.12)

21

2.3.2 Implementation and Deadlock Avoidance

Any implementation that satisfies the Eventual Update Assumption is within the scope of

the convergence proof of A1. However, we have not, as yet, indicated a specific mechanism

for the update triggering. Caution must be taken because of the blocking behavior. Without

a properly designed procedure for initiating communication, the system can drive itself into

a deadlock.

Below we present one particular implementation based on a round-robin initiation pat-

tern, which provably prevents deadlock and satisfies the updating assumption. This is by

no means the only way to carry this out, but it has the advantage of being simple and easy

to implement.

Our implementation will be based on a unique identifier (UID) for each node in the

network. The UIDs must be orderable between different nodes. The UIDs can be obtained,

for example, by mapping the IP addresses of the nodes to unique natural numbers. Based

on these UIDs, we impose an additional directed graph H = (V, F), in which an edge points

from i to j if and only if node j has a higher UID than node i.

This graph has two important properties:

H1: H has at least one root, i.e., a node with no inbound edges.

H2: H is acyclic.

An example is illustrated for our four-node network in Figure 2.5. This graph essentially

defines a sender-receiver relation on each link.

Our proposed initiation scheme is as follows:

RR1: A node will wait to receive a STATE message from all of its inbound edges.

RR2: After having received at least one message from all its inbound edges, the node will

then sequentially send a STATE message to each of its outbound edges, ordered by

UID.

RR3: Upon completion, it repeats, waiting for all of its inbound edges and so on.

Lemma 3 The above procedure guarantees that the Eventual Update Assumption is satis-

fied.

22

x
1
 = 0.7

x
2
 = 0.5

x
3
 = 0.2 x

4
 = 0.9

Figure 2.5: The graph H for the example network, where the node indices are taken as the
UIDs.

We will prove this by contradiction. Suppose there is a link ij, with i being the sender,

and an interval [t,∞) during which this link does not carry any message. Then, node i

must be waiting for one of its inbound edges to send, implying the existence of a node k

with a UID lower than that of i, which is also waiting for one of its inbound edges to send.

Repeating this argument, and utilizing the fact that H is acyclic, we can find a path of

inactive edges beginning at a root. However, a root has no inbound edges, and hence must

send to all of its outbound edges at some point in [t,∞). This is a contradiction, and proves

the desired result.

2.3.3 Simulation of A1

We have written a discrete event simulator in Java and simulated algorithm A1. We first

show a set of simple simulations based on three different types of topologies as shown in

Figure 2.6. The topologies are a ring network, a ring network plus 8 more connections,

23

and a ring network plus 12 more connections. We observe numerically that increasing the

connectivity of the graph generally increases the the convergence speed.

x
1

x
1

x
1

x
2

x
2

x
2

x
3

x
3

x
3

x
4

x
4

x
4

x
5

x
5

x
5

x
6

x
6

x
6

x
7

x
7

x
7

x
8

x
8

x
8

Figure 2.6: Three different topologies for simulations of A1. The top left topology is a ring
network, the top right is a ring network plus 8 connections, and the top topology is a ring
network plus 12 connections.

We present a simulation of A1 with 50 nodes on a random topology with maximum

degree 5. The stepsizes were chosen to be .5 for all nodes and the round-trip delays on

the links were uniformly randomly distributed from 40(ms) to 1000(ms). Half of the nodes

started with initial states 0 and the others with 1; the target average was therefore .5. The

results of this simulation are shown in Figure 2.10.

2.4 Dynamic Topology: Joining and Leaving of Nodes

The A1 algorithm we have described is general enough to accommodate various extensions.

In this section we discuss how to handle dynamic network membership (dynamic network

24

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

time (s)

x
i
(t)

A1 with Ring Topology

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

time (s)

P(t)

Figure 2.7: Simulation results of A1 on a ring topology. On the top graph, each color
represents a trajectory of one state value over time. Half of the nodes start with initial
value 100 and the other half with 0. Note that all state values eventually converge to the
target average of 50. On the bottom, the potential function is also plotted. Note the rapid
convergence of the potential function.

topology), where new nodes can join the averaging network, and current nodes can decide

to leave or fail gracefully.

On a peer-to-peer network, it is common for new nodes to join and existing nodes to

leave (or fail out of) the system. Due to the extremely transient nature of peer-to-peer

networks, one may wish to apply the averaging scheme that allows nodes to join and leave

at various points in time. Figure 2.11 illustrates such “joins and leaves” behavior of the

network.

A simple mechanism for doing so is for each node to maintain an additional variable

associated with each neighbor, denoted by δij , which accounts for all the changes made on

behalf of that neighbor. This idea is described in [43].

Specifically, each time node i and j interact, the net change in i’s state is added to the

variable δij . Then, if a node leaves the network, all its neighbors subtract δij from their

current states. It can be shown that this ensures the following conservation property: at

any given time, the sum of the states xi over any connected component of the network

25

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

time (s)

x
i
(t)

A1 with Ring Topology Plus 8 Connections

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

time (s)

P(t)

Figure 2.8: Simulation results of A1 on a ring topology plus 8 extra connections. On the
top graph, each color represents a trajectory of one state value over time. Again, half of the
nodes start with initial value 100 and the other half with 0. The behavior of the potential
function over time is plotted on the bottom.

is precisely equal to the sum of the initial values zi. Thus, after a topology change, the

iterative algorithm again begins converging toward the appropriate average quantity over

the new network. Note that this serves as a reactive mechanism for node failures, since the

failing node’s neighbors can detect its failure and compensate by subtracting the associated

δij terms.

One promising application of the averaging algorithm with dynamic membership is

counting the number of nodes on a peer-to-peer network. It is known that due to the

transient nature of peer-to-peer nodes, it is often hard to obtain a good estimate of the

total number of active nodes on the network. Suppose it can be ensured that one and

only one node has set zi = 1, while all others have set zi = 0. If all nodes are completely

identical, this coordination would be hard to achieve. This is possible, however, on peer-

to-peer networks with a bootstrapping server, since the bootstrapping server can be the

special node with zi = 1. Then the averaging algorithm, combined with the aforementioned

dynamic membership handling, can track the average state of all active nodes 1/n, the

26

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

time (s)

x
i
(t)

A1 with Ring Topology Plus 12 Connections

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

time (s)

P(t)

Figure 2.9: Simulation results of A1 on a ring topology plus 12 extra connections. On the
top graph, each color represents a trajectory of one state value over time. The behavior of
the potential function over time is plotted on the bottom.

reciprocal of the number of nodes. Each node can therefore have a running estimate of

how large the active network size is without any additional action from the bootstrapping

server.

2.5 Algorithm A2

The blocking behavior for algorithm A1 requires occasional dropping of packets, which may

not be desirable when node power is a scarce resource. Moreover, it constitutes most of the

coding complexity in the implementation of A1. As an alternative, we will propose another

algorithm, denoted by A2.

In A2, each node i makes use of the additional variables δij as described in section 2.4.

As described earlier, if there is a link between nodes i and j, there will be variables δij and

δji stored locally with node i and node j, respectively.

We will denote the set of all neighbors of node i to be Ni. The algorithm A2 is specified

mathematically in terms of the xi’s and the δij ’s as follows in the synchronous environment:

27

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time ms

x
i

Sample Trajectories from Simulation of A1 on 50−node Network

Figure 2.10: State histories from a simulation of algorithm A1 on a fifty-node network.
Round-trip delays on each link were assigned randomly, between 40 (ms) and 1000 (ms).
Note that all states converge towards the average value .5.





xi(t + 1) = xi(t) + γi


 ∑

j∈Ni

δij(t) + zi − xi(t)


 ,

δij(t + 1) = δij(t) + φij [xj(t)− xi(t)] ,

(2.13)

where we introduce the additional parameters φij , which are local stepsizes similar to γi.

Algorithmically, the above update rules require additional specifications. First of all,

each xi is initialized to zi as in algorithm A1, and each δij is initialized to 0. If there is a

link between i and j, the parameters φij and φji are set to be equal. (We will see that one

can also just set all φ’s on the network to some constant value.)

Second, in order to guarantee convergence to the correct average, we require the following

messaging rules. On each link ij, we impose a sender-receiver relationship on the variables

δij and δji. One can use UIDs to obtain this, as described in section 2.3.2.

MR1: Every node i sends to every neighbor a STATE message that contains its current state

28

Figure 2.11: An illustration of the joins and leaves of peers on a peer-to-peer network.
Existing peers can leave the system either voluntarily or due to failure. New peers can join
the network by connecting to any of the existing peers.

value xi from time to time. Each node also, from time to time, executes the update

rule (first equation in (2.13)) with the information it has about other state values.

MR2: On link ij, if δij is the sender, it executes the update rule (second equation in (2.13))

from time to time. Whenever δij executes the update rule, it also sends to its receiver

δji a REPLY message that contains the value of the change it has made in the value

of δij . δij will not execute the update rule again until the TCP ACK of this REPLY

message comes back.

MR3: If δji is the receiver on link ij, it waits for REPLY messages from δij and subtracts

the value in the message from the value of δji. (Note that the REPLY message does

not directly change the value of xj .)

Notice that the second equation in (2.13) is general enough to cover the execution

required in MR3. Also, since the δij variables are employed, A2 is automatically equipped

with the ability to handle dynamic topologies (as discussed in Section 2.4). All node i needs

to do is to reset δij to 0 if node j leaves the system.

We can now obtain the following property for δij , which is important for A2’s conver-

gence to the correct average.

29

Lemma 4 For any pair of variables δij and δji, at any time t, there exists a later time

t′ > t such that

δij(t′) + δji(t′) = 0. (2.14)

Proof 4 Initially all δij’s are set to 0. According to the messaging rules MR2 and MR3,

if δij executes the update rule (second equation in (2.13)) and changes its value by some

amount at time t, the opposite change will be made by δji at some later time t′. Therefore

their sum becomes 0 again.

If we consider the vector consisting of all the values of xi and δij , equations (2.13) can

be thought of as an affine mapping on the vector of states. We will show that the mapping

is a contraction mapping, provided the stepsizes γi and φij satisfy





0 < γi < 1
di+1 ,

0 < φij < 1
2 .

Notice that the stepsize constraints are local: Each node only needs to know the local degree

di to determine the above stepsize bounds.

In the convergence proof of A1, we have used the fact that there are no overlapping

updates on adjacent links. Therefore, we can ignore the message-passing details and just

consider each complete pairwise update in a sequence of discrete time instants as in (2.2).

A2 does not impose any blocking constraint and thus it does not have this property for

simple analysis. In particular, under A2, after node i sends out a state message to node j,

node i is allowed to immediately send out another state message to some other neighbor

k regardless of when node j’s reply arrives. While waiting for a reply from node j, node

i can also accept any incoming reply messages, and any state messages from all neighbors

(including node j).

In order to prove convergence of A2, we will make use of a general and powerful frame-

work of asynchronous computation in [6]. We enumerate all these message-passing events

in the set T = {0, 1, 2, ...}, and let T ij ⊂ T be the set of times when δij updates its value,

30

and T i ⊂ T be the set of times when xi updates its value. Equations (2.13) become





xi(t + 1) = xi(t) + γi


 ∑

j∈Ni

δij(τ i
ij) + zi − xi(t)


 if t ∈ T i,

xi(t + 1) = xi(t), if t /∈ T i,

δij(t + 1) = δij(t) + φij

[
xj(τ

ij
j)− xi(τ

ij
i)

]
if t ∈ T ij ,

δij(t + 1) = δij(t), if t /∈ T ij ,

where 0 ≤ τ ij
i , τ ij

j , τ i
ij ≤ t indicate possibly “old” copies of the variables involved in the

update equations. (See [6] for more details.)

It can be shown that the following asynchronous timing assumption guarantees conver-

gence of all the states to the desired average value:

Total asynchronism: (as defined in [6]) Given any time t1, there exists a later time

t2 > t1 such that

τ ij
i (t) ≥ t1, τ

i
ij(t) ≥ t1, ∀i, j, and t ≥ t2. (2.15)

This is in spirit similar to the Eventual Update Assumption for A1. In general, we have

the following asynchronous convergence theorem for A2:

Theorem 2

lim
t→∞xi(t) =

1
n

n∑

i=1

zi, ∀i

under A2 with total asynchronism, provided the stepsizes satisfy





0 < γi < 1
di+1 ,

0 < φij < 1
2 .

(2.16)

Proof 5 It can be shown that given the stepsize constraints, the synchronous equations are

a contraction mapping with respect to the infinity norm. To illustrate this, consider a simple

31

case with a two-node network. The synchronous update equations are





x1(t + 1) = x1(t) + γ1 [δ12(t) + z1 − x1(t)] ,

x2(t + 1) = x2(t) + γ2 [δ21(t) + z2 − x2(t)] ,

δ12(t + 1) = δ12(t) + φ12 [x2(t)− x1(t)] ,

δ21(t + 1) = δ21(t) + φ21 [x1(t)− x2(t)] .

(2.17)

The linear part of the mapping is therefore




1− γ1 0 γ1 0

0 1− γ2 0 γ2

−φ12 φ12 1 0

φ21 −φ21 0 1




. (2.18)

If the stepsize bounds (2.16) are satisfied, this linear mapping is strictly diagonally dom-

inant (namely, the magnitude of every diagonal entry is strictly larger than the sum of the

magnitudes of all the other entries in its row.) In the general case, the xi row has a diagonal

entry of 1 − γi, di entries of value γi, and entries of value 0 otherwise. The δij row has a

diagonal entry of 1, an entry of value φij, an entry of value −φij, and 0 otherwise. There-

fore it can be seen that diagonal dominance is true in general, provided (2.16) is satisfied.

Using Proposition 2.1 of Section 6.2 in [6], A2 converges under total asynchronism.

Now denote x∗i , δ∗ij to be the limit points of xi and δij. We see from the update equations

that





x∗i = zi +
∑

j∈Ni

δ∗ij , ∀i,

x∗i = x∗j ,∀i, j.

32

Therefore,

x∗i =
1
n

n∑

i=1

x∗i

=
1
n

n∑

i=1

zi +
1
n

n∑

i=1

∑

j∈Ni

δ∗ij

=
1
n

n∑

i=1

zi,∀i,

where in the last step we use Lemma 4 to cancel out all the δ∗ij terms.

2.5.1 Convergence Rate

Analytical characterization of the convergence rate of our algorithms is difficult to obtain

due to their general assumptions. In the case of algorithm A1, the potential function

presented in section 2.3.1 can serve as a metric for convergence rate. It is shown in the

proof of Theorem 1 that this potential function decreases exponentially in time.

For algorithm A2, however, we do not have any analytical results for the convergence

rate in general. It is worth noting that the convergence rate of the synchronous algorithm

(2.1) (as described in section 2.2) can be characterized analytically. It is shown in [34] that

the convergence rate is related to the second-smallest eigenvalue of the Laplacian matrix.

This value is also known as the Fiedler eigenvalue or the algebraic connectivity of the graph.

We have observed empirically that the convergence rate of the asynchronous algorithm A2

is similar to that of the synchronous algorithm (2.1) with the same average delays.

2.5.2 Experimental Results

We developed an implementation of A2 in a C socket program and deployed it on the

PlanetLab network [35]. The PlanetLab network is a collaborative research network that

supports large-scale networking experiments. We have chosen some long-range topologies

that span across the globe for the experiments. An example snapshot of the PlanetLab

network is illustrated in Figure 2.12.

We performed several runs of the algorithm, each time randomly choosing 50 to 100

nodes. Round-trip delays on this network ranged between tens of milliseconds and one

33

Planetlab Testbed

Figure 2.12: A snapshot of the PlanetLab world-wide research network. Our experiments
were carried out on overlay networks of these nodes.

second. Various overlay topologies were tested, with consistent convergence on the order of

a few seconds.

In each experimental run, every node obtained a list of neighbors from a central server

and established TCP connections to its neighbors. After the topology-formation phase was

completed, the nodes were each sent a message instructing them to begin the iterative

computation with their neighbors. One sample of these experimental results is shown in

Figure 2.13.

In this experiment, an overlay network of 100 nodes on Planetlab was chosen. Half of

the nodes started with initial value zi = 0, and the other half with zi = 1; therefore the

target average value was .5. Each node was connected to 5 random neighbors in the overlay

network. The round-trip times (RTT) on this global overlay network ranged between tens

of milliseconds to roughly half a second. It is worth noticing how rapid the convergence is:

In 10 seconds all state values converged to within 1% of the average. We believe this is very

promising for many applications.

34

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sample Trajectories from A2 Experiments on 100−node Planetlab Network

time µ s

x
i

Figure 2.13: Sample histories from an experiment on the PlanetLab network, using 100
nodes and algorithm A2. Round-trip times on this network ranged between tens of millisec-
onds to approximately one second. Note the rapid convergence of the estimates.

2.5.3 Simulation of A2

Experiments with more than 100 nodes were not feasible for us on the PlanetLab network.

Therefore we have written a discrete event simulator in Java and simulated algorithm A2

on larger network sizes.

The network sizes tested were: 50, 100, 250, 500, and 1000 nodes. For each size,

the network topology was chosen such that each node connected to 5 randomly selected

neighbors. The one-way delay on each link from node i to node j was chosen uniformly

randomly between 20 milliseconds and 500 milliseconds. For each network size, there were

5 runs of simulation with the same connectivity but possibly different link delays in each

run. All simulation started with half the nodes having initial states 0 and the other half

having initial states 1.

In order to see the dependence of the convergence rate on the network size, we kept

track of the amount of time it took for all node states to converge to within 1% of the

target average. We will call this the “convergence time” for the sake of comparison. The

35

convergence time (in units of seconds) obtained from our simulation for each run and each

network size is reported in Table 2.1.

Table 2.1: Convergence Time v.s. Network Size
Network
Size

Run 1 Run 2 Run 3 Run 4 Run 5 Average Fiedler
Eigenvalue

50 7.37 7.34 7.20 7.35 7.01 7.25 1.038
100 7.55 8.42 7.48 7.71 7.69 7.77 1.058
250 8.38 8.41 8.26 7.62 7.96 8.12 1.046
500 8.46 8.08 7.97 8.03 8.40 8.18 1.048
1000 7.81 8.29 8.60 8.39 8.10 8.24 1.020

The convergence time is therefore roughly constant regardless of the size of the network.

Notice that this is consistent with our discussion on the convergence rate of the synchronous

algorithm in section 2.5.1. The convergence rate in general does not depend on the network

size but only on the algebraic connectivity or Fiedler eigenvalue of the topology. The

simulation results suggest that our asynchronous algorithms still perform very well when

the network size is large.

2.6 Applications and Extensions

2.6.1 Calculating the N-th Moment of Measurement Distributions on

Sensor Networks

Instead of just calculating the average of node states, one can also readily adapt the algo-

rithms to calculate the variance or any other moment of the distribution of node states.

To get the variance, for example, one simply needs to run another distributed averaging

process on the quantities z2
i . It is therefore straightforward to get the variance given the

average of the original values, and the average of the squared values.

A similar approach can be carried out for calculating any n-th moment of the distribu-

tion. This may be useful for taking measurements on sensor networks, since the signals can

be noisy and additional information other than the average can be desirable.

2.6.2 Tracing Dynamic Network Averages

In addition to calculating the n-th moment of a distribution, we will present a few more

extensions of the averaging algorithms.

36

So far we have assumed that the quantities being averaged (zi) are static during the

executions of our averaging algorithms. It turns out that one can readily adapt the algo-

rithms to handle time-varying local variables, zi(t) (details can be found in [43]). All one

need do is to modify the local state xi each time zi changes. Specifically, every time the

local variable changes, according to

zi ← zi + ∆z,

then the local state is modified according to

xi ← xi + ∆z.

This ensures that at any given time, the sum of the node states is equal to the sum of

the local variables. Each time one of the zi changes, the iterative algorithm adapts and

converges to the appropriate value.

2.6.3 Dynamic Node Counting in a Transient Peer-to-peer Network

As mentioned earlier, one promising application of distributed averaging is a mechanism

for counting the number of nodes on a peer-to-peer network. Due to the transient nature

of peer-to-peer networks, it is often hard to obtain a good estimate of the total number of

active nodes.

Suppose it can be ensured that one and only one node has set zi = 1, while all others have

set zi = 0. The averaging algorithms will therefore converge to a target value of 1/n, the

reciprocal of the number of nodes. If all nodes were completely identical, this coordination

would be hard to achieve. This is possible, however, since peer-to-peer systems usually have

a small centralized component. For example, the bootstrapping server on a Kazaa network,

or the tracker of a BitTorrent network can be the special node with zi = 1.

An example of a network of nodes and their values for the counting application is shown

in Figure 2.14. Notice that one and only one of the nodes has value 1 and the other nodes

have value 0.

With this arrangement of the input values zi, each node can therefore use distributed

averaging to obtain a running estimate of how large the active network size is, without any

37

0

0

1
0

0
0

0

Figure 2.14: An example network for the counting application of distributed averaging.
Notice that one and only one peer has an initial value of 1, and the remaining peers have a
value of 0. The average value of this particular network is 1/7, the reciprocal of the number
of peers.

additional action from the bootstrapping server or the tracker.

2.6.4 Improving Peer Selection Algorithms in BitTorrent

Peer-to-peer file sharing will be discussed in more detail later. We would like to point

out here, however, that distributed averaging can conceivably be used to improve the peer

selection algorithms in BitTorrent.

BitTorrent peers use a “tit-for-tat” algorithm for deciding what peers to allocate upload

capacities to. The idea is to create an incentive for sharing, and also to favor peers with

large capacities. With the tit-for-tat algorithm, each peer keeps a rolling estimate of the

download rates received from its neighbors, and then it reciprocates by allocating its upload

capacity to the peers who have given it the best download rates. Notice that peers can only

measure the download rates from its neighbors, and therefore they can only try to find the

best peers locally.

Another algorithm BitTorrent uses for deciding what peers to allocate capacities to is the

“optimistic unchoking” algorithm. Besides the tit-for-tat algorithm, each BitTorrent peer

uploads to a randomly selected peer who may not have had any reciprocal contributions.

This is to make sure that every peer has a chance to receive some data even if they are very

slow, and to probe the potential capability of other choices of peers who may actually be

faster than the current choices.

38

Each BitTorrent peer typically uploads to four peers by tit-for-tat and one peer by

optimistic unchoking. The four-to-one ratio is not adaptive. Distributed averaging can help

the tit-for-tat algorithm by providing the peers with more information about the rates of

the whole system. It is possible for each peer to keep track of the average of the upload

capacities of the whole system, and therefore choose to tune the ratio. For example, if a

peer finds that the rates it is receiving from its current tit-for-tat peers are not very good

in comparison with the global average rate, the peer can decide to “probe” more and carry

out more optimistic unchoking.

2.7 Summary and Conclusion

We have presented a class of practically implementable distributed averaging algorithms

that are suitable for communication networks such as the Internet. Our algorithms do not

rely on synchronization, knowledge of the global topology, or coordination of parameter

values.

Our analytical results for A1 show that under a mild timing assumption, the asyn-

chronous message-passing algorithms can achieve exponential convergence. For the case

when the blocking behavior of A1 is undesirable, we have introduced algorithm A2, which

is free of the blocking requirement and is also provably convergent under very general asyn-

chronous timing. The iterative nature of the algorithm renders it robust to changes in

topology.

We have presented simulations, as well as experimental results from a real-world TCP/IP

network. These results demonstrate the desired convergence behavior and show that the

algorithms proposed can be implemented robustly in a practical network. We further show

that the convergence speed does not degrade as the size of the network grows. The algo-

rithms are therefore very promising for real-world applications.

39

Chapter 3

Modelling BitTorrent-like
Peer-to-peer File Sharing

3.1 Introduction to Peer-to-peer File Sharing

3.1.1 Demand for Large Content

There is a growing demand for obtaining large content through the Internet. As the hard-

ware for storage of information has become cheaper, the networking infrastructure for the

distribution of information has become relatively expensive. In order to distribute large

content, a traditional content distribution infrastructure can be hard to scale.

In the traditional client-server setting, clients divide up the download capacity of the

server, and as the number of clients grows, the server quickly becomes a performance limiting

bottleneck. The main idea behind peer-to-peer file sharing is to make use of the capabilities

of the clients.

According to Web analysis firm CacheLogic, peer-to-peer traffic accounted for an as-

tounding 60% of all traffic on the Internet at the beginning of year 2005. BitTorrent

accounted for half of that, namely, 30%.

3.1.2 The BitTorrent Protocol

The basic idea of BitTorrent is to divide the content into small file pieces, so that peers

can help upload file pieces they have already obtained to other peers in the network. The

typical size file piece is 256KB, a quarter megabyte in size.

To start a BitTorrent file sharing network, a “torrent” file is made available for peers

to obtain, usually on the Web. The torrent file contains information about the file such as

40

its name, file size, and IP address of the “tracker.” A tracker is a centralized component of

BitTorrent that helps peers find other peers in the network to connect to. In order to verify

data integrity, a hash value of every file piece is included in the torrent file.

When a new peer obtains the torrent file and tries to join the network, it first connects

to the tracker. The tracker responds with a list of IPs of peers who are downloading the

same file in the network, for the new peer to try to connect to and become neighbors with.

Typically the tracker responds with a random list of less than 50 peers. When a new

peer is connected to a list of other peers in the system, it receives information about what

pieces its neighbors have. It also reports to its neighbors what pieces it has, whenever it

receives new pieces.

Seed

peer

peer

peer

new peer

tracker

Figure 3.1: A schematic for the BitTorrent protocol. New peers first obtain a torrent file,
and then ask the tracker for IP addresses of existing peers to connect to.

BitTorrent peers use a “tit-for-tat” algorithm for deciding what peers to allocate upload

capacities to. The idea is to create incentive for sharing, and also to favor peers with large

capacities. With the tit-for-tat algorithm, each peer keeps a rolling estimate of the download

rates received from its neighbors, and then it reciprocates by allocating its upload capacity

to the peers who have given it the best download rates.

Another algorithm BitTorrent uses for deciding what peers to allocate capacities to

41

is called “optimistic unchoking.” Besides the tit-for-tat algorithm, each BitTorrent peer

uploads to a randomly selected peer who may not have had any reciprocal contributions.

This is to make sure that every peer has a chance to receive some data even if they are very

slow.

Another important part of the BitTorrent protocol is the piece selection algorithm.

After deciding what peers to upload to, a peer also needs to decide what pieces to send.

BitTorrent uses a “rarest-first” policy for piece selection. A peer chooses to upload the file

piece that is the rarest (by looking at what has what pieces among its neighbors) to the

receiving peer. This ensures that pieces can spread out quickly to the entire network.

11 22

11 1122

33

Figure 3.2: A schematic for the rarest-first policy employed by the BitTorrent protocol.
Pieces that are “rare” in the network have a higher chance of being uploaded than pieces
that are commonly found among peers. Here, the top peer chooses to send piece 3 instead
of piece 2 to the peer on the bottom right, because piece 3 is less common in the local
network than piece 2.

We will see that the file-sharing model we study in this work captures many of these

important underlining principles.

3.2 Model Setup

Consider a network of N peers where each peer’s goal is to obtain the same content, a file

of size F . The file is divided into P pieces of equal size to facilitate distribution. When a

42

peer has received a piece completely, it can help distribute the piece by sending it to other

peers. This method of file dissemination is used by file-sharing systems such as BitTorrent

[10], Slurpie [41], and Avalanche [15].

In addition to the N peers who initially have no file pieces, we assume there is a server

that initially has the whole file. This server is called a seed node in BitTorrent. The

upload capacity of each peer is assumed to be the only constraint, which is an assumption

motivated by the fact that peers usually have larger download capacity than upload (e.g.,

DSL lines) on the Internet. We also assume that the overlay network is a complete graph,

and therefore there is no connectivity constraint.

We are interested in the time it takes for each peer to obtain the whole file. We denote

by ti the finish time of peer i, which is defined to be the earliest time at which peer i receives

the whole file. The values of ti depend on the strategy by which the system decides how

to allocate capacity and distribute data among peers. Although it is possible to provide

a strict definition of a strategy, we will not attempt to do so since the complexity of such

formulation may not be worthwhile.

When P , the number of pieces that the file is divided into, is very large, the data packets

can be considered as continuous flows. In this work, we focus on the case where P is infinite,

and therefore data can be considered as continuous fluid.

The notation of this model is as follows:

F : size of the file

N : total number of peers (not including the server)

Cs: upload capacity of the server

Ci: upload capacity of peer i,∀i = 1, 2, ..., N

Fi(t): amount of file that peer i has at time t

Notice that by definition, we must have

0 ≤ Fi(t) ≤ F,∀t. (3.1)

Without loss of generality, we assume that the peer capacities are in decreasing order,

43

namely,

Ci ≤ Cj , ∀i > j. (3.2)

We also define the total capacity of the system to be

C := Cs +
N∑

i=1

Ci. (3.3)

We will also call the time

F

Cs
(3.4)

to be the bottleneck time of the system, since it is the least amount of time the server needs

to upload file F to any peer.

Notice that in this model, the analysis is not simply about allocating capacities. Peers

can only upload to other peers when they have actually received the data in the first place.

Also, the receiving peers must not have received such data. The analysis, therefore, has to

take into account how different file segments are distributed, in addition to how capacities

are allocated.

3.3 Last Finish Time

We will call the amount of time for all peers to obtain the file the last finish time. This is

referred to as the “minimum makespan” in [32]. In other words, the last finish time TL is

defined to be

TL := max
i
{ti}, (3.5)

the time when the last peer finishes.

When the server and only the server has the file initially, it can be shown [33] that the

minimal last finish time T ∗L is given by the following simple expression.

44

Theorem 3 The minimal last finish time is given by

T ∗L = max
{

F

Cs
,
NF

C

}
. (3.6)

First we notice that both terms in the maximization must be lower bounds of T ∗L, since

F/Cs is the least amount of time the server needs to upload the file, and NF/C is the least

amount of time for the whole system (with combined capacity C = Cs +
∑

j Cj) to upload

N copies of the file needed. Therefore, the above theorem holds as long as the equality can

be achieved. Mundinger et al. [32] discovered the following strategy, which we will denote

by S0:

(i) When

Cs ≥
∑

i Ci

N − 1
, (3.7)

it is possible for the server to allocate to each peer i an upload rate of

Ci

N − 1
. (3.8)

Peer i can therefore upload to all the other N−1 peers at this rate, without exceeding

its capacity constraint Ci, because

Ci

N − 1
(N − 1) ≤ Ci. (3.9)

Now notice that the server still has

Cs −
∑

i Ci

N − 1
(3.10)

amount of capacity to upload. This will be shared among all the N peers. Therefore,

the capacity each peer i receives is equal to

Cs −
∑N

j=1 Cj

N−1

N
+

N∑

j=1

Cj

N − 1
=

C

N
, ∀i = 1, 2, ..., N. (3.11)

45

(ii) When

Cs <

∑
i Ci

N − 1
, (3.12)

the server can allocate to each peer i an upload rate of

CiCs∑N
j=1 Cj

, (3.13)

without exceeding its capacity constraint Cs. Peer i can therefore upload to all the

other N − 1 peers at the rate of

CiCs∑N
j=1 Cj

(3.14)

without exceeding its capacity constraint Ci because

(N − 1)
CiCs∑N
j=1 Cj

< Ci. (3.15)

Therefore, the capacity each peer i receives is equal to

N∑

i=1

CiCs∑N
j=1 Cj

= Cs, ∀i = 1, 2, ..., N. (3.16)

Under the above scheme (S0), it is easy to see that not only can each peer receive a high

enough rate, it can also receive distinct file segments from the server and the other peers.

Therefore, strategy S0 indeed gives all peers the whole file F , at time T ∗L. In addition, all

peers finish at the same time under S0, i.e.,

ti = T ∗L,∀i = 1, 2, ..., N. (3.17)

We argue in this work that the last finish time may not be the most suitable objective

of interest for peer-to-peer file-sharing systems. Notice that the expression of T ∗L suggests

that peers with small capacity joining the system can have an arbitrarily large impact on

system performance. This is certainly not true in a BitTorrent network, for example. In

fact, since strategy S0 is such that all peers finish at the same time (perfect fairness), the

46

efficiency of the system is compromised.

Lemma 5 When N = 2, strategy S0 is always Pareto-optimal.

Proof 6 To show that S0 is Pareto-optimal when N = 2, we need to show that it is not

possible to reduce one finish time of S0 without increasing the other. From (3.6) we see that

the values of T ∗L have only two cases:

(i) When

t1 = t2 = F/Cs, (3.18)

the finish times are clearly Pareto-optimal since it is not possible to reduce either of

the finish times.

(ii) When

t1 = t2 = 2F/C, (3.19)

suppose another strategy changes t1 to some value t′1 with t′1 < 2F/C, and t2 to some

value t′2. We argue that we must have t′2 > 2F/C. Since t′1 < 2F/C, during the time

period [t′1, 2F/C], peer 2 cannot upload to any peer since peer 1 has already finished.

Therefore, the whole system cannot upload at full capacity C for the entire time period

[0, t′2]. This implies t′2 > 2F/C. The same argument applies when the indices 1 and 2

are exchanged.

Thus we know S0 is always Pareto-optimal when N = 2.

Strategy S0 is in general not Pareto-optimal, however. We will state the following result

but skip the proof:

Lemma 6 When N ≥ 3 and T ∗L > F/Cs, strategy S0 is not Pareto-optimal.

3.4 Other Optimality Criteria

3.4.1 Average Finish Time

In this work, we propose to study objectives other than the last finish time. We argue that

in the context of peer-to-peer file sharing, the last finish time may not be as important as

47

the average finish time, for example. The average finish time TA is defined to be the average

of all finish times:

TA :=
1
N

N∑

i=1

ti. (3.20)

A simple example would illustrate why the average finish time may be more of interest

to the peers than the last finish time. Consider the special case where all peer capacities

are 0. If server capacity Cs is split equally among all peers, every peer will finish at the

same time

ti =
NF

Cs
,∀i = 1, 2, ..., N. (3.21)

However, if the downloads are scheduled separately in time, the finish times can be

ti =
iF

Cs
, ∀i = 1, 2, ..., N. (3.22)

Therefore, the average finish time in (3.22) becomes

(N + 1)F

2Cs
, (3.23)

nearly half of the average value of the finish times in (3.21). The overall user experience is

undoubtedly better in (3.22), and it can be shown that the finish times in (3.22) are actually

optimal for average finish time.

To see that the finish times in (3.22) are optimal, we consider the following inequalities.

Since by time ti the whole system must have at least uploaded i copies of the file F , we

have

ti ≥ iF

C
, ∀i = 1, 2, ..., N. (3.24)

Since all the peer capacities are 0, this is equivalent to

ti ≥ iF

Cs
, ∀i = 1, 2, ..., N. (3.25)

48

We thus see that

TA =
1
N

N∑

i=1

ti (3.26)

≥ (N + 1)F

2Cs
. (3.27)

The finish times in (3.22) achieve the above lower bound, and therefore are optimal for

average finish time TA.

3.4.2 Min-Min Finish Times

It is also possible to consider the following “min-min” optimality criterion for the finish

times, where each finish time ti is sequentially minimized, in order from fast to slow peers.

tm1 := min t1 =
F

Cs
, (3.28)

tmi := min
{
ti|tj = tmj , ∀j < i

}
. (3.29)

In other words, the min-min finish time tmi of peer i is the minimal possible value of ti

subject to the constraints that the finish time of any peer j with an index j < i is equal to

tj = tmj .

3.5 General Properties

We will first show that during any time period where no peer finishes, we can assume

without loss of generality that no file segment is uploaded by more than two nodes. In

other words, no file segment traverses more than two “hops” when it is sent.

Suppose a file segment B starts from node i0 (either a peer or the server) to peers i1, i2

and i3 in sequence, as shown in Figure 3.4. We claim that this data flow can be replaced

by a union of several two-hop data flows without changing the finish times of any peer.

First, we divide the file segment B into two disjoint parts B1 and B2 of equal size. Then

node i0 sends B1 to peer i1, and B2 to peer i2. When peer i1 receives B1, it broadcasts

B1 to the other two peers. Similarly, when peer i2 receives B2, it broadcasts B2 to the the

other two peers as well. This is illustrated in Figure 3.3. Notice that peers i1 and i2 use the

same capacity to upload since 2|B1| = 2|B2| = |B|. Therefore, peers receive the same file

49

segments with the modified flow of Figure 3.3 as in Figure 3.4. It is easy to apply the same

argument to any multi-hop flows. Therefore we see that it is without loss of generality to

assume data flows that traverse at most two hops.

B

B B

Figure 3.3: A file segment B is uploaded by three nodes in this graph. It can be regarded
as the data traversing three hops in the flow.

1
B

1
B

2
B

1
B

2
B

2
B

Figure 3.4: A file segment is divided into two disjoint segments of equal size, B1 and B2.
Notice that each sending node still uses the same upload capacity, and each receiving node
still receives the same segments. This flow is now “two-hop.”

We will now present another general property of the model.

Theorem 4 (Multiplicity Theorem) It is possible to let the first M peers finish at bottleneck

time if and only if

Cs ≤
M∑

i=1

Ci

M − 1
+

N∑

i=M+1

Ci

M
. (3.30)

50

Proof 7 (i) Consider the set of all peers i ∈ {1, 2, ..., M} as set A1, and the rest of the

peers i ∈ {M +1,M +2, ..., N} as set A2. We will derive an upper bound on the total

amount of data set A1 as a whole can receive. It is clear that any data A1 receives

must be from either the server, other peers in A1, or peers in set A2. The server and

peers in A1 can at most upload at the rate of

Cs +
M∑

i=1

Ci. (3.31)

Each node j in set A2 can broadcast any data that it receives to all the peers in A1.

The server can therefore route through peer j and “multiply” its sending rate to set

A1 by a factor of M , subject to the upload constraint of peer j. The cost is, of course,

that this will inevitably leave one copy of the data with peer j, which is not in set A1.

The net contribution of routing through peer j to A1 is therefore a factor of M − 1.

The most peer j can receive in this situation is Cj/M since otherwise it does not have

enough upload capacity to broadcast to M peers. The net contribution from A2 to A1

is therefore at most

N∑

i=M+1

M − 1
M

Ci. (3.32)

Now, if it is possible to finish all peers A1 at bottleneck time, then the total amount

of data A1 receives must be at least as much as M copies of the file, namely, MF .

Therefore, we have

MF ≤
(

Cs +
M∑

i=1

Ci +
N∑

i=M+1

M − 1
M

Ci

)
F

Cs
, (3.33)

and this is equivalent to

Cs ≤
M∑

i=1

Ci

M − 1
+

N∑

i=M+1

Ci

M
. (3.34)

(ii) Suppose inequality (3.30) holds. We want to show that it is possible to let the first M

51

peers finish at bottleneck time. We can write the server capacity as

Cs = λ

(
M∑

i=1

Ci

M − 1
+

N∑

i=M+1

Ci

M

)
, (3.35)

where 0 < λ ≤ 1.

Consider the following strategy:

(i) The server uploads to each peer in set A1 at rate

λCi

M − 1
, (3.36)

and each peer broadcasts the data it receives from the server to any other peer in

set A1.

(ii) The server uploads to each peer in set A2 at rate

λCi

M
, (3.37)

and each peer broadcasts the data it receives from the server to all peers in set

A1.

It is straightforward to check that each peer in set A1 receives a total data rate of Cs,

with distinct file segments from each of the senders. Therefore, all peers in set A1 will

finish at bottleneck time.

Given the server and peer capacities, we will define the multiplicity of the system to be the

largest M such that inequality (3.30) holds. In other words, the multiplicity is M if it is

possible to finish the first M peers at bottleneck time, but not the first M + 1 peers.

Note that the multiplicity of any system is at least 1, since it is always possible to finish

peer 1 at bottleneck time. This fact can also be seen from the right-hand side of (3.30), as

it becomes infinite when M = 1 and, therefore, the inequality is always true for any finite

Cs.

One important consequence of the Multiplicity Theorem (Theorem 4) is that it suggests

a natural decomposition of our model into different cases according to the relative magnitude

of server capacity versus peer capacities. More specifically, when there are N peers in the

52

network, there will be N different intervals the server capacity Cs can be in, and the model

exhibits different behaviors in those intervals. We will illustrate these behaviors with some

examples.

3.6 Optimal Average Finish Time

Suppose the objective now is to minimize the average finish time

TA =
1
N

N∑

i=1

ti. (3.38)

We will show in this section that in many cases, the optimal average can be achieved by

the min-min finish times defined in Section 3.4.2.

3.6.1 Optimal Average when M = N

First of all we note that it is obvious how to obtain the optimal average finish time when

the multiplicity M is equal to N ; namely, when

Cs ≤
∑N

i=1 Ci

N − 1
. (3.39)

It is easy to see that since

ti ≥ F

Cs
, ∀i = 1, 2, ..., N, (3.40)

the optimal average finish time must satisfy

T ∗A ≥
F

Cs
. (3.41)

Now, when M = N , the equality in (3.41) is actually achieved by S0. Therefore,

T ∗A =
F

Cs
, if M = N, (3.42)

and it is easy to see the finish times of all peers are just the bottleneck time F/Cs, which

are equal to the min-min finish times in this case as well.

53

Intuitively one can think of this as the case with the server being the “bottleneck,” and

thus the the finish times only involve the capacity of the server.

3.6.2 Network of Two Peers

The simple case with one server and two peers (N = 2) can only have two possible values

for multiplicity, 1 and 2. When M = 2, according to the previous analysis, the optimal

finish times are just simply the bottleneck times.

When M = 1, following similar analysis we can see the following:

Lemma 7 The optimal average finish time for N = 2 and M = 1 is

F

Cs
+

F (Cs − C1 − C2)
2Cs (Cs + C1)

, (3.43)

with the peers finishing at times

F

Cs
, and

F

Cs
+

F (Cs − C1 − C2)
Cs (Cs + C1)

. (3.44)

In addition, the optimal average finish time is strictly better than the optimal last finish

time

T ∗A < T ∗S . (3.45)

Proof 8 If t1 ≤ t2, at time t1, we have

F1(t1) + F2(t1) ≤ (Cs + C1 + C2)t1, (3.46)

because the sum of the files that the peers have obtained must be upper bounded by the largest

possible total upload of the whole system. Thus we have

F2(t1) ≤ (Cs + C1 + C2)t1 − F, (3.47)

where equality is achieved if all capacities are utilized during [0, t1]. After peer 1 finishes,

54

peer 2 can obtain data from both the server and peer 1, and thus

t2 = t1 +
F − F2(t1)
Cs + C1

(3.48)

≥ t1 +
2F − Ct1
Cs + C1

. (3.49)

The average finish time therefore satisfies

TA =
t1 + t2

2
(3.50)

≥ t1 +
2F − Ct1

2 (Cs + C1)
(3.51)

≥ F

Cs
+

F (Cs − C1 − C2)
2Cs (Cs + C1)

. (3.52)

If t1 ≥ t2, the same argument gives

TA ≥ F

Cs
+

F (Cs − C1 − C2)
2Cs (Cs + C2)

(3.53)

≥ F

Cs
+

F (Cs − C1 − C2)
2Cs (Cs + C1)

. (3.54)

Therefore, inequality (3.52) holds in both cases. Consider the following strategy:

(i) During [0, t1], server uploads different file segments to peers 1 and 2 at the rates of

Cs − C2 and C2, respectively. Peer 1 forwards the data it receives from the server to

peer 2 at the rate of C1. Peer 2 forwards its receiving data at rate C2 to peer 1. Peer

1 therefore receives a combined rate of Cs, and finishes at time t1 = F/Cs. Peer 2

receives a combined rate of C1 + C2, which is less than Cs, and therefore it does not

finish at time F/Cs.

(i) During [t1, t2], the server and peer 1 combines their capacities to upload to peer 2 the

remaining file that peer 2 still needs. Peer 2 therefore finishes at

t2 = t1 +
F − (C1 + C2) F

Cs

Cs + C1
(3.55)

=
F

Cs
+

F

Cs

(
Cs − C1 − C2

Cs + C1

)
. (3.56)

It can be checked that this strategy achieves the equality in (3.52), and hence the first

55

part of this lemma is proved. Now consider

T ∗A − T ∗S =
F

Cs
+

F (Cs − C1 − C2)
2Cs (Cs + C1)

− 2F

Cs + C1 + C2
(3.57)

<
F

Cs
+

F (Cs − C1 − C2)
2Cs (Cs + C1)

− 2F

2Cs
(3.58)

=
F (Cs − C1 − C2)

2Cs (Cs + C1)
(3.59)

< 0. (3.60)

Therefore, the second part of the lemma is proved too.

3.6.3 Optimal Average when M = N − 1

It turns out that the analysis for N = 2 and M = 1 can readily be extended to any N and

M = N − 1. From the Multiplicity Theorem, we know that M = N − 1 is equivalent to

∑N
i=1 Ci

N − 1
< Cs ≤

∑N−1
i=1 Ci

N − 2
+

CN

N − 1
. (3.61)

Therefore, we can always write Cs in the form of

Cs = λ

(
N−1∑

i=1

Ci

)
+

CN

N − 1
, (3.62)

where λ is a constant such that

1
N − 1

< λ ≤ 1
N − 2

. (3.63)

Consider the following strategy:

(i) The server uploads different file segments to peers i, i = 1, 2, ..., N − 1, at the rate of

λCi. (3.64)

Each peer then broadcasts the data it receives from the server to any other peer i in

{1, 2, ..., N − 1}. Peer i still has some remaining capacity equaling

Ci − (N − 2)λCi, (3.65)

56

so it can upload to peer N at this remaining rate.

(ii) The server uploads to peer N at rate

CN

N − 1
, (3.66)

and peer N broadcasts the data it receives from the server to all other peers in the

network. Note that the upload capacity of the server is saturated, and so is the upload

capacity of peer N .

We will now show that the above strategy is optimal for average finish time. First we note

that at time t = tN−1 we must have

(N − 1)F + FN (tN−1) ≤ CtN−1, (3.67)

since CtN−1 is the most amount of total uploads from the entire system, and the left hand

side is the amount of data all peers have in total at time t = tN−1. Furthermore, it is easy

to see that

tN − tN−1 ≥ F − FN (tN−1)
C − CN

, (3.68)

because, during time [tN−1, tN], the server and all peers other than peer N itself can upload

to peer N . Now from inequality (3.67) we know that

F − FN (tN−1) ≥ NF − CtN−1. (3.69)

Therefore (3.68) becomes

tN − tN−1 ≥ NF − CtN−1

C − CN
. (3.70)

57

Using (3.70) we see that

NTA =
N∑

i=1

ti (3.71)

=
N−2∑

i=1

ti + 2tN−1 + (tN − tN−1) (3.72)

≥
N−2∑

i=1

ti + 2tN−1 +
NF − CtN−1

C − CN
(3.73)

=
N−2∑

i=1

ti +
NF

C − CN
+

C − 2CN

C − CN
tN−1 (3.74)

≥ (N − 2)F

Cs
+

NF

C − CN
+

C − 2CN

C − CN

F

Cs
. (3.75)

In the last inequality (3.75) above, we use the fact that

ti ≥ F

Cs
, ∀i, (3.76)

and that

C − 2CN

C − CN
≥ 0. (3.77)

It can be shown that the strategy we propose results in finish times

ti =
F

Cs
, ∀i = 1, 2, ..., N − 1, (3.78)

tN =
F

Cs

NCs − CN

C − CN
, (3.79)

which achieve the equality in (3.70). Therefore, it is optimal for average finish time.

3.6.4 Networks of Three Peers

When N = 3, the only case we have not shown a strategy for the optimal average is the

case when M = 1. This is the case when

Cs > C1 + C2 +
C3

2
. (3.80)

We will show that the following strategy is optimal for average finish time:

58

Theorem 5 When N = 3, M = 1, the following strategy is optimal in average finish time:

(i) During time period [0, t1], the server sends different file segments to peers 1, 2, and 3

at rates Cs − C2 − r3, C2, and r3, respectively, where

r3 :=
2Cs − C2

2Cs + 2C1 + C3
C3. (3.81)

It can be shown that

C3

2
≤ r3 ≤ min{C3, Cs − C1 − C2}, (3.82)

therefore, it is possible for the server to allocate the rate of r3 to peer 3. Then peer

1 uploads to peer 2 at rate C1; peer 2 uploads to peer 1 at rate C2; peer 3 uploads to

peer 1 at rate r3, and to peer 2 at rate C3 − r3.

(ii) During time period [t1, t2], peer 3 continues to upload to peer 2 the data it received

from the server during [0, t1]. The server and peer 1 each uploads at its full rate to

peer 2, and peer 2 uploads at its full rate to peer 3.

(iii) During time period [t2, t3], the server and peers 1 and 2 upload to peer 3 at a combined

rate of Cs + C1 + C2, and finish peer 3.

Proof 9 First of all, we show that (3.82) is true, and therefore it is possible for the server

to allocate r3. First we have

r3 − C3

2
=

C3

2Cs + 2C1 + C3

(
2Cs − C2 − 2Cs + 2C1 + C3

2

)

=
C3

2Cs + 2C1 + C3

(
Cs − C1 − C2 − C3

2

)

> 0.

Also, we have

min {C3, Cs − C1 − C2} − r3 = min {C3 − r3, Cs − C1 − C2 − r3}

= min
{

2C1 + C2 + C3

2Cs + 2C1 + C3
C3,

(Cs + C1)(2Cs − 2C1 − 2C2 − C3)
2Cs + 2C1 + C3

}

≥ 0.

59

Therefore, it is possible for the server to allocate the rate of r3 to peer 3.

Let the set of the peers i ∈ {1, 2} be set A; then an upper bound of the total amount of

data that can go into set A at time t2 is

Cst2 + C1t2 + C2t1 +
C3

2
t2. (3.83)

The reason for the first three terms in (3.83) is that the server and peer 1 can potentially

upload data to set A at full capacity during [0, t2], and peer 2 can only upload to set A during

[0, t1], since during [t1, t2] there is no destination in set A for peer 2 to upload to anymore.

Since peer 3 can at most upload the same data to two peers, the net contribution from peer

3 to set A is at most

min{C3t2, 2F3(t2)} − F3(t2), (3.84)

which is at most

C3

2
t2. (3.85)

Now, since we know that at time t = t2, peers 1 and 2 have both finished, the most possible

data that can go into set A must be at least 2F . Therefore, we have

Cst2 + C1t2 + C2t1 +
C3

2
t2 ≥ 2F, (3.86)

and it is equivalent to

t2 ≥ 2F − C2t1

Cs + C1 + C3
2

. (3.87)

Adding t1 to both sides of (3.87), and adding t1 + t2 to both sides of (3.70) with N = 3

60

gives

t1 ≥ F

Cs
, (3.88)

2∑

i=1

ti ≥ 2F

Cs + C1 + C3
2

+
Cs + C1 + C3

2 − C2

Cs + C1 + C3
2

t1, (3.89)

3∑

i=1

ti ≥ 3F

C − C3
+

C3t1
C − C3

+
C − 2C3

C − C3
(t1 + t2) . (3.90)

It is then possible to substitute for t1 and t1 + t2 in (3.90) and obtain a lower bound on

t1 + t2 + t3. It can therefore be seen that if a strategy achieves equality in each of the three

inequalities (3.88-3.90), it has to be optimal for average finish time. One can check that

the strategy we propose indeed achieves all three equalities, and therefore it is optimal for

average finish time.

We illustrate numerically the optimal finish times for average in Figure 3.5. The pa-

rameters are chosen to be Cs = 500, C1 = 200, C2 = 80, C3 = 70, and F = 100. Each of

the finish times t1, t2, t3 is plotted as a bar with its height equaling its value. Also plotted

are the values of T ∗A and T ∗L. We see that the optimal average finish time T ∗A is significantly

better than the optimal last finish time T ∗L.

We illustrate the behavior of the finish times that optimize the average according to the

three different multiplicity values in Figure 3.6.

3.6.5 Networks of Four and More Peers

It is possible to generalize (3.86) to the case of general N . For each index j such that

2 ≤ j ≤ N − 1, consider the set A of peers {1, 2, ...j}. An upper bound on the amount of

data that can go into set A at time tj is

(
Cs +

j−1∑

i=1

Ci

)
tj + Cjtj−1 +

j − 1
j




N∑

i=j+1

Ci


 tj . (3.91)

Since all peers in set A finish at or before tj ,

(
Cs +

j−1∑

i=1

Ci

)
tj + Cjtj−1 +

j − 1
j




N∑

i=j+1

Ci


 tj ≥ jF,∀N, j, 2 ≤ j ≤ N − 1. (3.92)

61

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

t
1
*

t
2
*

t
3
*

T
L
*

T
A
*

Figure 3.5: An illustration of the finish times that are optimal for average. The parameters
chosen are Cs = 500, C1 = 200, C2 = 80, and C3 = 70. The optimal values of TA and TL

are also plotted.

It is equivalent to

tj ≥ jF − Cjtj−1

Cs +
∑j−1

i=1 Ci + j−1
j

∑N
i=j+1 Ci

, ∀N, j, 2 ≤ j ≤ N − 1. (3.93)

When N = 4, from the Multiplicity Theorem we know that there are four different

intervals for Cs corresponding to four different multiplicities:





M = 4, if 0 ≤ Cs ≤ C1+C2+C3+C4
3 ,

M = 3, if C1+C2+C3+C4
3 < Cs ≤ C1+C2+C3

2 + C4
3 ,

M = 2, if C1+C2+C3
2 + C4

3 < Cs ≤ C1 + C2 + C3+C4
2 ,

M = 1, if Cs > C1 + C2 + C3+C4
2 .

(3.94)

If we could find a strategy that achieves equality in all of the inequalities in (3.93),

by the same argument used in the N = 3 case, we would show that the finish times of

such a strategy are average optimal, and are the min-min finish times at the same time.

62

S
C2

321
CCC

2

3

21

C
CC0

t1 t2 t3

0
t1 t2 t3t1 t2 t3

S
C

F

finish

tim e

*

L
T

*

L
T

(M = 3) (M = 2) (M = 1)

Figure 3.6: An illustration of the behavior of the finish times that are optimal for average,
with different multiplicities. There are three intervals Cs can be in, and they are illustrated
on top. The intervals are marked with their corresponding value of multiplicity. An illus-
tration of the different behaviors for different intervals is on the bottom. Notice how the
peer finish times “spread out” as Cs increases. The optimal value of the last finish time,
T ∗L, is also drawn for comparison.

Furthermore, we would have a closed-form expression for each of the finish times.

However, it turns out that there does not always exist a strategy that achieves all of the

inequalities in (3.93). We conjecture that min-min finish times are always average optimal

in general, but the behavior of the optimal ti can be more complex than the expression in

(3.93).

3.7 Min-min Finish Times

As mentioned in Section 3.4.2, it is possible to consider sequential minimization of finish

times in order of decreasing capacity as an optimality criterion. The min-min finish times

are defined to be

tm1 := min t1 =
F

Cs
, (3.95)

tmi := min
{
ti|tj = tmj , ∀j < i

}
. (3.96)

63

In other words, each peer’s finish time is minimized subject to the constraint that the finish

times of all lower-indexed peers are minimized.

From the Multiplicity Theorem (Theorem 4), it is easy to see the following:

Lemma 8 If the multiplicity is M , the min-min finish times are such that

tmi =
F

Cs
,∀i = 1, 2, ...,M, (3.97)

tmi >
F

Cs
,∀i,M < i ≤ N. (3.98)

Proof 10 The multiplicity is M if and only if it is possible to finish the first M peers

at time F/Cs, therefore the first M min-min finish times have to be F/Cs, and the other

min-min finish times cannot be F/Cs.

We observe that min-min finish times are closely related to the finish times that achieve

the optimal average. We further conjecture that the problem of minimizing the average is

actually equivalent to the sequential minimization process for min-min finish times.

Theorem 6 The optimal average finish time is achieved by min-min finish times, for all

N when M is N or N − 1, and for all M when N = 3.

Proof 11 We have shown in Section 3.4.1 that min-min finish times are also average op-

timal when the multiplicity M is equal to N or N − 1.

For the case of N = 3 and M = 1, consider the inequalities (3.88-3.90). One can see

that the problem of minimizing t1 + t2 + t3 can be reduced to the problem of minimizing

t1 + t2 and t1. The problem of minimizing t1 + t2 is similarly reduced to the problem of

minimizing t1. Since the strategy we propose achieves equality in (3.88-3.90), we argue that

its finish times must be min-min finish times.

When all equalities are achieved, we see from (3.88) that t1 = tm1 . Now, by letting

t1 = tm1 , achieving equality in (3.89) indicates that t2 achieves the minimal value subject to

the constraint that t1 = tm1 . This is by definition the value of tm2 . Therefore, we see that

t2 = tm2 as well. A similar argument can be applied to (3.90), and we see that t3 = tm3 .

Therefore, the finish times are min-min finish times.

64

3.8 Selfish Peers

It is possible to consider peer-to-peer file sharing models that are slightly modified. We will

consider a special alternative model that assumes that peers will leave the system when

they finish, instead of staying to help upload to unfinished peers. So far we have assumed

peer altruism in the model, and the alternative model is motivated by the fact that in real

peer-to-peer networks, peers are not always altruistic. We would like to point out that in

practice, BitTorrent peers have generally exhibited an amazing amount of altruism. This

phenomenon is studied in [17].

To capture the case where peers are not altruistic, we can consider an alternative model

where we assume peers do not upload to other peers once they finish; namely, peer i does

not upload to any peer for any time t > ti.

In the non-altruistic case, first we see that the optimal last finish time T ∗L is not changed.

Lemma 9 In the case where peers are selfish, the optimal last finish time is still the same

value as the case with altruistic peers:

T ∗L = max
{

F

Cs
,
NF

C

}
. (3.99)

Proof 12 If the peers are selfish, at any point in time their upload rates can only be less

than or equal to the case where they are altruistic. Therefore, C is still an upper bound

on the total capacity of the system. It can therefore be seen that F/Cs and NF/C are still

lower bounds of T ∗L. Since S0 still achieves equality for these lower bounds, we see that S0

is optimal for TL and hence the lemma is proved, either the peers are selfish or altruistic.

If we look at the average finish time TA, however, we see some interesting behavior. To

optimize TA, we can see the following result for the simple N = 2 case:

Lemma 10 If peers are selfish and N = 2, then there are two sets of finish times that

optimize the average finish time when M = 1. One is to finish the faster peer first





t1 = F
Cs

,

t2 = F
Cs

(
2Cs−C1−C2

Cs

)
,

(3.100)

65

and the other is to finish the slower peer first





t1 = F
Cs

(
2Cs−C1−C2

Cs

)
,

t2 = F
Cs

.

(3.101)

They are both optimal for TA. When M = 2, the optimal finish times for average are simply





t1 = F
Cs

,

t2 = F
Cs

,

(3.102)

and they are achieved by S0.

Proof 13 The M = 2 case is trivial. When M = 1, we know from the Multiplicity Theorem

that

Cs ≥ C1 + C2. (3.103)

Suppose we have t2 ≥ t1, then at time t1 we have

F + F2(t1) ≤ Ct1, (3.104)

namely,

F − F2(t1) ≥ 2F − Ct1. (3.105)

Now, since the peers are selfish, after peer 1 finishes only the server can upload to peer 2.

Therefore, we see that

t2 − t1 ≥ F − F2(t1)
Cs

(3.106)

≥ 2F − Ct1
Cs

. (3.107)

This gives

t1 + t2 ≥ 2F + (2Cs − C) t1
Cs

. (3.108)

66

Since we know that 2Cs − C ≥ 0 from (3.103), using the fact that t1 ≥ F/Cs we get

TA ≥ F

2Cs

(
3Cs − C1 − C2

Cs

)
. (3.109)

It is easy to check that both (3.100) and (3.101) achieve the above lower bound on TA, and

therefore they are both optimal for average finish time.

For larger networks of selfish peers, the general behavior is unknown. Min-min finish

times in this case may not be average optimal. Its general behavior is an open problem we

are still investigating.

3.9 Summary and Conclusion

We study a model for peer-to-peer file sharing with respect to different optimality criteria.

We have derived general properties of the system, and analyzed special cases of system

behavior.

Intuitively, the results suggest that efficient peer-to-peer file sharing should have two

components. One is that file segments should be spread out to as many peers as possible,

in order to utilize every peer’s upload capacity. The other component is that fast peers

should be favored over slow peers, but they should be not be favored exclusively. It seems

that fast peers should receive more file segments (but not all file segments) earlier, while at

the same time the capacities of slow peers should also be utilized.

BitTorrent’s choking algorithms [10] are similar in spirit. There are two major algorithms

for deciding which peer to upload to in BitTorrent. One is to reciprocate to the peers who

have sent data at the highest rates to you, and the other is to randomly choose a peer (who

is possibly very slow) and upload to it.

We have studied Pareto optimality, average optimality, and min-min finish times in this

work. There are conceivably numerous other optimality criteria that can provide insights

to the understanding of peer-to-peer file sharing systems. We have also considered a special

alternative model where peers are assumed to be selfish, or non-altruistic.

It is possible to extend the average finish time TA to be a weighted average. It is also

possible to study more explicitly the tradeoff between fairness and efficiency. Strategy S0

can be thought of as being “perfectly fair” since it results in equal finish times. To obtain

67

min-min finish times, or optimize the average finish time, we obtain finish times that favor

fast peers over slow peers. The overall performance of the system is improved and is not

affected by the presence of possibly numerous slow peers.

It is also possible to consider topology constraints, which are not studied in this work.

Also, one may wish to include constraints of download capacities in addition to upload

capacities.

68

69

Chapter 4

Future Directions

As discussed in Chapter 2, there are many promising applications for distributed averaging.

We show that the algorithms are suitable for a variety of different networks in addition to

peer-to-peer networks.

The peer-to-peer file sharing model that we have studied in Chapter 2 raises many new

open questions. We will conclude the thesis by pointing out a few directions for future work

of this model.

4.1 Selfish vs. Altruistic Peers

As studied in Section 3.8, it is possible to consider a modified model where peers are not

altruistic. In this “selfish” case, peers finish obtaining the file F and just leave the system.

We show that the optimal value for the last finish time T ∗L is not affected by this modification

of the model. However, the finish times that optimize the average behave differently in the

simple two-peer case.

It seems likely that optimal finish times for average in the selfish case are different from

the ones in the altruistic case. Many of the general properties, including the two-hope

argument and the Multiplicity Theorem which we have discussed in Chapter 3 still hold,

but it is not clear that the optimal finish times would exhibit similar behavior. For instance,

it may not be best for fast peers to finish early in the selfish case, since that means fast

peers would leave the system early, instead of staying in the system to help.

It would be interesting to study the selfish case more closely and compare it with the

altruistic case. We are currently investigating that.

70

4.2 Data Identity vs. Network Coding

We have not consider the possibility of peers performing computation on the data that they

receive. Network coding is a technique that can possibly be employed by peers.

Notice that since many of the performance bounds that we obtain are true regardless

of whether network coding is used, it is therefore not possible to strictly improve the finish

times by using network coding in those cases [9]. For instance, the optimal last finish T ∗L

cannot be strictly improved since it already achieves some lower bound that always holds

true.

However, it is conceivable that network coding can improve efficiency in some cases. It

is also conceivable that network coding can be used to suggest a simpler way to understand

the system. So far we have been keeping track of data identity when we talk about strategies

for file sharing. It is possible that with network coding, this consideration can be greatly

simplified if the data being sent is just generally a linear combination of file segments.

Also, we have not considered the effects of topology constraints. We assume that peers

are on a complete graph of connectivity. It is possible that network coding can improve

peers’ finish times given topology constraints.

4.3 Fairness Objectives

It is possible to think in terms of some measure of “fairness” of the peers’ finish times. For

example, the objective to minimize the last finish time,

min
{

max
i
{ti}

}
, (4.1)

can be thought of as minimizing the average finish time, with the fairness constraint that

all finish times are the same:

min

{
1
N

N∑

i=1

{ti}
}

, (4.2)

s.t. ti = tj , ∀i, j. (4.3)

It is thus possible to consider different kinds of fairness criteria as constraints to the

average-finish-time optimization. An upper bound on the variance of the distribution of the

71

ti’s, for example, can be a fairness criterion. It can be desirable to consider fairness criteria

that favor fast peers over slow peers, in order to reflect the fact that fast peers may upload

to the system more than slow peers in general.

72

73

Bibliography

[1] E. Adar and B. A. Huberman. Free Riding on Gnutella. First Monday, Peer-

reviewed Journal on the Internet, vol. 5, no. 10, October 2000. Available at

http://firstmonday.org/issues/issue5 10/adar/index.html

[2] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung. Network Information Flow. IEEE

Transactions on Information Theory, IT-46, pp. 1204-1216, 2000.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci. A Survey on Sensor

Networks. IEEE Communications Magazine, pp. 102-114, August 2002.

[4] A. Bar-Noy, S. Kipnis, and B. Schieber. Optimal multiple message broadcasting in

telephone-like communication systems. Discrete Applied Mathematics, 100:1-15, 2000.

[5] BearShare. http://www.bearshare.com

[6] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical

Methods, Prentice Hall, 1989.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip Algorithms: Design, Analysis

and Applications. Proceedings of Infocom, Miami, 2005.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker. Making Gnutella-

like P2P Systems Scalable. Proceedings of ACM Sigcomm, Karlsruhe, Germany, Au-

gust, 2003.

[9] D. M. Chiu, R. W. Yeung, J. Huang and B. Fan Can Network Coding Help in P2P

Networks? Available at http://personal.ie.cuhk.edu.hk/∼dmchiu/p2pnetcoding.pdf

[10] B. Cohen. Incentives Build Robustness in BitTorrent,

http://bitconjurer.org/BitTorrent/bittorrentecon.pdf

74

[11] R. Cox, A. Muthitacharoen and R. Morris. Serving DNS using Chord. First Interna-

tional Workshop on Peer-to-Peer Systems, Cambridge, USA, March, 2002.

[12] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative

storage with CFS. Proceedings of ACM Symposium on Operating Systems Principles,

pp. 202-215, Banff, Canada, 2001.

[13] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: scal-

able coordination in sensor networks. Proceedings of Mobile Computing and Networking,

1999.

[14] A. Fax and R. M. Murray. Information Flow and Cooperative Control of Vehicle For-

mations, IEEE Transactions on Automatic Control, vol. 49, pp. 1465-1476, September

2004.

[15] C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale Content Distribution.

Proceedings of IEEE Infocom, Miami, 2005.

[16] Gnutella. http://www.gnutella.com

[17] D. Hales and S. Patarin. How to cheat BitTorrent and why nobody does. Technical

Report UBLCS-2005-12, Department of Computer Science, University of Bologna, May

2004.

[18] S. H. Hong. The Effect of Napster on Recorded Music Sales: Evidence from the

Consumer Expenditure Survey. SIEPR Discussion Paper No. 03-18, January, 2004.

[19] M. Jelasity, W. Kowalczyk, and M. van Steen. An approach to massively distributed

aggregate computing on peer-to-peer networks. Proceedings of the 12th Euromicro

Conference on Parallel, Distributed and Network-Based Processing, 2004.

[20] Kazaa. http://www.kazaa.com

[21] F. Kelly, A. Maulloo and D. Tan. Rate control for communication networks: Shadow

prices, proportional fairness and stability. Journal of Operations Research Society,

49(3):237–252, March 1998.

[22] D. Kempe, A. Dobra and J. Gehrke. Computing Aggregate Information using Gossip.

Proceedings of FOCS, 2003.

75

[23] D. Kempe and F. McSherry. A Decentralized Algorithm for Spectral Analaysis. Pro-

ceedings of STOC, 2004.

[24] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,

S. Rhea, H. Weatherspoon, W. Weimer, C. Wells and B. Zhao. OceanStore: An ar-

chitecture for global-scale persistent storage. Proceeedings of the Ninth international

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, Boston, November 2000, pp. 190V201.

[25] LimeWire. http://www.limewire.com

[26] S. H. Low and D. E. Lapsley. Optimization Flow Control, I: Basic Algorithm and

Convergence. IEEE/ACM Transactions on Networking, 7(6):861-75, Dec. 1999.

[27] J. Li, J. Stribling, T. M. Gil, R. Morris and M. F. Kaashoek. Comparing the per-

formance of distributed hash tables under churn. The 3rd International Workshop on

Peer-to-Peer Systems, San Diego, USA, February 2004.

[28] N. Lynch. Distributed Algorithms, Morgan Kaufmann Publishers, 1997.

[29] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray. Distributed av-

eraging on asynchronous communication networks. Proceedings of the IEEE Conference

on Decision and Control, Seville, Spain, 2005.

[30] R. Merris. Laplacian Matrices of a Graph: A Survey. Linear Algebra and its Applica-

tions, 1994.

[31] N. Minar and M. Hedlund. A Network of Peers: Peer-to-peer Models Through the

History of the Internet. Peer-to-peer: Harnessing the Power of Disruptive Technologies,

edited by Andy Oram, O’Reilly, March 2001.

[32] J. Mundinger and R. Weber. Efficient File Dissemination using Peer-to-Peer Technol-

ogy. Technical Report, Statistical Laboratory Research Reports 2004-01, Cambridge,

January 2004.

[33] J. Mundinger, R. R. Weber and G. Weiss. Analysis of Peer-to-Peer File Dissemina-

tion amongst Users of Different Upload Capacities. Performance Evaluation Review,

Performance 2005 Issue.

76

[34] R. Olfati-Saber and R. Murray. Consensus Problems in Networks of Agents with

Switching Topology and Time-Delays, IEEE Transactions on Automatic Control, v.

49, no. 9, pp. 1520-1533, September 2004.

[35] PlanetLab. http://www.planet-lab.org

[36] D. Qiu and R. Srikant. Modeling and Performance Analysis of BitTorrent-Like Peer-

to-Peer Networks. Proceedings of ACM SIGCOMM, Portland, 2004.

[37] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and rout-

ing for large-scale peer-to-peer systems. IFIP/ACM International Conference on Dis-

tributed Systems Platforms, Heidelberg, pp. 329-350, November, 2001.

[38] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker. A Scalable Content-

Addressable Network. Proceedings of ACM Sigcomm, San Diego, August 2001.

[39] D. S. Scherber and H. C. Papadopoulos. Distributed Computation of Averages Over

Ad Hoc Networks. IEEE Journal on Selected Areas in Communications, vol. 23, no.

4, pp. 776-787, April 2005.

[40] SETI@home. http://setiathome.ssl.berkeley.edu/

[41] R. Sherwood, R. Braud and B. Bhattacharjee. Slurpie: A Cooperative Bulk Data

Transfer Protocol. Proceedings of IEEE Infocom, Hong Kong, 2004.

[42] D. Spanos, R. Olfati-Saber and R. M. Murray. Distributed Sensor Fusion Using Dy-

namic Consensus. Proceedings of 16th IFAC World Congress, Prague, 2005.

[43] D. Spanos, R. Olfati-Saber and R. M. Murray. Dynamic Consensus on Mobile Networks.

Proceedings of 16th IFAC World Congress, Prague, 2005.

[44] D. Spanos, R. Olfati-Saber and R. M. Murray. Distributed Kalman Filtering in Sensor

Networks with Quantifiable Performance. Proceedings of Information Processing in

Sensor Networks, Los Angeles, USA, 2005.

[45] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek and H.

Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for Internet applications.

IEEE/ACM Transactions on Networking, 2003.

77

[46] J. N. Tsitsiklis. Problems in decentralized decision making and computation. Ph.D.

thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, 1984. http://web.mit.edu/jnt/www/PhD-84-jnt.pdf

[47] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed Asynchronous Deter-

ministic and Stochastic Gradient Optimization Algorithms. IEEE Transactions on

Automatic Control, vol. 31, no. 9, pp. 803-812, 1986.

[48] L. Xiao and S. Boyd. Fast Linear Iterations for Distributed Averaging. Proceedings of

the Conference on Decision and Control, Maui, USA, 2003.

[49] L. Xiao, S. Boyd, and S. Lall. A Scheme for Asynchronous Distributed Sensor Fu-

sion Based on Average Consensus. Proceedings of Information Processing in Sensor

Networks, Los Angeles, USA, 2005.

[50] X. Yang and G. de Veciana. Service capacity of peer to peer networks. Proceedings of

IEEE Infocom, Hong Kong, 2004.

[51] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph and J. D. Kubiatowicz.

Tapestry: A Resilient Global-Scale Overlay for Service Deployment. IEEE Journal On

Selected Areas In Communications, vol. 22, no. 1, January, 2004.

