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Abstract 
As humanity has developed increasingly ingenious and complicated systems, it has not been 

able to accurately predict the performance, development time, reliability, or cost of such systems.  

This inability to accurately predict parameters of interest in the design of complex 

multidisciplinary systems such as automobiles, aircraft, or spacecraft is due in great part to 

uncertainty.  Uncertainty in complex multidisciplinary system design is currently mitigated 

through the use of heuristic margins.  The use of these heuristic margins can result in a system 

being overdesigned during development or failing during operation. 

This thesis proposes a formal method to propagate and mitigate uncertainty in the design of 

complex multidisciplinary systems.  Specifically, applying the proposed method produces a 

rigorous foundation for determining design margins.  The method comprises five distinct steps: 

identifying tradable parameters; generating analysis models; classifying and addressing 

uncertainties; quantifying interaction uncertainty; and determining margins, analyzing the design, 

and trading parameters.  The five steps of the proposed method are defined in detail.  Margins are 

now a function of risk tolerance and are measured relative to mean expected system performance, 

not variations in design parameters measured relative to heuristic values. 

As an example, the proposed method is applied to the preliminary design of a spacecraft 

attitude determination and control system.  In particular, the design of the attitude control system 

on the Mars Exploration Rover spacecraft cruise stage is used.  Use of the proposed method for 

the example presented yields significant differences between the calculated design margins and 

the values assumed by the Mars Exploration Rover project. 

In addition to providing a formal and rigorous method for determining design margins, this 

thesis provides three other principal contributions.  The first is an uncertainty taxonomy for use in 

the design of complex multidisciplinary systems with detailed definitions for each uncertainty 

type.  The second is the modification of two simulation techniques, the mean value method and 

subset simulation, that can significantly reduce the computational burden in applying the 

proposed method.  The third is a set of diverse application examples and various simulation 

techniques that demonstrate the generality and benefit of the proposed method. 



vi 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally left blank. 



vii 

Table of Contents 
Chapter 1 Introduction ....................................................................................................... 1 

1.1 Motivation and Background....................................................................................... 1 
1.2 Space Systems............................................................................................................ 6 
1.3 Problem Statement ................................................................................................... 19 
1.4 Key Contributions and Organization of Thesis........................................................ 21 

Chapter 2 Uncertainty Classifications and Types ............................................................ 23 
2.1 Uncertainty and Its Classification in Other Fields ................................................... 24 
2.2 Uncertainty Types .................................................................................................... 35 
2.3 Summary .................................................................................................................. 41 

Chapter 3 Method Development and Overview............................................................... 43 
3.1 Previous Work.......................................................................................................... 43 
3.2 Method Steps and Key Concepts ............................................................................. 48 
3.3 Qualitative Benefits of Method................................................................................ 51 
3.4 Quantitative Results in Applying Method................................................................ 55 
3.5 Summary .................................................................................................................. 56 

Chapter 4 Identifying Tradable Parameters ..................................................................... 57 
4.1 Tradable Parameters................................................................................................. 57 
4.2 Common Tradable Parameters ................................................................................. 60 
4.3 Summary .................................................................................................................. 63 

Chapter 5 Generating Analysis Models ........................................................................... 65 
5.1 Model Formulation................................................................................................... 65 
5.2 Model Uncertainty ................................................................................................... 68 
5.3 Phenomenological Uncertainty ................................................................................ 77 
5.4 Summary .................................................................................................................. 82 

Chapter 6 Classifying and Addressing Uncertainties....................................................... 83 
6.1 Ambiguity and Aleatory Uncertainty....................................................................... 83 
6.2 Behavioral Uncertainty ............................................................................................ 86 
6.3 Importance of Uncertainty ....................................................................................... 93 
6.4 Summary .................................................................................................................. 95 

Chapter 7 Interaction Uncertainty and Simulation........................................................... 97 
7.1 Existing Simulation Techniques............................................................................... 97 
7.2 Modified Simulation Techniques ........................................................................... 101 



viii 

7.3 Simulation Techniques Ruled Out ......................................................................... 108 
7.4 Simulation Technique Repetitions Required.......................................................... 111 
7.5 Summary ................................................................................................................ 112 

Chapter 8 Determining Margins, Analyzing the Design, and Trading Parameters........ 115 
8.1 Determining Margins ............................................................................................. 115 
8.2 Analyzing the Results ............................................................................................ 116 
8.3 Trading Parameters ................................................................................................ 118 
8.4 Summary ................................................................................................................ 121 

Chapter 9 Application Example – Attitude Determination and Control System ........... 123 
9.1 Mars Exploration Rover (MER) Project ................................................................ 123 
9.2 Attitude Determination and Control System Overview ......................................... 124 
9.3 Uncertainties Involved ........................................................................................... 125 
9.4 Tradable Parameters............................................................................................... 126 
9.5 Models and Model Uncertainty.............................................................................. 127 
9.6 Uncertainty Quantification..................................................................................... 136 
9.7 Interaction Uncertainty........................................................................................... 138 
9.8 Margins and Analysis............................................................................................. 150 
9.9 Summary ................................................................................................................ 152 

Chapter 10 Concluding Remarks ..................................................................................... 153 
10.1 Concerns About the Proposed Method .............................................................. 154 
10.2 Potential Impact of the Proposed Method.......................................................... 159 
10.3 Future Directions ............................................................................................... 162 
10.4 Final Thoughts ................................................................................................... 164 

Appendix A Mathematical Foundations ........................................................................ 167 
A.1 Probability and Statistics........................................................................................ 167 
A.2 Bayesian Techniques.............................................................................................. 176 

Appendix B Application Examples ................................................................................... 183 
B.1 Propulsion .............................................................................................................. 183 
B.2 Thermal Control ..................................................................................................... 200 
B.3 Mission Design....................................................................................................... 212 

Appendix C Implementation.............................................................................................. 215 
C.1 General Implementation......................................................................................... 215 
C.2 Specific Implementation ........................................................................................ 215 
 



ix 

List of Figures 
Fig. 1.1   The design process; adapted from Pahl and Beitz (1996). ............................................... 3 
Fig. 1.2   Decisions made early in design have a significant impact [Symon & Dangerfield, 1980; 

Thuesen & Fabrycky, 2001].................................................................................................... 5 
Fig. 1.3   MER mass history. ......................................................................................................... 15 
Fig. 2.1   Uncertainty classifications in economics........................................................................ 26 
Fig. 2.2   Uncertainty classification in policy & risk analysis [Morgan & Henrion, 1990]. .......... 26 
Fig. 2.3   Uncertainty classification in systems engineering [Klir & Folger, 1988; INCOSE 

Systems Engineering Handbook, 2000]. ............................................................................... 28 
Fig. 2.4   Uncertainty classification in civil engineering [Ayyub & Chao, 1998]. ........................ 29 
Fig. 2.5   Uncertainty classification in structural engineering [Melchers, 1999]. .......................... 30 
Fig. 2.6   Uncertainty classification in computational modeling & simulation [Oberkampf et al., 

1999]. .................................................................................................................................... 31 
Fig. 2.7   Uncertainty classification in computational modeling & simulation (mathematical 

model) [Oberkampf, Helton, & Sentz, 2001]. ....................................................................... 32 
Fig. 2.8   Alternate uncertainty classification in computational modeling & simulation [Du & 

Chen, 2000]. .......................................................................................................................... 32 
Fig. 2.9   Uncertainty classification in mechanical engineering [Otto & Antonsson, 1993]. ........ 33 
Fig. 2.10   Uncertainty classification in aerospace vehicle synthesis and design [DeLaurentis & 

Mavris, 2000]. ....................................................................................................................... 33 
Fig. 2.11   Uncertainty classification in aircraft systems design [DeLaurentis, 1998]. ................. 34 
Fig. 2.12   Uncertainty classification in space architectures [Walton, 2002]................................. 35 
Fig. 2.13   Uncertainty classification for the design of complex systems...................................... 36 
Fig. 3.1   Example utility functions................................................................................................ 44 
Fig. 4.1   Simple schedule [Thunnissen, 2004a]. ........................................................................... 62 
Fig. 4.2   Possible cost and funding profile for a project. .............................................................. 63 
Fig 5.1   Model uncertainty for specific volume............................................................................ 71 
Fig. 5.2   Example relation between verbal expression and assigned likelihood; adapted from Kent 

(1964). ................................................................................................................................... 74 
Fig. 6.1   6061-T6 aluminum density uncertainty representation. ................................................. 84 
Fig. 6.2   PDF of component choices for tubing. ........................................................................... 87 
Fig. 6.3   Actual reserves compared to predicted reserves for several spacecraft [Rosenberg, 

2004]. .................................................................................................................................... 91 



x 

Fig. 9.1   MER spacecraft during cruise to Mars. ........................................................................ 124 
Fig. 9.2   MER engine cluster configuration; adapted from D’Amario (2002)............................ 125 
Fig. 9.3   Thrust and exhaust velocity as a function of inlet pressure. ......................................... 130 
Fig. 9.4   Propellant mass PDFs for MCS, LHS, and MMVM. ................................................... 139 
Fig. 9.5   Propellant mass CDFs (simulation level 1). ................................................................. 140 
Fig. 9.6   Propellant mass CDFs (simulation level 2). ................................................................. 140 
Fig. 9.7   Propellant mass CDFs (simulation level 3). ................................................................. 141 
Fig. 9.8   Propellant mass CDFs (simulation level 4). ................................................................. 141 
Fig. 9.9   Schedule duration PDFs for MCS, LHS, and MMVM................................................. 143 
Fig. 9.10   Schedule duration CDFs (simulation level 1)............................................................. 144 
Fig. 9.11   Schedule duration CDFs (simulation level 2)............................................................. 144 
Fig. 9.12   Schedule duration CDFs (simulation level 3)............................................................. 145 
Fig. 9.13   Schedule duration CDFs (simulation level 4)............................................................. 145 
Fig. 9.14   Total cost PDFs for MCS, LHS, and MMVM............................................................ 147 
Fig. 9.15   Total cost CDFs (simulation level 1).......................................................................... 148 
Fig. 9.16   Total cost CDFs (simulation level 2).......................................................................... 148 
Fig. 9.17   Total cost CDFs (simulation level 3).......................................................................... 149 
Fig. 9.18   Total cost CDFs (simulation level 4).......................................................................... 149 
Fig. A.1   Two distributions with identical means and standard deviations. ............................... 168 
Fig. A.2   PDFs of four continuous distributions (gamma, normal, lognormal, & uniform). ...... 170 
Fig. A.3   PDFs of two discrete distributions (binomial & uniform). .......................................... 171 
Fig. A.4   PDF (left) and CDF (right) for a discrete and continuous triangle distribution with 

parameters 20, -5, and +5. ................................................................................................... 172 
Fig. A.5   Probability of injected capability greater than spacecraft wet mass. ........................... 174 
Fig. A.6   Example of stochastic dominance................................................................................ 176 
Fig. A.7   Four possible prior distributions in launch vehicle example. ...................................... 178 
Fig. A.8   The effect of observations in launch vehicle example................................................. 179 
Fig. A.9   Posterior based on first 15 (left) and 30 (right) Delta II launches. .............................. 179 
Fig. A.10   Posterior based on first 45 (left) and 60 (right) Delta II launches. ............................ 180 
Fig. A.11   Posterior based on first 75 (left) and 90 (right) Delta II launches. ............................ 180 
Fig. A.12   Posterior based on first 105 (left) and all 115 (right) Delta II launches. ................... 180 
Fig. B.1   Propellant mass PDFs for MCS and MMVM.............................................................. 186 
Fig. B.2   Propellant mass CDFs (simulation level 1).................................................................. 186 
Fig. B.3   Propellant mass CDFs (simulation level 2).................................................................. 187 



xi 

Fig. B.4   Propellant mass CDFs (simulation level 3).................................................................. 187 
Fig. B.5   Propellant mass CDFs (simulation level 4).................................................................. 188 
Fig. B.6   Dry mass PDFs for MCS and MMVM. ....................................................................... 189 
Fig. B.7   Dry mass CDFs (simulation level 1)............................................................................ 190 
Fig. B.8   Dry mass CDFs (simulation level 2)............................................................................ 190 
Fig. B.9   Dry mass CDFs (simulation level 3)............................................................................ 191 
Fig. B.10   Dry mass CDFs (simulation level 4).......................................................................... 191 
Fig. B.11   Schedule duration PDFs for MCS and MMVM. ....................................................... 193 
Fig. B.12   Schedule duration CDFs (simulation level 1). ........................................................... 193 
Fig. B.13   Schedule duration CDFs (simulation level 2). ........................................................... 194 
Fig. B.14   Schedule duration CDFs (simulation level 3). ........................................................... 194 
Fig. B.15   Schedule duration CDFs (simulation level 4). ........................................................... 195 
Fig. B.16   Total cost PDFs for MCS and MMVM. .................................................................... 196 
Fig. B.17   Total cost CDFs (simulation level 1). ........................................................................ 197 
Fig. B.18   Total cost CDFs (simulation level 2). ........................................................................ 197 
Fig. B.19   Total cost CDFs (simulation level 3). ........................................................................ 198 
Fig. B.20   Total cost CDFs (simulation level 4). ........................................................................ 198 
Fig. B.21   Maximum component temperature PDFs for MCS and DS. ..................................... 202 
Fig. B.22   Maximum component temperature CDFs for MCS and DS. ..................................... 203 
Fig. B.23   Total thermal mass PDFs for MCS and DS. .............................................................. 204 
Fig. B.24   Total thermal mass CDFs for MCS and DS............................................................... 205 
Fig. B.25   Power required PDFs for MCS and DS. .................................................................... 206 
Fig. B.26   Power required CDFs for MCS and DS..................................................................... 206 
Fig. B.27   Schedule duration PDFs for MCS and DS................................................................. 207 
Fig. B.28   Schedule duration CDFs for MCS and DS. ............................................................... 208 
Fig. B.29   Total cost PDFs for MCS and DS.............................................................................. 209 
Fig. B.30   Total cost CDFs for MCS and DS. ............................................................................ 209 
Fig. B.31   Top six uncertainties driving total cost. ..................................................................... 212 
 



xii 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally left blank. 



xiii 

List of Tables 
Table 1.1   Typical spacecraft subsystems....................................................................................... 6 
Table 1.2   Recommended hardware mass and power margins [Yarnell, 2003]............................ 13 
Table 1.3   Recommended cost margins [Yarnell, 2003]............................................................... 13 
Table 1.4   MER flight system margins [Welch, 2001] ................................................................. 14 
Table 1.5   Design margins for several recent NASA projects ...................................................... 16 
Table 2.1   Quantity type uncertainty definitions in policy & risk analysis [Morgan & Henrion, 

1990] ..................................................................................................................................... 26 
Table 2.2   Uncertainty definitions in structural engineering [Melchers, 1999] ............................ 30 
Table 2.3   Incomplete information definitions in computational modeling & simulation............ 31 
Table 2.4   Uncertainty definitions in computational modeling & simulation (mathematical 

model) [Oberkampf, Helton, & Sentz, 2001]........................................................................ 32 
Table 2.5   Uncertainty definitions in space architectures [Walton, 2002].................................... 35 
Table 5.1   Examples of modeling tools used in space systems design ......................................... 67 
Table 6.1   Possible measured density data of 6061-T6 aluminum ............................................... 84 
Table 6.2   Possible component choices for tubing........................................................................ 86 
Table 6.3   Consequence vs. likelihood table; adapted from Conrow (2000) ................................ 95 
Table 7.1   Proposal PDFs for different uncertain input variables............................................... 106 
Table 9.1   ADCS examples of different uncertainty types ......................................................... 125 
Table 9.2   Model uncertainties assumed..................................................................................... 135 
Table 9.3   General input variables .............................................................................................. 136 
Table 9.4   Mission sequence uncertainties.................................................................................. 137 
Table 9.5   Deterministic propellant mass results ........................................................................ 138 
Table 9.6   SS results by level for propellant mass ...................................................................... 142 
Table 9.7   Propellant mass calculated by each simulation technique ......................................... 143 
Table 9.8   SS results by level for schedule duration................................................................... 146 
Table 9.9   Schedule duration calculated by each simulation technique...................................... 146 
Table 9.10   SS results by level for total cost............................................................................... 150 
Table 9.11   Total cost calculated by each simulation technique................................................. 150 
Table 9.12   Calculated (99th percentile) ADCS margin values.................................................. 151 
Table 9.13   Comparison of assumed and calculated (99th percentile) tradable parameter 

allocations with actual values.............................................................................................. 151 
Table A.1   Delta II posterior means for all four prior distributions............................................ 181 



xiv 

Table A.2   Delta II posterior standard deviations for all four prior distributions ....................... 181 
Table B.1   Model uncertainties assumed .................................................................................... 183 
Table B.2   Updated input variable uncertainties from Thunnissen and Nakazono (2003) ......... 184 
Table B.3   Deterministic results for thermal control analysis..................................................... 184 
Table B.4   SS results by level for propellant mass ..................................................................... 188 
Table B.5   Propellant mass calculated by each simulation technique......................................... 189 
Table B.6   SS results by level for dry mass ................................................................................ 192 
Table B.7   Dry mass calculated by each simulation technique................................................... 192 
Table B.8   SS results by level for schedule duration .................................................................. 195 
Table B.9   Schedule duration calculated by each simulation technique ..................................... 196 
Table B.10   SS results by level for total cost .............................................................................. 199 
Table B.11   Total cost calculated by each simulation technique ................................................ 199 
Table B.12   Calculated (99th percentile) margin values for propulsion tradable parameters ...... 199 
Table B.13   Comparison of assumed and calculated (99th percentile) propulsion tradable 

parameter allocations with actual values............................................................................. 200 
Table B.14   Model uncertainties assumed .................................................................................. 201 
Table B.15   Deterministic results for thermal control analysis................................................... 201 
Table B.16   Maximum component temperature calculated by MCS and DS............................. 203 
Table B.17   Total thermal mass calculated by MCS and DS...................................................... 205 
Table B.18   Power required calculated by MCS and DS............................................................ 207 
Table B.19   Schedule duration calculated by MCS and DS ....................................................... 208 
Table B.20   Total cost calculated by MCS and DS .................................................................... 210 
Table B.21   Calculated (99th percentile) margin values for maximum component temperatures

............................................................................................................................................. 210 
Table B.22   Calculated (99th percentile) margin values for mass, power required, schedule 

duration, and total cost ........................................................................................................ 210 
Table B.23   Comparison of assumed and calculated (99th percentile) maximum temperature 

allocations with actual values.............................................................................................. 210 
Table B.24   Comparison of assumed and calculated (99th percentile) mass, power required, 

schedule duration, and total cost allocations with actual values ......................................... 211 
Table B.25   Most statistically significant correlation coefficients (p-values < 0.0001) for total 

cost ...................................................................................................................................... 212 



xv 

Glossary and Nomenclature 
A glossary is presented to familiarize the reader with some of the terminology that is 

introduced and subsequently used throughout the course of this thesis.  The terms are consistent 

with the literature, where the literature itself is consistent. 

aleatory uncertainty.  Inherent variation associated with a physical system or environment under 
consideration. 

ambiguity.  Imprecise terms and expressions used in general communication. 

approximation errors.  Deficiencies in models where the phenomena or processes are relatively 
well understood. 

asymmetric information.  Information available to only a subset of a group and not all the 
parties involved. 

Bayesian techniques.  Formal mathematical methods that start with an existing belief and update 
that belief based on new data. 

behavioral uncertainty.  Uncertainty in how individuals or organizations act. 

complex multidisciplinary system.  A combination of two or more subsystems (disciplines) that 
result in a total system.  The complexity is due primarily to the number of subsystems and their 
interactions with each other; individual subsystem complexity is secondary. 

component.  A functional item that is viewed as a complete and separate entity for purposes of 
manufacturing, maintenance, or record keeping.  Examples in space systems design include a star 
tracker, thruster, and an electrical heater. 

conceptual design.  A short study period on the order of weeks or months to turn an idea into a 
concept and secure additional funding. 

contingency.  A synonym of margin or reserve.  In some fields contingency is used specifically 
in design. 

cumulative distribution function (CDF).  A monotonically increasing mathematical expression 
that gives the probability that an uncertain quantity is less than or equal to a specific value.   

decision maker.  One or more individuals or organizations responsible for making final decisions 
in a project.  In this thesis, the singular is used although the decision maker may consist of more 
than one individual or organization (e.g., the board of directors and the chief executive officer in 
a private corporation). 

design uncertainty.  A choice among alternatives over which an individual or individuals 
exercises direct control but has not yet decided upon.  An example is the choice an engineer has 
in selecting a given component among a set of possible components. 

deterministic.  A state that does not include or involve uncertainty. 

discipline.  A synonym for subsystem. 
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epistemic uncertainty.  Any lack of knowledge or information in any phase or activity of the 
modeling process. 

errors.  The accuracy of a mathematical model to describe an actual physical system of interest. 

human errors.  Blunders or mistakes by an individual or individuals during design. 

interaction uncertainty.  Uncertainty arising from unanticipated interaction of many events 
and/or disciplines, each of which might, in principle, be or should have been foreseeable. 

margin.  Variations in parameters (or resources) measured relative to best-estimate values. 

mean.  Expected value of a random variable. 

median.  A value of a random variable such that there is a 0.5 probability that the actual value of 
the variable is less than that value: P[X ≤ X0.5] ≡ 0.5. 

mode.  The value or values of a random variable that have maximal probability density. 

model uncertainty.  Accuracy of a mathematical model to describe an actual physical system of 
interest 

numerical errors.  Errors that arise due to finite precision arithmetic in a numerical model. 

percentile.  A value in percent such that there is a probability p that the actual value of a random 
variable, X, will be less than that value: P[X ≤ Xp] ≡ p.  Also known as a fractile or quantile when 
expressed as a fraction. 

phenomenological uncertainty.  Uncertainty that cannot be imagined.  Also referred to as 
“unknown unknowns.” 

preliminary design.  A more rigorous extension of conceptual design where the development of 
other options; the creation of risk management strategies; and the refining of previously 
performed trades, analyses, and cost estimates are performed.   

probabilistic.  A state that involves uncertainty represented by random variables instead of fixed 
and (assumed) known deterministic values. 

probability density function (PDF).  A mathematical expression that provides the probability of 
an event for each possible outcome. 

programming errors.  Mistakes or blunders by a programmer during development of a 
mathematical model. 

random variable.  An empirical quantity which is uncertain.  Specifically, a real valued function 
defined on a sample space. 

requirement uncertainty.  Parameters of interest to and determined by the stake holder, 
independent of the engineer or designer. 

reserve.  A synonym for margin or contingency, typically used with respect to cost. 
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sample.  A grouped number of observed random variables. 

standard deviation.  The square root of the variance.  The standard deviation (variance) reflects 
the amount of spread or dispersion in the distribution. 

space system.  An integrated set of subsystems and components capable of supporting an 
operational role in space.  Examples in the field of space systems design include an Earth-orbiting 
satellite, an interplanetary spacecraft, and a space station. 

stake holder.  One or more individuals or organizations who own a portion or the entirety of a 
project or is directly impacted by its outcome.  In this thesis, the singular is used although the 
stake holder may consist of more than one individual or organization (e.g., the stake holder for a 
government mission is both the government and that country’s citizens). 

subsystem.  An assembly of functionally related components (e.g., attitude control, propulsion, 
and thermal control).  Also referred to as discipline. 

tradable parameter.  A quantifiable property that provides a performance measure of the 
complex multidisciplinary system that can be traded during design against one or more other 
quantifiable properties (e.g., mass, cost, schedule, and risk). 

risk.  The likelihood of failure. 

uncertainty.  The difference between an anticipated or predicted value (behavior) and a future 
actual value (behavior). 

variance.  The second central moment of a random variable. 

volitional uncertainty.  Uncertainty about what a subject him/herself will decide. 

 

Acronyms and abbreviations used throughout the course of this thesis are summarized here: 

ADCS = attitude determination and control system 

A/F = analyst/facilitator 

BWR = Benedict-Webb-Rubin 

CBE = current best estimate 

CDF = cumulative distribution function 

c.o.v. = coefficient of variation 

DoD = Department of Defense 

DS = descriptive sampling 

FP = fault protection 

FY2002$K = fiscal year 2002 dollars in thousands (K) 
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FY2003$M = fiscal year 2003 dollars in millions (M) 

INCOSE = International Council on Systems Engineering 

JPL = Jet Propulsion Laboratory 

LHS = Latin hypercube sampling 

MCS = Monte Carlo simulation 

MCMC = Markov chain Monte Carlo 

MER = Mars Exploration Rover 

MMVM = modified mean value method 

MoM = method of moments 

MPF = Mars Pathfinder 

MVM = mean value method 

NASA = National Aeronautics and Space Administration 

PDF = probability density function 

PDR = preliminary design review 

PRA = probabilistic risk analysis 

REM = rover electronics module 

SDST = small deep space transponder 

SS = subset simulation 

SSPA = solid state power amplifier 

USAF = United States Air Force 

WCE = worst case estimate 

Symbols used throughout the course of this thesis are defined here (some have multiple 

definitions; their context should make it clear what the relevant definition is): 

A cross-sectional area, m2 

A two column array; first column (A1) is the choice (A1 ∈ integer), second 
column (A2) is the probability of that choice being selected (0 ≤ A2 ≤ 1) 

A0, a, B0, b, c0 Beattie-Bridgeman constants 
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a, b van der Waals constants 

A0, a, B0, b, C0, c, α, γ Benedict-Webb-Rubin constants 

B(n,p) binomial distribution with parameters n (number of trials) and p 
(constant probability of success for each trial) 

Ci boundary value of “failure region” for simulation level i 

Cd(A) discrete custom distribution with parameters listed in the array A 

c engine exhaust velocity, m/s 

c0 speed of light in a vacuum, 299792458 m/s 

D data 

d distance from the spacecraft to the sun, AU 

F thrust, N 

Fi failure region i 

Fx xth fractal value (Px /100) 

f mathematical function or friction factor; flux, W/m2 

G vector function that determines the tradable parameters based on the 
input variables; may be a computationally expensive function 

gs solar constant at 1 AU, W/m2 

H hypothesis; angular momentum, kg-m2/s 

h step size 

I impulse, N-s 

IF indicator function (IF = 1 if true, IF = 0 if false) 

Ijj,k(i) indicator function for the kth Markov chain sample in the jjth Markov 
chain at simulation level i 

i subset simulation level 

J moment of inertia, kg-m2 

j input variable number 

jj Markov chain number 

k Markov chain sample number 



xx 
k1, k2 thrust constants for a given engine 

k3, k4 exhaust velocity constants for a given engine 

L(µ,σ) lognormal distribution with parameters µ and σ 

m number of conditional levels (indexed with i = 1, …, m); mass, kg 

N total number of Monte Carlo simulation (MCS) samples; total number of 
MCS samples for initial run through (i = 1) subset simulation; total 
number of Markov chain samples across all chains for subsequent 
simulation levels (i > 1) 

N(µ,σj) normal distribution with parameters µ and σj 

N/Nc number of samples in each Markov chain (Markov chain samples starting 
from a seed; indexed with k = 1, …, N/Nc) 

Nc number of Markov chain seeds (Nc = p0·N; indexed with jj = 1, …, Nc) 

n number of input variables (indexed with j = 1, …, n); number or quantity 

P probability 

Pf specified probability of interest at distribution tail (e.g., Pf = 0.01 
corresponds to 99th percentile, Pf = 0.001 to 99.9th percentile, etc.) 

Pi specified probability of failure at simulation level i; Pi = P(Fi|Fi-1), i = 2, 
…, m 

Px xth percentile value 

Pi
* actual probability of failure at simulation level i 

p pressure, Pa 

pj
* proposal probability density function (PDF) for input variable j 

p0 conditional probability specified for subset simulation; p0 ∈ (0,1) 

Qj one-dimensional cumulative distribution function (CDF) for input 
variable θ(j) 

Qj
-1 inverse CDF for input variable θ(j) 

q spacecraft surface reflectivity 

q vector of one-dimensional PDFs 

qj one-dimensional PDF for input variable θ(j) 



xxi 
R engine moment arm, m 

Rdet deterministic result value 

Ri(k) covariance sequence for subset simulation level i at Markov chain 
sample number k 

ReD Reynolds number based on diameter 

r effective engine moment arm, m 

rj ratio used in Metropolis-Hastings algorithm for input variable j 

s number of Latin hypercube segments and repetitions 

T temperature, K 

t number of tradable parameters; time, s 

U (continuous) uniform random variable on the interval 0 to 1 

U(min,max) (continuous) uniform distribution with parameters “min” and “max” 

Ud(min,max) discrete uniform distribution with (integer) parameters “min” and “max” 

X general random variable 

x fraction 

Y vector of probabilistic tradable parameters 

y dependent variable or tradable parameter 

y vector of tradable parameters, vector of tradable parameter values at a 
subset simulation level of interest 

α rotational control acceleration, rad/s2 

β(a,b) beta distribution with parameters a and b 

Γ(A,B) gamma distribution with parameters A and B 

γ pointing control, rad 

γi correlation factor at subset simulation level i 

∆c(peak,minus,plus) continuous triangle distribution with parameters peak, minus, plus 

∆d(peak,minus,plus) discrete triangle distribution with parameters peak, minus, plus 

∆Fx xth fractal difference value (∆Px /100) 



xxii 

∆Itorque change in impulse torque, N-m-s 

∆τ change in torque, N-m 

∆φ angle through which engine(s) are fired, rad 

∆ω change in spin rate, rad/s 

δ engine misalignment angle, rad 

δi coefficient of variation (c.o.v.) of Pi* 

δi
* total c.o.v. up to and including simulation level i 

η engine duty cycle 

θi sunlight angle of incidence, rad 

θk vector of uncertain input variables at Markov chain sample number k 

θk(j) (potentially uncertain) input variable j at Markov chain sample number k 

θk
* vector of input variable candidate states at Markov chain sample number 

k 

θk
*(j) candidate state for input variable j at Markov chain sample number k 

κ distance from the center of pressure to the center of mass, m 

λ confidence deviation parameter calculated via the inverse of N(0,1); 
nutation frequency, Hz 

µ mean 

ν specific volume, m3/kmol 

ξj simulated value generated from proposal PDF for input variable j 

ρi(k) correlation coefficient at lag k of the stationary sequence {Ijk(i): k = 1, …, 
N/Nc} 

σi standard deviation of Pi
* 

σj standard deviation of one-dimensional PDF qj 

τ torque, N-m 

χ fraction used in calculating proposal PDF width; specific impulse 
efficiency parameter 



xxiii 

ψ slew angle, rad 

ω spin rate, rad/s 

ℑ force, N 

ℜ set of all real numbers or universal gas constant, 8314.51 J/kmol-K 

~ round down to nearest integer 

~ round up to nearest integer 

∅ empty set 

∪ union 

∩ intersection 

Subscripts: 

act_tot total actual 

f final desired 

half_rev half a revolution of the spacecraft about the spin axis 

i initial 

ideal_tot total ideal 

inlet at the engine inlet 

j input variable uncertainty number 

max maximum 

min_on engine minimum on per pulse 

on engine on per pulse 

p_slew propellant required for slewing 

p_spin propellant required for (de)spinning 

req required 

s solar 

sd scaled down 

slew_tot total for a slew maneuver 



xxiv 
xx axis orthogonal to spin axis 

zz spin axis 

Superscripts: 

i engine number 

j thrust maneuver number 

k pulse maneuver number, tradable parameter number 

t true value 

* optimal 
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Chapter 1 Introduction 
This chapter introduces the research presented in this thesis.  The chapter begins with 

motivation and background concerning uncertainty in engineering design and, specifically, in 

complex multidisciplinary systems.  An overview of space systems, the complex 

multidisciplinary system consistently referred to as an example throughout this thesis, follows.  

Methods of space systems design and uncertainty mitigation in space systems design are then 

presented.  The current method of uncertainty mitigation through the use of heuristic design 

margins is discussed with an entire section dedicated to design margin examples.  Particular 

attention is paid to the impact the current method of determining these margins has had on space 

systems design, development, and the aerospace industry in general.  The mathematical problem 

statement this thesis addresses is then described.  The chapter ends with a summary of the key 

thesis contributions and an overview of the remainder of the thesis. 

1.1 Motivation and Background 

Humans have developed as the dominant species on Earth (with respect to altering lives and 

the environment).  Foremost among the reasons for this is the ability of humans to develop, build, 

and master instruments and tools.  Although many species alter their surroundings for habitation, 

only a handful of other species use tools (e.g., otters use rocks to open clams, apes use sticks for 

food gathering).   Development of increasingly complex tools by humans followed from similar 

humble beginnings, an activity that continues to this day.  One of the reasons tools have become 

increasingly complex is uncertainty.  Tools (systems) have become complex to reduce uncertainty 

and allow for reliable predictability.  An example which illustrates this well is the missile. 

A missile is defined as “an object (as a weapon) thrown or projected usually so as to strike 

something at a distance” [Webster’s Ninth New Collegiate Dictionary, 1990].  The first missiles 

were simply rocks hurled by early man to kill animals and other humans.  As humankind evolved 

from hunter gathers to city-states around 8000 BC, the missile evolved from a rock being thrown 

by man to one shot by a sling and, by c400 BC, one propelled by a catapult.  This modest 

evolution (and increase in complexity) occurred because early man had two goals.  The first goal 

was to increase the destructive power of the missile (i.e., to counter uncertainties in the strength 

of the target).  The second goal was to improve the accuracy of hitting the target (i.e., to counter 

uncertainties in throwing the rock).  These goals drove the evolution of the catapult to become the 

Chinese rocket (c1200 AD), cannon (c1350 AD), artillery (c1800 AD), howitzer (c1850 AD), and 

flying bomb (c1940 AD).  Throughout this evolution, uncertainty has been intertwined with the 
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design of complex systems.  Today cruise and ballistic missiles are highly complex systems 

capable of quickly delivering enormous ordinances over thousands of kilometers while requiring 

little to no human assistance.  The transition from flying bombs to missiles included the addition 

of sensors, actuators, and computers to counter uncertainties in atmospheric conditions, release 

conditions, and target movement. 

As humanity has developed increasingly ingenious and complicated systems to reduce 

uncertainties and allow for reliable predictability, humanity has not been able to accurately 

predict other parameters of interest such as the performance, development time, reliability, or cost 

of such systems.  This inability to accurately predict parameters of interest in the design of 

complex systems is due in great part to uncertainty.  Uncertainty has repeatedly been treated as a 

supplemental piece of information during design.  It is often considered after decisions have been 

made and sometimes ignored completely.  This thesis addresses this issue by proposing a formal 

method to propagate and mitigate uncertainty in the design of complex systems.  One of the goals 

of this proposed method is to make uncertainty a central concept in the design of these systems.  

This thesis illustrates the intimate relationship and importance uncertainty has to the entire 

design, development, and decision-making process. 

Uncertainty can result in a system being overdesigned during development or failing during 

operation.  Addressing uncertainty can thus reduce the effort in designing (redesigning) complex 

systems.   It is not always possible to remove uncertainties or even obtain the information 

necessary to predict them.  Hence, the need remains for a repeatable and mathematically rigorous 

approach for quantifying these uncertainties to assist a decision maker.  A decision maker is one 

or more individuals or organizations responsible for making final decisions in a project.  In this 

thesis, the singular is used although the decision maker may consist of more than one individual 

or organization.  Probabilistic methods are the cornerstone of this mathematical rigor presented in 

this thesis and offer a viable approach to mange uncertainties that confront the decision maker.  

Probability theory is well-known to provide a rational and consistent framework for treating 

uncertainties and plausible reasoning [Cox, 1961; Papoulis, 1965; Jaynes 1983].  In short, the 

method proposed in this thesis attempts to improve how complex systems are designed, which 

remains one of the major contemporary engineering research challenges. 

1.1.1 Engineering Design 

Engineering design is the process by which systems and products are built to satisfy the needs 

of customers in a safe, efficient, and reliable manner.  Design involves the conception of 

something new to satisfy a need.  All design involves creativity (the generation of alternative 
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solutions) and decision (choice among those alternatives).  Engineering design distinguishes itself 

from other fields of design by its use of calculation and analysis.  An integral part of this process 

is using limited resources to manage uncertainties in the development process and to improve the 

performance of the system, itself an uncertainty during the design process, once it is placed in 

service.  The engineering design process consists of a number of steps to find a good solution to a 

specific problem.  First there is the statement of a need and a specification of the requirements for 

the system.  This is followed by an exploration of possible forms of solutions to the stated 

problem, leading to a conceptual design.  This conceptual design, a specification of the general 

type of solution but not of the details of the design itself, then becomes a detailed design, 

recorded in working drawings and other documentation, through analysis and optimization of its 

characteristics.  The detailed design is then implemented through the process of building, testing, 

and finally placing in service the resulting system.  Throughout this process there is considerable 

feedback and iteration as shown in Fig. 1.1. 

Determine need

Solution

Determine functional requirements & constraints

Specification

Develop the principle solution

Concept

Develop preliminary configurations & perform introductory analysis

Preliminary design(s)

Definitive design

Refine configuration(s) & perform detailed analysis of refined design(s)
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Fig. 1.1   The design process; adapted from Pahl and Beitz (1996). 
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Engineering design research seeks both a strong mathematical foundation and real-world 

applicability.  The two are often connected: a rigorous mathematical foundation helps guarantee 

the success of an application, while the desire to solve particular problems uncovers needs of the 

theory.  Complex multidisciplinary systems represent the application used in applying the method 

and theory developed in this thesis. 

1.1.2 Complex Multidisciplinary Systems 

The major engineering projects of the last half a century and those planned for the current 

century dwarf those of previous centuries in complexity.  The development of the ballistic missile 

and space programs in the 1960s helped to usher in a new level of complexity in design and 

building multidisciplinary systems.  The fields of systems engineering and project management 

were formalized during these two programs to assist in their successful development [Sapolsky, 

1972].  This formalization is significant in that methods to propagate and mitigate uncertainty in 

design of complex systems must include and be compatible with these two fields.  Missiles, 

automobiles, aircraft, power plants, submarines, and space systems are all examples of complex 

multidisciplinary systems.  This thesis uses space systems as the archetypal complex 

multidisciplinary system in applying formal uncertainty techniques. 

Complex multidisciplinary systems require dozens of different specialists to design and 

significant resources to build.  These systems are usually designed by a team of engineers, each 

with responsibility for a different portion (subsystem) of the design.  This design team could be 

arranged in a number of ways such as traditional (or pyramid) organization, a task-force 

organization, or a matrix organization.  The design team aspect means that there are often 

asymmetries in information and differing incentives among the team members.  Complex 

multidisciplinary systems are often built by more than one organization since a single 

organization rarely has the expertise in all the subsystems required in the design.  When multiple 

organizations are involved, the complexity and informational asymmetries often increase further 

as interaction among specialists is more difficult. 

Complex multidisciplinary systems are also characterized by severe uncertainty in design.  

They often have hundreds of independent variables that uniquely define a design.  A large 

number of interdependent components must all come together for the complex multidisciplinary 

system to work.  These systems are intrinsically difficult to model and understand because no 

single person has the detailed knowledge in all discipline areas, all variables, and all components 

that is required to comprehend or predict the performance of the final total system.  Furthermore, 

it is important to predict the performance of several (perhaps many) design alternatives that may 
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be significantly different from existing similar designs to allow well-informed design decisions to 

be made.  If the environment is defined as everything outside the complex multidisciplinary 

system, an increase in complexity of these systems shifts uncertainty from the environment to the 

subsystems (assemblies, components, etc.) and to the system as a whole.  This is a significant 

system benefit if the subsystems are sufficiently reliable.  However, to realize this benefit, 

explicit models of subsystem uncertainties and the ability to quantify and propagate these 

uncertainties through the system is critical.  Moreover, complex multidisciplinary systems often 

have a tightly constrained set of resources that further complicates asset allocation and risk 

management among the various subsystems during design.  Hence, the “complex” in complex 

multidisciplinary systems refers primarily to the complexity in the number and interaction of 

disciplines (subsystems).  The actual “complexity” of an individual subsystem is secondary. 

The development of a complex system is characterized by distinct phases: conceptual design; 

preliminary design; detailed design; manufacturing design; system integration and verification; 

and operations.  Conceptual and preliminary design of complex multidisciplinary systems are 

characterized by decision making that is separated far from the consequences of such decisions.  

Hence, although both conceptual and preliminary design entails a relatively low allocation of 

resources and effort, the decisions made during this stage of the design have significant 

ramifications.  This is shown in Fig. 1.2. 

   
Fig. 1.2   Decisions made early in design have a significant impact [Symon & Dangerfield, 

1980; Thuesen & Fabrycky, 2001]. 
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Finally, complex multidisciplinary systems are often designed concurrently, as opposed to 

sequentially.  Concurrent engineering reduces the time of manufacturing and total cost provided 

the individuals involved in the design process are properly trained and communicate [Burghardt, 

1999].  The formal methods to propagate and mitigate uncertainty described in this thesis were 

developed with concurrent engineering in mind for maximum applicability. 

1.2 Space Systems 

A space system is an integrated set of subsystems and components capable of supporting an 

operational role in space.  Space systems range widely from an Earth-orbiting space station to an 

interplanetary spacecraft.  Space systems, specifically spacecraft, are used as examples in 

applying the method developed in this thesis.  Spacecraft differ from other space systems in that 

they are robotic (i.e., unmanned) systems on the order of tens to a few thousand kilograms.  

Spacecraft are built by one or more organizations that must have a significant knowledge base in 

a multitude of disciplines such as structures, thermal control, and propulsion.  One or more 

designer/decision maker represents each of these spacecraft subsystems (disciplines).  These 

subsystems must be integrated together which requires competent systems engineering and 

management.  A summary of typical spacecraft subsystems and their definitions are provided in 

Table 1.1.  More detailed descriptions of spacecraft subsystems are provided in Griffin and 

French (2004) and Larson and Wertz (1999). 

Table 1.1   Typical spacecraft subsystems 
 
Subsystem (Discipline) Definition 
Attitude, determination, 
and control (ADCS) 

Orients and stabilizes the spacecraft countering external and internal 
disturbances that act upon it 

Command and data 
handling (C&DH) 

Stores and processes commands and data 

Management Oversees all other subsystems and disciplines and acts as the liaison 
to the mission stake-holders 

Mission design Selects launch vehicle(s), analyzes trajectories, and determines 
orbital characteristics for all mission phases 

Payload Instruments and devices used to achieve the overall 
spacecraft/mission goals 

Power Generates, conditions, regulates, stores, and distributes power 
throughout the spacecraft 

Propulsion Provides the changes in velocity needed to translate the center of 
mass of a spacecraft and/or to provide a torque to rotate a vehicle 
about its center of mass 

Structures & 
mechanisms 

Supports and protects all other subsystems for all operating modes of 
the spacecraft and in all of the expected mission phases; deploys 
components and/or separates from other elements during the mission 

Systems engineering Oversees integration and interaction between subsystems 
Telecommunications Receives and transmits signals between the spacecraft and ground 

stations on earth or other spacecraft 
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Subsystem (Discipline) Definition 
Thermal control Maintains all components of a spacecraft within their allowable 

temperature limits for all operating modes of the spacecraft and in all 
of the expected thermal environments 

The definitions provided in Table 1.1 illustrate many of the uncertainties a spacecraft 

encounters in operation that must be accounted for in design.  Each of the subsystems listed in 

Table 1.1 have developed significantly in capability and complexity to handle such uncertainties 

since the first successful spacecraft (Sputnik) was designed and built in 1957.  A recent trend in 

space systems design is towards spacecraft constellations which are designed to counter 

uncertainties in the location where a signal, such as a phone call or missile launch, may be 

generated.  Although built upon relatively established fields of mechanical and aeronautical 

engineering, aerospace engineering is nascent.  Furthermore, much of the aerospace experience is 

either classified or competition sensitive and not available for analysis.  The aerospace industry 

does not have the benefit of centuries of experience and highly visible and public applications 

that other engineering fields boast (e.g., civil, mechanical, naval).  In short, the statistical base 

readily available to the aerospace industry is small. 

1.2.1 Space Systems Design 

Conceptual design; preliminary design; detailed design; manufacturing design; system 

integration and verification; and operations for space systems are often abbreviated using 

National Aeronautics and Space Administration (NASA) terminology [INCOSE Systems 

Engineering Handbook, 2000].  Conceptual design, referred to as “Pre-phase A,” is a short study 

period on the order of weeks or months to turn an idea into a concept and secure additional 

funding.  Initial requirements are defined; evaluation criteria are determined; risks are identified; 

and preliminary trades, analyses, and cost estimates are made.  Pre-phase A is typically 

unstructured with engineers and designers pursuing a single concept or modifying an existing 

design [Mosher, 1999].  Preliminary design, referred to a “Phase A,” is a more rigorous analysis 

of the concept and includes development of other options; creation of risk management strategies; 

and refining of previously performed trades, analyses, and cost estimates.  Detailed design, 

referred to as “Phase B,” converts the preliminary design into a baseline technical solution.  A 

more detailed look at the design and tasks performed previously is undertaken.  Phase B is where 

much of the detailed planning and ordering of parts for the actual construction and flight of the 

space system is performed.  The transition from conceptual to detailed design for space systems 

often occurs at different times for different subsystems.  Phase A/B is on the order of months to 
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years.  Manufacturing design and system integration & verification, referred to as “Phase C/D,” is 

where design is finalized, the spacecraft is developed, integrated, tested, and launched.  Phase 

C/D is on the order of months to years.  Finally, operations, referred to as “Phase E,” is the actual 

period in time of the mission to which the space system was designed.  Phase E is on the order of 

minutes to years depending on the type of mission. 

Space systems design durations and costs have changed dramatically in the 50 years they 

have been built.  Early spacecraft were designed and built in months (e.g., early Explorer, 

Pioneer, and Mariner series spacecraft) and cost on the order of hundreds of millions of current 

year dollars [Koppas, 1982].  As space system designs became more complex and methods and 

technologies improved, this time frame became years and billions of current year dollars for 

many missions (e.g., Space Shuttle; NASA’s Chandra and Cassini; ESA’s Envisat; USAF’s 

Milstar).  Recently, the design time has begun to move back towards the order of months and the 

cost to hundreds of millions of current year dollars (e.g., NASA’s Mars Pathfinder and Genesis, 

commercial satellites), due in part to a return to simpler spacecraft designs stressed in NASA’s 

“faster, better, cheaper” effort of the 1990s.  The typical contemporary spacecraft development 

programs do not typically have the luxury of long times or large budgets for extensive technology 

development, full system testing, and redesign.  Aerospace design has gone from maximizing 

performance under technology constraints to minimizing cost under performance constraints 

[Mosher, 1999] and addressing affordability in conceptual design shifts the fundamental question 

from “can it be built” to “should it be built” [DeLaurentis, 1998].  Space systems today continue 

to be unique and high unit costs are not amortized in building subsequent models of that design.  

Upgrading and extending the capability of space systems in orbit is prohibitively expensive and 

difficult while software upgrades take time on the ground in testing and delay possible revenue-

generating operations in space.  All these ongoing issues provide opportunities and impetus for 

research in improving how these systems are designed and built [Thunnissen, 2004a]. 

1.2.2 Uncertainty Mitigation 

Despite the great uncertainties in space systems design, formal methods to propagate and 

mitigate uncertainty are scarce.  Reasons for this may include the difficulty in characterizing 

uncertainty in a design and propagating it through such a complex system.  Another reason may 

be that engineers dislike having to address uncertainty.  Many engineers have a belief that 

displaying and discussing uncertainty is displaying a lack of understanding [Seife, 2003].  

Uncertainty mitigation in conceptual and preliminary design at present can be characterized as 

qualitative, expert driven, and point based.  Uncertainties are evaluated individually, assessed and 
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addressed as unique, and any calculations of these uncertainties are typically a posteriori and are 

not embedded in the end model [Walton, 2002].  Moreover, current methods are not amenable to 

trading resources and parameters of interest such as mass, cost, and time under conditions of 

uncertainty.  The three formal methods currently used to propagate and mitigate uncertainty in 

space systems design are probabilistic risk analysis (PRA), factors of safety, and design margins.  

Each is discussed in detail in this section. 

1.2.2.1 Probabilistic Risk Analysis 

Probabilistic risk analysis (PRA) provides a method to define and measure quantitatively the 

technical failure risks of engineering systems.  PRA was developed in the decades following the 

Second World War in analyzing the risks of failure of, and the risks imposed on, society by 

increasingly complex systems.  The purpose of a technical PRA is to examine all potential 

damage states and the frequency of each state as uncertain variables.  Early work in PRA focused 

on simple electronic circuits, leading to the development of fault trees, a tool that has become an 

integral part of current PRA.  The first major program to apply PRA was the Minuteman Missile 

program.  PRA was applied by NASA in estimating catastrophic probabilities for the Apollo 

program in the late 1960s.  This PRA effort yielded such controversial results that it left the 

aerospace industry reluctant to apply PRA for the following two decades [Seife, 2003]. 

As the aerospace industry discarded PRA in the 1970s for more traditional methods, PRA 

developed significantly in the fields of structural engineering, nuclear power plant safety, and 

chemical processing.  The more robust and rigorous PRA that resulted was reintroduced to the 

field of aerospace engineering following the Challenger accident in 1986 [Feynman, 1986; Paté-

Cornell & Fischbeck, 1993].  PRA today uses probabilistic methods, statistical methods, and 

event trees in addition to fault trees.  The quantification of uncertainty with PRA for design is 

based on a combination of statistical data from past experiences with systems similar to the one 

being designed, interpretations of test results, and expert opinions.  Since appropriate statistical 

data are often not available, especially in the relatively nascent and competition-sensitive field of 

aerospace engineering, PRA must frequently rely on expert opinion.  PRA has traditionally been 

used in space systems design to support established design decisions with the goal of justifying a 

low probability of a technical failure of the system and not a method used for actual design.*  

However, when applied during design, PRA techniques provide an extremely powerful tool for 

discovering design errors, inconsistencies, and incompatibilities.  Increasingly PRA has been used 

                                                      
*“Sentence first, verdict afterwards, facts sooner or later forgotten.” - Queen of Hearts in Alice in 

Wonderland by Lewis Carroll 
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in conjunction with other methods such as safety factors and design margins in addressing 

uncertainty.  Dillon (1999) and Guikema (2003) describes PRA in detail.   

1.2.2.2 Factors of Safety 

Safety factors are one of the simplest and most widely used methods of addressing 

uncertainty.  The use of a safety factor is a design philosophy which addresses uncertainty 

through conservatism in tolerances and operational limits [DeLaurentis, 1998].  This approach, 

deterministic in nature, seeks to identify the worst possible conditions a product may encounter, 

and then design the product to perform adequately under such conditions.  Factors of safety are 

often even greater than this union of worst possible conditions to account for “unknown 

unknowns.”†  For example, a factor of safety of 1.5 is often used in pressure vessel design to 

account for uncertainties in material properties, storage conditions, and operating conditions.  

Factors of safety in solid mechanics account for uncertainties in static and dynamic loadings.  The 

primary drawback of safety factors is their conservatism.  Performance is sacrificed over the 

range of typical operating conditions for performance guarantees at unlikely or impossible 

conditions.  A design’s true factor of safety can never be known if the ultimate failure mode is 

unknown.  Thus the design that succeeds (i.e., does not fail) can actually provide less reliable 

information about how or how not to extrapolate from that design than one that fails.  It is this 

observation that has long motivated reflective designers to study failures even more assiduously 

than successes [Petroski, 1994].  From a pedagogical point of view, the safety factor approach 

generates no new information about the behavior of the design space which can be exploited in 

future designs [DeLaurentis, 1998]. 

1.2.2.3 Design Margins 

Conceptual and preliminary design is generally done deterministically, operating as though 

all quantities of the design are known with complete certainty.  Design margins are applied ex 

post facto to account for the uncertainties in the design because rigorous techniques for 

uncertainty mitigation and propagation are not available.  Design margins are defined as 

variations in parameters (or resources) measured relative to best-estimate values.  The definition 

often differs from resource to resource and organization to organization.  Design margins are also 

known as “margins,” “contingencies,” and “reserves.”  Margin is often employed when referring 

to operational resource values, contingencies when referring to design resource values, and 

reserves when referring specifically to cost.  The word margin, not contingency or reserve, is 

                                                      
†Factors of safety are sometimes disparagingly referred to as “factors of ignorance” [Petroski, 1994] 
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used in this thesis.  Many margins for parameters are expressed as percentages, using worst-case 

estimate (WCE) and current best estimate (CBE) parameter values: 

 100
CBE

CBEWCEmargin%
current

⋅
−

=  (1.1) 

CBE values can be viewed as deterministic since they represent a best guess point value based on 

some combination of data, analysis, and technical judgment.  However, the basis for many 

assumptions and the scope of thought that went into estimating CBEs are often not explicitly 

documented.  On their own, CBEs have no degree of confidence associated with them. 

Furthermore, CBEs are often biased away from the mean values of the uncertainties they 

represent.  WCE values can be viewed as some combination (perhaps the union) of worst possible 

conditions.  Hence, the “worst” in WCE is subjective. 

This definition of design margin appears similar to the definition of factor of safety provided 

in the previous section.  But while factors of safety are typically static during design, design 

margins vary throughout the development and their allocation range from being capricious to 

“hope oriented” to overly conservative.  Design margins are implemented to allow the various 

elements of a design team to work in parallel as much as possible.  By providing numbers with 

margin (“holding margin”), a team of a given subsystem or discipline is more insulated from 

changes occurring in other subsystems or disciplines and can proceed with their design.  Design 

margins are chosen to be robust enough to accommodate uncertainties and enable design changes 

with minimal system-wide “ripple effects.”  Margins maintained vary not only from organization-

to-organization, but from individual-to-individual (e.g., project manager-to-chief engineer, chief 

engineer-to-flight systems engineer) within an organization based on the risk tolerance of that 

organization or individual or both.  The choice in these margins is typically an afterthought and 

attempts to account for all uncertainties that engineers encounter by lumping these uncertainties 

into one value with little or no analysis. 

For space systems in general, margins not based on a WCE are allocated heuristically, based 

on historical data, or in a crudely quantitative manner, based on such concepts as design maturity 

and mission environment.  Heuristic is defined as “involving or serving as an aid to learning, 

discovery, or problem-solving by experimental and especially trial-and-error methods” 

[Webster’s Ninth New Collegiate Dictionary, 1990].  For space systems design, the “experimental 

and especially trail-and-error methods” correspond to previous historical experience by an 

organization or set of organizations.  Heuristics suffer from cognitive biases including 

representativeness; availability; and anchoring and adjusting [Tversky & Kahneman, 1974]. The 

representativeness heuristic is a judgment that is made by comparing the information known 
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about the item (or variable or quantity) with the stereotypical member of the category.  

Availability occurs when judgment about the characteristics of an item is based on the ease with 

which similar items from memory are recalled.  Finally, anchoring and adjusting refers to the 

notion that in making estimates of an item an initial “anchor” is chosen.  That anchor is 

subsequently adjusted based on knowledge of the specific item.  Heuristic-based design margins 

tend to be simple, easy to apply, but often lead to severe and systematic errors.  The following 

section provides actual examples that illustrate the current heuristic method of applying design 

margins in space systems design and their impact. 

1.2.3 Design Margin Examples and Impact 

As the design of a space system progresses, CBEs of resources typically rise using up the 

margin that is being held.  Significant design and management problems can occur when the rise 

in the CBEs is greater than the margin being held (“blown margins”).  Such systems may have to 

be redesigned which may result in the system being over budget, delivered late, descoped, or 

cancelled.  On the other hand, holding too much margin early in project design may cause the 

system to be overdesigned, uncompetitive, and/or poorly managed.  Determining the correct 

margin at various stages of the development is critical in determining the likelihood of success in 

designing a spacecraft.  Examples of applying heuristic and/or historical based methods to 

determine design margins in space systems design are numerous.  Unfortunately, obtaining best 

estimate and margin values for space system that can be referenced is more difficult.  Reasons for 

this include competition sensitivity, insufficient tracking and recording of values, and reluctance 

on the part of space system designers to document missions in which margin values have 

exceeded or missions in which too much margin was held.  The following section provides 

examples of the current method of applying margins to NASA, Department of Defense (DoD), 

and commercial missions.  The section concludes with some examples of margin application in 

other fields.  All examples are referenced. 

1.2.3.1 NASA Spacecraft 

NASA has been at the forefront of space systems development since it was founded in 1958.  

The Jet Propulsion Laboratory (JPL) in Pasadena, California, has been NASA’s primary center 

responsible for robotic space exploration.  JPL missions typically follow an institutional design 

principles document [Yarnell, 2003] regarding margin levels at various stages of the design.  

Historical data collected by JPL suggest that total mass and power growth due to uncertainties 

ranged from 20% to 48%, with most in the range of 25% to 40%.  Factors affecting growth 
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included mission/system design changes, design complexity, amount of inheritance, amount of 

new technology/concepts, quality/fidelity of early estimates, and funding available [Yarnell, 

2003].  Such analyses resulted in the recommended margins (relative to a preliminary mission 

system review) for hardware mass and power using a maturity-based approach as shown in Table 

1.2. 

Table 1.2   Recommended hardware mass and power margins [Yarnell, 2003] 

Hardware 
Recommended 

Margin (%) 
New design 30 
Inherited design 15 
Inherited hardware 10 
Inherited “use as is” 2 

Recommended margins (relative to preliminary mission system review) for cost (reserves) are 

based on the current phase of the design as shown in Table 1.3. 

Table 1.3   Recommended cost margins [Yarnell, 2003] 

Design Phase 
Recommended 

Margin (%) 
Proposal and/or Phase A to B transition 30 
Project PDRa and/or B-to-C/D Transition 25 
Project CDRb 20 
Start of ATLOc 20 
Ship to Launch Site 10 

aPDR = preliminary design review; bCDR = critical design review; cATLO = assembly, test, & launch 
operations 

Similar time-phased margins exist for schedule and other parameters [Yarnell, 2003].  

Individual missions are typically free, subject to reviews, to choose different margin levels.  

Whether the margins selected follow the design principles document or are chosen specifically 

for a given mission, these margin levels are heuristically and/or historically determined.  For 

example, in the design of the recent JPL Mars Exploration Rover (MER) missions, margins were 

time phased and determined on the basis of organizational (JPL) policy, the experience of the 

flight system manager, and experience of MER team members.  The many margins held 

throughout design of MER pertained to the spacecraft itself (e.g., mass, flash memory) and to the 

operation of the spacecraft (e.g., telecom link strength).  Table 1.4 lists margins assumed for 

several flight system parameters. 
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Table 1.4   MER flight system margins [Welch, 2001] 
 
Resource 

PDR 
(10/00) 

CDR 
(8/01) 

ATLO start 
(2/02) 

Ship to Cape 
(1/03) 

aMassb 15/5% 10/2.5% 5/1% 2/0% 
aEnergy/Powerc 10/10/10% 10/5/5% 10/0/5% 10/0/0% 
Power switches 30% 20% 10% 10% 
Pyro Switches 30% 20% 10% 10% 
aCPU utilizationd 50% 50% 50% 40% 
Memory     
DRAMd 50% 40% 25% 25% 
Flash 30% 25% 20% 10% 
aEEPROMd 50% 50% 50% 40% 
Electronics     
Chassis Margin (VME 
slots) 

1 1 0 0 

PWB Margin (spare 
real-estate)d 

50% 30% 10% 10% 

Analog signals (e.g. 
temp sensors) 

30% 15% 5% 5% 

Telecom  (link margin) 3 db 3 db 3 db 3 db 
Propellant (tank 
margin) 

30% 20% 10% 10% 

aCritical technical margins required by project manager  
bmass margin is specified in terms of X/Y% where X is total above CBE and Y is above 
 CBE+uncertainty. 
cupdated based on three margins X/Y/Z, X% operation margin, Y% flight system margin, and 
 Z% project manager reserve.  These are added together for total power/energy margins required 
 at each phase. 
dthese resources are managed at the subsystem level and allocations changes; as long as margins 
 are met, do not require ECRs. 
PDR = preliminary design review; CDR = critical design review; ATLO = assembly, test, & launch 
operations; CPU = central processing unit; DRAM = dynamic random access memory; EEPROM = 
electrically erasable programmable read-only memory; VME = VersaModule Eurocard; PWB = printed 
wiring board; CBE = current best estimate; ECR = engineering change request 

MER also held margins on cost and schedule (reserves) as well as ∆V and launch vehicle 

capability that are not listed in Table 1.4.  The mass history of MER during its development is 

plotted in Fig. 1.3. 
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Fig. 1.3   MER mass history. 

Fig. 1.3 plots the CBE and CBE plus margin for the launch mass (injected mass) as well as 

the injected mass capability of the Boeing Delta II 7925 launch vehicle (LV), the launch vehicle 

used by MER-A (MER-B used a Boeing Delta II 7925H which provides a slightly greater 

injected capability).  In Fig. 1.3, the first six months or so (April to October 2000) were devoted 

to conceptual/preliminary design.  Detailed design and fabrication were carried out from about 

October 2000 to January 2002.  Finally, the period from February 2002 until June 2003 was 

dedicated to assembly, test, and launch operations.  MER had a tight project schedule and mass 

growth was a problem during development.  Cost and schedule were used to reduce mass.  For 

example, additional launch vehicle and trajectory analyses were performed eight times during 

development to increase the estimate of the injected capability of the launch vehicle (solid line in 

Fig. 1.3).  Additional mass reduction exercises at almost $100K/kg (in FY2002 dollars) were also 

performed.  These activities were critical since the launch mass of MER approached 1072 kg by 

October 2002 which is considerably greater than the original maximum mass estimates of 900 to 

1000 kg that were assumed early in the project and only slightly less than the 1077 kg injected 

mass capability of the lower capability launch vehicle [Thunnissen & Nakazono, 2003].   

The mass margin for the MER mission assumed early in design was exceeded by mid-2001.  

Additional launch vehicle and trajectory analyses as well as expensive mass reduction exercises 

were performed to reduce the total mass.  These efforts, if not successful would have resulted in 

MER switching to a more powerful launch vehicle.  Such a late change in the launch vehicle 

would have significantly increased the total mission cost and possibly might have resulted in the 
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mission missing its launch opportunity (which in the case of Mars missions occurs only every 26 

months).  Fortunately for the MER mission, these efforts were successful and MER launched on 

time (schedule margin was sufficient) although the final cost of MER was significantly greater 

than original estimates.  These margins for MER and actual and assumed design margins for 

several other recent NASA projects are provided in Table 1.5 [NASA, 1997; NASA, 1998a; 

NASA, 1998b; NASA, 2004; Thunnissen, 2004a]. 

Table 1.5   Design margins for several recent NASA projects 
 Value  Margin  
 Predicted Actual Allocated 

(%) 
Actual 

(%) 
Difference 

(%) 
Mars Pathfinder (MPF)a      
  Entry mass 390 kg 580 kg 28.2 48.7 +20.5 
  Cost $100M $171M 50.0 71.0 +21.0 
Clarkb      
  Schedule 1.8 years 3.6 years 11.1 100.0 +88.9 
  Cost $44M $55M 11.3 25.00 +13.7 
Deep Space 1 (DS1)c      
  Schedule 2.3 years 3.1 years 17.3 34.7 +17.4 
  Cost $128M $152.3M 10.1 19.0 +8.9 
Mars Exploration Rover (MER)d      
  Mass 918 kg 1062 kg 8.2 15.7 +7.5 
  Cost 630$M $820M 20.0 30.0 +10.0 

apredicted values and margin allocation at 1/1994, costs in FY1992$s; bcosts in FY1998$s; ccosts in 
FY1997$s; dpredicted values and margin allocation at 10/2000; costs in FY2003$s 

It is apparent from the examples listed in Table 1.5 that the current heuristic method has 

failed in properly accounting for uncertainties in design.  Perhaps the consummate example of 

exceeded margins for NASA missions is Clark, the second spacecraft listed in Table 1.5.  Clark 

was a NASA earth science mission built by CTA Systems (now part of Orbital Sciences 

Corporation in Dulles, VA).  Clark originally scheduled for a mid-1996 launch at a cost of $49M 

(including margin).  In February 1998, NASA terminated Clark “due to mission costs, launch 

schedule delays, and concerns over the on-orbit capabilities the mission might provide” [NASA, 

1998].  Termination is the extreme case of poor margin estimation and management.  Deep Space 

1 (DS1) exceeded its schedule margin and was forced to launch more than a year later than 

planned (October 1998 vs. July 1997).  This delay resulted in a redesign of the mission.  For DS1 

this was not catastrophic as it was a technological demonstration mission.  For science missions 

with limited launch opportunities or national security assets, a schedule delay in the spacecraft 

development can be devastating.  Table 1.5 lists just a few of NASA’s many missions which have 

exceeded one or more important margins.  A stake holder is defined as one or more individuals or 

organizations who own a portion or the entirety of a project or is directly impacted by its 

outcome.  In this thesis, the singular is used although the stake holder may consist of more than 
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one individual or organization.  Poor margin determination and management has led NASA’s 

stake holder (the government and taxpayers) to lose confidence in NASA’s capability and 

competence and has jeopardized NASA’s ability to achieve its short- and long-term goals. 

1.2.3.2 Department of Defense Spacecraft 

Poor uncertainty mitigation also undermines program stability and stake holder confidence in 

funding new projects.  Perhaps this is best seen by several recent Department of Defense (DoD) 

projects which have had significant cost and technical problems.  One of the most glaring 

examples is the Space-Based Infrared System – High (SBIRS-High), a high-orbiting infrared 

constellation designed to detect and track ballistic missiles of all sizes.  SBIRS-High is the 

replacement for the Defense Support Program (DSP) spacecraft which have provided early 

missile warning information for more than 30 years.  SBIRS-High recently had two recent high-

profile cost overruns.  The first in 2001 topped 25% and the most recent in July 2004 indicated 

costs would be greater by an additional 15%.  Since the program’s inception, costs have tripled.  

The USAF now projects $9.9B for the life of the project [Wall, 2004].  Although requirements of 

SBIRS-High have changed somewhat since its inception, the cost overrun updates have 

exemplified the Pentagon and their contractors’ poor job in anticipating these uncertainties. 

The poor uncertainty mitigation and management in DoD projects is not new.  The Nunn-

McCurdy Amendment passed by Congress in 1982 attempts to force projects to improve 

management practices.  This legislation stipulates a mandatory review when a program exceeds 

its cost by 15% and sets requirements that must be met by the program in order to continue 

development.  Projects with a cost growth of 25% are subject to cancellation [Wall, 2004].  

Problems with SBIRS-High and other space projects have begun to jeopardize next-generation 

programs because lawmakers are increasingly skeptical about the Pentagon’s performance, 

schedule, and cost assessments.  Skepticism for these DoD projects includes both uncertainty 

mitigation techniques, competency of program management, and concerns that contractors 

building these systems are defrauding the government.  In response, the U.S. government has 

attempted a variety of cost- and risk-sharing methods to motivate contractors to improve their 

estimates and management.  The skepticism and distrust has grown to such a level that 

government lawmakers recently cut funding to several DoD high-profile projects, including 

space-based radar (SBR) and transformational communications system (TCS), and threatened 

future funding cuts or cancellation for several other DoD projects.  At best, these examples of 

poor margin determination and management by the DoD are a nuisance and poor use of tax payer 
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dollars.  At worst, exceeded margins are a threat to national security by diverting resources from 

one set of critical projects to shore up one or two other (potentially less critical) projects. 

1.2.3.3 Commercial Spacecraft 

Design margin application and examples in commercial spacecraft are difficult to obtain.  

Whereas NASA and DoD missions have some level of accountability to their stake holder (i.e., 

the general public) that results in certain margin estimations and actual results being available, 

commercial missions do not.  Commercial missions are accountable to their stake holder (service 

providers and possibly insurance carriers) who have, due to competition reasons, incentives not to 

release uncertainty mitigation techniques or actual results.  Although it is generally known that a 

variety of commercial missions have exceeded margins in mass, schedule, and cost, it is difficult 

to obtain values that can be documented.  However, most commercial missions cannot suppress 

the revenue generating (operations) portion of their missions since the stake holder now includes 

service provider share holders who follow the performance of their investments.  Several recent 

commercial ventures have turned into colossal operational failures.  Perhaps the two that best 

exemplify this are the $5B Iridium and $3B Globalstar systems [Cáceras, 2002].  Both were 

mobile telephony systems developed and deployed around the turn of the 21st century.  Both were 

engineering successes yet both projects (and several others) badly miscalculated the potential 

market and national/international regulatory changes in mobile telephony.  Poor uncertainty 

estimation of the potential market doomed these missions and funding for several others.  These 

two examples illustrate that uncertainty mitigation techniques are not only critical during design 

but also during the revenue generating phase of a mission.  The huge loss incurred in these 

failures has been devastating to commercial spacecraft developers.  One of the primary stake 

holders and primary funding source of such projects is investment houses and venture capitalists 

(i.e., Wall Street).  These highly publicized failures have undermined confidence Wall Street has 

in commercial aerospace and has been devastating to commercial spacecraft developers.  For 

example, only five new commercial spacecraft were ordered in 2002 worldwide and Space 

Systems Loral, a major satellite manufacturer, filed for bankruptcy protection in 2003.  

Worldwide launches of commercial spacecraft payloads were at ten year lows in 2001, 2002, and 

2003 which in turn impacted the launch services sector [Cáceras, 2004].  Poor margin 

determination and management by commercial developers has arguably hindered the growth for 

the entire commercial aerospace industry. 
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1.2.3.4 Other Fields 

Poor uncertainty mitigation and propagation is a problem in a wide variety of complex 

multidisciplinary systems beyond space systems.  The F/A-22 Raptor fighter, V/A-22 Osprey, 

and Patriot missile defense system all resulted in final per unit costs two to three times original 

estimates and delayed deployments [Edwards, 2003].  A number of high profile large civil 

engineering projects have exceeded margins on schedule and cost (e.g., Sydney opera house in 

Australia, the Chunnel between the United Kingdom and France, “Big Dig” in Boston, 

Massachusetts) [Flyvbjerg, Bruzelius, & Rothengatter, 2003].  A study by RAND specifically 

investigated over 80 of these “megaprojects” and reported that most projects meet their 

performance goals, many their schedule goals, but few their cost goals [Merrow, 1988].  Indeed, 

the problem of poor uncertainty mitigation in complex system or large projects may be more 

pervasive than is even known since failures in a wide variety of fields, by governments, and by 

organizations are often not publicized; only the success are.‡  Undoubtedly another reason why 

complex multidisciplinary systems and megaprojects exceed margins repeatedly is political.  

Often, government agencies and contractors specify overtly optimistic cost estimates to gain 

initial funding approval.  Cost increases are often revealed only when a system or project is far 

enough long that it cannot easily be terminated or descoped.  The current method of determining 

margins allows a lack of accountability to the stake holder on the part of the participants.  Lastly, 

it should be noted that even small underestimates of margins on the order of a percent in multi-

billion dollar projects can lead to large dollar sums that, when taken out of context, can be 

embarrassing and potentially detrimental to participants and the stake holder alike. 

1.3 Problem Statement 

The examples provided in the preceding section vividly illustrate the detrimental impacts of 

poor margin estimation and management on individual missions and the aerospace industry as a 

whole.  This thesis is dedicated to developing a formal method to determine margins in design 

based on the uncertainties that exist and the risk tolerance of the decision maker.  Specifically, 

consider: 

 ( )θGy =  (1.2) 

Equation (1.2) represents a general expression for design where a vector θ of input 

parameters (variables) is mapped to a vector y of output parameters (tradable parameters) via one 

or more transformation (response) functions G.  The response function(s) may be complicated 

                                                      
‡“Victory has a hundred fathers but defeat is an orphan” – Galeazzo Ciano (1942) 
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(e.g., closed-form equations, computational algorithms, “black box” functions) requiring 

significant expense in time and resources to calculate values.  Whereas, the current heuristic-

based method assumes all these input variables are deterministic and margins are placed on the 

evaluated tradable parameters ex-post facto, the proposed method determines the appropriate 

margin levels to place on the tradable parameters y by accounting for all the uncertainties in the θ 

input variables themselves. 

The proposed method transforms this deterministic vector θ into a vector of random variables 

Θ: 

 ( )Θ= GY  (1.3) 

This vector Θ may include discrete random variables, continuous random variables, constant 

values, and discrete choices among options.  By assuming random variables for the inputs, the 

vector of discrete tradable parameters becomes a vector of random variables via the response 

function.  The result is that each tradable parameter can then be represented by a unique 

cumulative distribution function (CDF).  A CDF value Px, selected based on the risk tolerance of 

the decision maker, is used along with the deterministic result in calculating margins in the 

proposed definition: 

 ( )[ ] 100margin% detdetproposed
⋅−= RRPx  (1.4) 

The proposed margin definition relies on probabilistic methods and innovative sampling 

techniques to accurately determine CDF values of interest while minimizing the amount of 

response function calculations (i.e., minimize the total computation cost of applying the method). 

The design of complex multidisciplinary systems, space systems in particular, is 

characterized by several subsystems, dozens to hundreds of input variables, and several tradable 

parameters.  The design space is neither smooth nor unimodal [Mosher, 1999]. The response 

function may be several physics-based models with both linear and nonlinear relationships.  

Depending on the input variables, nonlinear relationships result in significant multiplication 

factors in the tradable parameters.  Input variables may be integers or real numbers, static or 

dynamic, certain or uncertain.  The uncertain quantities may be represented best by discrete 

random variables or continuous random variables.  Space systems design also involves selecting 

discrete choices among options (e.g., existing off the shelf components, readily available 

materials) as well as among multiple configurations.  The resulting tradable parameter space may 

have discontinuities, multiple viable solutions, or no solutions.  Finally, the design of complex 

multidisciplinary systems is not a single-loop input/output process.  The process of evaluating 

Eqns. (1.3) and (1.4) and revising assumptions, goals, methods, information, and preferences is 
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constantly occurring.  Representing all the input variables, evaluating the response function(s), 

calculating the values of tradable parameters, and determining the appropriate margin values via a 

formal method is a task of significant complexity that this research addresses. 

1.4 Key Contributions and Organization of Thesis 

The principal contribution of this thesis is a formal method to propagate and mitigate 

uncertainty in the design of complex multidisciplinary systems.  Specifically, applying the 

proposed method produces a rigorous foundation for determining design margins.  This 

introductory chapter provides the motivation and background for this research.  Prior to this 

chapter, preliminary sections include a table of contents, list of figures, and list of tables in 

addition to glossary.  In particular, the glossary includes the definitions of commonly used terms, 

expressions, acronyms, and symbols used repeatedly in the thesis. 

Chapter 2 discusses and defines uncertainty in a wide variety of fields culminating with a 

detailed definition and classification of uncertainty for complex multidisciplinary systems.  

Chapter 3 summarizes the proposed method and lists the qualitative benefits and quantitative 

results of its application.  The method comprises five distinct steps: identifying tradable 

parameters; generating analysis models; classifying and addressing uncertainties; quantifying 

interaction uncertainty; and determining margins, analyzing the design, and trading parameters.  

Chapter 4 through Chapter 8 develop and discuss each of these steps in detail.  Margins are now a 

function of risk tolerance and are measured relative to mean expected system performance, not 

variations in design parameters measured relative to heuristic values or worst-case estimates.  The 

proposed method is applied in its entirety to a single example application, a spacecraft attitude 

determination and control system, in Chapter 9.  Finally, Chapter 10 summarizes concerns about 

the proposed method, thoughts on how this method can transform the process of preliminary 

design, and provides recommendations for future research direction. 

In addition to providing a formal and rigorous method for determining design margins, this 

thesis provides three other contributions.  The first is an uncertainty taxonomy for use in the 

design of complex multidisciplinary systems with detailed definitions for each uncertainty type.  

This is provided in Chapter 2.  The second is the modification of two simulation techniques, the 

mean value method and subset simulation, that can significantly reduce the computational burden 

in applying the proposed method.  These modifications are discussed in Chapter 7.  The third is a 

set of diverse application examples and various simulation techniques that demonstrate the 

generality and benefit of the proposed method.  These example applications are provided in 

Chapter 9 and Appendix B.  Elaborations and explanations of the major mathematical techniques 
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used are deferred to Appendix A.  Appendix C provides a recommended implementation strategy 

for applying this method in an organization.  References and an index are found at the end of this 

thesis. 
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Chapter 2 Uncertainty Classifications and Types 
Uncertainty plays a critical role in analysis for a wide and diverse set of fields from 

economics to engineering.  Ideas and concepts of uncertainty have long been associated with 

gambling and games.  The earliest-known form of gambling was a kind of dice game played with 

an astragalus (knuckle-bone) in 3500 BC Egypt [Bernstein, 1998].  Gambling has developed 

considerably in the centuries that followed but the underlying form of this type of uncertainty is 

unchanged.  Pure games of chance, such as the astragalus, roulette, or craps, deal with aleatory 

uncertainty, essentially inherent randomness.  These games are distinct from games such as poker 

or horse racing in which skill or knowledge makes a difference.  Formally addressing this type of 

uncertainty in games of chance began in the Renaissance and culminated in the theory of 

probability during the 17th century [Hacking, 1984].  

The Greeks of the 4th century BC were the first recorded civilization to have considered 

uncertainty explicitly, primarily in the context of epistemology.  The word epistemology is 

derived from the Greek episteme, meaning “knowledge,” and logos, which has several meanings, 

including “theory.”  Epistemology deals with the possibilities and limits of human knowledge.  

Basically it tries to arrive at a knowledge of knowledge itself.  Aristotle suggested that people 

should make decisions on the basis of “desire and reasoning to some end” but offered no 

guidance to the likelihood of a successful outcome.  Despite their explicit consideration of 

uncertainty, when the Greeks wanted a prediction of what the future might hold they turned to the 

oracles instead of consulting their wisest philosophers [Bernstein, 1998]. 

Bernstein (1998) and Hacking (1984) provide an extensive history of uncertainty in the 

context of risk management and probability theory, respectively.  Ideas about aleatory and 

epistemic uncertainty have developed significantly since the early Egyptians and Greeks but the 

distinction has persisted almost unchanged until the 20th century and only recently has the impact 

of uncertainty been analyzed and understood.  Uncertainty influences decisions, designs, and 

behavior in a wide variety of fields from economics to engineering.  Reducing uncertainty has 

been and continues to be a costly business in time and resources.  Efforts to classify and define 

uncertainty, propagate it through an analysis, and devise methods to mitigate its impact have been 

the objective of research efforts.   

This chapter first summarizes uncertainty taxonomies and definitions in the fields of social 

sciences, physical sciences, and engineering.  A new classification for uncertainty in the design of 

complex multidisciplinary systems follows. The classification delineates ambiguity, epistemic, 

aleatory, and interaction uncertainty.  Epistemic uncertainty is further subdivided into model-
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form, phenomenological, and behavioral uncertainty.  Each of these uncertainties is described in 

detail.  The chapter ends with a summary. 

2.1 Uncertainty and Its Classification in Other Fields 

The term ‘uncertainty’ has come to encompass a multiplicity of concepts.  A fundamental 

definition of uncertainty is “liability to chance or accident,” “doubtfulness or vagueness,” “want 

of assurance or confidence; hesitation, irresolution,” and “something not definitely known or 

knowable” [Murray, 1961].  This definition has motivated a wide variety of classifications of 

uncertainty in a variegated set of fields.  Many of the uncertainty classifications that follow have 

similarities and most have an emphasis on one aspect of uncertainty which most impacts that 

particular field.  Hence, these classifications are often more of a practical than theoretical 

significance.  Unfortunately, many of these taxonomies have different definitions for the same 

words.  The following section describes classifications and definitions for uncertainty in the fields 

of social sciences, physical sciences, and engineering that were most influential in the 

development of the classification introduced in the second half of this thesis chapter.  Fields that 

were less influential in the development of the classification are summarized in Thunnissen 

(2003).  It should be noted that the classifications and definitions provided are not exhaustive nor 

universally agreed upon but are representative of the general areas for each field. 

2.1.1 Social Sciences 

Research into uncertainty in the field of social sciences has a rich history.  The following 

section summarizes this research in economics and the field of policy and risk analysis.  The field 

of decision making, management, and system analysis is provided in Thunnissen (2003). 

2.1.1.1 Economics 

Classical economic theory had no room for uncertainty.  The theory assumed that people 

decide how to consume, produce, and invest with full knowledge of what the outcome of their 

decisions will be.  Uncertainty was either ignored or explicitly “assumed away.”  The resulting 

theory was neither realistic nor useful [Borch, 1968].  To develop a realistic theory, economists 

began studying uncertainty extensively starting in the early 20th century.  The American 

economist Frank Knight wrote in 1921, “Uncertainty must be taken in a sense radically distinct 

from the familiar notion of Risk, from which it has never been properly separated” [Knight, 

1921].  Knight refers to “risk” as situations where the decision-maker can assign mathematical 

probabilities to the randomness with which he is faced.  In contrast, “uncertainty” refers to 



25 

situations when this randomness “cannot” be expressed in terms of specific mathematical 

probabilities.  As the English economist, journalist, and financier John Maynard Keynes was later 

to express it: 

By ‘uncertain’ knowledge, let me explain, I do not mean merely to 
distinguish what is known for certain from what is only probable.  The 
game of roulette is not subject, in this sense, to uncertainty ... The sense 
in which I am using the term is that in which the prospect of a European 
war is uncertain, or the price of copper and the rate of interest twenty 
years hence ... About these matters there is no scientific basis on which 
to form any calculable probability whatever.  We simply do not know.  
[Keynes, 1937] 

A distinction in this classification arrived in the mid-20th century, influenced by pioneering 

work in the creation and development of game theory by von Neumann and Morgenstern; Nash; 

and others [von Neumann & Morgenstern, 1953; Nash, 1951].  Uncertainty and information about 

the environment was viewed as distinct from that of uncertainty and information about others’ 

behavior or the outcome of as yet unperformed computations [Radner, 1968].  Building on the 

mid-20th century work, economists have recently gone a step further arguing that Knightian risk 

and uncertainty are one and the same thing.  In Knightian uncertainty the problem is not that the 

agent cannot assign probabilities but in fact that the agent does not assign probabilities.  That is to 

say, that uncertainty is really an epistemological and not an ontological problem, a problem of 

“knowledge” of the relevant probabilities and not of their “existence.”  Uncertainty has recently 

been classified as fundamental uncertainty or ambiguity.  Fundamental uncertainty is not merely 

that there is not enough information to reliably attach probabilities to a given number of events 

but that in fact, an event which cannot be imagined may occur in the future.  This implies that 

some relevant information cannot be known, not even in principle, and that something 

unimaginable may happen [Dequech, 2000].  Ambiguity is defined as “uncertainty about 

probability, created by missing information that is relevant and could be known” [Camerer & 

Weber, 1992].  It should be noted that some economists argue in the opposite direction: that there 

are actually no probabilities out there to be “known” because probabilities are really only 

“beliefs.”  In other words, probabilities are merely subjectively-assigned expressions of beliefs 

and have no necessary connection to the true randomness of the world (if it is random at all) 

[Fonseca & Ussher, 2004].  The evolution in economic uncertainty belief is illustrated in Fig. 2.1. 
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Fig. 2.1   Uncertainty classifications in economics. 

2.1.1.2 Policy and Risk Analysis 

The policy and risk analysis community has classified uncertainty into quantity and model 

form uncertainty [Morgan & Henrion, 1990].  Fig. 2.2 illustrates this classification. 
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Fig. 2.2   Uncertainty classification in policy & risk analysis [Morgan & Henrion, 1990]. 

Quantity type uncertainty is defined in Table 2.1. 

Table 2.1   Quantity type uncertainty definitions in policy & risk analysis [Morgan & 
Henrion, 1990] 

Uncertainty Subclassification Definition/Explanation 
Empirical 
quantity 

Statistical variation arises from random error in direct measurements of a quantity 

 Subjective 
judgment 

teamed with systematic error as the difference between the true 
value of a quantity of interest and the value to which the mean of 
the measurements converges as more measurements are taken 

 Linguistic 
imprecision 

refers to quantities that are not well-specified and could not be 
empirically measured in principle 

 Variability refers to quantities that are variable over time and space 
 Randomness uncertainty that is irreducible even in principle 
 Disagreement refers to differences of opinion between informed experts about a 

quantity 
 Approximation difference between the assumed quantity value and the real-world 

value 
Decision 
variable 

n/a quantity over which the decision maker exercises direct control 

Value n/a parameter that represents aspects of the preferences of the decision 



27 

Uncertainty Subclassification Definition/Explanation 
parameter maker or the people they represent 
Model domain 
parameter 

n/a specifies the domain or scope of the system being modeled 

Outcome 
criteria 

n/a variable used to rank or measure the desirability of possible 
outcomes 

Model form uncertainty refers to the approximations that a model provides to a real-world 

system.  Model form uncertainty is differentiated here from (quantity type) model domain 

parameter uncertainty by referring to the actual model itself as opposed to the quantities assumed 

in the model.  Any model is unavoidably (and by definition) a simplification of reality.  A real-

world system contains phenomena or behaviors that cannot be produced by even the most 

detailed model.  The difference between the real-world system and such a model is “model form 

uncertainty.” 

2.1.2 Physical Sciences 

Uncertainty in the physical sciences has primarily concentrated on error analysis and 

quantum physics.  Error analysis uncertainty often goes by the name measurement uncertainty 

and represents the difference between a measured value and the actual value.  This uncertainty 

impacts a wide range of fields in the physical sciences and engineering.  Much has been made of 

Werner Heisenberg’s uncertainty principle that was first proposed in 1927.  Heisenberg 

introduced the notion that it is impossible to determine simultaneously with unlimited precision 

the position and movement of a particle.  Heisenberg was careful to point out that the inescapable 

uncertainties in momentum and position do not arise from imperfections in practical measuring 

instruments but rather from the quantum structure of matter itself [Serway, 1989].  This 

uncertainty in quantum physics is analogous to the inherent randomness in policy and risk 

analysis described by Morgan and Henrion (1990).  It has been argued that this indeterminacy is 

not a matter of principle but simply a result of the limited (current human) understanding of the 

world (an epistemological issue).  There may be hidden variables and causal mechanisms that, if 

discovered and understood, would resolve the apparent inherent randomness.  This difference of 

opinion is similar to the notion of risk and uncertainty discussed in the fields of economics and 

decision making. 

2.1.3 Engineering 

Research into uncertainty in the field of engineering has been significant, particularly in the 

last two decades.  This section briefly summarizes uncertainty research that has been completed 

in the engineering fields of civil, structural, and environmental; computational methods and 
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simulation; mechanical; and aerospace.  Uncertainty research in the fields of control and 

dynamical systems and management science are described in Thunnissen (2003). 

2.1.3.1 Systems Engineering 

System engineering provides two distinct definitions/classifications for uncertainty: one that 

is rigorous and somewhat theoretical, the other which is more relaxed and practical.  The rigorous 

definition classifies uncertainty as either vagueness or ambiguity.  Vagueness is associated with 

the difficulty of making sharp or precise distinctions in the world; that is, some domain of interest 

is vague if it cannot be delimited by sharp boundaries.  Ambiguity is associated with one-to-many 

relations, that is, situations in which the choice between two or more alternatives is left 

unspecified.  Ambiguity is further separated into nonspecificity of evidence, dissonance in 

evidence, and confusion in evidence [Klir & Folger, 1988]. 

The practical definition characterizes uncertainty by a distribution of outcomes with various 

likelihoods of both occurrence and severity.  It intertwines the definition with that of risk.  Risk is 

defined as a measure of the uncertainty of attaining a goal, objective, or requirement pertaining to 

technical performance, cost, and schedule.  Risk level is categorized by the probability of 

occurrence and the consequences of occurrence.  Risk is classified into technical (e.g., feasibility, 

operability, producibility, testability, and systems effectiveness), cost (e.g., estimates, goals), 

schedule (e.g., technology/material availability, technical achievements, milestones), and 

programmatic (e.g., resources, contractual) [INCOSE Systems Engineering Handbook, 2000].  

This classification is similar to the management classification of Browning (1998).  The two 

distinct classifications are provided in Fig. 2.3. 
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Fig. 2.3   Uncertainty classification in systems engineering [Klir & Folger, 1988; INCOSE 

Systems Engineering Handbook, 2000]. 
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2.1.3.2 Civil, Structural, and Environmental 

Although the fields of civil, structural, and environmental engineering are often grouped 

together, the classifications for uncertainty that each assume is different.  The leading 

classification of uncertainty for civil engineering is provided in Fig. 2.4 [Ayyub & Chao, 1998]. 
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Fig. 2.4   Uncertainty classification in civil engineering [Ayyub & Chao, 1998]. 

Ayyub and Chao (1998) specialize the rigorous uncertainty classification provided by Klir 

and Folger (1988) in systems engineering to civil engineering.  Abstracted uncertainties arise 

from elements of a real system that are represented by a model.  Unknown uncertainties are due 

to the nature, sources, contents, and impact on the system that are not known.  Cognitive 

uncertainties arise from mind-based (subjective) abstractions of reality.  Uncertainties that are 

neither non-cognitive nor cognitive are called ‘other uncertainties’ and include conflict in 

information as well as human and organizational errors.  Ayyub and Chao (1998) state that the 

division between abstracted and non-abstracted aspects may not be rigid but in fact a convenience 

that is driven by objectives of the system modeling. 

Structural engineering follows a somewhat analogous classification [Melchers, 1999].  The 

classification and definitions of for structural engineering are provided in Fig. 2.5 and Table 2.2, 

respectively. 
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Fig. 2.5   Uncertainty classification in structural engineering [Melchers, 1999]. 

Table 2.2   Uncertainty definitions in structural engineering [Melchers, 1999] 
Uncertainty Definition/Explanation 
Phenomenological arises whenever the form of construction or the design technique 

generates uncertainty about any aspect of the possible behavior of the 
structure under construction, service, and extreme conditions 

Decision arises in connection with the decision as to whether a particular 
phenomena has occurred 

Modelling associated with the use of one (or more) simplified relationships between 
the basic variables to represent the ‘real’ relationship or phenomenon of 
interest 

Prediction associated with the prediction of some future state of affairs 
Physical inherent random nature of a basic variable 
Statistical arises in the associated parameters when a simplified probability density 

function is implemented 
Human factors  
 Human error due to natural variation in task performance and gross errors 
 Human intervention associated with the intervention in the process of design, documentation, 

and construction and, to some extent, also in the use of a structure 

Melchers (1999) stresses the importance of uncertainty in human factors: the uncertainties 

resulting from human involvement in the design, construction, use, etc., of structures.  

Environmental engineering (e.g., [Frey, 1998]) follows closely the policy and risk analysis 

classification and definitions provided by Morgan and Henrion (1990) that was introduced earlier. 

2.1.3.3 Computational Modeling & Simulation 

One of the more extensive efforts to classify and define uncertainty has been done by the 

computational modeling and simulation community.  Oberkampf et al. (1999) are clear to 

distinguish variability, uncertainty, and error as shown in Fig. 2.6. 
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Fig. 2.6   Uncertainty classification in computational modeling & simulation [Oberkampf et 

al., 1999]. 

Variability is defined as the inherent variation associated with the physical system or the 

environment under consideration.  Uncertainty is defined as a potential deficiency in any phase or 

activity of the modeling process due to a lack of knowledge or incomplete information.  Sources 

of incomplete information are summarized in Table 2.3 and follow closely the rigorous systems 

engineering definitions provided by Klir and Folger (1988). 

Table 2.3   Incomplete information definitions in computational modeling & simulation 
Type Definition 
Vagueness Characterizes information that is imprecisely defined, unclear, or 

indistinct (characteristic of communication by language) 
Nonspecificity Refers to the variety of alternatives in a given situation that are all 

possible, i.e., not specified 
Dissonance Refers to the existence of totally or partially conflicting evidence 

Error is defined as a recognizable deficiency in any phase or activity of the modeling and 

simulation that is not due to a lack of knowledge.  Error is further subclassified into 

acknowledged error (such as finite precision arithmetic on a computer or approximations made to 

simplify the modeling of a physical process) and unacknowledged error (such as blunders and 

mistakes).  The classification of uncertainty in Oberkampf et al. (1999) is based on the 

mathematical type and information content of the uncertain quantity.  A different perspective of 

uncertainty by the same group of researchers has also been formulated.  It is based on how 

uncertainty appears in the mathematical model, that is to say, it is a parametric or model-form 

uncertainty [Oberkampf, Helton, & Sentz, 2001].  This classification and definitions for 

uncertainty is provided in Fig. 2.7 and Table 2.4, respectively. 
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Fig. 2.7   Uncertainty classification in computational modeling & simulation (mathematical 

model) [Oberkampf, Helton, & Sentz, 2001]. 

Table 2.4   Uncertainty definitions in computational modeling & simulation (mathematical 
model) [Oberkampf, Helton, & Sentz, 2001]  

Uncertainty Definition 
Parametric Uncertainty in the occurrence in parameters contained in the 

mathematical models of a system and its environment 
Physico-chemical 
modeling 

Limited knowledge or understanding of a physical process or 
interactions of processes in a system 

Scenario abstraction Limited knowledge for the estimation of likelihood of event 
scenarios of a system 

Error definitions in Fig. 2.7 remain unchanged from that of Oberkampf et al. (1999).  

Oberkampf et al. (1999) and Oberkampf, Helton, and Sentz (2001) provide two different 

perspectives of uncertainty.  A difference classification in the same field is presented in Fig. 2.8 

[Du & Chen, 2000]. 

Internal

Uncertainty
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Fig. 2.8   Alternate uncertainty classification in computational modeling & simulation [Du 

& Chen, 2000]. 

External uncertainty is variability in model prediction arising from plausible alternatives for 

input values (also known as input parameter uncertainty).  Internal uncertainty arises from two 

sources.  One is due to both limited information in estimating the characteristics of model 
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parameters for a given fixed model structure (model parameter uncertainty).  The other is the 

model structure itself, including uncertainty in the validity of the assumptions underlying the 

model. 

2.1.3.4 Mechanical 

Over a decade of research into uncertainty occurred in the field of mechanical engineering 

beginning in the late 1980s.  Antonsson and Otto (1995); Otto and Antonsson (1994); Otto and 

Antonsson (1993) combine to define uncertainty as imprecision (design imprecision), 

probabilistic uncertainty (noise, stochastic uncertainty), and possibility.  Imprecision is the 

representation of an incomplete design description.  That is to say, ranges of possibilities resulting 

from choices not yet made (uncertainty in choice).  Probabilistic uncertainty is a random 

(stochastic) uncertainty.  Possibility is the uncertainty in the limits in capacity within a formal 

model (uncertainty due to freedom).  Fig. 2.9 summarizes this classification for mechanical 

engineering. 
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Fig. 2.9   Uncertainty classification in mechanical engineering [Otto & Antonsson, 1993]. 

2.1.3.5 Aerospace 

Only recently has an effort been made of classifying and defining uncertainty in aerospace 

engineering.  DeLaurentis and Mavris (2000) define uncertainty as “the incompleteness in 

knowledge (either in information or context), that causes model-based predictions to differ from 

reality in a manner described by some distribution function.”  Using an analogy to a control 

system problem, uncertainty for aerospace vehicle synthesis and design is classified into input, 

model parameter, measurement, and operational/environmental.  This classification is illustrated 

in Fig. 2.10. 
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Fig. 2.10   Uncertainty classification in aerospace vehicle synthesis and design [DeLaurentis 

& Mavris, 2000]. 
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Input uncertainty arises when the requirements that define a design problem are imprecise, 

ambiguous, or not defined.  Model parameter uncertainty refers to error present in all 

mathematical models that attempt to represent a physical system.  Measurement uncertainty is 

present when the response of interest is not directly computable from the mathematical model.  

Finally, operational/environmental uncertainty is due to unknown/uncontrollable external 

disturbances.  This classification is redefined somewhat for the specific field of aircraft system 

design where uncertainty is now delineated into operational/environmental, system-level, and 

discipline-level uncertainty [DeLaurentis, 1998].  This classification is presented in Fig. 2.11. 

Operational/
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Discipline-
Level

Uncertainty

System-Level
 

Fig. 2.11   Uncertainty classification in aircraft systems design [DeLaurentis, 1998]. 

Operational/environmental uncertainty is concerned with modeling how a vehicle or fleet of 

vehicles will be utilized over its useful life.  System-level uncertainty is concerned with the 

requirements, synthesis, and predicted performance of a vehicle.  Finally, discipline-level 

uncertainty is concerned with the various contributing analyses that are required to synthesize 

vehicle alternatives. 

Uncertainty research in space system design is even more recent.  Walton (2002) defines 

uncertainty as “inability to quantify precisely; a distribution that reflects potential outcome.”  

Uncertainty is classified into development, operational, and model.  Fig. 2.12 illustrates this 

classification and Table 2.5 defines these uncertainties. 
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Fig. 2.12   Uncertainty classification in space architectures [Walton, 2002]. 

Table 2.5   Uncertainty definitions in space architectures [Walton, 2002] 
Uncertainty Subclassification Uncertainty of … 
Development Political development funding instability 
 Requirements requirements stability 
 Cost developing within a given budget 
 Schedule developing within a given schedule profile 
 Technology technology to provide performance benefits 
Operational Political operational funding instability 
 Lifetime performing to requirements in a given lifetime 
 Obsolescence performing to evolving expectation in a given lifetime 
 Integration operating within other necessary systems 
 Cost meeting operations cost targets 
 Market meeting demands of an unknown market 
Model n/a no formal definition 

This classification and associated definitions appears to build on the management 

classification provided by Browning (1998).  Walton (2002) does not provide significant details 

on uncertainty types beyond these definitions. 

2.2 Uncertainty Types 

The various classifications described provide both common and distinct classifications and 

definitions for uncertainty.  Unfortunately, none of the previous classifications seem applicable 

exactly to the design of complex multidisciplinary systems.  Although the classifications provided 
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in the computational modeling and aerospace engineering fields are thorough (e.g., [Oberkampf  

et al., 1999; Oberkampf, Helton, & Sentz, 2001; DeLaurentis & Mavris, 2000; Walton, 2002]) 

they still lack important uncertainty types.  The definition and classifications of uncertainty from 

the various fields provided in the first half of the chapter motivate a new classification for the 

design of complex systems: ambiguity, epistemic, aleatory, and interaction.  This new 

classification is provided in Fig. 2.13.   
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Fig. 2.13   Uncertainty classification for the design of complex systems. 

This classification stresses that uncertainty is a condition of not knowing.  This thesis 

formally defines uncertainty as the difference between an anticipated or predicted value 

(behavior) and a future actual value (behavior).  A definition for each type of uncertainty follows.  

Although some of the definitions were provided earlier for a given field, these definitions are 

repeated in full in this section for clarity.   

2.2.1 Epistemic 

Epistemic uncertainty is any lack of knowledge or information in any phase or activity of the 

modeling process.  The key feature that this definition stresses is that the fundamental cause is 

incomplete information or incomplete knowledge of some characteristic of the system or the 

environment.  Epistemic uncertainty also goes by the names: reducible uncertainty, subjective 

uncertainty, model form uncertainty, state of knowledge, type B uncertainty, and de dicto 
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[Oberkampf, Helton, & Sentz, 2001; Bedford & Cooke, 2001; Hacking, 1984].  Epistemic 

uncertainty can be further classified into model, phenomenological, and behavioral uncertainty. 

2.2.1.1 Model 

Model uncertainty is the accuracy of a mathematical model to describe an actual physical 

system of interest.  Model uncertainty, also known as model-form, structural, or prediction-error 

uncertainty, is a form of epistemic uncertainty.  That is to say, model uncertainty is often due to a 

lack of knowledge.  Model uncertainty is associated with the use of one or more simplified 

relationships between the basic variables used in representing the ‘real’ relationship or 

phenomenon of interest [Melchers, 1999].  All models are unavoidably simplifications of the 

reality which leads to a disturbing conclusion: every model is false, at least in part.  However, 

some models are better than others.  Model uncertainty arises from approximation, numerical, and 

programming errors. 

2.2.1.1.1 Approximation Errors 

For physical processes that are relatively well understood, deficiencies in certain models are 

often called approximation errors rather than model uncertainty.  For example, in the modeling of 

the specific volume of a gas, four models can be ordered in terms of increasing accuracy 

(decreasing model uncertainty) as follows: ideal-gas law, van der Waals equation, Beattie-

Bridgeman equation, and Benedict-Webb-Rubin (BWR) equation.  The ideal gas law neglects 

intermolecular forces between molecules and uses only one constant.  The van der Waals 

equation uses two constants to allow for interaction and volume effects.  The Beattie-Bridgeman 

equation uses five constants and is accurate over a much larger range.  The BWR equation uses 

eight constants and is even more versatile.  In general, this ordering is appropriate, but for 

individual gases there is no guarantee that any one model will be more accurate than any other 

because even the ideal gas law can be accurate for specific conditions such as low pressures and 

high temperatures. 

2.2.1.1.2 Numerical and Programming Errors 

Model uncertainty also includes numerical and programming error.  Numerical error can arise 

due to finite precision arithmetic while programming error occurs during development of the 

model due to mistakes or blunders by the programmer. 
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2.2.1.2 Phenomenological 

Phenomenological uncertainty follows the definition of fundamental uncertainty provided 

earlier in the chapter for the field of economics.  Phenomenological uncertainty arises whenever 

the design technique or form of development generates uncertainty about any aspect of the 

possible behavior of the system under development, operation, and extreme conditions.  Some 

relevant information cannot be known, not even principle, at the time of making decisions during 

design.  Phenomenological uncertainty is particularly important for novel projects or those which 

attempt to extend the ‘state of the art.’  Often these projects fail due to an apparently 

‘unimaginable’ phenomenon (so called “unknown unknowns”). 

2.2.1.3 Behavioral 

Behavioral uncertainty is uncertainty in how individuals or organizations act.  Behavioral 

uncertainty arises from four sources: design uncertainty, requirement uncertainty, volitional 

uncertainty, and human errors.   

2.2.1.3.1 Design 

A design uncertainty is a choice among alternatives over which an individual or individuals 

exercises direct control over but has not yet decided upon.  An example is the choice an engineer 

has in selecting a given component among a set of possible components.  Design uncertainty is 

eliminated when a system is complete as all choices have been implemented.   

2.2.1.3.2 Requirement 

Requirement uncertainty includes parameters of interest to and determined by the stake 

holder, independent of the engineer or designer.  An example may be the orbit of a satellite that is 

explicitly specified by the customer.  The question of whether an uncertain variable is a design or 

requirement depends on the context and intent of the model it is being used in and who the 

decision maker is.  For example, a spacecraft may have requirements specified by the stake 

holder on the orbit to achieve but leave the orbit insertion design to the mission designer making 

the change in velocity of the spacecraft a design variable.  The change in velocity of the 

spacecraft, however, would likely place a requirement on the propulsion system. 

2.2.1.3.3 Volitional 

Volitional uncertainty is uncertainty about what the subject him/herself will decide [Bedford 

& Cooke, 2001].  Other people’s future actions and conduct are not entirely predictable, 

particularly in dealing with other organizations.  As was mentioned in Chapter 1, multiple 
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organizations are often required to design and develop complex multidisciplinary systems.  The 

lead organization hires contractors and/or consultants to help in development.  These contractors 

and consultants may provide full assemblies, components, analysis, and/or labor.  Estimates for 

products and resources provided by the contractors/consultants are often underestimated 

(sometimes deliberately) to the lead organization and result in potentially significant engineering 

and management problems.  Although an individual or organization cannot quantify their own 

volitional uncertainty, one individual or organization could do it for another. 

2.2.1.3.4 Human Errors 

Human errors occur during development of a system or project due to blunders or mistakes 

by an individual or individuals. 

2.2.2 Aleatory 

Aleatory uncertainty is inherent variation associated with a physical system or environment 

under consideration.  Aleatory uncertainty goes by many names: variability, irreducible 

uncertainty, inherent uncertainty, stochastic uncertainty, intrinsic uncertainty, underlying 

uncertainty, physical uncertainty, probabilistic uncertainty, noise, risk, type A uncertainty, 

uncontrolled variations, and de re [Oberkampf, Helton, & Sentz, 2001; Otto & Antonsson, 1994; 

Bedford & Cooke, 2001; Luce & Raiffa, 1957; Hacking, 1984]  Aleatory uncertainties can 

typically be singled out from other uncertainties by their representation as distributed quantities 

that can take on values in an established or known range, but for which the exact value will vary 

by chance from unit to unit or time to time.  The mathematical representation most commonly 

used for aleatory uncertainty is a probability distribution [Oberkampf et al., 1999]. 

As discussed in the first half of this chapter, there is much disagreement about the distinction 

between aleatory and epistemic uncertainty.  It has been argued that all uncertainty is epistemic: 

that aleatory uncertainties, represented by distributions, are used purely because of our lack of 

knowledge or understanding of a fundamental underlying process or because we choose not to 

learn about that underlying process.  As an example, consider the tossing of a fair coin.  This 

activity is represented by the discrete binomial (Bernoulli) distribution: either it lands heads (1, 

true, yes, etc.) or tails (0, false, no, etc.).  However, flipping a coin is not truly a random activity.  

In theory, a sophisticated model based on which side of the coin is initially facing up, the strength 

and angle of the coin flip, the wind resistance, gravity, and so on could be created to accurately 

determine whether the coin lands heads or tails.  Although this sophisticated model would likely 

be influenced by minute differences in initial conditions, the remaining uncertainty in the coin 
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flip would now be epistemic.  Likewise, a quantity may legitimately be random to one person, but 

deterministic to another who knows and understands the underlying model or process.  For 

example, a random number generated by a computer does indeed appear random to the vast 

majority of people but completely predictable to those who know the algorithm being used to 

generate the value.  Depending on the model being used and the criticality of the variable, it may 

not be worth developing sophisticated models such as the coin-flip model described and instead 

represent that variable as an aleatory uncertainty with a specified probability distribution. 

2.2.3 Ambiguity 

Because little precision is required for general communication, individuals often fall into the 

habit of using imprecise terms and expressions.  When used with others who are not familiar with 

the intended meanings or in a setting where exactitude is important, this imprecision may result in 

ambiguity.  Ambiguity has also been called imprecision, design imprecision, linguistic 

imprecision, and vagueness [Antonsson & Otto, 1995; Morgan & Henrion, 1990; Klir & Folger, 

1988].  Although it can be reduced by linguistic conventions and careful definitions, ambiguity 

remains an unavoidable aspect of human discourse.  Ambiguity in a quantity or parameter is 

characterized by an inability to empirically measure it.  A clarity test has been proposed as a 

conceptual way to sharpen up the notion of well-specifiedness [Howard & Matheson, 1984].  

Imagine a clairvoyant who could know all facts about the universe, past, present, and future.  

Given the description of the event or quantity, could the clairvoyant say unambiguously whether 

the event will occur (or had occurred)?  Could the clairvoyant give the exact numerical value of 

the quantity?  If so, the description of the event or quantity is well-specified.  A statement such as 

the “rocket engine is heavy” would not pass the clarity test.  However, “the Aerojet model #MR-

111C weighs 331.1 grams” would pass the clarity test.  There is some debate as to whether 

ambiguity is a form of uncertainty [Bedford & Cooke, 2001].  Although in theory it is possible to 

reduce any given ambiguity to any desired level, this is often not done because of the effort 

required.  Fuzzy logic has been used as a formal method to represent ambiguity [Zadeh, 1984]. 

2.2.4 Interaction 

Interaction uncertainty arises from unanticipated interaction of many events and/or 

disciplines, each of which might, in principle, be or should have been foreseeable.  Interaction 

uncertainty can also arise due to disagreement between informed experts about a given 

uncertainty (such as a design or requirement) when only subjective estimates are possible or when 

new data are discovered that can update previous estimates.  Interaction uncertainty is significant 
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in complex multidisciplinary systems such as spacecraft which may have many subsystems, 

variables, and experts involved in the design. 

2.3 Summary 

This chapter summarizes efforts to classify and define uncertainty in a wide variety of fields.  

In particular, the efforts in the fields of social sciences, physical sciences, and engineering heavily 

influenced the classification and definition of uncertainty for complex multidisciplinary systems 

that is introduced.  This classification separates uncertainty into four types: epistemic, aleatory, 

ambiguity, and interaction.  Epistemic uncertainty is further broken out into model, 

phenomenological, and behavioral uncertainty.  The next chapter begins by summarizing efforts 

by various researchers to address uncertainty, in particular efforts that significantly influenced the 

development of the method proposed in this thesis. 
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Chapter 3 Method Development and Overview 
The previous chapter defined and classified uncertainty in the fields of social sciences, 

physical sciences, and engineering.  Many researchers in these fields went on to develop methods 

of varying formality to address these different uncertainty types.  This chapter summarizes these 

research efforts in the fields that most influenced the method proposed in this thesis.  A summary 

of the five steps that comprise the proposed method follow.  Each of these steps is described in 

detail in chapters that follow.  The qualitative benefits of the proposed method are then 

summarized.  The key quantitative results of the method when applied to an example application 

are then provided. 

3.1 Previous Work 

Methods to classify and define uncertainty are discussed in the previous chapter and in 

Thunnissen (2003).  The efforts of several of the researchers to develop methods to address 

uncertainty for a variety of applications are elaborated upon in this section.  Although none of the 

research efforts described in this section investigated design margins in particular and many were 

at an abstract level for different applications, all dealt with one or more types of uncertainty that 

were discussed in Chapter 2 and all were influential in one or more ways in the direction of this 

research, development of the theory, and the creation of the method proposed in this thesis. 

3.1.1 von Neumann and Morgenstern 

von Neumann and Morgenstern (1953) provided the first formal definition of basic games 

and developed game theory for cooperative, two-person, zero-sum games (games in which there 

are only two players and the players have diametrically opposing interests).  Game theory is a 

method for modeling the interactions between cooperating or competing individuals engaged in 

economic transactions.  The name “game theory” is unfortunate, for it suggests that the theory 

deals with only the socially unimportant conflicts found in parlor games, whereas it is far more 

general.  Nash (1951) extended game theory by developing the basic theory of competitive two-

person games (games in which players do not cooperate or negotiate the outcome) and the two-

player framework to model games with an arbitrarily large number of players.  Game theory uses 

utility theory to represent player’s values and it examines the “utilities” players would realize if 

they followed a certain course of action (called a “strategy” in game theory) and their opponents 

chose each of their other possible courses of action.  Utility theory is based on seven axioms: 

ordering and transitivity; reduction of compound uncertain events; continuity; substitutability; 

monotonicity; invariance; and finiteness [Clemen, 1996].  Game theory assumes each player 
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knows and can mathematically represent their beliefs by a “utility function.”  Each player’s 

strategy in games attempts to maximize this utility function obeying the seven axioms listed.  

Three simple utility functions for different risk tolerances are shown in Fig. 3.1. 
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Fig. 3.1   Example utility functions. 

The risk-neutral utility function implies that increased utility is linearly related to increased 

wealth.  The risk-averse utility function implies that significant increases in wealth achieve only 

modest increases in utility.  Conversely, the risk-seeking utility function implies that modest 

increases in wealth achieve significant increases in utility. 

Another key aspect in game theory is the concept of information.  Games of “complete 

information” assume each of the players knows the preference patterns (utility functions) of all 

the other players.  Games of “incomplete information” assume not all the players know the utility 

functions of all of their opponents.  Games of “perfect information” assume all the players know 

everything else that the other players know throughout the game while games of “imperfect 

information” allows a player to possess private information (i.e., they know things that the other 

players do not know).  Engineering design is most closely modeled as a game of imperfect 

information because different individuals involved in the design know things which others do not 

[Guikema, 2003].  The individuals may be part of the same organization or different 

organizations.  They may be willing to share this information or not.  Asymmetric information is 

an important aspect in the design of space systems. 

Unfortunately, although simple to implement in theory, both utility and game theory are 

difficult to implement in practice.  Some of the axioms utility theory is based on, such as 

transitivity, appear to be violated in experiments and paradoxes [von Winterfeldt & Edwards, 

1986].  Utility functions are rarely a function of one variable nor smooth as those shown in Fig. 

3.1.  They can also be constantly changing for individuals and organizations.  Hence, utility 

functions are difficult to determine and generate, especially for others, and extremely difficult to 
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represent and convey to others.  Utility curves are in fact hypersurfaces, possibly with 

discontinuities, when they are functions of several variables.  Utility theory also assumes one 

parameter can always be traded off for more or less of another parameter since everything 

reduces to equivalent utilities.  This is not true in engineering design.  Finally, utility functions 

are entirely individual and not comparable from person to person (or organization to 

organization).  Although utility theory is implicit in all decision-making endeavors, using it 

explicitly in a practical yet nontrivial application, such as the design of space systems, without 

significant simplification is not possible. 

3.1.2 Raiffa 

Raiffa (1968) is generally credited with formalizing decision theory.  Decision theory is the 

product of the joint efforts of economists, mathematicians, philosophers, social scientists, and 

statisticians toward making sense of how individuals and groups make decisions [Resnik, 1987].  

“Decision theory” as Hacking (1984) describes it, “is the theory of deciding what to do when it is 

uncertain what will happen.”  Decision theory, like game theory, relies on utility theory and risk-

tolerance behavior.  Therefore, decision theory shares many of the same benefits and drawbacks 

as game theory in applying it to practical tasks.  Nonetheless, the process and themes of decision 

theory are valid and applicable to decision-making in engineering design.  Decision theory 

provides a systematic framework for choosing among alternative actions when consequences of 

these alternatives are uncertain.  The decision theory process structures a problem and helps the 

decision maker understand the problem better, possibly leading to the recognition of new 

alternatives.  The basic steps in a decision analysis process [Covello, 1987] are  

1. Define decision objectives. 

2. Identify decision alternatives and all consequences that relate to the decision alternatives. 

3. Define performance measures or variables for quantifying decision objectives (attributes). 

4. Identify critical uncertain variables. 

5. Assess probabilities for uncertain variables and scenarios. 

6. Specify value judgments, preferences, and tradeoffs. 

7. Evaluate alternative actions or policies. 

8. Conduct sensitivity analyses and value of information analyses. 

The general theme of decision analysis and these eight steps in particular are applicable to 

decision making in engineering design, especially the design of complex multidisciplinary 

systems. 
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3.1.3 Engineering Design Imprecision 

Efforts to develop a formal decision-making method specifically for engineering design 

occurred at the Caltech Engineering Design Research Laboratory in the 1990s.  Professor 

Antonsson and four of his doctoral students (Wood, Otto, Law, and Scott) devised and 

subsequently developed the Method of Imprecision (MoI).  Wood (1990) describes the initial MoI 

whose purpose was to assist designers in decision making in preliminary engineering design by 

generating information on the performance of design alternatives.  Otto (1992) extended the MoI 

and presented an axiom-based method to formalize decisions.  Law (1996) provided a clearer 

interpretation of the elements of MoI and a more efficient computational implementation.  Scott 

(1998) investigated formalizing negotiation in engineering design and the set-based design 

(instead of point-based design which is typically done).  These researchers developed the first 

formal quantitative method to manage imprecision in engineering design through the use of fuzzy 

logic.  Fuzzy logic is a more general case of classical crisp sets.  Developed by Zadeh beginning 

in 1965, fuzzy logic provided an alternative to probability theory in representing imprecision.  

Despite all their differences, probability theory and fuzzy logic share a similarity of form.  Both 

quantify uncertainties with normalized mathematical functions: the probability density or the 

membership function.  Although fuzzy logic can provide conceptual and practical benefits in 

representing uncertainty, probability theory remains a more well known, understood, and 

accepted mathematical approach.  The MoI, with its underlying fuzzy mathematics, represents 

and manipulates design and customer preferences.  Portions of a modified version of the MoI are 

used at General Motors in the design of automobiles [Mourelatos, Kloess, & Nayak, 2005]. 

3.1.4 DeLaurentis and Mavris 

Research into formal methods to address uncertainty occurred by DeLaurentis and Mavris at 

the Georgia Institute of Technology in the 1990s.  DeLaurentis (1998) took the analogy that the 

aerospace system design process could be modeled as a control system problem as detailed in 

Chapter 2.  By using control theory, methods to quantify design process robustness and 

sensitivities to uncertainty were obtained through feedback and error models.  The method was 

developed specifically for aircraft design yet is general enough to be valid for many other 

complex multidisciplinary systems.  The research led by DeLaurentis is based on the premise that 

design is a decision-making activity and that deterministic analysis and synthesis can lead to 

poor, or misguided decision making.  By transforming design from a deterministic activity to a 

probabilistic one, DeLaurentis extended the state of the art of formally addressing uncertainty.  

Probabilistic methods encompass a wide range of techniques that are based on random variables 
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instead of fixed and (assumed) known deterministic values.  The application of probabilistic 

methods offers the ability to quantify parameters of interest to a decision maker in a way that they 

can select the level and type of risk to accept.  In particular, DeLaurentis leveraged response 

surface methods and Monte Carlo simulation as powerful techniques in the robust design 

framework that was developed.  DeLaurentis also concludes that the cumulative distribution 

function (CDF) obtained by probabilistic analysis is the key decision function in design.  Perhaps 

the greatest strength in the method proposed by DeLaurentis, Mavris, and others at Georgia Tech 

was the use of realistic and nontrivial example applications. 

3.1.5 Sandia National Laboratories 

Research into formal methods to propagate and mitigate uncertainty in the area of modeling 

and simulation has occurred at the Sandia National Laboratories in Albuquerque, New Mexico 

since the late 1990s.  Oberkampf et al. (1999) proposes a comprehensive structure composed of 

six phases: conceptual modeling of the physical system; mathematical modeling of the conceptual 

model; discretization and algorithm selection for the mathematical model; computer 

programming of the discrete model; numerical solution of the computer program model; and 

representation of the numerical solution.  Sandia researchers also investigated using different 

mathematical techniques for different uncertainties including probability theory to represent 

aleatory uncertainty and information theories such as Dempster-Shafer (evidence) theory to 

represent epistemic uncertainty [Oberkampf, Helton, & Sentz, 2001].  Although the structure and 

techniques developed by Oberkampf and others at Sandia address issues and concerns faced by 

the operations research, risk assessment, and computational physics communities, much of the 

work is applicable to the design of space systems. 

3.1.6 Au and Beck 

Research into computationally efficient algorithms to assess the impact of uncertainty 

occurred in the field of civil engineering around the turn of the 21st century by Au and Beck at 

Caltech.  In particular, two methods developed by Au and Beck provided significant 

computational benefit, sometimes orders of magnitude benefits, compared to traditional methods.  

The first method, importance sampling using elementary events (ISEE), was applied in estimating 

the reliability of linear dynamical systems [Au & Beck, 2001b].  The second method, subset 

simulation (SS) based on a modified version of Markov chain Monte Carlo (MCMC) gains its 

efficiency by expressing a small failure probability as a product of larger conditional failure 

probabilities, thereby turning the problem of simulating a rare failure event into several problems 
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that involve the conditional simulation of more frequent events.  SS via MCMC was successfully 

applied in estimating small failure probabilities in high dimensions [Au & Beck, 2001a].  The 

structural engineering application, to which SS was successfully applied to, shares many of the 

characteristics to the design of space systems. 

3.1.7 Walton 

Walton (2002) made a substantial impact on investigating uncertainty in space systems 

design.  His research at MIT, which was funded by the same sponsor as this research, investigated 

uncertainty specifically in space system architectures.  Although space system architectures are at 

a slightly higher level of application, many of his research goals are applicable to the design of 

complex multidisciplinary systems.  Likewise, much of the method presented in this thesis would 

likely be applicable to space system architectures.  Walton investigated using portfolio theory and 

carrying sets of designs, to propagate and mitigate uncertainty in space system architecture 

preliminary design.  Portfolio theory, a financial technique, was developed by Markowitz (1952).*  

The underlying goals of portfolio theory are to recommend investment strategies that balance the 

needs of an individual investor to achieve the maximum return on their investment and for this 

return to be subject to as little uncertainty as possible.  Set-based design was developed by Toyota 

in the 1980s [Ward et al., 1995] and Scott (1998) used it in the method of imprecision (MoI) 

discussed earlier.  Walton’s application of set-based design in conjunction with uncertainty is a 

significant departure from current preliminary space systems design techniques.  The application 

of portfolio theory to tackle uncertainty issues in aerospace engineering distinguished and 

captured the upside as well as the downside of uncertainty.  Walton concluded that aspects of 

uncertainty may in fact be positive.  The upside and downside of uncertainty can be separated as 

reward and risk.  Walton’s research stresses exploring potential space system architectures 

through the “lens of uncertainty” and offers a new way to think about early conceptual design and 

the selection of designs to pursue [Walton, 2002]. 

3.2 Method Steps and Key Concepts 

The following section introduces the method for propagating and mitigating the effect of 

uncertainty in conceptual-level design proposed in this thesis.  Application of this method 

produces a rigorous foundation for determining design margins in complex multidisciplinary 

systems, specifically space systems.  The actual reduction of uncertainty in design is of secondary 

                                                      
*Markowitz shared the 1990 Nobel Prize in Economic Sciences for his development of portfolio 

theory. 
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importance in applying this method.  Reduction of uncertainty constitutes an action or set of 

actions that may result from applying the method.  It is ultimately the actions or inactions of the 

participants in applying this method which determine the impact uncertainty will have on the 

design of the complex multidisciplinary system of interest.  The method comprises five distinct 

steps: identifying tradable parameters; generating analysis models; classifying and addressing 

uncertainties; quantifying interaction uncertainty; and determining margins, analyzing the design, 

and trading parameters.  Each step is briefly described in this section.  A detailed description of 

each of the five steps is provided in following five chapters.  Aspects of work done by researchers 

discussed earlier are seen in many of the method steps and their subsequent description.   

3.2.1 Identifying Tradable Parameters 

Identifying tradable parameters is motivated by the overarching requirements of the complex 

system being investigated.  It is the decision maker who must understand the overall complex 

multidisciplinary system being analyzed to determine which parameters are truly important in 

satisfying the overarching requirements and associated sub-requirements that will be placed on 

the complex system.  Engineering parameters will necessarily result from this analysis.  

Parameters such as schedule duration, total cost, and risk, must usually be considered as well.  

This set of parameters is “tradable” in a sense that one or more of these parameters could be 

expended in an effort to improve or reduce another.  Identifying tradable parameters is discussed 

in depth in Chapter 4. 

3.2.2 Generating Analysis Models 

With tradable parameters identified, analytic models must be generated to calculate each of 

these parameters.  A model might include dozens or hundreds of equations and relations.  These 

equations and relations in turn require input variables.  Determining how accurate models need to 

be to effectively determine the margin levels in conceptual design is a critical issue and is 

addressed via model uncertainty.  Phenomenological uncertainty must be acknowledged and 

explored during this step.  Generating analysis models, model uncertainty, and phenomenological 

uncertainty are discussed in Chapter 5. 

3.2.3 Classifying and Addressing Uncertainties 

Once models have been created for all desired tradable parameters, the variables required by 

the models are classified.  Some input variables, such as the mass of a component, may be fixed 

(certain) while others, such as the quantity of that component, may be uncertain.  A complex 

multidisciplinary system may have dozens, even hundreds, of these input variables of which the 
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majority may be uncertain.  Classifying the variables into their uncertainty types is useful in 

understanding their respective impact on the overall design and addressing each of them.  

Definitions of the different uncertainties encountered by complex multidisciplinary systems were 

discussed in Chapter 2.  With the variables classified, each is probabilistically modeled.  

Classifying and addressing uncertainties is discussed in Chapter 6. 

3.2.4 Quantifying Interaction Uncertainty 

The next step in the method quantifies interaction uncertainty.  As was discussed in Chapter 

2, interaction uncertainty could be either the result of disagreement in opinion between informed 

experts for a given uncertainty (variable) or the interaction of all the different uncertainties 

(variables).  Quantifying interaction uncertainty is required to ultimately estimate the uncertainty 

in the tradable parameters.  Typically, Monte Carlo simulation (MCS) has been used to address 

interaction uncertainty.  However, MCS is not computationally efficient [Hammersley & 

Handscomb, 1964] and alternate techniques including Latin hypercube sampling (LHS), 

descriptive sampling (DS), a modified mean value method (MMVM), and subset simulation (SS) 

via Markov chain Monte Carlo (MCMC) sampling are possible.  The simulation method selected 

depends on the individual analysis and the computational resources and time available by the 

decision maker.  The MMVM and SS methods are shown in the examples presented in this thesis 

to offer the potential of significant computational savings over traditional MCS.  Quantifying 

interaction uncertainty and simulation techniques are discussed in Chapter 7. 

3.2.5 Determining Margins, Analyzing the Design, and Trading Parameters 

With distributions of each tradable parameter provided by simulation, the margins can be 

determined.  Each tradable parameter distribution yields a mean and percentile values.  

Percentiles provide a confidence indication in the value of a tradable parameter.  For example, the 

90, 99, and 99.9 percentiles of a tradable parameter might provide a decision maker with low-, 

medium-, and high-confidence estimates in the probability that a tradable parameter will not be 

exceeded.  These three percentiles may correspond to a risk-seeking, risk-neutral, or risk-averse 

decision maker, respectively.  The difference between the percentile (chosen based on their risk 

tolerance) and the deterministic result provides the decision maker with the margin value to 

maintain at the current stage of the design.  Hence, the proposed (percent) margin that the method 

in this thesis presents is this margin divided by the deterministic result (and multiplied by 100): 

 ( )[ ] 100margin% detdetproposed
⋅−= RRPx  (3.1) 
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Once the distributions, means, and percentiles are determined, the decision maker may wish 

to investigate other simulation techniques.  The decision maker may also wish to further 

investigate which variables (uncertainties) are influencing the tradable parameters the most by 

performing a sensitivity analysis or investigate a completely different design.  If uncertainty in 

the values of variables decreases with time, the probability density distributions for these 

variables can be updated.  Repeating the process as the design progresses yields updated margins 

estimates.  In summary, this method redefines the concept of design margin that was introduced 

in Chapter 1.  Here, margins are a function of risk tolerance and are measured relative to mean 

expected system performance, not variations in design parameters measured relative to worst-case 

expected values.  Determining margins, analyzing the design, and trading parameters are 

discussed in Chapter 8. 

3.3 Qualitative Benefits of Method 

The method proposed in this thesis and introduced in the previous section has several 

important qualitative benefits in determining margins vis-à-vis the current heuristic-based method 

described in Chapter 1.  This section describes these qualitative benefits.  A discussion of the 

quantitative results in applying the method is differed to the penultimate section of this chapter. 

• Uncertainty encountered during design is an integral part of the decision making 

process, not an afterthought.  Uncertainty quantification, propagation, and mitigation in 

engineering design are not recent phenomena.  However, uncertainty has yet to truly 

make its way in the decision-making process in the design of space systems.  Instead, it is 

an afterthought to the design and is sometimes completely ignored.  The results of this 

behavior were shown in the margin examples provided in Chapter 1.  The method 

proposed makes uncertainty a central concept in the design of space systems.  

Uncertainty is treated with the same attention as requirements, design, modeling, and 

performance that are typically the focus of attention of the decision maker, designers, and 

stake holder. 

• Flexibility.  Various methods have been created that work well for one type of analysis, 

object, or discipline.  However, these methods break down or require significant changes 

when another analysis, object, or discipline is investigated.  The method proposed can be 

applied without significant changes to a wide variety of distinct applications.  The 

method can be implemented at varying levels (e.g., system, subsystem, assembly, 
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component) within a space system.†  The proposed method allows a balance of creativity 

and formalism which is often critically important in conceptual design [Salter, 2002]. 

• Transparent to participants and provides accountability.  The method proposed is 

transparent from “above” and “below” (i.e., does not require asymmetric information 

held by only a portion of the participants to be applied).  The method does not depend on 

proprietary practices or base itself on historical or heuristic methods that only a few of 

the individuals involved with the method know or understand.  Propagating and 

mitigating uncertainty is no longer the exclusive province of “men of experience” [Luce 

& Raiffa, 1957] but is a procedure that all can understand and implement.  When applied 

to a space system of interest, the proposed method determines margins specifically 

tailored to the given project, not based on historic or heuristic values that may only be 

known to a few participants and only partially relevant at that.  The proposed method 

steps are clearly explained and the decision maker and stake holder will understand the 

method to the same degree as the system and subsystem engineers who are providing 

and/or completing the analysis.  The method presented is open to productive scrutiny and 

critique.  This transparency helps in returning accountability to the participants at all 

levels of the design.  Participants may disagree about the representation of certain 

uncertainties (variables) involved.  However, when the method is applied with 

uncertainties agreed upon by all, it will yield results that, in turn, should be agreed upon 

by all.  Margins that have been exceeded can no longer be charged to “bad luck” where 

the decision maker is relieved of responsibility for what has happened.  Margin values 

can now be justified by the decision maker to stake holder in negotiations and discussions 

as the design progresses.   

• Comprehensive yet practical to implement in industry.  Several methods and techniques 

proposed have significant merit and promise in the academic setting where they were 

developed.  However, they require a significant departure from the current method of 

designing and developing space systems in industry.  The method is general enough to 

allow many of the design methods of other researchers discussed previously to be used in 

conjunction with its application.  Other methods proposed use new or unaccepted 

mathematical techniques that require learning by the individuals involved in the method 

and may be distrusted.  The proposed method is based on well-established and 

understood mathematical techniques whenever possible and uses new techniques only 
                                                      

†“A theory is the more impressive the greater the simplicity of its premises, the more different kinds of 
things it relates, and the more extended its area of applicability.” – Albert Einstein 
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when needed.  The less well known mathematical techniques, such as subset simulation 

(SS), used in the method are presented as ways to speed up its application in practice.  

Their use is not required for applying the proposed method.  This in turn requires the 

minimum amount of learning for individuals that would be applying the method. 

• Allows trading of critical parameters based on the risk tolerance of the decision maker.  

Engineering design is, in its simplest form, a set of decisions that are made and 

implemented by one or more individuals.  The resulting design has one or more critical 

parameters that determine its usefulness or success.  If more than one of these parameters 

exists for a space system, the method allows the decision maker to balance the design, 

and hence these critical parameters, based on their risk tolerance or risk aversion.  One of 

the overall dominant themes echoed at aerospace manufacturers is a desire to understand 

uncertainty at a level that would be useful as decision criteria and be able to trade 

parameters early conceptual design [Walton, 2002].  The method proposed illustrates 

clearly the risk posture of the decision maker to all the individuals involved in applying 

the method by the choice in percentile value in Equation (3.1) and allows trading 

parameters via several methods. 

• Takes advantage of people’s knowledge.  Many methods minimize the importance of 

people’s knowledge, relying instead on sophisticated algorithms and impressive amounts 

of computing yet fail to elucidate conclusions.‡  The proposed method devised empowers 

individuals involved in the method by taking advantage of their knowledge and 

experiences whenever possible in quantifying uncertainties.  Bayesian techniques are 

used in achieving this. 

• Repeatable and allows margins to be determined at any point in the design.  The method 

presented can be repeated subject to the availability of workforce and funds required to 

apply and implement it.  Although focused primarily on the pre-phase A and Phase A/B 

portion of space systems design (see Chapter 1), the method could be applied during 

Phase C/D or even Phase E in estimating operational performance.  The method focuses 

on the front end of development because of the high impact per dollar spent of these 

phases of development and the significance of the decisions made there on the eventual 

success or failure of the design (recall Fig. 1.2).  For example, pre-proposal and proposal 

(pre-Phase A) efforts at a major aerospace company have “cost the company 10s of 

millions of dollars if not hundreds and can be as long as a two year effort” [Walton, 
                                                      

‡“The purpose of computing is insight, not numbers” – Richard Hamming, mathematician and 
information scientist 
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2002].  Another major aerospace company concluded that changes that cost 10,000 times 

more when made during the manufacturing (Phase C/D) phase than when made early in 

the development cycle (pre-Phase A/Phase A) [Burghardt, 1999].  Although applying the 

proposed method would benefit all phases of design, it is not clear whether the updated 

margin estimates at a later that stage of the development would be worth the effort and 

expense of applying the method then. 

• Addresses different uncertainty types, stresses model uncertainty, and acknowledges 

phenomenological uncertainty.  Many existing methods view uncertainty as just 

“uncertainty” instead of its different types discussed in Chapter 2.  This leads to a 

muddled view on how to address uncertainty and potentially incorrect analysis techniques 

[Frey, 1992].  Moreover, existing methods to propagate and mitigate uncertainty neglect 

model uncertainty and ignore phenomenological uncertainty limiting their usefulness in 

the design of actual complex multidisciplinary systems.  The method proposed uses a 

detailed uncertainty classification; makes model uncertainty the first uncertainty 

quantified; and provides several options and actions in exploring phenomenological 

uncertainty. 

It should be stressed that the method proposed in this thesis is normative, not descriptive.  

Normative or prescriptive decision analysis seeks to advise or guide the decision maker.  A 

normative method states neither how people do behave nor how they should behave in an 

absolute sense, but how they should behave if they wish to achieve certain ends.  The proposed 

method, if followed, should yield (but by no means guarantees) beneficial results.  Indeed, the 

primary reason for the adoption of a normative theory is the observation that when decision 

making is left solely to unguided judgment, choices are often made in an internally inconsistent 

fashion, and this indicates that perhaps the decision maker could do better than he or she is doing.  

This was demonstrated with the diverse set of exceeded margins presented in Chapter 1.  If a 

person always behaved as this normative theory says they ought to, then there would be no reason 

to concern ourselves about actual normative theory.  People could just be told “do what comes 

naturally” [Raiffa, 1968].  Since this is not the case in reality, normative theories are powerful 

techniques in assisting the decision maker.  Lastly, although several engineering examples are 

discussed in the following section, the proposed method is not factually grounded to these 

examples nor was it developed by simply observing the design of space systems. 
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3.4 Quantitative Results in Applying Method 

Quantitative benefits of the proposed method have been demonstrated via several 

applications.   Thunnissen (2004a) is the seminal paper introducing the method with a major 

spacecraft component (a composite overwrapped pressure vessel) used as the application 

example.  A more evolved version of the method is applied to a spacecraft propulsion system in 

Thunnissen and Nakazono (2003) and Thunnissen, Engelbrecht, and Weiss (2003).  Further 

revisions of the proposed method with applications to a thermal control system and attitude 

control system are provided in Thunnissen and Tsuyuki (2004) and Thunnissen and Swenka 

(2005), respectively.  These four examples are all applied ex post facto.  The benefits are also 

demonstrated in the application examples provided in Chapter 9 and Appendix B. 

It is perhaps the Mars Exploration Rover (MER) propulsion system example provided in 

Appendix B that best illustrates the potential of the proposed method in determining margins vis-

à-vis the current method.  The key quantitative results of this example application include 

• Margin values based on the risk tolerance of the decision maker.  The margins values for 

the tradable parameters of propellant mass, dry mass, schedule duration, and total cost 

determined via the proposed method are based on the 99th percentile values of these 

parameters.  These margin values for propellant mass, dry mass, schedule duration, and 

total cost are 98.6%, 92.2%, 15.3%, and 16.7%, respectively.  This percentile value 

choice may represent a risk-neutral decision maker.  However, the values could have 

been based on the 90th percentile value (a risk-seeking decision maker) or the 99.9th 

percentile value (a risk-averse decision maker).  This is a significant departure from 

heuristically determined designed margins with no clear risk tolerance implied.  The 

percentile value used in the proposed method to determine margins is based on the full 

cumulative distribution function (CDF); not on possibly misleading statistical parameters 

(e.g., see Fig. A.1 in Appendix A).   

• Allocation values that were different than those assumed during preliminary design.  The 

allocations (best estimates + margins) assumed by the MER project for propellant mass, 

dry mass, schedule duration, and total cost at the preliminary design review are 42.8 kg, 

18.4 kg, 749 days, and FY2003$9.9M, respectively.  The allocations predicted by the 

proposed method for these same four tradable parameters are 42.9 kg, 17.3 kg, 816.4 

days, and FY2003$12.130M.  The actual final values turned out to be 47.0 kg, 16.2 kg, 

749 days, and FY2003$11.0M for mass, schedule, and cost, respectively.  Hence, the 

proposed method provided margins that encompassed the actual values better than the 
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current method.  The proposed method would not have resulted in margins exceeded in 

the design of the MER propulsion system. 

• Potential of several sampling techniques in reducing the computational burden of 

applying the proposed method compared to traditional sampling methods.  The nominal 

sampling technique in applying the proposed method is Monte Carlo simulation (MCS).  

MCS tends toward the actual result through the Law of Large Numbers as the number of 

samples (calls to the response function) approaches infinity.  Alternate techniques such as 

the modified mean value method (MMVM) and subset simulation (SS) provide a 

significant decrease in the number of calls to the model (computational expense) 

compared to MCS.  MMVM provides a slightly inferior level of accuracy but requires 58 

to 308 times less computational effort.  SS provided superior accuracy compared to MCS 

at the extreme tails (i.e., high percentile values such as 99.9 or 99.99) but requires 5 to 10 

times less computational effort.  The ability to use alternative sampling techniques 

provides the decision maker with several computationally efficient options compared to 

MCS, especially when he or she is concerned about mitigating low probability events. 

3.5 Summary 

This chapter describes previous work by researchers in a variety of fields that have 

contributed to the proposed method presented in this thesis.  The chapter then introduces this 

proposed method, briefly describing each step.  The qualitative benefits and quantitative results in 

applying the method to determine design margins exemplify the potential benefit the method may 

have in actual space systems design if implemented compared to the current heuristic-based 

approach.  As the application examples illustrate, the method has developed significantly since its 

first application to a composite overwrapped pressure vessel [Thunnissen, 2004a] to the method 

presented in this thesis.  It is likely that this proposed method will evolve and develop further if 

implemented in an actual complex multidisciplinary design.  This evolution and development is 

anticipated and encouraged since an actual design may shed light on new uncertainties, methods, 

and techniques to propagate and mitigate them.  The following chapters describe each step in 

applying the method, beginning with identifying tradable parameters which is discussed in the 

following chapter.   
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Chapter 4 Identifying Tradable Parameters 
The first step in the proposed method is identifying tradable parameters.  This chapter begins 

with a definition and explanation of tradable parameters.  Common tradable parameters of 

performance, risk, schedule, and cost are then discussed. 

4.1 Tradable Parameters 

This section introduces tradable parameters and their relationship to requirements.  A 

description of constraints and limits on tradable parameters follows.  A discussion of parameters 

that are not tradable and a brief review of utility theory complete this section. 

4.1.1 Tradable Parameters and Requirements 

The design of a complex multidisciplinary system is motivated by requirements.  In the case 

of a spacecraft, the requirement may be high-resolution imaging (reconnaissance), global 

positioning (navigation), or global mobile telephony (telecommunications).  A complex 

multidisciplinary system may also have more than one requirement.  For a missile, target 

accuracy (guidance and navigation), time to target intercept (speed), and low-radar signature 

(stealth) all may be requirements that must be satisfied to some level.  The design of a missile 

proceeds through iterations where the target accuracy, time to target intercept, and radar signature 

are calculated.  Dozens, possibly hundreds, of parameters that are used in estimating these 

requirements are also changing during preliminary design.  The decision maker must understand 

the complex multidisciplinary system being analyzed to determine which parameters are truly 

important in satisfying the requirements placed on the system.  This set of parameters is 

“tradable” in a sense that one or more of these parameters could be expended in preliminary 

design in an effort to improve or reduce another.  However, not all parameters need be tradable 

with all others. The resulting list of tradable parameters helps guide the design of the complex 

multidisciplinary system. 

Tradable parameters are often the requirements.  The decision maker typically has other 

tradable parameters available such as cost, schedule, and risk which may be requirements 

themselves.  Both tradable parameters and requirements are characterized by one of three forms: 

“higher is better,” “lower is better,” or “closer to a particular value is better.”  In the first form 

there may be a cut-off, or “floor,” below which a value that results from a design is not useful, 

practical, or able to be implemented.  Likewise, the second and third forms may have analogous 

“ceilings” above which values that result from a design are not useful, practical, or able to be 

implemented.  In the case of a reconnaissance spacecraft, image resolution, payload mass, and 
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pointing stability may be tradable parameters.  Image resolution follows the first form where a 

high resolution image is desired so smaller objectives can be distinguished.  Payload mass follow 

the second form where a low payload mass is desired to reduce the total spacecraft mass (and 

hence launch costs).  Finally, pointing stability follows the third form where the pointing stability 

should be as close to 0 degrees/sec.  These three parameters are tradable in the sense that a 

pointing stability close to 0 degrees/sec provides a stable spacecraft that results in a lower image 

resolution capability.  In this example, payload mass could also be traded with both image 

resolution and pointing stability.  More powerful payload optics and processing capability would 

provide better resolution but at the cost of payload mass (and vice-versa).  Likewise, adding 

reaction wheels would improve pointing stability at the cost of payload mass (and vice-versa). 

4.1.2 Constraints and Limits 

Some parameters are tradable yet constrained (i.e., tradable to a degree and no more).  An 

interplanetary spacecraft may have a limited launch window (number of days available within 

which it can launch) dictated by the synodic period of the planets involved and the launch vehicle 

selected.  The trajectories available for an Earth-Mars transfer, for example, are available for only 

a few weeks every 26 months.  The choice in launch vehicle that provides the injected mass 

capability to achieve the required trajectory is typically specified by the stake holder or decision 

maker a priori.  Even if no launch vehicle is specified, there is a limit in the injected capability 

(mass that can be launched) of launch vehicles: that of the most powerful launch vehicle 

available.  Nonetheless, the decision maker could trade cost with risk to a degree.  A cost savings 

in the mission could be accomplished by reserving the launch range for a shorter period of time 

which would reduce the launch window (and hence, increase the risk in not being able to launch 

the mission).  On the other hand, the decision maker may wish to expend cost by reserving the 

launch range for a longer period of time which would increase the launch window or use a more 

powerful launch vehicle with a higher injected mass capability.  Both options would increase the 

likelihood of successfully launching and hence reduce the risk.  However, there is a combination 

of launch window length and launch vehicle capability beyond and above which, respectively, no 

more gains are possible and the limit in the tradable parameters have been reached.  For an Earth-

Mars mission this may be a launch window of 40 days and a Boeing Delta IV-Heavy launch 

vehicle. 
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4.1.3 Parameters That Are Not Tradable 

Certain parameters may be deemed tradable when they are not.  This occurs often when a 

new design inherits ideas from a previous design yet the new design has moderately or 

substantially different requirements.  Parameters are also not tradable when deemed not important 

compared to the rest of the complex multidisciplinary system being designed.  If no major 

decisions concerning these parameters are anticipated during design that would significantly 

impact the other tradable parameters, it is unlikely these parameters are truly tradable.  For 

example, a spacecraft is designed to be a follow on for a highly successful first-of-kind mission 

that just concluded.  Requirements for the follow-on mission include a stipulation to use as much 

as the previous design and hardware as possible to save cost.  The original design included risk as 

a parameter that was traded with performance and cost in selecting components and materials for 

the final design.  However, the follow on mission is constrained to make no significant changes in 

the design (i.e., no major changes in components or materials) and therefore no major decisions 

concerning risk are made in designing the follow-on mission.  Hence risk, although a tradable 

parameter in the original design, is no longer a tradable parameter in the follow-on design. 

4.1.4 Utility Theory 

Utility was introduced in Chapter 3 along with issues and challenges in using it in practical 

problems.  Utility theory represents player’s values as “utilities” (nondimensional units).  Utility 

theory also incorporates risk-tolerances via the shape of the utility function.  For example, wealth 

(cost) is a parameter whose utility is often different for different individuals and illustrates their 

risk tolerance well.  Risk aversion in individuals is often a function of their assets and can change 

with an increase or decrease in those assets [Raiffa, 1968].  Hence, a risk-seeking utility function 

may correspond to a decision maker with significant wealth that is able to afford loses if they 

occur.  Tradable parameters follow these two themes of utility theory and risk tolerance but do 

not explicitly state them.  Likewise, tradable parameters share similarities with objectives in 

multi-objective utility theory [Keeney & Raiffa, 1976].  This makes the current interpretation and 

use of tradable parameters in the proposed method somewhat incomplete and less rigorous than if 

utility theory was used.  However, a benefit is that all the difficulties and controversies of utility 

theory are avoided.  Tradable parameters, such as mass, schedule, or cost, are simply mass, 

schedule, and cost, respectively.  Their relative importance to a decision maker and to each other 

are not be explicitly specified nor are these values converted to “utilities.”  The risk tolerance will 

be specified by the choice in the percentile, Px, in Equation (3.1).  Trading of parameters (without 

the explicit use of utility theory) is discussed in Chapter 8. 



60 

4.2 Common Tradable Parameters 

Although the hierarchical level of complex multidisciplinary system (i.e., system, subsystem, 

assembly) is important in determining which parameters are tradable, there are several common 

tradable parameters common to almost all levels of design.  These parameters include 

performance, risk, schedule duration, and total cost.  This section briefly discusses each and some 

of the uncertainties that often exist in making their determination such a challenge. 

4.2.1 Performance 

Performance is a general term that might include general engineering parameters such as 

mass and power required.  It might include parameters specific to a particular subsystem (e.g., 

knowledge accuracy for attitude determination and control).  Typically performance parameters 

are requirements if not explicitly, then implicitly and are the parameters most of interest to the 

engineers and designers.  Engineers and designers often come up with creative and innovative 

ideas to improve these parameters.   Performance parameters are influenced by uncertainties.  

These uncertainties are specific to a particular performance parameter.  For example, the mass of 

system may be a function of choices a designer has to make, component availability, material 

properties, requirements, and model-fidelity available.  Performance parameters in a space system 

are often a function of dozens to hundreds of uncertainties. 

The choice in performance parameters should be complete in that it includes all relevant 

aspects of the overarching requirement(s).  However, the set of tradable parameters should be as 

small as possible, independent, and decomposable to the lowest practical limit.  Typically, a 

design is viewed successful by a stake holder via a small number of parameters and not the 

dozens of parameters of concern to the engineers and designers.  Certain performance parameters 

are highly dependent on each other and specifying both performance parameters may be 

redundant.  Lastly, decomposing performance parameters to the lowest practical limit simplifies 

the generation of models and subsequent analysis which is discussed in the following chapter. 

4.2.2 Risk 

The relationship between risk and uncertainty was discussed in Chapter 2 with respect to 

known and unknown probabilities and outcomes.  Risk and uncertainty are often confused with 

each other because the definitions for each vary so extensively across a variety of fields.  This 

thesis defines uncertainty as “the difference between an anticipated or predicted value (behavior) 

and a future actual value (behavior)” and risk as “the likelihood of failure.”  The two are related 

in that there may be uncertainty about a risk and risk about an uncertainty.  For example, the risk 
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in a component failing may be a function of (uncertain) conditions while the amount of 

uncertainty faced by a project may determine whether the project continues to be funded or 

cancelled (risk in funding).  This thesis concentrates on uncertainty, including uncertainty about 

risks.  Risk should always be considered as a potential tradable parameter in the design of 

complex multidisciplinary systems. 

As with risk aversion that was discussed earlier, there exists a distinct concept of uncertainty 

aversion.  Walton (2002) described the differences between the two using the example of flipping 

a fair coin.  Uncertainty-averse individuals concern themselves with not knowing how likely 

heads or tails may be while the risk-averse individual is more concerned with the implications of 

the coin landing on heads or tails.  Risk has traditionally been a more common concern than 

uncertainty in complex multidisciplinary design.  Perhaps this is because a failure during 

operations may be more significant, a higher profile, and/or potentially may cause loss of life (in 

the case of an aircraft, automobile, etc.) than a failure during development that might be 

remedied.  The examples provided in Chapter 1 illustrate however that not accurately propagating 

and mitigating uncertainty can have as serious an impact to the space systems industry as an 

operational failure. 

4.2.3 Schedule Duration 

Schedule duration is defined as the time, starting from some predetermined point such as the 

authority to proceed by the customer (and allocation of funds), to design, build, test, and deliver 

the system or systems of interest.  Schedules are always important in complex multidisciplinary 

systems design, especially when there is a demand for that system to quickly be deployed or 

operational.  For example, an interplanetary science mission may require that a spacecraft with 

appropriate payload be designed and built by the time the next syzygy (appropriate launch 

opportunity) arrives.  A military mission may require that an operating payload be available 

within a year for national security reasons while a commercial mission will want to launch as 

soon as possible to take advantage of “first-to-market” revenue generating opportunities. 

Schedule comprises a set of tasks that defines how to design and develop the system of 

interest.  Often, estimates of time and relationships between tasks are specified in a schedule.  A 

simple schedule (for the development of a composite overwrapped pressure vessel) is provided in 

Fig. 4.1. 
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# Activity Name
Duration 
(weeks) Prereqs 1 2 3 4 5 6 7 8 9 101112

Year 1

1 Specification review 1
2 Preliminary design 4 1
3 Preliminary design review 2
4 Qualification test plan 2 3
5 Miscellaneous data items 2 3
6 Acceptance test plan 2 3
7 Final design and analysis 4 3
8 Intermediate design review 4,5,6
9 Liner first lot fabrication 30 8

10 Development unit winding/processing 2 9
11 Development unit testing 3 10
12 Critical design review 11
13 Qualification tank winding/processing 2 12
14 Qualification testing 3 13
15 Flight unit winding/processing 2 14
16 Design/analysis report 4 14
17 Qualification report 4 14
18 Flight unit acceptance test 2 15
19 Flight unit shipment 16,17,18  

Fig. 4.1   Simple schedule [Thunnissen, 2004a]. 

Sources of uncertainty in schedules have been studied in large civilian projects [Merrow, 

1988].  Uncertainties that are valid for the design of complex multidisciplinary systems include: 

omission and/or difficulty of tasks; work arising from using advanced technology; design and 

manufacturing challenges; availability of critically skilled labor; labor relations; regulatory and 

political factors; contracting issues; and overall project management coordination and strategy. 

4.2.4 Total Cost 

Total cost is defined as the amount of money required to design, build, test, and deliver the 

system or systems of interest.  As was mentioned in Chapter 1, the design environment for 

building complex multidisciplinary systems, in particular space systems, has changed.  Aerospace 

design has gone from maximizing performance under technology constraints to minimizing cost 

under performance constraints.  These changes have placed an increased importance on cost to all 

the participants in a design.  Total cost is arguably the most important tradable parameter. 

Cost is strongly correlated to schedule due to labor and task duration factors [Merrow, 1988].  

The funding profile is often as important if not more important than the total cost to a stake holder 

due to budgetary constraints.  Having a system designed and built within a (possibly uncertain) 

budgetary profile adds additional complexity to a design.  Fig. 4.2 illustrates the project cost and 

funding profile for an example project. 
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Fig. 4.2   Possible cost and funding profile for a project. 

Important uncertainties in cost are similar to those of schedule and include omission and/or 

difficulty in procuring items; changes in the scope of work; unforeseen technical difficulties; 

work arising from using advanced technology; schedule delays that require overtime; budgetary 

constraints; regulatory and political factors; contracting issues; and overall project management 

coordination and strategy. 

4.3 Summary 

This chapter defines the concept of a tradable parameter and discusses identifying which 

parameters are and are not tradable in the design of a complex multidisciplinary system.  

Common tradable parameters of performance, risk, schedule, and cost are discussed including 

possible uncertainties which may impact these parameters.  With the tradable parameters of a 

complex multidisciplinary system identified and defined, the next step in the proposed method is 

generating models to calculate these parameters.  This is the topic of the following chapter. 
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Chapter 5 Generating Analysis Models 
As systems have become increasingly complex and multidisciplinary, the generation and use 

of models to represent those systems has become more important.  Unfortunately, efforts to 

quantify and test models have not been rigorously pursued.  This chapter begins by introducing 

model formulation.  A detailed description of model uncertainty that emphasizes techniques to 

quantify model uncertainty follows.  The chapter concludes with a discussion of 

phenomenological uncertainty and techniques to address it. 

5.1 Model Formulation 

Once a list of tradable parameters has been identified, a model must be generated to calculate 

each of these parameters.  The model can be considered a “response function” and may be 

complicated (e.g., closed-form equations, computational algorithms, “black box” functions) 

requiring significant expense in time and resources to calculate values.  For example, a model that 

determines engineering parameters often includes dozens or hundreds of physics-based equations 

and relations.  A model that calculates the development schedule of a complex multidisciplinary 

system might subdivide the tasks required and estimate workforce requirements for each.  A cost 

model might incorporate the schedule and include additional equations relating procurements, 

inflation, and burden factors.  A risk model might estimate whether the complex multidisciplinary 

system will fail during development or operation.  Model generation involves first determining 

what a requisite model must be and then developing the actual model.   

5.1.1 Requisite Model 

A model that represents the phenomena of interest over a range of interest is termed a 

requisite model.  A requisite model forms a compact, accurate representation of the functional 

relationship between typical uncertainties (inputs) and tradable parameters (outputs) of an 

analysis which models the complex multidisciplinary system.  Phillips (1984) proposes that “a 

model can be considered requisite only when no new intuitions emerge about the problem,” or 

when it contains everything that is essential for solving the problem.  A requisite model contains 

everything that the decision maker considers important in making the decision regarding the 

tradable parameter of interest.  Identifying all of the essential elements may be a matter of 

working through the problem several times, refining the model on each pass.  The only way to get 

to a requisite decision model is to continue working on the decision until all of the important 

concerns are fully incorporated.  Sensitivity analysis, which is discussed in Chapter 6, is a great 

help in determining which elements are important [Clemen, 1996]. 
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5.1.2 Model Fidelity 

Ideally a model should be as accurate as possible given the resources available.  However, the 

model fidelity required is a function of the need.  In the proposed method, the need is the 

accuracy required in assessing the tradable parameters.  A simple qualitative example illustrates 

this.  Consider a model airplane as a toy for a three-year old versus a model airplane as a toy for a 

ten-year old versus a subscale mock-up for wind-tunnel testing.  In the first case the tradable 

parameter is “fun” (make the toy strong and simple).  In the second case the tradable parameter is 

likely “representative” (make the model airplane detailed and similar to the actual airplane).  

Finally, the tradable parameter in the third case is “exactitude” (make the model as identical as 

possible, in the limited size available, to an actual airplane).  The same concept arises in 

generating maps.  The level of detail in a map required by hikers, drivers, and the military is 

likely different.  The effort put into generating a detailed map is a function of the end user just as 

the accuracy in tradable parameters is determined by the stake holder and decision maker.  

Developing any model entails a trade-off between the level of accuracy and completeness in the 

model versus the cost of resources in generating and running this model.  A model that captures 

all the relevant features of a phenomenon may be impractical and time-consuming to generate 

because of insufficient data available and/or costly (i.e., in time and money) to run.  On the other 

hand, a simpler model which represents only a portion of the phenomenon will likely disregard 

potentially important features but may require minimal computational cost.  The ratio of 

computational cost for a higher-fidelity model to a lower-fidelity model can be high, sometimes 

exceeding a factor of a 100 [Oberkampf et al., 1999].  In either case, a price is paid. 

5.1.3 Models in Complex Multidisciplinary System Design 

In the design of complex multidisciplinary systems, a mix of simple and sophisticated models 

is typically used.  Several “submodels” are used to represent portions (e.g., subsystems, 

assemblies, components) of the system and the inputs and outputs of these distinct models are 

then linked.  Generating such submodels is often easier than larger more encompassing models 

and allows uncertainties in input variables to be quantified with a higher degree of confidence.  

Since models are typically computer programs, these programs handle the difficult numerical 

calculations in modeling the system while allowing the users to assess the uncertainty in the 

inputs.  Data exchange (i.e., linking the inputs and outputs) between submodels has long been the 

bête-noire of preliminary complex multidisciplinary design.  However, recent efforts by a variety 

of individuals and organizations have begun to address this issue (e.g., [Parkin et al., 2003]). 
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The need for simulation-based analysis tools is particularly important in the design of space 

systems, as operating environments are often difficult or impossible to reproduce to test 

prototypes.  In space systems design, simple models may be created in Excel spreadsheets or 

short FORTRAN, C++, or MATLAB® codes by individual engineers or designers that represent 

their subsystem or component of responsibility.  Sophisticated modeling tools in space systems 

design include both third-party software that is publicly available and proprietary modeling tools 

that are difficult or impossible to obtain by other individuals and organizations.  Several examples 

of modeling tools used in space systems design are provided in Table 5.1. 

Table 5.1   Examples of modeling tools used in space systems design 
Modeling Tool 
(Vendor) 

Acronym/ 
Abbreviation 

Associated 
Discipline 

Description 

NASA Structural 
Analysis System (MSC 
Software Corporation) 

NASTRAN Structural analysis general purpose finite element 
analysis program for use in 
computer-aided engineering; 
standard in the structural analysis 
field 

Satellite Orbit Analysis 
Program (JPL/ 
Aerospace Corporation) 

SOAP Mission design orbit visualization and analysis 

System Improved 
Numerical Differencing 
Analyzer (Cullimore & 
Ring Technologies, 
Inc.) 

SINDA Thermal control network-style thermal simulator; 
standard analyzer for thermal control 
systems 

Satellite Tool Kit 
(Analytical Graphics 
Inc.) 

STK Mission design supports analysis, planning, design, 
operation, and post-mission analysis 
for complex and integrated land, sea, 
air, and space scenarios 

Two Dimensional 
Kinetics (Software and 
Engineering Associates, 
Inc.) 

TDK Propulsion estimates performance parameters 
such as specific impulse, thrust, mass 
flow rate, and thrust coefficient using 
JANNAFa liquid rocket thrust 
chamber performance prediction 
method 

Variable Trajectory 
Optimization Program 
(JPL/NASA) 

VARITOP Mission design two-body, sun-centered, low-thrust 
trajectory optimization and analysis 
program 

aJANNAF = joint army navy NASA air force 

5.1.4 Model Validity and Extrapolation 

Different models for the same phenomena may have different resolutions and different ranges 

over which they are valid.  For example, a requisite model often used in fluid mechanics to 

estimate the friction factor in laminar flow through a pipe is 
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This model is valid only for laminar flows and models the friction factor poorly when the 

Reynolds number (based on the pipe diameter) exceeds ~2000.  For turbulent flow a different 

model is used to estimate the friction factor [White, 1991]: 

 ( ) 2000316.0 41 >⋅= −
DD ReRef  (5.2) 

Some models may be amenable to extrapolation beyond specified ranges, others are not.  For 

example, the prediction of aerodynamic heating on a space capsule during reentry into the earth’s 

atmosphere in the 1960s was for velocities well beyond those contained in existing databases of 

the time.  This occurred in the U.S. space program when the manned Apollo spacecraft re-entered 

the earth’s atmosphere after orbiting the moon.  A large database existed for reentry at earth 

orbital speeds (7,600 m/s), but no experimental data existed at entry speeds appropriate for this 

situation (11,000 m/s).  Extrapolating a model depends heavily on the level of understanding of 

the physical process and the magnitude of the extrapolation [Oberkampf et al., 1999].  When 

extrapolation extends beyond a certain level, phenomenological uncertainty enters the model.  

Phenomenological uncertainty is a significant challenge in generating models and is discussed 

later in this chapter.  Lastly, some models may be validated extensively while others may “twist 

and turn” to accommodate most or all the data points for validation but fail to model the general 

areas in between.  This is often a concern in using curves or response surfaces to model 

phenomena [Fox, 1994].   

5.2 Model Uncertainty 

With models formulated, the next step in the proposed method is assessing their uncertainty.  

Model uncertainty is the accuracy of a mathematical model to describe an actual physical system 

of interest.  Also known as model-form, structural, or prediction-error uncertainty, model 

uncertainty is a form of epistemic uncertainty (i.e., model uncertainty is often due to a lack of 

knowledge).  The use of one or more simplified relationships between basic variables used in 

representing the ‘real’ relationship or phenomenon of interest is a common characteristic of 

model uncertainty [Melchers, 1999].  Model uncertainty arises from approximation, numerical, 

and programming errors.  This section discusses approximation errors in detail.  At the end of this 

section a brief overview of numerical and programming errors is provided.   

5.2.1 Approximation Errors 

For physical processes that are relatively well understood, deficiencies in certain models are 

often called approximation errors rather than model uncertainty.  For example, in the modeling of 

the specific volume of a gas, four models can be ordered in terms of increasing accuracy 
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(decreasing model uncertainty) as follows: ideal-gas law, van der Waals equation, Beattie-

Bridgeman equation, and Benedict-Webb-Rubin (BWR) equation.  All four models are single 

equations that determine the specific volume (dependent variable) through two independent 

variables: temperature and pressure.  The ideal gas law neglects intermolecular forces between 

molecules and uses only one constant: 

 
p
TR ⋅

=ν  (5.3) 

The van der Waals equation uses two constants to allow for interaction and volume effects [van 

der Waals, 1873]: 

 ( )( ) TRbap ⋅=−+ νν 2  (5.4) 

The Beattie-Bridgeman equation uses five constants and is accurate over a much larger range 

[Dodge, 1944]: 
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Lastly, the BWR equation uses eight constants and is even more versatile [Sonntag & Van 

Wylen, 1991]: 
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In general, this ordering is appropriate, but for individual gases at specific conditions one 

model may be more accurate than another (e.g., the ideal gas law can be the most accurate 

equation for certain gases at low pressures and high temperatures). 

As simulation-based design has become increasingly important and common, the models 

used to represent complex multidisciplinary systems have become progressively more 

complicated (see Table 5.1).  As the reliance on such models has increased, assessing their 

uncertainty becomes paramount.  Unfortunately, assessing approximation errors in models is 

often not done.  The reasons for this are numerous but include difficultly (or impossibility) in 

obtaining data (input variables and output parameters) to compare model predictions with; time 

and cost of performing such an analysis; and unquantified and overconfident belief in models by 

their creators. 

5.2.2 Assessing Approximation Errors 

Approximation errors can be assessed and reduced with effort, research, and increased 

availability of data.  Some models have good accuracy relative to test data, for example, 

mechanical structural analysis.  Others may have low accuracy for engineering purposes, for 



70 

example, fatigue modeling [Du & Chen, 2000].  Consider again the specific volume example 

introduced in the previous section.  Johannes van der Waals determined that the ideal gas law 

poorly represented actual gas behavior at high pressures and low temperatures and improved 

upon the ideal gas law in 1873 as part of his doctoral thesis [van der Waals, 1873].  Similarly, 

Beattie and Bridgeman improved upon the van der Waals equation in 1928 and Benedict, Webb, 

and Rubin in turn improved upon the Beattie-Bridgeman equation in 1940.  All of these 

researchers were aided with increased and improved data of various gases which allowed them to 

assess the approximation errors of previous equations and devise increasingly accurate equations.  

The four equations (models) for the specific volume are simple compared to models for more 

complicated systems.  A complex multidisciplinary system, such as a spacecraft, automobile, or 

submarine, may use many mathematical submodels, each with possibly dozens of equations.  The 

complexity of the models depends on the physical complexity of each phenomenon being 

considered, the number of physical phenomena being considered, and the level of coupling of 

different types of physics [Oberkampf et al., 1999].  

Approximation errors can be minimized by calibrating a model if sufficient empirical data are 

available.  Calibration is often feasible in simple models with one or two inputs but difficult or 

impractical for complicated models.  Instead of calibration, the approximation errors in these 

models can be probabilistically assessed.  Approximation errors in a dependent variable can be 

represented as a random variable and related to the true value [Siddall, 1983]: 

  (5.7) Xyty −=

A probability density function can be determined for X if sufficient true values are available 

to compare to the values determined by a model.  A summary of probability theory including 

random variables is provided in Appendix A.  The advantage of using a probability density 

function (PDF) to represent approximation errors is that it can be easily convolved with other 

uncertainties that are represented probabilistically.  Representing approximation errors via a PDF 

can be accomplished via existing data, expert elicitation, or Bayesian techniques. 

5.2.2.1 Via Existing Data 

Quantifying approximation (model) errors via existing data is rigorous and arguably the least 

controversial of the three methods available.  Provided the procedure for obtaining the data is 

agreed upon, the empirical (raw) data that results should provide undisputed values to assess 

approximation errors.  Existing data provides values to compare results obtained via the model.  

The only controversy that arises in using existing data occurs when determining what data are 
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relevant and what data are not.  Data can be manipulated by an assessor with a motivational bias.*  

Combating this is possible with careful documentation of what data are used and what data are 

not, with an explanation for each.  With sufficient acceptable data, a PDF representing 

approximation errors can be generated.  Sufficient data depends on the situation but statisticians 

generally regard ~50 data points as being a minimum number for results to have statistical 

validity [Devore, 2000]. 

Returning to the thermodynamic example discussed earlier, the model error of the specific 

volume can be represented by a PDF.  For a range of temperatures and pressures the difference 

between each of the four equations can be compared with accurate actual measured data [Din, 

1961].  These differences can be sorted into bins and transformed to a PDF as shown in Fig 5.1 

for nitrogen. 
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Fig 5.1   Model uncertainty for specific volume. 

Fig 5.1 is useful in assessing model uncertainty in the context of all input uncertainties (in 

this case: temperature and pressure).  Almost 400 values of the specific volume were used in 

creating Fig 5.1 for temperatures ranging from 160 to 650 K (-113 to 377 °C) and pressures 

ranging from 0.1 to 101.3 MPa (1 to 1000 atm).  The more values used, the smoother the resulting 

PDFs.  Fig 5.1 illustrates that the ordering of the four equations is indeed valid.  The fact that the 
                                                      

*“There are three kinds of lies: lies, damn lies, and statistics.” – Mark Twain 
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error grows at tails of distributions for the ideal gas law and the van der Waals equation indicate 

that neither truly represent the thermodynamics of the problem over the given range of the 

independent variables (temperature and pressure).  These two equations would not be deemed 

requisite models.  The ideal gas law, van der Waals equation, and Beattie-Bridgeman equation all 

underestimate the specific volume.  However, the Beattie-Bridgeman equation does represent the 

thermodynamics of the problem (as does the BWR equation) since the errors drop off nearly 

symmetrically either side of their peaks. 

For simplification, a distribution may be fit to such data instead of using a “custom” PDF that 

fits the data as shown in Fig 5.1.  This procedure uses various statistical tests and is described in 

Appendix A.  Continuing with the thermodynamic example, a normal distribution fits both the 

Beattie-Bridgeman and BWR PDFs with reasonable accuracy.  The Beattie-Bridgeman PDF fit 

has a mean and standard deviation of approximately -4.3(10)-5 and 9.22(10)-5 m3/kg, respectively.  

The BWR PDF fit has a mean and standard deviation of approximately 2.1(10)-5 and 4.87(10)-5 

m3/kg, respectively.  The much narrower PDF of the BWR fit with its smaller standard deviation 

implies that the BWR equation is indeed a better model for determining the specific volume of 

nitrogen than the Beattie-Bridgeman equation over the given range of the independent variables.  

Another method to obtain a distribution through data is using the maximum entropy method.  The 

maximum entropy method assumes bounds of the unknown function are known or must be 

assumed.  Since bounds of an uncertain variable are often not known, this method is not typically 

attractive [Siddall, 1983].  It should be noted that the approximation errors for all four models of 

the specific volume example presented could be addressed via calibration.  This would not be the 

case for complicated models with dozens of uncertainties where calibration would be impractical 

or impossible. 

5.2.2.2 Via Expert Elicitation 

Unfortunately it is often impossible to have sufficient data to gauge a model.  Little or no data 

to appropriately gauge a model occurs more frequently in practical engineering analyses than is 

commonly admitted.  The thermodynamic example presented in the previous section had a 

significant amount of highly accurate test data to compare the various equations of state.  With 

models of new systems there may only be a few actual systems to compare the model with.  

Furthermore, validating models is expensive and time consuming and few system responses are 

typically measured in testing or operation as compared to the extraordinary number of system 

responses that can be predicted by a mathematical model.  Lastly, approximation error occurs in 

the case of poorly characterized model validation (or calibration) experiments for complete 
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engineering systems.  System-level experiments are commonly functionality or performance tests 

with little useful data for computational model validation and uncertainty estimation [Oberkampf, 

Helton, & Sentz, 2001].  Although a system-level model can often be separated into smaller, 

more manageable submodels where approximation errors may be addressed with actual data at a 

lower hierarchical level, this effort is also expensive and time consuming. 

In the extreme situation for assessing approximation errors there are no actual data points at 

all.  Assessing the validity of a model in these situations is possible through expert elicitation.  

The experts for assessing the validity of a model are likely to be the engineers and designers who 

developed and/or use the model.  Elicitation of expert opinion is a well-established procedure that 

is detailed in Spetzler and von Holstein (1975); Keeney and von Winterfeldt (1991); Cleaves 

(1994); and Ayyub (2001).  Expert opinion results in subjective probabilities and PDFs for model 

uncertainties that are judgment estimates yet can be mathematically implemented in an analogous 

manner to those generated by raw or empirical data as described in the previous section.  Formal 

assessments of uncertainty by experts can also be useful when there is disagreement about 

uncertainties.  This aspect of expert elicitation is discussed in Chapter 6 and Chapter 7.  This 

section briefly describes issues and concerns that must be considered in implementing expert 

elicitation in assessing approximation errors.  The actual procedure for implementation is 

described in the references listed previously. 

5.2.2.2.1 Implementation Issues 

Assessments of approximation errors are most accurate when rigorous and systematic 

processes for eliciting judgments are implemented.  Such a systematic process controls and 

compensates for inconsistencies and eccentricities inherent in the human judgment processes.  

Cleaves (1994) recommends the use of one or more analyst/facilitators (A/Fs) to assist in eliciting 

expert opinion.  A/F responsibilities should include 

• Being knowledgeable about the model being assessed and trained in probability encoding 

techniques.  Assessment is difficult without such assistance because experts can become 

overwhelmed with the task and unaware of biases that creep into their judgments. 

• Leading the experts through the process and motivating them to recognize and deliver 

useful and bias-free judgments. 

• Understanding the larger decision context, how the assessment results will be used, and 

be a liaison between the experts and the decision maker.  The A/Fs can match assessment 

techniques to the personalities of the experts and the characteristics of the uncertain 

model. 
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• Challenging the experts to uncover new sources of information concerning the model and 

confront inconsistencies in expert elicitation when it arises. 

• Providing continuity across assessments by different people and disciplines and can assist 

in mediating disagreements during group assessments. 

A critical aspect of eliciting expert opinion is a careful documenting of assumptions.  A 

record of the level of technical experience and personal aversion to risk of the expert being 

elicited should be kept since these two factors influence their assessments.  Unfortunately, due to 

time and budgetary constraints the documentation of such assumptions and the thought process in 

the design of complex multidisciplinary systems is done semi-formally, informally, or not at all.  

The engineers and designers on the project understand the models they use yet may describe 

modeling aspects in words rather than numbers.  This is typical of expert elicitation since words 

are easier to use than numbers and do not demand data or disciplined precision.  This qualitative 

description of approximation errors is illustrated in Fig. 5.2 which relates verbal expression to 

probability values which can in turn be transformed to PDFs. 
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Fig. 5.2   Example relation between verbal expression and assigned likelihood; adapted 

from Kent (1964). 

Lastly, experts are useful in addressing limitations of the model being assessed.  This 

includes both the range of validity, when or when not to use the model, and when the model may 

fail to perform its function.  Thinking of all the possible and potential failure manifestations of 

the model (i.e., how the model is unsatisfactory) seems perverse, self-depreciating, even sinister, 
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yet is a critical part of how to assess and obviate the limitations of the model in using it to design 

and develop a complex multidisciplinary system. 

5.2.2.2.2 Concerns 

There are many concerns in eliciting expert opinion.  These concerns fail into two domains: 

personal and motivation concerns; and probabilistic implementation concerns. 

Experts may be predisposed in favor of one decision alternative that they perceive the model 

they are assessing will be used to support.  They in turn may unconsciously or consciously orient 

their assessments to support it.  Although there is no cure for such motivational bias it can be 

combated in several ways including breaking down the assessment of uncertainty to a level where 

it would be difficult to be biased; urge A/Fs to document signs of wishful thinking, inappropriate 

optimism, or pessimism; challenge assessments; assure confidentiality; and use a mixture of A/Fs.  

Personal feelings about people or organizations may also cloud the judgment of experts.  Lastly, 

experts often overestimate model uncertainty assessments.  They would rather be wrong by 

predicting results that do not happen than by failing to predict events that occur [Cleaves, 1994]. 

Probabilistic implementation is also a concern in eliciting expert opinion of approximation 

errors.  Experts often will pick a familiar probability distribution (e.g., Normal/Gaussian) to 

represent their belief in approximation errors.  Picking parameters for continuous probability 

distributions that properly estimate the tails of the distributions is extremely difficult because few 

people have had any experience with such events or outcomes or distinguishing among small 

probability values.  In situations when no information is available, experts may assume a uniform 

distribution to assess approximation errors which often underestimates the problem [Oberkampf, 

Helton, & Sentz, 2001].  Finally, one person’s plausible event in assessing model uncertainty is 

another person’s impossibility. 

5.2.2.2.3 Disagreements About an Uncertainty 

Disagreements can arise between informed experts about the representation of a model 

uncertainty.  Disagreement among informed experts occurs often when there is a lack of 

empirical basis for estimating uncertainties and/or when only subjective estimates are possible via 

probability distributions elicited from expert judgments.  Weighted averages involve convolving 

uncertainties based on the importance and/or credibility of the informed experts.  The 

mathematical procedure for convolving uncertainties is described in Appendix A.  Bayesian 

techniques, described in the subsequent section, allow a prior distributions elicited by expert 

opinion to be updated with actual empirical data.  With increased availability of data, Bayesian 
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techniques render the prior distribution increasingly unimportant (see example presented in 

Appendix A) thereby diminishing differences in opinion that may have arisen between experts. 

5.2.2.3 Via Bayesian Techniques 

Bayesian techniques are an extension of expert elicitation that can assess uncertainty in a 

model when some information is available.  It is also common in complex multidisciplinary 

design that no direct experimental data are available for the exact model of interest, but 

experimental data are available for similar models that have been analyzed in the past.  The issue 

then becomes one of the analysts’ judgment concerning the similarities and differences between 

the previously obtained experimental data and the present system of interest.  Another common 

situation arises where a limited amount of data is available but not a satisfactory amount to 

construct a PDF as illustrated earlier.  Both situations are amenable to Bayesian techniques which 

are discussed in Appendix A.  Appendix A also illustrates how Bayesian techniques can be 

implemented in an actual example. 

Bayesian techniques are not without controversy.  Concerns about Bayesian techniques 

mirror those of expert elicitation.  Bayesian techniques are highly influenced by the assumptions 

that went into the existing belief (the prior distribution), certainly for those cases where little new 

data are available to update an existing belief.  Critics of Bayesian techniques are concerned that 

this existing belief can spawn less objective evaluations of results than the traditional frequentist 

approach.  Bayesian techniques address this concern, at least somewhat, in that sufficient data 

renders the prior distribution (existing belief) all but irrelevant.  The prior distribution is “washed 

out” by actual data (the example in Appendix A illustrates this).  Despite these concerns, 

Bayesian techniques take advantage of prior experience in a way that traditional statistical 

techniques do not.  With sufficient scrutiny, Bayesian techniques are a powerful tool at the 

disposal of analysts with prior information and experience available. 

5.2.3 Numerical and Programming Errors 

Model uncertainty also arises from numerical and programming error.  Numerical error can 

arise due to finite precision arithmetic and can be reduced by using higher precision computers 

and software.  Examples include spatial discretization error in finite element and finite difference 

methods; temporal discretization error in time-dependent simulations; and error due to iterative 

convergence of approximation algorithms.  Programming error occurs during development of the 

model due to blunders or mistakes by the programmer.  Although there is no straightforward 

method for estimating programming errors, they can be detected by the person who committed 
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them, resolved by better communication, or discovered by redundant organizational and 

operational procedures and protocols [Oberkampf et al., 1999].  Policies and best practices of 

individual organizations can minimize both numerical and programming errors and are not 

addressed further in this thesis. 

5.3 Phenomenological Uncertainty 

Phenomenological uncertainty is a form of epistemic uncertainty that cannot be quantified at 

present.  The concept of phenomenological uncertainty was discussed in Chapter 2 and alluded to 

under differing names in various fields.  This section begins with a detailed definition of 

phenomenological uncertainty.  Examples of phenomenological uncertainty follow.  The 

proposed method is probabilistically based and relies on knowledge of all states concerning the 

phenomena or systems or interest.  Phenomenological uncertainty represents a challenge to the 

proposed method since all states may not be known.  However, techniques to address 

phenomenological uncertainty are available and conclude the discussion in this section. 

5.3.1 Definition 

Phenomenological uncertainty arises whenever the design technique or form of development 

generates uncertainty about any aspect of the possible behavior of the system under development, 

operation, and extreme conditions.  Some relevant information cannot be known ex ante, not even 

in principle, at the time of making decisions during design.  This is due to humankind’s basic 

knowledge of the universe at the time decisions must be made.  The future cannot be anticipated 

by a reliable probabilistic representation because the future is yet to be created.  The future is to a 

considerable extent unknowable, because surprises may occur, both as intended and as 

unintended consequences of human action.   

The problem is not merely that there is not enough information to reliably attach probabilities 

to a given number of events but that an event which cannot yet be imagined may occur in the 

future.  Phenomenological uncertainty is thus particularly important for novel projects or those 

which attempt to extend the ‘state of the art’.  Often these projects run into design, development, 

or operational problems due to an apparently ‘unimaginable’ phenomenon (so called “unknown 

unknowns”).  As certain phenomena cannot be imagined in the present, it is not possible to 

attribute probabilities to these phenomena.  Associated with this is the fact that in many cases, as 

something that cannot be imagined may occur, it is not even possible to conceive what complete 

information would be [Dequech, 2000].  This aspect of phenomenological uncertainty is often 
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characterized by a poorly understood coupling of diverse physical processes or events that may 

lead to a catastrophic result. 

Phenomenological uncertainty should not be confused with mistakes, oversights, or poor 

effort (e.g., one or more components that an engineer forgets to include in a design).  Individuals 

and organizations should have sufficient self and peer evaluations, procedures, and, if necessary, 

punishments, to minimize these issues. 

5.3.2 Examples 

The field of aerospace engineering is only 50 years old yet the history of aerospace projects is 

replete with examples of how devastating the impact of phenomenological uncertainty can be.   In 

fact the very first spacecraft launched by the United States failed because of phenomenological 

uncertainty.  Explorer 1 was launched on January 31, 1958 and soon after achieving orbit began 

an uncontrolled spin.  The cause was found shortly after to be spacecraft energy dissipation that 

was not imagined.  The failure of the Explorer 1 spacecraft advanced the “state of knowledge” 

about space systems design, albeit at the price of a successful mission. 

Two of the most pernicious failures in the history of the United States space program, Apollo 

1 capsule and the Columbia space shuttle, were the result of phenomenological uncertainty.  

Apollo 1 was destroyed during routine testing at Cape Canaveral on January 27, 1967 when a fire 

broke out inside the capsule killing the three astronauts onboard.  The capsule was pressurized 

with pure oxygen, the oxygen was at a higher pressure (16.7 psi) than atmospheric pressure (14.7 

psi), the inside of the capsule was lined with Velcro, the escape hatch could only open inward, 

emergency evacuation procedures were complicated, and evacuation procedures had yet to be 

fully trained for by the astronauts since this period in testing was viewed as routine and not 

potentially hazardous [NASA, 1967].  On their own each of these characteristics was a potential 

danger yet the risk of a fire and its impact due to any single one of these characteristics was 

estimated by engineers and analysts to be manageable.  However, no one involved in the Apollo 

program was able to predict the result of these characteristics coupled together in the event a fire 

broke out.  Indeed, it was Colonel Frank Borman, one of the Apollo 1 accident investigators and 

future commander of Apollo 8, who described the Apollo 1 tragedy as a “failure of imagination” 

[NASA, 1967]. 

The space shuttle Columbia accident is similar.  Columbia (Space Transportation System 

mission #107) launched from Cape Canaveral on January 16, 2003.  After a 16 day science 

mission in orbit, the shuttle orbiter returned to Earth on February 1, 2003 and disintegrated over 

Texas killing all seven astronauts onboard.  The physical cause of the loss of Columbia and its 
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crew was a breach in the Thermal Protection System (TPS) on the leading edge of the left wing, 

caused by a piece of insulating foam which separated from the external tank 81.7 seconds after 

launch, and struck the wing.  During re-entry this breach in the TPS allowed superheated air to 

penetrate through the leading edge insulation and progressively melt the aluminum structure of 

the left wing, resulting in a weakening of the structure until increasing aerodynamic forces caused 

loss of control, failure of the wing, and breakup of the orbiter [NASA, 2003].  Previous shuttle 

launches had insulating foam strike the TPS while Shuttle managers were cognizant of potential 

TPS damage since it occurs on every flight at varying levels of severity [Paté-Cornell & 

Fischbeck, 1993].  However, insulating foam striking the leading edge was either not imagined or 

not considered credible by the Space Shuttle community. 

Phenomenological uncertainty has certainly impacted a wide variety of other fields as well, 

recently and perhaps best exemplified by the intelligence community.  The National Commission 

on Terrorist Attacks upon the United States (2004) concluded that a “lack of imagination” was 

the biggest intelligence failing prior to the terrorist attacks of September 11, 2001.  Despite a 

progression of increasingly sophisticated and ruthless attacks by individuals and organized groups 

(e.g., 1993 World Trade Center bombing; 1995 Oklahoma City bombing; 1995 Manila plot to 

bomb a dozen airliners over the Pacific; 1995 Tokyo subway attack; 1996 Khobar towers 

bombing; 1998 Nairobi and Dar es Salaam embassy bombings; 2000 attack on the USS Cole), it 

was not clear if a radically new threat was developing.  Indeed, the 9/11 attacks involved two 

disparate concepts the U.S. intelligence community and government had experience with: suicidal 

terrorist attacks and using aircraft as weapons.  The 1983 Beirut Marine barracks bombing, the 

October 2000 attack on the USS Cole, and the dozens of Palestinian suicide bombings before and 

during the 2000 intifada in Israel and the occupied territory demonstrated the former.  Kamikaze 

attacks by the Japanese towards the end of World War II, the 1994 Algerian airline hijacking of a 

French airliner, North American Aerospace Defense Command (NORAD) simulations, and even 

a Tom Clancy novel† demonstrated the latter.  Nonetheless, the coupling of these concepts was 

not seriously considered by the intelligence community as a serious threat to the United States.  

Imagining disparate concepts and issues coming together to yield catastrophic results (in the 

context of vast amounts of information) impact a wide variety of fields beyond aerospace. 

5.3.3 Addressing Phenomenological Uncertainty 

Since it is not currently possible to quantify phenomenological uncertainty, there are 

techniques that may mitigate or reduce it, including increasing the “state of knowledge;” 
                                                      

†Debt of Honor, Putnam Publishing Group, 1994. 
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increased and expanded systems engineering; and robust design.  These techniques have not been 

rigorously pursued or investigated.  Such a task is beyond the scope of this research. 

5.3.3.1 Increasing the “State of Knowledge” 

As a sub-element of epistemic uncertainty, phenomenological uncertainty fundamentally 

deals with a lack of knowledge.  Any effort that can increase the “state of knowledge” can reduce 

phenomenological uncertainty.  Explorer 1, discussed previously, illustrates this.  United States 

Defense Secretary D. Rumsfeld alluded to addressing phenomenological uncertainty at a press 

briefing in February 2002: 

Reports that say something hasn’t happened are always interesting to me, 
because as we know, there are known knowns; there are things we know 
we know.  We also know there are known unknowns; that is to say we 
know there are some things we do not know. But there are also unknown 
unknowns -- the ones we don’t know we don’t know.  And each year we 
discover a few more of these unknown unknowns [DoD, 2002]. 

Increasing the “state of knowledge” can be accomplished in a variety of ways.  Fundamental 

research, experimentation, and testing are perhaps the three most established examples.  In 

particular, in engineering design knowledge is created primarily through analysis and test, which 

are based on models and experiments that represent reality [DeLaurentis, 1998].  This idea is 

illustrated by the efforts of researchers to develop increasingly accurate thermodynamic model 

discussed earlier. 

5.3.3.2 Increased and Expanded Systems Engineering 

System engineering developed in the decades following the Second World War with the 

development of the Polaris missile program and then the Mercury/Gemini/Apollo programs.  

Systems engineering is defined and briefly discussed in Chapter 1.  System engineers are 

responsible for finding out where problems or issues might arise, particularly across interfaces.  

Too often projects are understaffed with system engineers and development problems occur.  

Having a sufficient number of system engineers, particularly several who have sufficient free 

time to stop, take a step back, and look at the entire design instead of continuously going from 

one task to another, may help uncover phenomenological uncertainty.  The role of the systems 

engineer in eliciting expert opinion was discussed previously in this chapter while the potential of 

the systems engineering field evolving based on the proposed method is discussed in Chapter 10.  

Having internal (peer) and external reviews are a proven way to assist system engineers in 

uncovering phenomenological uncertainty.  The type, number, and timing of reviews for 

maximum benefit to a project have been investigated by others (e.g., [Dillon, 1999]). 
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Probabilistic risk analysis (PRA), which was discussed in Chapter 1, is the first logical step in 

assisting engineers, specifically system engineers, in this increased and expanded role.  Too often, 

PRA is viewed, not as part of the design effort, but as something performed by separate engineers 

and analysts on a project, possibly to confirm pre-conceived notions of risk.  However, when 

applied by the system engineers overseeing the design, PRA can be a powerful tool to uncover 

potentially serious flaws and risks in a design.  One of the potential drawbacks of an extensive 

PRA effort is too much imagination.  It is conceivable that engineers without experimental data or 

expert opinion available could divert time and resources conjuring up and addressing impossible 

or highly improbably events. 

Although difficult to find documented examples in engineering projects, this issue of too 

much imagination has been demonstrated in other fields.  The intelligence community provides a 

recent example (again) as they were responsible for too much imagination in the case of weapons 

of mass destruction (WMD) in Iraq.  By imagining what might plausibly be, rather than what it 

could document to be, the intelligence community, in particular the American, British, and Israeli 

intelligence communities, adopted a worst-case approach.  This extreme imagination in part led 

the Bush administration to lead an invasion of Iraq in March 2003.  The fact that no WMD were 

discovered in Iraq in the months following the war has been an enormous embarrassment to these 

organizations [O’Hanlon, 2004].  Nonetheless, participants should be slightly paranoiac during 

design.  Imagination and fear are among the best tools for quantifying uncertainty and preventing 

tragedy [Zetlin, 1988]. 

5.3.3.3 Robust Design 

Robust design is a procedure by which a designer or engineer determines the set of input 

variables that both maximizes one or more output values and minimizes the variability in the 

output values.  Robust design is based on Dr. Genichi Taguchi’s methods of quality engineering 

developed in the 1980s.  Robust design often separates input variables as either control or noise 

variables.  Control variables are those that a designer is able to select precisely.  Noise variables 

are those that a designer cannot select precisely (i.e., they are uncontrollable).  Designs that are 

robust to noise may also be robust to phenomenological uncertainty.  Proven benefits of robust 

design and its application are discussed in [Phadke, 1989].  Robust design is a mathematical 

implementation of basic risk management which attempts to maximize the areas where there is 

control over the outcome while minimizing the areas where there is no control over the outcome 

and the linkage between effect and cause is not apparent. 
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Similarly, safety factors discussed in Chapter 1 could be construed as a crude technique to 

address phenomenological uncertainty when their values are much greater than the union of worst 

possible conditions.  Such safety factors, by performing adequately under highly improbable 

conditions may be robust to phenomenological uncertainty.  However, the issues of safety factors 

(and the design margins examples) discussed in Chapter 1 illustrate that this possible (not certain) 

benefit is small compared to all the negative aspects of these methods. 

5.4 Summary 

This chapter discusses generating models in the proposed method.  Model formulation for 

tradable parameters is first introduced followed by a detailed explanation of model uncertainty.  

A significant portion of this chapter is dedicated to assessing model uncertainty via existing data, 

expert elicitation, and Bayesian techniques.  A definition of phenomenological uncertainty, 

examples, and techniques to address this type of uncertainty in the design of complex 

multidisciplinary systems follows.  With the models generated and their uncertainty quantified, 

the next step in the method involves classifying and addressing other uncertainties.  This is the 

topic of the next chapter. 
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Chapter 6 Classifying and Addressing Uncertainties 
Once models have been created for all tradable parameters, and model uncertainty has been 

quantified for each tradable parameter, the next step in the proposed method is classifying and 

quantifying all the uncertainties (input variables) that enter the models.  A model for a complex 

multidisciplinary system may have dozens, even hundreds, of these variables.  Classifying the 

variables into their uncertainty types is useful in understanding their respective impact on the 

overall design.  Some input variables are certain (i.e., fixed quantities), others uncertain.  For 

those input variables that are uncertain, each is probabilistically modeled.  This chapter describes 

the characteristics of each type of uncertainty an input variable may represent as well as 

techniques to address that type of uncertainty.  Ambiguity and aleatory uncertainty are first 

discussed.  The majority of this chapter is dedicated to discussing and addressing behavioral 

uncertainty.  This chapter builds on the previous chapter since many of the techniques used to 

quantify and address model uncertainty are valid for quantifying and addressing ambiguity, 

aleatory uncertainty, and behavioral uncertainty.  The chapter concludes with a discussion of 

techniques to ascertain which uncertainties are important. 

6.1 Ambiguity and Aleatory Uncertainty 

Ambiguity is a linguistic imprecision introduced in Chapter 2.  Because little precision is 

required for general communication, ambiguity remains an unavoidable aspect of human 

discourse.  Although ambiguity can be reduced by linguistic conventions and careful definitions, 

this is often not done because of the effort required.  Fuzzy logic, described in Chapter 3, has 

been used as a formal method to represent ambiguity.  Traditional probabilistic techniques such 

as generating a probability density function (PDF) described in Chapter 5 are also valid and are 

assumed in the proposed method to allow combination (convolution) with other probabilistic 

representations of uncertainties.  Probabilistic techniques also appear more amenable than fuzzy 

logic to successful optimization of designs (a critical aspect of preliminary design) [Maglaras, 

1995].  Ambiguity in a quantity or parameter is characterized by an inability to empirically 

measure it.  Ambiguity should not be confused with design uncertainty that is described later in 

the chapter.  Design uncertainty is fuzzy due to unresolved alternatives, not due to linguistic 

concerns. 

Aleatory uncertainty is inherent variation associated with a physical system or environment 

under consideration.  Aleatory uncertainties can typically be singled out from other uncertainties 

by their representation as distributed quantities that can take on values in an established or known 
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range, but for which the exact value will vary by chance from unit to unit or time to time.  

Examples include the strength or exact dimension of a component where the manufacturing 

processes are well understood but variable, and the parts have yet to be produced.  Aleatory 

uncertainty can be represented by a probability density function (PDF) that may be generated via 

existing data, expert elicitation, or Bayesian techniques.  All three procedures are described in 

Chapter 5.  For example, the measured density of a fictitious lot of fifty different (independent) 

6061-T6 aluminum samples are provided in Table 6.1. 

Table 6.1   Possible measured density data of 6061-T6 aluminum 
2709.8 2709.8 2707.3 2709.4 2705.3 2710.9 2711.1 2713.1 2712.1 2706.6 
2711.5 2714.6 2710.1 2703.8 2709.8 2708.7 2712.2 2708.8 2715.9 2709.4 
2708.2 2708.2 2708.1 2710.4 2708.0 2710.2 2716.3 2705.9 2711.5 2713.6 
2709.6 2706.0 2711.6 2714.8 2706.9 2708.9 2705.9 2710.9 2715.6 2706.7 
2708.7 2711.4 2711.7 2713.1 2706.3 2708.6 2706.9 2714.7 2709 2711.9 

These values can be converted to a PDF as shown by the solid line in Fig. 6.1. 
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Fig. 6.1   6061-T6 aluminum density uncertainty representation. 

As discussed in Chapter 5, the preferred option among existing data, expert elicitation, and 

Bayesian techniques is obtaining and using existing data since engineers, the analyst/facilitators 

(A/Fs), the decision maker, and/or the stake holder can make their own interpretations of the 



85 

data.*  These individuals may wish to fit an existing distribution to the data (procedure described 

in Appendix A) to simplify subsequent analyses instead of using a complicated custom PDF.  The 

trade-off with such a procedure is the introduction of approximation errors.  This is shown by the 

dashed line in Fig. 6.1 as a normal distribution that is fit to the data.  In this case the distribution 

fits the data well by using the mean (2710.0 kg/m3) and standard deviation of the data (2.959 

kg/m3) as the mean and standard deviation of the fitted distribution: N(2710,2.959).  Furthermore, 

the one-way analysis of variance (ANOVA), Kruskal-Wallis nonparametric one-way ANOVA, 

and Friedman’s nonparametric two-way ANOVA p-values are 0.9947, 0.8903, and 0.8769, 

respectively (i.e., all significantly greater than 0.05). 

However, fitting a distribution to the data can introduce significant errors if the underlying 

physics are not well understood.  In simulation-based design, assuming a normal distribution can 

cause problems even if such a distribution fits the data well.  For example, in quantifying the 

uncertainty in the emissivity of a material a decision maker may be tempted to use a normal 

distribution.  However, a normal distribution for a low-emissivity material (e.g., a highly polished 

metal) with high variability would yield probabilities for negative emissivity values.  Since 

emissivities can range only from zero to one, a negative emissivity value could yield catastrophic 

results when used by a model to calculate, for example, heat transfer.  Hence, despite normal 

(Gaussian) distributions being the most common distributions that occur in nature, quetelismus† 

must be avoided.  In the emissivity example, a lognormal distribution would probably be most 

appropriate since a lognormal distribution is valid only for values greater than zero and allows 

significant variability.  Many other probability distributions are available to represent 

uncertainties as well.  A uniform distribution may be used to model variables whose value is 

known to be within a range but not about any one particular value.  An exponential distribution is 

often used in lifetime applications.  A Weibull distribution is an example of one of the many 

distributions that can be used in reliability models [Evans, Hastings, & Peacock, 2000].  Several 

of these distributions are described in Appendix A. 

Aleatory uncertainty can also be quantified via expert elicitation or using Bayesian 

techniques.  The latter is appealing for many aleatory uncertainties as expert elicitation can be 

updated with data as data becomes available (e.g., expert elicitation of uncertainty in a material 

                                                      
*“Get the data” – Life lesson #6 of Robert McNamara, former U.S. Secretary of Defense (1961-1968) 

from the Fog of War (Sony Pictures Classics) 
†Quetelismus is a word coined by the mathematician and economist Francis Ysidro Edgeworth to 

describe the growing popularity around the turn of the 20th century at discovering normal distributions in 
places where they did not exist or that failed to meet the conditions that identify genuine normal 
distributions 
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density updated with data such as that shown in Table 6.1).  It should be noted that a decision 

maker has little control over aleatory uncertainty in the design of complex systems, far less than 

other uncertainties.  Limited options, such as quality control, exist to reduce (but not eliminate) 

aleatory uncertainty.  As discussed in Chapter 2, aleatory uncertainty is often called irreducible 

uncertainty.  In the extreme, a PDF for a given aleatory uncertainty with sufficient data and 

quality control likely represents measurement error in the procedure to measure that parameter. 

6.2 Behavioral Uncertainty 

The uncertainties discussed thus far (model, phenomenological, ambiguity, and aleatory) are 

addressed via established techniques yet limited options exist to reduce these uncertainties 

significantly.  In terms of the design of complex multidisciplinary systems, these uncertainties 

might imply a preordained solution.  Behavioral uncertainty is uncertainty in how individuals or 

organizations act and is quite the opposite of the other uncertainties discussed thus far.  The 

techniques to handle behavioral uncertainty are not well established and yet, by definition, 

individual choices and action may result in significant changes in (and possibly reduction of) 

uncertainty.  Behavioral uncertainty represents at its fundamental level “free will” on the part of 

the participants in a design.  Behavioral uncertainty arises from four sources: design uncertainty, 

requirement uncertainty, volitional uncertainty, and human errors.  Each is described in this 

section. 

6.2.1 Design Uncertainty 

Design uncertainty is a choice among alternatives over which an individual or individuals 

exercises direct control but has not yet decided upon.  This choice may be selecting from among a 

set of discrete alternatives or a single value within a continuous range.  Design uncertainty is 

fuzzy due to unresolved alternatives.  Consider an engineer who begins designing a fluid system.  

The engineer has several discrete choices for the tubing used to route the fluid through the 

system.  These choices along with his or her judgment of that tubing being used in the actual 

design are shown in Table 6.2. 

Table 6.2   Possible component choices for tubing 

ID Name Class 
Diameter, 
outer (in) 

Thickness 
(in) 

Probability of 
being used 

1 SS-T6-S-035-20 3/8" 0.035" wall 0.375 0.035 0.15 
2 SS-T8-S-035-20 1/2" 0.035" wall 0.5 0.035 0.25 
3 SS-T10-S-065-20 5/8" 0.065" wall 0.625 0.065 0.40 
4 SS-T12-S-065-20 3/4" 0.065" wall 0.75 0.065 0.20 
5 SS-T16-S-083-20 1" 0.083" wall 1 0.083 0 
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Within a formal method to determine margins, the design uncertainty listed in Table 6.2 can 

be represented as a discrete custom probability distribution with two column array of values: 

Cd(A).  The first column of this array is the choice (an integer) while the second column is the 

probability of that choice being selected (a value between 0 and 1, inclusive): 
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The corresponding discrete probability density function (PDF) for this design uncertainty is 

shown in Fig. 6.2. 
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Fig. 6.2   PDF of component choices for tubing. 

Hence, the probability values in Table 6.2 and corresponding PDF in Fig. 6.2 represent the 

subjective estimate of the engineer about what they will ultimately choose.  Hence, quantifying 

design uncertainty is almost exclusively expert elicitation.  Bayesian techniques would be the 

other possibility if expert elicitation could be supplemented with data of past choices the engineer 

has made in similar designs.  The PDF in Fig. 6.2 is a unique PDF for this engineer for this 

choice.  The choice cannot be incrementally improved or worsened.  The difference between 

selections for such a discrete example results in step functions for possible parameters of interest 

(e.g., tubing diameter, total mass of tubing).  A further difficulty in representing design 

uncertainty via the PDF shown in Fig. 6.2 is the fact that the order of the different tubing types 



88 

(components) is completely arbitrary, at least from the perspective of a mathematical algorithm, 

as the ID values represent quantities not represented in the PDF itself.  In other words, the order 

of these components could be switched to any other order, a new component could be added 

somewhere in the database, and a new and different PDF could be constructed that would be 

identical to the PDF in Fig. 6.2 provided the probabilities and ID remained matched with their 

respective choices.  More generally, a database for a choice among components may have two, 

ten, or a hundred options.  For a database with ten values in it, two to all ten may have a positive 

probability of being chosen.  These properties on their own are not significant but do become 

problematic when combining with other uncertainties (a topic that is discussed in Chapter 7). 

Design uncertainty is progressively reduced through decisions until, ultimately, all choices 

have been implemented and the final design is specified precisely.  These decisions represent the 

design process itself and the judgment of engineers and designers represents the most 

indispensable tool in altering the design.  After uncertainties have been propagated and mitigated, 

optimization is typically the next step an engineer pursues to improve tradable and other 

parameters in his or her complex multidisciplinary system design.  Design uncertainty is thus 

intertwined with optimization.  Optimization techniques that might be combined with the 

proposed method for propagating and mitigating uncertainty in design of complex 

multidisciplinary systems are discussed in Chapter 10. 

6.2.2 Requirement Uncertainty 

Requirement uncertainty includes parameters of interest to and determined by the stake 

holder, independent of the engineer or designer.  An example may be the desired lifetime of a 

satellite that is explicitly specified by the customer.  Although the customer may specify a 

lifetime value of, for example, 5 years early in the design, the customer is often not sure what 

value is required at this time.  This 5-year requirement may change to 7 years a few months into 

the design effort.  Such an occurrence is referred to as “requirements creep” in many engineering 

fields.  Requirement uncertainty is analogous to design uncertainty in that it is fuzzy due to 

unresolved alternatives.  Ambiguity (linguistic imprecision) in specifying the actual requirement 

can be mathematically combined with requirement uncertainty (discussed in Chapter 7).  

Otherwise, ambiguity in the requirements can be reduced by linguistic conventions and careful 

definitions.  Uncertainty in requirements can be the most devastating uncertainty in development 

because it overrides everything else in the design process.  Walton (2002) noted that engineers 

and decision makers at three of the four major aerospace organizations he interviewed believed 

that requirements instability and uncertainty are the largest source of uncertainty in the design of 
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space systems.  Research by Scott (1998) and McNutt (1999) seem to corroborate the importance 

and potential impact of requirement uncertainty in a variety of engineering application areas. 

Political uncertainties are a form of requirements uncertainty.  In reference to the Polaris fleet 

ballistic missile program of the 1950s, Sapolsky (1972) noted 

The greatest uncertainty in the project becomes the political uncertainty 
over its own future.  To both the observer and participant, the research 
and development issue looks inefficient; there are likely to be cost 
overruns because of underbidding, schedule delays because of irregular 
funding, and inadequate technical performance because of a failure to 
gain a concentrated effort. 

Weigel (2002) dedicated her doctoral research into investigating policy changes and uncertainties 

in space systems conceptual design and provides qualitative and quantitative methods to address 

this type of uncertainty.  As with design uncertainty, quantifying requirement uncertainty is 

almost exclusively accomplished via expert elicitation.  Expert elicitation may be supplemented 

with data (if available) of the stake holder’s past record in changing requirements for similar 

designs via Bayesian techniques.  Expert elicitation and Bayesian techniques are described in 

Chapter 5. 

It should be noted that the distinction between a design uncertainty and a requirement 

uncertainty is not universal and not always clear.  That is to say, for a given complex 

multidisciplinary system, a certain variable may be deemed a requirement; for another complex 

multidisciplinary system that variable may be deemed a design variable.  A spacecraft with a 

particular subsystem illustrates this concept.  A spacecraft may have requirements on the orbit to 

achieve but leave the orbit insertion design to the mission designer making the change in velocity 

of the spacecraft a design variable.  The change in velocity of the spacecraft, however, would 

likely place a requirement on the propulsion system. 

6.2.3 Volitional Uncertainty 

Volitional uncertainty is uncertainty about what the subject him/herself will decide.  Whereas 

design and requirement uncertainty can be quantified by participants in the proposed method, 

volitional uncertainty cannot.  Due to human and psychological elements that did not appear 

amenable to mathematical analysis, volitional uncertainty was not rigorously considered in 

applications until the mid-twentieth century.  von Neumann and Morgenstern (1953) dismiss as 

“utterly mistaken” the view that the human and psychological elements stand in the way of 

mathematical analysis.  Recalling the lack of mathematical treatment in physics before the 

sixteenth century or in chemistry or biology before the eighteenth century, they claim that the 

outlook for mathematical applications in those fields “at these early periods can hardly have been 
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better than that in economics – mutatis mutandis – at present.”  This seminal work in addressing 

volitional uncertainty by von Neumann and Morgenstern spawned game theory that was 

discussed in Chapter 3.  Elements of game theory, although originally developed for the field of 

economics, are valid in the design of complex multidisciplinary systems. 

Often the participants in a design (e.g., decision maker, stake holder) may have differing 

goals and objectives.  This is especially true in the design of systems built by more than one 

organization.  A complex multidisciplinary system typically has a lead organization (the “prime”) 

that is responsible for integration.  This prime may have several “subcontractors” responsible for 

providing full assemblies, components, analysis, and/or labor.  The relationship between the 

prime and contractors may be similar to that between the stake holder and the prime.  The prime 

has the goal of delivering the complex multidisciplinary system based on the requirements 

specified by the stake holder at an agreed upon price.  The subcontractors have a similar goal of 

providing their product (i.e., assemblies, components, analysis) based on the requirements of the 

prime at an agreed upon price.  In both cases, the primary goal of the prime or the subcontractors 

may instead by profit maximization or one or more ulterior (and hidden) motives. 

These possible ulterior motives have resulted in inventive and complicated risk and cost 

sharing agreements between stake holders and primes and primes and subcontractors [Healy et 

al., 2004].  Fixed-price and profit-sharing contracts represent two ends of the cost sharing 

agreement spectrum.  Under a fixed-price contract, subcontractors often exert a sub-optimal effort 

level because a lack of incentive exists to increase their effort.  Under a profit-sharing contract, 

subcontractors may misrepresent their ability and exert sub-optimal effort unless they share a 

certain amount of the profit. 

The stake holder and prime (or prime and subcontractors) will thus likely have different 

utility functions as described in Chapter 4.  Such behavior may be what is seen in Fig. 6.3 which 

plots the final (actual) cost margin value as a function of the original cost margin estimate for ten 

recent space systems in which the Jet Propulsion Laboratory (JPL) was the prime. 
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Fig. 6.3   Actual reserves compared to predicted reserves for several spacecraft [Rosenberg, 

2004]‡. 

Fig. 6.3 indicates that the margins for cost were exceeded for all ten missions (all ten 

missions are above the dashed line).  The lack of a formal method to propagate and mitigate 

uncertainty (as discussed in Chapter 1) certainly contributed to the poor uncertainty cost 

estimates.  However, the fact that not a single spacecraft is below the dashed line indicates that 

gaming by the subcontractors may have occurred in the development of the space systems listed.  

Game theory was developed in part to address this problem of strategic sharing of information to 

maximize personal gain.  The specific portion of game theory which can model this stake 

holder/prime or prime/subcontractor relationship is mechanism design, specifically a principal 

agent problem.  This game theory context of mechanism design is different from and should not 

be confused with the mechanical engineering mechanism design definition (computer aided 

design and manufacturing of components and assemblies). 

Using the prime/subcontractor relationship as the example in the subsequent discussion, the 

“principal” in the game would be the prime and the “agent” would be the subcontractor.  If 

multiple subcontractors are involved, the game either becomes several independent single-agent 

models or one multiple-agent model if collusion (coalitions) among subcontractors could occur.  
                                                      

‡SIRTF = Space Infrared Telescope Facility; DS1 = Deep Space 1; MER = Mars Exploration Rover; 
MRO = Mars Reconnaissance Orbiter 
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This latter case is unlikely in most developed nations where the punishments for such behavior 

outweighs the possible benefits and is not considered.  Utility theory underlies game theory and 

all of the issues and concerns with utility theory discussed in Chapter 3 apply to mechanism 

design problems. 

Mechanism design transforms a situation where a principal is seemingly at the mercy of a 

clever agent to one in which the agent has essentially no control over the outcome.  In mechanism 

design problems a principal would like to condition his or her own actions on the private 

information of agents.  For example, the agreement between a prime and a subcontractor on the 

cost of the services that are being provided by the subcontractor would be a function of private 

information only the subcontractor has.  The principal could simply ask the agent for such 

information but they will not report it truthfully unless the principal gives them an incentive to do 

so, either by monetary payments or with some other instrument that the principal controls.  Since 

providing these incentives is costly, the principal faces a tradeoff that often results in an 

inefficient allocation of his or her resources [Fudenberg & Tirole, 1991].  The distinguishing 

characteristic of the mechanism-design approach is that the principal is assumed to choose the 

mechanism that maximizes his or her expected utility, as opposed to using a particular 

mechanism for historical, heuristic, or institutional reasons. 

Mechanism design is typically studied as a three-step game of incomplete information, where 

the agents’ types (e.g., willingness to pay) are private information.  The game begins when a 

principal designs a “mechanism” (contract or incentive scheme).  In the second step an agent then 

either accepts or rejects the mechanism.  Finally, agents who accept the mechanism play the game 

specified by the mechanism.  Applications of mechanism design include monopolistic price 

discrimination, optimal taxation, and the design of auctions [Fudenberg & Tirole, 1991].  

Mechanism design was recently applied to address informational and motivational asymmetries 

in space systems design [Guikema, 2003] that could be incorporated into the proposed method 

described in this thesis.  Guikema (2003) is primarily concerned with informational asymmetries 

that arise when certain engineers working on a subsystem possess more expertise than other team 

members and motivational asymmetries that arise if different engineers are seeking different 

things than the project manager that is supervising them.  Guikema (2003) provides a formal 

method that relies heavily on utility theory and probabilistic risk analysis (PRA) that could be 

modified to model the relationship between a prime and a subcontractor (or a stake holder and a 

prime).  For example, the method developed by Guikema (2003) could model the situation where 

a subcontractor provides a design that makes it appear more difficult for the subcontractor to 

fulfill their agreement with the prime than it truly is.  This behavior may persuade the prime to 
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provide the subcontractor a more lucrative agreement to mitigate the perceived risk.  The opposite 

case is also valid and could be modeled: a subcontractor provides a design that makes it seem 

easier to fulfill their agreement with the prime than it truly is.  This behavior may sway the prime 

to favor this particular subcontractor over others that have bid on the agreement. 

Areas of Guikema (2003) may require further extension in applying to a prime/subcontractor 

situation in the design of a complex multidisciplinary system.  For example, Guikema (2003) 

assumes that all participants in the design process are risk neutral with respect to monetary 

payoffs.  This is a pragmatic assumption since the problem becomes much more complex without 

risk neutrality.  Development of compensation plans for risk averse and risk seeking members is 

an active area of research; satisfactory approaches applicable to engineering design have yet to be 

found.  Although engineers are likely more risk-averse than the program manager in many 

practical problems, no research into the risk behavior of primes and subcontractors has been 

discovered.  Lastly, the method outlined in Guikema (2003) does not address phenomenological 

uncertainty which, as discussed in Chapter 5, remains an enormous challenge in the design of 

complex multidisciplinary systems. 

6.2.4 Human Errors 

Similar to the programming errors discussed in Chapter 5, human errors are difficult to 

estimate.  However, facilitative measures and control measures have proved successful in 

reducing human errors.  Facilitative measures might include education, a good work environment, 

a reduction in task complexity, and improved personnel selection.  Control measures might 

include self-checking, external checking, inspections, and legal sanctions [Melchers, 1999].  

Human errors are not discussed further in this thesis. 

6.3 Importance of Uncertainty 

This chapter and the previous chapter indicate that quantifying model uncertainty, ambiguity, 

aleatory uncertainty, and behavioral uncertainty can be a time consuming and expensive process.  

If a probability density function (PDF), or data that can readily create a PDF, is available or easy 

to create for a given uncertainty, then it should be used.  Organizations that keep a detailed 

database of uncertainties they have quantified in the past for previous projects could assist with 

this.  If uncertainties encountered by the current project are similar or identical to those 

encountered by previous projects, detailed databases of uncertainties could help speed up this 

quantification process or allow participants to expend more effort on investigating and 

quantifying new and specific uncertainties to the current project.  The effort expended in 
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quantifying uncertainties should in theory be matched to the impact these uncertainties have on 

the tradable parameters.  Unfortunately, it is not apparent a priori which uncertainties have a 

significant influence on the tradable parameters and which do not.  Identifying the significant 

uncertainties is part art and part science, much like other aspects of preliminary design.  The part-

science aspect is a sensitivity analysis.  Identifying which uncertainties are significant is a more 

important charge than identifying all uncertainties involved as the proposed method might 

become intractable to implement in practice when dozens or hundreds of uncertainties are 

involved.  Conversely, a sensitivity analysis also helps in finding which uncertainties have little 

or no impact thereby reducing disagreements among participants that fixate on a particular 

uncertainty that turns out to have a minimal impact on the design. 

6.3.1 Quantitative Sensitivity Analysis 

A quantitative sensitivity analysis is a process by which one or more input variables are 

varied and the effect on the output is observed.  These input variable uncertainties are typically 

set to a “low” and then a “high” value in two subsequent analyses.  Meanwhile, all other input 

variables are held at their “nominal” values.  Hence, with the exception of the one or more input 

variables being varied, a sensitivity analysis is a deterministic analysis represented by: 

 ( )θGy =  (6.2) 

A sensitivity analysis requires “calls” to the transformation (response) function, G, which 

may require significant expense in time and resources.  In complex multidisciplinary systems 

with dozens or hundreds of uncertainties, the combinatorial explosion of possible sensitivity 

scenarios (e.g., one variable “high,” another “low,” and so on) becomes unmanageable.  

Nonetheless, a first-order or second-order sensitivity analysis where one or two input variables 

are varied, respectively, is often valuable information in preliminary design even if higher-order 

sensitivity analyses are not feasible due to time or budgetary constraints.  Furthermore, a 

sensitivity analysis is especially important in nonlinear models where the results may be sensitive 

to a given input variable only when other input variables take on certain values and complex 

interactions arise [Frey, 1992]. 

6.3.2 Qualitative Sensitivity Analysis 

A qualitative sensitivity analysis can be performed via expert elicitation if the response 

function is not available.  This can be accomplished in two steps.  In the first step, experts 

qualitatively estimate the likelihood (e.g., “very high,” “high,” “moderate,” “low,” “very low”) 

that an input variable will deviate significantly from its nominal deterministic value.  The second 
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step involves estimating the consequence of such a deviation to the tradable parameter(s) of 

interest (e.g., “negligible,” “minor,” “moderate,” “substantial,” “severe”).  With likelihoods and 

consequences estimated, a grid such as that shown in Table 6.3 could be used as a guide in 

assessing uncertainty importance.  Table 6.3 is adapted from the risk analysis field and is similar 

to the uncertainty classification for systems engineering (INCOSE) described in Chapter 2. 

Table 6.3   Consequence vs. likelihood table; adapted from Conrow (2000) 
   Consequence   
Likelihood of 
Significant 
Deviation Negligible Minor Moderate Substantial Severe 
Very high Low-Medium Medium Medium-High High High 
High Low Low-Medium Medium Medium-High High 
Moderate Low Low-Medium Medium Medium Medium-High 
Low Low Low Low-Medium Low-Medium Medium 
Very low Low Low Low Low Low-Medium 

An uncertainty with a “very high” likelihood of deviating significantly from its deterministic 

value might be represented by a distribution with significant tails, a high standard deviation, or an 

unusual shape, one that is perhaps significantly skewed.  Often, such qualitative descriptions of 

uncertainties are known by engineers and managers early in the design.  Unfortunately, many are 

not which, along with difficulty and unreliability in assessing the consequence of these 

uncertainties on tradable parameter(s), limits the usefulness of this approach in designing and 

developing a complex multidisciplinary system.  At best, a qualitative sensitivity analysis could 

prioritize uncertainties to investigate further or indicate which uncertainties should be reduced 

outright with effort.  It should be noted that a quantitative and qualitative sensitivity analysis 

provide no insight into the likelihood of obtaining the tradable parameter or consequence, 

respectively.  Hence, although a sensitivity analysis is useful in determining what possibilities 

may arise, it is difficult for a decision maker to judge whether such a result truly matters. 

6.4 Summary 

This chapter discusses ambiguity, aleatory uncertainty, and behavioral uncertainty.  

Behavioral uncertainty is subdivided into design uncertainty, requirement uncertainty, volitional 

uncertainty, and human errors.  Quantitative and qualitative methods to address these various 

uncertainty types are provided.  Much of this chapter discusses volitional uncertainty and how 

game theory, in particular a principal agent mechanism design formulation, can assess uncertainty 

in how individuals act.  The work done by Guikema (2003) addresses this type of uncertainty and 

is amenable to being integrated into the proposed method for propagating and mitigating 

uncertainty in the design of complex multidisciplinary systems.  This chapter also discusses 
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methods to assess the importance of uncertainties.  Quantifying the final remaining uncertainty, 

interaction, is the topic of the next chapter. 
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Chapter 7 Interaction Uncertainty and Simulation 
With all uncertainties in the models and input variables characterized, the next step in the 

proposed method is propagating these uncertainties through the models to estimate the 

uncertainty in the tradable parameters.  Since a model may have uncertainties that interact and 

these uncertainties may be represented by discrete or continuous distributions, analytic techniques 

to propagate these uncertainties are not possible except in trivial models.  Simulation techniques 

offer a feasible alternative regardless of model complexity.  A variety of simulation techniques to 

propagate uncertainties through a model are available.  This chapter begins by discussing three 

well-established simulation techniques: Monte Carlo simulation, Latin hypercube sampling, and 

descriptive sampling.  These techniques estimate uncertainty in the tradable parameters by 

addressing interaction among input variable uncertainties.  Two additional techniques, the mean 

value method and subset simulation, are modified to handle unique characteristics involved in the 

design of complex multidisciplinary systems.  The chapter continues with an overview of 

simulation techniques that were considered but eventually ruled out for use in the proposed 

method.  The chapter concludes with a discussion of methods to determine the appropriate 

number of repetitions required in applying simulation techniques. 

7.1 Existing Simulation Techniques 

Simulation techniques generate random realizations of the uncertain input variables, θ, in the 

problem according to their specified probability distributions.  The set of a random realization of 

these variables is called a “sample.”  Consider again the function G first introduced in Chapter 1 

representing the tradable parameter model of interest.  A sample is sent to this function G to 

evaluate a tradable parameter value y (or a set of tradable parameter values y if the model 

generates more than one): 

 ( )θGy =  (7.1) 

Simulation techniques repeat this basic process many times although each simulation 

technique’s implementation is somewhat different.  Regardless of the actual simulation technique 

used, a probability density function (PDF) of the tradable parameters can be generated if 

sufficient samples have been generated and subsequently evaluated.  With a PDF available, a 

cumulative distribution function (CDF) is easily generated.  This procedure is discussed in the 

following chapter and Appendix A.  Hence, simulation replaces “experiments” as the method of 

generating data.  Simulation techniques are powerful since they allow the individuals involved in 
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the proposed method to concentrate on estimating the uncertainties in θ while allowing computers 

to perform the tedious and mathematically challenging calculations. 

The following section describes three well-established simulation techniques that can be used 

to evaluate interaction uncertainty and propagate all uncertainties in a model to estimate the 

uncertainty in the tradable parameters.  The most general of these is the computationally intensive 

Monte Carlo simulation (MCS) method.  Latin hypercube sampling (LHS) method is a stratified 

sampling technique which can often provide comparable accuracy to MCS yet requires 

significantly less computational expense.  Finally, descriptive sampling is a similar, somewhat 

simpler technique to LHS.  All three methods obtain estimates of the uncertainty in tradable 

parameters in problems which are too complicated to solve analytically.   

7.1.1 Monte Carlo 

Monte Carlo simulation (MCS) solves a problem by generating suitable random numbers and 

observing the fraction of the numbers obeying some property or properties.  Stanislaw Ulam 

became the first mathematician to dignify this approach in 1946 with the name in honor of a 

relative having a propensity to gamble [Hoffman, 1998].  N. Metropolis, E. Fermi, and J. von 

Neumann also made important contributions to the development of MCS [Hammersley & 

Handscomb, 1964].  MCS is the most established sampling technique and the benchmark for 

comparison by other techniques. 

MCS involves two steps that were described earlier and are detailed here.  First, random 

realizations of the uncertain input variables, θ, are generated according to their specified 

probability distributions.  Assuming there are n input variables, n random variables are thus 

generated.  In the second step the tradable parameters y are evaluated for this unique sample 

(vector of uncertainties) and recorded.  This procedure is repeated N times yielding N values of 

each tradable parameter.  These N values for each tradable parameter can be transformed to a 

PDF or CDF where the mean and other statistical characteristics of interest can be calculated.  

Hence, for N MCS repetitions, a set of N vectors of input variables (each such sample is n-

dimensional) and a set of N vectors of tradable parameters (each such vector is t-dimensional) are 

formed. 

MCS remains the most popular and implemented simulation technique due to its many 

benefits.  Although probabilistic overall, the basic MCS process is deterministic for each 

repetition evaluation.  This allows MCS to easy wrap itself around existing deterministic models 

and codes.  MCS can also represent input variables regardless of whether they are discrete or 

continuous.  In particular, MCS is able to handle discrete choices among alternatives (e.g., design 
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uncertainty) discussed in Chapter 6 which some sampling techniques (e.g., mean value method) 

have difficulty with.  Numerical programs and packages can accomplish the random sample 

generation step for virtually all probabilistic distributions quickly and efficiently.  Furthermore, 

MCS is independent (essentially) of the quantity and type of θ.  That is, if dozens, hundreds, or 

even thousands of input variables are required to determine the tradable parameters the evaluation 

time is dependent only on the number of MCS repetitions N.  Another benefit of MCS occurs if G 

calculates more than one tradable parameter as MCS determines all tradable parameter values 

concurrently from the same random realizations of θ.  Arguably the greatest benefit of MCS is 

that it is the most accurate sampling technique.  MCS converges to the actual distribution as the 

number of repetitions tends to infinity due to the Strong Law of Large numbers. 

Unfortunately, MCS is not computationally efficient for estimating low probability events 

(i.e., the tails of a distribution) since the number of repetitions required to achieve a given 

accuracy is inversely proportional to the probability when the probability is small.  Essentially, 

estimating the tails of the distribution requires information from rare samples and on average it 

requires many repetitions (often in the thousands) before the tails are defined.  MCS can be 

computationally prohibitive if G is computationally expensive to evaluate which is often the case 

in complex systems analysis [DeLaurentis & Mavris, 2000].  Using parallel high-performance 

computer systems is one way to alleviate this issue.  However, such systems were not available 

when MCS was first applied and research into alternate and more efficient sampling methods 

were undertaken.  Virtually all of these alternate sampling techniques introduce error which is the 

trade-off for reduced computation time. 

7.1.2 Latin Hypercube Sampling 

Latin hypercube sampling (LHS), also known as stratified sampling, is a technique developed 

by McKay, Conover, and Beckman (1979) where the random variable distributions are divided 

into equal probability intervals.*  A probability is randomly selected from within each interval for 

each basic event. Generally, LHS will require fewer samples than MCS for similar accuracy, 

typically on the order of ten times less [Hammersley & Handscomb, 1964].  However, due to the 

stratification method LHS may take longer to generate values than MCS.  In LHS, the range R of 

probable values for each uncertain input parameter is divided into s segments of equal probability 

(Ri, i = 1, 2, …, s).  That is, 

  (7.2) jkRRRR jk
s
i ≠∅=∩∪= = ,,1

                                                      
*Elements of Latin hypercube sampling have been around since the turn of the 20th century, dating 

back to its origins in agricultural research 
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Thus, the whole parameter space, consisting of n input variables, is partitioned into sn cells, 

each having equal probability.  Consider the case of 3 input variables and 4 segments, the 

parameter space is divided into 4x4x4 cells.  For each variable, one value from each segment is 

selected at random with respect to that variable’s PDF in the interval.  These s values are then 

randomly paired with equivalent values from segments of the other variables.  These s n-tuplets 

are analogous to the N n-dimensional input vectors for MCS.  Mathematically, this process is 

achieved by taking the inverse cumulative distribution function (CDF) value of all n input 

variables s times [Saliby, 1997]: 
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LHS concludes when a random set of these θ i values for each variable (without replacement) 

is sent to G and y is recorded.  This process is repeated s times until all segments have been 

accounted for.  Hence, s·n inverse CDF calculations, s permutation steps, and s calls to G are 

required by LHS to yield s values of y.  The advantage of this approach is that samples (random 

realizations of input variables) are generated from the entire range of possible values, thus giving 

insight into the tails of the probability distributions.  LHS is generally more precise for producing 

random samples than conventional MCS, because the full range of the distribution is sampled 

more evenly and consistently.  Thus, with LHS, a smaller number of trials achieves the same 

accuracy as a larger number of MCS repetitions would.  As with MCS, once θ is set, each of the s 

LHS calls to G is “deterministic” allowing LHS to easily wrap around existing models and codes.  

The drawback of this method is the extra effort required to generate the samples and the 

additional memory required to hold the full sample for each assumption while the simulation 

runs.  For distributions with tails that tend to infinity, the inverse CDF sample generation step can 

be computationally expensive itself. 

7.1.3 Descriptive Sampling 

Descriptive sampling (DS) is a simpler version of LHS which determines input variable 

values at the midpoints of the segments instead of at random locations within a segment: 
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The remainder of DS is identical to LHS.  The benefits, drawbacks, and accuracy of DS are 

comparable to those of LHS.  DS may be slightly quicker in the inverse CDF sample generation 

step depending on the computational implementation [Saliby, 1997].   
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7.2 Modified Simulation Techniques 

The modified mean value method is a simple analytical-based method that can provide 

satisfactory results with only a limited number of simulations.  Subset simulation via Markov 

chain Monte Carlo is a complicated but computationally efficient method of accurately 

determining values at the tails of a distribution.  Both methods were modified from their original 

implementation primarily to account for the possibility of discrete choices among alternatives that 

was discussed in Chapter 6.  Since such a choice cannot be incrementally improved it is a 

challenge coming up with methods to perturb such an input uncertainty that could then be used in 

determining the uncertainty in the tradable parameters.  Both modified simulation techniques are 

discussed in this section. 

7.2.1 Mean Value Method 

The mean value method (MVM) is an approximate analytical technique that can often 

provide a good estimate of the response function y (tradable parameter) with relatively few 

samples compared to MCS.  MVM uses the first order terms from a Taylor series expansion of a 

given y at the mean values.  For n random variables, MVM is defined by: 
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As discussed in Chapter 1, y, yk in Eq. (7.5), is often calculated via a nonlinear, highly 

complicated set of equations whose evaluation is a computationally expensive.  It is unlikely that 

the partial derivates in Eq. (7.5) can be calculated analytically.  However, these derivatives can be 

calculated numerically by performing perturbations about the mean values.  A forward, 

backward, or centered-finite difference can be used to calculate these partial derivatives.  A 

forward or backward-finite difference method requires one function evaluation per random 

variable: 
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A centered-finite difference method requires two function evaluations per random variable: 
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Hence, MVM using a forward, backward, and centered-finite difference method to calculate the 

partial derivatives in Eq. (7.5) require a total of n+1, n+1, and 2n+1 function evaluations, 

respectively.  The additional function evaluation beyond the n or 2n is from determining the mean 

value, the first term on the right hand side of Eq. (7.5). 

MVM as implemented with the method outlined in this thesis is adapted slightly from MVM 

described by Eq. (7.5).  Equation (7.5) is re-cast in its vector form: 
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The given tradable parameter yk is first evaluated deterministically via a single function 

evaluation.  This result is a scalar (ydet) which is replicated N times to create an N by 1 column 

vector, the first vector term on the right-hand side of Eq. (7.9).  The next two terms within the 

parentheses are related to the original vector of random variables.  The first term within the 

parentheses is an N by n matrix created by generating N random samples for each of the n random 

variables.  Hence, each column of this matrix is a set of random samples for a given variable.  

The second term is also an N by n matrix created by replicating the deterministic values of each 

random variables N times.  Hence, each column of this matrix is the deterministic value for a 

given variable.  Finally, the term on the far right-hand side of Eq. (7.9) is an n by 1 column vector 

representing the partial derivatives. 

The result of the matrix subtraction, vector dot product, and vector addition is a vector of 

values of the given tradable parameter.  This vector result is analogous to the vector of results 

from MCS or LHS.  From it probability density functions (PDFs) and cumulative distribution 

functions (CDFs) are easily generated as detailed in the following chapter.  Since the generation 

of N random samples is computationally inexpensive, N can be in the hundreds, thousands, or 

even tens of thousands without significantly impacting the total computation time of this method.  

The choice in the number of samples depends on how smooth the output is desired.  The output 

accuracy of MVM depends primarily on the accuracy of the partial derivatives.  Ill-behaved or 

discontinuous response functions yield poor estimates of the partial derivatives which in turn 

yield poor estimates using MVM.  Unfortunately, models representing complex systems are often 

ill-behaved and/or discontinuous [Mosher, 2000] making MVM an option that should be used 

with caution. 

MVM used in this thesis may also differ somewhat from the typical MVM applied in other 

studies (e.g., [Mavris & Bandte, 1997; Kloess, Mourelatos, & Meernik, 2002]) in how the partial 

derivatives (perturbations) are computed.  For most continuous and discrete random variables 
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these perturbations are likely calculated in the same manner.  For continuous random variables a 

step size (h) of 1(10)-8 is chosen in evaluating Eqs. (7.6), (7.7), or (7.8).  For discrete random 

variables, h is set to 1 in evaluating these three finite differences.   For discrete custom random 

variables, which could represent choices in components or materials as described in Chapter 1 

and Chapter 6, h is also set to 1.  However, the modified MVM (MMVM) handles the finite 

differences differently for these special random variables.  The deterministic value for these 

variables is assumed to be the most probable value while the perturbed value is assumed to be the 

next most probable value.  If two values are equally probable, either as the most probable or the 

next most probable value, decision logic must be employed to select among the choices.  In the 

proposed method, the decision logic favors the lower numbered choice.  If three options are 

roughly equally likely, this implementation will only consider two of the three options.  The 

partial derivative will not represent the true nature of this random variable and MVM that uses 

this partial derivative may yield erroneous results.  These uncertainties, which are typically 

design choices, are often retired early in design making MVM an attractive option for 

implementation later in the development. 

7.2.2 Subset Simulation 

The extreme tails of a tradable parameter distribution are important in the design of many 

complex multidisciplinary systems.  A spacecraft needs an accurate estimate of the 99, 99.9, 

99.99 percentile values of its reliability to see if it will survive long enough to complete its 

mission while an aircraft would like accurate estimates of the extreme tail values of its range to 

be certain a target or destination can be reached.  As was discussed earlier, MCS requires a large 

number of samples to accurately determine these extreme tail values which may require a 

prohibitive amount of time and resources to complete.  A method that accurately determines the 

extreme tails of distributions is subset simulation (SS) via Markov chain Monte Carlo (MCMC) 

[Au, 2001; Au & Beck, 2001a].  Originally developed and applied in estimating small failure 

probabilities in high dimension structural engineering applications, subset simulation can be 

modified to handle more general situations.   

7.2.2.1 Overview 

Subset simulation gains its efficiency by expressing a small failure probability as a product of 

larger conditional failure probabilities, thereby turning the problem of simulating a rare failure 

event into several problems that involve the conditional simulation of more frequent events.  

Subset simulation for determining margins converts the percentile of the tradable parameter of 
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interest to a “failure region.”  For example, if the Px in Eq. (1.4) (see Chapter 1) that is based on 

the 99.99th percentile value is of interest to the decision maker, this Px would correspond to a Pf = 

0.0001.  A failure event is then considered when a function evaluation yields a value for a 

tradable parameter which exceeds the percentile value of interest.  Generally, given a “failure 

event” F, let F1 ⊃ F2 ⊃ … ⊃ Fm = F be a decreasing sequence of failure events so that: 

  (7.10) mkFF i
k
ik ,,11 K=∩= =

Thus the actual failure probability can be expressed as a product of a sequence of conditional 

probabilities {P(Fi+1|Fi): i = 1, …, m-1} and P(F1) [Au, 2001]: 
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The idea of subset simulation is to estimate the failure probability PF by estimating these 

quantities.  Hence, a decision maker who wants a margin value based on the 99.99th percentile 

and assumes a conditional probability (p0) of say 0.1 can determine this extreme percentile value 

via subset simulation which would determine intermediate percentile values (90th, 99th, and 99.9th) 

in order to calculate the 99.99th percentile value.  Hence, these intermediate percentiles are found 

for “free” in subset simulation.  The corresponding cumulative distribution function (CDF) is thus 

also generated for “free” via these intermediate simulation runs.  By choosing intermediate 

percentiles (failure events), the conditional probabilities involved in (7.11) can be made 

sufficiently large such that they can be evaluated efficiently by established simulation techniques.  

The problem of simulating rare events in the original probability space is thus replaced by a 

sequence of simulations of more frequent events in the conditional probability space. 

Subset simulation uses MCMC to efficiently search each of these subset failure regions.  

MCMC is a class of powerful algorithms for generating samples according to any given 

probability distribution.  It originates from the Metropolis algorithm developed by Metropolis and 

his co-workers for applications in statistical physics [Metropolis et al., 1953].†  A major 

generalization of the Metropolis algorithm was due to Hastings for applications in Bayesian 

statistics [Hastings, 1970].  MCMC has been used in a wide variety of applications including 

image analysis, genetics, archeology, and medicine [Gilks, Richardson, & Spiegelhalter, 1996].   

In MCMC, successive samples are generated from a specially designed Markov chain whose 

limiting stationary distribution tends to the target probability density function (PDF) as the length 

of the Markov chain increases.  Markov chain samples explore and gain information about the 

failure region as the Markov chain develops.  Proper utilization of these samples leads to better 
 

†The Metropolis algorithm was named among the top 10 algorithms having the “greatest influence on 
the development and practice of science and engineering in the 20th century” [Beichl & Sullivan, 2000] 
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estimates for the failure probability [Au, 2001].  Subset simulation with a modified Metropolis-

Hastings MCMC algorithm developed by Au and Beck (2001a) and described therein and in Au 

(2001) is assumed in the proposed method for estimating margins.  The original Metropolis 

algorithm is not applicable to simulating random vectors with a high number of independent 

components.  The original Metropolis algorithm differs from the modified algorithm in the way 

the candidate state is generated.  There is a nonzero probability that the next state in a Markov 

chain will be equal to the current state.  It has been found that when the uncertain input variables 

(θ) are independent and the dimension n is large, the probability of the Metropolis algorithm 

accepting the candidate state is close to zero.  Paradoxically, yet common in mathematics, by 

complicating the problem MCMC has rendered it more amenable to analysis and practical to 

implement computationally. 

7.2.2.2 Algorithm 

A description of the subset simulation algorithm is provided in this section.  This method is 

best applied to situations where only tradable (output) parameter generated by the response 

function is of interest.  If multiple tradable parameters generated by the response function are of 

interest, subset simulation via MCMC would require application to each tradable parameter 

separately.  In these situations, the computational benefit of subset simulation decreases 

compared to MCS, LHS, or DS.  The algorithm and associated nomenclature follows the 

description in Au and Beck (2001a) insofar as possible.  Recall that all nomenclature used in this 

thesis is provided in the Glossary.  A detailed description of subset simulation is provided in Au 

(2001).  The modifications to subset simulation via MCMC that have been implemented are 

discussed in detail in the following section.   

Step 0: For each input variable, determine its standard deviation σj (note this is only 

meaningful for discrete and continuous random variables, not constants, nor choices among 

components); specify the constants N, Pf, p0, and χ.  Set P1 = p0.  Determine the number of 

simulation levels required via: 
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Step 1: Run a small MCS (e.g., N = 500 calls to the “computationally expensive 

function” G that determines the tradable parameter of interest).  This initial MCS is considered 

the first subset simulation level. 
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Step 2: Take the (1- p0)·Nth largest value of this y (i.e., an order statistic) (e.g., for p0 = 

0.1 and N = 500, this would be the 451st value).  Call this C1.  It corresponds to P1 = P(F1).  Also 

calculate the coefficient of variation (c.o.v.) of P1
*: 
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Step 3: Assuming m > 1, use the initial MCS results y (otherwise algorithm over).  If m > 

2, this step uses the results y of the previous subset simulation run (result from Step 5).  

Simulation level indexed by i (i = 2 is second subset simulation level since initial MCS with i = 1 

assumed to be first “subset” simulation level). 

a. Take the (1- p0)·Nth through Nth largest values (the Nc = p0·N) largest values (e.g., for P1 = 

0.1, this would be the 50 largest values).  All results are probabilistically equivalent. 

b. Use these Nc samples (e.g., θ1, …, θ50) as seeds for Nc Markov chains.  Use the results 

(e.g., y1, …, y50) of these Nc samples in the next step for the first Markov chain sample (see Step 

5). 

Step 4: For each Markov chain, starting with the relevant seed, determine a proposal 

PDF p* for each uncertain input variable θ (i.e., do this n times for each variable, j = 1, …, n) 

using the suggestions listed in Table 7.1. 

Table 7.1   Proposal PDFs for different uncertain input variables 
Input 
Variable Proposal PDF pj

* Description 
Continuous U(θk(j)-χ·σj, 

θk(j)+χ·σj) 
a continuous uniform distribution centered at the current 
input variable value with a width equal to 2·χ·σj 

Discrete Ud(θk(j)-χ·σj, 
θk(j)+χ·σj) 

a discrete uniform distribution centered at the current input 
variable value with a width equal to 2·χ·σj rounded to the 
nearest integers 

Discrete 
choice 
among 
options 

Cd(A) a discrete custom distribution that is identical to the actual 
variable PDF qj when the most probable value is the current 
sample; otherwise the current sample and the most probable 
value probabilities are swapped (other PDF values and 
probabilities are unchanged) 

Constant n/a unchanged for all samples in a given Markov chain so no pj
* 

is needed 

Step 5: Metropolis-Hastings like algorithm; apply to each Markov chain seed (do Nc 

times, index here is jj where jj = 1, …, Nc): 

a. Generate a ‘candidate’ state θ*: For each input variable j = 1, …, n, simulate ξj from 

pj
*(·|θk(j)).  Compute the ratio 

 ( ) ( )( )jqqr kjjjj θξ=  (7.14) 
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Set θk
*(j) = ξj with probability min{1,rj} and set θk

*(j) = θk(j) with the remaining probability 1 

– min{1,rj}. 

b. Accept/reject θ*: Check the location of θ*.  If y* = G(θ*) ≥ Ci-1 accept it as the next 

sample, i.e. θk+1 = θ*; otherwise reject it and take the current sample as the next sample, i.e. θk+1 = 

θk.  Set G(θk+1) to the relevant value.  If sample accepted then IF(jj,k) = 1; IF(jj,k) = 0 otherwise.  

Algorithm pauses when N/Nc Markov chain samples have been run and moves on to next Markov 

chain (increment jj).  Hence, there is one function call for each Markov chain (N/Nc function 

calls) times Nc chains which yields N total function calls per subset simulation level.  These N 

results for y can be re-ordered as an N-dimensional vector (y) since all samples are 

probabilistically equivalent. 

Step 6: Calculate a variety of parameters that monitor the success of the algorithm at 

each simulation level: 

a. Take the (1-p0)·Nth largest value of y; i.e., an order statistic (e.g., for p0 = 0.1 and N = 500, 

this would be the 451st value).  Call this Ci. 

b. Estimate of the probability of failure for this simulation level: 

 10 −⋅= ii PpP  (7.15) 

c. Covariance between indicator function values within a chain where IF(jj,k) is re-ordered 

as a row vector (order should not matter since samples are probabilistically equivalent): 
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d. Correlation coefficient at lag k of the stationary sequence { Ijk(i): k = 1,…, N/Nc}: 
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e. Correlation factor: 
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f. Standard deviation of Pi
*: 
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g. Coefficient of variation (c.o.v.) of Pi
*: 
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h. Total c.o.v. up to and including simulation level i: 
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Step 7: Return to Step 3 until all simulation levels complete.  Note that the results of Step 

5 are used in the subsequent iteration Step 3.  Total number of function calls to G is m·N. 

7.2.2.3 Modification to Algorithm 

The major modification made to the algorithm developed by Au and Beck (2001a) is in the 

type of input variables and their corresponding proposal PDFs.  In Au and Beck (2001a) only 

continuous input variables were considered and the first pj
* in Table 7.1 was always used.  The 

variables in the design of a complex multidisciplinary system may be continuous, discrete, and 

discrete choices among alternatives so additional and mathematically valid pj
* are proposed and 

implemented (see Table 7.1). 

Although the algorithm presented here appears to have a different formulation to Au and 

Beck (2001a), it is in fact unchanged.  In Au and Beck (2001a), failure probabilities are specified 

(e.g., 0.01, 0.001, etc.) whereas the proposed method percentile values are specified (e.g., 99, 

99.9, etc.).  Both formulations do not explicitly have fixed failure regions but create intermediate 

failure regions that have relatively large conditional failure probabilities.  The SS formulation is 

thus appealing in determining margins as they do not have fixed failure regions per se.  Instead, 

margin values for a subsystem in a complex multidisciplinary system are needed by other 

subsystems for the design to progress. 

Finally, the aforementioned algorithm description assumes that the tail of the distribution of 

interest to a decision maker is the high percentile end (i.e., 99, 99.9, etc.).  The algorithm could 

easily be modified to search the low percentile end (i.e., 1, 0.1, etc.) of a distribution.  In either 

case, subset simulation via MCMC can efficiently search either end of a distribution of interest. 

7.3 Simulation Techniques Ruled Out 

The following section briefly describes various simulation techniques that were considered 

but eventually ruled out for implementation in the proposed method: reliability-based methods, 

metamodels/response surface methods, and importance sampling using elementary events. 

7.3.1 Reliability-Based Methods 

A variety of reliability-based methods have been devised to alleviate the computational 

burden of MCS and other sampling methods.  First- and second-order reliability methods (FORM 

and SORM, respectively) are approximation methods that estimate the probability of an event 
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under consideration (typically termed “failure”).  Some of the better known methods include the 

advanced mean value (AMV), advanced mean value plus (AMV+), adaptive importance sampling 

(AIS).  All these methods share a characteristic that a failure region must exist.  These approaches 

are based on the concept of a “most probable point” (MPP).  The MPP is the most likely 

combination of random variable values for a specific performance or limit state value.  In many 

ways the MPP is analogous to the deterministic result for a simulation or analysis.  Most 

determine the estimated probability of failure through additional sampling near the MPP.  In 

contrast to MCS where sampling is done in the total space defined by the random variables, 

reliability methods avoid over sampling in the safe region.  Unfortunately, locating the MPP may 

be difficult or impossible with a highly nonlinear or discontinuous response function G, multiple 

MPPs, or problems containing random variables where bounded distributions (e.g., uniform) are 

present.  Furthermore, the computational effort in finding the MPP or MPPs is significant, often 

relying on sequential quadratic programming (SQP).  Locating the MPPs can even be a greater 

computational expense than a detailed MCS.  Reliability methods are discussed in a variety of 

references (e.g., [ ; ; ]). Wirsching & Wu, 1987 Wu, 1994 Kloess, Mourelatos, & Meernik, 2002

Reliability-based methods were investigated but not used in the proposed method since 

margin determination does not involve a failure region.  Although an artificial failure region can 

be generated by assuming a certain value and reversing the problem to find the probability of that 

margin value being exceeded, it is not possible to know a priori what an appropriate margin value 

is.  For certain tradable parameters, a margin value of 5% may be significant (e.g., a temperature 

margin), for others tradable parameters a margin of 150% could be insignificant (e.g., propellant 

mass).  The application of reliability methods would have to be combined with an iterative 

algorithm and repeated to arrive at the correct margin value.  Such an implementation is 

complicated and unlikely to be a computational benefit compared to MCS; it was not investigated 

in detail. 

7.3.2 Metamodels and Response Surface Methods 

Metamodels form a compact, accurate representation of the functional relationship between 

the typical inputs and outputs of an analysis which models phenomena.  Hence, metamodels are 

in effect a model of a model.  Metamodels are simpler that the original model and their use can 

yield potential computational savings.  Response surface methods (RSMs) are well-established 

statistical approaches to forming metamodels.  Their use has been documented extensively in a 

variety of fields the last half century (e.g., [Khuri & Cornell, 1987; Box & Draper, 1987]).  RSMs 

combine experimental and numerical analysis techniques for the purpose of creating a functional 
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relationship between key design variables and system responses that are otherwise too expensive 

to create.  These relationships are manifested as regression equations based on a set of acquired 

data [DeLaurentis, 1998]. 

As with other simulation techniques, a trade-off for decreased computational effort is 

increased error.  The error can be significant in complex multidisciplinary design as RSMs 

typically use a polynomial regression model obtained via a truncated Taylor series expansion.  

Such a representation is not appropriate in modeling many complex multidisciplinary systems 

which often have an ill-behaved design space.  Evaluating the error in an RSM can be difficult 

since an RSM may “twist and turn” to accommodate every point in the available data but fail to 

model the general trend in the data [Fox, 1994].  Furthermore, RSMs may model the general 

trend in the data but could perform poorly when extrapolated beyond the data range [Thacker et 

al., 2001].  Nonetheless, metamodels and RSMs have been successfully used in the design of 

complex multidisciplinary systems, notably in aircraft design [DeLaurentis, 1998].  Metamodels 

and RSMs could be used within the proposed method (instead of calling G directly) but were not 

pursued since they have already been researched and implemented in details by others (e.g., 

[DeLaurentis, 1998]).  If the error in RSMs can be quantified accurately, metamodels and RSMs 

would be useful in further reducing computation expense in the proposed method.  Fox (1994) 

provides twelve criteria for evaluating the goodness of a response surface that could be a first step 

in assessing their benefit in the proposed method. 

7.3.3 Importance Sampling Using Elementary Events 

Au (2001) and Au and Beck (2001b) developed a highly efficient importance sampling 

method using elementary events (ISEE) for determining low probability failure events in 

structural engineering.  ISEE provides truly remarkable results vis-à-vis MCS: orders of 

magnitude less computation time for low probability events assuming a comparable coefficient of 

variation (δ).  Unfortunately, ISEE is developed specifically for linear dynamical systems 

subjected to Gaussian white-noise excitation and as with reliability-based methods discussed 

previously, an explicit failure region is required.  Generally, this situation is not valid in 

propagating and mitigating uncertainty for estimating margins in complex multidisciplinary 

system design.  Modifying ISEE for implementation in the proposed method was investigated but 

not pursued due to the fundamental differences between the problem statements. 
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7.4 Simulation Technique Repetitions Required 

The aforementioned simulation techniques all require multiple calls to the model (G) to 

evaluate uncertainty in the tradable parameters.  For the modified mean value methods (forward-, 

backward-, centered-finite difference), the number of these calls to G is determined by the 

number of uncertain input variables.  For the other simulation techniques discussed (MCS, LHS, 

DS, subset simulation), the number of these repetitions is a choice.  This section discusses 

statistical tests to estimate how many repetitions are appropriate for these simulation techniques. 

7.4.1 Monte Carlo Simulation, Latin Hypercube Sampling, and Descriptive Sampling 

Two statistical techniques can be used to estimate the number of repetitions required by MCS 

for the results to be statistically valid [Morgan & Henrion, 1990].  The first technique estimates 

the total number of repetitions required based on a small Monte Carlo run.  This technique is 

based on the confidence in the mean value and requires the user to specify both a confidence and 

a requisite width (a fraction of the mean within which the results should be): 
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The second technique does not require a small Monte Carlo run.  Instead it estimates the total 

number of repetitions based on fractile confidence intervals: 
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For example, if a decision maker wishes to be 99% confident (λ = 2.32) that the actual 99th 

percentile value is between the 98.5 and 99.5 percentile values, Eq. (7.23) would yield an NMCS 

value of 2144.  Both techniques implicitly assume that the Monte Carlo data will tend toward a 

normal distribution via the specified confidence deviation parameter.  If this is not true, as is often 

the case when one or more of the input variables is a discrete choice among alternatives, Eqs. 

(7.22) and (7.23) will underestimate the total number of MCS repetitions required.  As previously 

discussed, LHS and DS require approximately a tenth the number of MCS repetitions to achieve 

comparable accuracy.  Hence, Eqs. (7.22) and (7.23) can also be used to estimate the number of 

LHS or DS repetitions (segments s). 

It should be noted that the error in the MCS result can still be substantial when using these 

techniques.  The percent error with confidence level based on λ is given by [Ang & Tang, 1984]: 
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For the previous example, if 2144 MCS repetitions are performed the percent error may be as 

great as 50%.  This error can be reduced to below 20% by increasing the number of MCS 

repetitions to 13,500.  Clearly a substantial number of MCS repetitions are required to accurately 

determine the tails of a distribution which motivates using subset simulation in these situations. 

7.4.2 Subset Simulation 

Determining the appropriate number of repetitions for the modified subset simulation 

technique is a function of the pj
* selected (recall Table 7.1).  The scaling parameter χ specifies the 

spread of pj
*.  The spread governs the maximum allowable distance that the next sample in a 

Markov chain can depart from the current one, and hence affects the size of the region that can be 

covered by the algorithm within a given number of steps.  In general, the larger the spread, the 

larger the region covered by the Markov chain samples.  Smaller spreads tend to increase the 

correlation among Markov chain samples, slowing down the convergence of the MCMC 

estimator.  Conversely, a large spread will increase the number of repeated samples and thus slow 

down the convergence of the MCMC estimator.  The reason for this latter situation is that when 

the spread is large, a candidate state will often be generated far away from the current sample, 

and so that candidate state may not have a high probability of lying in the “failure” region, and 

hence be rejected frequently.  Thus, the choice of the spread of pj
* is a trade off between 

correlation effects arising from proximity and repeated samples from rejection.  The choice in N 

must thus be combined with an appropriate choice of χ [Au, 2001].  Unfortunately, finding this 

optimal combination of χ for a given N using a statistical test has been elusive.  The combination 

of N and χ selected appears problem specific, depending on the behavior of the model (G). 

7.5 Summary 

A variety of simulation techniques are presented that can evaluate interaction uncertainty in 

the design of a complex multidisciplinary system.  Existing simulation techniques such as MCS, 

LHS, and DS are well-established and relatively easy to implement.  Unfortunately, these 

simulation techniques are often computationally intensive.  This issue motivates investigation of 

other simulation techniques that might be modified to use within the proposed method.  Two 

methods, MVM and SS, are modified and found to be a significant computational benefit under 

different circumstances.  MMVM is beneficial when the underlying model is well-behaved while 

SS provides a significant computational benefit when extreme values of a tradable parameter (i.e., 
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tails of a distribution) are of interest to a decision maker.  Simulation techniques that were not 

pursued for use in the proposed method are presented.  Finally, a discussion of methods to 

determine the appropriate number of repetitions required for the various simulation techniques are 

summarized.  With uncertainty in the tradable parameters quantified by one of the 

aforementioned simulation techniques, actual margins can be determined and the design 

analyzed.  These topics are presented in the next chapter. 
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Chapter 8 Determining Margins, Analyzing the Design, 

and Trading Parameters 
This chapter begins by discussing the final step in the proposed method: the determination of 

margins.  This step is based on the risk tolerance of the decision maker.  Once margins have been 

established for a given design, the details of that design can be investigated further via three 

techniques: performing a sensitivity analysis, calculating the correlation coefficients, and data 

mining the samples/results.  An overview of each technique is presented.  The chapter concludes 

with a discussion of two methods to trade parameters: iteration and optimization. 

8.1 Determining Margins 

The simulation methods described in Chapter 7 generate an N-dimensional vector of results 

for each tradable parameter.  This vector can be converted to a histogram by sorting the results 

into bins of a designated size.  This bin size is typically the minimum amount of that tradable 

parameter that is of significance (e.g., for mass it may be 0.1 kg where a decision maker wants to 

be confident of the results to within a tenth of a kilogram).  This histogram in turn can be 

converted to probability density function (PDF).  If this conversion results in a choppy PDF, it is 

likely an inappropriate bin size was assumed or an insufficient number of simulation repetitions 

were performed.  The tests discussed at the end of Chapter 7 can provide an indication whether 

more samples need to be generated and repetitions performed.  Otherwise an alternate simulation 

technique may be required. 

The PDF of results for a tradable parameter should be convolved with its corresponding 

model uncertainty PDF.  This process of convolving two distributions is described in Appendix 

A.  With a convolved PDF of each tradable parameter available, a PDF can be integrated to 

generate a final cumulative distribution function (CDF).  Certain formal methods to quantify 

uncertainty use the mean and the standard deviation as the two key decision functions in design.  

This technique is simple since it allows a result to be expressed by two values instead of a 

(potentially complicated) curve.  Unfortunately, reducing a CDF to the combination of two 

statistical parameters loses a tremendous amount of information that the proposed method 

generates.  Solely using the mean and standard deviation in making decisions in design can be 

misleading (see the example in Appendix A). 

A CDF (and the corresponding PDF) is a visualization of uncertainty that is consistent with 

human intuition.  The general shape (skewness) of the convolved PDF for a tradable parameter 

indicates whether all the uncertainties in the analysis are more likely beneficial or detrimental.  
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The unique CDF generated by the proposed method for a given tradable parameter is the key 

decision function in design.  A CDF delivers the uncertainty about a tradable parameter in a way 

that is consistent with the type of decisions upon which the data will be based since a CDF value, 

selected based on the risk tolerance of the decision maker, is used along with the deterministic 

result in calculating margins in the proposed definition: 

 ( )[ ] 100margin% detdetproposed
⋅−= RRPx  (8.1) 

The choice in the percentile x that the value Px will be based on is a function of the risk 

tolerance of the decision maker.  It is often difficult quantifying the risk tolerance of an 

individual.  As with utility functions discussed in Chapter 3, generating a comprehensive equation 

to represent risk tolerance is difficult since values and knowledge may be changing.  In utility 

theory, the risk tolerance of a decision maker can be accomplished via decision theory lottery 

techniques or indifference curves [Raiffa, 1968].  These techniques can be used in the proposed 

method if the tradable parameter value is treated as a utility.  Regardless of the method used to 

determine the percentile (probability) value, whether by lottery techniques, indifference curves, or 

by fiat from the decision maker or stake holder, the significance of the percentile chosen is easily 

understood by all participants and easily conveyed to others.  A very high percentile may imply 

the decision maker is risk-averse; lower percentile values may imply a risk-seeking decision 

maker.  For different tradable parameters, difference percentile values might be used.  For 

example, a decision maker may select the 99.99th percentile for the lifetime of a complex 

multidisciplinary system but only the 90th percentile value on its mass.  In this case the decision 

maker may be viewed as risk-averse with respect to the lifetime tradable parameter but risk-

seeking with respect to the tradable parameter mass.  The corresponding Px for such percentiles is 

now provided by a rigorous quantitative method, not a heuristic approach based on previous 

mission that may or may not be similar to the system being designed and developed. 

8.2 Analyzing the Results 

In addition to generating quantitative values for margins, the proposed method generates a 

significant amount of probabilistic data that can be analyzed.  Three techniques are recommended 

for understanding the uncertainty in the tradable parameters in more detail than solely using the 

calculated margin value: performing a sensitivity analysis, calculating the correlation coefficients, 

and data mining the samples/results. 
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8.2.1 Sensitivity Analysis 

A sensitivity analysis was introduced in Chapter 6 as a technique to determine which 

uncertainties may be significant and which are likely not.  Performing a sensitivity analysis after 

results are obtained can also be beneficial as it will indicate which uncertainties might be 

investigated in more detail prior to the next margin determination iteration (if planned).  Certain 

design decisions may be delayed as a result of a sensitivity analysis during which time a 

concentrated effort can be undertaken to refine and (hopefully) reduce such uncertainties.  The 

traceability that a sensitivity analysis provides may, for example, indicate the need for a higher-

fidelity model (if model uncertainty is driving the margins) or a renegotiation with the stake 

holder and/or decision maker of the requirements (if one or requirement uncertainties are driving 

margins).  A sensitivity analysis performed after each iteration of the proposed method provides 

quantitative guidance for the successive iteration.  The ultimate objective of these iterations is to 

arrive at a requisite model for each tradable parameter and to analyze that model just enough to 

understand clearly what an appropriate and feasible margin on all tradable parameters in the 

design should be.  A requisite model is a model that represents the phenomena of interest over a 

range of interest and is described in detail in Chapter 5.  By the time the decision maker reaches 

this point, all important issues will be included in the tradable parameter models and the choice 

for margins should be clear. 

8.2.2 Correlation Coefficient 

The correlation coefficient between samples (θ) and the resulting values for a tradable 

parameter y provides a statistical technique to determine which uncertainties may be driving the 

uncertainty in the tradable parameters (and hence margins).  An N by n+1 array where the first 

column is the vector of N results for a given tradable parameter of a simulation and the remaining 

n columns are the N random samples generated for all n input variable uncertainties can be 

analyzed to yield a correlation coefficient and p-value for each input variable uncertainty.  Both 

the correlation coefficient and p-value are described in Appendix A.  For a given tradable 

parameter, an input variable with a p-value less than 0.05 indicates that the uncertainty may be 

significant.  A positive correlation coefficient implies that positive changes in that variable likely 

result in positive changes in that tradable parameter whereas a negative correlation coefficient 

implies that positive changes in the variable likely result in negative changes in that tradable 

parameter.  Combined with a sensitivity analysis, a correlation coefficient can indicate which 

uncertainties (input variables) warrant further investigation. 
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8.2.3 Data Mining 

Although the decision maker likely is concerned with tradable parameter values and the 

corresponding margins, the engineers and designers involved in applying the proposed method 

are likely interested in why certain samples yielded a significantly higher (or lower) tradable 

parameter result.  Investigating the values of the different uncertainties that were sent to the 

model G (along with a sensitivity analysis or calculation of correlation coefficients) should 

indicate which input variable or combination of input variables caused these high or low results.  

Due to the nature of complex multidisciplinary design and risk-aversion, engineers and designers 

are likely concerned primarily with the high tradable parameter repetition results when a low 

tradable parameter result is desired (or vice-versa: a low tradable parameter result when a high 

value is desired).  An example of the former case could be mass, cost, or schedule where lower is 

“better” and high results from the probabilistic analysis are a source of consternation.  The sample 

that corresponds to such a high result can be investigated by the engineers and designers in more 

detail.  This data mining procedure may discover a combination of uncertainties that yields an 

undesirable result but might be readily mitigated in practice.  The engineer and designer may also 

wish to investigate those samples which yielded low tradable parameter values to better 

understand which uncertainty or combination of uncertainties yields a beneficial scenario of a low 

tradable parameter value.  The sample that corresponds to such low results may, for example, 

provide clues as to a combination of design choices (sets of designs) the engineer or designer did 

not explicitly consider.  Data mining could thus influence the final choice the engineer or 

designer then makes. 

8.3 Trading Parameters 

The final step in the proposed method is trading parameters.  The objective in trading 

parameters is to reach some final system-level balance in the margins of the tradable parameters 

that is both feasible and acceptable to the stake holder, decision maker, and participants in the 

method.  The assumption implicit in this step is that the proposed method participants are 

rational.  Although there is no universally accepted definition of rationality the one used here is 

behavior which is consistent with the pursuit of the stated objectives [Tribus, 1969].  That is to 

say, the balance in tradable parameters sought by the participants follows one or more consistent 

objectives.  Two methods of trading parameters are possible: iteration and optimization.  The two 

methods can be combined. 
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8.3.1 Iteration 

Iteration involves reapplying the method when uncertainties have changed or alternate 

designs are to be investigated.  Iteration is an inherent procedure in engineering design (recall 

Fig. 1.1) and specifically in complex multidisciplinary design to refine results.  The proposed 

method is no different.  Certain uncertainties may decrease as the design progresses since 

decisions are made, quality control is enacted, and modeling improved.  Other uncertainties may 

increase as knowledge, data, and expert elicitation is acquired and updates a previous uncertainty 

estimate.  The decision maker may also wish to investigate other designs.  Indeed, design 

uncertainty may provide the single biggest opportunity to alter seemingly irreducible uncertainty 

in certain tradable parameters.  By reapplying the method to an alternate design, the margins and 

CDFs of each tradable parameter for the designs can be compared.  The proposed method can 

thus quantitatively compare uncertainty in different designs.  One design may stochastically 

dominate the other providing quantitative evidence that the dominated design should not be 

pursued further.  Stochastic dominance occurs when one CDF lies completely to one side of 

another CDF.  An example of stochastic dominance is provided in Appendix A. 

Beyond trivial examples there will always be uncertainty in designs and iteration provides a 

way to track how these uncertainties change over time.  Iteration in applying the proposed method 

should go hand in hand with organizational best practices.  Best practices for effectively 

managing complex projects are well documented both internally within an organization and 

through publicly available references (e.g., [Morris, 1986]).  With documentation that carefully 

records uncertainties and efforts to address them, subsequent iterations of the proposed method 

will require substantially less time than the original application.  Best practices and 

documentation may also help uncover phenomenological uncertainty that was discussed in 

Chapter 5. 

8.3.2 Optimization 

Optimization is defined as an act, process, or method of making something (as a design, 

system, or decision) as fully perfect, functional, or effective as possible [Webster’s Ninth New 

Collegiate Dictionary, 1990].  In a pure mathematical definition, optimization refers to finding 

the absolute best solution to a problem.  Every design problem is thus a “maximization” problem 

in the sense that the problem is to uncover the best design.*  However, a more useful definition, 

provided by Jilla, Miller, and Sedwick (2000), is the engineering interpretation of optimization 

                                                      
*a minimization problem can always be mathematically reformulated as a maximization problem (e.g., 

min(f(x)) = max(-f(x)) 
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which is “the process of finding good solutions to the design problem.”  Whereas an engineer or 

designer has various variables under his control that he can select to optimize a design (design 

uncertainty), enumeration of all design possibilities for any practical design is either enormously 

expensive in resources or impossible.  Optimization is a necessary step to assist the engineer or 

designer in discovering “good” solutions.  During preliminary design of complex 

multidisciplinary systems, optimization, if it is performed at all, is almost always done at the 

subsystem level and not at the system level.  Optimization at the subsystem level rarely achieves 

optimization at the system level, resulting instead in a design that is feasible but not optimal.  

However, engineers and designers are often satisfied with nonoptimal yet feasible solutions due 

to the overall difficulty of designing and developing such systems. 

The last decade has witnessed an explosion of research into multidisciplinary design 

optimization (MDO) techniques (e.g., [Braun, Moore, and Kroo, 1997; Mosher, 2000; Jilla, 

Miller, & Sedwick, 2000]).  The goal of MDO is to discover optimal design via Pareto optimal 

points (the so-called efficient frontier) [Keeney & Raiffa, 1976].  A design θ is Pareto optimal if: 
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where φ is some alternate design.  Hence, a problem may have dozens, hundreds, or possibly an 

infinite number of Pareto optimal points.  MDO research efforts proved that the design space for 

complex multidisciplinary systems is neither smooth nor unimodal but instead has multiple peaks 

and discontinuities requiring sophisticated analytic and computational implementation techniques 

to determine the efficient frontier.  MDO researchers have investigated a wide variety of 

applications with multiple objectives yet only a limited amount of research has investigated MDO 

under uncertainty (e.g., [DeLaurentis, 1998; Walton, 2002]).  MDO without considering 

uncertainty is an important pedagogical benefit in understanding the MDO design space but of 

limited design value as the optimal solution found will almost certainly not be the actual final 

optimal solution once the system is built.  MDO techniques that consider uncertainty transform a 

problem from a deterministic optimization problem track a “point” in a multidimensional design 

space to a probabilistic optimization problem that tracks a “distribution” and their parameters.  

Unfortunately, this transformation complicates the problem significantly.  Since deterministic 

MDO techniques are intricate and often computationally intensive on their own, probabilistic 

MDO techniques would likely be even more so. 

Integrating MDO into the proposed method without sacrificing design feasibility is a logical 

choice for assisting in the balance of tradable parameters and their margins.  This balancing 

process would entail viewing each tradable parameter as an objective function and proceeding 
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with multi-objective (multi-criteria) optimization.  This possibility is discussed in Chapter 10 as 

an avenue of future research.  However, it is unlikely that turning over the entire process to an 

automated algorithm will yield the optimal balance in the tradable parameter margins.  Instead, 

MDO techniques in combination with engineering judgment (the most indispensable engineering 

design tool) may yield promising (“good”) designs. 

8.4 Summary 

The final step in the proposed method is determining margins for each tradable parameter of a 

given design.  This step is based explicitly on the risk tolerance of the decision maker via the 

choice in a percentile from the probabilistic results.  Three techniques to further analyze and 

understand a given design are possible and discussed: a sensitivity analysis; calculating the 

correlation coefficient; and data mining the samples/results.  If the decision maker is not satisfied 

with the balance of margins in a design, these parameters can be traded with each other through 

iteration and/or optimization.  With a satisfactory balance of system-level tradable parameter 

margins, application of the proposed method is complete.  The various steps of the proposed 

method that are described in detail in Chapter 4 through this present chapter can now be 

demonstrated by an example.  This is the topic of the next chapter. 
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Chapter 9 Application Example – Attitude Determination 

and Control System 
This chapter provides an example of applying the proposed method.  Although the proposed 

method could be applied to an entire spacecraft, this is unlikely to be a realistic scenario as only 

trivial modeling tools exist at a spacecraft-system level and participants at a system-level lack 

sufficient expertise concerning uncertainties encountered.  Instead, the proposed method would 

be applied concurrently to whatever hierarchical level of the spacecraft design (e.g., subsystem, 

assembly, component) is practical in terms of modeling and personnel.  A subsystem, attitude 

determination and control system (ADCS), is chosen for the example application as it provides a 

representative spacecraft discipline in terms of complexity, number of uncertainties, and 

uncertainty types.  The specific application is the ADCS on the cruise stage of the Mars 

Exploration Rover (MER) project.  The purpose of this example application is not to describe the 

individual subsystem or project in detail.  A brief summary of both begins the chapter; associated 

references are noted that describe these topics in detail.  The focus of this chapter is to 

demonstrate the step-by-step application of the proposed method and its benefits in determining 

margins vis-à-vis the current heuristic method.  Each step is detailed.  The ADCS example and 

others found in Appendix B demonstrate the applicability of the proposed method to a broad class 

of subsystems encountered in complex multidisciplinary design. 

9.1 Mars Exploration Rover (MER) Project 

The MER project had the primary objective of placing two mobile science laboratories, 

MER-A (Spirit) and MER-B (Opportunity), on the surface of Mars in order to remotely conduct 

geologic investigations, including characterization of a diversity of rocks and soils that may hold 

clues to past water activity.  The MER project used the 2003 launch opportunity to deliver two 

identical rovers to different sites in the equatorial region of Mars: MER-A launched June 10, 

2003 on a Boeing Delta II 7925; MER-B launched July 8, 2003 on a Boeing Delta II 7925H.  The 

Delta II 7925H, with larger “strap-on” thrust augmentation solid rocket motors, is a slightly more 

powerful variant of the Delta II 7925. 

The MER project was managed by the Jet Propulsion Laboratory (JPL), a division of the 

National Aeronautics & Space Administration (NASA) administered by the California Institute of 

Technology.  MER design officially began in April 2000.  The design of the MER flight system 

was an adaptation of the JPL/NASA Mars Pathfinder (MPF) spacecraft design which was 

launched in 1996 and landed on Mars on July 4, 1997.  The MER flight system consists of four 
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major components: an Earth-Mars cruise stage; an atmospheric entry, descent, and landing system 

or aeroshell (consisting of a heatshield and backshell); a lander; and a mobile science rover with 

an integrated instrument package.  Fig. 9.1 illustrates the MER flight system in its Earth-Mars 

cruise configuration. 

 
Fig. 9.1   MER spacecraft during cruise to Mars. 

During this interplanetary transfer from Earth to Mars, MER is a spin-stabilized spacecraft 

with a nominal spin rate of 2 rpm and the cruise stage provides most of the traditional spacecraft 

subsystem functionality (such as propulsion, power, communications, thermal, and attitude 

control).  Roncoli and Ludwinski (2002) discuss the MER mission in detail.  Uncertainty 

mitigation in the design of MER was accomplished via system-level margins.  These flight 

system margins and a description of MER margin management are found in Chapter 1. 

9.2 Attitude Determination and Control System Overview 

The attitude determination and control system (ADCS) orients and stabilizes the spacecraft 

countering external and internal disturbances that act upon it.  ADCS comprises sensors (that 

determine the attitude of the spacecraft) and effectors (that control the attitude of the spacecraft).  

Larson and Wertz (1999) and Griffin and French (2004) provide an overview of ADCS while 

other references comprehensively detail ADCS (e.g., [Kaplan, 1976; Wertz, 1978; Chobotov, 

1991; Sidi, 1997; Wie, 1998]).  ADCS on MER resides completely on the cruise stage.  The MER 

ADCS was designed and developed by JPL/NASA with several contractors providing 

components and expertise.  The ADCS on MER is controlled by the command and data handling 

system that resides on the rover within the lander.  This is possible via a connection between the 

rover support board and the remote electronic unit on the cruise stage.  The MER cruise stage 

uses two clusters of four 4.5 N Aerojet MR-111C engines (thrusters), one on each side as shown 

in Fig. 9.2.   
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Fig. 9.2   MER engine cluster configuration; adapted from D’Amario (2002). 

The z-axis is the spin axis.  The spin axis moment of inertia is the spacecraft’s maximum 

moment of inertia.  The two engine clusters are on the +x and –x axes.  The +y axis is out of the 

page in Fig. 9.2 and points through the star scanner.  Engines 1, 2, 5, and 6 are in the x-z plane 

whereas engines 3, 4, 7, and 8 are in the x-y plane.  All engines are canted at an angle of 40° from 

the x-axis.  The effective moment arm of all engines is therefore: 

 RRr 643.040sin ≈°⋅=  (9.1) 

Two engines, one on each side of the spacecraft, with equal and opposite thrust vectors are 

fired for maneuvers.  Ideally, a torque is imparted only about the spacecraft’s center of mass and 

no change in the spacecraft trajectory results.  For example, firing engines 3 and 8 would spin the 

spacecraft (counter clockwise) about the +z axis. 

9.3 Uncertainties Involved 

The preliminary design of a spacecraft ADCS involves all the uncertainties introduced in 

Chapter 2.  Table 9.1 provides examples for each of these uncertainty types in the field of 

spacecraft attitude determination and control.   

Table 9.1   ADCS examples of different uncertainty types 

Uncertainty type Attitude determination & control example 
Included in 

this analysis? 
Ambiguity The pointing control must be 1° [everywhere?  

continuously?] 
No 

Epistemic   
   Model The difference between the propellant mass predicted by an 

analytic model and the actual flight measured total 
Yes 

   Phenomenological The density profile of Neptune’s atmosphere No 
   Behavioral   
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Included in 
Uncertainty type Attitude determination & control example this analysis? 
      Design The choice between two different star scanners for attitude 

determination 
Yes 

      Requirement The spacecraft shall be able to de-spin from 10 rpm [and 
this requirement later changes to 15 rpm] 

Yes 

      Volitional An analysis an engineer says he will perform but does not No 
      Human errors A mistake in measuring the mass of a sun sensor  No 
Aleatory The thrust of an engine at a given pressure Yes 
Interaction The combination of choice between two different engines 

and the fact that their thrust levels are not certain 
Yes 

Also listed in Table 9.1 is whether a given uncertainty is included in the MER ADCS 

example described in this chapter.  Ambiguity is not considered in this analysis; linguistic 

imprecision is assumed to have been reduced to a desired level.  Phenomenological uncertainty is 

not significant in the actual MER ADCS design nor in the MER mission profile and is not 

addressed.  Volitional uncertainty is not considered, although the techniques discussed in Chapter 

6 would be valid in representing uncertainty in the behavior of contractors that assisted in MER 

ADCS development.  Human errors are neglected due to assumed facilitative measures. 

9.4 Tradable Parameters 

The tradable parameters identified for the MER ADCS are the propellant mass, schedule 

duration, and total cost.  The propellant mass is defined as the total amount of propellant required 

for attitude control maneuvers during interplanetary cruise from Earth to Mars.  Propellant mass 

does not include propellant required for change in velocity (∆V) maneuvers.  The schedule 

duration and the total cost are defined as the total time and cost, respectively, to design, build, 

test, and deliver two attitude determination and control systems (MER-A & MER-B).  During 

MER design these three parameters were traded with each other.  At the preliminary design 

review (PDR), the MER project best estimates for propellant mass, schedule duration, and total 

cost were 2.9 kg, 664 days, and FY2003$8.2M, respectively.  In turn, the margins placed on these 

three tradable parameters by the MER project were 51.7% (1.5 kg), 14.3% (95 days), and 30% 

(FY2003$2.5M) [D’Amario, 2002].  Margin estimates for propellant mass impact the propulsion 

subsystem which must store this propellant in an appropriately sized tank.  Schedule duration and 

total cost estimates impact MER systems engineering and management.  MER systems 

engineering and management must incorporate the ADCS schedule and cost within the schedule 

and cost of the entire MER project.  The 664 day schedule duration best estimate was generally 

acknowledged to be very optimistic.  However, as MER was schedule constrained due to the 

limited launch opportunity, the schedule duration allocation of 759 days was deemed appropriate.  
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The example in this chapter is assumed to be performed around PDR and only one iteration of the 

proposed method is illustrated. 

The quantity and type of all ADCS related hardware (sun sensors, star scanners, and engines) 

was known with certainty early in design since certain flight spares from previous missions were 

available and “free” to the MER project to use.  For example, a Ball Aerospace CT-632 star 

scanner remained from Mars Pathfinder (MPF) and was used.  Thus, dry mass was not considered 

a tradable parameter although in most other ADCS designs, dry mass would be an important if 

not the most important tradable parameter.  Dry mass was a tradable parameter for many of the 

other MER subsystems as mass growth was a constant problem during the design of MER.  Cost 

and schedule were traded to reduce mass [Thunnissen & Nakazono, 2003].  Other parameters, 

such as risk (the likelihood of catastrophic failure of the subsystem) and power required by 

ADCS, were considered but not selected since no major design decisions were made concerning 

these parameters.  Hence, risk and power required, two parameters that are often tradable in the 

design of other attitude control systems, were not tradable parameters in the design of the MER 

ADCS. 

9.5 Models and Model Uncertainty 

This section describes the models assumed in the ADCS analysis.  The section begins with an 

overview of model assumptions.  A detailed explanation of the propellant mass model follows.  

Model uncertainty is described in the final portion of this section. 

9.5.1 Major Assumptions 

The models and analyses presented are based on the MER flight system, specifically the 

Earth-to-Mars interplanetary-cruise portion of the mission.  Application of these models and 

analyses to other spacecraft would require verification of the assumptions and likely alterations to 

the models described subsequently.  The major assumption in the propellant mass model and 

analysis is the use of a simple feedback control model.  The behavior of an actual ADCS system 

can be understood only if feedback control is correctly implemented and modeled.  Nonetheless, 

for the conceptual estimation of the tradable parameters proposed, the difference between a 

sophisticated feedback control model and the feedback model implemented is likely small.  

Higher-fidelity models implementing feedback control for all maneuvers could readily be 

substituted for the simple models described.  Model uncertainty addresses this difference and is 

accounted for in the analysis. 
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9.5.2 Additional Assumptions 

Several additional important assumptions were made in the models and analyses described.  

Some of the justifications for these assumptions are provided here, others are justified ex-post 

facto via the results. 

• The mass of the spacecraft is constant.  Although the amount of attitude control 

propellant is insignificant compared to the spacecraft mass, a significant amount of 

propellant for the trajectory correction maneuvers (TCMs) may be expended during 

cruise (approximately 4% of the total spacecraft wet mass at launch) [Thunnissen & 

Nakazono, 2003].  This is arguably the most significant of the assumptions listed. 

• The spacecraft is axisymmetric with the spin axis being the axis of symmetry.  The center 

of mass is at the origin of the coordinate system in Fig. 9.2 and does not move during 

cruise.  In reality the center of mass shifts slightly along the –z axis towards the front of 

the spacecraft as propellant is expended. 

• The moment of inertia of the spacecraft is constant (a result of the two previous 

assumptions of constant spacecraft mass and spacecraft center of mass location). 

• The inlet pressure to the engines, which has a significant effect on the thrust and a 

moderate effect on the specific impulse of the engines, is constant throughout the 

interplanetary cruise.  In reality the inlet pressure decreases after each maneuver due to 

propellant being expelled.  The major maneuvers that impact this inlet pressure are the 

TCMs required during cruise.  The modeling of such a pressure decrease on the 

performance of a propulsion system is described in Thunnissen, Engelbrecht, and Weiss 

(2003).  In this analysis the pressure was kept at its lowest-anticipated level, which 

corresponds to the pressure when most of the propellant for TCMs has been expended.  

This assumption of using the lowest inlet pressure allows for a lower impulse bit and (in 

terms of propellant mass required) is a conservative assumption. 

• The inlet fuel temperature, which has only a minor influence on the thrust and specific 

impulse, is constant for the duration of the interplanetary cruise. 

• Internal disturbances are neglected. 

Three models, one for each tradable parameter, were created for this analysis based around 

the assumptions: a propellant mass model, a schedule model, and a cost model.  The propellant 

mass model determines the total propellant required for attitude control during the cruise stage 

portion of the MER mission.  The schedule model determines the total time to design, develop, 

test, and deliver the ADCS.  The results of the schedule model are used in the cost model to 

determine the total cost to design, develop, test, and deliver the ADCS.  The propellant mass 
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model is described in detail in the following section.  The schedule and cost model are described 

in Thunnissen and Nakazono (2003) and Thunnissen (2004a).  As existing models were not 

available, each was created.  All three models were created in MATLAB® (m-files), a common 

engineering software platform.  Although the models could have been implemented in another 

software platform or programming language (e.g., Excel, FORTRAN, C++), the matrix nature, 

integrated probabilistic features, and visualization options of MATLAB® simplify 

implementation of the proposed method.  Furthermore, MATLAB® is now common enough that 

most engineers have at least a basic familiarity with it and thus provides an established and 

accepted reference. 

9.5.3 Propellant Mass Model 

One of the most important parameters that ADCS estimates during conceptual design is the 

total propellant mass required to maintain attitude control.  For spacecraft with engines as the 

only effectors available, the propellant available for attitude control may determine the lifetime of 

the spacecraft.  Furthermore, improper modeling and estimation of attitude control propellant may 

lead to mission failure.  Estimating the correct propellant required is also important from a 

multidisciplinary standpoint as another subsystem (propulsion) is required to store and distribute 

this additional propellant and provide the engines to effect maneuvers.  The total propellant 

required by the spacecraft for attitude control is the sum of the propellant required for 

overcoming all spin/de-spin maneuvers, required slew maneuvers, and solar torque build-up slew 

maneuvers.  The model calculates these individual propellant mass maneuver values sequentially 

based on the time they occur from Earth launch. 

This section begins with an overview of the capability and performance of engines, in 

particular the Aerojet MR-111C engine used by MER.  The engine performance directly impacts 

the three types of maneuvers required for spacecraft attitude control maintenance: spinning the 

spacecraft, slewing the spacecraft, and compensating for external disturbances.  A sub-model for 

these maneuver types was created within the overall propellant mass model and a detailed 

description of each follows. 

9.5.3.1 Engine Capability and Performance 

Steady-state engine thrust and exhaust velocity are strong and weak functions of the inlet 

pressure to the engine, respectively [Thunnissen, Engelbrecht, & Weiss, 2003]: 

 2inlet1 kpkF +⋅=  (9.2) 

  (9.3) 4
inlet3

kpkc ⋅=
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The constants k1, k2, k3, and k4 are unique to the individual engine type (manufacturer model).  

For example, if the thrust, exhaust velocity, and inlet pressure are in N, m/s, and Pa, respectively, 

the coefficients k1, k2, k3, and k4 for the Aerojet MR-111C are 3.871(10)-7, 5.075(10)-3, 1080.1, 

and 4.796(10)-2, respectively [Morgan, 2003].  Equations (9.2) and (9.3) are plotted in Fig. 9.3 for 

the Aerojet MR-111C. 
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Fig. 9.3   Thrust and exhaust velocity as a function of inlet pressure. 

Since a pair of engines is used for maneuvers on MER, the total ideal thrust is 

 FF ⋅= 2ideal_tot  (9.4) 

Unfortunately, the thrust level of a given engine model is variable.  Although the thrust variability 

engine-to-engine is small, it can be significant burn-to-burn, particularly for short burns.  Test 

data indicate burn-to-burn engine variability is normally distributed about the mean thrust level 

with +/- 3σ value of 7% of the mean-thrust level [Morgan, 2003]: 

 ( )FFNF i

300
7,actual =  (9.5) 

Furthermore, engines can be misaligned when installed.  The angle between the actual thrust 

vector and the ideal thrust vector achieved by an engine is the engine misalignment angle.  Hence, 

the misalignment angles of the engines reduce the actual thrust achieved by a pair of engines: 

 ( ) ( )2
2

actual1
1

actualact_tot coscos δδ ⋅+⋅= FFF  (9.6) 
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This difference between the total ideal and total actual thrust levels defined by Eqs. (9.4) and 

(9.6), respectively, impacts the total impulse achieved during maneuvers.  One or more additional 

maneuvers may be required to clean up an original maneuver if the thrust variability and engine 

misalignment angles are high. 

Lastly, pulsing the engines reduces their specific impulse (exhaust velocity) compared to a 

single steady-state burn and is a function of the engine duty cycle: 

 ( )χη jj cc ⋅=sd  (9.7) 

where the duty cycle and length in time it takes the spacecraft to spin half a revolution are 

 
half_rev

min_on

t
t j

j =η  (9.8) 

 
ω
π

=half_revt  (9.9) 

The specific impulse efficiency parameter is a property of a particular engine.  For the Aerojet 

MR-111C engine this parameter is 0.0375 [Lisman, 1995]. 

9.5.3.2 Spin 

Spinning a spacecraft up or down is done for a variety of reasons including instrument 

operation, thermal control, and cleaning-up launch vehicle dispersions.  Certain components, such 

as some star scanner models, require a spinning spacecraft to successfully operate.  The design of 

the thermal control subsystem in a spinning spacecraft (so-called “rotisserie mode”) is simpler 

than that of a 3-axis stabilized spacecraft where one or more sides of the spacecraft are constantly 

facing a temperature extreme.  Finally, a launch vehicle upper stage is often spun up for stability 

prior to its burn and then de-spun once the maneuver is complete.  All three examples were the 

case with the MER flight system.  The design used a Ball Aerospace CT-632 star scanner 

requiring a nominal spin rate of 2 rpm to successfully operate during the Earth-Mars cruise.  This 

decision in turn impacted the thermal design [Ganapathi et al., 2003].  Lastly, the third stage of 

the Boeing Delta II launch vehicle that was used to inject MER on its interplanetary trajectory 

was spun up to 12 rpm for gyroscopic stiffness against disturbances during operation of its solid 

rocket motor.  After the solid rocket motor burned out, the spin rate was reduced to the 2 rpm 

required by the star scanner for the entire cruise to Mars. 

The ideal change in spin rate, ideal impulse required, and the time to complete a spin 

maneuver are 

 fi ωωω −=∆ ideal  (9.10) 
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r

JI zz⋅∆
= ideal

ideal

ω  (9.11) 

 
ideal_tot

ideal
spin F

It =  (9.12) 

The actual impulse required, change in spin rate, and propellant required for a spin maneuver are 

therefore: 

 act_totspinactual FtI ⋅=  (9.13) 

 
zzJ

rI ⋅
=∆ actual

actualω  (9.14) 

 
c

I
m actual

p_spin =  (9.15) 

Equation (9.15) assumes a steady-state performance of the engine that follows Eq. (9.3).  This 

assumption may not be justified if the estimated time to complete a spin maneuver is small.  As 

discussed earlier, a simple feedback was implemented in this model to account for uncertainties, 

particularly in the thrust of the engines used.  The aforementioned procedure is repeated until the 

actual spin rate is within a specified value of the desired spin rate (assumed to be 0.1 rpm in this 

analysis). 

9.5.3.3 Slew 

Slew (Re-point) maneuvers are performed by spacecraft for thermal control, power 

generation, telecommunication, and observation.  In the case of MER, the spinning cruise stage 

slewed periodically from the nominal orientation to one in which the communication antennae 

could be pointed correctly towards the Earth.  MER also slewed from its nominal orientation 

during cruise to alter the angle of incidence of solar radiation on the spacecraft for thermal control 

and power generation reasons.  The slew algorithm presented is complicated by the fact that only 

a discrete number of engine pulses is possible and that the thrust of the engines used for pulsing is 

uncertain. 

To reorient the spacecraft a pair of engines is fired for a short interval through an angle ∆φ.  

The pulse angle achievable is a function of the engine on time: 

 ωφ ⋅=∆ ont  (9.16) 

The resulting change in torque for such a pulse is 

 
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 (9.17) 

The angular momentum of the spacecraft is 
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 ω⋅= zzJH  (9.18) 

The slew angle achieved is then [Chobotov, 1991]: 

 
H

ton⋅∆
=∆

τ
ψ  (9.19) 

Hence, a typical pulse can range from the minimum on-time the engines can provide to 

continual thrusting for half a revolution and beyond into additional half revolutions if desired.  

The magnitude of ∆φ is important because the effectiveness of the thrust in producing the desired 

torque decreases as cos(∆φ/2) [Kaplan, 1976].  However, pulsing the engines for very short 

periods of time is inefficient from a propellant standpoint since the exhaust velocity of the 

engines is poor for low-duty cycles as illustrated by Eqs. (9.7) and (9.8).  Therefore, for slew 

maneuvers that are not strictly time constrained, the minimum propellant required can be 

optimized through the engine on time (time per pulse).  The ideal total propellant required for a 

slew maneuver is 

 
sd
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alpulses_idep_slew c

tF
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⋅
=  (9.20) 

where the ideal number of discrete pulses is 
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Sequentially substituting in Eqs. (9.7), (9.21), (9.19), (9.17), and (9.16) into Eq. (9.20) and 

simplifying yields 
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Differentiating Eq. (9.22) with respect to the engine on time, setting the resulting expression to 

zero, and simplifying yields 

 ( ) 0
2

tan1
2

**

=






 ⋅
−+

⋅ onon tt ω
χ

ω
 (9.23) 

Given the spin rate of the spacecraft and the specific impulse efficiency parameter of the 

engines used for the slew maneuver, Eq. (9.23) iteratively yields the optimal engine on time per 

pulse.  With the optimal on time known, the pulse angle, change in torque per pulse, and slew 

angle per pulse can be determined from Eqs. (9.16), (9.17), and (9.19), respectively.  The number 

of pulses required can then be found from Eq. (9.21).  The total slew time for the maneuver is 

then: 
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 half_revalpulses_ideslew_tot tnt ⋅=  (9.24) 

If this total slew time is greater than the time requirement for slewing, the spacecraft must 

slew faster.  Assuming the spacecraft can slew fast enough to satisfy the requirement, the total 

slew time is set to this requirement and the ideal total number of pulses required becomes 

 slew_reqslew_tot
half_rev

slew_tot
alpulses_ide ttif

t
t

n >

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








=  (9.25) 

In either case, the slew angle per pulse must be recalculated using the ideal number of pulses 

since the value is rounded up to the next integer: 

 
alpulses_iden

ψψ =∆  (9.26) 

The resulting change in impulse torque per pulse and pulse angle are 

 ψ∆⋅=∆ HI torque  (9.27) 
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With the ideal pulse angle known, the ideal thruster on time is determined via Eq. (9.16).  

Unfortunately, slewing maneuvers are not ideal due to uncertainties and performance differences 

between pulses, particularly in the engine thrust level.  Once the ideal number of pulses (each of 

which is the ideal thruster on time in length) has been completed, the actual slew angle performed 

will likely be different than the requirement.  If this difference is greater than the pointing control 

requirement, additional slew maneuvers will have to be performed.  These additional few pulses 

will either slew the spacecraft back (if the ideal number of pulses slewed the spacecraft too far) or 

continuing slewing in the original direction (if the ideal number of pulses slewed the spacecraft 

an insufficient amount).  The pointing control requirement is 1° in this analysis.  This simple 

feedback model for slewing could be replaced by a more sophisticated algorithm that determines 

the angle slewed after each pulse if components onboard are sophisticated enough to measure 

these small changes. 

Finally, the total propellant required for such a slew maneuver is 

 ∑
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ualpulses_act
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kk

c
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m  (9.29) 

where the actual number of pulses is greater than or equal to the ideal number of pulses calculated 

via Eqs. (9.21) or (9.25). 
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9.5.3.4 Solar Torque Compensation 

The only external torque experienced by MER during its interplanetary cruise is solar torque.  

The solar flux on a spacecraft decreases according to: 

 2d
g

f s
s =  (9.30) 

The solar torque due to this solar flux is 

 ( ) κθτ ⋅⋅+⋅= i
s

s qA
c
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 (9.31) 

With the angular momentum of the spacecraft known from Eq. (9.18), the nutation frequency 

and rotational control acceleration are found to be 
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If the torque build-up slews the spacecraft with respect to the y-axis, the corresponding torque 

build-up with respect to the x-axis will be small and periodic: 

 ( )( tts
y ⋅−⋅= λλ

λ
)α

ψ sin2  (9.34) 

It is apparent from Eq. (9.34) that the slew angle builds as time increases.  The analysis 

herein calculates the solar torque build-up on a daily basis as well as after each other type of 

maneuver.  When the spacecraft slews an amount greater than the pointing control requirement, 

the spacecraft is re-oriented via a controlled slew maneuver described in the previous section.  

The amount of propellant required for each of these slew corrections follows Eq. (9.29). 

9.5.4 Model Uncertainty 

The three models are uncertain.  The uncertainties assumed for each model are listed in Table 

9.2. 

Table 9.2   Model uncertainties assumed 

Model Units 
Distribution type 
and parameters 

Propellant mass kg N(0,0.05) 
Schedule duration days TNC(4,1) 
Total cost FY2003$K N(0,50) 

Model uncertainty was assessed by expert opinion (MER engineers and managers).  Ideally 

models would be tested with many actual examples to ascertain these distributions.  For example, 

assuming an actual mission scenario, the propellant mass model could be tested and compared to 
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the actual propellant required for several missions.  Unfortunately, there are few examples in the 

aerospace industry to test models against since organizations rarely keep detailed data in a format 

that is easily accessible. 

9.6 Uncertainty Quantification 

The variables discussed in the previous sections are classified as aleatory, design, or 

requirement uncertainties.  This analysis is different than similar analyses (e.g., [Thunnissen & 

Nakazono, 2003; Thunnissen 2004a; Thunnissen & Tsuyuki, 2004]) in that much of the 

uncertainty is in the actual operation (mission sequence) of the final subsystem and not in the 

design.  However, these uncertainties in the operation of the final subsystem are significant and 

do intimately impact the design of the ADCS.  Uncertainties in the general variables are first 

discussed.  Uncertainty in the mission sequence is then introduced.  A description of uncertainties 

in component selection concludes this section. 

9.6.1 General Input Variables 

Variables discussed in the model formulation section, such as the moment of inertias, thruster 

misalignment angles, and engine moment arm, are assumed to be uncertain quantities.  Table 9.3 

lists these uncertainties, the relevant model in which they are used, and their assumed 

probabilistic representation in the analysis. 

Table 9.3   General input variables 

Variable Type 
Distribution type and 

parameters Units 
pinlet Aleatory N(100,3.33) psi 
Tp Aleatory N(25,2.5) °C 
δ1 Aleatory N(0,0.5) deg 
δ2 Aleatory N(0,0.5) deg 
γi Design Cd(2,100%) deg 
q Aleatory N(0.6,0.06) - 

Jxx Design U(300,450) kg-m2 
Jyy Design U(300,450) kg-m2 
Jzz Design U(450,600) kg-m2 

Amax Design N(5.31,0.053) m2 
κ Design U(0.6,0.7) m 
R Design N(1.3,0.0013) m 
gs Aleatory N(1400,14) W/m2 
ωi Requirement N(12,1.33) rpm 

ωerror_initial Requirement Cd(0.2,100%) rpm 

For each variable, the probability distribution assumed and the corresponding parameters that 

define that probability distribution are provided.  The various distributions listed in Table 9.3 
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were determined primarily by expert opinion (MER engineers and managers) and, to a lesser 

degree, statistical analysis. 

9.6.2 Mission Sequence 

The mission sequence provides a conduit to represent uncertainty in ADCS operation.  The 

nominal mission sequence involves de-spinning the spacecraft from 12 to 2 rpm shortly after 

separating from the launch vehicle’s third stage.  After several check out maneuvers, the primary 

objectives of the ADCS are to perform slew maneuvers for communication and overcome the 

build-up of solar torque on the spacecraft.  ADCS must also be able to provide fault protection 

(FP) in the event of a major mishap during cruise that might cause the spacecraft to tumble or 

spin during its journey.  Uncertainties in the mission sequence are listed in Table 9.4.  

Uncertainties also exists in when to perform slew maneuvers (some days are better than others 

due to visibility of stars for the star scanner) and in the magnitude of the actual slew. 

Table 9.4   Mission sequence uncertainties 

Mission sequence event Timea 
Maneuver 

type 
Maneuver 

parameter(s) 
Distribution type 
and parameters Units 

De-spin from 3rd stg. Cd(1,100%) spin ωf N(2,0.0667) rpm 
A-practice Ud(6,10) slewb ψ N(5,0.5) deg 
ACS-B1 Ud(15,25) slewb ψ N(50.45,5) deg 
ACS-B2 Ud(40,60) slewb ψ N(5.13,0.5) deg 
ACS-B3 Ud(75,85) slewb ψ N(6.35,0.6) deg 
ACS-B4 Ud(90,100) slewb ψ N(2.76,0.2) deg 
ACS-B5 Ud(110,130) slewb ψ N(8.51,0.4) deg 
ACS-B6 Ud(135,145) slewb ψ N(9.88,0.5) deg 
ACS-B7 Ud(155,165) slewb ψ N(5.64,0.2) deg 
ACS-B8 Ud(166,175) slewb ψ N(5.04,0.2) deg 
ACS-B9 Ud(176,185) slewb ψ N(5.75,0.2) deg 
ACS-B10 Ud(186,195) slewb ψ N(4.47,0.1) deg 
ACS-B11 Ud(196,205) slewb ψ N(5.53,0.1) deg 
ACS-B12 Ud(206,215) slewb ψ N(5.85,0.1) deg 
FP: spin event Cd(216,100%) spin ωi Γ

 
(11,0.25) rpm 

FP: spin recovery Cd(216,100%) spin ωf L(2,0.0667) rpm 
FP: emergency slew 1 Cd(216,100%) slewb ψ Γ(1.5,10.5) deg 
FP: emergency slew 2 Cd(216,100%) slewb ψ Γ(1.5,10.5) deg 
FP: emergency slew 3 Cd(216,100%) slewb ψ Γ(1.5,10.5) deg 
FP: emergency slew 4 Cd(216,100%) slewb ψ Γ(1.5,10.5) deg 
FP: emergency slew 5 Cd(216,100%) slewb ψ Γ(1.5,10.5) deg 
FP: emergency slew 6 Cd(216,100%) slewb ψ Γ(1.5,10.5) deg 

adays+launch; bno formal time requirement to complete slews within (30 minutes assumed) 

9.6.3 Component Selection 

The MER project built on the organizational experience gained with the design and 

development of Mars Pathfinder (MPF).  The original design philosophy for ADCS on MER was 
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a replica (“build-to-print”) of the MPF design which performed successfully.  Unfortunately, due 

to a fundamentally different configuration of the rover having the “smarts,” as opposed to the 

lander having the smarts which occurred on MPF, the overall MER design changed.  This change 

resulted in the MER ADCS design changing slightly from the original MPF design.  The choice 

in the engine type (Aerojet MR-111C) was assumed early in design based on the MPF 

experience.  This and other early decisions impacted the design of not only ADCS but the entire 

spacecraft.   Hence, dry mass and pointing knowledge were traded for schedule and cost for MER 

since existing components that were readily available (or easily procured) were assumed instead 

of casting a wide net of looking at alternate and possibly superior components.  However, this 

trading occurred prior to detailed design and thus not tradable at PDR, the time at which the 

method is assumed to be applied.  It should be noted that in the design of most attitude control 

systems, dry mass and pointing knowledge are typically traded with propellant mass and each 

other up to and perhaps beyond PDR. 

9.7 Interaction Uncertainty 

A mass summary of the deterministic analysis is listed in Table 9.5.  Deterministic values of 

the schedule and cost are 755.3 days and FY2003$13.547M, respectively. 

Table 9.5   Deterministic propellant mass results 
Propellant required for … Mass (kg) 
Spin 0.301 
Slew 0.137 
Fighting solar torque 0.200 
Fault protection 0.536 
TOTAL 1.174 

Uncertainty in the tradable parameters is evaluated via four simulation techniques: Monte 

Carlo simulation (MCS), Latin hypercube sampling (LHS), forward-finite difference modified 

mean value method (MMVM), and subset simulation (SS).  The number of calls to each model 

was set at N = 10,000 for MCS, N = 1,000 for LHS, and N = 500 for SS (per SS level).  The 

number of calls to each model for MMVM is one greater than the number of input variable 

uncertainties which was 48 for propellant mass, 68 for schedule duration, and 92 for total cost 

(this 92 includes the 68 schedule duration input variable uncertainties that might impact total 

cost).  MMVM does not require a call to a model for input variables that are certain.  All 

subsequent tables and figures reflect the final uncertainty: simulation results convolved with 

model uncertainty.  SS assumed Pf = 0.0001, p0 = 0.1, χ = 1 in all three simulations. 



139 

9.7.1 Propellant Mass 

The propellant mass probability density function (PDF) values for MCS, LHS, and MMVM 

are provided in Fig. 9.4. 
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Fig. 9.4   Propellant mass PDFs for MCS, LHS, and MMVM. 

The cumulative distribution function (CDF) values for all four simulation techniques are 

shown in Fig. 9.5 through Fig. 9.8. 
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Fig. 9.5   Propellant mass CDFs (simulation level 1). 
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Fig. 9.6   Propellant mass CDFs (simulation level 2). 
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Fig. 9.7   Propellant mass CDFs (simulation level 3). 
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Fig. 9.8   Propellant mass CDFs (simulation level 4). 
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Fig. 9.6 through Fig. 9.8 demonstrate the performance of the four simulation techniques at the 

upper tail of the distribution.  MCS is the benchmark for comparison but requires a substantial 

number of calls to the model (N) to obtain values for the entire CDF range.  LHS performs well in 

estimating CDF values less than 0.99 (first and second simulation levels) but poorly for CDF 

values between 0.99 and 1 (third and fourth simulation levels).  With the exception of the extreme 

tails, MVMM performs well considering the complexity of the underlying model and the fact that 

only N = 49 (corresponding to the number of input variable uncertainties for this tradable 

parameter plus one) is required, over a magnitude less than LHS and two orders of magnitude less 

than MCS.  As theorized, SS provides a comparable accuracy as MCS at the CDF tail despite 

requiring only a fifth the calls to the model.  The fourth-level SS underestimates the propellant 

mass but is closer to the MCS result than either LHS or MMVM.  Table 9.6 details the statistics 

of SS by simulation level for propellant mass. 

Table 9.6   SS results by level for propellant mass 
SS 

Level x 
Px 

(kg) 
Errora 
(%) γ σ δ δ* NMCS 

1 90 1.416 -0.11 0 0 0.13416 0.13416 500 
2 99 1.647 -0.50 1.3123 0.00677 0.20401 0.24418 1661 
3 99.9 1.839 -0.66 3.1199 0.00287 0.27232 0.36576 7468 
4 99.99 1.974 -8.39 2.2 0.00080 0.24000 0.43747 52247 

arelative to the 10000 MCS 

The low to moderate values of γ  in Table 9.6 indicate that the modified Markov chain Monte 

Carlo (MCMC) algorithm is accepting most samples at each simulation level within a chain.  A 

lower value of χ for this tradable parameter would likely result in more rejections and faster 

convergence toward the MCS value.  The relative error (compared to MCS) is high at the fourth 

simulation level.  However, most of this error is in MCS, not SS as the final column indicates SS 

achieves a comparable accuracy as 52,247 MCS repetitions (NMCS) whereas only N = 10,000 were 

performed for MCS.  The error drops to -2.37% when compared to 53,000 MCS repetitions. 

Increasing N in SS improves the accuracy of SS vis-à-vis actual results (i.e., MCS with N 

approaching infinity).  A modest increase of N to 1,000 (4,000 total repetitions) reduces the 

relative error in the propellant mass estimate to under 0.5% at the fourth simulation level (holding 

χ constant).  Table 9.7 summarizes the statistics for all four simulation techniques at various 

percentile values for comparison. 
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Table 9.7   Propellant mass calculated by each simulation technique 
 Propellant mass (kg) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (10000) 1.183 1.169 1.417 1.655 1.851 2.154 
LHS (1000) 1.183 1.165 1.416 1.734 1.860 1.888 
MMVM (49) 1.176 1.169 1.394 1.623 1.789 1.881 
SSa 1.180 1.163 1.416 1.647 1.839 1.974 

amean, 50th , & 90th percentile; 99th percentile; 99.9th percentile; and 99.99th percentile values taken from 
first, second, third, and fourth simulation levels, respectively 

9.7.2 Schedule Duration 

The schedule duration PDF values for MCS, LHS, and MMVM are provided in Fig. 9.9. 
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Fig. 9.9   Schedule duration PDFs for MCS, LHS, and MMVM. 

The CDF values for all four simulation techniques are shown in Fig. 9.10 through Fig. 9.13. 
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Fig. 9.10   Schedule duration CDFs (simulation level 1). 
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Fig. 9.11   Schedule duration CDFs (simulation level 2). 
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Fig. 9.12   Schedule duration CDFs (simulation level 3). 
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Fig. 9.13   Schedule duration CDFs (simulation level 4). 
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Fig. 9.11 through Fig. 9.13 demonstrate the performance of the four simulation techniques at 

the upper tail of the distribution.  Again, MCS is the benchmark for comparison but requires a 

substantial number of calls to the model (N) to obtain values for the entire CDF range.  LHS 

performs well in estimating CDF values less than 0.999 (first, second, and third simulation levels) 

but poorly for CDF values between 0.999 and 1 (fourth simulation level).  The PDF for LHS is 

noticeably “choppier” than its MCS counterpart, likely a facet of having used N = 1,000 instead 

of the 10,000 MCS used.  MVMM yields a PDF and CDF that is shifted ~15 days to the left and 

performs poorly for this tradable parameter model.  It is possible that using a centered-finite 

difference (which would require N = 137 instead of N = 69 that the forward-finite difference uses) 

would improve the estimate for schedule duration.  SS performs adequately and yields a 

comparable accuracy as MCS at extreme CDF values (fourth simulation level) despite requiring 

only a fifth the calls to the model.  Table 9.8 details the statistics of SS by simulation level for 

schedule duration. 

Table 9.8   SS results by level for schedule duration 
SS 

Level x 
Px 

(days) 
Errora 
(%) γ σ δ δ* NMCS 

1 90 794.0 -0.14 0 0 0.13416 0.13416 500 
2 99 809.2 -0.20 3.9149 0.00986 0.29744 0.32630 930 
3 99.9 817.8 -0.62 3.1999 0.00290 0.27495 0.42669 5487 
4 99.99 826.5 -1.03 3.72 0.00097 0.29148 0.51675 37446 

arelative to the 10000 MCS 

Again, the moderate values of γ  in Table 9.8 indicate that the modified MCMC algorithm is 

accepting and rejecting samples evenly in the chains (i.e., the choice of χ in this example seems 

appropriate).  The final column indicates SS achieves a comparable accuracy as 37,446 MCS 

repetitions (NMCS) whereas only N = 10,000 were performed for MCS.  The relative error actually 

increases slightly to -1.37% when compared to 42,000 MCS repetitions (42,000 chosen based on 

total cost δ* as discussed subsequently).  Increasing N in SS would improve the accuracy of SS 

vis-à-vis actual results (i.e., MCS with N approaching infinity).  Table 9.9 summarizes the 

statistics for all four simulation techniques at various percentile values for comparison. 

Table 9.9   Schedule duration calculated by each simulation technique 
 Schedule duration (days) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (10000) 777.4 776.3 795.1 810.9 822.9 835.1 
LHS (1000) 777.3 776.1 795.4 811.8 824.9 826.0 
MMVM (69) 756.5 756.3 781.6 801.5 812.3 822.5 
SSa 776.5 775.0 794.0 809.2 817.8 826.5 

amean, 50th , & 90th percentile; 99th percentile; 99.9th percentile; and 99.99th percentile values taken from 
first, second, third, and fourth simulation levels, respectively 
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9.7.3 Total Cost 

The total cost PDF values for MCS, LHS, and MMVM are provided in Fig. 9.14. 
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Fig. 9.14   Total cost PDFs for MCS, LHS, and MMVM. 

The CDF values for all four simulation techniques are shown in Fig. 9.15 through Fig. 9.18. 
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Fig. 9.15   Total cost CDFs (simulation level 1). 
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Fig. 9.16   Total cost CDFs (simulation level 2). 
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Fig. 9.17   Total cost CDFs (simulation level 3). 
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Fig. 9.18   Total cost CDFs (simulation level 4). 
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Fig. 9.16 through Fig. 9.18 demonstrate the performance of the four simulation techniques at 

the upper tail of the distribution.  Again, MCS is the benchmark for comparison but requires a 

substantial number of calls to the model (N) to obtain values for the entire CDF range.  LHS 

performs well in estimating CDF values less than 0.99 (first and second simulation levels) but 

poorly for CDF values between 0.99 and 1 (third and fourth simulation levels).  For all CDF 

values MVMM performs surprisingly well (underestimates the cost by only ~FY2003$10K) 

considering it makes calls to the schedule model which illustrated difficulties (see previous 

section) and that only N = 93 (number of input variable uncertainties for this tradable parameter 

plus one) are required, over a magnitude less than LHS and two orders of magnitude less than 

MCS.  SS performs extremely well with total cost providing a comparable accuracy as MCS at 

extreme CDF values (fourth simulation level) despite requiring only a fifth the calls to the model.  

Table 9.10 details the statistics of SS by simulation level for total cost. 

Table 9.10   SS results by level for total cost 

SS 
Level x 

Px 
(FY2003

$M) 
Errora 
(%) γ σ δ δ* NMCS 

1 90 15.147 -0.54 0 0 0.13416 0.13416 500 
2 99 16.317 -0.20 1.6727 0.00727 0.21934 0.25711 1498 
3 99.9 17.408 2.06 3.5999 0.00303 0.28775 0.38588 6709 
4 99.99 17.723 0.30 4.04 0.00100 0.30120 0.48952 41728 

arelative to the 10000 MCS 

At the fourth level, SS achieves a comparable accuracy as 41,728 MCS repetitions (NMCS) 

whereas only N = 10,000 were performed for MCS.  The relative error drops to 0.05% when 

compared to 42,000 repetitions.  Again, the moderate values of γ  indicate the choice in χ is 

appropriate.  Table 9.11 summarizes the statistics for all four simulation techniques at various 

percentile values for comparison. 

Table 9.11   Total cost calculated by each simulation technique 
 Total cost (FY2003$M) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (10000) 13.677 13.681 15.229 16.349 17.057 17.671 
LHS (1000) 13.670 13.710 15.137 16.339 16.788 16.808 
MMVM (93) 13.561 13.560 15.079 16.155 16.869 17.658 
SSa 13.635 13.631 15.147 16.317 17.408 17.723 

amean, 50th , & 90th percentile; 99th percentile; 99.9th percentile; and 99.99th percentile values taken from 
first, second, third, and fourth simulation levels, respectively 

9.8 Margins and Analysis 

With the probabilistic data (i.e., CDFs) available and assuming x = 99 percentile, Eq. (1.4) is 

used to determine margin values to hold at this point in the design (i.e., PDR for this example).  
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This choice of x represents a risk-neutral decision maker.  Alternatively, a risk-seeking decision 

maker might have used the 90th percentile values and a risk-averse decision maker the 99.9th or 

even the 99.99th percentile values.  These margins are listed in Table 9.12 for the three ADCS 

tradable parameters. 

Table 9.12   Calculated (99th percentile) ADCS margin values 
 Tradable Parameter Margin (Margin %) 
Simulation technique (# of repetitions) Propellant mass Schedule duration Total cost 
MCS (10000) 0.481 kg (41.0%) 55.5 days (7.4%) 2.802c (20.7%) 
LHS (1000) 0.560 kg (47.7%) 56.5 days (7.5%) 2.793c (20.6%) 
MMVMa 0.449 kg (38.2%) 46.1 days (6.1%) 2.608c (19.3%) 
SS (1000)b 0.473 kg (40.3%) 53.9 days (7.1%) 2.770c (20.4%) 

a90 repetitions for propellant mass; 69 for schedule duration; 93 for total cost; bup to and including second 
SS level for 99th percentile; cFY2003$M 

The allocation values (best estimate + margins) for each simulation technique are presented in 

Table 9.13 along with assumed project allocations and final actual values obtained from pre-

launch/flight/project data. 

Table 9.13   Comparison of assumed and calculated (99th percentile) tradable parameter 
allocations with actual values 

 Tradable Parameter Allocation 
Simulation technique (# of repetitions) Propellant mass Schedule duration Total cost 
Project assumptions (n/a) 4.4 kg 759 days FY2003~$10.7M 
MCS (10000) 1.655 kg 810.8 days FY2003$16.349M 
LHS (1000) 1.734 kg 811.8 days FY2003$16.340M 
MMVMa 1.623 kg 801.4 days FY2003$16.155M 
SS (1000)b 1.647 kg 809.2 days FY2003$16.317M 
Actual mission values (n/a) 0.738 kgc 768 days FY2003~$10.5M 

a90 repetitions for propellant mass; 69 for schedule duration; 93 for total cost; bup to and including second 
SS level for 99th percentile; cvalue for MER-B, MER-A required 0.646 kg 

This comparison indicates that the propellant mass estimates by the MER project were 

conservative compared to the actual mission values.  All four simulation techniques in the 

proposed method resulted in estimates closer to the actual mission value but still were 

conservative.  It seems the uncertainties assumed in estimating the propellant mass were either 

overestimated or the propellant mass came in low (~25th percentile value).  The schedule 

duration estimate provided by the proposed method successfully bounded the actual value 

whereas the project assumptions (current heuristic method) did not.  The actual schedule duration 

of 768 days was 7 days longer than the project assumption and ~30th percentile value.  Cost and 

schedule were traded on the MER ADCS development which may account for this slightly low 

percentile value. 

The proposed method predicted conservative total cost estimates (FY2003~$16.3M) 

compared to the actual total ADCS cost (FY2003~$10.5M).  The actual total cost is ~1st 
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percentile value.  This discrepancy may be explained by the difficulty in obtaining an accurate 

estimate for the ADCS total cost.  The ADCS system was intertwined with the command and data 

handling subsystem that resides on the rover within the lander.  The project assumption and actual 

mission values for total cost represents the best estimate of the total ADCS cost related to the 

cruise stage only.  The uncertainty in these values is estimated to be on the order of 

FY2003$0.25M.  The total cost predicted by the current heuristic method provided a much more 

accurate estimate than the proposed method.  This example demonstrates that for certain 

situations and tradable parameters, the current method may indeed provide a superior estimate to 

the proposed method.  Nonetheless, the proposed method does successfully bound the total cost 

and is calculated via a rigorous, transparent, and tenable method that the current heuristic method 

fails to provide. 

9.9 Summary 

This chapter provides an example of applying the proposed method.  An ADCS is presented 

as the application example since it provides a representative spacecraft discipline in terms of 

complexity, number of uncertainties, and uncertainty types.  Each step of the proposed method is 

detailed.  The most significant result of this example is that the margins for these three tradable 

parameters are now calculated for a specific mission (MER) based on the risk tolerance of the 

decision maker accounting for specific uncertainties anticipated and not based on heuristics 

and/or worst-case analysis.  Although the propellant mass number is not significant in an absolute 

sense for the MER example presented, this might not be the case for other missions where 

propellant mass could be the most important tradable parameter.  With an example application of 

the proposed method provided (and others found in Appendix B), the thesis turns to concluding 

remarks.  This is the topic of the next and final chapter. 
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Chapter 10 Concluding Remarks 
Uncertainty propagation and mitigation techniques were long considered the exclusive 

province of “men of experience” [Luce & Raiffa, 1957].  Research by a variety of individuals 

described in Chapter 2 and Chapter 3 and the research presented in this thesis indicate this is not 

the case.  The proposed method provides a rigorous method for propagating and mitigating 

uncertainty in the design of any complex multidisciplinary design and formalizes this 

“experience” through a variety of techniques.  The proposed method furthers the research of 

others and provides four original contributions: a classification of uncertainty for use in the 

design of complex multidisciplinary systems; a formal and comprehensive manner of determining 

margins that fits within existing engineering practice; a variety of sampling techniques including 

subset simulation that can reduce the computational burden in applying the proposed method; and 

several diverse application examples of the proposed method and simulation techniques that 

demonstrate its generality and benefit.  Specific quantitative benefits of the proposed method 

compared to the current heuristic-based method were illustrated by these diverse application 

examples in Chapter 9 and Appendix B.  These examples, which were applied ex post facto, 

strongly suggest that the use of the proposed method in actual complex multidisciplinary design 

will lead to better designs and more successful developments. 

Uncertainty can be both beneficial and detrimental in design.  Ben-Haim (2001) notes that 

uncertainty may be “pernicious, entailing the threat of failure, or propitious, entailing the 

possibility of unimagined success” while Walton (2002) also stresses that uncertainty can have 

both a “downside and upside.”  This “propitious” aspect or “upside” of uncertainty is in design 

uncertainty decisions and the process of trading parameters which are both under complete 

control of the proposed method participants.*  The actions of the participants determine the final 

design.  The twenty-first century will likely see increasingly complex multidisciplinary systems 

with more subsystems and more organizations required to design and develop them.  Thus, the 

knowledge gap among participants will widen.  This increase in complexity, subsystems, 

organizations involved, and the knowledge gap must be balanced by improved analysis methods; 

efficient computational techniques; detailed documentation; rapid and accurate information 

exchange; and more educated and experienced participants.  The method proposed in this thesis 

represents a step in achieving this balance. 

                                                      
*“The future is uncertain ... and in an uncertain environment, having the flexibility to decide what to do 

after some of that uncertainty is resolved definitely has value.” – R. Merton (1997 Nobel laureate) 
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This chapter begins with a discussion of concerns, both practical and theoretical, in the 

proposed method.  A summary of potential organizational impacts of implementing the proposed 

method follows.  Potential avenues for future research are then discussed. 

10.1 Concerns About the Proposed Method 

The proposed method has limitations, as any method does.  It is arguably as significant to 

understand and acknowledge these potential issues as is to understand and to acknowledge the 

method itself.†  The concerns about the proposed method are practical and theoretical.  These 

concerns are primarily opinions that require further investigation. 

10.1.1 Practical Concerns 

Practical concerns about the proposed method were primarily discovered during its 

implementation to various applications (e.g., Chapter 9 and Appendix B).  Many of these 

concerns are related to organizational characteristics that may be tempered in an actual design 

when applied by professionals from within an organization instead of a university doctoral 

student working ex post facto on analyses. 

10.1.1.1 Challenge of Change in the Aerospace Industry 

The aerospace industry is in a difficult period in its history.  Employment in the aerospace 

industry in the U.S. recently dropped to its lowest level in 50 years [Aerospace Industries 

Association, 2003].  Increased foreign competition, outsourcing of aerospace jobs overseas, and a 

declining interest among students are three of the challenges the aerospace industry faces.  For the 

U.S. to remain the preeminent player in aerospace, industry must adapt by assaying new methods.  

However, enacting change in the aerospace industry is exceedingly difficult.  The aerospace 

industry is reluctant in general to assist in developing and implementing a method unless its 

benefit has been demonstrated in a verifiable application.  Unfortunately, it is difficult to develop 

and implement a method without a “real world” example that only the aerospace industry can 

provide.  The examples presented in Chapter 9 and Appendix B were performed ex post facto yet 

due to their generality in theory but specificity in application may provide the most compelling 

opportunity to break this “catch-22.” 

Change is also difficult in the aerospace industry due to the procedures by which 

organizations allocate funds.  Funds are assigned to different elements within an organization 
                                                      

†“Unfortunately what is little recognized is that the most worthwhile scientific books are those in 
which the author clearly indicates what he does not know; for an author most hurts his readers by 
concealing difficulties.” – Evariste Galois 
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(e.g., systems engineering; subsystem engineering; research and development; quality and 

assurance).  These organizational elements allocate a portion of their funds for methods and 

techniques that, if successful, will benefit that organizational element.  Organizational elements 

will rarely fund new methods or techniques that would be beneficial beyond their purview.  Some 

organizations have developed specific well-funded elements within an organization to assist 

breaking up this impasse (e.g., the Defense Advanced Research Projects Agency (DARPA) 

within the Department of Defense).  Increased collaboration with and funding of both universities 

and think tanks may assist the aerospace industry in this area until organizational funding issues 

can be resolved. 

10.1.1.2 Engineering Curricula and Practice  

The proposed method requires the stake holder, decision maker, system engineers, and 

subsystem engineers educated at a minimum in basic probabilistic and statistical techniques for 

successful implementation.  Other mathematical techniques (e.g., simulation) need only be 

learned by certain individuals in the proposed method.  Although most engineers have a basic 

knowledge of probability and statistics, few engineering curricula have a formal requirement in 

this area.  Engineering curricula are typically loaded with courses that are difficult to compress 

within a four-year degree as it is.  Pressures to reduce overall degree requirements coupled with 

the desire for more specialized courses in mathematics and engineering analysis are deemed more 

important than basic and intermediate probability and statistics.  Probability and statistics courses 

are generally viewed as a luxury, perhaps important for some engineering disciplines, but not 

important enough to require in general curricula.  It is interesting to note that it took academia 

over fifty years to establish applied statistics in mathematics even as its benefit was being 

demonstrated and funding was available.‡  Although the tasks are different, the situation for 

educating employees in industry is similar.  A short course on the order of a day in duration 

sponsored by the employee’s organization could provide the necessary education in this area.  

However, pressures in industry including lack of time, limited funds, and lack of perceived 

benefit make it difficult for engineers and managers to take such short courses.  Attempts at 

implementing new methods often fail because only one or a handful of individuals truly 

understand the underlying mathematics of a method. 

                                                      
‡In 1860, when Florence Nightingale, after consulting with mathematicians of the time, offered to fund 

a chair in applied statistics at Oxford, her offer was flatly refused.  After thirty years of effort Florence gave 
up. [Bernstein, 1998] 
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10.1.1.3 Paranoia in the Aerospace Industry 

As discussed in Chapter 5 and Chapter 6, uncertainties can be quantified using existing data, 

expert elicitation, or Bayesian techniques.  All three of these techniques require obtaining and 

sharing information.  Unfortunately, the aerospace industry suffers from paranoia with respect to 

sharing information.  Although not a firm impediment, limited sharing of information will make 

implementing the proposed method more difficult and require more resources.  This paranoia is 

primarily from two sources: a “competition-sensitive” culture and government regulations.  

As discussed earlier, the aerospace industry is facing difficult challenges.  The industry has 

evolved from developing many moderately complex multidisciplinary systems to developing only 

a handful of very complex systems.  Sources of funding available in previous years no longer 

exists and companies scramble to win the limited contracts that arise.  Failing to win these 

contracts often results in consolidation of these companies within other companies.  The U.S. 

aerospace industry has contracted from ~50 small- to medium-sized companies to five major 

companies in the past twenty-five years [Velocci, 2000].  Hence, intense pressure exists on 

companies and their employees to win competitions.  Furthermore, systems built typically involve 

many disciplines and few individuals have the expertise and technical breadth to truly understand 

the competitive benefit of much of the information involved.  Companies and their employees are 

rarely willing to share information that they perceive might give a competitor any advantage. 

Another reason for paranoia in the aerospace industry is government regulations such as the 

International Traffic in Arms Regulations (ITAR).  Originally drafted in the 1970s to monitor 

sales of military equipment around the world, the laws have grown to cover space-related 

products such as satellites and rocket parts.  Recent high-profile cases against two U.S. 

companies have brought ITAR forth as a significant impediment in sharing information between 

U.S. and foreign companies [Select Committee of the U.S. House of Representatives, 1999].  As 

most complex multidisciplinary systems increasingly involve components, assemblies, and 

sometimes entire subsystems that are built by foreign companies, information transfer between 

U.S. companies and international partners is a necessity.  ITAR and other government regulations 

have made this information transfer process much more difficult and are seen as a barrier for 

future international collaboration.  Applying the proposed method, which would entail an increase 

in this transfer of information between organizations, might be stifled by government regulations 

such as ITAR. 
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10.1.1.4 Documentation and Lessons Learned 

Practicing designers and engineers are notorious for consciously avoiding any discussion of 

their own methods and techniques.  They rarely document their design assumptions and beliefs.  

Unfortunately, selective historical amnesia remains a condition many industries, including the 

aerospace industry, appear to suffer from.  Furthermore, openly discussing failures and lessons 

learned from previous designs is seldom done except in highly-visible public projects or when 

loss of life was involved.  Including failures in the data recorded and opinions elicited is critical 

in honestly and accurately quantifying uncertainties.  The proposed method thus requires rigorous 

documentation of existing data and expert elicitation of beliefs.  The twenty-first century holds 

the promise of an unprecedented capability of information-exchange, storage and retrieval via the 

internet; memory; and sophisticated databases and data-mining techniques, respectively.  

Nonetheless, these capabilities are only beneficial in applying the proposed method if participants 

take advantage of them.  If acquired data and opinions elicited from experts concerning 

uncertainties are not accurately and honestly documented and stored, subsequent applications of 

the proposed method will remain a time-consuming and laborious process minimizing the overall 

benefit. 

10.1.2 Theoretical Concerns 

Theoretical concerns about the proposed method are due to two categories: volitional and 

phenomenological uncertainty.  Both are discussed in this section. 

10.1.2.1 Volitional Uncertainty 

The proposed method is vulnerable to being exploited by individuals through expert 

elicitation of uncertainties.  Certain individuals may be familiar enough with the proposed method 

to specify an uncertainty distribution of a variable in such a way as to achieve a desired outcome 

when no statistical data or other expert opinion is available.  The motivations for such behavior 

by individuals are numerous: they may want to influence a decision to go a certain way; may 

believe that they will be evaluated based on the outcome; may want to suppress uncertainty that 

they actually believe is present in order to appear knowledgeable or authoritative; or perhaps they 

have taken a strong stand in the past and do not want to appear to contradict themselves by 

producing an opinion that lends credence to alternative views.  Volitional uncertainty concerns 

were addressed in part in Chapter 6 while these specific motivational concerns have been 

discussed by others (e.g., [Frey, 1992]).  Indeed, this motivational concern would be enhanced if 

the proposed method uses simulation techniques that are computationally efficient or if the 
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relationships describing the complex multidisciplinary system are relatively simple.  One of the 

strengths of the method, the ability to reapply the method as needed to update margins when 

uncertainties have changed, could be used to manipulate the process if the proposed method takes 

on the order of minutes to apply. 

Another common situation occurs when only one expert can provide elicitation to an 

uncertainty.  With no hard data to back up this expert, the resulting probability encoding could be 

characterized as “making up data.”  Nonetheless, a good faith effort to characterize the 

uncertainties is more appropriate and defensible than completely side-stepping and ignoring them 

as is often currently done.  If certain uncertainties can only be estimated by one expert, that in and 

of itself indicates an area in the design of a complex multidisciplinary system where more 

research effort should be dedicated.  This research effort could entail obtaining experimental data 

or taking time to find other experts or references to supplant the opinion provided by the original 

expert. 

Lastly, critics of the proposed method may point to the fact that the current heuristic method 

of estimating design margins is replaced by a new and more complicated method that relies 

heavily upon expert opinion and experience, a form of heuristics: that is, a simple method is being 

replaced by a much more cumbersome one.  This argument has validity except that the proposed 

method is applied at a lower and less complicated hierarchical level than the level the current 

method is applied at.  At a lower level, difficult problems are simplified and quantifying 

individual uncertainties is manageable.  Bayesian techniques and simulation offer mathematical 

foundations within the proposed method that results in a much more robust and dynamic method 

of determining margins than the current method. 

10.1.2.2 Phenomenological Uncertainty 

Phenomenological uncertainty was introduced in Chapter 2 and discussed in detail in Chapter 

5.  Techniques were proposed to address phenomenological uncertainty in design as it is not 

amenable to probabilistic methods.  Although few designs spring from up from nothing, “cutting 

edge” complex multidisciplinary systems that “push the envelope” are those that are most 

vulnerable to the effects and impacts of phenomenological uncertainty.  Mathematically rigorous 

theories are only as complete as the physical understanding on which they are based and 

interpreted.  The value of the proposed method is thus diminished and limited by 

phenomenological uncertainty.  The next century of engineering design will likely see systems 

being designed and developed that are more complex than those in use today.  Application of the 

proposed method to these systems will have to be done carefully, at a level in the design (e.g., 
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subsystem, assembly, component) where the physical theories are well understood and the effects 

of phenomenological uncertainty are diminished.  Perhaps a benefit in applying the proposed 

method and documenting uncertainties will be a pedagogical one where participants make 

discoveries and gain knowledge thus reducing phenomenological uncertainty for subsequent 

design iterations and applications of the proposed method.  Computationally efficient simulation 

techniques (discussed in Chapter 7) and continued development of faster computers should 

facilitate these subsequent applications of the proposed method. 

Lastly, the three techniques discussed in Chapter 5 to reduce the effect of phenomenological 

uncertainty (increasing knowledge, expanded systems engineering, and robust design) are all 

enhanced if they are supported by legal contracts and enforcement of those contracts.  For 

example, efforts by a contractor to assess phenomenological uncertainty in a system will be 

spurred by a contract and institution that punishes that contractor if the system fails.  

Unfortunately, the current process for designing and building space systems undermines such 

legal contracts since designs and follow-on designs are often given out for political reasons, an 

insufficient industrial base, or national security reasons.  Refining the legal issues in the 

contracting process for complex multidisciplinary systems may be a fruitful area for addressing 

phenomenological uncertainty. 

10.2 Potential Impact of the Proposed Method 

Despite the issues discussed previously, the proposed method has demonstrated qualitative 

and quantitative benefits over the current heuristic-based method (see Chapter 3).  If 

implemented, the proposed method may alter how complex multidisciplinary system design is 

undertaken.  The engineering impact is the actual method of how margins are calculated.  

Potential organization impacts are noted in this section.  The proposed method will only be useful 

to an organization if improvements in predicting margins and the benefits that go along with them 

are greater than the cost of implementing the method.  Unfortunately, this will not be known until 

the method has been applied in practice, preferably several times after the learning curve of the 

first few implementations is overcome.  A proposed step-by-step procedure for implementing the 

proposed method by an organization is provided in Appendix C. 

10.2.1 Probabilistic vs. Deterministic 

The proposed method relies on probabilistic techniques that will require more resources to 

implement than a deterministic/heuristic approach.  Unless participants in the method are 

convinced of the benefit of accurately determining margins early in design, the proposed method 
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will not seem justified.  The proposed method will require an up-front investment in effort and 

personnel to quantify model and input variable uncertainties.  Deterministic simulation-based 

tools would also require front ends to allow them to be called repeatedly with different input 

variable uncertainties in a probabilistic framework.  Lastly, participants will have to adapt from 

believing in equivocal outcomes in the design to acknowledging stochastic outcomes that rely on 

probabilistic information.  In theory, these initial investments in resources will be recouped 

during design by identifying and prioritizing uncertainties and later in development when 

potentially significant unforeseen redesign and integration efforts never materialize. 

10.2.2 Systems Engineer Role Expanded 

As their name suggests, system engineers are responsible for ensuring success during the 

development of the entire complex multidisciplinary system.  System engineers typically have a 

broad knowledge base of several subsystems.  With this broad knowledge base, detailed 

subsystem knowledge is sacrificed.  Their roles could include working closely with subsystem 

engineers to working only with other system engineers.  System engineers could fill the role of 

analyst/facilitators that were described in Chapter 5.  This would increase their scope and 

responsibilities on a design as they would work closely with both subsystem engineers and the 

decision maker.  In this role, system engineers would also provide continuity across assessments 

by different individuals and subsystems and could mediate disagreements among informed 

experts.  The transparency of the proposed method should enhance confidence and trust between 

these method participants, something often lacking in how such systems are currently designed 

and developed. 

10.2.3 Subsystem Engineers Empowered  

In the current method of complex multidisciplinary design, subsystem engineers are often not 

involved in determining and updating margins on their subsystems.  These subsystem engineers 

might provide feedback but the actual margin levels are set by system engineers and/or the 

decision maker.  The proposed method empowers subsystem engineers via their quantification of 

uncertainties involved.  With the transparency of the proposed method, subsystem engineers will 

experience an element of ownership in the margins that are established.  This is in contrast to the 

current method where value is often imposed and the only purpose of the subsystem engineer’s 

opinion is a justification exercise to management.  With this sense of increased influence and 

ownership, subsystem engineers may be more responsible in honestly and accurately estimating 

uncertainties thus increasing involvement and communication among participants in the proposed 
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method.  The proposed method may also result in subsystem engineers having a positive attitude 

about discussing and confronting uncertainty.   

10.2.4 Management Held More Accountable 

The transparency in the proposed method will also result in increased accountability by 

management.  If a margin is exceeded, a decision maker can no longer, for example, be able 

claim innocence by pointing to requirements creep.  If requirements change or requirement 

changes are proposed by the stake holder, the method can be reapplied and updated estimates for 

margins can rapidly be determined and conveyed to the stake holder.  Conservatism or risky 

assumptions are no longer buried within margins.  All quantifications for uncertainties will be 

available for the stake holder to see.  Furthermore, these quantifications and comparisons of 

uncertainties can help guide future information gathering and research.  If margins are exceeded, 

the uncertainty responsible can be traced.  Analysis and decision making are clearly separated and 

a dispassionate representation of these decisions will uncover ulterior motivations if they exist.  

The increased accountability of management might provide the most significant impetus for 

successful implementation of the proposed method in an actual design. 

10.2.5 Company Best Practices and Personnel 

Although implementing the proposed method will likely change aspects of design as 

discussed, the fundamental design process is not impacted.  The proposed method is not 

application or discipline specific requiring organizations to change how they design and build 

complex multidisciplinary systems; only in the manner in which they quantify uncertainty and 

calculate margins.  The proposed method should go hand in hand with company best practices, 

not replace them.  The proposed method enhances the design process; it is not a replacement for 

lessons learned.  Like most methods the more experienced the participants involved in the 

proposed method, the higher the likelihood of successful implementation.  Nonetheless, the 

transparency of the proposed method and the quantification and subsequent documentation of 

uncertainties allows a mix of experienced and inexperienced participants to be involved.  

Knowledge, experience, and lessons learned in quantifying uncertainties may be passed on to 

other employees.  Implementation of the proposed method should assist in this transfer of 

knowledge from one generation of participants to the next which remains a constant challenge in 

aerospace and other industries as workforce ages and retires. 
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10.3 Future Directions 

The method proposed in this thesis has built upon and extended research by a variety of 

others.  The volitional and phenomenological concerns about the proposed method discussed 

indicate that a universal method for propagating and mitigating uncertainty in complex 

multidisciplinary design will probably not occur for years to come, if ever.  Appreciating this 

condition is the first step in investigating avenues for future research that might strengthen, refine, 

and extend the proposed method.  Future modification and refinement of the proposed method is 

anticipated and encouraged.  The following section provides research areas that may be most 

fruitful for improving the proposed method. 

10.3.1 Simulation Techniques 

The various simulation techniques discussed in Chapter 7 were implemented to address 

interaction among uncertainties.  Although Monte Carlo simulation (MCS) remains the standard 

simulation technique, techniques such as the modified mean value method and subset simulation 

achieve comparable accuracy to MCS in certain situations yet require significantly less 

computational effort.  The challenge in applying simulation techniques in the preliminary design 

of complex multidisciplinary systems is threefold: the sheer number of uncertainties that are 

involved (in the dozens to hundreds); the diversity in these uncertainty types (i.e., continuous, 

discrete, discrete choice among alternatives); and the complexity of the design space and models 

used to represent that design space.  Continued research into simulation techniques that can 

provide comparable accuracy as MCS but require significantly less computational effort and 

resources to apply would allow more rapid application of the proposed method. 

10.3.2 Uncertainty Types 

Certain uncertainty types, such as ambiguity and human errors, were only briefly discussed.  

Other uncertainties, model and phenomenological uncertainty in particular, were discussed yet 

remain uncertainties that can dominate the preliminary design of a complex multidisciplinary 

system.  Refining the techniques to handle model uncertainty and investigating the techniques to 

address phenomenological uncertainty that were suggested in Chapter 5 would quantify the 

concerns in the proposed method discussed earlier. 

10.3.3 Optimization Techniques 

The possibility of combining the proposed method with optimization techniques was 

introduced in Chapter 8.  One optimization technique in particular, adapted simulated annealing 
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(ASA), has been proved to be successful in multidisciplinary design [Jilla, Miller, & Sedwick, 

2000].  Simulated annealing is based on the same underlying mathematics (the Metropolis 

algorithm) that is used so successfully in subset simulation Markov chain Monte Carlo to find 

high (or low) percentile values.  Combing subset simulation with ASA may revolutionize 

preliminary design by providing a powerful technique to optimize both margins and the overall 

complex multidisciplinary design concurrently.  

10.3.4 Alternate Theories than Probabilistic Methods 

The mathematical foundations of the proposed method are probabilistic.  The rich history of 

probability theory and its applications was one of the reasons this probabilistic framework was 

chosen.  However, a variety of other alternate mathematical theories may prove to be successful 

within the proposed method.  These theories are not as well established as probability theory but 

hold the potential of addressing some of the concerns in the proposed method discussed earlier.  

The three theories that appear to hold the most promise are: information-gap decision theory; 

fuzzy logic; and Dempster-Shafer theory. 

The central emphasis of information-gap decision theory is that decisions under severe 

uncertainty must not demand more information, or at least not much more, than the decision 

maker can reliably supply.  An information-gap model of uncertainty is a non-probabilistic 

quantification of uncertainty that entails no measure functions: neither probability densities nor 

fuzzy membership functions.  Information-gap models concentrate on the disparity between what 

is known and what could be known, while making very little commitment about the structure of 

the uncertainty [Ben-Haim, 2001].  Information-gap decision theory may be able address 

phenomenological uncertainty better than probabilistic methods as it is geared towards severe 

uncertainty [Ben-Haim, 2004].   

Fuzzy logic is a more general case of classical crisp sets that was discussed in Chapter 3.  

Fuzzy logic is an established alternative to probability theory in representing uncertainty.  

Dempster-Shafer (evidence) theory is a generalization of classic probability theory.  In Dempster-

Shafer theory there are two complementary measures to characterize uncertainty: belief and 

plausibility.  Together, these measures can be thought of as representing lower and upper 

probabilities, or interval-values probabilities [Oberkampf, Helton, & Sentz, 2001].  Although the 

mathematical foundations of Dempster-Shafer theory are well established and could replace 

probability theory in the proposed method, it is not clear whether the practical aspects in the 

proposed method (such as the simulation techniques or sensitivity analysis) would be amenable to 

this alternate theory.  Nonetheless, Dempster-Shafer theory holds promise for dealing with 
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epistemic uncertainty in a more rigorous manner than the probabilistic framework of the proposed 

method. 

10.3.5 Alternate Applications 

Applications of the proposed method and their importance in demonstrating its practical 

viability are presented in Chapter 9 and Appendix B.  These examples were all from disciplines in 

space systems design yet are representative of subsystems that exist in any complex 

multidisciplinary system and should be of interest to most engineers.  The proposed method was 

specifically developed in a general fashion for application to any complex multidisciplinary 

system.  The issues in applying the proposed method to an aircraft or automobile, for example, 

would be small in terms of theory, but potentially high in model creation and uncertainty 

identification.  The structure and level of detail in models for aircraft and automobile discipline 

tradable parameters would be different than those of a space system.  Cost per unit (ability to 

mass produce that complex system) and aesthetics, two parameters of limited or no consequence 

in space system design, would be of significant importance in aircraft and automobile design.  

Other complex multidisciplinary systems may also have unique uncertainties that space systems 

do not encounter.  The proposed method would appear to be amenable to these other systems with 

only minor modifications and limited development yet this hypothesis requires verification with 

actual alternate complex multidisciplinary systems.  Real-world examples provide an opportunity 

to extend and refine the proposed method and actual implementations may uncover important 

lessons. 

10.4 Final Thoughts 

There is a strong desire for a formal method to become a benchmark or standard in 

propagating and mitigating uncertainty in the design of complex multidisciplinary systems, as no 

such standard exists.  This is certainly the case in the aerospace industry which has and continues 

to struggle with uncertainty.  The theoretical concerns of the proposed method discussed 

previously indicate that despite its benefits (that are summarized in Chapter 3) it may fail under 

certain situations in providing statistically rigorous margins.  The primary benefit of the proposed 

method may in fact be in its application and resulting codification of engineering judgment.  

Having to identify, explain, and quantify different uncertainties as required in the proposed 

method will help participants steer a rational path between analysis paralysis and impulsive 

reaction that currently impedes the design of many complex multidisciplinary systems. 
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The relation between success and failure in uncertainty management constitutes a 

fundamental paradox in practical engineering design.  The accumulation of successful experience 

tends to embolden managers to hold lower and lower margins for tradable parameters, which 

seem almost invariably to culminate in a failure that takes all participants by surprise.  In the 

wake of such failures, there is generally a renewed conservatism in margins that leads to 

successful but uncompetitive designs.  As these designs evolve and mature the cautions attendant 

upon the margins tend to be forgotten and a new period of optimism and hubris ensues.  The 

cycle repeats itself at seemingly regular intervals across a wide range of industries and has stifled 

innovation in how complex multidisciplinary systems are designed.  The proposed method 

attempts to break this cycle by providing a formal and rigorous method to determine the value of 

these margins.  The proposed method does not explicitly seek to reduce margins.  In some cases 

the proposed method indicates the current heuristic method of margin management is too 

conservative; in other cases it indicates the current method is too risky.  By inculcating in 

tomorrow’s stake holders, decision makers, engineers, and designers an understanding of 

uncertainty and uncertainty propagation and mitigation techniques provided by the proposed 

method, future participants will be better prepared, educated, and experienced in determining 

margins that will ultimately lead to successful complex multidisciplinary system design.  
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Appendix A Mathematical Foundations 
This appendix provides basic terminology, explicit definitions, and examples of many of the 

mathematical techniques presented in this thesis. 

A.1 Probability and Statistics 

Probabilistic methods are the cornerstone of the mathematical rigor presented in this thesis.  

This section provides basic terminology and mathematical definitions for probability and 

statistics terms and features used throughout the thesis.  Unless stated otherwise, these definitions 

originate from and follow Devore (2000) and/or Ross (2000). 

A.1.1 Random Variables 

A discrete random variable is a random variable that can take on only a finite (countable 

number) of possible values.  A continuous random variable can take on a continuum of possible 

values (i.e., if for some a < b, any number x between a and b is possible). 

A.1.2 Expected Values 

The mean is the expected value of a random variable.  Specifically, the mean is the first 

moment of a random variable: 
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The second central moment of a random variable is called the variance: 
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The square root of the variance is the standard deviation.  Decision makers often base 

decisions involving uncertainty on the means and standard deviations of available data.  

Unfortunately, looking at purely the means and standard deviations can lead to poor decisions.  

Consider a problem where two solutions are possible.  The costs to a project of implementing 

these two solutions are shown in Fig. A.1.  The two different distributions have the same mean 

and standard deviation, yet all but risk-seeking decision makers would choose the distribution on 

the left.  
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Fig. A.1   Two distributions with identical means and standard deviations. 

A.1.3 Probability Density Functions and Cumulative Distribution Functions 

A probability density function (PDF) is a mathematical expression that provides the 

probability of an event for each possible outcome.  Specifically, among the various outcomes in S 

the PDF of a discrete random variable (known as a probability mass function, PMF) is defined for 

every number x by 

 ( ) ( ) ( )( )xsXSsPxXPxp =∈=== :all  (A.3) 

Two properties must hold for a discrete PMF to be valid: 
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For a continuous random variable X, the PDF of X is a function f(x) such that for any two 

numbers a and b with a < b: 
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Two properties must hold for a continuous probability density function (PDF) to be valid: 
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A PDF is generated via a histogram: all the events (data) are sorted into bins of a specified size.  

This histogram is normalized (and perhaps smoothed out). 

A cumulative distribution function (CDF) is a monotonically increasing mathematical 

expression that gives the probability that an uncertain quantity is less than or equal to a specific 

value.  Specifically, the CDF F(x) of a discrete random variable X with a PMF p(x) is defined for 

every number x by 
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For any number x, F(x) is the probability that the observed value of X will be at most x. 
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The CDF F(x) of a continuous random variable X is defined for every number x by 
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The PDF is the derivative of the CDF.  The CDF represents the key decision function in design.  

Little is gained and much is lost when a CDF is reduced to expected values (as discussed in the 

previous section). 

A.1.4 Fractiles and Percentiles 

Let f be a number between 0 and 1.  The f fractile, Xf, of a distribution is a value such that 

there is a probability f that the actual value of the random variable will be less than that value: 

 ( ) fXXP f ≡≤  (A.9) 

The (100f)th percentile of the distribution of a continuous random variable X, denoted by η(p), is 

defined by: 
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A.1.5 Major Distribution Types 

There are dozens of existing distributions that have been formulated to represent phenomena 

behavior and uncertainty.  This section presents the distributions most commonly used in the 

examples and discussions in this thesis.  The probability density function (PDF) and cumulative 

distribution function (CDF) equations for these distributions and descriptions of other 

distributions can be found elsewhere (e.g., [Evans, Hastings, & Peacock, 2000], [Morgan & 

Henrion, 1990]). 

A.1.5.1 Normal (Gaussian) 

Arguably the most important distribution in practical applications, the normal distribution is 

representative of an enormous number of real-world processes, a consequence of the central limit 

theorem of statistics.  The central limit theorem demonstrates that, under certain conditions the 

sum of a sufficiently large number of individual probability distributions is, in the limit, a normal 

distribution.  This result is true whether or not the underlying distributions are themselves normal.  

Because most practical systems are susceptible to a large number of underlying noise or error 

sources that are individually unknown, or unknowable, the central limit theorem implies these 

noise or errors may be characterized as normally distributed.  The normal distribution is also 

among the more analytically and numerically tractable distributions [Griffin & French, 2004].  
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However, the normal distribution is a continuous distribution that assumes infinite tails which 

may cause problems in certain situations as negative values may have a nontrivial probability.  A 

normal distribution is shown in Fig. A.2. 
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Fig. A.2   PDFs of four continuous distributions (gamma, normal, lognormal, & uniform). 

A.1.5.2 Binomial 

The binomial distribution is the sampling distribution of a Bernoulli random variable.  The 

binomial distribution uses two parameters: n (number of independent trials) and p (probability of 

success for each trial).  The normal distribution can be used to represent a continuous version of 

the binomial distribution.  That is to say, when the mean n·p is large, the binomial distribution can 

be approximated by a normal distribution with µ = n·p and σ2 = n·p·(1-p) and to a degree, vice-

versa.  Hence, a binomial distribution is useful when a discrete version of a normal distribution is 

desired.  Numerical issues often arise in using the binomial distribution as inverse CDF 

calculations can be difficult computationally.  A binomial distribution is shown in Fig. A.3 
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Fig. A.3   PDFs of two discrete distributions (binomial & uniform). 

A.1.5.3 Lognormal and Gamma 

Two distributions similar to the normal distribution that are often used are the lognormal and 

gamma distributions.  The lognormal distribution is a two-parameter (µ and σ) positively skewed 

continuous distribution that can be used to represent nonnegative uncertainties (e.g., salaries, 

masses).  The gamma distribution is a two-parameter (A and B) continuous distribution that is 

widely applicable to many physical quantities.  When A is large, the gamma distribution closely 

approximates a normal distribution with the advantage that the gamma distribution has density 

only for positive real numbers. A lognormal and gamma distribution are shown in Fig. A.2. 

A.1.5.4 Uniform 

A uniform distribution provides one of the simplest means of representing uncertainty.  It is 

useful when an expert is willing to identify a range of possible values but unable to decide which 

values within this range are more likely to occur than others.  A uniform distribution can be either 

discrete or continuous and is specified via two parameters: a minimum and a maximum value.  

The use of uniform distribution is also a signal that the details about uncertainty in the variable 

are not known and this uncertainty likely warrants further investigation.  A discrete uniform 

distribution is shown in Fig. A.3 and a continuous uniform distribution is shown in Fig. A.2.  
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A.1.5.5 Triangle 

A triangle distribution provides a convenient way to represent uncertainties where values 

toward the middle of the range of possible values are considered more likely to occur than values 

near either extreme.  Although not a traditional distribution, the arbitrary shape and “sharp 

corners” of triangle distribution can be a convenient way to telegraph the message that the details 

of the shape of the distribution are not precisely known.  This may help to prevent over 

interpretation or false sense of confidence in subtle details of the results [Morgan & Henrion, 

1990].  Since the triangle distribution is a distribution not found in nature it is often neglected in 

many statistical references.  A triangle distribution is defined by three parameters: a most likely 

value (peak), a minus value (minus), and a plus value (plus).  The PDF and CDF of both a 

discrete and continuous triangle distribution with parameters 20, -5, and +5 are shown in Fig. 

A.4: 
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Fig. A.4   PDF (left) and CDF (right) for a discrete and continuous triangle distribution with 

parameters 20, -5, and +5. 

Note the difference in PDF values between the discrete and continuous case in Fig. A.4.  The 

PDF for the discrete case allows values at the low and high range specified thus altering the 

distribution slightly from the continuous case.  This definition may be different than other 

references but is provided since the intuitive definition of a triangle distribution in the discrete 

case assumes plus and minus values with respect to the most likely estimate are feasible and 

should have a positive PDF value.  A triangle distribution is a good distribution to use early in 

expert elicitation since it is easy to obtain judgments for it. 
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A.1.6 Fitting Distributions to Data 

Although a custom distribution can be generated for data, an existing distribution such as 

those described in the previous section is often fit to the data to simplify subsequent calculations 

and discussions.  In general, a candidate distribution (e.g., normal) is selected and its parameters 

(e.g., µ and σ) are determined via some statistical techniques such as moment matching or the 

maximum entropy method.  Each candidate distribution can then be compared to the actual data 

using three statistical methods.  The first method is one-way analysis of variance (ANOVA) 

which involves the analysis of data sampled from two distributions: one based on the existing 

data and the other the candidate distribution.  A second method is the Kruskal-Wallis test which 

measures the extent to which the average ranks of the samples deviate from their common 

expected value.  A third method is Friedman test which measures the discrepancy between the 

expected value of each samples rank average with the actual rank average.  All three methods are 

described in Devore (2000) and provide a different statistical take on whether a candidate 

distribution would be a satisfactory fit to data. 

A.1.7 Convolving Distributions 

Convolving probability distributions is a technique that allows two random variables to be 

added to each other to create a joint probability distribution.  For example, accounting for model 

uncertainty once results for a tradable parameter have been generated from a model can be 

accomplished by convolving the tradable parameter probability density function (PDF) with the 

model uncertainty PDF for that tradable parameter.  Two techniques for convolving distributions 

are available.  The first technique is simpler if existing data are available.  Consider a simulation 

where N samples of a tradable parameter have been generated by a simulation technique (e.g., 

Monte Carlo simulation) and are available in their raw form.  These samples need to be 

convolved with the model uncertainty which has been assessed via a PDF.  N random samples 

based on that model uncertainty PDF are generated and added to the N tradable parameter 

samples.  This new data can then be normalized to create a formal PDF as described previously.  

The result is the convolved distribution. 

The second and more elegant technique is simpler if distributions (not data) are available for 

both sets of data.  This technique convolves the distributions by taking the Fourier transform of 

the both PDFs.  The transformed PDF of the original data is first multiplied by the absolute value 

of the model uncertainty transform.  An inverse Fourier transform of the result is then performed 

and the result is normalized to create a formal distribution.  This technique is simplified 

tremendously using fast Fourier transform (FFT) algorithms available in most mathematical 
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computer packages (e.g., MATLAB®).  Either technique yields the same joint probability 

distribution, although the latter method smoothes out much of the fluctuations in the original data 

PDF. 

A.1.8 Probability of Random Variable Greater than Another 

The probability one random variable being greater than another random variable can be 

determined by integrating the intersection of the probability density functions (PDFs) of the two 

random variables.  This technique is especially useful when comparing a tradable parameter PDF 

with an uncertain requirement for that tradable parameter.  Consider the following example taken 

from Thunnissen (2004b): 
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Fig. A.5   Probability of injected capability greater than spacecraft wet mass. 

The decision maker in this example is concerned whether the injected mass capability of a 

launch vehicle (tradable parameter) is greater than the uncertain spacecraft wet mass 

(requirement) that it must launch.  Abbreviating these two distributions as f(t) and f(r), 

respectively, the probability that the tradable parameter is less than the requirement is 

  (A.11) ( ) ( ) ( ) drdttfrfrtP
r

tr ∫∫
∞∞

∞−

=<

Or equivalently: 
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  (A.12) ( ) ( ) ( ) dtdrrftfrtP
t

rt ∫∫
∞−

∞

∞−

=<

Such integrals are easily evaluated numerically provided sufficient discretization is used over 

the integration domain of interest [Siddall, 1983].  The probability the tradable parameter is 

greater than or equal to requirement is simply: 

 ( ) ( )rtPrtP <−=≥ 1  (A.13) 

A.1.9 P-Value and Correlation Coefficient 

A frequentist measure of uncertainty is the “p-value” which is designed to tell researchers 

whether results are statistically “significant” or the product of chance.  A p-value less than 0.05 is 

deemed statistically significant.  A p-value of 0.05 means the odds that the “null hypothesis” 

would produce the observed effect are just 1 in 20 if the experiment is repeated many times, 

suggesting that the alternative hypothesis is creating the effect.  The correlation coefficient 

between two sets of random variables X and Y is defined as: 

 ( )
yx

YX
YX

σσ
ρ

⋅
=

,Cov
,  (A.14) 

where Cov(X,Y) is covariance between the two random variables.  X and Y may represent the 

sample values for one input variable uncertainty and the output tradable parameter results, 

respectively.  The p-value obtained when calculating the correlation coefficient can thus be 

helpful in assessing whether certain input variable uncertainties may be responsible for high 

uncertainty in the tradable parameters.  Unfortunately, the actual meaning of a p-value is difficult 

to explain to a nonstatistician and p-values often tend to overstate the strength of evidence for a 

difference between two hypotheses.  For example, a p-value of 0.05 does not mean that there is a 

95% chance that the null hypothesis is wrong and the alternative hypothesis is correct.  Results 

obtained via Bayesian techniques are often easier to interpret for nonstatisticians and are 

discussed subsequently. 

A.1.10 Stochastic Dominance 

One random variable is said to stochastically dominant another random variable when the 

CDF of that random variable lies completely to the right (or left) of the other [Clemen, 1996].  

Consider an example where a larger tradable parameter value is desired.  Design B in Fig. A.6 

stochastically dominates Design A.  Design B is thus the preferred option for all situations with 

respect to this tradable parameter.  Conversely, if a smaller tradable parameter is desired, Design 

A would stochastically dominate Design B in Fig. A.6. 
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Fig. A.6   Example of stochastic dominance. 

A.2 Bayesian Techniques  

A brief introduction to Bayesian techniques is provided.  An example follows.  Bayesian 

techniques are described in detail in other references (e.g., [Gelman et al., 2004]).  

A.2.1 Overview 

In analyzing data, traditional statistical methods ignore the past.  Bayesian techniques, in 

contrast, start with an existing belief and update that belief based on new data.  The application of 

Bayesian techniques has recently undergone a renaissance in the fields of engineering and science 

[Malakoff, 1999].  A prior belief is updated with actual data to form a posterior belief via Bayes 

theorem: 

 ( ) ( ) ( )
( )DP

HPHDPDHP ⋅
=

||  (A.15) 

Bayes’ theorem states that the probability of the hypothesis, given the data, is equal to the 

probability of the data, given that the hypothesis is correct, multiplied by the probability of the 

hypothesis before obtaining the data divided by the averaged probability of the data.  Application 

of Bayesian techniques to the field of aerospace engineering is relatively recent.  Guikema and 

Paté-Cornell (2004) used Bayesian techniques to estimate launch vehicle reliability and illustrated 

that Bayesian techniques offer a different perspective than the frequentist interpretation.  
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Bayesian techniques quantified the inexperience of a launch vehicle by not only predicting the 

mean future frequency of launch success but also the uncertainty about the mean since the entire 

probability density function (PDF) is known.  In general, Bayesian techniques offer a significant 

benefit in assessing approximation errors for models with little data available for model 

verification.  Although Bayesian techniques typically require numerical integration or simulation, 

in certain cases they can be applied analytically.  When certain likelihood distributions are paired 

with certain prior distributions (known as conjugate priors) the calculation is simplified as both 

the posterior distribution and the prior distribution are the same family of density functions. 

A.2.2 Example 

An example of applying Bayesian techniques to estimate the future frequency of launch 

success for a launch vehicle given actual launch results is presented.  This example follows the 

three-level Bayesian analysis of launch vehicle reliability described in detail in Guikema and 

Paté-Cornell (2004).  The example uses the 115 flights of the Boeing Delta II (6x, 7x) launch 

vehicle.  The Delta launch data used consists of Delta flights #183 to #307 (February 14, 1989 to 

August 3, 2004) excluding flights #184, #187, #189, #196, #259, #269, #293, #296, and #301.  

These nine flights were Delta II (3x, 4x, 5x), Delta III, or Delta IV launches.  Of the 115 flights, 

113 were successful (payload was placed in desired orbit) and two were failures.  The two Delta 

II (6x, 7x) failures were the 42nd flight (#228) and the 55th (#241) Delta flights.  Delta launch data 

are provided by Yearsley (2004). 

Four different prior distributions are investigated.  The first-level prior assumed a uniform 

distribution U(0,1) which is equivalent to a β(1,1) distribution.  A β(1,1) distribution implies the 

expected future fraction of successful launches is equally likely to lie anywhere between 0 and 1.  

The second-level prior builds upon the first-level Bayesian analysis by using the means of the 

first-level posterior distributions for all available launch vehicles.  Two different prior 

distributions are assumed in this second-level analysis.  The first fits a beta distribution to the 

means of the first-level posteriors by the method of moments.  The second fits a curve to the 

histogram of the first-order posterior means by interpolation.  Finally, the third-level prior also 

builds upon the first-level Bayesian analysis.  However, in this third-level analysis, the first-level 

posterior distributions for all of the launch vehicles (except the launch vehicle of interest) is used.  

These first-level posteriors are combined into a new nonbeta distribution by summing all the first-

level posteriors and renormalizing the resulting function into a proper density function.  Fig. A.7 

illustrates these four significantly different prior distributions: 
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Fig. A.7   Four possible prior distributions in launch vehicle example. 

In this example, the first-level prior was an “uninformed” prior.  The second- and third-level 

priors were the results of analysis.  The assumptions and analysis that went into estimating 

(choosing) the prior is a critical (and controversial) aspect of Bayesian analysis.  Which prior is 

best is a subjective belief on the part of the analyst or decision maker. 

The next step in a Bayesian analysis consists of updating the prior distribution with 

observations (actual data).  This can be done analytically for the first-level prior and second-level 

(generated via the method of moments) prior since they are beta distributions (conjugate priors to 

the binomial distribution that updates them).  For the second-level prior (generated via 

interpolation) and the third-level prior, this updating process must be done numerically.  

Observations for this latter case are represented by multiplicative transformations as shown in 

Fig. A.8. 
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Fig. A.8   The effect of observations in launch vehicle example. 

The updating procedure of the four different prior distributions is provided sequentially in 

Fig. A.9 through Fig. A.12 in fifteen launch increments. 

0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

45

50

Future Frequency of Launches Successful

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n 

V
al

ue

First-level
Second-level (Method of Moments)
Second-level (Interpolation)
Third-level

0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

45

50

Future Frequency of Launches Successful

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n 

V
al

ue

First-level
Second-level (Method of Moments)
Second-level (Interpolation)
Third-level

 
Fig. A.9   Posterior based on first 15 (left) and 30 (right) Delta II launches. 
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Fig. A.10   Posterior based on first 45 (left) and 60 (right) Delta II launches. 
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Fig. A.11   Posterior based on first 75 (left) and 90 (right) Delta II launches. 
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Fig. A.12   Posterior based on first 105 (left) and all 115 (right) Delta II launches. 
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Fig. A.9 and Fig. A.10 illustrate that the four significantly different prior distributions 

converge to approximately the same posterior distribution within 45 launches.  The four 

distributions are almost identical by Fig. A.12.  The posterior means and standard deviations for 

each of the four prior distributions after updating with available data are provided in Table A.1 

and Table A.2, respectively. 

Table A.1   Delta II posterior means for all four prior distributions 
 Posterior Mean 

After … 
First-level 

Prior 
Second-level 
(MoM) Prior 

Second-level 
(Interpolation) 

Prior 
Third-level 

Prior 
0 launches (prior) 0.5000 0.9588 0.8918 0.9616 
15 launches 0.9332 0.9609 0.9311 0.9718 
30 launches 0.9533 0.9629 0.9509 0.9755 
45 launches 0.9573 0.9615 0.9457 0.9705 
60 launches 0.9516 0.9602 0.9429 0.9665 
75 launches 0.9610 0.9619 0.9523 0.9698 
90 launches 0.9674 0.9635 0.9592 0.9725 
105 launches 0.9720 0.9650 0.9645 0.9748 
All 115 launches 0.9744 0.9659 0.9674 0.9760 

 

Table A.2   Delta II posterior standard deviations for all four prior distributions 
 Posterior Standard Deviations 

After … 
First-level 

Prior 
Second-level 
(MoM) Prior 

Second-level 
(Interpolation) 

Prior 
Third-level 

Prior 
0 launches (prior) 0.2878 0.0121 0.0636 0.0311 
15 launches 0.1003 0.0393 0.0115 0.0190 
30 launches 0.1231 0.0310 0.0109 0.0162 
45 launches 0.0317 0.0283 0.0108 0.0166 
60 launches 0.0270 0.0261 0.0108 0.0166 
75 launches 0.0219 0.0224 0.0103 0.0149 
90 launches 0.0184 0.0195 0.0099 0.0135 
105 launches 0.0159 0.0172 0.0095 0.0123 
All 115 launches 0.0146 0.0159 0.0092 0.0117 

Since the launch vehicle either places the spacecraft in its desired orbit or it does not, the best 

value to use for such a single-period decision problem when the entire probability density 

function (PDF) is available is the mean [Howard, 1970].  Although the mean values for launch 

vehicle reliability determined by Bayesian techniques often are close or identical to the means 

determined by traditional statistical methods, especially for those launch vehicles with a 

significant number of launches, the real value of Bayesian techniques is for those launch vehicles 

with few or no launches.  The means and standard deviations provided in Table A.1 and Table 

A.2 illustrate that the four different posterior distributions converge to similar values.  This 

example vividly illustrates that as more data are accumulated, the prior distributions matter 

increasingly less.  That is to say, the prior distributions are “washed out” by actual data.  Hence, 
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selecting the “correct” prior distribution, which may be a contentious issue among participants in 

the proposed method, matters increasingly less as more data are accumulated and applied.  Details 

on the assumptions and analysis procedure for this example are provided in Guikema and Paté-

Cornell (2004).  
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Appendix B Application Examples 
In addition to the attitude determination and control system (ADCS) example presented in 

Chapter 9, the proposed method was applied to two other spacecraft subsystems: propulsion and 

thermal control.  Elements of the proposed method were also applied to the discipline of mission 

design.  This appendix summarizes results of the two subsystem application examples and 

concludes with a discussion of the mission design application.  All three applications used the 

Mars Exploration Rover (MER) as the example mission. 

B.1 Propulsion 

The propulsion subsystem provides the changes in velocity needed to translate the center of 

mass of a spacecraft and/or to provide a torque to rotate a vehicle about its center of mass.  An 

early variant of the proposed method was applied to the propulsion system located on the cruise 

stage of MER in Thunnissen and Nakazono (2003).  Thunnissen and Nakazono (2003) describe 

all the basic steps in the proposed method and assume four tradable parameters: propellant mass, 

dry mass, schedule duration, and total cost.  Model uncertainty is not assessed in Thunnissen and 

Nakazono (2003) and Monte Carlo Simulation (MCS) is used as the only simulation technique to 

address interaction uncertainty.  In addition to Thunnissen and Nakazono (2003); Thunnissen, 

Engelbrecht, and Weiss (2003) and Thunnissen (2004a) describe the models used in this 

propulsion application.  This appendix assesses the uncertainty in the models used in the analysis, 

notes differences in uncertainties assumed, and compares the calculated margins via three 

simulation techniques: MCS, centered-finite difference modified mean value method (MMVM), 

and subset simulation (SS).  This analysis represents the critical design review (CDR) iteration as 

described in Thunnissen and Nakazono (2003). 

B.1.1 Model Uncertainty 

Model uncertainty assessments of the four tradable parameters are provided in Table B.1. 

Table B.1   Model uncertainties assumed 

Model Units 
Distribution type 
and parameters 

Propellant mass kg N(0,0.25) 
Dry mass kg N(0,0.15) 
Schedule duration days TNC(4,1) 
Total cost FY2003$K N(0,50) 

Model uncertainty was assessed by expert opinion (MER engineers and managers). 
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B.1.2 Uncertainty Quantification Differences 

SS had difficulties with the custom distributions for the five trajectory correction maneuvers 

(TCMs).  Due to the long stretches of TCM ∆V values, the probability distribution function (PDF) 

values are zero and the SS algorithm cannot easily progress.  In order to alleviate this numerical 

issue, χ and N were increased to allow more efficient and accurate Markov chain generation for 

the propellant and dry mass SS analyses.   

Additionally, four input variable uncertainties were changed from Thunnissen and Nakazono 

(2003) for all three simulation techniques.  These changes were due to omissions in the original 

paper and data mining of the output that uncovered errors in sample generation for these 

uncertainties.  The new distribution parameters for these four input variables uncertainties are 

listed in Table B.2. 

Table B.2   Updated input variable uncertainties from Thunnissen and Nakazono (2003) 
Input variable 

uncertainty 
Distribution type 
and parameters Units 

mfittings L(-2.2,0.1) kg 
α N(0.0524,0.00175) rad 

tadh N(0.0127,0.00127) mm 
tlin N(0.152,0.0152) mm 

Finally, the schedule model used in Thunnissen and Nakazono (2003) had a minor bug in it 

that is fixed in the subsequent propulsion schedule and cost analyses (as it is in the ADCS 

example in Chapter 9 and the thermal control example presented later).  Also, cost variables are 

represented by lognormal distributions in this updated analysis instead of normal distributions.  

The parameters for the lognormal distribution are the converted normal distribution parameters 

(e.g., N(80,8) becomes L(log(80),0.1)).  Hence, the corrected results herein differ slightly from 

comparable values that appear in Thunnissen and Nakazono (2003). 

B.1.3 Interaction Uncertainty 

The deterministic results for the propulsion analysis are listed in Table B.3. 

Table B.3   Deterministic results for thermal control analysis 

Tradable Parameter 
Deterministic 

Result 
Propellant mass 21.6 kg 
Dry mass 9.0 kg 
Schedule duration 708 days 
Total cost FY2003$10.392M 

Uncertainty in the four tradable parameters is evaluated via MCS, centered-finite difference 

MMVM, and SS.  The MCS results use more repetitions than the 5,000 used in Thunnissen and 
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Nakazono (2003); the MMVM and SS results are entirely new.  The number of calls to each 

model was set at N = 20,000 for MCS and N = 1,000 for SS (per SS level).  The number of 

repetitions in this example is greater than that in the ADCS example of Chapter 9 due to a greater 

interest in the extreme tail of these distributions.  The number of calls to each model for MMVM 

using a centered-finite difference is twice the number of input variable uncertainties plus one 

additional call.  For both propellant and dry mass, N = 65 as there are 32 input variable 

uncertainties (an additional 29 input variables for these two models are certain).  For schedule 

duration, N = 289 as there are 144 input variable uncertainties (another 96 input variables were 

certain).  For total cost, N = 344 of which 289 calls are to the schedule model and the remaining 

55 calls are to the cost model as there are 171 input variable uncertainties (144 schedule input 

variable uncertainties that might impact cost plus 27 cost input variable uncertainties).  Note that 

if the schedule duration and cost duration are calculated via MMVM simultaneously (as is done 

in the subsequent analysis), a total of 344 calls are required to calculate both parameters (not 

289+344 = 633).  All subsequent tables and figures reflect the final uncertainty: simulation results 

convolved with model uncertainty.  SS assumed Pf = 0.0001 and p0 = 0.1 in all simulations; χ and 

N however are different for the four SS analyses. 

B.1.3.1 Propellant Mass 

The propellant mass probability density function (PDF) values for MCS and MMVM are 

provided in Fig. B.1. 
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Fig. B.1   Propellant mass PDFs for MCS and MMVM. 

The cumulative distribution function (CDF) values for all three simulation techniques are 

shown in Fig. B.2 through Fig. B.5.  SS used N = 2000 (per SS level) and χ = 10. 
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Fig. B.2   Propellant mass CDFs (simulation level 1). 
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Fig. B.3   Propellant mass CDFs (simulation level 2). 
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Fig. B.4   Propellant mass CDFs (simulation level 3). 
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Fig. B.5   Propellant mass CDFs (simulation level 4). 

Fig. B.3 through Fig. B.5 demonstrate the performance of the three simulation techniques at 

the upper tail of the distribution.  MCS is the benchmark for comparison but requires a substantial 

number of calls to the model (N) to obtain values for the entire CDF range.  MVMM performs 

very well considering the complexity of the underlying model and the fact that only N = 65 are 

required.  MMVM follows the general MCS trend and requires well over two orders of magnitude 

less repetitions than MCS.  SS follows the general MCS trend for all SS levels although deviating 

slightly at extreme CDF values (fourth simulation level).  Table B.4 details the statistics of SS by 

simulation level for propellant mass. 

Table B.4   SS results by level for propellant mass 
SS 

Level x 
Px 

(kg) 
Errora 
(%) γ σ δ δ* NMCS 

1 90 30.5 -0.85 0 0 0.06708 0.06708 2000 
2 99 41.3 -3.56 4.8158 0.00537 0.16178 0.17513 3228 
3 99.9 70.6 -2.50 7.33 0.00204 0.19361 0.26107 14658 
4 99.99 100.4 -8.60 5.03 0.00055 0.16473 0.30869 104932 

arelative to the 20000 MCS 

The relative error (compared to MCS) in Table B.4 is high at the fourth simulation level.  

This may be error in MCS, not SS as the final column indicates SS achieves a comparable 

accuracy as 104,932 MCS repetitions (NMCS) whereas only N = 20,000 were performed for MCS.  
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The relatively high choice of N and χ for SS is required for this tradable parameter as the 

difficulties in Markov chain generation are significant due to the TCM custom distribution 

representations.  Table B.5 summarizes the statistics for all four simulation techniques at various 

percentile values for comparison. 

Table B.5   Propellant mass calculated by each simulation technique 
 Propellant mass (kg) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (20000) 21.6 20.2 30.8 42.9 72.4 109.8 
MMVM (65) 21.6 20.0 30.8 44.6 84.0 114.2 
SSa (2000 to 8000) 21.5 19.9 30.5 41.3 70.6 100.4 

amean, 50th , & 90th percentile; 99th percentile; 99.9th percentile; and 99.99th percentile values taken from 
first, second, third, and fourth simulation levels, respectively 

B.1.3.2 Dry Mass 

The dry mass PDF values for MCS and MMVM are provided in Fig. B.6. 
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Fig. B.6   Dry mass PDFs for MCS and MMVM. 

The CDF values for all three simulation techniques are shown in Fig. B.7 through Fig. B.10.  

SS used N = 2000 (per SS level) and χ = 7. 
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Fig. B.7   Dry mass CDFs (simulation level 1). 
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Fig. B.8   Dry mass CDFs (simulation level 2). 
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Fig. B.9   Dry mass CDFs (simulation level 3). 
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Fig. B.10   Dry mass CDFs (simulation level 4). 
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Fig. B.8 through Fig. B.10 demonstrate the performance of the three simulation techniques at 

the upper tail of the distribution.  MCS is the benchmark for comparison but requires a large N to 

obtain values for the entire CDF range.  MVMM performs adequately at the first SS level but 

poorly at the second, third, and fourth.  The dry mass model is too complicated for the MMVM to 

accurately determine values.  SS requires less than half the number of calls to the model as MCS 

yet follows the general MCS trend for all SS levels although it deviates at extreme CDF values 

(fourth simulation level).  Table B.6 details the statistics of SS by simulation level for dry mass. 

Table B.6   SS results by level for dry mass 
SS 

Level x 
Px 

(kg) 
Errora 
(%) γ σ δ δ* NMCS 

1 90 16.9 3.46 0 0 0.06708 0.06708 2000 
2 99 17.3 -0.04 1.4424 0.00348 0.10484 0.12446 6391 
3 99.9 18.0 2.77 9 0.00223 0.21213 0.24595 16515 
4 99.99 20.1 -16.18 8.73 0.00070 0.20925 0.32292 95890 

arelative to the 20000 MCS 

The increasing value of γ with simulation level in Table B.6 indicates that the modified 

Markov chain Monte Carlo (MCMC) algorithm is increasingly rejecting samples and remaining 

stationary for long periods in the chains.  Furthermore, the relative error (compared to MCS) is 

high at the fourth simulation level.  This may be error in MCS (in addition to error in SS) as the 

final column indicates SS achieves a comparable accuracy as 95,890 MCS repetitions (NMCS) 

whereas only N = 20,000 were performed for MCS.  Increasing N and decreasing χ in SS might 

improve the accuracy of SS vis-à-vis actual results (i.e., MCS with N approaching infinity).  

Table B.7 summarizes the statistics for all four simulation techniques at various percentile values 

for comparison. 

Table B.7   Dry mass calculated by each simulation technique 
 Dry mass (kg) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (20000) 9.8 8.9 16.3 17.3 17.6 23.9 
MMVM (65) 9.8 8.9 15.2 18.7 20.6 23.8 
SSa (2000 to 8000) 9.8 8.9 16.9 17.3 18.0 20.1 

amean, 50th , & 90th percentile; 99th percentile; 99.9th percentile; and 99.99th percentile values taken from 
first, second, third, and fourth simulation levels, respectively 

B.1.3.3 Schedule Duration 

The schedule duration PDF values for MCS and MMVM are provided in Fig. B.11. 
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Fig. B.11   Schedule duration PDFs for MCS and MMVM. 

The CDF values for all three simulation techniques are shown in Fig. B.12 through Fig. B.15.  

SS used N = 1000 (per SS level) and χ = 1. 
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Fig. B.12   Schedule duration CDFs (simulation level 1). 
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Fig. B.13   Schedule duration CDFs (simulation level 2). 
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Fig. B.14   Schedule duration CDFs (simulation level 3). 
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Fig. B.15   Schedule duration CDFs (simulation level 4). 

Fig. B.13 through Fig. B.15 demonstrate the performance of the four simulation techniques at 

the upper tail of the distribution.  Again, MCS is the benchmark for comparison but requires a 

large N to obtain values for the entire CDF range.  MVMM yields a PDF and CDF that follows 

the MCS results closely and does not suffer from a shifting as the schedule distribution for ADCS 

did in Chapter 9.  It is possible that using a centered-finite difference, instead of the forward-finite 

difference that the ADCS schedule example uses, improves the estimate for schedule duration.  

SS performs very well, except at extreme CDF values (fourth simulation level), despite requiring 

only a fifth the calls to the model.  Table B.8 details the statistics of SS by simulation level for 

schedule duration. 

Table B.8   SS results by level for schedule duration 
SS 

Level x 
Px 

(days) 
Errora 
(%) γ σ δ δ* NMCS 

1 90 768.5 -0.16 0 0 0.09487 0.09487 1000 
2 99 816.8 0.05 8.1191 0.00950 0.28648 0.30178 1088 
3 99.9 854.2 0.16 5.88 0.00262 0.24884 0.39114 6530 
4 99.99 859.8 -2.25 1.98 0.00055 0.16377 0.42404 55609 

arelative to the 20000 MCS 

Table B.9 summarizes the statistics for all four simulation techniques at various percentile 

values for comparison. 
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Table B.9   Schedule duration calculated by each simulation technique 
 Schedule duration (days) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (20000) 714.1 713.3 769.8 816.4 852.9 879.6 
MMVM (289) 709.4 708.7 770.0 813.8 852.9 879.0 
SSa (1000 to 4000) 712.4 710.6 768.5 816.8 854.2 859.8 

amean, 50th , & 90th percentile; 99th percentile; 99.9th percentile; and 99.99th percentile values taken from 
first, second, third, and fourth simulation levels, respectively 

B.1.3.4 Total Cost 

The total cost PDF values for MCS and MMVM are provided in Fig. B.16. 
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Fig. B.16   Total cost PDFs for MCS and MMVM. 

The CDF values for all three simulation techniques are shown in Fig. B.17 through Fig. B.20.  

SS used N = 1000 (per SS level) and χ = 1. 
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Fig. B.17   Total cost CDFs (simulation level 1). 
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Fig. B.18   Total cost CDFs (simulation level 2). 
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Fig. B.19   Total cost CDFs (simulation level 3). 
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Fig. B.20   Total cost CDFs (simulation level 4). 
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Fig. B.18 through Fig. B.20 demonstrate the performance of the four simulation techniques at 

the upper tail of the distribution.  Again, MCS is the benchmark for comparison but requires a 

large N to obtain values for the entire CDF range.  For all CDF values MVMM performs 

surprisingly well (underestimates the cost only slightly) considering only N = 344 are required, 

almost two orders of magnitude less than MCS.  SS performs extremely well with total cost at all 

SS levels providing a comparable accuracy as MCS despite requiring only a fifth the calls (or 

less) to the model.  Table B.10 details the statistics of SS by simulation level for total cost. 

Table B.10   SS results by level for total cost 

SS 
Level x 

Px 
(FY2003

$M) 
Errora 
(%) γ σ δ δ* NMCS 

1 90 11.299 -0.23 0 0 0.09487 0.09487 1000 
2 99 12.013 -0.97 1.5526 0.00503 0.15157 0.17881 3097 
3 99.9 12.594 -0.97 7.34 0.00289 0.27397 0.32716 9334 
4 99.99 13.062 -1.22 4.54 0.00074 0.22329 0.39610 63732 

arelative to the 20000 MCS 

SS achieves a comparable accuracy as 63,732 MCS repetitions (NMCS) whereas only N = 

20,000 were performed for MCS.  Table B.11 summarizes the statistics for all four simulation 

techniques at various percentile values for comparison. 

Table B.11   Total cost calculated by each simulation technique 
 Total cost (FY2003$M) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (20000) 10.495 10.466 11.325 12.130 12.718 13.223 
MMVM (344) 10.390 10.372 11.220 11.994 12.605 13.524 
SSa (1000 to 4000) 10.494 10.479 11.299 12.013 12.594 13.062 

amean, 50th , & 90th percentile; 99th percentile; 99.9th percentile; and 99.99th percentile values taken from 
first, second, third, and fourth simulation levels, respectively 

B.1.4 Margins & Analysis 

With the probabilistic data (i.e., CDFs) available and assuming x = 99 percentile, Eq. (1.4) is 

used to determine margin values to hold at this point in the design (i.e., around CDR in this 

example).  This choice of x represents a risk-neutral decision maker.  These margins are listed in 

Table B.12 for the four propulsion tradable parameters. 

Table B.12   Calculated (99th percentile) margin values for propulsion tradable parameters 
Tradable Parameter Margin (Margin %) Simulation technique 

(# of repetitions) Prop. Mass Dry Mass Sch. Duration Total Cost 
MCS (20000) 21.3a (98.6%) 8.3a (92.2%) 108.4b (15.3%) 1.738c (16.7%) 
MMVMd 23.0a (106.5%) 9.7a (107.8%) 105.8b (14.9%) 1.602c (15.4%) 
SSe 19.7a (91.2%) 8.3a (92.2%) 108.8b (15.4%) 1.621c (15.6%) 

akg; bdays; cFY2003$M; ddifferent N for each model; eSS level 2, different N for each model 
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The allocation values (best estimate + margins) for both simulation techniques are presented 

in Table B.13 for the four propulsion tradable parameters along with assumed project allocations 

and final actual values obtained from pre-launch/flight/project data. 

Table B.13   Comparison of assumed and calculated (99th percentile) propulsion tradable 
parameter allocations with actual values 

Tradable Parameter Allocation Simulation technique 
(# of repetitions) Prop. Mass Dry Mass Sch. Duration Total Cost 
Project assumptions (n/a) 42.8 kg 18.4 kg 749 days 9.9a 
MCS (20000) 42.9 kg 17.3 kg 816.4 days 12.130a 
MMVMb 44.6 kg 18.7 kg 813.8 days 11.994 a 
SSc 41.3 kg 17.3 kg 816.8 days 12.013 a 
Mission actuals (n/a) 47.0 kg 16.2 kg 749 days 11.0a 

aFY2003$M; bdifferent N for each model; cSS level 2, different N for each model 

Table B.13 illustrates that the current method (project assumptions) and proposed method 

(using all three simulation techniques) failed in accurately predicting the propellant mass.  

However, this 47.0 kg actual mission number is propellant loaded into MER prior to launch.  The 

MER project filled the propellant tanks to capacity as unforeseen excess injected mass was 

available prior to launch.  Hence, all three simulation techniques predict the 42.8 kg assumption 

(requirement) well which is the more appropriate value to compare to.  Both the current and 

proposed method succeeded in predicting the dry mass, all were slightly conservative.  The 

current method predicted the schedule duration exactly as it became a fixed requirement as the 

MER propulsion design progressed.  Cost was traded on MER propulsion development to meet 

this 749 day schedule duration requirement.  This trading of cost for schedule is illustrated by the 

exceeded cost margin calculated by the current method.  The proposed method accurately covers 

cost margin, even being somewhat conservative as FY2003~$1M in cost is calculated but never 

materialized.  This conservatism is likely the result of the conservative schedule results which 

feed into the cost calculation.  A risk-seeking position on cost (90th percentile values), would 

predict the actual cost more accurately.   

B.2 Thermal Control 

The thermal control subsystem maintains all components of a spacecraft within their 

allowable temperature limits for all operating modes of the spacecraft and in all of the expected 

thermal environments.  The proposed method was applied to the thermal control system located 

on MER in Thunnissen and Tsuyuki (2004).  Thunnissen and Tsuyuki (2004) assume eight 

tradable parameters: four representative maximum component temperatures, total thermal mass, 

power required, schedule duration, and total cost.  The four representative components are the 

rover electronics module (REM), battery, small deep space transponder (SDST), and solid state 
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power amplifier (SSPA).  Thunnissen and Tsuyuki (2004) uses Monte Carlo simulation (MCS) as 

the only simulation technique to address interaction uncertainty.  This appendix compares the 

MCS results in Thunnissen and Tsuyuki (2004) with descriptive sampling (DS) which has yet to 

be demonstrated in an example application.  Details on all steps of the proposed method applied 

to this example are provided in Thunnissen and Tsuyuki (2004) including tradable parameter 

definitions and model descriptions. 

B.2.1 Model Uncertainty 

Model uncertainty in the component temperatures was assumed to be normally distributed 

about zero °C with a standard deviation of 2.5 °C [Thunnissen & Tsuyuki, 2004].  Model 

uncertainties of the other four tradable parameters are provided in Table B.14. 

Table B.14   Model uncertainties assumed 

Model Units 
Distribution type 
and parameters 

Total thermal mass kg N(0,0.05)  
Power required W U(-5,5) 
Schedule duration days TNC(4,1) 
Total cost FY2003$K N(0,50) 

Model uncertainty was assessed by expert opinion (MER engineers and managers). 

B.2.2 Interaction Uncertainty 

The deterministic results from Thunnissen and Tsuyuki (2004) are repeated in Table B.15 for 

reference. 

Table B.15   Deterministic results for thermal control analysis 
Tradable Parameter Deterministic 

Result 
REM maximum temperature 17.0 °C 
Battery maximum temperature 16.7 °C 
SDST maximum temperature 16.7 °C 
SSPA maximum temperature 27.8 °C 
Total thermal mass 29.3 kg 
Power required 97.5 W 
Schedule duration 710.4 days 
Total cost FY2003$11.2M 

Uncertainty in the eight tradable parameters is evaluated via MCS and DS.  The MCS results 

are unchanged from Thunnissen and Tsuyuki (2004) and are repeated here; the DS results are 

new.  MCS results are based on 3,782 repetitions (samples); DS uses 380 (~1/10th this number).  

All subsequent tables and figures reflect the final uncertainty: simulation results convolved with 

model uncertainty. 
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B.2.2.1 Maximum Component Temperatures 

The probability density function (PDF) and cumulative distribution function (CDF) of all four 

maximum component temperatures are provided in Fig. B.21 and Fig. .  B.22, respectively
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Fig. B.21   Maximum component temperature PDFs for MCS and DS. 
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Fig. B.22   Maximum component temperature CDFs for MCS and DS. 

Fig. B.21 and Fig. B.22 illustrate the comparable accuracy of the two simulation techniques.  

As expected, the tails of DS are not as well defined or smooth as MCS.  Table B.16 summarizes 

the statistics for both simulation techniques at various percentile values for comparison.  In 

comparison to MCS, DS results are “choppier” and DS performs poorly at high percentile values, 

likely a facet of having only performed 380 repetitions. 

Table B.16   Maximum component temperature calculated by MCS and DS 
 Maximum Component Temperature (°C) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
REM       
   MCS (3782) 13.0 13.0 18.5 22.5 25.5 26.9 
   DS (380) 12.9 12.9 18.7 22.8 23.4 23.4 
Battery       
   MCS (3782) 14.0 14.0 18.9 22.4 24.2 26.0 
   DS (380) 12.8 12.7 18.3 21.2 24.8 24.8 
SDST       
   MCS (3782) 12.9 12.9 18.3 22.2 24.6 26.0 
   DS (380) 12.8 12.8 18.3 22.7 23.9 23.9 
SSPA       
   MCS (3782) 22.7 22.7 28.6 32.9 35.4 36.6 
   DS (380) 22.8 22.8 28.8 33.6 35.0 35.0 
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B.2.2.2 Mass 

The PDF and CDF of the total thermal mass are provided in Fig. B.23 and Fig. B.24, 

respectively. 
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Fig. B.23   Total thermal mass PDFs for MCS and DS. 
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Fig. B.24   Total thermal mass CDFs for MCS and DS. 

Table B.17 summarizes the statistics for both simulation techniques at various percentile 

values for comparison. 

Table B.17   Total thermal mass calculated by MCS and DS 
 Total Thermal Mass (kg) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (3782) 29.3 29.3 30.5 31.4 32.4 32.8 
DS (380) 29.3 29.3 30.4 31.2 31.7 31.7 

B.2.2.3 Power Required 

The PDF and CDF of the power required are provided in Fig. B.25 and Fig. B.26, 

respectively. 



206 

50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Power Required (W)

Pr
ob

ab
ili

ty
 D

en
sit

y 
Fu

nc
tio

n 
V

al
ue

MCS (3782)
DS (380)

 
Fig. B.25   Power required PDFs for MCS and DS. 
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Fig. B.26   Power required CDFs for MCS and DS. 
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Table B.18 summarizes the statistics for both simulation techniques at various percentile 

values for comparison. 

Table B.18   Power required calculated by MCS and DS 
 Power Required (W) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (3782) 97.3 96.9 120.1 130.3 134.7 138.0 
DS (380) 97.2 96.2 120.4 130.4 134.7 134.7 

B.2.2.4 Schedule Duration 

The PDF and CDF of the schedule duration are provided in Fig. B.27 and Fig. B.28, 

respectively. 
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Fig. B.27   Schedule duration PDFs for MCS and DS. 
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Fig. B.28   Schedule duration CDFs for MCS and DS. 

Table B.19 summarizes the statistics for both simulation techniques at various percentile 

values for comparison. 

Table B.19   Schedule duration calculated by MCS and DS 
 Schedule Duration (days) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (3782) 726.1 723.8 757.3 786.9 804.5 821.2 
DS (380) 728.4 724.4 761.0 791.4 797.8 797.8 

B.2.2.5 Total Cost 

The PDF and CDF of the total cost are provided in Fig. B.29 and Fig. B.30, respectively. 
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Fig. B.29   Total cost PDFs for MCS and DS. 
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Fig. B.30   Total cost CDFs for MCS and DS. 
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Table B.20 summarizes the statistics for both simulation techniques at various percentile 

values for comparison. 

Table B.20   Total cost calculated by MCS and DS 
 Total Cost (FY2003$M) 
Simulation technique 

(# of repetitions) Mean Median 
90th 

percentile 
99th 

percentile 
99.9th 

percentile 
99.99th 

percentile 
MCS (3782) 11.234 11.226 12.100 12.751 13.367 13.719 
DS (380) 11.292 11.255 12.175 12.978 13.200 13.200 

B.2.3 Margins and Analysis 

With the probabilistic data (i.e., CDFs) available and assuming x = 99 percentile, Eq. (1.4) is 

used to determine margin values to hold at this point in the design (i.e., just before the 

preliminary design review in this example).  This choice of x represents a risk-neutral decision 

maker.  These margins are listed in Table B.21 for the maximum component temperatures and 

Table B.22 for the remaining tradable parameters. 

Table B.21   Calculated (99th percentile) margin values for maximum component 
temperatures 

Maximum Component Temperature Margin in °C (Margin %a) Simulation technique 
(# of repetitions) REM Battery SDST SSPA 
MCS (3782) 5.6 (1.9%) 5.6 (1.9%) 5.4 (1.9%) 5.1 (1.7%) 
DS (380) 5.8 (2.0%) 4.5 (1.6%) 5.9 (2.0%) 5.8 (1.9%) 

abased on absolute temperatures in K 
 

Table B.22   Calculated (99th percentile) margin values for mass, power required, schedule 
duration, and total cost 

Tradable Parameter Margin (Margin %) Simulation technique 
(# of repetitions) Mass Power Req. Sch. Duration Total Cost 
MCS (3782) 2.2a (7.4%) 32.8b (33.6%) 76.5c (10.8%) 1.5d (13.7%) 
DS (380) 1.9a (6.7%) 32.9b (33.8%) 77.9c (10.9%) 1.7d (15.0%) 

akg; bW; cdays; dFY2003$M 

The allocation values (best estimate + margins) for both simulation techniques are presented 

in Table B.23 for the four maximum component temperatures along with assumed project 

allocations and final actual values obtained from flight data. 

Table B.23   Comparison of assumed and calculated (99th percentile) maximum temperature 
allocations with actual values 

Maximum Component Temperature Allocation in °C Simulation technique 
(# of repetitions) REM Battery SDST SSPA 
Project assumptions (n/a) 50 10 50 50 
MCS (3782) 22.5 22.4 22.2 32.9 
DS (380) 22.8 21.2 22.7 33.6 
Mission actuals (n/a) 19.6 22.5 19.6 32.5 
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Table B.23 illustrates that the current method (project assumptions) were conservative for the 

REM, SDST, and SSPA maximum temperatures compared to actual mission values.  This 

conservatism was likely the result of a worst-case on top of worst-case on top of worst-case type 

analyses that resulted in additional resources being expended to over design and develop a more 

thermally robust system than required.  The current method failed in predicting the battery 

temperature which may have increased the possibility of battery failure.  The proposed method 

(both MCS and DS) predicted all four temperatures to within a few degrees. 

The allocation values (best estimate + margins) for both simulation techniques are presented 

in Table B.24 for the four remaining tradable parameters along with assumed project allocations 

and final actual values obtained from pre-launch/flight/project data. 

Table B.24   Comparison of assumed and calculated (99th percentile) mass, power required, 
schedule duration, and total cost allocations with actual values 

Tradable Parameter Allocation Simulation technique 
(# of repetitions) Mass Power Req. Sch. Duration Total Cost 
Project assumptions (n/a) 36.2 kg 104.0 W 770 days 12.5a 
MCS (3782) 31.4 kg 130.3 W 787 days 12.8a 
DS (380) 31.2 kg 130.4 W 791 days 13.0a 
Mission actuals (n/a) 29.1 kg 93.1 W 749 days 12.8a 

aFY2003$M 

Table B.24 illustrates that the current method (project assumptions) was conservative with 

mass compared to the final measured subsystem mass, allocating 7 kg that never materialized.  

The proposed method (MCS and DS) was more accurate with respect to this tradable parameter.  

On the other hand, the proposed method was more conservative with respect to power and 

schedule duration.  The overshoot by the proposed method for power required can be explained 

by the uniform distributions assumed for the number of heaters on.  If a more operationally 

realistic distribution was used, the proposed method would likely result in closer prediction to 

actual mission values.  The proposed method overestimated schedule durations where the actual 

final schedule duration was an ~85th percentile value indicating the decision maker could have 

been more risk-seeking with respect to this tradable parameter.   The current method slightly 

underestimated the total cost whereas the proposed method (both MCS and DS) accurately 

predicted it.  Cost was traded for schedule during the actual MER thermal design which accounts 

for the current method predicting the schedule more accurately and the cost less accurately than 

the proposed method. 

Lastly, a sensitivity analysis and calculation of correlation coefficients can be performed to 

investigate which uncertainties are driving the total uncertainty.  This is illustrated in Table B.25 

and Fig. B.31 for the total cost. 
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Table B.25   Most statistically significant correlation coefficients (p-values < 0.0001) for total 
cost 

Input Variable Uncertainty 
Correlation 
Coefficient p-Value 

Burden factor +0.8166 0.0000 
Integrated pump assembly (IPA) cost +0.3501 0.0000 
Design engineer salary +0.2800 0.0000 
Cruise-stage HRSa technician salary +0.1419 0.0000 
Cognizant engineer salary +0.1186 0.0000 
GSEb engineer salary +0.1147 0.0000 
IVSRc engineer salary +0.0995 0.0000 
Inflation rate +0.0890 0.0000 
Thermal systems engineer salary +0.0742 0.0000 
GSEb/ATLOd technician salary +0.0721 0.0000 

aHRS = heat rejection system; bGSE = ground support engineering; cIVSR = IPA, vent, shunt limiter, & 
radiator; dATLO = assembly, test, & launch operations 
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Fig. B.31   Top six uncertainties driving total cost. 

Table B.25 and Fig. B.31 are remarkably similar: the top six uncertainties calculated via a 

sensitivity analysis are the top six most statistically significant uncertainties.  Although there are 

usually similarities between a sensitivity analysis and correlation coefficient calculations, it is 

rare that the order of uncertainties is identical.  This identical ordering likely confirms that the 

uncertainties listed are clearly the most significant.  Incidentally, 27 schedule and cost input 

variable uncertainties were found to have a p-value less than or equal to 0.05 indicating many 

input variable uncertainties drive the total cost. 

B.3 Mission Design 

Elements of the proposed method were applied to space system mission design [Thunnissen, 

2004b].  Mission design is not a traditional space system discipline since it is not a physical 
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subsystem with explicit margins.  Instead mission design is analysis and agreements with 

disciplines and other organizations.  Nonetheless, uncertainty is a big driver in decisions made in 

mission design and many of the themes and techniques in the proposed method would be 

applicable and useful to use for this discipline.  Application to other subsystems such as power, 

telecommunications, and structures was considered but not investigated in any significant detail.  

The three subsystems investigated along with mission design are representative in complexity, the 

number of uncertainties, and the types of uncertainties of all subsystems.  Hence, it is likely the 

proposed method would perform satisfactorily when applied to these other spacecraft subsystems 

but this remains a topic for further research. 
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Appendix C Implementation 
This appendix provides a short step-by-step list an organization could follow if there is 

interest in implementing the proposed method for a complex multidisciplinary system that 

organization designs and/or develops.  An overview of a general three-step plan for 

implementation is first discussed.  A description of detailed steps for implementation follows.  

C.1 General Implementation 

A three-step plan for implementation is recommended to reduce the amount of resources 

initially required by the organization implementing the proposed method, boost the confidence 

participants have in the proposed method, and reduce the possibility of unsuccessful 

implementation. 

1. Apply the proposed method to one subsystem or major assembly (application) in 

conjunction with the current historical/heuristic margin determination methods the organization 

assumes.  Based on the results, hold the maximum of the two margins for each tradable parameter 

during the duration of design.  If unsuccessful, revise those elements of the proposed method that 

were unsuccessful.  At this early stage the application serves to corroborate the proposed method. 

2. If Step 1 was successful, apply the proposed method to multiple subsystems or an entire 

complex multidisciplinary system in conjunction with current historical/heuristic margin 

determination methods the organization assumes.   This step may lead to margins and results 

beyond the obvious and the familiar.  Based on the results, decide on which of the two margins 

for each tradable parameter to use for the duration of design.  If unsuccessful, revise those 

elements of the proposed method that were unsuccessful.  Here the theory and the application of 

the proposed method corroborate each other mutually. 

3. Beyond the first two steps lies the possibility of real success: genuine prediction of 

margins via the proposed method.  If applications of the proposed method have been successful 

thus far, apply it to an entire complex multidisciplinary system in lieu of current 

historical/heuristic margin determination methods.  Re-apply the proposed method as the design 

progresses to update margin values.  Other methods that have been successfully developed and 

implemented in design have gone through similar successive phases of evolution. 

C.2 Specific Implementation 

The following section provides the specifics to implementing the proposed method.  Each 

step should require management approval before the next step commences.  The purpose of this 
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management approval is twofold.  First, it illustrates management interest and support of 

participants in the proposed method.  Second, since program management and system engineering 

are intertwined with the proposed method, it provides management accountability for 

implementation to the stake holder.  This section expands upon a similar step-by-step description 

provided in Chapter 3. 

C.2.1 Motivation for Participants 

The first step involves motivating the participants as to the benefit of the proposed method 

over the current heuristic method of determining margins.  Motivation is described and examples 

are provided in Chapter 1.  Organizations will probably have additional internal motivating 

examples from their design history.  These internal examples will likely be of more interest to the 

participants than the examples in Chapter 1.  During this phase the organization should also 

devise and institute reward schemes for employees based on successful learning and application 

of method.  In addition, with respect to addressing uncertainties, Fischhoff (1990) urges 

organizations to “create (and demonstrate) an incentive structure that rewards experts for saying 

what they really believe, rather than for exuding confidence, avoiding responsibility, generating 

alarm, or allaying fears.”  Reward systems in organizations encourage confidence and boost 

morale. 

C.2.2 Training System and Subsystem Engineers 

With the participants properly motivated, system and subsystem engineers must be trained in 

uncertainty types, mathematical techniques, and expert elicitation techniques used in the proposed 

method.  Uncertainty classifications and definitions are provided in Chapter 2.  Probabilistic 

methods and other mathematical techniques used in this thesis are summarized in Appendix A.  

Mathematical and other references are found at the end of this thesis.  Expert elicitation and other 

techniques to address uncertainty are described in Chapter 5 and Chapter 6.  Participants should 

also understand the examples provided (Chapter 9 and Appendix B) at this stage. 

C.2.3 Allocation of Workforce 

The decision maker must allocate workforce to implement the proposed method.  One or 

more analyst/facilitators (A/Fs) are required in addition to subsystem (discipline-specific) experts.  

A documentarian is recommended the first few times the method is applied to record success and 

issues in implementing the proposed method.  Secondary analysts to assist subsystem engineers in 

developing front-end to models, assessing model uncertainty, and so forth may also be required.  

A clear organizational structure illustrating each participant (including the decision maker and 
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stake holder) should be made available to all participants.  Workforce allocated should be chosen 

from the pool of trained employees (see previous step). 

C.2.4 Apply Method 

With motivation, organization, training, and the allocation of workforce for applying the 

proposed method complete, the actual method can be applied. 

C.2.4.1 Identify Tradable Parameters 

Identify the number and characteristics of the tradable parameters for the complex 

multidisciplinary system.  This step determines to a significant degree the amount of effort that 

will be required in subsequent steps.  Hence, the tradable parameters selected should be peer 

reviewed before progressing to the next step.  Identification of tradable parameters is described in 

Chapter 4. 

C.2.4.2 Generation and Use of Analysis Models 

For each tradable parameter, one or more models must be selected.  Models may either exist 

from previous projects or require development and/or modification specifically for the complex 

multidisciplinary system being designed.  In either case, model uncertainty for each of these 

models must assessed via existing data, expert elicitation, and/or Bayesian techniques.  This step 

is described in Chapter 5.  If preliminary design effort reveals that model uncertainty is 

significant, it is possible that phenomenological uncertainty is the culprit.  Ways to reduce 

phenomenological uncertainty are also described in Chapter 5.  If appropriate models must be 

generated or require significant modification, this step may well be the most resource consuming. 

C.2.4.3 Investigate Other Uncertainties 

Uncertainties in the input variables to each tradable parameter model are then addressed.  As 

with model uncertainty, these uncertainties can be assessed via existing data, expert elicitation, 

and/or Bayesian techniques.  Identification and addressing of these uncertainties is described in 

Chapter 6. 

C.2.4.4 Decide on One or More Simulation Techniques 

The decision maker, possibly in conjunction with the A/Fs, must decide on one or more 

simulation techniques to use in addressing uncertainty interaction.  Certain simulation techniques 

may be appropriate early in design, others late in design.  The choice and number of simulation 

techniques investigated will likely be a function of resources available.  This step also requires 
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determining how many repetitions are required to assess accuracy in tradable parameter 

uncertainties.  Simulation techniques are described in Chapter 7. 

C.2.4.5 Determine Margins, Analyze Results, and Iterate 

With the probabilistic results available from one or more simulation techniques, the margin 

values can be determined.  The proposed method may want to be re-applied as design progresses 

and uncertainties in models and/or input variables to those models have changed.  The first 

application of the proposed method will be the major up-front time commitment.  Subsequent 

iterations in applying the method will require substantially less time.  If an analysis into which 

sampling technique worked best for the application of interest (see previous step), that simulation 

technique could be used in future iterations to save resources.  Determining margins, analyzing 

results, and iteration is described in Chapter 8. 

C.2.5 Revise Method and Reward Participants 

Based on individual organizational preferences, issues, and comparison with other 

applications, the method may want to be revised by the participants.  With the design complete, 

the final step in implementing the proposed method should be rewarding participants based on the 

reward schemes devised (described earlier).   
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