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Sommario

Il lavoro presentato in questa tesi si colloca nel contesto della programma-
zione con vincoli, un paradigma per modellare e risolvere problemi di ricerca
combinatoria che richiedono di trovare soluzioni in presenza di vincoli. Una
vasta parte di questi problemi trova naturale formulazione attraverso il lin-
guaggio delle variabili insiemistiche. Dal momento che il dominio di tali
variabili può essere esponenziale nel numero di elementi, una rappresentazio-
ne esplicita è spesso non praticabile. Recenti studi si sono quindi focalizzati
nel trovare modi efficienti per rappresentare tali variabili. Pertanto si è soliti
rappresentare questi domini mediante l’uso di approssimazioni definite trami-
te intervalli (d’ora in poi rappresentazioni), specificati da un limite inferiore
e un limite superiore secondo un’appropriata relazione d’ordine.

La recente evoluzione della ricerca sulla programmazione con vincoli sugli
insiemi ha chiaramente indicato che la combinazione di diverse rappresenta-
zioni permette di raggiungere prestazioni di ordini di grandezza superiori
rispetto alle tradizionali tecniche di codifica. Numerose proposte sono state
fatte volgendosi in questa direzione. Questi lavori si differenziano su come
è mantenuta la coerenza tra le diverse rappresentazioni e su come i vincoli
vengono propagati al fine di ridurre lo spazio di ricerca. Sfortunatamente
non esiste alcun strumento formale per paragonare queste combinazioni.

Il principale obiettivo di questo lavoro è quello di fornire tale strumento,
nel quale definiamo precisamente la nozione di combinazione di rappresen-
tazioni facendo emergere gli aspetti comuni che hanno caratterizzato i lavori
precedenti. In particolare identifichiamo due tipi possibili di combinazio-
ni, una forte ed una debole, definendo le nozioni di coerenza agli estremi
sui vincoli e sincronizzazione tra rappresentazioni. Il nostro studio propone
alcune interessanti intuizioni sulle combinazioni esistenti, evidenziandone i
limiti e svelando alcune sorprese. Inoltre forniamo un’analisi di complessità
della sincronizzazione tra minlex, una rappresentazione in grado di propaga-
re in maniera ottimale vincoli lessicografici, e le principali rappresentazioni
esistenti.
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Il primo capitolo è un’introduzione al contesto generale nel quale questo
lavoro prende forma dettagliando in modi più precisi le motivazioni e gli scopi
di questa tesi.

Nel secondo capitolo vengono introdotti i concetti e le notazioni che sa-
ranno necessarie al lettore per comprendere questa tesi. In particolare intro-
durremo formalmente i problemi di soddisfacimento di vincoli, le nozioni di
coerenza locale e le variabili insiemistiche.

Il terzo capitolo offre una panoramica sulla letteratura più rilevante che
tratta di rappresentazioni insiemistiche. In particolare ci focalizzeremo su
lengthlex, una rappresentazione che sarà propedeutica alla comprensione del
capitolo riguardante la trattabilità.

Nel quarto capitolo formalizzeremo un framework preliminare in grado
di gestire la combinazione di due rappresentazioni, una tecnica piuttosto
diffusa per ottenere migliori approssimazioni. Definiremo le necessarie no-
zioni di coerenza agli estremi e sincronizzazione per combinazioni binarie.
Introdurremo quindi la rappresentazione minlex, in grado di propagare in
maniera effettiva vincoli lessicografici. Compareremo la robustezza di diffe-
renti combinazioni posizionando le rappresentazioni esistenti all’interno del
nostro framework.

Nel capitolo quinto forniremo alcuni risultati di complessità per la rap-
presentazione minlex. In particolare mostreremo che qualsiasi vincolo unario
e binario trattabile per lengthlex è trattabile anche per minlex. Mostrere-
mo quindi che la sincronizzazione tra minlex e le principali rappresentazioni
esistenti può essere ottenuta in tempo polinomiale.

Il capitolo sesto tratterà delle generalizzazione del framework proposto nel
capitolo terzo allo scopo di gestire un numero arbitrario di rappresentazioni.
Continueremo quindi il confronto di alcune combinazioni basate su minlex
con combinazioni esistenti, posizionandole nel nostro framework.

Infine il capitolo settimo conclude la tesi con una discussione dei risultati
ottenuti e degli sviluppi futuri.
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Chapter 1

Introduction

There are many constraint satisfaction problems that can be naturally for-
mulated using set variables. They require searching set of sets which satisfy
some constraints. Set variables are usually approximated using sets intervals.
A powerful approach is to combine together different intervals to achieve the
maximum level of pruning. In this thesis, we provide a general framework
for combining different intervals in order to give a systematic approach to
the study of combined approximations.

The first chapter gives an introduction to the context and highlights the
motivations of this thesis.

1.1 Constraint programming

Constraints are everywhere. Many common problems in our lives can be
viewed as constraint satisfaction problems (CSP). In university, we face every
year the famous timetable problem. A timetabling problem can be defined as
the scheduling of a certain number of lectures, which are given by a teacher
and attended by a certain number of students. There are many constraints
that must be satisfied at the same time: the rooms must be large enough
to contain the students, a teacher cannot teach two lectures at the same
time, lectures can start after 8am and must finish before 7pm and other
constraints. Another typical example of CSP can be the well-known Sudoku
puzzle: in such a game the objective is to fill a 9× 9 grid with digits so that
each column, each row, and each of the nine distinct 3× 3 boxes contains all
of the digits from 1 to 9, as shown in Figure 1.1.

A constraint satisfaction problem is defined as a set of variables, each one
with its domain, and a set of constraints which specify the solutions [16].
A solver implements variables, constraints and a solution procedure which
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Chapter 1. Introduction

Figure 1.1: A sudoku puzzle (left) and its solution (right).

tries to find an assignment to the variables such that it satisfies all of the
constraints. Solvers are usually embedded within a programming language or
provided via separate software libraries. A solver exploits two techniques to
find solutions: inference and search. Inference involves constraint reasoning
and it is able to forbid the assignment of values or combination of values to
the variables only by looking at the constraints. On the other hand, search
is based on backtracking and it is an exhaustive procedure to find a solution.
Search efficiency is improved by inference.

Constraint programming (CP) consists of two phases that are strongly
interconnected:

1. modelling;

2. solving.

When a CP user models a problem, he must define the variables, the do-
mains and specify the solutions by posting the constraints. Modelling is a
critical aspect because it requires to formalize the human understanding of
a problem, choosing the right variables, constraints, etc. A bad model can
result in poor performance or it could yield to wrong results.

From the user point of view, constraint programming is a declarative
programming paradigm: a programmer must not focus in how to solve the
problem, like we normally do with traditional imperative languages, but on
how to model it. It will be the solver that will take care of resolving the
problem. However constraint programming is also traditional computer pro-
gramming, as the user often must program a strategy to find a solution in
an efficient way.

2



Chapter 1. Introduction

1.2 Motivations and aim of this thesis

Set variables (i.e. variables whose domain is a set of sets) are natural objects
for modelling a wide range of problems. For instance, consider the problem
of packing items in a bag. Such a bag can be modelled using a single set
variable as the order of the elements is irrelevant.

In general, the real domain of a set variable is exponential in size. There-
fore it is often represented with an approximation. An approximation is an
interval specified by a lower bound and an upper bound. The first approx-
imation is due to Puget [15] and Gervet [10] and exploits the traditional
subset ⊆ ordering. The values in the lower bound are called definite val-
ues because each set which belongs to the domain must contain them. The
values in the upper bound are called possible element, since a set can con-
tain only those elements. This approximation has some weaknesses: for
example it is not able to deal well with cardinality constraints as this in-
formation is not explicitly represented. To overcome this weakness Cardinal
[1] enhanced subset bounds with cardinality bounds, integrating different
approximations. Promising results in this new type of approximation has
opened a new research in set variable representation and consequently many
interesting combined approximations have been studied [19, 11, 1]. The only
work that rejects this assumption is the one by Hawkins, Lagoon and Stuckey
[12]. They completely represent a domain using ROBDD (Reduced Ordered
Binary Decision Diagram), without any loss of information. However ex-
perimental evaluations [28] have shown that combining together different set
approximations outperforms the state-of-the-art solver which uses ROBDD.
This is because maintaining ROBDD during propagation is expensive.

These previous studies have differed on how approximations are com-
bined, how consistency between intervals is maintained, and how the con-
straints are propagated in order to reduce the search space. Unfortunately
no formal framework exists to compare these combined approximations. Our
goal is to provide a framework in which we define the notion of combining
approximations, characterize some common issues that naturally arise when
two or more approximations are combined (e.g. consistency between do-
mains). We then want to compare the strength of the different combinations
and position existing combinations within our framework. Finally we want to
give some complexity results on maintaining consistency between domains.

3



Chapter 1. Introduction

1.3 Overview

In the next chapter, we introduce the concepts and the notations that are
needed to the reader to understand this thesis. In particular, we formally
introduce constraint satisfaction problems, local consistencies, search and set
variables. In Chapter 3 we summarize the most relevant literature regarding
set variable representations. In particular, we will focus on lenghtlex: a
representation which will be studied throughout this thesis. Then the rest of
this thesis is divided in 3 chapters with the following contributions.

A framework for combining two representations In Chapter 4, we
formalize a framework to combine two representations which is a popular
way of combining representations. We characterize two types of combina-
tions and we define bound consistency on them. Then we introduce a new
representation, called minlex, and we study its various combinations with
the most common existing representations. We then compare the strength
of these minlex based combinations and we position the existing mutually
combined representations within our framework.

Tractability In Chapter 5, we provide some complexity results for the
minlex representation. In particular, we show that every unary and binary
constraint that is tractable for lengthlex, is tractable also for minlex. We
also show that consistency between minlex and the most common existing
representations can be achieved in polynomial time.

Generalizing the framework In Chapter 6, we generalize the framework
introduced in Chapter 3 to deal with an arbitrary number of representa-
tions, given that the recent is to consider more than two representations at
a time. We then focus on the combination of three representations. We fur-
ther compare the strength of minlex based combinations and position in our
framework the existing combinations that take into account three represen-
tations.

Chapter 7 concludes the thesis, with a discussion of the obtained results
and future work. Part of the hereby presented work is submitted to The
Twenty-Fifth Conference on Artificial Intelligence (AAAI 2011).1

1http://www.aaai.org/Conferences/AAAI/aaai11.php
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Chapter 2

Background

In this chapter, we introduce the concepts and the notations that are needed
to the reader to understand this thesis. In particular, we formally introduce
constraint satisfaction problems, local consistencies, search and set variables.

2.1 Constraint satisfaction problem

Following [16], a constraint satisfaction problem (CSP) is defined as follows:

Definition 1 A CSP is a triple 〈X,D,C〉 where:

• X is a n-tuple of variables X = 〈X1, X2, . . . , Xn〉;

• D is a n-tuple of domains D = 〈D(X1), D(X2), . . . , D(Xn)〉 where
D(Xi) is the domain of the variable Xi;

• C is a t-tuple of constraints 〈c1, c2, . . . , ct〉 where cj is a relation defined
on a sequence of variables var(cj) = 〈Xl, . . . , Xm〉. cj is the subset of
D(Xl)× . . .×D(Xm) that contains the combinations of values that are
allowed by cj.

A constraint can be specified extensionally by the list of its satisfying tuples or
intensionally by a formula. |var(c)| is the arity of the constraint. Constraints
of arity 1 are called unary constraints whilst constraint of arity 2 are called
binary constraints.

Example 1 (Modelling sudoku) The sudoku problem can be formulated
as CSP as follows:

• 9×9 variables, one for each cell, Xi,j with domains D(Xi,j) = {1, . . . , 9};

5



Chapter 2. Background

• not equals constraints on the rows, columns and boxes. For example:

– alldifferent(X1,1,X1,2,X1,3, . . . , X1,9);

– alldifferent(X1,1,X1,2,X1,3, . . . , X1,9);

– alldifferent(X1,1,X1,2,X1,3,X2,1,X2,2,X2,3,X3,1,X3,2,X3,3);

where the alldifferent constraint states that all the variables must be assigned
to different values.

A variable assignment or instantiation is an assignment to a variable
Xi of one of the values from D(Xi). A partial assignment is an assign-
ment to some but not all Xi ∈ X whilst a total assignment is an assign-
ment to every Xi ∈ X. We denote with A a partial assignment and with
A[{Xi, . . . , Xj}] the projection of A on variables Xi, . . . , Xj. A partial as-
signment A is consistent if and only if for all constraints c(Xl, . . . , Xm) ∈ C,
A[{Xl, . . . , Xm}] ∈ c(Xl, . . . , Xm). A solution to a CSP is a consistent total
assignment. We say that a partial assignment A can be extended to a so-
lution if and only if it is consistent. An assignment or a partial assignment
that it is not consistent is an unsatisfying assignment.

Example 2 Consider again the sudoku puzzle of Figure 1.1. X1,3 = 4 is
a variable assignment and it is also a consistent partial assignment since it
can be extended to a solution. The assignment induced by the right puzzle of
Figure 1.1 is a solution. X1,3 = X1,4 = 4 is a failure.

In general solving CSPs is NP-hard. Despite this general intractability,
constraint programming provides a platform to solve CSPs for many real
problems [23]. Once a problem is modelled as a CSP a solver solves it by
searching the set of solutions. The search space is given by the cartesian
product of each domain D(Xi). However the search space is reduced thanks
to the inference done by local consistencies. The hope is that the reduction
is enough to solve the CSP in polynomial time.

2.2 Local consistencies

Inference is a form of reasoning which eliminates parts of the search space by
examining the variables, their domains and the constraints. Clearly inference
must preserve the set of solutions.

Example 3 Take for example the following constraint X1 < X2 on two in-
teger variables X1 and X2. Assume that D(X1) = {4, 5, 6} and D(X2) =
{1, 2, 3}. Clearly this constraint has no solution: the smallest element of
D(X1) is in fact greater than the greatest element of D(X2).

6



Chapter 2. Background

Since complete inference is infeasible, we classify the amount of reasoning
which a solver is able to do with local consistencies. A local consistency
is a property that must be satisfied by a CSP. It is called local because it
considers individual constraints. Therefore it is an incomplete inference.

Generalized Arc Consistency As presented in [16], arc consistency (AC)
is the oldest and most well-known form of local consistency. Arc consistency
guarantees that every value in a domain can be extended to a solution. AC
is defined only for binary constraints.

Given a constraint c(Xl, . . . , Xm), a support is a tuple 〈dl, . . . , dm〉 ∈ c
where di ∈ D(Xi). Now we are ready to give the formal definition of gen-
eralized arc consistency (GAC) which is defined for constraints of any arity.
This definition includes also the definition of AC.

Definition 2 (Generalized Arc Consistency) Given a CSP 〈X,D,C〉,
a constraint c ∈ C, c is generalized arc consistent if and only if ∀Xi ∈ var(c),
∀v ∈ D(Xi), v belongs to a support.

A CSP is GAC if and only if all its constraints are GAC.

Example 4 Let X1, X2 and X3 be three variables. Assume that D(X1) =
D(X2) = D(X3) = {1, 2, 3}. Consider the constraints c1(X1, X2) ≡ (X1 =
X2) and c2(X2, X3) ≡ (X2 < X3). This CSP is not arc consistent. Indeed
when we check c2, we see that X2 = 3 cannot be extended to a solution.

Note that local consistencies are only properties of a CSP. It is not speci-
fied how to enforce these properties. A propagator, or propagation algorithm,
is an algorithm which enforces the desired local consistency for a CSP. The
process of examining a constraint is called propagation. Propagation may
remove values from the domains of the variables when local consistencies are
enforced. This removal is also known as pruning.

Example 5 Consider example 4: when we check c2, we see that 3 ∈ D(X2)
must be pruned because it can not be supported by any value in D(X3). Re-
moving 3 from D(X2) causes propagation which in turn removes 3 from
D(X1) because of constraint c1.

It has been proved [4] that GAC is in general NP-hard to achieve. During
the years many algorithms have been proposed for enforcing AC and GAC.
The most well-known propagator is the one proposed by Mackworth under

7



Chapter 2. Background

the name AC3 which runs in O(ed3), where e is the number of constraints
and d the domain size. Nowadays the best GAC propagator for any kind
of CSP runs in O(erdr), where r is the largest arity of a constraint. It is
possible to obtain better performance exploiting the constraint semantics .

Consistencies weaker than GAC It is possible to define weaker levels
of consistencies than GAC. In fact sometimes GAC could be too expensive to
maintain. As a result, many proposals have been done during the years. Here
we cover only bound consistency since it will be extensively used throughout
this thesis.

The main idea behind bound consistency is to exploit the fact that do-
mains are composed of integers. Thus they inherit the traditional total or-
dering ≤ on Z. Given a domain D(Xi), we denote with lbZ(Xi) and ubZ(Xi)
the smallest and the biggest element of D(Xi) under the ordering of Z. We
can relax the domain of D(Xi) as {lbZ(Xi), . . . , ubZ(Xi)}. Given a con-
straint c(Xl, . . . , Xm), a bound support is a tuple 〈dl, . . . , dm〉 ∈ c where
di ∈ {lbZ(Xi), . . . , ubZ(Xi)}. Therefore bound consistency (BC) is formally
defined as follows:

Definition 3 (Bound consistency) Given a CSP 〈X,D,C〉, a constraint
c ∈ C, c is bound consistent if and only if ∀Xi ∈ var(c), lbZ(Xi) and ubZ(Xi)

belong to a bound support.

A CSP is BC if and only if all its constraints are BC.

Note that since bound consistency is obtained by relaxing arc consistency,
we have that every CSP that is arc consistent is also bound consistent but
not vice versa. That means that arc consistency is stronger than bound
consistency.

Example 6 Take X1, . . . , X6 variables and assume that D(X1) = D(X2) =
{1, 2}, D(X3) = D(X4) = {2, 3, 5, 6}, D(X5) = {5} and D(X6) = {3, 4, 5, 6, 7}.
Consider the constraint alldifferent(X1, . . . , X6) that imposes that the values
assigned to the variables must be different. After the BC propagation on
alldifferent we have D(X1) = D(X2) = {1, 2}, D(X3) = D(X4) = {3, 5, 6},
D(X5) = {5} and D(X6) = {3, 4, 5, 6, 7}. Clearly this domain is not arc
consistent, in fact 5 ∈ D(X4) does not have a support. If we propagate GAC
we obtain D(X1) = D(X2) = {1, 2}, D(X3) = D(X4) = {3, 6}, D(X5) = {5}
and D(X6) = {4, 7}.

8



Chapter 2. Background

Consistencies stronger than GAC For the sake of completeness, the
reader should know that there exist other forms of local consistencies stronger
than AC and for which several propagation algorithms have been developed:
just to name a few we remind path consistency by Montanari (more in general
the full class of k-consistencies) and triangle based consistencies. However
such consistencies are beyond the scope of this thesis. See [16] for an intro-
duction.

2.3 Search

Backtracking search is a fundamental technique for solving constraint satis-
faction problems. If a solution exists, eventually it will be found. Tradition-
ally backtracking search is represented with a tree, where each node defines
a partial assignment and each branch defines a variable assignment. Back-
tracking search builds up a partial assignment choosing values for the vari-
ables. At each node the consistency of the corresponding partial assignment
is checked. In case of inconsistency, a deadend is reached and backtracking
search undoes the last choice and tries another. It is different from agnostic
brute force since it does not wait a complete instantiation to evaluate the
assignment.

As explained in [16], there are many ways to improve backtracking search.
Backtracking search performance highly depends on some decisions that have
to be taken during the search such as which variable to branch on and which
value to assign to the variable. It has been shown that for many problems,
the choice of variable and value ordering can be crucial to effectively solve
the problem. Another option is to interleave inference with search, called
constraint propagation. A further effective technique to improve backtrack-
ing search is to add implied constraints. Implied constraints are constraints
that do not change the set of the solutions but help pruning the search space.
A detailed description can be found in [16].

2.4 Set variables

A set variable is a variable that takes as value a subset of a universe U =
{1, . . . , n}. A set of k elements from the universe is denoted by {s1, s2, . . . , sk}
where s1 < s2 < . . . < sk.

The domain D(S) for a set variable S can potentially contain 2n values
(the size of the power-set P(U)). For example, if U = {1, 2} then P(U) =
{{}, {1}, {1, 2}, {2}}. In the rest of this thesis, we will use the letter S when

9



Chapter 2. Background

we mean a set variable.
The real domain of a set variable is usually approximated by a repre-

sentation. A representation R of a set variable is a subset of P(U) and it
is defined by a single lower and upper bound. Representations are usually
limited to subsets of P(U) that form an interval in some partial or total order
on P(U). The original domain D(S) of a set variable is approximated by a
representation R as DR(S) which is described by its lower bound lbR(S) and
upper bound ubR(S). If DR(S) is the smallest interval containing D(S), we
call it the tightest approximation of D(S). As we will show in Chapter 3,
there exist many representations proposed for set variables.

Set variables are a powerful modelling tool. They can for instance help
modelling groups of elements. As an example, consider the problem of pack-
ing items in a bag. Such a bag can be modelled using a single set variable
as the order of the elements is irrelevant. More examples of CSPs modelled
with set variables can be found in [16].

10



Chapter 3

Related work

In this chapter we cover most of the existing literature for set variable repre-
sentations. We will present the related work in chronological order, reflecting
the various attempts to improve set variable representations.

3.1 Subset bounds representation

The first representation which received a great attention from the CP commu-
nity is the subset bounds (SB) representation proposed in [10, 15]. This repre-
sentation is based on the traditional subset partial order. Hence a set variable
is represented by an interval whose lower and upper bounds are known sets.
The elements that belong to the lower bound are called definite elements be-
cause each set in the interval must contain them. The elements that belong to
the upper bound are called possible elements because each set in the interval
can not contain elements that are not contained in the upper bound. More
formally , given a set variable S, DSB(S) = {s | lbSB(S) ⊆ s ⊆ ubSB(S)}.
Figure 3.1 shows an example of subset bounds domain. Each line represent
a subset relation between two sets. The domain that is represented by the
lattice is {s | {} ⊆ s ⊆ {1, 2, 3, 4}}.

A formal and practical framework, Conjunto, which works with this set
representation has been defined [10]. The set of primitive constraints that
are supported are:

• domain constraints: S ∈ [a, b] where S is a set variable and a and b are
the domain bounds;

• constraints of type S1 ⊆ S2, where S1 and S2 are set variables;

• constraints of type f(S1) ∈ [m,n], where f is a monotonically increas-
ing function from (DSB(S1),⊆) to N .

11
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Figure 3.1: Subset bounds representation: the lower bound is {} and the
upper bound is {1, 2, 3, 4}.

Thanks to the set interval calculus proposed in [10], it is possible to
generalize these constraints to n-ary constraints. Indeed a constraint of type
(S1 ∪ S2) ⊆ (S3 ∩ S4) can be decomposed in:

(S1 ∪ S2) = S12, (S3 ∩ S4) = S34, S12 ⊆ S34

where S12 and S34 are new variables whose domains are obtained via the set
interval calculus.

Bound consistency (BC) for the subset bounds representation is defined
(in e.g. [25, 3]) as follows: given set variables S1, . . . , Sn, given a constraint
c(S1, . . . , Sn), Si is BC on c if and only if lbSB(Si) (resp. ubSB(Si)) is the
intersection (resp. union) of all the sets for Si that belong to an assignment
of all Sj within their bounds satisfying the constraint c. The constraint c is
BC if and only if all the variables Si in the constraint are BC.

Cardinal Cardinal [1] is a finite sets constraint solver, publicly available
in ECLiPSe Prolog [7], that exploits inferences over set cardinalities. Es-
sentially such solver extends the subset bounds representation adding also
cardinality bounds. card (also denoted by C) is a representation that con-
tains only elements from P(U) that can be represented by a lower bound
and an upper bound on the cardinality of the sets they contain. That is, in
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the representation card, DC(S) = {s | lbC(S) ≤ |s| ≤ ubC(S)}, where lbC(S)
and ubC(S) represent the smallest cardinality and the greatest cardinality of
sets in DC(S). Bound consistency for card is defined as follows. Given set
variables S1, . . . , Sn, given a constraint c(S1, . . . , Sn), Si is BC on c if and
only if lbC(Si) (resp. ubC(Si)) is the smallest (resp. greatest) cardinality of
all the sets for Si that belong to an assignment of all Sj within their bounds
satisfying the constraint c. The constraint c is BC if and only if all the
variables Si in the constraint are BC. In Cardinal, BC is maintained inde-
pendently for the two representations and inference rules are given in order
to maintain consistency between the two domains.

3.2 Hybrid representation

In [19, 18] is proposed an hybrid domain to overcome some of the weaknesses
of the traditional subset bound solvers. It enriches the SB and card repre-
sentation with lexicographic bounds. The lexicographic representation has a
strong analogy with the bounds representation for integer variables, that is
space and time efficient for simple operations.

Definition 4 The lexicographic ordering ≤lex on sets is defined as follows:

s ≤lex t iff s = {} ∨ x < y ∨ x = y ∧ s \ {x} ≤lex t \ {y}

where x = max(s) and y = max(t) and max denotes the largest element of s
or t.

Thus, in this representation D≤lex
(S) = {s | lb≤lex

(S) ≤lex s ≤lex ub≤lex
(S)}.

A point of strength of this representation is its effectiveness in propa-
gating lexicographic ordering constraints which are powerful tools to break
symmetries in many CSPs. The main drawback of this representation is its
inability to capture some fundamental constraints as the inclusion or the
exclusion of a single element. For this reason in [18, 19] they propose to
use simultaneously the three representations. Given a variable S, the hybrid
domain specifies the set:

{s | s ∈ D≤lex
(S) ∧ s ∈ DSB(S) ∧ s ∈ DC(S)}

The authors then define a set of rules to maintain the three domains mu-
tually consistent. In addition to that, they define also a set of inference rules
for some common constraints. Their prototype is implemented in ECLiPSe
[7]. Experimental results demonstrate that this approach improve both SB
and its combination with card on common combinatorial design problems
(CDP). Moreover it is also effective for symmetry breaking.
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Figure 3.2: Lengthlex ordering.

3.3 lengthlex representation

lengthlex (also denoted by LL) was proposed in [11] to overcome the inherent
difficulties of the subset bounds representation in handling cardinality and
lexicographic constraints. lengthlex encodes directly cardinality and lexico-
graphic information and totally orders the set domain. The key idea is to
totally order the domain first using cardinality and then lexicographically.

Basically a lengthlex ordering is defined as follows:

Definition 5 A lengthlex ordering <LL on sets is defined by:

s <LL t iff s = {}∨|s| < |t|∨|s| = |t|∧(s1 < t1∨s1 = t1∧s\{s1} <LL t\{t1})

Example 7 The subsets of {1, 2, 3} are ordered as follows {} <LL {1} <LL

{2} <LL {3} <LL {1, 2} <LL {1, 3} <LL {2, 3} <LL {1, 2, 3}.

Given a set variable S, the lengthlex domain is a pair 〈lbLL(S), ubLL(S)〉
and it denotes the set DLL(S) = {s | lbLL ≤LL s ≤LL ubLL}. Figure 3.2
represents a domain whose lower bound is empty and the upper bound is
{1, 2, 3, 4}. Each arrow represents a lengthlex relation between two sets.

Example 8 Take variable S with domain 〈{1, 2}, {1, 2, 3}〉. The domain of
S is the set {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. If the cardinality of S is con-
strained to be smaller than 2, then the domain of S can be restricted to
{{1, 2}, {1, 3}, {2, 3}} that are all the sets of cardinality 2.

Since lengthlex is a total order, BC is defined exactly as defined for integer
domains (see Chapter 2). In the following we will cover in detail lengthlex,
since Chapter 5 will reuse some of the results for this representation.
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Unary and binary constraints The authors observe that pruning of a
totally ordered domain, as lengthlex, consists of finding the first element
after the lower bound and the last element before the upper bound satisfying
some conditions, such as inclusion or exclusion of a set of elements and cardi-
nality restrictions. Thus they define a number of polynomial first and last
functions to perform such computations. These algorithms share the overall
structure as the algorithm to compute the lengthlex successor of a k − set,
due to Kreher and Stinson [13]. Thus the authors define a first− rLL(s, r),
which computes the first successor of s that contains all elements in r.

Example 9 Consider s = {1, 3, 6, 7} and r = {3, 4}. Then first− rLL(s, r)
returns the first set after s, with respect to lengthlex ordering, which contains
the set {3, 4}. Such set is {2, 3, 4, 5}.

With similar purposes, and similar construction, they build also a first−
eLL(s, e) function which returns the first set after s which is disjoint from e.

Example 10 Consider m = {1, 7, 8}, U = {1, . . . , 8} and e = {3, 5, 7}.
Then first− eLL(s, e) returns the first set after s, with respect to lengthlex
ordering, which is disjoint from {3, 5, 7}. Such set is {2, 4, 6}.

The first function which works for cardinality constraint is very simple
as it does not need a real location phase. Indeed first−cLL(s, c) must return
s if s has the desired cardinality, otherwise if |s| < c then it can safely return
{1, 2, . . . , c} since it is the smallest set of cardinality c according to lengthlex
ordering.

Given this functions it is easy to build a set of inference rules that main-
tains bound consistency. They maintain BC for a set of basic unary con-
straint which is {s ⊆ S, s ⊕ S, |S| ≤ d, |S| ≥ c} where ⊕ denotes disjoint-
ness. The semantic is specified in terms of rewriting rules that manipu-
late configurations 〈γ, σ〉, where γ is a conjunction of constraints and σ is
the domain store (i.e. a conjunction of domain constraints). For exam-
ple, the rewriting rule for the inclusion constraint (r ⊆ S) is the following:
〈r ⊆ S, S ∈ 〈lb, ub〉〉 7→ 〈r ⊆ S, S ∈ 〈lb′, ub′〉〉 if lb′ = first − rLL(lb, r) and
ub′ = last− rLL(ub, r). All the other rules are written in a similar form.

After these unary constraints, they show how to enforce BC also for the
lexicographic binary constraint (S1 <LL S2). A great strength of lengthlex
is that lexicographic constraints are also arc consistent, because of the total
ordering of the domain. However their lexicographic binary constraint is
w.r.t. lengthlex ordering, so it considers also cardinality. Finally in the
mentioned paper they give rules for binary disjointness and a constraint
which combines disjointness and lexicographic constraints.

15



Chapter 3. Related work

BC algorithm for binary constraints In [22] is presented a generic
bound-consistency algorithm for any binary constraint which requires O(n2)
calls, n size of the universe, to a feasibility subroutine of the binary constraint.
Although NP hard in general, they present algorithms to enforce bound con-
sistency on disjoint and cardinality constraints in time O(n3), n size of the
universe. Their bound consistency algorithm only assumes the existence of
an algorithm to check whether a constraint has a solution in two lengthlex
intervals. The definition of the generic bound consistency algorithm relies on
three functions: a function to check the existence of a solution (the feasibility
subroutine) and two functions that are equal to the first and last functions
used for unary constraints but that are extended to two variables. Leaving
aside the technical details, the main result of this work is a generic bound
consistency algorithm which is able to enforce BC in O(n2α) where α is the
computational cost of the feasibility routine and a specialized O(n3) algo-
rithm of the disjoint constraint that can be generalized to atmost − k and
atleast − k. These results should extend to constraints of arity k, with an
algorithm which runs in time O(ckα), where c is the cardinality of the sets.

The knapsack constraint Given a set of items modeled by a set variable
S which takes values from a universe of n items, a profit vector p which
gives the non-negative profit of each item, a weight vector w which gives
the weight of each item, a minimum profit B and a weight capacity C of
the knapsack, the knapsack constraint KP (S, p, w,B,C) requires that the
solution s ∈ D(S) satisfy the following two constraints:

∑
i∈s pi ≥ B and∑

i∈S wi ≤ C. For these constraints, BC can be enforced independently
in polynomial time. In [27], the authors claim that BC on the knapsack
constraint can be achieved by BC on each of these constraints. However [20]
proves, theoretically and empirically, that:

• the fixpoint problem for this domain representation is NP-hard in gen-
eral;

• for a tractable sub-family of Knapsack this encoding takes more time
than exponential brute-force enumeration;

• experimental results on these constraints show that exponential-time
fixpoint computation is the rule and not an exception.

Finally in [20] the author observes that the intractability proof can be applied
to every representation in which sets are totally ordered.
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Exponential propagation In [28] the authors put the focus in the ex-
ponential propagation for set variables. Indeed the constraint propagation
algorithm for many elementary constraints over a lengthlex domain may take
exponential time to converge to a fixpoint, as shown in the previous section.
Moreover there are many set constraints that are generally intractable [3].
This abundance of negative results could discourage research in the direction
of richer set representations. Surprisingly they show that richer representa-
tions, such as that which combine lengthlex and SB, may be highly beneficial
in practice. It is motivated by the fact that reasonable exponential behav-
ior in the filtering algorithm may produce a significant reduction of search
space. This has also beneficial effects on constraint propagation allowing
further reduction of the search space.

3.4 Sets as ROBDD

Hawkins, Lagoon and Stuckey [12] have proposed an interesting approach to
set representations for set variables. In their work, they refuse to represent
a domain with an approximation. In fact they fully represent a domain
specifying its characteristic function using a reduced ordered binary decision
diagram. The key idea is the following: each set can be represented as a
boolean formula. For example, consider the set {1} that takes values from
the universe U = {1, 2, 3}. Then we can represent {1} with the boolean
formula v1 ∧ ¬v2 ∧ ¬v3, where vi is true if and only if i belongs to the set.
Now it is easy to see that we can represent the domain of a set variable as a
disjunction of boolean formulae.

Example 11 Given a set variable S and the universe U = {1, 2, 3}, the
domain D(S) = {{1}, {1, 3}, {2, 3}} is represented by the formula (v1∧¬v2∧
¬v3) ∨ (v1 ∧ ¬v2 ∧ v3) ∨ (¬v1 ∧ v2 ∧ v3).

However they can not represent the formulae in this extended form (they
would be exponential in the size of the universe), thus they exploit binary
decision diagram (BDD). A BDD is a direct acyclic graph which contains a
set of decision nodes plus two terminal nodes called 0 and 1. Each decision
node is labeled by a boolean variable and has two outgoing edges: the true
edge and the false edge. Each path from the root to the terminal node 1
(resp. 0) represent an assignment for which the represented boolean func-
tion is true (resp. false). A Reduced Ordered Binary Decision Diagram is
a specialization of a Binary Decision Diagram which permits efficient imple-
mentation of traditional boolean operations. In their case the decision nodes
are the variables vi.
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Surprisingly many primitive set constraints and consistency levels can be
easily modeled using boolean formulae and then ROBDD. Various conjunc-
tions of all these formulae give propagators for many constraints.
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A framework for combining two
representations

In this chapter we provide a formal framework for combining two repre-
sentations and comparing them. Mutual combinations are a popular way of
combining representations. We characterize some aspects that naturally arise
when two representations are used at the same time for the same set variable.
For example a desirable property is that two representations must agree on
their bounds, that is they must be synchronized. Then we precisely define
how bounds consistency can be understood in the case of combining two rep-
resentations. Hence we provide the needed tools to compare combinations.
Once the framework is properly defined, we instantiate it in order to launch
a systematic study of representations for set variables. Our study provides
insight into existing combined representations and reveal new and potentially
useful representations. Finally, it discovers a number of surprises. For ex-
ample, we prove that the lengthlex representation for set variables (which
combines lexicographic ordering and cardinality information and is designed
to exploit cardinality and ordering constraints) is no better on cardinality
and ordering constraints than a representation for set variables that deals
with the lexicographic ordering and cardinality information separately.

4.1 Revisiting the representations

In this section we summarize some of the representations that have been
presented in Chapter 3 and we slightly modify the card representation in
order to provide an adequate abstract definition of bounds consistency for a
single representation.

One approach to represent set variables is based on the subset partial
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order [15, 10]. This is the subset bounds (SB) representation. More for-
mally, given a variable S, DSB(S) = {s | lbSB(s) ⊆ s ⊆ ubSB(s)}. Another
approach is to define a total ordering ≤T on P(U) and to represent the do-
main through a lower bound lbT and an upper bound ubT . That is, in the
representation T , DT (S) = {s | lbT (S) ≤T s ≤T ubT (S)}. This is the case
in [11, 19] where the sets are ordered lexicographically, though in two dif-
ferent ways. We here call minlex (also denoted by ML) the total ordering
in which sets are ordered by ≤ML defined the following way: elements from
sets are ordered from smallest to greatest and the lists obtained in this way
are ordered lexicographically. Given a variable S, lbML(S) and ubML(S) rep-
resent the smallest and the greatest sets (w.r.t ≤ML) in DML(S). lengthlex
(also denoted by LL) is a representation in which sets are ordered according
to ≤LL, that is, by increasing size, and ties are broken with ≤ML. Given
a variable S, lbLL(S) and ubLL(S) represent the smallest and the greatest
sets (w.r.t. ≤LL) in DLL(S). The hybrid domain in [19] orders elements in
the sets from greatest to the smallest element as opposed to minlex, and
then orders lexicographically the resulting lists. We refer to this ordering as
maxlex.

We now redefine the card representation. Given a universe U take a set
s ∈ P(U). We denote with:

[s] = {s′ | |s′| = |s|, s ∈ P(U)}

the equivalence class of s w.r.t. the equivalence relation based on cardinality.
We denote with C(U) the set of all equivalence classes given a universe

U .

Example 12 Take the universe U = {1, 2, 3}. Then [{3}] = {{1}, {2}, {3}}
and C(U) = {{{}}, {{1}, {2}, {3}}, {{1, 2}, {1, 3}, {2, 3}}, {{1, 2, 3}}}.

Given two sets s1, s2 ∈ P(U), we define the following ordering �C:

[s1] �C [s2] iff |s1| ≤ |s2|

�C is a total ordering on C(U).
card is a representation that contains only elements from P(U) that be-

long to an equivalence class that is between a lower bound and an upper
bound. That is:

DC(S) = {s | lbC(S) �C [s] �C ubC(S), lbC(S) ∈ C(U), ubC(S) ∈ C(U)}}
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Example 13 Take the universe U = {1, 2, 3} and a set variable S which
takes values from U . Assume that lbC(S) = {{1}, {2}, {3}} and ubC(S) =
{{1, 2, 3}}. Then DC(S) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Given a set A ⊆ P(U), we define the greatest lower bound glbC(A) w.r.t.
the card ordering as follows:

glbC(A) = glb�C({[a] | a ∈ A})

Similarly lubC(A):

lubC(A) = lub�C({[a] | a ∈ A})

Instead of writing every time the equivalence class, we indicate with k the
equivalence class which contains all sets with cardinality k.

Example 14 Take the universe U = {1, 2, 3} and the set A = {{1}, {1, 3}}.
Then glbC(A) = glb�C({{{1}, {2}, {3}}, {{1, 2}, {1, 3}, {2, 3}}} = {{1}, {2},
{3}} which we will refer to as glbC(A) = 3 as a shorthand. Similarly
lubC(A) = lub�C({{{1}, {2}, {3}}, {{1, 2}, {1, 3}, {2, 3}}} = {{1, 2}, {1, 3}, {
2, 3}} = 2.

We are now ready to define BC for a representation R. We denote by
c[Si]R the set {si | c(s1, . . . , sn) ∧ sj ∈ DR(Sj)∀j ∈ 1..n}.

Definition 6 (Bound consistency on R) Given a representation R, vari-
ables S1, S2, . . . , Sn, and a constraint c(S1 . . . , Sn), Si is bound consistent on
c for R iff lbR(Si) = glbR(c[Si]R) and ubR(Si) = lubR(c[Si]R), where glbR and
lubR are the greatest lower bound and the least upper bound of the ordering
induced by R.

The constraint c is BC iff all the variables Si in the constraint are BC.

Note that the above definition is consistent with respect to the usual BC
definition provided in Chapter 2. Moreover it naturally extends to partially
ordered domains.

4.2 Combining two representations

One way to have a tighter representation for a set variable is to combine
two representations by maintaining upper and lower bounds simultaneously
on two different orderings. By using two representations simultaneously, a
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desirable property is that both representations agree on their bounds. We
call this property synchronization of the bounds. We consider two different
ways to propagate a combined representation. In the weak sense, we apply
bound consistency on each representation independently and we maintain
synchronization between their bounds. In the strong sense, we ensure that
the lower and upper bounds of a representation are bound consistent and at
the same time consistent with each other. Given two representations R1 and
R2, we will denote by DR1R2(S) the set DR1(S) ∩DR2(S).

4.2.1 Synchronization of bounds

We say that a representation R1 is synchronized with a representation R2 on
a set variable S iff lbR1(S) and ubR1(S) are consistent with DR1R2(S). We
say that S is synchronized for R1 and R2 iff R1 and R2 are synchronized with
each other.

Definition 7 (Synchronization) Given a variable S, and two representa-
tions R1 and R2, the representation R1 is synchronized with the representa-
tion R2 on S iff:

• lbR1(S) = glbR1(DR1·R2(S));

• ubR1(S) = lubR1(DR1·R2(S));

S is synchronized for R1 and R2 iff R1 is synchronized with R2 and R2 is
synchronized with R1.

4.2.2 Bound consistency on combinations of two rep-
resentations

Given two representations R1 and R2, the weak combination will be denoted
by R1 +R2 and the strong combination by R1 ·R2.

Definition 8 (Bound consistency on R1 +R2) Given variables S1, . . . , Sn,
and a constraint c(S1 . . . , Sn), Si is bound consistent on c for R1+R2 iff Si

is synchronized for R1 and R2, Si is BC on c for R1 and Si is BC on c for
R2.

Definition 9 (Bound consistency on R1 ·R2) Given variables S1, . . . , Sn

and a constraint c(S1 . . . , Sn), Si is bound consistent on c from R1 to R2 iff:

• lbR1(S) = glbR1(c[Si]R1·R2);
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• ubR1(S) = lubR1(c[Si]R1·R2);

Si is bound consistent on c for R1 · R2 iff Si is synchronized for R1 and R2

and Si is bound consistent from R1 to R2 and vice versa.

We note that SB+card representation is used in the Cardinal set solver [1].
The representation SB · card has been previously referred to as subset −
cardinality [14] or sbc−domain [28]. A similar BC definition for SB · card
is given in [28].

4.3 Comparison of mutual combinations

To be able to compare two representations, we need to compare their ability
to remove values from the original domains of some set variables when bound
consistency is applied to their representation of these domains.

Definition 10 (Effective Propagation) Given a constraint c(S1, . . . , Sn),
a representation R, the original domain D(Si) of Si, DR(Si) the tightest ap-
proximation of D(Si) using R, and D′R(Si) the domain of Si after the BC
propagation of c, the effective propagation of c on Si is the set pR〈c〉(Si) =
D(Si) ∩D′R(Si) of the values from D(Si) remaining in the approximated do-
main D′R(Si) after BC has been enforced on c.

The effective propagation of c on Si for a combination H = R1 + R2 or
H = R1 ·R2 is the set pH〈c〉(Si) = D(Si) ∩D′R1

(Si) ∩D′R2
(Si).

Example 15 Consider the constraint S <lex {2, 3}, where S is a set variable
which takes values from U = {1, 2, 3}. Assume that D(S) = {{1}, {2}, {3}}.
Consider the tightest minlex approximation of the original domain, that is
DML(S) = {{1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}. If we propagate
the constraint to enforce BC, then the minlex domain reduces to D′ML(S) =
{{1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}}. Thus, pML〈c〉(S) = {{1}, {2}}.

To compare representations, we define the stronger relation.

Definition 11 (Stronger relation �) Given two representations R1 and
R2, a constraint c(S1, . . . , Sn) we say that R1 is stronger than R2 on c (R1 �c

R2) iff ∀D(Si) with DR1(Si) and DR2(Si) the tightest approximation of D(Si)
for R1 and R2, if there exists Si such that pR2〈c〉(Si) = ∅ then pR1〈c〉(Si) = ∅.

We say that R1 � R2 iff R1 �c R2 for all constraints c. We say that R1

is strictly stronger than R2 on c (R1 �c R2) iff R1 �c R2 and R2 6�c R1.
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We say that R1 is strictly stronger than R2 (R1 � R2) iff R1 � R2 and
R2 6� R1. We say that R1 and R2 are incomparable (R1 ∼ R2) iff R1 6� R2

and R2 6� R1.

The stronger relation naturally extends to combinations R1 +R2 and R1 ·R2,
because their p is well defined. Informally, this notion describes the ability
of a BC propagator to remove values from the original set domains. This
highly depends on how the domains are approximated and on the properties
of the representations.

The following theorems are useful to compare combinations of represen-
tations.

Theorem 1 Given two representations R1 and R2, R1 +R2 � R1 and R1 +
R2 � R2.

Proof: ∀c(S1, . . . , Sn) and ∀Si, we have that pR1+R2〈c〉(Si) ⊆ pR1〈c〉(Si) ∩
pR2〈c〉(Ri) that is a subset of pR1〈c〉(Si) and pR2〈c〉(Si). As a result, if
pR1〈c〉(Si) or pR2〈c〉(Si) is empty, pR1+R2〈c〉(Si) is empty as well. �

Theorem 2 Given two representations R1 and R2, R1 ·R2 � R1 +R2.

Proof: Let c(S1, . . . , Sn) be a constraint. Consider a set t from D(Si) that
pR1+R2〈c〉(Si) has pruned. This means that t was removed either by BC on c
for R1, BC on c for R2, or by synchronization between R1 and R2. Consider
now BC on c for R1 · R2. The two items of Definition 9 guarantee at least
BC on c for R1 and BC on c for R2. In addition, synchronization between
R1 and R2 is also ensured. Thus t is pruned by pR1·R2〈c〉(Si). As a result, if
pR1+R2〈c〉(Si) is empty, pR1·R2〈c〉(Si) is empty as well. �

4.4 Using the framework

We are now ready to launch a systematic study of combinations of certain set
representations. In particular we will study various mutual combinations of
minlex, SB and card representations. minlex is effective for lexicographic
constraints, used to break symmetries for many CSPs, whereas SB and card
are the two most popular representations. Before using the framework we
will instantiate the synchronization property given in Definition 7 for syn-
chronization between minlex and card, minlex and SB and SB and card.
This instantiation is useful in order to actively use the framework and follow
the theoretical study.
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4.4.1 Instantiation of synchronization

In order to instantiate the synchronization property of Definition 7 for syn-
chronization between minlex and card, minlex and SB and SB and card,
we provide 5 theorems. In the following, we will reuse the concepts and
notation introduced for the card ordering in Section 4.1.

Theorem 3 Given a set variable S, minlex is synchronized with card on S if
and only if lbC(S) ≤ |lbML(S)| ≤ ubC(S) and lbC(S) ≤ |ubML(S)| ≤ ubC(S).

Proof: =⇒ If lbML(S) = glbML(DML·C(S)) then lbML(S) ∈ DML·C(S)
because minlex totally orders its sets. Thus lbC(S) ≤ |lbML(S)| ≤ ubC(S),
since lbML(S) must also belong to the card domain. Similarly for ubML(S).
⇐= Suppose that lbC(S) ≤ |lbML(S)| ≤ ubC(S). Then lbML(S) ∈ DML·C(S)
and it is the greatest lower bound of the intersection because it is the smallest
set of the minlex domain. Similarly for ubML(S).
�

Theorem 4 Given a set variable S, card is synchronized with minlex on S
if and only if ∃sl, su ∈ DML(S) such that |sl| = lbC(S), |su| = ubC(S).

Proof: =⇒ By Definition 7, lbC(S) = glbC(DML·C(S)) = glb�C({[s] | s ∈
DML·C(S)}). Since �C is a total ordering, it means that there exists at least
a set sl ∈ DML(S) whose cardinality is lbC(S). Similarly for ubC(S).
⇐= Suppose that ∃sl, su ∈ DML(S) such that |sl| = lbC(S) and |su| =
ubC(S). It means that sl, su ∈ DML·C(S). Since �C is a total order, [sl] and
[su] are the smallest (resp. greatest) equivalence class of the sets contained
in DML·C(S) with respect to �C ordering. Thus [sl] = glb�C({[s] | s ∈
DML·C(S)}) and [su] = lub�C({[s] | s ∈ DML·C(S)}). �

Theorem 5 Given a set variable S, minlex is synchronized with SB on S
if and only if lbML(S) ∈ DSB(S) and ubML(S) ∈ DSB(S).

Proof: =⇒ If lbML(S) = glbML(DML·SB(S)) then lbML(S) ∈ DML·SB(S)
as minlex totally orders its sets. Thus lbML(S) ∈ DSB(S). Similarly for
ubML(S).
⇐= Suppose that lbML(S) ∈ DSB(S). Then lbML(S) ∈ DML·SB(S). More-
over it is the greatest lower bound of the intersection because it is the smallest
set of the minlex domain. Similarly for ubML(S). �

Theorem 6 Given a set variable S, SB is synchronized with minlex on S
if and only if lbSB(S) ⊇ ∩s∈DML(S)s and ubSB(S) ⊆ ∪s∈DML(S)s.

25



Chapter 4. A framework for combining two representations

Proof: =⇒ By Definition 7, lbSB(S) = glbSB(DML·SB(S)) = ∩s∈DML·SB(S)s ⊇
∩s∈DML(S)s and ubSB(S) = lubSB(DML·SB(S)) = ∪s∈DML·SB(S)s ⊆ ∪s∈DML(S)s.
⇐= Suppose that lbSB(S) ⊇ ∩s∈DML(S)s and ubSB(S) ⊆ ∪s∈DML(S)s. We have
that ∩s∈DML(S)s ⊆ lbSB(S) ⊆ ubSB(S) ⊆ ∪s∈DML(S)s. Thus lbSB(S) is the
greatest lower bound of DML·SB(S). Indeed it contains at least all the values
commons to each set of the minlex domain and it does not contain values
that does not appear in the minlex domain. Moreover it is the greatest lower
bound of the SB domain by construction. Similarly for ubSB(S). �

Theorem 7 Given a set variable S, card is synchronized with SB on S if
and only if ∃sl, su ∈ DSB(S) such that |sl| = lbC(S), |su| = ubC(S).

Proof: =⇒ By Definition 7, lbC(S) = glbC(DSB·C(S)) = glb�C({[s] | s ∈
DSB·C(S)}). Since �C is a total ordering, it means that there exists at least
a set sl ∈ DSB(S) whose cardinality is lbC(S). Similarly for ubC(S).
⇐= Suppose ∃sl, su ∈ DSB(S) such that |sl| = lbC(S) and |su| = ubC(S). It
means that sl, su ∈ DSB·C(S). Since �C is a total order, [sl] and [su] are the
smallest (resp. greatest) equivalence class of the sets contained in DSB·C(S)
with respect to �C ordering. Thus [sl] = glb�C({[s] | s ∈ DSB·C(S)}) and
[su] = lub�C({[s] | s ∈ DSB·C(S)}). �

Based on the previous theorems, we are able to provide the following
instantiations.

Representations minlex and card The synchronization property of Def-
inition 7 impose that given a variable S and the two representations minlex
and card, S is synchronized for minlex and card iff minlex is synchronized
with card on S and vice versa. Thus by Theorems 3 and 4, we have:

• lbC(S) ≤ |lbML(S)| ≤ ubC(S), lbC(S) ≤ |ubML(S)| ≤ ubC(S);

• ∃sl, su ∈ DML(S) such that |sl| = lbC(S), |su| = ubC(S).

Representations minlex and SB The synchronization property of Defi-
nition 7 impose that given a variable S and the two representations minlex
and SB, S is synchronized for minlex and SB iff minlex is synchronized
with SB on S and vice versa. Thus by Theorems 5 and 6 we have:

• lbML(S) ∈ DSB(S), ubML(S) ∈ DSB(S);

• lbSB(S) ⊇ ∩s∈DML(S)s and ubSB(S) ⊆ ∪s∈DML(S)s.
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Representations SB and card The synchronization property of Defini-
tion 7 impose that given a variable S and the two representations SB and
card, S is synchronized for SB and card iff SB is synchronized with card on
S and vice versa. Thus by Theorem 7 and by definition of glb and lub for
the subset ordering, we have:

• lbSB(S) = glbSB(DSB·C(S)) = ∩s∈DSB·C(S)s;

• ubSB(S) = lubSB(DSB·C(S)) = ∪s∈DSB·C(S)s;

• ∃sl, su ∈ DSB(S) such that |sl| = lbC(S) and |su| = ubC(S).

4.4.2 Comparing pairwise the basic representations

In this section, we perform a pairwise comparison on the basic representations
minlex, SB and card. Our results are summarized in Figure 4.1. A similar
study can be done using maxlex instead of minlex.

Figure 4.1: Pairwise comparison of representations minlex, SB and card.
R1 → R2 means R1 � R2.

We start by comparing minlex and card combinations.

Theorem 8 (Comparing minlex and card combinations)

1. minlex · card � minlex+ card;

2. minlex+ card � minlex;

3. minlex+ card � card.

Proof: By Theorems 1 and 2, minlex · card � minlex + card, minlex +
card � minlex and minlex+ card � card.

To show that minlex·card � minlex+card, take the constraint S1∪S2 ⊇
{1, 3}, and the universe U = {1, 2, 3}. Assume that D(S1) = D(S2) =
{{1}, {2}}. Then minlex and card domains are the following:
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• DML(S1) = DML(S2) = {{1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}};

• lbC(S1) = ubC(S1) = lbC(S2) = ubC(S2) = 1.

BC on minlex · card prunes all the sets from all the domains whilst BC on
minlex+ card does not prune.

To show that minlex + card � minlex, take the constraint S1 ∪ S2 ⊇
{1, 2, 3}, and the universe U = {1, 2, 3}. Assume that D(S1) = D(S2) =
{{1}, {2}}. Then minlex and card domains are the following:

• DML(S1) = DML(S2) = {{1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}};

• lbC(S1) = ubC(S1) = lbC(S2) = ubC(S2) = 1.

BC on minlex+ card prunes all the sets from all the domains whilst BC on
minlex does not prune.

Finally, to show thatminlex+card � card, take the constraint S ≥lex {2}
and the universe U = {1, 2, 3}. Assume that D(S) = {{1}, {1, 2}}. Then
minlex and card domains are the following:

• DML(S) = {{1}, {1, 2}};

• lbC(S) = 1 and ubC(S) = 2.

BC on minlex + card prunes all the sets from all the domains since the
constraint has no solution in the minlex domain. However BC on card alone
does not prune. �

Similar results can be obtained also for minlex and SB combinations.

Theorem 9 (Comparing minlex and SB combinations)

1. minlex · SB � minlex+ SB;

2. minlex+ SB � minlex;

3. minlex+ SB � SB.

Proof: By Theorems 1 and 2, minlex ·SB � minlex+SB, minlex+SB �
minlex and minlex+ SB � SB.

To show thatminlex·SB � minlex+SB, take the constraint |S1|+|S2| =
5, and the universe U = {1, 2, 3, 4, 5}. Assume that D(S1) = D(S2) =
{{1, 5}, {3}}. The minlex and SB domains are the following:

• DML(S1) = DML(S2) = {{1, 5}, {2}, {2, 3}, {2, 3, 4},
{2, 3, 4, 5}, {2, 3, 5}, {2, 4}, {2, 4, 5}, {2, 5}, {3}};
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• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 3, 5}.

BC on minlex · SB prunes all the sets since the constraint has no solution
in the joint domain whilst BC on minlex+ SB does not prune.

To show that minlex+SB � minlex, take the constraint S1⊕S2 and the
universe U = {1, 2, 3}. Assume that D(S1) = D(S2) = {{1, 3}, {3}}. Then
minlex and SB domains are the following:

• DML(S1) = DML(S2) = {{1, 3}, {2}, {2, 3}, {3}};

• lbSB(S1) = lbSB(S2) = {3}, ubSB(S1) = ubSB(S2) = {1, 3}.

BC on minlex + SB clearly prunes all the sets from all the domains whilst
BC on minlex alone does not prune.

Finally, to show thatminlex+SB � SB, take the constraint S ≥lex {1, 4}
and the universe U = {1, 2, 3, 4}. Assume that D(S) = {{}, {1}, {1, 2}, {1, 2,
4}}. Then minlex and SB domains are the following:

• DML(S) = {{}, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}};

• lbSB(S) = {} and ubSB(S) = {1, 2, 4}.

BC on minlex+ SB prunes all the sets from all the domains since the con-
straint has no solution in the minlex domain. However BC on SB alone does
not prune. �

As expected, we can obtain similar results also for SB and card.

Theorem 10 (Comparing SB and card combinations)

1. SB · card � SB + card;

2. SB + card � card;

3. SB + card � SB.

Proof: By Theorems 1 and 2, SB · card � SB + card, SB + card � SB
and SB + card � card.

To show that SB · card � SB + card, take the constraint S1 ∪ S2 ⊇
{2, 3, 4} and the universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) =
{{1, 2}, {1, 3}, {1, 4}}. The SB and card domains are the following:

• lbSB(S1) = lbSB(S2) = {1} and ubSB(S1) = ubSB(S2) = {1, 2, 3, 4};

• lbC(S1) = ubC(S1) = lbC(S2) = ubC(S2) = 2.
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BC on SB · card prunes all the sets from all the domain whereas BC on
SB + card does not prune.

To show that SB + card � card, take the constraint S ⊇ {2} and the
universe U = {1, 2, 3}. Assume that D(S) = {{1}, {1, 3}}. The SB and card
domains are:

• lbSB(S) = {1}, ubSB(S) = {1, 3};

• lbC(S) = 1, ubC(S) = 2.

BC on SB + card prunes all the domains of S whereas BC on card alone
does not prune.

To show that SB+card � SB, take the constraint S1∪S2 ⊇ {1, 2, 3} and
the universe U = {1, 2, 3}. Assume that D(S1) = D(S2) = {{1}, {2}, {3}}.
Then SB and card domains are the following:

• lbSB(S1) = lbSB(S2) = {} and ubSB(S1) = ubSB(S2) = {1, 2, 3};

• lbC(S1) = ubC(S1) = lbC(S2) = ubC(S2) = 1.

BC on SB + card prunes all the sets from all the domains whereas BC on
SB alone does not prune. �

4.4.3 lengthlex in our framework

Given that both lengthlex and combinations of minlex and card represen-
tations focus on the same information, we might ask how it positions in our
framework on certain constraints like cardinality, lexicographic ordering, or
combinations of these two constraints. Surprisingly, the lengthlex represen-
tation does not appear to be a better way to deal with such constraints.
In fact although they focus on the same information, original domains are
differently approximated and constraints are propagated in different ways.

Cardinality Constraints

A cardinality constraint is the unary constraint b ≤ |S| ≤ d.

Theorem 11 Given a variable S and a cardinality constraint b ≤ |S| ≤ d,
lengthlex �(b≤|S|≤d) minlex.

Proof: We observe that lengthlex totally orders sets giving priority to
cardinalities. Hence sets are monotonically increasing ordered with respect
to cardinality. Thus, for each set s ∈ DLL(S) we have |lbLL(S)| ≤ |s| ≤
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|ubLL(S)|. Then we are sure that if b ≤ |S| ≤ d holds for the bounds then it
holds also for all the sets in between.

Let t be a set from D(S) pruned by BC on minlex, that is, t ∈ D(S) \
pML〈b ≤ |S| ≤ d〉(S). t necessarily violates the constraint b ≤ |S| ≤ d. Thus,
t will be pruned when enforcing BC on DLL(S). Thus pLL〈b ≤ |S| ≤ d〉(S) ⊆
pML〈b ≤ |S| ≤ d〉(S). �

Note that Theorem 11 also applies to any representation derived from
minlex. Thus, given a variable S, we derive that BC for lengthlex on b ≤
|S| ≤ d is stronger than BC for minlex+ card and minlex · card.

Theorem 12 Given a variable S and a cardinality constraint b ≤ |S| ≤ d,
lengthlex �(b≤|S|≤d) minlex.

Proof: Take the constraint 1 ≤ |S| ≤ 2 and the universe U = {1, 2, 3, 4}.
Assume that D(S) = {{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. Then the minlex and
lengthlex domains are the following:

• DML(S) = {{1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4}, {2}, {2, 3}, {2,
3, 4}};

• DLL(S) = {{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

BC on lengthlex fails whilst with BC on minlex we have D′ML(S) = {{1, 3},
{1, 3, 4}, {1, 4}, {2}, {2, 3}, }, so pML〈c〉(S) = {{1, 3, 4}} 6= ∅. Thus minlex
6�(b≤|S|≤d) lengthlex. �

On the other hand, lengthlex is equally strong as minlex · card and
minlex+ card on a cardinality constraint.

Theorem 13 Given a variable S and a cardinality constraint b ≤ |S| ≤ d,
minlex · card �(b≤|S|≤d) lengthlex and minlex+ card �(b≤|S|≤d) lengthlex.

Proof: Enforcing BC on b ≤ |S| ≤ d for card obviously prunes all violating
tuples from DC(S). Thus pC〈b ≤ |S| ≤ d〉(S) = pLL〈b ≤ |S| ≤ d〉(S). This
is enough to conclude that pML+C〈b ≤ |S| ≤ d〉(S) ⊆ pLL〈b ≤ |S| ≤ d〉(S)
and pML·C〈b ≤ |S| ≤ d〉(S) ⊆ pLL〈b ≤ |S| ≤ d〉(S). �

Since lengthlex �(b≤|S|≤d) minlex · card and minlex · card �(b≤|S|≤d)
lengthlex, we conclude that lengthlex and minlex · card are equal strong
on unary cardinality constraints. The same holds for minlex + card. Fig-
ure 4.2 summarizes the results.
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Figure 4.2: Comparison of minlex and card combinations with lengthlex
on a cardinality constraint. R1 99K R2 means R1 �(b≤|S|≤d) R2, an = over a
dashed line means thatR1 andR2 are equal strong on a cardinality constraint.

Lexicographic constraints

A lexicographic ordering constraint is a binary constraint S1 ≤lex S2 which
ensures that the sets assigned to S1 and S2 are ordered according to ≤ML.
We will refer to this constraint in short as ≤lex.

Theorem 14 Given two set variables S1 and S2, minlex �(≤lex) lengthlex.

Proof: To show that minlex �(≤lex) lengthlex, we observe that minlex
orders sets in increasing lexicographic ordering. Thus if S1 and S2 are BC
for S1 ≤lex S2, then each set s ∈ DML(S1) is compatible with ubML(S2) and
each set t ∈ DML(S2) is compatible with lbML(S1). Let s be a set from
D(S1) pruned by BC on lengthlex, that is, s ∈ D(S1) \ pLL〈S1 ≤lex S2〉(S1).
s necessarily violates the constraint S1 ≤lex S2. Hence, s will be pruned when
enforcing BC on DML(S1). Thus, pML〈S1 ≤lex S2〉(S1) ⊆ pLL〈c〉(S1). If BC
on lengthlex prunes a set t from D(S2) we can apply similar arguments.

To show strictness (minlex �(≤lex) lengthlex), take the constraint S1 ≤lex

S2 and the universe U = {1, 2, 3}. Assume that D(S1) = {{2}, {2, 3}} and
D(S2) = {{1}, {1, 2}}. Then the minlex and lengthlex domains are the
following:

• DML(S1) = {{2}, {2, 3}};

• DML(S2) = {{1}, {1, 2}};

• DLL(S1) = {{2}, {3}, {1, 2}, {1, 3}, {2, 3}};

• DLL(S2) = {{1}, {2}, {3}, {1, 2}}.

BC on minlex prunes all the sets from both the domains, whilst with BC on
lengthlex we have pLL〈S1 ≤lex S2〉(S1) = D(S1) and pLL〈S1 ≤lex S2〉(S2) =
D(S2) \ {{1}}. Thus lengthlex 6� minlex. �
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Since minlex + card and minlex · card are stronger than minlex, we
conclude minlex+card �(≤lex) lengthlex and minlex·card �(≤lex) lengthlex.
Figure 4.3 summarizes the results.

Figure 4.3: Comparison of minlex and card combinations with lengthlex on
a lexicographic ordering constraint. R1 99K R2 means R1 �(≤lex) R2.

Cardinality and lexicographic constraints

We consider a conjunction of a lexicographic constraint S1 <lex S2 together
with cardinality constraints b1 ≤ |S1| ≤ d1 and b2 ≤ |S2| ≤ d2. On such
constraints, the lengthlex representation has shown promise [26, 28]. This
type of constraint is often used to break symmetries in constraint problems
with matrix models. We denote such a conjunction by cclex.

Theorem 15 lengthlex is incomparable to minlex, minlex+card and minlex·
card on cclex constraints.

Proof: We first show lengthlex 6�cclex minlex. Take the constraint S1 <lex

S2 ∧ |S1| = 2 ∧ |S2| = 2 and U = {1, 2, 3, 4}. Assume that D(S1) =
{{2}, {2, 3}, {2, 3, 4}} andD(S2) = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}. Theminlex
and lengthlex domains are the following:

• DML(S1) = {{2}, {2, 3}, {2, 3, 4}};

• DML(S2) = {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}};

• DLL(S1) = {{2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}};

• DLL(S2) = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}}.
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BC on minlex fails for both domains whilst BC on lengthlex does not fail:
pLL〈c〉(S1) = D(S1) \ {{2}, {2, 3, 4}} and pLL〈c〉(S2) = D(S2) \ {{1}, {1, 2},
{1, 2, 3}}. Thus, lengthlex 6�cclex minlex, and obviously we deduce lengthlex
6�cclex minlex+ card and lengthlex 6�cclex minlex · card.

We now show minlex · card 6�cclex lengthlex. Take the constraint S1 <lex

S2 ∧ |S1| = 2 ∧ |S2| = 2 and U = {1, 2, 3, 4}. Assume that D(S1) =
{{2, 3}, {2, 4}, {3, 4}, {1, 2, 3}} and D(S2) = {{4}, {1, 2}, {1, 3}, {1, 4}}. The
minlex, lengthlex and card domains are the following:

• DML(S1) = {{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4}, {2},
{2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}};

• DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4},
{2}, {2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}};

• DLL(S1) = {{2, 3}, {2, 4}, {3, 4}, {1, 2, 3}};

• DLL(S2) = {{4}, {1, 2}, {1, 3}, {1, 4}};

• lbC(S1) = 2, ubC(S1) = 3;

• lbC(S2) = 1, ubC(S2) = 2.

With BC on minlex·card we obtain pML·C〈c〉(S1) = D(S1)\{{1, 2, 3}, {3, 4}}
and pML·C〈c〉(S2) = D(S2) \ {{4}, {1, 2}, {1, 3}}. BC on lengthlex fails on
both domains. Thus, minlex·card 6�cclex lengthlex, and obviously we deduce
minlex+ card 6�cclex lengthlex and minlex 6�cclex lengthlex. �

Figure 4.4 summarizes the results in general (any type of constraint). In
fact, there are many other basic constraints, like subset, disjoint, atleast-
k, atmost k, where lengthlex and the minlex and card combinations are
incomparable.

Figure 4.4: Comparison of minlex and card combinations with lengthlex.
R1 → R2 means R1 � R2 whilst R1−̃R2 means that R1 ∼ R2.
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Other constraints

In the following we further compare minlex and card with lengthlex for other
constraints. We have selected some of the constraints for which there exist
polynomial propagators for lengthlex [22, 11]. We will show that lengthlex
and minlex are still incomparable: the main reason is that the pruning power
highly depends on how the representations approximate real domains. This
makes minlex based combinations appealing for practical purposes.

For each constraints c, we use the following schema: we first show that
lengthlex is not stronger thanminlex for BC on c; then we show thatminlex·
card is not stronger than lengthlex for BC on the same constraint. Since
minlex · card is stronger than minlex + card that is stronger than minlex
for BC, using this schema we prove that lengthlex is incomparable with all
these combinations.

Subset constraint A subset constraint is a binary constraint S1 ⊆ S2

which ensures that the sets assigned to S1 are subset of sets assigned to S2.
We denote the subset constraint with ⊆.

Theorem 16 lengthlex is incomparable to minlex, minlex+card and minlex·
card on subset constraints.

Proof:
We first show that lengthlex 6�⊆ minlex. Take the following constraint

S1 ⊆ S2 on two set variables S1 and S2 which take values from U = {1, 2, 3}.
Assume that D(S1) = {{2, 3}, {3}} and D(S2) = {{1}, {1, 2}}. The minlex
and lengthlex domains are the following:

• DML(S1) = {{2, 3}, {3}};

• DML(S2) = {{1}, {1, 2}};

• DLL(S1) = {{3}, {1, 2}, {1, 3}, {2, 3}};

• DLL(S2) = {{1}, {2}, {3}, {1, 2}}.
When the constraint is propagated for minlex, it prunes all the sets from
all the domains whereas for lengthlex we have pLL〈c〉(S1) = {{3}} and
pLL〈c〉(S2) = {{1, 2}}. Thus, lengthlex 6�⊆ minlex and obviously we de-
duce that lengthlex 6�⊆ minlex+ card and lengthlex 6�⊆ minlex · card.

We now show minlex · card 6�⊆ lengthlex. Take the following con-
straint S1 ⊆ S2 on two set variables S1 and S2 which take values from
U = {1, 2, 3, 4}. Assume that D(S1) = {{2, 3}, {2, 4}, {3, 4}, {1, 2, 3}} and
D(S2) = {{3}, {4}, {1, 2}, {1, 3}}. The minlex, lengthlex and card domains
are the following:
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• DLL(S1) = {{2, 3}, {2, 4}, {3, 4}, {1, 2, 3}};

• DLL(S2) = {{3}, {4}, {1, 2}, {1, 3}};

• DML(S1) = {{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4}, {2},
{2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}};

• DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4},
{2}, {2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}};

• lbC(S1) = 2, ubC(S1) = 3;

• lbC(S2) = 1, ubC(S2) = 2.

When the constraint is propagated for lengthlex, it fails on both original
domains. Instead for minlex · card, we have that pML·C〈c〉(S1) = D(S1) \
{{1, 2, 3}} and pML·C〈c〉(S2) = {{1, 3}}. Thus, minlex · card 6�⊆ lengthlex,
and obviously we deduce minlex + card 6�⊆ lengthlex and minlex 6�⊆
lengthlex. �

Disjoint constraint A disjoint constraint is a binary constraint S1 ⊕ S2

which ensures that S1 ∩ S2 = ∅. We denote the disjoint constraint with ⊕.

Theorem 17 lengthlex is incomparable to minlex, minlex+card and minlex·
card on disjoint constraints.

Proof: We first show that lengthlex 6�⊕ minlex. Take the following
constraint S1 ⊕ S2 on two set variables S1 and S2 which take values from
U = {1, 2, 3}. Assume that D(S1) = D(S2) = {{1}, {1, 2}, {1, 2, 3}}. The
minlex and lengthlex domains are the following:

• DML(S1) = DML(S2) = {{1}, {1, 2}, {1, 2, 3}};

• DLL(S1) = DLL(S2) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

When the constraint is propagated for minlex, it prunes all the sets from
all the domains whereas for lengthlex we have pLL〈c〉(S1) = pLL〈c〉(S2) =
{{1}, {1, 2}}. Thus, lengthlex 6�⊕ minlex and obviously we deduce that
lengthlex 6�⊕ minlex+ card and lengthlex 6�⊕ minlex · card.

We now show minlex · card 6�⊕ lengthlex. Take the following con-
straint S1 ⊕ S2 on two set variables S1 and S2 which take values from
U = {1, 2, 3, 4}. Assume that D(S1) = {{3}, {4}, {1, 2}} and D(S2) =
{{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. The minlex, lengthlex and card domains
are the following:
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• DLL(S1) = {{3}, {4}{1, 2}};

• DLL(S2) = {{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}};

• DML(S1) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4},
{2}, {2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}};

• DML(S2) = {{1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4}, {2}, {2, 3},
{2, 3, 4}};

• lbC(S1) = 1, ubC(S1) = 2;

• lbC(S2) = 3, ubC(S2) = 4.

When the constraint is propagated for lengthlex, it prunes all the sets from all
the domains. Instead for minlex · card we have that pML·C〈c〉(S1) = {{3}}
and pML·C〈c〉(S2) = {{1, 3, 4}}. Thus, minlex · card 6�⊕ lengthlex, and
obviously we deduce minlex+ card 6�⊕ lengthlex and minlex 6�⊕ lengthlex.
�

atleast-k constraint An atleast-k constraint is a binary constraint which
ensures that S1 ∩ S2 ≥ k. We denote the atleast-k constraint with atleast.

Theorem 18 lengthlex is incomparable to minlex, minlex+card and minlex·
card on atleast constraints.

Proof: We first show that lengthlex 6�atleast minlex.
Consider the constraint |S1 ∩ S2| ≥ 2 on the two set variables S1 and S2

which take values from U = {1, 2, 3, 4}. Assume that D(S1) = {{1}, {1, 2}}
and D(S2) = {{2, 3}, {2, 3, 4}, {2, 4}, {3}}. The minlex and lengthlex do-
mains are the following:

• DML(S1) = {{1}, {1, 2}};

• DML(S2) = {{2, 3}, {2, 3, 4}, {2, 4}, {3}};

• DLL(S1) = {{1}, {2}, {3}, {4}, {1, 2}};

• DLL(S2) = {{3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

Enforcing BC for minlex prunes all the sets from all the domains. Instead for
lengthlex we have pLL〈c〉(S1) = {{1, 2}} and pLL〈c〉(S2) = {{2, 3}, {2, 4}}.
Thus, lengthlex 6�atleast minlex and obviously we deduce that lengthlex 6�atleast

minlex+ card and lengthlex 6�atleast minlex · card.
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We now show minlex · card 6�atleast lengthlex. Take the constraint |S1 ∩
S2| ≥ 2 on the two set variables S1 and S2 which take values from U =
{1, 2, 3, 4}. Assume that D(S1) = {{2, 4}, {3, 4}} and D(S2) = {{4}, {1, 2},
{1, 3}, {1, 4}, {1, 2, 3}}. The minlex, lengthlex and card domains are the
following:

• DML(S1) = {{2, 4}, {3}, {3, 4}};

• DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4},
{2}, {2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}};

• DLL(S1) = {{2, 4}, {3, 4}};

• DLL(S2) = {{3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}};

• lbC(S1) = 2, ubC(S1) = 2;

• lbC(S2) = 1, ubC(S2) = 3;

Propagating the constraint for lengthlex, we obtain that pLL〈c〉(S2) = {}.
However for minlex · card we have pML·C〈c〉(S2) = {{1, 3}, {1, 4}}. Both
representations do not prune with respect to the original domain of S1.
Thus, minlex · card 6�atleast lengthlex, and obviously we deduce minlex +
card 6�atleast lengthlex and minlex 6�atleast lengthlex. �

atmost-k constraint An atmost-k constraint is a binary constraint which
ensures that S1 ∩ S2 ≤ k. We denote the atmost-k constraint with atmost.

Theorem 19 lengthlex is incomparable to minlex, minlex+card and minlex·
card on atmost constraints.

Proof: We first show that lengthlex 6�atmost minlex.
Consider the constraint |S1 ∩ S2| ≤ 1 on the two set variables S1 and

S2 which take values from U = {1, 2, 3}. Assume that D(S1) = D(S2) =
{{1, 2}, {1, 2, 3}}.The minlex and lengthlex domains are the following:

• DML(S1) = DML(S2) = {{1, 2}, {1, 2, 3}};

• DLL(S1) = DLL(S2) = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Propagating the constraint for the minlex domain obviously prune all the
sets. Instead for lengthlex we have pLL〈c〉(S1) = pLL〈c〉(S2) = {{1, 2}}.
Thus, lengthlex 6�atmost minlex and obviously we deduce that lengthlex 6�atmost

minlex+ card and lengthlex 6�atmost minlex · card.
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We now show minlex · card 6�atmost lengthlex. Take the constraint |S1 ∩
S2| ≤ 1 on the two set variables S1 and S2 which take values from U =
{1, 2, 3}. Assume that D(S1) = D(S2) = {{2, 3}, {1, 2, 3}}. The minlex,
lengthlex and card domains are the following:

• DML(S1) = DML(S2) = {{1, 2, 3}, {1, 3}, {2}, {2, 3}};

• DLL(S1) = DLL(S2) = {{2, 3}, {1, 2, 3}};

• lbC(S1) = lbC(S2) = 2, ubC(S1) = ubC(S2) = 3;

Propagating the constraint for lengthlex fails for both domains whereas for
minlex · card we have pML·C〈c〉(S1) = pML·C〈c〉(S2) = {{2, 3}}. Thus,
minlex · card 6�atmost lengthlex, and we deduce minlex + card 6�atmost

lengthlex and minlex 6�atmost lengthlex. �
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Chapter 5

Tractability

In Chapter 4 we deeply studied minlex and its combinations with SB and
card. Then we compared minlex and card combinations with lengthlex.
This threw out an unexpected result: lengthlex is not better than a combi-
nation of minlex and card on cardinality and lexicographic constraints for
which lengthlex has shown promise [26, 28]. Therefore in this chapter we
further investigate minlex and we provide some complexity results for con-
straint propagation. We first show some good properties of minlex, focusing
on similarities with lengthlex. Then we show how to exploit some lengthlex
algorithms to prove the tractability of i) BC on some common unary and bi-
nary constraints for the minlex representation ii) synchronization of minlex
with SB and card.

5.1 General results

There are a number of negative results about set variables. In this section,
we to summarize some of them.

Enforcing BC is in general NP-hard for any representation. We use a
reduction from SAT, the boolean satisfiability problem, to BC. Consider the
SAT formula φ on x1,. . . , xn and its models. Each model I is associated
with the set sI of the indices of the positive literals in I. Consider the unary
constraint c that accepts all sets s of integers that correspond to a model.
BC on it will fail iff φ is unsatisfiable. Thus BC is NP-hard.

Another result is about the fix point behavior. Although filtering al-
gorithms for many elementary constraints are polynomial, the constraint
propagation algorithm may take exponential time to converge to a fix point
[14].

Bessiere et al. [3] have proved that BC on some commons global con-
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Figure 5.1: Minlex (left) embeds lengthlex (right).

straints such as atmost1− incommon and distinct on sets of fixed cardinal-
ities is NP-hard to propagate. Yip et al. [28] have proved that also BC on a
simplification of the atmost1− incommon constraint is intractable.

There is thus an abundance of negative results on propagating set vari-
ables. However, some constraints are tractable in the minlex representa-
tion, as we will show. Moreover we will also show that synchronization with
minlex is polynomial.

5.2 minlex properties

We recall briefly the definition of the lengthlex ordering:

Definition 12 A lengthlex ordering <LL on sets is defined by:

s <LL t iff s = {}∨|s| < |t|∨|s| = |t|∧(s1 < t1∨s1 = t1∧s\{s1} <LL t\{t1})

minlex generalizes this ordering by removing priority on cardinality:

Definition 13 A minlex ordering <ML on sets is defined by:

s <ML t iff s = {} ∨ (s1 < t1 ∨ s1 = t1 ∧ s \ {s1} <ML t \ {t1})

Figure 5.1 shows that a minlex domain can be seen as the composition of
different lengthlex domains of fixed cardinality. Moreover we note that the
order between sets of the same cardinality is equal in the two representations.

Now we show some properties of the minlex ordering which are exploited
by our algorithms.
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Property 1 Given a set s which takes values from a universe U , its succes-
sor, if it exists, has cardinality |s|+ 1 or |s| − 1.

Proof: If s is the empty set (cardinality 0), then its successor is {1} which
has cardinality 1.

Then we distinguish two complementary cases:

• sk = n (i.e. the last element is the greatest from the universe): accord-
ing to definition 13, we build the successor removing the last element
and then increasing by 1 the new last element. We cannot add to s
any other element as otherwise it would become smaller than s;

• sk < n: according to definition 13, we build the successor of s adding
sk + 1 to s which is the smallest element that can be added to s.

Therefore we have that the successor of s has cardinality |s| − 1 in the
first case and |s|+ 1 in the second. �

For the sake of simplicity, in what follows we consider non-empty sets.

Property 2 (Maximal extension) Given a set s which takes values from
a universe U , the largest set t that contains all the elements of s and t ≥ML s
has cardinality |t| = |s| + n − sk and we call such set t as the “maximal
extension” of s.

Proof: We distinguish two complementary cases:

• sk = n (i.e. the last element is the greatest from the universe): in this
case t = s: we can not add to t any other element otherwise it would
become smaller than s;

• sk < n: in this case set t = {s1, . . . , sk, sk+1, sk+2, . . . , n}. We can not
add to t any other element from U otherwise it would become smaller
than s.

In both cases the cardinality is |t| = |s|+ n− sk. �

Property 3 Given a set s, for each set t which is equal to s except for the
last element sk where tk > sk then the maximal extension of s has cardinality
greater than the maximal extension of t.

Proof: It follows directly from property 2. �
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Definition 14 (Extendible) We say that a set s is extendible iff sk < n,
that is if its maximal extension is different from itself. Moreover we say that
a set s is extendible to a set of cardinality c, with c > k, iff the maximal
extension t of s has cardinality |t| ≥ c. The extension of cardinality c of s is
the set {s1, . . . , sk, sk + 1, . . . , sk + c− k}.

Example 16 Take U = {1, 2, 3, 4} and a set s = {2, 3}. The max extension
of s is {2, 3, 4} which has cardinality 3. We also say that s is extendible.
Take now t = {2, 4}: its max extension is itself and we say that t is not
extendible. Moreover we verify that the cardinality of maximal extension of
s is greater than the cardinality of maximal extension of t.

Take the set {1}. It is extendible to a set of cardinality 3 which is {1, 2, 3}.
The set {2, 3} is not extendible to a set of cardinality 4 because its maximal
extension has cardinality 3.

Property 4 If a set s is extendible to a set t with cardinality c, then t is the
first set after s of cardinality c.

Proof: It follows from definition 14 and Property 2. �

Property 5 Given a set s = {s1, . . . , sc, . . . , sk} and an integer 0 < c < k,
the smallest set t greater than s with cardinality |t| = c is t = {s1, . . . , sc+1},
if it exists.

Proof: We exploit the fact that minlex embeds lengthlex. Consider the
set u = {s1, . . . , sc}. We have that u is less than or equal to s, according
to the minlex ordering, and the successor of u in the lengthlex domain of
cardinality c is t which comes after s according to definition 13.

Example 17 Take s = {1, 2, 3} from the universe U = {1, 2, 3, 4}. Then
the smallest set of cardinality 2 greater than s is {1, 3}. Indeed {1, 3} is the
successor of {1, 2} in the embedded lengthlex domain of cardinality 2 and
{1, 3} comes after {1, 2, 3}.

Property 6 Given a set s = {s1, . . . , sk}, if s is not extendible to a set
of cardinality c where c > k then for every set t such that s ≤ML t <ML

{s1, . . . , sk−1 + 1}, t is not extendible to a set of cardinality c.

Proof: Every set t that is s ≤ML t <ML {s1, . . . , sk−1 + 1} must have the
common beginning {s1, . . . , sk−1}. Moreover we have that tk must be greater
or equal than sk, otherwise it would be outside the interval. Thus applying
Property 3 we have that each set t cannot be extended to a set of cardinality
c.
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Example 18 Take for example the set s = {1, 3, 5} which takes value from
the universe U = {1, 2, 3, 4, 5}. Suppose we want extend s to a set with
cardinality 4. The maximal extension of s is s itself. Thus we apply Property
6 and we test the set {1, 4}. Again, it is not extendible to a set of cardinality
4. Thus using Property 6 we safely skip all the sets until {2}, which can be
extended to {2, 3, 4, 5}, of cardinality 4.

5.3 Updating minlex bounds based on cardi-

nality

In this section we give two functions that update minlex bounds given a
cardinality constraint of type |S| = c. Following the schema proposed in
[11], we define the following two functions:

• first− cML(s, c, U): given a set s which takes value from a universe U ,
returns the first set t such that t ≥ML s and |t| = c;

• last− cML(s, c, U): given a set s which takes value from a universe U ,
returns the last set t such that t ≤ML s and |t| = c.

For the sake of simplicity we assume that c is positive and s is not the empty
set.

5.3.1 first− cML(s, c, U)

We distinguish three cases:

• |s| = c: the function returns immediately s;

• |s| < c: here we distinguish two more subcases. The first is that s can
be extended to a set with cardinality greater than or equal to c. To do
this we exploit Property 2 and Definition 14. If this is possible, then
we extend s until the desired case, computing the successor of s until
cardinality c is reached. Property 4 ensures that this set is the smallest
set with cardinality c after s. This step takes at most O(n). If s is not
extendible to a set of cardinality c, then we search for the first t that
can be extended to a set of cardinality c. To do this in polynomial time,
we take advantage of Property 6 and we try only meaningful values.
Basically at each step we remove the last element from s, we increase
by one the new last element and then we re-execute the extendibility
test. This step takes at most O(n2);
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• |s| > c: we simply remove from s all the elements which have index
greater than c; then we add 1 to the new last element of s (by Property
5).

Algorithm 2 is an auxiliary algorithm which extends a set s to a desired
cardinality in O(n). Instead the first−cML(s, c, U) function is implemented
by Algorithm 1. Lines from 1 to 3 implement the first case, lines from 4 to
16 the second and finally lines from 17 to 19 the third. The computational
cost is O(n2), since extendML is invoked inside the for loop of line 9. Note
that the algorithm returns {−1} if does not exist a set of cardinality c after
s.

Algorithm 1: first− cML(s, c, U)

Data: s: set, c: integer, U : set
Result: Returns the first set of cardinality c after s, otherwise it

returns {−1}.
if |s| = c then1

return s;2

end3

if |s| < c then4

if |s|+ n− sk ≥ c then5

return extendML(s, c, U);6

end7

else8

for i = |s| − 1 down to 1 do9

s = {s1, . . . , si + 1};10

if |s|+ n− sk ≥ c then11

return extendML(s, c, U);12

end13

end14

end15

end16

if |s| > c then17

return {s1, . . . , sc−1, sc + 1};18

end19

return {−1};20

Example 19 Take s = {1, 2, 4} and U = {1, 2, 3, 4}. We want to find the
first set after {1, 2, 4} which has cardinality 4. Such a set does not exist. We
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Algorithm 2: extendML(s, c, U)

Data: s: set, c: integer, U : set. Requires that |s| ≤ c.
Result: Extends s to a set of cardinality c.
result = s;1

m = sk + 1;2

for i = c− |s| down to 1 do3

result = result ∪ {m};4

m = m+ 1;5

end6

return result;7

start the algorithm and only the condition of line 4 is satisfied. As s can not
be extended to a set of cardinality 4 (line 5), we enter in the for loop of line
9. Then we use Property 6 to try only meaningful values and we repeat the
extendibility test for {1, 3} and {2}. As they fail, we skip to line 20 and we
return {−1}.

5.3.2 last− cML(s, c, U)

For the sake of simplicity, we can build last − cML(s, c, U) function on top
of the first − cML(s, c, U) function which has been just defined and the
precLL(s) function, from the lengthlex domain. precLL(s) computes the
predecessor of s with the same cardinality as s. If such a predecessor does
not exist, we assume that it returns {−1}. The computational cost of precLL
is O(n).

We have two cases:

• |s| = c: we can safely return s;

• |s| 6= c: in this case last− cML(s, c, U) = precLL(first− cML(s, c, U)).
If first− cML returns {−1}, then last− cML can safely return the set
{n − c + 1, . . . , n}, since it is the biggest set, wrt minlex ordering, of
cardinality c. If precLL returns {−1} then last− cML does the same.

Algorithm 3 performs exactly these simple steps. Its computational cost
is dominated by the first− cML function, thus it is O(n2).

Example 20 Take the following minlex domain: {{1}, {1, 2}, {1, 2, 3}, {1, 3},
{2}, {2, 3}, {3}}. Suppose we want compute last− cML({2}, 2, {1, 2, 3}): first
we jump to first − cML({2}, 2, {1, 2, 3}) = {2, 3} and then we go back to
precLL({2, 3}) = {1, 3} that is the last set before {2} that contains two ele-
ments.
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Algorithm 3: last− cML(s, c, U)

Data: s: set, c: integer, U : set
Result: Returns the last set of cardinality c before s.
if |s| = c then1

return s;2

end3

if first− cML(s, c, U) = {−1} then4

return {n− c+ 1, . . . , n};5

end6

else7

return precLL(first− cML(s, c, U));8

end9

5.4 BC for unary constraints

For the sake of simplicity we assume that in what follows we deal only with
positive cardinalities and non-empty sets.

Despite the general intractability, we are able to show that BC on some
unary constraints can be enforced in polynomial time for the minlex rep-
resentation. Applying Definition 6, we have that given a variable S and a
minlex domain, enforcing BC for unary constraints means finding the first
value after lbML(S) for which the constraint holds and the last value before
ubML(S) for which the constraint holds (or the bounds themselves if the
constraint is true when applied to them). For example we can use the func-
tions defined in the previous section to enforce BC for unary constraint of
type |S| = c. In the following sections, we will analyze other common unary
constraint.

5.4.1 Inclusion constraint

To enforce BC for the inclusion constraint (S ⊇ r) the authors of [11] define
two functions:

• first−rLL(s, r, c): computes the first set after s with cardinality c that
contains all elements in r (or s itself if it contains r);

• last−rLL(s, r, c): computes the last set before s with cardinality c that
contains all elements in r (or s itself if it contains r).
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They are both polynomial and first− rLL takes O(n). Moreover we assume
that these functions return {−1} if does not exist a set which satisfies the
conditions.

Thus we want to build similar functions:

• first− rML(s, r, U): given a set s which takes values from the universe
U , returns the first set after s which contains the required elements r,
or s itself if it contains r;

• last− rML(s, r, U): given a set s which takes values from the universe
U , returns the last set before s which contains the required elements r,
or s itself if it contains r;

We will show how to build first − rML(s, r, U): last − rML(s, r, U) can be
built in the same fashion. We build first−rML(s, r, U) on top of the first−
rLL(s, r, c). We give the basic intuition with an example.

Given a variable S, we want enforce BC for the constraint S ⊇ {3}
over the following minlex domain: {{1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}}. The
embedded lengthlex subdomains are:

• the lengthlex subdomain of cardinality 1 is {{1}, {2}};

• the lengthlex subdomain of cardinality 2 is {{1, 2}, {1, 3}};

• the lengthlex subdomain of cardinality 3 is {{1, 2, 3}}.

We can search the first set which satisfies the constraint looking in polyno-
mial time at each lengthlex subdomain, taking the minimum w.r.t. minlex
ordering. We observe that the maximum number of lengthlex subdomain is
O(n), therefore we remain polynomial. We execute the following steps:

• first− rLL(first− cML({1}, 1, {1, 2, 3}), {3}, 1) returns the first set of
cardinality 1, after {1}, which contains the set {3}. first− rLL would
return {3}, that is discarded because it is greater than the upper bound.

• first− rLL(first− cML({1}, 2, {1, 2, 3}), {3}, 2) returns the first set of
cardinality 2, after {1, 2}, which contains the set {3}. Thus first−rLL
returns {1, 3}, which is a candidate for the solution;

• first− rLL(first− cML({1}, 3, {1, 2, 3}), {3}, 3) returns the first set of
cardinality 3, after {1, 2, 3}, which contains the set {3}. Thus first−
rLL returns {1, 2, 3}, which is another candidate for the solution.
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Then we keep the minimum, w.r.t. minlex ordering, between {1, 3} and
{1, 2, 3} that is {1, 2, 3}.

We build the first− rML(s, r, U) following the given intuition. Note that
we do not check if the found element is greater than the upper bound: it will
be the BC algorithm which will take care about this.

Algorithm 4: first− rML(s, r, U)

Data: s: set, r: set, U : set
Result: Returns the first set after s which contains r.
result = {−1};1

for i = |r| to n do2

firstc = first− cML(s, i, U);3

if firstc 6= {−1} then4

firstr = first− rLL(firstc, r, i);5

if firstr 6= {−1} then6

if result = {−1} then7

result = firstr;8

end9

else10

result = minML(firstr, result);11

end12

end13

end14

end15

return result;16

first−rLL is implemented by Algorithm 4. It uses the lengthlex function
first − rLL(s, r, c), which is polynomial, for all the possible cardinalities
(for loop at line 2) and it keeps the minimum value, w.r.t minlex ordering.
first−cML(s, c, U) (line 3) is used to select the lower bound of the embedded
lengthlex domain of cardinality i. The minML function used at line 11
simply returns the minimum between two values w.r.t. minlex ordering. The
algorithm returns {−1} if does not exist a set which contains the required
elements. Its computational cost is O(n3) which can be surely improved but
it is enough to see that it is tractable.

In Figure 5.2 we can see how first−rML can be used to update the lower
bound of a given minlex domain. Figure 5.2 also shows at each step what
the algorithm does.
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Figure 5.2: Enforcing BC for the unary constraint S ⊇ {3, 4}: updating the
lower bound. Sets take value from the universe U = {1, 2, 3, 4}. The minlex
domain goes from {1, 2, 4} up to {3, 4}.
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5.4.2 Disjoint constraint

To enforce BC for the disjoint constraint (S ⊕ e) the authors of [11] define
two functions:

• first−eLL(s, e, c): computes the first set after s with cardinality c that
does not include any element in e (or s itself if it is disjoint from e);

• last−eLL(s, e, c): computes the last set before s with cardinality c that
does not include any element in e (or s itself if it is disjoint from e).

Using the same technique of the inclusion constraint, we can construct
similar functions:

• first − eML(s, e, U): given a set s which takes values from a universe
U , it returns the first element after s which is disjoint from e, or s itself
if it disjoint from e, otherwise it returns {−1};

• last− eML(s, e, U): given a set s which takes values from a universe U ,
it returns the last element before s which is disjoint from e, or s itself
if it disjoint from e, otherwise it returns {−1}.

5.4.3 Conjunction of unary constraints

We are also able to enforce BC in polynomial time for conjunction of unary
constraints. In the following two sections we will show how to build functions
for the subset constraint s1 ⊆ S ⊆ s2 and the cardinality constraint c ≤ |S| ≤
d.

Subset constraint (s1 ⊆ S ⊆ s2)

To propagate the subset constraint, we need the following two functions:

• first − s1s2ML(s, s1, s2, U): given a set s which takes values from a
universe U , it returns the first set after s for which s1 ⊆ s ⊆ s2 holds,
or s itself if it is in the interval, otherwise it returns {−1};

• last − s1s2ML(s, s1, s2, U): given a set s which takes values from a
universe U , it returns the last set before s for which s1 ⊆ s ⊆ s2 holds,
or s itself if it is in the interval, otherwise it returns {−1}.

We show only how to build the first− s1s2ML(s, s1, s2, U) function. The
last− s1s2ML(s, s1, s2, U) can be built in the same fashion.

Without loss of generality we assume that s2 = {1, 2, . . . , |s2|} and s ⊆ s2.
Then first − s1s2ML(s, s1, s2, U) is equal to first − rML(s, s1, s2) because
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first − rML(s, s1, s2) returns only those sets which contains s1, according
to the definition of first − rML, and which are contained to s2 because
first − rML runs on the restricted universe s2. The assumptions are not
strong because if s2 is not in the form {1, 2, . . . , |s2|} we can always use a
map function. We can overcome the last assumption using s′ = first −
eML(s, U \ s2, U) instead of s. Indeed s′ is the first set after s which is
contained in s2.

Example 21 Take s = {1, 3} which takes values from U = {1, 2, 3, 4}.
We want to compute first− s1s2ML(s, {2, 3}, {1, 2, 3}, U). Then we execute
first− rML(s, {2, 3}, {1, 2, 3}) which returns the set {2, 3}.

Cardinality constraint (c ≤ |S| ≤ d)

Enforcing BC for this constraint is also tractable. To do that, we need the
following functions:

• first− cdML(s, c, d, U): given a set s which takes values from the uni-
verse U , it returns the first set after s which has cardinality between
c and d, or s itself if its cardinality is between c and d otherwise it
returns {−1};

• last−cdML(s, c, d, U): given a set s which takes values from the universe
U , it returns the last set before s which has cardinality between c and
d, or s itself if its cardinality is between c and d otherwise it returns
{−1}.

We show only the first function, the last can be derived in the same fashion.
We distinguish three cases:

• |s| < c: the smallest set t >ML s (w.r.t. minlex ordering) with cardi-
nality |t| ≥ c must have cardinality |t| = c. Indeed Property 1 ensures
that cardinality can be incremented at most by 1 at each step when
computing the successor. Thus the first set after s which has cardi-
nality between c and d must have cardinality c. Therefore we can use
first− cML(s, c, U) function;

• |s| > d: with analogous arguments of the previous point, we can use
first− cML(s, d, U) to obtain the first set with cardinality d;

• c ≤ |s| ≤ d: the constraint is satisfied by s.

Thus we can safely assume to have these two polynomial functions.
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5.5 Synchronization with minlex

In this section we analyze the complexity of enforcing synchronization for
minlex and card and minlex and SB. We use some of the functions defined
in the previous sections. We note that synchronization between two repre-
sentations can be understood as a domain constraint (e.g. S ∈ DR1R2(S)).
Therefore the same considerations made in Section 5.4 also apply to synchro-
nization. For the sake of simplicity, we assume that lower and upper bound
of the variables are not empty sets.

5.5.1 Synchronization for minlex and card

We recall the instantiation of synchronization for minlex and card provided
in Section 4.4.1.

Given the two representations minlex and card, given a variable S, we
say that S is synchronized for minlex and card iff:

• lbC(S) ≤ |lbML(S)| ≤ ubC(S), lbC(S) ≤ |ubML(S)| ≤ ubC(S);

• there exist a set sl and a set su between lbML(S) and ubML(S) such
that |sl| = lbC(S) and |su| = ubC(S).

The first part can be enforced using first−cdML(lbML(S), lbC(S), ubC(S), U)
and last− cdML(lbML(S), lbC(S), ubC(S), U), both polynomial.

Given a variable S and the minlex representation, let maxcard be the
cardinality of the set with maximum cardinality which belongs to DML(S),
and mincard the cardinality of the set with minimum cardinality which
belongs to DML(S). A consequence of Property 1 is that for each e ∈
[mincard,maxcard] there exists a set u such that e = |u| and lbML(S) ≤ML

u ≤ML ubML(S) (otherwise we could not move from a set of cardinality
maxcard to a set with cardinality mincard).

Example 22 Given a variable S and a universe U = {1, 2, 3, 4, 5}, let
lbML(S) = {1, 4} and ubML(S) = {2, 4}. Then maxcard = 4 and mincard =
1. For e = 1 we can take the set {2}, for e = 2 the set {1, 4}, for e = 3 the
set {1, 4, 5} and for e = 4 the set {2, 3, 4, 5}.

Thus if lbC(S) belongs to [mincard,maxcard] then we are sure that there
exists a set of card lbC(S) which belongs to the minlex domain. Similarly
for ubC(S).

First we give two algorithmsmin−card(lb, ub, U) andmax−card(lb, ub, U)
which compute the cardinality of the smallest (resp. largest) set in a given
minlex interval.
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Algorithm 5: min− cardML(lb, ub, U)

Data: lb: set, ub: set, U : set
Result: the cardinality of the smallest set in the interval
for i = 1 to n do1

s = first− cML(lb, i, U);2

if s 6= {−1} and s ≤ML ub then3

return i4

end5

end6

Algorithm 5 computes the smallest set in a naive way, but polynomial.
Basically, in ascending order of cardinality (for loop of line 1) it checks if
there exists a set with that cardinality which belongs to the interval (lines 2
and 3). The computational cost is O(n3). We can build the max − cardML

in the same fashion.

Algorithm 6: max− cardML(lb, ub, U)

Data: lb: set, ub: set, U : set
Result: the cardinality of the largest set in the interval
for i = n down to 1 do1

s = first− cML(lb, i, U);2

if s 6= {−1} and s ≤ML ub then3

return i4

end5

end6

Algorithm 7 enforces synchronization for minlex and card. Line 1 and
line 2 ensure synchronization for minlex with card. Lines 6 and 7 ensure
synchronization for card with minlex. If it is impossible to enforce synchro-
nization for the given variable, it fails.

Algorithm 7: syncML,C(S, U)

Data: S: set variable, U : set
Result: minlex synchronized with card on S and vice versa
lbML(S) = first− cdML(lbML(S), lbC(S), ubC(S), U);1

ubML(S) = last− cdML(ubML(S), lbC(S), ubC(S), U);2

if lbML(S) >ML ubML(S) or lbML(S) = {−1} or ubML(S) = {−1}3

then
fail;4

end5

lbC(S) = max(lbC(S),min− cardML(lbML(S), ubML(S), U));6

ubC(S) = min(ubC(S),max− cardML(lbML(S), ubML(S), U));7
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5.5.2 Synchronization for minlex and SB

We recall the instantiation of synchronization for minlex and SB given in
section 4.4.1. Given the minlex representation and the subset bounds rep-
resentation SB, given a variable S we say that S is synchronized for minlex
and SB iff:

• lbML(S) ∈ DSB(S), ubML(S) ∈ DSB(S);

• ubSB(S) ⊆
⋃

s∈DML(S)
s and lbSB(S) ⊇

⋂
s∈DML(S)

s.

For the first part we can exploit the two functions first− s1s2ML(lbML(S),
lbSB(S), ubSB(S), U) and last− s1s2ML(ubML(S), lbSB(S), ubSB(S), U). For
the second we define the following two auxiliary functions:

• unionML(lb, ub, U): returns the union of all the sets which belong to
the minlex interval. It is implemented by Algorithm 8. It uses first−
rML(s, r, U) (line 3) applied to each element u ∈ U (line 2) in order to
compute the union of all the elements which belong to at least one set
in the interval (line 4);

• intersectionML(lb, ub, U): returns the intersection of all the sets which
belong to the minlex interval. intersectionML is implemented by Al-
gorithm 9. It exploits the first− eML(s, e, U) function. For each value
u ∈ U (line 2), if first−eML(lb, u, U) returns a set that does not belong
to the interval then u can not belong to the intersection (lines 3-5).

In the following there are the algorithms for union and intersection:

Algorithm 8: unionML(lb, ub, U)

Data: lb: set, ub: set, U : set
Result: returns the union of all the sets which belong to the interval
result = {};1

for ∀u ∈ U do2

if first− rML(lb, u, U) 6= {−1} and first− rML(lb, u, U) ≤ ub3

then
result = result ∪ u;4

end5

end6

return result;7
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Algorithm 9: intersectionML(lb, ub, U)

Data: lb: set, ub: set, U : set
Result: returns the intersection of all the sets which belong to the

interval
result = U ;1

for ∀u ∈ U do2

if first− eML(lb, u, U) 6= {−1}and first− eML(lb, u, U) ≤ ub3

then
result = result \ {u};4

end5

end6

return result;7

Both unionML and intersectionML have computational cost that is equal
to O(n4). Synchronization for minlex and SB is implemented by Algorithm
10: line 1 and line 2 ensure synchronization for minlex with SB. Lines 6 and
7 ensure synchronization for SB with minlex. If it is impossible to enforce
synchronization for the given variable, it fails. The computational cost is
O(n4).

Algorithm 10: syncML,SB(S, U)

Data: S: set variable, U : set
Result: minlex synchronized with SB on S and vice versa
lbML(S) = first− s1s2ML(lbML(S), lbSB(S), ubSB(S), U);1

ubML(S) = last− s1s2ML(ubML(S), lbSB(S), ubSB(S), U);2

if lbML(S) > ubML(S) or lbML(S) = {−1} or ubML(S) = {−1} then3

fail;4

end5

lbSB(S) = lbSB(S) ∪ intersectionML(lbML(S), ubML(S), U);6

ubSB(S) = ubSB(S) ∩ unionML(lbML(S), ubML(S), U);7

5.6 Binary constraints

In [22] authors present a generic bounds consistency algorithm for a lengthlex
domain. Their BC algorithm is expressed in terms of three functions hsLL,
succLL,S1 and predLL,S1 . Given a constraint c, two set variables S1 and S2 and
the lengthlex representation LL, hsLL〈c〉(S1, S2) ≡ ∃x ∈ S1, y ∈ S2 : c(x, y).
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hsLL is also called the feasibility routine, since it returns true if and only if
the constraint can be satisfied. For a constraint c and two set variables S1

and S2 such that hsLL〈c〉(S1, S2) is true, function succLL,S1〈c〉(S1, S2) returns
the smallest set x ∈ DLL(S1), with respect to LL ordering, which belongs to
a solution of the constraint:

succLL,S1〈c〉(S1, S2) ≡ minLL{x ∈ DLL(S1) | ∃y ∈ DLL(S2) : c(x, y)}

For a constraint c and two set variables S1 and S2 such that hsLL〈c〉(S1, S2) is
true, function predLL,S1〈c〉(S1, S2) returns the largest set x ∈ DLL(S1), with
respect to lengthlex ordering, which belongs to a solution of the constraint,
i.e.,

predLL,S1〈c〉(S1, S2) ≡ maxLL{x ∈ DLL(S1) | ∃y ∈ DLL(S2) : c(x, y)}

The definitions are similar for the S2 variable. Algorithm 11 enforces BC
on a binary constraint for the lengthlex representation. Line 2 ensures that
lbLL(S1) is updated to the smallest set of DLL(S1) (w.r.t. lengthlex ordering)
which satisfies the constraint. On the other hand, line 3 ensures that ubLL(S1)
is updated to the greatest set of DLL(S1) (w.r.t. lengthlex ordering) which
satisfies the constraint. Lines 4 and 5 perform the same operations for the
S2 variable. Algorithm 11 is clearly consistent with our BC definition given
in Chapter 4.

Algorithm 11: bcLL〈c〉(S1, S2)

Data: S1: set variable, S2: set variable
Result: Returns the bounds updated to be BC.
if hsLL〈c〉(S1, S2) then1

lbLL(S1) = succLL,S1〈c〉(S1, S2);2

ubLL(S1) = predLL,S1〈c〉(S1, S2);3

lbLL(S2) = succLL,S2〈c〉(S2, S1);4

ubLL(S2) = succLL,S2〈c〉(S2, S1);5

return true6

end7

else8

return false9

end10

The two functions succLL,S1 and predLL,S1 are built on top of the feasi-
bility routine hsLL. The authors give the generic succLL,S1 algorithm with
complexity O(αc2 log n) where α is the computational cost of hsLL, c is the
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Algorithm 12: bcML〈c〉(S1, S2)

Data: S1: set variable, S2: set variable
Result: Returns the bounds updated to be BC.
if hsML〈c〉(S1, S2) then1

lbML(S1) = succML,S1〈c〉(S1, S2);2

ubML(S1) = predML,S1〈c〉(S1, S2);3

lbML(S2) = succML,S2〈c〉(S2, S1);4

ubML(S2) = predML,S2〈c〉(S2, S1);5

return true6

end7

else8

return false9

end10

cardinality of the sets (it could be smaller than the size of the universe) and
n is the size of the universe.

Since minlex totally orders its sets, we use their same BC algorithm but
in minlex version (as shown by Algorithm 12).

The definitions of hsML, succML,S1 and predML,S1 are analogous to the
corresponding lengthlex counterparts. We build these functions on top of
hsLL, succLL,S1 and predLL,S1 functions, recalling them a polynomial number
of times. Thus whenever their algorithms are polynomial so are ours. Hence
our generic BC algorithm is also polynomial.

For the sake of simplicity, we focus only on non-empty sets. We start
with hsML. We note the following: if a constraint c(S1, S2) is satisfied by
x ∈ DML(S1), y ∈ DML(S2) then x and y must belong to their embedded
lengthlex subdomains respectively of cardinality |x| and |y|. It is enough to
search the solution over all possible combinations of lengthlex subdomains:
they are at most O(n2). Therefore given a constraint c, for each length-
lex subdomain of S1, for each lengthlex subdomain of S2, we call the hsLL
function on these lengthlex intervals.

Example 23 Take two variables S1 and S2 with the following domains:
DML(S1) = DML(S2) = {{1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}. Con-
sider the constraint |S1 ∩ S2| ≥ 2: it can be satisfied by x = {1, 2} and
y = {1, 2, 3}. Thus hsML returns true because hsLL returns true when called
on the two lengthlex embedded domains of cardinality 2 (for S1) and cardi-
nality 3 (for S2).

We use the auxiliary function llsubML(S1, c) implemented by Algorithm
13. It returns the embedded lengthlex domain of cardinality c (it is a pair
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〈lb, ub〉) or 〈{−1}, {−1}〉 if it does not include a lengthlex domain of such
cardinality. It exploits the first− cML and the last− cML algorithms previ-
ously defined. Therefore its computational cost is O(n2). The soundness of
Algorithm 13 is given by the following property.

Property 7 Given a minlex domain 〈lb, ub〉 and a cardinality c, let s be the
first set after lb of cardinality c and t the last set before ub of cardinality c
which belongs to the domain, then for every set u such that s ≤LL u ≤LL t,
u belongs also to the given minlex domain.

Proof: It is enough to observe that in the lengthlex ordering values of same
cardinality are ordered lexicographically. Thus for each set u the following
holds: lb ≤ML s ≤ML u ≤ML t ≤ML ub. �

Algorithm 13: llsubML(S1, c)

Data: S1: set variable, c: integer, U : set
Result: Returns the embedded lengthlex domain of cardinality c.
lb = first− cML(S1)(lbML(S), c, U);1

ub = last− cML(S1)(ubML(S), c, U);2

if ub >ML lb or lb = {−1} or ub = {−1} then3

return 〈{−1}, {−1}〉;4

end5

else6

return 〈lb, ub〉;7

end8

Algorithm 14 realizes the feasibility routine hsML. The two nested loops
ensure that all possible lengthlex subdomains will be traversed. The algo-
rithm returns true when a pair that satisfies the constraint is found (lines
5-6), false otherwise. Line 2 costs O(n2) while the for loop of lines 3-9 costs
O(n3α), where α is the computational cost of hsLL. Therefore hsML takes
O(n4α).
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Algorithm 14: hsML〈c〉(S1, S2)

Data: S1: set variable, S2: set variable
Result: Returns true if the constraint is satisfied over the two minlex

intervals, otherwise false
for i = 1 to n do1

if llsubML(S1, i) 6= 〈{−1}, {−1}〉 then2

for j = 1 to n do3

if llsubML(S2, j) 6= 〈{−1}, {−1}〉 then4

if hsLL〈c〉(llsubML(S1, i), llsubML(S2, j)) then5

return true6

end7

end8

end9

end10

end11

return false12

Algorithm 15 realizes the succML,S1〈c〉(S1, S2) function. It exploits the
same technique used before. The minML function (line 8) ensures that the
variable result will contain the smallest set of DML(S1) which satisfy the con-
straint, if it exists. Otherwise it returns {−1}. Considering that succLL,S1

takes O(αn2 log n), then succML,S1 is O(αn4 log n). predML,S1 can be built
in the same way, computing maxML instead of minML.

We will now show that BC on some commons binary constraints is tractable
for minlex representation. Moreover we will show that the binary lexico-
graphic constraint can be propagated very efficiently.

5.6.1 Disjoint, atleast-k and atmost-k

In [22] the authors give specialized polynomial algorithms (hsLL〈c〉 and succLL,S1

〈c〉) for the binary disjoint constraint (|S1∩S2| = 0). Thus we conclude that
enforcing BC for a binary disjoint constraint is polynomial also for theminlex
representation. Moreover, in the same paper, they claim to have polynomial
algorithms for the atleast−k (|S1∩S2| ≥ k) and the atmost−k (|S1∩S2| ≤ k)
constraints. Thus we can state that atleast−k and atmost−k are tractable
also for the minlex representation.
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Algorithm 15: succML,S1〈c〉(S1, S2)

Data: S1: set variable, S2: set variable
Result: Returns the first value of S1 which satisfy the constraint
result = {−1};1

for i = 1 to n do2

if llsubML(S1, i) 6= 〈{−1}, {−1}〉 then3

for j = 1 to n do4

if llsubML(S2, j) 6= 〈{−1}, {−1}〉 then5

if succLL,S1〈c〉(llsubML(S1, i), llsubML(S2, j)) 6= {−1}6

then
if result 6= {−1} then7

result =8

minML(result, succLL,S1〈c〉(llsubML(S1, i), llsubML(S2, j)));
end9

else10

result =11

succLL,S1〈c〉(llsubML(S1, i), llsubML(S2, j));
end12

end13

end14

end15

end16

end17

return result18
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Algorithm 16: bcML〈lex≤〉(S1, S2)

Data: S1: set variable, S2: set variable
Result: Enforce BC for the constraint S1 ≤lex S2

ubML(S1) = minML(ubML(S1), ubML(S2));1

lbML(S2) = maxML(lbML(S1), lbML(S2));2

5.6.2 Binary lexicographic constraint

Due to the nature of the minlex ordering, it is very easy to enforce BC for
a binary lexicographic constraint S1 ≤lex S2. In fact minlex totally orders
the domain w.r.t. the lexicographic order. Thus we have only to adjust
the upper bound of S1, taking the minimum between itself and the upper
bound of S2, and the lower bound of S2, taking the maximum between itself
and the lower bound of S1 as shown in Algorithm 16 (lines 1 and 2). Note
that the lexicographic binary constraint of [11] is not purely lexicographic: it
considers also cardinality. Lexicographic constraints are a point of strength
of minlex representation.
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Generalizing the framework

In this chapter we generalize the framework developed in Chapter 4 to deal
with an arbitrary number of representations. In fact the recent trend is
to consider more than two representations at a time. Given that there exist
combinations of three representations in the literature, we study various triple
combinations of minlex, SB and card. We then position lengthlex ·SB [28]
and hybrid domain [18, 19] within our framework. We show that lengthlex ·
SB is incomparable to all minlex based representations and hybrid domain
does not maintain consistency between all the bounds at the same time.

6.1 Combining multiple representations

In this section, we provide the notions of synchronization and bound con-
sistency between combinations of an arbitrary number of representations.
The combinations that are supported by the extended framework are strong
combinations I = R1 · · ·Rn and weak combinations H = I1 + . . .+ In.

6.1.1 Synchronization of bounds

When we combine more than two representations, synchronization can be
understood in two different ways. Synchronization for a strong combination
requires that each bounds of each representation is consistent with respect to
the joint domain. On the other hand, if we have a weak combination H we
require that each representation must be consistent with each strong combi-
nation. This allows us to have different types of synchronization depending
on how the representations are combined.
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Definition 15 (Synchronization for R1 · · ·Rn) Given a variable S, the
representation Ri and the combination R1 · · ·Ri−1 ·Ri+1 · · ·Rn, the represen-
tation Ri is synchronized with R1 · · ·Ri−1 ·Ri+1 · · ·Rn on S iff:

• lbRi
(S) = glbRi

(DR1···Rn(S));

• ubRi
(S) = lubRi

(DR1···Rn(S)).

S is synchronized for R1 · · ·Rn iff ∀i ∈ {1, . . . , n}, Ri is synchronized with
R1 · · ·Ri−1 ·Ri+1 · · ·Rn on S.

Definition 16 (Synchronization for R1 · · ·Rn + . . .+Rn+k · · ·Rm) Given
a variable S, and the combination Ri1 · · ·Rj1+Ri2 · · ·Rj2, we say that Ri1 · · ·Rj1

is synchronized with Ri2 · · ·Rj2 on S iff S is synchronized for Ri1 · · ·Rj1 and
∀i ∈ {i1, . . . , j1}, Ri is synchronized with Ri2 · · ·Rj2 on S.

S is synchronized for R1 · · ·Rn + . . .+Rn+k · · ·Rm iff every strong combi-
nation is synchronized with the others on S.

6.1.2 Bound consistency on combinations of multiple
representations

Bound consistency on combination of representations is the natural extension
of the one proposed in Chapter 4. In the following we first define BC for the
strong combination and then for the weak.

Definition 17 (Bound consistency on R1 · · ·Rn) Given variables S1, . . . , Sm,
and a constraint c(S1, . . . , Sm), Si is bound consistent on c from Rj to R1 · · ·Rj−1·
Rj+1 · · ·Rn iff:

• lbRj
(S) = glbRj

(c[Si]R1···Rn);

• ubRj
(S) = lubRj

(c[Si]R1···Rn);

Si is bound consistent on c for R1 · · ·Rn iff Si is synchronized for R1 · · ·Rn

and ∀j ∈ {1, . . . , n}, Si is bound consistent from Rj to R1 · · ·Rj−1·Rj+1 · · ·Rn.

Definition 18 (Bound consistency on R1 · ·Rn + ..+Rn+k · ·Rm) Given
variables S1, . . . , Sp and a constraint c(S1 . . . , Sp), Si is bound consistent on c
for R1 · · ·Rn+. . .+Rn+k · · ·Rm iff Si is BC on c for every strong combination
and Si is synchronized for R1 · · ·Rn + . . .+Rn+k · · ·Rm.
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6.2 Comparison of multiple combinations

We define effective propagation to be able to compare different combinations
of representations. As in Chapter 4, we measure the ability to remove values
from the original domains when BC is applied.

Definition 19 (Effective Propagation) Given a constraint c(S1, . . . , Sn),
a combination R1 · · ·Rn + . . . + Rn+k · · ·Rm, the original domain D(Si) of
Si, DRj

(Si) the tightest approximation of D(Si) using Rj, and D′Rj
(Si) the

domain of Si after the BC propagation of c, the effective propagation of c on
Si is the set pR1···Rn+...+Rn+k···Rm〈c〉(Si) = D(Si)∩D′R1

(Si)∩ · · · ∩D′Rm
(Si) of

the values from D(Si) remaining in the intersection of approximated domain
D′R1
∩ · · · ∩D′Rm

(Si) after BC has been enforced on c.

Then the stronger relation � is naturally extended as follows.

Definition 20 (Stronger relation �) Let H refer to a combined represen-
tation R1 · · ·Rn + . . .+Rn+k · · ·Rm.
Given a constraint c(S1, . . . , Sp) we say that H1 is stronger than H2 on c
(H1 �c H2) iff ∀D(Si) with DRj

(Si) the tightest approximation of D(Si)
using Rj, if there exists Si such that pH2〈c〉(Si) = ∅ then pH1〈c〉(Si) = ∅.

We say that H1 � H2 iff H1 �c H2 for all constraints c. We say that H1

is strictly stronger than H2 on c (H1 �c H2) iff H1 �c H2 and H2 6�c H1.
We say that H1 is strictly stronger than H2 (H1 � H2) iff H1 � H2 and
H2 6� H1. We say that H1 and H2 are incomparable (H1 ∼ H2) iff H1 6� H2

and H2 6� H1.

As done for the framework of Chapter 4, we now give the needed theorems
to compare combinations of representations.

Theorem 20 Let I refer to a combined representation Ri · · ·Rj. Given two
combinations H1 = I1+. . .+Ri · · ·Rj+. . .+In and H2 = I1+. . .+Ri · · ·Rk+
Rk+1 · · ·Rj + . . .+ In, we have that H1 � H2.

Proof: We note that the H1 is equal to H2 except that Ri · · ·Rj of H1 is
split in Ri · · ·Rk +Rk+1 · · ·Rj in H2.

Let c(S1, . . . , Sp) be a constraint. Consider a set t from D(Si) such that
t 6∈ pH2〈c〉(Si). This means that t was removed either by BC on c for each
strong combination of H2 or by synchronization between those.

Consider now BC on c for H1. The BC definition guarantees at least BC
on c for every strong combination of H2 and also synchronization between
them.
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Thus t 6∈ pH1〈c〉(Si). As a result, if pH2〈c〉(Si) is empty then pH1〈c〉(Si)
is empty as well. �

Theorem 21 Let I refer to a combined representation Ri · · ·Rj. We have
that I1 + I2 + . . .+ In is stronger than Ik for all k ∈ {1, . . . , n}.

Proof: Let c(S1, . . . , Sp) be a constraint. Consider a set t from D(Si) such
that t 6∈ pIk〈c〉(Si). This means that t was removed by BC on c for Ik.
Consider now BC on c for I1 + . . . + In. The BC definition guarantees at
least that Si must be BC on c for Ij, j ∈ {1, . . . , n}.

Thus t 6∈ pI1+...+In〈c〉(Si). As a result, if pIk〈c〉(Si) is empty, pI1+...+In〈c〉(Si)
is empty as well. �

6.3 Using the framework

We now study various triple combinations of minlex, SB and card represen-
tations. Then we position lengthlex ·SB [28] and the hybrid domain [18, 19]
within our framework. Before using the framework we will instantiate the
synchronization property given in Definition 15 for synchronization between
triple minlex based combinations. This instantiation is useful in order to
actively use the framework and follow the theoretical study.

6.3.1 Instantiation of synchronization

In addition to the theorems used in Section 4.4.1, we give the following
theorems in order to obtain the desired instantiation.

Theorem 22 Given a set variable S, the representation card and the com-
bination minlex·SB, card is synchronized with minlex·SB on S iff ∃sl, su ∈
DML·SB(S) such that |sl| = lbC(S), |su| = ubC(S).

Proof: =⇒ By Definition 15, lbC(S) = glbC(DML·SB·C(S)) = glb�C({[s] | s ∈
DML·SB·C(S)}). Since �C is a total ordering, it means that there exists at
least a set sl ∈ DML·SB(S) whose cardinality is lbC(S). Similarly for ubC(S).
⇐= Suppose that ∃sl, su ∈ DML·SB(S) such that |sl| = lbC(S) and |su| =
ubC(S). It means that sl, su ∈ DML·SB·C(S). Since �C is a total or-
der, [sl] and [su] are the smallest (resp. greatest) equivalence class of the
sets contained in DML·SB·C(S) with respect to �C ordering. Thus [sl] =
glb�C({[s] | s ∈ DML·SB·C(S)}) and [su] = lub�C({[s] | s ∈ DML·SB·C(S)}).
�
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Theorem 23 Given a set variable S, the representation SB and the com-
bination minlex · card, SB is synchronized with minlex · card on S iff
lbSB(S) ⊇ ∩s∈DML·Cs and ubSB(S) ⊆ ∪s∈DML·Cs.

Proof: =⇒ By Definition 15 lbSB(S) = glbSB(DML·SB·C(S)) = ∩s∈DML·SB·C(S)

s ⊇ ∩s∈DML·C(S)s and ubSB(S) = lubSB(DML·SB·C(S)) = ∪s∈DML·SB·C(S)s ⊆
∪s∈DML·C(S)s.
⇐= Suppose that lbSB(S) ⊇ ∩s∈DML·C(S)s and ubSB(S) ⊆ ∪s∈DML·C(S)s. We
have that ∩s∈DML·C(S)s ⊆ lbSB(S) ⊆ ubSB(S) ⊆ ∪s∈DML·C(S)s. Thus lbSB(S)
is the greatest lower bound of DML·SB·C(S). Indeed it contains at least all
the values commons to each set of DML·C(S) and it does not contain values
that does not appear in DML·C(S). Moreover it is the greatest lower bound
of the SB domain by construction. Similarly for ubSB(S). �

Theorem 24 Given a set variable S, the representation minlex and the
combination SB · card, minlex is synchronized with SB · card on S iff
lbML(S) ∈ DSB·C(S) and ubML(S) ∈ DSB·C(S).

Proof: =⇒ If lbML(S) = glbML(DML·SB·C(S)) then lbML(S) ∈ DML·SB·C(S)
as minlex totally orders its sets. Thus lbML(S) ∈ DSB·C(S). Similarly for
ubML(S).
⇐= Suppose that lbML(S) ∈ DSB·C(S). Then lbML(S) ∈ DML·SB·C(S).
Moreover it is the greatest lower bound of the intersection because it is the
smallest set of the minlex domain. Similarly for ubML(S). �

Given a variable S and a combination R1 +R2 ·R3, S is synchronized for
R1+R2 ·R3 iff S is synchronized for R2 ·R3, R1 is synchronized with R2 ·R3 on
S and R2 and R3 are synchronized independently with R1 on S. Thus using
the above theorems together with the analogous theorems of Chapter 4 we
can easily obtain the following instantiations for combinations with minlex,
SB and card.

Combination minlex ·SB+card Given the three representations minlex,
SB and card a variable S is synchronized for minlex · SB + card iff:

• S is synchronized for minlex and SB;

• ∃sl, su ∈ DML·SB(S) such that |sl| = lbC(S), |su| = ubC(S);

• lbC(S) ≤ |lbML(S)| ≤ ubC(S) and lbC(S) ≤ |ubML(S)| ≤ ubC(S);

• lbSB(S) = ∩s∈DSB·C(S)s and ubSB(S) = ∪s∈DSB·C(S)s.
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Combination minlex ·card+SB Given the three representations minlex,
card and SB a variable S is synchronized for minlex · card+ SB iff:

• S is synchronized for minlex and card;

• lbSB(S) ⊇ ∩s∈DML·Cs and ubSB(S) ⊆ ∪s∈DML·Cs;

• lbML(S) ∈ DSB(S) and ubML(S) ∈ DSB(S);

• ∃sl, su ∈ DSB·C(S) such that |sl| = lbC(S), |su| = ubC(S).

Combination SB · card + minlex Given the three representations SB,
card and minlex a variable S is synchronized for SB · card+minlex iff:

• S is synchronized for SB and card;

• lbML(S) ∈ DSB·C(S) and ubML(S) ∈ DSB·C(S);

• lbSB(S) ⊇ ∩s∈DML
s and ubSB(S) ⊆ ∪s∈DML

s;

• ∃sl, su ∈ DML(S) such that |sl| = lbC(S), |su| = ubC(S).

We now instantiate the synchronization property for minlex · card · SB
and minlex+ card+ SB.

Combination minlex ·SB · card Given the three representations minlex,
SB and card a variable S is synchronized for minlex · SB · card iff:

• lbML(S) = glbML(DML·SB·C(S)) and ubML(S) = lubML(DML·SB·C(S));

• lbSB(S) = glbSB(DML·SB·C(S)) and ubSB(S) = lubSB(DML·SB·C(S));

• lbC(S) = glbC(DML·SB·C(S)) and ubC(S) = lubC(DML·SB·C(S)).

Combination minlex+SB+card Given the three representations minlex,
SB and card a variable S is synchronized for minlex+ SB + card iff:

• S is synchronized for minlex and SB;

• S is synchronized for minlex and card;

• S is synchronized for SB and card.
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Figure 6.1: Comparisons of triple combinations with minlex, SB and card.
H1 → H2 means H1 � H2 whilst H1−̃H2 means that H1 ∼ H2.

6.3.2 Comparing minlex, card and SB combinations

In this section we study triple combinations with minlex, card and SB. The
results are summarized in Figure 6.1. Comparisons are divided into three
sections, covering the three levels of the graph of Figure 6.1.

First level The following 3 theorems shows thatminlex·card·SB is strictly
stronger than minlex ·card+SB, minlex ·SB+card and SB ·card+minlex,
as expected.

Theorem 25 minlex · card · SB � minlex · card+ SB.

Proof: By Theorem 20, minlex · card · SB � minlex · card+ SB.
To show that minlex ·card ·SB � minlex ·card+SB, take the constraint

|S1 ∩ S2| = 1 on the two set variables S1 and S2 which take value from the
universe U = {1, 2, 3, 4, 5}. Assume that D(S1) = D(S2) = {{1, 5}, {3, 4}}.
The minlex, SB and card domain are the following:

• DML(S1) = DML(S2) = {{1, 5}, {2}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {2, 3, 5},
{2, 4}, {2, 4, 5}, {2, 5}, {3}, {3, 4}};

• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 3, 4, 5};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

minlex ·SB · card clearly fails since the constraint cannot be satisfied in the
joint domain. Instead minlex · card+ SB does not prune. �

Theorem 26 minlex · card · SB � minlex · SB + card.
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Proof: By Theorem 20, minlex · card · SB � minlex · SB + card.
To show that minlex · card · SB � minlex · SB + card, take the con-

straint S1 ∪ S2 ⊇ {2, 3, 4} on the two set variables S1 and S2 which take
values from the universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) =
{{1, 2}, {1, 3}, {1, 4}}. The minlex, SB and card domains are the following:

• DML(S1) = DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3},
{1, 3, 4}, {1, 4}};

• lbSB(S1) = lbSB(S2) = {1}, ubSB(S1) = ubSB(S2) = {1, 2, 3, 4};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

minlex · SB · card clearly fails and minlex · SB + card does not prune. �

Theorem 27 minlex · card · SB � SB · card+minlex.

Proof: By Theorem 20, minlex · card · SB � SB · card+minlex.
To show that minlex ·card ·SB � SB ·card+minlex, take the constraint

|S1 ∩ S2| = 1 on the two set variables S1 and S2 which take value from the
universe U = {1, 2, 3, 4, 5}. Assume that D(S1) = D(S2) = {{1, 5}, {3, 4}}.
The minlex, SB and card domains are the following:

• DML(S1) = DML(S2) = {{1, 5}, {2}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {2, 3, 5},
{2, 4}, {2, 4, 5}, {2, 5}, {3}, {3, 4}};

• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 3, 4, 5};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

minlex ·SB · card clearly fails since the constraint cannot be satisfied in the
joint domain. Instead SB · card+minlex does not prune. �

Second level In the following, we compare minlex · card + SB, minlex ·
SB + card and SB · card + minlex. It is interesting to see that all these
combinations are pairwise incomparable. The reason for this is due to the
different ways to propagate the constraints for the different combinations.

Theorem 28 minlex · card+ SB ∼ minlex · SB + card.

Proof: We first show minlex · card + SB 6� minlex · SB + card. Take
the constraint |S1 ∩ S2| = 1 on the two set variables S1 and S2 which take
values from the universe U = {1, 2, 3, 4, 5}. Assume that D(S1) = D(S2) =
{{1, 5}, {3, 4}}. The minlex, SB and card domains are the following:
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• DML(S1) = DML(S2) = {{1, 5}, {2}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {2, 3, 5},
{2, 4}, {2, 4, 5}, {2, 5}, {3}, {3, 4}};

• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 3, 4, 5};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

minlex · SB + card prune all the sets from all the domains ({3} is pruned
thanks to synchronization with card) and minlex ·card+SB does not prune.

We now show minlex · SB + card 6� minlex · card + SB. Take the
constraint S1 ∪ S2 ⊇ {2, 3, 4} on the two set variables S1 and S2 which take
values from the universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) =
{{1, 2}, {1, 3}, {1, 4}}. The minlex, SB and card domains are the following:

• DML(S1) = DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3},
{1, 3, 4}, {1, 4}};

• lbSB(S1) = lbSB(S2) = {1}, ubSB(S1) = ubSB(S2) = {1, 2, 3, 4};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

minlex·card+SB prunes all the sets from all the domains, minlex·SB+card
does not prune. �

Theorem 29 minlex · SB + card ∼ SB · card+minlex.

Proof: We first show minlex · SB + card 6� SB · card+minlex. Take the
constraint S1 ∪ S2 ⊇ {2, 3, 4} on the two set variables S1 and S2 which take
values from the universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) =
{{1, 2}, {1, 3}, {1, 4}}. The minlex, SB and card domains are the following:

• DML(S1) = DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1,
3, 4}, {1, 4}};

• lbSB(S1) = lbSB(S2) = {1}, ubSB(S1) = ubSB(S2) = {1, 2, 3, 4};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

SB·card+minlex prunes all the sets from all the domains. minlex·SB+card
does not prune.

We now show SB·card+minlex 6� minlex·SB+card. Take the constraint
|S1 ∩ S2| = 1 on the two set variables S1 and S2 which take value from the
universe U = {1, 2, 3, 4, 5}. Assume that D(S1) = D(S2) = {{1, 5}, {3, 4}}.
The minlex, SB and card domain are the following:
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• DML(S1) = DML(S2) = {{1, 5}, {2}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {2, 3, 5},
{2, 4}, {2, 4, 5}, {2, 5}, {3}, {3, 4}};

• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 3, 4, 5};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

minlex ·SB+card prunes all the sets from all the domains ({3} is pruned
thanks to synchronization with card) whereas SB · card + minlex does not
prune. �

Theorem 30 SB · card+minlex ∼ minlex · card+ SB.

Proof: We first show minlex · card+ SB 6� SB · card+minlex. Take the
constraint S1 ∪ S2 6⊂ {1, 2, 4} on the two set variables S1 and S2 which take
values from the universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) =
{{1}, {2}, {4}}. The minlex, SB and card domains are the following:

• DML(S1) = DML(S2) = {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3},
{1, 3, 4}, {1, 4}, {2},
{2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}};

• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 2, 4};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 1.

SB·card+minlex prunes all the sets from all the domains. minlex·card+SB
does not prune: bounds of minlex are supported by {3} and for SB is
enough to observe that empty is supported by {1, 2, 4} and vice versa (so the
intersection is empty and union is {1, 2, 4}).

We now show SB · card + minlex 6� minlex · card + SB. Take the
constraint S1 ∪ S2 ⊇ {2, 3, 4} on the two set variables S1 and S2 which take
values from the universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) =
{{}, {1}, {1, 2}, {1, 3}, {1, 4}}. The minlex, SB and card domains are:

• DML(S1) = DML(S2) = {{}, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1,
3}, {1, 3, 4}, {1, 4}};

• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 2, 3, 4};

• lbC(S1) = lbC(S2) = 0, ubC(S1) = ubC(S2) = 2.

minlex · card+SB prunes all the sets from all the domains. For SB · card+
minlex, we have that pSB·C+ML〈c〉(S1) = pSB·C+ML〈c〉(S1) = {{1}, {1, 2}, {1, 3},
{1, 4}} because of card lower bound that is updated to 1. �
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Third level Finally we show that minlex · card+SB, minlex ·SB+ card
and SB · card + minlex are strictly stronger than minlex + SB + card, as
expected.

Theorem 31 minlex · card+ SB � minlex+ SB + card

Proof: By Theorem 20, minlex · card+ SB � minlex+ SB + card.
To show that minlex · card + SB � minlex + SB + card, take the con-

straint S1 ∪ S2 ⊇ {2, 3, 4} on the two set variables S1 and S2 which take
values from the universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) =
{{1, 2}, {1, 3}, {1, 4}}. The minlex, SB and card domains are the following:

• DML(S1) = DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1,
3, 4}, {1, 4}};

• lbSB(S1) = lbSB(S2) = {1}, ubSB(S1) = ubSB(S2) = {1, 2, 3, 4};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

minlex·card+SB prunes all the sets from all the domains, minlex+SB+card
does not prune. �

Theorem 32 minlex · SB + card � minlex+ SB + card

Proof: By Theorem 20, minlex · SB + card � minlex+ SB + card.
To show thatminlex·SB+card � minlex+SB+card, take the constraint

|S1 ∩ S2| = 1 on the two set variables S1 and S2 which take value from the
universe U = {1, 2, 3, 4, 5}. Assume that D(S1) = D(S2) = {{1, 5}, {3, 4}}.
The minlex, SB and card domain are the following:

• DML(S1) = DML(S2) = {{1, 5}, {2}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {2, 3, 5},
{2, 4}, {2, 4, 5}, {2, 5}, {3}, {3, 4}};

• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 3, 4, 5};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

minlex · SB + card prune all the set from all the domains ({3} is pruned
thanks to synchronization with card) and minlex+card+SB does not prune.
�

Theorem 33 SB · card+minlex � minlex+ SB + card
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Proof: By Theorem 20, SB · card+minlex � minlex+ SB + card.
To show that SB · card + minlex � minlex + SB + card, take the con-

straint S1 ∪ S2 ⊇ {2, 3, 4} on the two set variables S1 and S2 which take
values from the universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) =
{{1, 2}, {1, 3}, {1, 4}}. The minlex, SB and card domains are the following:

• DML(S1) = DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1,
3, 4}, {1, 4}};

• lbSB(S1) = lbSB(S2) = {1}, ubSB(S1) = ubSB(S2) = {1, 2, 3, 4};

• lbC(S1) = lbC(S2) = ubC(S1) = ubC(S2) = 2.

SB · card+minlex prunes all the sets from all the domains. minlex+SB+
card does not prune. �

6.3.3 lengthlex · SB in our framework

In Figure 6.2, we compare the various combinations of minlex, SB and card
against lengthlex · SB defined in [14]. In [28], the authors refer to this
representation as ls-domain; however they experiment with only lengthlex+
SB. We prove that lengthlex · SB is incomparable to any minlex based
combination. Again, the reason of this result is mainly due to how original
domains are approximated.

Figure 6.2: Comparisons with lengthlex · SB. H1 → H2 means H1 � H2

whilst H1−̃H2 means that H1 ∼ H2.

Theorem 34 lengthlex·SB is incomparable to minlex, minlex·SB, minlex·
card, minlex + SB + card, minlex · card + SB, minlex · SB + card, SB ·
card+minlex and minlex · card · SB.
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Proof: We first show that lengthlex · SB 6� minlex. Take the constraint
S ≥lex {1, 3} on the set variable S which takes values from the universe
U = {1, 2, 3}. Assume that D(S) = {{}, {1}, {1, 2}, {1, 2, 3}}.

The lengthlex, SB and minlex domains are the following:

• DML(S) = {{}, {1}, {1, 2}{1, 2, 3}};

• DLL(S) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}};

• lbSB(S) = {}, ubSB(S) = {1, 2, 3}.

Enforcing BC on c forminlex prunes all the domain whereas pLL·SB〈c〉(S) =
{{1, 2}}. Thus lengthlex is not stronger than all minlex based combinations
with SB and card.

We now show that minlex·card·SB 6� lengthlex·SB. Take the constraint
S1∪S2 = {1, 2, 3, 4} on two set variables S1 and S2 which take values from the
universe U = {1, 2, 3, 4}. Assume that D(S1) = D(S2) = {{3}, {4}, {1, 2}}.
The minlex, lengthex, SB and card domains are the following:

• DLL(S1) = DLL(S2) = {{3}, {4}, {1, 2}};

• lbSB(S1) = lbSB(S2) = {}, ubSB(S1) = ubSB(S2) = {1, 2, 3, 4};

• DML(S1) = DML(S2) = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {1, 3},
{1, 3, 4}, {1, 4}, {2}, {2, 3}, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}};

• lbC(S1) = lbC(S1) = 1, ubC(S2) = ubC(S2) = 2.

lengthlex·SB prunes all the sets from all the domains whereas pML·SB·C〉c〈(S) =
{{1, 2}} (note that the lower bound of card is updated to 2). Thus all minlex
based combinations with SB and card are not stronger than lengthlex ·SB.
�

6.3.4 Hybrid domain in our framework

In [19], a form of combination between maxlex, SB and card, called hy-
brid domain, is introduced. Related inference rules are given to maintain
synchronization between the bounds as well as to enforce some form of local
consistency on common set constraints. By just looking at the inference rules
given to maintain synchronization between the bounds, we can see that the
hybrid domain is a combination that falls between maxlex+ SB + card and
maxlex · SB · card. In other words, the reason is that 2 of the bounds are
updated by looking at the other two at the same time, which is a stronger rea-
soning than considering them mutually as we do in maxlex+SB+card. The
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reasoning however do not consider globally all the bounds at the same time.
Consider for instance a variable S with the domain lbmaxlex(S) = {4, 2, 1},
ubmaxlex(S) = {4, 3, 1}, lbSB(S) = {4}, ubSB(S) = {1, 2, 3, 4}, lbC(S) =
ubC(S) = 3. The inference rules will not change the subset bounds, but 1
must be in lbSB for the three bounds to be synchronized together. Similarly,
consider a variable S with the domain lbmaxlex(S) = {4, 3}, ubmaxlex(S) =
{5, 1}, lbSB(S) = {}, ubSB(S) = {1, 2, 3, 4, 5}, lbC(S) = ubC(S) = 2. The
inference rules will not change the subset bounds, but 2 must be removed
from ubSB(S) for the three bounds to be synchronized together.
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Set variables are natural objects for modelling a wide range of constraint
satisfaction problems. In general, the real domain of a set variable is ex-
ponential in size. Therefore it is often approximated with a representation.
A promising research area combines multiple representations [28, 18, 19].
These previous works have differed on how representations are combined,
how consistency between representations is maintained, and how the con-
straints are propagated in order to reduce the search space. So far there was
no framework to compare these combinations. This thesis bridged this gap.

In Chapter 4, we have devised a general framework for combining two
different representations of set variables. We have defined the notion of
synchronization between them. We have considered two ways to propagate a
combined representation: a weak method which considers each representation
independently, and a strong method which considers them together. We
have proposed a way to compare representations that measures their ability
to prune the search space. Then we started with an exhaustive pairwise
study of different representations. We studied various mutual combinations
of minlex, an effective representation for lexicographic constraints, with the
two popular representations SB and card. We then positioned the existing
mutual combinations of representations within our framework. This threw
out an expected result: the lengthlex representation [11], which is designed
to deal well with cardinality and lexicographic ordering constraints, is not
better on such constraints than a combination which deals with lexicographic
ordering (minlex) and cardinality separately.

In Chapter 5, we further studied minlex and we have shown that syn-
chronization between minlex and SB and minlex and card can be achieved
in polynomial time.

In Chapter 6, we extended the framework to deal with multiple repre-
sentations. We studied various triple combinations of minlex, SB and card
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representations. We then positioned the existing triple combinations of rep-
resentations within our framework (lengthlex · SB and hybrid domain). We
have shown that lengthlex · SB is incomparable to all minlex based repre-
sentations and hybrid domain does not maintain consistency between all the
bounds at the same time.

Our framework gives a structured approach for combining different rep-
resentations and provides theoretical tools to compare them. However, es-
pecially when representations are incomparable, a practical evaluation with
standard constraint satisfaction problems is still needed. Therefore in order
to evaluate the minlex combinations, we have to devise some efficient algo-
rithms to propagate constraints over minlex based combinations. From the
theoretical point of view, we also need to extend our framework to deal with
expressiveness. So far, we have compared representations considering only
their ability to prune the search space. This ability is affected by how repre-
sentations approximate the real domains. Thus it could be very interesting
to compare the expressiveness of the various representations captured in our
framework.

Part of the hereby presented work is submitted to the Twenty-Fifth Con-
ference on Artificial Intelligence (AAAI 2011).1

1http://www.aaai.org/Conferences/AAAI/aaai11.php
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