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Sommario

Questa dissertazione esamina le sfide e i limiti che gli algoritmi di analisi

di grafi incontrano in architetture distribuite costituite da personal computer.

In particolare, analizza il comportamento dell’algoritmo del PageRank cos̀ı

come implementato in una popolare libreria C++ di analisi di grafi dis-

tribuiti, la Parallel Boost Graph Library (Parallel BGL).

I risultati qui presentati mostrano che il modello di programmazione par-

allela Bulk Synchronous Parallel è inadatto all’implementazione efficiente

del PageRank su cluster costituiti da personal computer. L’implementazione

analizzata ha infatti evidenziato una scalabilità negativa, il tempo di ese-

cuzione dell’algoritmo aumenta linearmente in funzione del numero di pro-

cessori.

Questi risultati sono stati ottenuti lanciando l’algoritmo del PageRank

della Parallel BGL su un cluster di 43 PC dual-core con 2GB di RAM l’uno,

usando diversi grafi scelti in modo da facilitare l’identificazione delle variabili

che influenzano la scalabilità. Grafi rappresentanti modelli diversi hanno

dato risultati differenti, mostrando che c’è una relazione tra il coefficiente

di clustering e l’inclinazione della retta che rappresenta il tempo in funzione

del numero di processori. Ad esempio, i grafi Erdős–Rényi, aventi un basso

coefficiente di clustering, hanno rappresentato il caso peggiore nei test del

PageRank, mentre i grafi Small-World, aventi un alto coefficiente di clus-

tering, hanno rappresentato il caso migliore. Anche le dimensioni del grafo

hanno mostrato un’influenza sul tempo di esecuzione particolarmente inter-

essante. Infatti, si è mostrato che la relazione tra il numero di nodi e il

numero di archi determina il tempo totale.





Introduction

The last 30 years have seen tremendous advances in microprocessor tech-

nology. Processors’s clock rates have increased from about 8MHz (e.g., a

Motorola 68000, circa 1979) to over 3.0GHz (e.g., an AMD Opteron, circa

2005). Keeping up with Moore’s Law has become extremely challenging as

chip-making technologies are approaching physical limits [Bor99].

In response, microprocessors manufacturers looked for other ways to im-

prove performance. The first dual-core processors for personal computers

were announced in 2005; today’s multi-core processors represent the major-

ity of the market. Their parallel nature, great computing power, and inex-

pensiveness make them a great fit for distributed platforms. In fact, as of

November 2010 the 6 most powerful supercomputers of the world use widely

available multi-core processors1.

With respect to applications, simulations of physical events and signal

processing dominated the field until one and a half decades ago. Since then,

thanks to the massive growth of the Internet, web companies faced scalability

problems due to the increasing number of people who started using their ser-

vices. Thus, distributed computing became popular even among commercial

applications.

Often those services require or produce massive amounts of data. The

analysis of this data poses new challenges for distributed computing plat-

forms, particularly when data is structured as a network. A network (or

graph, in mathematics) is an abstract representation of a set of objects con-

nected in pairs. Many objects of the real world can be thought of as networks,

1source: the 36th TOP500 List, released on November 14, 2010. http://www.top500.
org/lists/2010/11
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ii INTRODUCTION

e.g., the Internet (a set of computers linked by data connections) and social

networks (collections of people linked by their relationships). In fact, net-

work analysis has many applications in fields like sociology, biology, physics,

computer science, economics and operations research and often leads to in-

teresting and useful insights.

This work looks at the challenges and the limits that network analysis

algorithms face in distributed architectures constituted of commodity com-

puters. In particular, analyzes the behavior of the PageRank algorithm as

it is implemented in a popular C++ distributed graph library, the Parallel

Boost Graph Library.

This dissertation is divided in 4 chapters. Chapter 1 introduces dis-

tributed computing. Chapter 2 presents an overview of networks and de-

scribes the algorithms to efficiently analyze them. Chapter 3 describes the

PageRank algorithm as it is implemented in the Parallel Boost Graph Li-

brary. Finally, Chapter 4 presents an analysis of its limits and scalability

challenges.
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Chapter 1

Distributed Computing

In this era of rapid scientific and technological development, the need

for fast processing of large amounts of data is greater than ever. Compu-

tationally intensive tasks that produce and/or consume huge datasets, like

accurate simulations of physical events, are critical for the scientific world.

Today, thanks to the massive adoption of the Internet, even commercial

applications like databases and web applications need massive amount of

computing power in order to scale to the number of clients and data that

they have to support every day. The only practical, flexible and cost-effective

solution to these problems is represented by distributed computing.

Typically, computer programs have been written for serial computation:

algorithms are broken into serial streams of instructions, executed one after

another in a single Central Processing Unit (CPU). Distributed computing,

on the other hand, uses multiple CPUs simultaneously to solve a single prob-

lem. This is based on the principle that an algorithm can be broken into

discrete parts to be executed concurrently, distributing the workload among

all the computing resources, therefore using less time.

This definition is purposefully broad enough to include single computers

with single processors with multiple cores, single computers with multiple

processors, multiple computers connected through custom networks, multiple

computers connected through the internet, or any combination of the above.

In the past few years, the semiconductor industry switched its focus from

1



2 1. Distributed Computing

increasing clock frequencies to integrating multiple cores into the same pack-

age. This and the inexpensiveness of today’s desktop computers, determined

the current success of distributed computing.

1.1 History

The concept of running multiple programs at once is not new. In the

early 1960s, the invention of independent device controllers made it possible

to run a new or suspended program while I/O operations were performed by

the controller. In this scenario, the CPU commands the controller to read or

write a portion of disk. This operation terminates immediately, giving the

CPU the possibility to run another program. When the controller finishes, it

issues an hardware interrupt that causes the processor to save its state and

begin the execution of an interrupt handler. Therefore, concurrency was of

concern of operating systems designers.

In 1962, Burroughs introduced the first computer with multiple identical

CPUs connected to a single shared main memory, the D825 [And00]. This

created a challenge for both operating system designers and application pro-

grammers and led to a flood of papers in the 1970s about formal methods of

parallel computation.

The late 1970s and early 1980s have seen the introduction of computer

networks. Networks made easy to connect multiple computers and therefore

marked the rise of distributed programming which quickly became a major

topic in the 1980s and even more in the 1990s.

The pervasiveness of multicore CPUs and fast computer networks coupled

with physical problems faced by chip manufacturers, show that distributed

computing is the future of computing.
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1.2 Terminology

1.2.1 The von Neumann Architecture

John von Neumann, mathematician and early computer scientist, pub-

lished a series of papers in 1945 [vNG93] where he proposed a model for

a stored-program computer, a computer that keeps data and instructions,

coded with specific symbols, in the same memory.

At the time, when computers were still programmed by setting switches

and inserting patch cords, this architecture was revolutionary and quickly

became very popular. Virtually all computers followed this design since then.

Still, it is a very generic and simple architecture including 5 parts: Mem-

ory, Control Unit, Arithmetic Logic Unit, Input and Output organized as in

Figure 1.1.

OutputInput

CPU
Control 

Unit
Arithmetic 
Logic Unit

Memory

Figure 1.1: Schematic of the von Neumann architecture

Memory is a computer part in which data and encoded program instruc-

tions can be stored for retrieval. It actually represents the system’s entire

memory hierarchy, from extremely fast, expensive and small caches to slow,
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cheap and large tapes for backups. The Arithmetic Logic Unit (ALU) per-

forms arithmetic and logical operations. The Control Unit is the part of the

CPU that coordinates the work that needs to be done in order to accom-

plish the programmed task. It fetches and decodes the instructions stored in

memory, commands the ALU to execute them, reads and writes data from

memory, and activates the resources needed. Finally, Input/Output (I/O)

devices are interfaces to the user, like monitors (output) and keyboards (in-

put).

1.2.2 Flynn’s Taxonomy

In 1972 Michael J. Flynn, in his paper Some Computer Organizations

and Their Effectiveness [Fly72], proposed a taxonomy of parallel computer

systems based on the number of concurrent instructions and data streams

available in the architecture. It is organized in two independent dimensions:

instruction and data, each of which can be either single or multiple.

Thus, the four possible Flynn’s classifications are:

Single Data Multiple Data
Single Instruction SISD SIMD
Multiple Instruction MISD MIMD

Table 1.1: Matrix of the Flynn’s taxonomy

SISD: Single Instruction, Single Data

As the name implies, the Single Instruction, Single Data class is

composed by uniprocessors systems that can only execute a single instruc-

tion stream that operates on a single data stream at a time. This corresponds

to the von Neumann architecture (see Subsection 1.2.1) and represents the

longest standing type of computers. However, even if the SISD architec-

ture describes inherently serial computers, concurrency can be achieved with

implicit parallelism techniques such as pipelining, that allows overlapping

execution of multiple instructions within the same circuitry.
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SIMD: Single Instruction, Multiple Data

The SIMD architecture describes computers with multiple processors

that perform the same operation on multiple data simultaneously, exploiting

data parallelism. They first appeared in the 1970s in vector supercomputers

which were eventually replaced by inexpensive scalar MIMD clusters. When

personal computers became common and powerful enough to support real-

time gaming, chip manufacturers turned to SIMD to meet the demand of

this particular type of computation. Now, every personal computer has a

CPU that supports a SIMD instructions set and at least one dedicated

SIMD processor for graphics, called Graphics Processing Unit (GPU).

MISD: Multiple Instruction, Single Data

The MISD architecture describes computers with multiple processors

that perform different operations on the same data. Very few instances of this

architecture exist, because SIMD and MIMD are often more appropriate

for common parallelism techniques. However, fault-tolerant computers can

benefit from this architecture by executing the same instructions redundantly

on many processors in order to detect and correct errors.

MIMD: Multiple Instruction, Multiple Data

A MIMD computer system is comprised of multiple processors that can

execute different instructions on different data streams, asynchronously and

independently. The MIMD architecture is the most common type of parallel

computer today, thanks to the massive adoption of multicore and multipro-

cessor architectures for personal computers.

1.3 Memory Architectures

Managing memory is by far the most troubling part of programming par-

allel computers, and different memory architectures yield different challenges.

There are two basic memory architectures for parallel computers: shared

memory and distributed memory.
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1.3.1 Shared Memory

In a shared-memory multiprocessor system, memory’s global address space

is accessible to all processors. Processors interact by modifying data in this

memory and changes are instantly visible to all of them.

Shared memory systems can be further categorized by memory access

times in Uniform Memory Access (UMA) and Non Uniform Memory Access

(NUMA) machines.

Memory

CPU

CPU CPU

CPU

(a) UMA

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

(b) NUMA

Figure 1.2: Schematics of Shared Memory architectures

Small multiprocessor systems typically have a single connection between

a processor and the memory, therefore memory access times are the same

across all processors. Such systems are called UMA machines. Figure 1.2a

shows an example of a UMA machine with 4 processors.

In large shared memory multiprocessors, those having tens or hundreds of

processors, each processor has local and non-local (local to another processor)

memory. This is the cause of non-uniform memory access times, in fact such

systems are called NUMA machines. Figure 1.2b shows an example schematic

of a NUMA machine with 12 processors and 4 memories.

Thanks to the global memory space, Shared Memory machines are much

easier to program than other parallel systems. From the programmer point

of view, read operations are identical to serial programs and can be executed

at any time without any lock mechanism. Only write operations are trickier
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because they require mutual exclusion for concurrent processes.

1.3.2 Distributed Memory

In contrast to the shared memory model, the distributed memory model

defines computers in which each segment of the memory is physically asso-

ciated with a different processor. Because each processor can only address

the local memory, communication is achieved through message passing via

an interconnection network, like in Figure 1.3.

Memory

CPU

Memory

CPU

Memory

CPU

Interconnection Network

Figure 1.3: Schematic of the Distributed Memory architecture

Distributed memory systems are significantly harder to program than

shared memory ones. Programmers are responsible for distributing the data

among all the processors, in a way that communication is reduced to a min-

imum.

1.3.3 Hybrid Distributed-Shared Memory

Today, the most powerful supercomputers make use of the hybrid distributed-

shared memory model and current trends indicate that this will continue to

be the case in the future. Machines of this category are generally shared

memory computers connected through a network, like in Figure 1.4.
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Interconnection Network

Memory

CPU CPU

Memory

CPU CPU

Memory

CPU CPU

Figure 1.4: Schematic of the Distributed-Shared Memory architecture

Challenges in programming this type of parallel computer are the union

of challenges of both shared-memory and distributed-memory architectures.

1.4 Programming models

Programming models are abstractions above hardware and memory ar-

chitectures, thus they can be implemented on virtually any machine. The

most important widely-used parallel programming models are threads and

message passing.

1.4.1 Threads

In the threads programming model, each process can split into multiple

concurrent executable programs. Threads are relatively easier to implement

in uniprocessor and shared-memory architectures and are the smallest unit

of processing that can be scheduled by an operating system.

Threads implementations typically comprises libraries of routines called

by parallel code, such as POSIX Threads, or compiler directives embedded

in serial code, such as OpenMP. POSIX Threads-like implementations re-

quire the programmer to explicitly call the parallel primitives, giving him all
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the power but also all the responsibility. OpenMP (http://openmp.org/)

instead provides compiler directives that can be embedded in serial code to

automatically parallelize it. It is simpler to use and potentially more effective

for inexperienced parallel programmers because it uses well-tested, efficient

techniques to parallelize serial code.

1.4.2 Message Passing

In the message passing model of distributed computing, processes can

send and receive messages from other processes. Each process uses its own

local memory during computation and communicates to other processes that

can reside on the same physical machine and/or across an arbitrary number

of machines, interconnected by a network. Typically send and receive op-

erations must be cooperative, e.g., a send operation must have a matching

receive operation.

Implementations of the message passing model comprise libraries of rou-

tines that implement the communication protocols and techniques. The pro-

grammer is then responsible for determining all parallelism explicitly. A

common interface for message passing implementations have been standard-

ized by the the MPI Forum in 1994. This interface, called Message Passing

Interface (MPI), is now the de facto standard for message passing, used

in virtually every message passing implementation out there. MPI is typi-

cally used for distributed memory architectures and can be combined with

the thread model to exploit the characteristics of hybrid distributed-shared

memory architectures. The latest version of MPI is 2.2, approved September

4, 2009 by the MPI Forum and available at http://www.mpi-forum.org/

docs/mpi-2.2/mpi22-report.pdf.

Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) is a theoretical model for design-

ing parallel algorithms. It consists of processors with fast local memories

connected by a communication network. Communications happen as in the

message passing model. However, a BSP computation proceeds in a series of

http://openmp.org/
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
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global supersteps. A superstep consists of three ordered stages:

1. computation: each processor computes independently from other pro-

cesses, using only values stored in the local memory;

2. communication: processes exchange data;

3. barrier : a process that reaches the barrier waits until all other processes

have completed their communication actions.

Figure 1.5 shows a diagram of a BSP superstep.

Pr
oc

es
so
rs

Computation Communication Barrier

Figure 1.5: Diagram of a Bulk Synchronous Parallel superstep



Chapter 2

Networks

Many systems of interest to scientists are composed of individual parts or

components linked together in some way. Examples range from the Internet

(a set of computers linked by data connections) to social networks (collec-

tions of people linked by their relationships). While there are fields that

study the nature of the individual components, for instance how a computer

works or how a human being feels or acts, and others that study the nature

of the connections or interactions, like the communication protocols or the

dynamics of human relationships, there is a field that studies the patterns of

connections between components. That field is called Network Analysis.

2.1 Terminology

A network, or graph, is a mathematical structure used to model pairwise

relations between objects. Objects are called nodes or vertices and relations

that link them are called edges or ties. Throughout this dissertation I will

denote the number of nodes by n and the number of edges by m. A small

network consisting of n = 8 nodes and m = 9 edges is shown in Figure 2.1.

In order to model asymmetric relations, edges can have directions; in

this case we call the graph directed, otherwise it is called undirected. A

node is adjacent to another node if the two are directly connected by an

edge. A node j is reachable from node i if exists a sequence of adjacent

11
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Node

Edge

Figure 2.1: A small network with n = 8 nodes and m = 9 edges

nodes, called path, from node i to node j. A graph is connected if every

node is reachable from some other node; e.g., the graph in Figure 2.1 is not

connected, because it contains an unreachable node. A cycle is a path which

starts and finishes in the same node. A graph is acyclic if doesn’t contain

any cycles. The length of a path is the number of edges traversed along the

path. The geodesic distance between two nodes is the number of edges in

the shortest path connecting them. The characteristic path length of a graph

is the average geodesic distance between all pairs of nodes. A subgraph is

a connected portion of a graph. A clique is a subgraph in which all nodes

are adjacent to all others. Nodes and edges can be labeled with additional

informations such as names or weights. A weighted network is a network in

which nodes have some form of weight attached to them.

2.1.1 Clustering coefficient

The clustering coefficient is a measure that assesses the degree to which

nodes tend to cluster together. It is defined as

C =
3× (number of triangles)

(number of connected triples)
, (2.1)

where a triangle is a clique composed of three nodes, and a triple is a

subgraph with three nodes.

The clustering coefficient is particularly interesting for studying how com-

munication flows in a network. For example, infectious diseases spread more
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easily in small-world networks, and generally in networks with high clustering

coefficients, than in other network types [WS98].

2.2 Centrality measures

Centrality is an important structural attribute of networks because it

determines the relative importance of a vertex within the graph. Since it

is not a clearly defined concept, not even within a single type of network

[Fre79], a number of centrality measures have been created. The four most

important ones are degree, betweenness, closeness and eigenvector centrality.

However, for the purpose of this work I will present only an overview of the

degree centrality, its generalization to weighted networks, and the PageRank.

This section will adopt Figure 2.2a as the example undirected network and

Figure 2.2b as the example directed network.

d’

f’

b’

e’

a’

c’

(a) Undirected

d

f

b

e

a

c

(b) Directed

Figure 2.2: Two small networks with six nodes and eight edges

2.2.1 Degree Centrality

The simplest centrality measure is, perhaps, degree centrality. It matches

the degree of a node, defined as the number of adjacent nodes. For an undi-



14 2. Networks

rected graph if N is its node set, the degree ki of node i ∈ N is:

ki =
∑
j∈N

Ai,j, where Ai,j =

1, if i is adjacent to j;

0, otherwise.
(2.2)

In a directed graph each node has two degrees. If i ∈ N is a node, its in-

degree kini is the number of edges where i is the destination and the out-degree

kouti is the number of edges where i is the source. Formally:

kini =
∑
j∈N

Aj,i and kouti =
∑
j∈N

Ai,j. (2.3)

Table 2.1a and Table 2.1b show, respectively, the degree centralities for

the undirected graph in Figure 2.2a and the directed graph in Figure 2.2b.

Node Degree
a’ 2
b’ 3
c’ 2
d’ 2
e’ 5
f’ 2

(a) Undirected

Node In-Degree Out-Degree
a 1 1
b 2 1
c 1 1
d 1 1
e 1 4
f 2 0

(b) Directed

Table 2.1: Degree centralities for the example graphs

2.2.2 Node strength

In 2010, Opsahl et al. [OAS10] proposed a generalization of degree cen-

trality to weighted networks called node strength. The node strength si of

node i ∈ N is defined as

si =
∑
j∈N

wi,j, (2.4)

where wi,j is the weight of the edge that goes from i to j, or 0 if the edge

doesn’t exist.
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When wi,j = 1 ∀i, j ∈ N , node strength is equivalent to degree centrality.

2.2.3 PageRank

In 1998, Larry Page, Sergey Brin, Rajeev Motwani and Terry Winograd

described a new algorithm for ranking Web pages, the PageRank [PBMW98].

Named after Larry Page1 and used by the Google search engine, it was born

as a method to measure human interest and attention to Web pages, but it

can be applied to any directed network and is especially useful in citation-

based networks.

The simplified PageRank algorithm models a random web surfer. It cor-

responds to the probability distribution of a random walk on the graph of

the Web: the likelihood that a person randomly clicking on links will arrive

at any particular page. The simplified PageRank R of a node i is defined as

R(i) =
∑
j∈Bi

R(j)

koutj

, (2.5)

where Bi is the set of nodes that have edges going to i.

However, the random surfer will eventually “get bored” and request an-

other page. The probability of this event, at any step, is called damping

factor. The final version of the PageRank PR, as found in [BP98], is then

PR(i) = (1− d) + d
∑
j∈Bi

PR(j)

koutj

, (2.6)

where d is the damping factor. This definition led to some confusion, since

the same paper states that “the sum of all Web pages’s PageRanks will be

one”, which it can be proven that it is not the case with this formula. So the

normalized PageRank PR∗, actually used in Google, is

PR∗(i) =
1− d
n

+ d
∑
j∈Bi

PR∗(j)

koutj

. (2.7)

1source: http://www.google.com/press/funfacts.html

http://www.google.com/press/funfacts.html
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A comparison between the original PageRank (Equation 2.6) and the

normalized PageRank (Equation 2.7) for the graph in Figure 2.2b is shown

in Table 2.2.

Node Original PageRank (PR) Normalized PageRank (PR∗)
a 0.3011556 0.09906545
b 0.6612685 0.23316367
c 0.3011556 0.09906545
d 0.3011556 0.09906545
e 0.7117302 0.26906185
f 0.5567899 0.20057812

Table 2.2: PageRank values for the graph in Figure 2.2b

2.3 Models

2.3.1 Erdős–Rényi

Erdős–Rényi is a graph model proposed in 1959 [ER59] by Hungarian

mathematicians Paul Erdős and Alfréd Rényi. It is used to generate pure-

random graphs that are constructed by connecting nodes randomly and in-

dependently. In an Erdős–Rényi graph Gn,p with n nodes, each pair of nodes

is connected with probability p. The expected number of edges in such graph

is
(
n
2

)
p, and its clustering coefficient is p. Figure 2.3 shows an Erdős–Rényi

graph G20,0.1.

Since every edge is constructed independently from other edges, Erdős–Rényi

graphs typically show little structure, therefore they are rarely used to repre-

sent real-world networks. Nevertheless, they are particularly useful in testing

graph algorithms’s performance.

2.3.2 Small-World

Small-World networks, defined in 1998 by Duncan J. Watts and Steven H.

Strogatz [WS98], model many real-world networks, such as neural networks,
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Figure 2.3: An example Erdős–Rényi graph G20,0.1

social networks, power grids, the Internet, and other self-organizing systems.

These systems show high clustering coefficients and short characteristic path

length. Specifically, in Small-World networks the characteristic path length

L is proportional to the node count of the graph:

L ∝ log(n) (2.8)

Watts and Strogatz also proposed the following algorithm to generate

Small-World networks. To construct a Small-World graph Wn,k,β, where n is

the total number of nodes, k is the mean degree n � k � ln(n) � 1, and

0 ≤ β ≤ 1 is the rewire probability, the algorithm:

1. arranges the n nodes as a ring, connecting each node to k neighbors,

k/2 on each side;

2. rewires every edge with probability β, keeping the source and choosing

the destination between all possible nodes that are not the source.

Figure 2.4 shows an example Small-World graph W20,4,0.05.
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Chapter 3

An Overview of the Parallel

Boost Graph Library

The Parallel Boost Graph Library (Parallel BGL) [GL05] is a library

for distributed graph computation. It is part of Boost (http://www.boost.

org/), a popular collection of open source peer-reviewed libraries that extend

the C++ language’s functionalities. The Parallel BGL builds on the Boost

Graph Library (BGL) [SLL02], a library for sequential graph computation

also part of Boost, offering similar data structures, algorithms, and syntax.

Being primarily concerned with distributed graphs, the Parallel BGL con-

tains distributed graph data structures, distributed graph algorithms and

abstractions over the communication medium.

A distributed graph is a graph stored on a distributed system, where

nodes and edges are spread across multiple processes. Each process stores a

subset of the total nodes and the edges that connect them either locally (both

endpoints are stored on the same process) or remotely (one of the endpoint

is stored on a different process).

The Parallel BGL is built around the generic programming paradigm.

This paradigm requires algorithms to be as general as possible, making min-

imal assumptions about data types, but be just as efficient as the original

algorithm when instantiated in a concrete case. These characteristics make

the Parallel BGL efficient and flexible in terms of graph, node, and edge data

19

http://www.boost.org/
http://www.boost.org/
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structures.

The Parallel BGL is intended primarily as a research platform, to facili-

tate both experimentation and comparison of parallel graph algorithms and

to provide solid implementations for solving large-scale graph problems.

3.1 Distributed Data Structures

Parallel BGL’s generic algorithms and the flexibility offered by property

maps (introduced in Subsection 3.1.2) make it possible to reuse existing com-

patible data structures. However, in order to be useful out of the box, the

library also provides a distributed graph data structure: the distributed ad-

jacency list.

3.1.1 Distributed Adjacency List

The adjacency list is a data structure that represents graph with l lists,

one for each node i, that store i’s neighbors. The distributed adjacency list

extends this concept by assigning different subsets of those lists to different

processes.

Figure 3.1a shows an example graph with eight nodes and ten edges.

Figure 3.1b shows the same graph stored on two processes as a distributed

adjacency list where gray squares represent nodes, white squares represent

their neighbors and dashed white squares represent adjacent nodes stored on

a remote process.

The Parallel BGL’s implementation of the distributed adjacency list can

represent undirected, directed and bidirectional graphs1 and can use different

distribution types to partition nodes in graphs.

3.1.2 Distributed Property Map

The Boost Property Map library provides a general purpose interface for

mapping key objects to corresponding value objects, hiding the details of

1a bidirectional graph is a graph that stores both the in-edges and the out-edges in
each node, in contrast to the directed graph which stores only the out-edges.
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Figure 3.1: Comparing two representations of the same graph

how the mapping is implemented. The Parallel BGL builds on this concept

by distributing property values across multiple processors and by providing

transparent access to local and remote values. However, additional care is

required when dealing with distributed property maps. Write operations

(implemented in the put function) that modify remote property values are

cached in local ghost cells before the communication occurs and can be re-

jected by the remote process. Moreover, read operations (implemented in

the get function) can return outdated values because they only read the

content of local ghost cells, updated at every synchronize call. To address

these issues, the Parallel BGL provides reduction operations and consistency

models.

Reduction operations

Reduction operations maintain consistency by managing default values

and multiple writes. They are implemented as structures that contains two

functions: one that determines a default value when a remote value is not

immediately available, and another one called when a value is received from

another process, in order to determine which one will be stored in the local

property map between the local value, the remote value, or some combination

of both.
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PageRank’s reduction operation, called rank accumulate reducer, re-

turns 0 when a value is not available and the sum of the local and remote

value when a value is received from another process. In other words, it spec-

ifies the default rank for a remote node to be 0. When a remote rank is

received, it accumulates it by adding the remote one to the locally cached

one. With this setup the property map itself will compute the partial sums

on each processor and then accumulate the results on the owning processor

after each synchronize call.

Consistency models

Consistency models are flags that define how values propagate across pro-

cesses. The Parallel BGL contains six consistency models, but for the purpose

of this dissertation the most interesting ones are cm flush and cm reset.

cm flush instructs the distributed property map to queue all the remote

write operations in local ghost cells, and then flush them to the owning pro-

cessors after each synchronize call. Once the flush has occurred, cm reset

resets the local ghost cells to their default value as determined by the reduc-

tion operation.

This combination of consistency models is used by the Parallel BGL’s

PageRank implementation to locally accumulate ranks at each step.

3.2 PageRank implementation

The Parallel BGL’s PageRank implementation is based on the original

PageRank algorithm as defined is Equation 2.6 and implements the Bulk

Synchronous Parallel model of computation. Boost 1.46.02 defines three

page rank functions in <boost/graph/page rank.hpp> in order to provide

a rich interface to the actual PageRank implementation. These functions are,

in descending order of generality:

1. page rank(Graph, RankMap);

2released February 21, 2011 and available at http://sourceforge.net/projects/

boost/files/boost/1.46.0/

http://sourceforge.net/projects/boost/files/boost/1.46.0/
http://sourceforge.net/projects/boost/files/boost/1.46.0/
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2. page rank(Graph, RankMap, Done);

3. page rank(Graph, RankMap, Done, Damping, NumVertices);

where:

• Graph is the graph to analyze;

• RankMap is a property map that maps each node to its rank;

• Done is a functor that determines when the PageRank algorithm should

complete; the first page rank function sets it to n iterations(20)

(which will make the PageRank algorithm run for 20 iterations) and

calls the second page rank function;

• Damping is the damping factor; the second page rank function sets it

to 0.85 and calls the third page rank function;

• NumVertices is the number of nodes stored in the current process.

Inevitably, then, the program reaches the third page rank function. This

function passes all the aforementioned values to page rank impl, defined in

<boost/graph/distributed/page rank.hpp>.

First, page rank impl sets up the computation by assigning the rank

of all NumVertices nodes to 1/NumVertices, applying the cm flush and

cm reset consistency models, and designating rank accumulate reducer

as the reduction operation. Then, page rank impl loops until Done returns

true, calling page rank step and synchronize at each iteration. Here,

page rank step implements the computation phase of the BSP and synchronize

both the communication phase and the barrier.

page rank step is a function defined in <boost/graph/page rank.hpp>.

For all the nodes in the current process i ∈ Ncurr: sets their ranks to (1 −
Damping), and for all the nodes j adjacent to i, sums the current rank with

dPR(i)
koutj

. At the end of each step, the synchronize function ensures that every

node receives and accumulates the ranks calculated in other processes.

Parallel BGL’s authors Douglas Gregor and Andrew Lumsdaine claim

that each step of this PageRank implementation requires O(n + m)/p time

on p processors and performs O(n) communications.





Chapter 4

PageRank Performance

Analysis

4.1 Terminology

The wall clock time is the actual duration of a task, measured by the time

elapsed from the start to the end. The wall clock time includes I/O time,

CPU time, communication delays, etc. In other words it’s the difference

between the time at which the task finished and the time at which the task

started.

The speedup of a distributed program measures how much it is faster than

the corresponding sequential program. It is defined by the following formula:

Sp =
T1
Tp

(4.1)

where p is the number of processors, T1 is the wall clock time of the sequential

program, and Tp is the wall clock time of the distributed program with p

processors. When Sp = p, the distributed program has a linear (or ideal)

speedup.

Due to the size of some graphs used in my tests and our parallel com-

puter’s memory constraints, I was unable to run sequential tests. Thus, the

necessity of a modified speedup measure arose.

25
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Definition 1 (nth speedup). The nth speedup of a distributed program

measures how much it is faster than the corresponding program when run on

n processors. It is defined as

Snp =
nTn
Tp

, (4.2)

where p is the number of processors, Tn is the wall clock time of the dis-

tributed program run on n processors, Tp is the wall clock time of the dis-

tributed program with p processors. n is the number of processors used for

the initial measurement.

Proof.

Snp =
nTn
Tp

=
nT1
n

Tp

=
T1
Tp

Corollary 2. When Snp = p, the distributed program has a linear speedup.

4.2 Methodology

I assessed the scalability of the PageRank implementation from the Par-

allel BGL by performing tests on a cluster of commodity computers. That

cluster was composed of 43 PCs, each one with a dual-core Intel R© CoreTM

2 Duo E7500 processor running at 2.93GHz and 2GB of RAM, connected to

one of the two 24-ports hubs in a star topology where each hub was then

connected to a common switch. The lab’s network topology is shown in

Figure 4.1.
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Figure 4.1: Our cluster’s network topology. Gray ellipses represent machines,
blue rectangles hubs, and green rectangles switches.

Since the lab was shared with other students I had to be very careful

choosing the machines for each test. For that reason I developed three Ruby

scripts that run the tests on idle machines (those with the lowest load average,

which typically was 0.00) automatically increasing the number of processors

used at each run and plot the time graphs at the end:

1. list csunibo.rb lists all the cluster’s computers;

2. idle servers.rb selects idle machines so that the total number of

available processors is equal or greater than the number of processors

requested by the user (e.g., in a cluster of dual-core machines, if the

user requests 30 idle processors, this script will return 15 machines with

the lowest load average);

3. plot timegraphs.rb glue the aforementioned scripts together, exe-

cutes the tests on an increasing number of processors and plots the
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time graphs.

The list of idle machines was computed at the start of the whole testing

process, and at each run passed unchanged to mpirun. That way, mpirun

was able to load balance the processors, spreading the processes among the

highest possible number of processors. (For example, in a cluster of 10 dual-

core machines, mpirun will assign one process per machine if the number of

processes is less or equal than 10, and it will eventually use all the available

20 processors when the number of processes is 20.)

The wall clock time of the page rank function, averaged out over all

processes, was logged in a file with the following structure:

Algorithm GraphType NumberOfProcesses HumanReadableTime Seconds

For example, one of the actual log files used in this work looks like this:

PageRank CsvBigraph 4 00:01:28.663179 88.6632

PageRank CsvBigraph 6 00:01:44.027264 104.027

PageRank CsvBigraph 8 00:02:09.503521 129.504

PageRank CsvBigraph 10 00:02:27.669325 147.669

PageRank CsvBigraph 12 00:02:44.806108 164.806

PageRank CsvBigraph 14 00:02:56.309223 176.309

PageRank CsvBigraph 16 00:03:24.311819 204.312

PageRank CsvBigraph 18 00:03:31.438518 211.439

PageRank CsvBigraph 20 00:04:03.072149 243.072

PageRank CsvBigraph 22 00:04:17.186015 257.186

PageRank CsvBigraph 24 00:04:40.137390 280.137

PageRank CsvBigraph 26 00:04:47.866493 287.866

PageRank CsvBigraph 28 00:05:21.858589 321.859

PageRank CsvBigraph 30 00:05:53.098353 353.098

Results were grouped by graph type, node count, and edge count in order

to spot patterns easily.

The source code of my tests is available as part of the LANA project

(Large-scale Network Analyzer), available at http://sigsna.trac.cs.unibo.

it/ under the MIT license.

http://sigsna.trac.cs.unibo.it/
http://sigsna.trac.cs.unibo.it/
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4.2.1 Datasets

Different datasets were chosen in order to study the impact of several

variables that can influence the algorithms’s wall clock time. Three network

types were chosen for their different structural characteristics: Erdős–Rényi

and Small-World networks synthesized by Parallel BGL’s respective gener-

ators, and FriendFeed’s users network. To ensure the repeatability of the

tests, the random number generator used by Parallel BGL’s generators was

seeded with the same hard-coded number.

FriendFeed (http://friendfeed.com/) is a popular microblogging and

social network service that makes public content easy to access. Thus, mem-

bers of the SIGSNA project (Special Interest Group on Social Network Anal-

ysis, http://larica.uniurb.it/sigsna/), were able to scrape, extract, and

reprocess FriendFeed’s data [CDLM+10] producing a series of CSV (comma

separated value) files available at http://larica.uniurb.it/sigsna/data/

that cover all the entries and the active users between August 1, 2010 and

September 30, 2010. For my purposes, only the followers’s network1 (where

accounts are nodes and subscriptions to other account’s feeds are edges) and

its reduction to Italian users were considered.

The node and the edge count of FriendFeed’s Global and Italian net-

works indirectly determined the size of some of the synthetic networks. Since

the goal is understanding what and how much variables influenced the al-

gorithm’s wall clock time, the synthetic networks’s sizes match FriendFeed

networks’s sizes as much as possible. Starting from this baseline, the node

and the edge count of each synthetic network was increased independently

from each other, resulting in the datasets shown in Table 4.1.

1available at http://dbis.cs.unibo.it/sigsna/data/2010a/subscriptions.zip

http://friendfeed.com/
http://larica.uniurb.it/sigsna/
http://larica.uniurb.it/sigsna/data/
http://dbis.cs.unibo.it/sigsna/data/2010a/subscriptions.zip
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Graph Type Nodes Edges
FriendFeed Global 653646 27811816
FriendFeed Italian 28250 692668

Erdős–Rényi 28250 141250
Erdős–Rényi 28250 1412500
Erdős–Rényi 282500 1412500
Erdős–Rényi 282500 14125000
Erdős–Rényi 653646 27811816
Erdős–Rényi 1307292 55623632
Small-World 28250 141250
Small-World 28250 1412500
Small-World 282500 1412500
Small-World 282500 14125000
Small-World 653646 28106778
Small-World 1307292 56213556

Table 4.1: Datasets used for the tests

4.3 Results

4.3.1 Negative scalability

Figure 4.2 shows the wall clock time of the distributed PageRank im-

plementation from the Parallel BGL on FriendFeed’s Global and Italian net-

works as a function of the number of processors. Just by looking at this graph,

it is clear that the wall clock time of the algorithm increases linearly with the

number of processors or, in other words, it has negative scalability. In fact,

the Pearson’s correlation coefficient2 between the number of processors p and

the wall clock time for the Italian FriendFeed network tI is ρp,tI = 0.9808243,

and for the Global FriendFeed network tG is ρp,tG = 0.9966577.

This relationship holds just as well with graphs different than Friend-

Feed’s network. In fact, Figure 4.3 and Figure 4.4 feature the same pattern

for Erdős–Rényi and Small-World graphs, respectively. Also, Table 4.2 shows

2The Pearson’s correlation coefficient ρX,Y is a measure of the linear dependence be-
tween two variables X and Y , giving a value between +1 (positive correlation) and −1

(negative correlation) with 0 indicating no correlation. It is defined as ρX,Y = cov(X,Y )
σXσY

.



4.3 Results 31

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30

Se
co

nd
s

Processes

FriendFeed Italy n = 28250, m = 692668
FriendFeed Global n = 653646, m = 27811816

Figure 4.2: PageRank’s wall clock time on FriendFeed’s Global and Italian
networks

the correlation coefficients between the wall clock time and the number of

processors for all the experiments. Except for some bumps, also reflected in

lower correlation coefficients, all the experiments showed a linear correlation

between the wall clock time and the number of processors.

4.3.2 Impact of the graph type on scalability

Figure 4.5 compares the PageRank’s wall clock time on various networks

with 653646 nodes and about 27811816 edges. This graph shows how differ-

ent graph types influence the scalability of the PageRank algorithm. Wall

clock times are similar with a low number of processors, but as the num-

ber of processors increases, differences between graph types become more

apparent. Graphs with an higher clustering coefficient are a better fit for

the Parallel BGL’s PageRank implementation. In fact, Small-World graphs

“scale” better, in sharp contrast with Erdős–Rényi graphs that are the worst

of the group. FriendFeed’s Global network stays in between, having an higher

clustering coefficient than Erdős–Rényi but lower than Small-World.
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Figure 4.3: PageRank’s wall clock time on Erdős–Rényi networks

The explanation of this phenomenon comes from the PageRank imple-

mentation. As previously mentioned in Section 3.2, the Parallel BGL’s

page rank step function updates the rank values of all the adjacent nodes

for every node stored in the current process. Since the adjacent nodes can

be stored either in the local or in a remote process, in graphs with an high

clustering coefficient the communication time is greatly reduced. In graphs

with a lower clustering coefficient processes need to communicate a lot more

values between each other, thus increasing the wall clock time.

4.3.3 Impact of the edge count on scalability

Figure 4.6 highlights the relationship between wall clock times on graphs

with different edge counts, taking Erdős–Rényi networks with 28250 nodes as

an example. In this particular case, the wall clock time increased by 55.5376%

on average, with a variance of 0.1332783, as the edge count increased tenfold,

from 141250 to 1412500.

A similar experiment with ten times more nodes led to an even greater

increase of the wall clock time. Figure 4.7 shows two experiments with
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Figure 4.4: PageRank’s wall clock time on Small-World networks

Erdős–Rényi networks of 282500 nodes and respectively, 1412500 and 14125000

edges. In this case, the wall clock time increased by 165.8727% on average,

with a variance of 0.3132687.

Since a tenfold increase in the number of edges coincided with a 55.5376%

increase of the wall clock time for networks of 28250 nodes, and with a

165.8727% increase for networks of 282500 nodes, we have the reason to

suspect that the edge count is not directly related to the wall clock time but

it plays a symbiotic role with the node count.
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Graph Type Nodes Edges ρp,t
FriendFeed Global 653646 27811816 0.9966577
FriendFeed Italian 28250 692668 0.9808243

Erdős–Rényi 28250 141250 0.9618445
Erdős–Rényi 28250 1412500 0.9883753
Erdős–Rényi 282500 1412500 0.9390956
Erdős–Rényi 282500 14125000 0.9986524
Erdős–Rényi 653646 27811816 0.9943021
Erdős–Rényi 1307292 55623632 0.900231
Small-World 28250 141250 0.9786595
Small-World 28250 1412500 0.9668417
Small-World 282500 1412500 0.9737682
Small-World 282500 14125000 0.9723917
Small-World 653646 28106778 0.9076243
Small-World 1307292 56213556 0.9957426

Table 4.2: Correlation coefficients between the number of processors p and
the wall clock time t for all the experiments
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Conclusions

This dissertation introduced graph theory and network analysis, overview-

ing the terminology, the centrality measures, and the graph models needed

to better understand the PageRank implementation from the Parallel BGL.

Then it presented the Parallel BGL, the fundamental data structures it pro-

vides, its consistency models, and its PageRank implementation. Finally,

it analyzed the behavior of the PageRank implementation from the Parallel

BGL in a cluster of commodity computers.

My tests showed that the Bulk Synchronous Parallel model of computing,

used in the PageRank implementation from the Parallel BGL, is unsuitable to

implement a PageRank algorithm that scales well on clusters of commodity

computers. The PageRank implementation from the Parallel BGL exhibited,

in fact, negative scalability. The wall clock time of the algorithm increased

linearly as a function of the number of processors.

Experimental results showed a relationship between the clustering co-

efficient and the algorithm scalability. For example, networks with a low

clustering coefficient, such as Erdős–Rényi ones, represented the worst case

scenario of our tests, while networks with a high clustering coefficient, such

as Small-World ones, represented the best case scenario. The difference in

size of the networks also led to interesting results. In fact, tests revealed that

the combined effect of node and edge count produces an increase of the wall

clock time.

The pervasiveness and inexpensiveness of today’s multi-core computers

forces parallel programmers, historically trained to deal with supercomputers,

to devote their attention to those new, different parallel environments. In

the past few years a number of researchers developed fast parallel PageRank
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implementations [GZB04] [ZYL05] [BdJKT05] [KCN06]. Further research is

needed to implement those algorithms and to assess their performance in

clusters of commodity computers.
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