brought to you by CORE

vii

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRAK	V
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF APPENDICES	xiii

INTRODUCTION		1
1.1	Research Background	3
1.2	Objective	4
1.3	Scopes	4
1.4	Problem Statement	5
	INTR 1.1 1.2 1.3 1.4	INTRODUCTION1.1Research Background1.2Objective1.3Scopes1.4Problem Statement

CHAPTER 2 LITERATURE REVIEW

2.1	Detonation	7
2.2	Pulse Detonation Engine	10
2.3	Augmentor	11
2.4	Previous Study on Thrust Optimization for PDE	13
2.4.1	Thrust Optimization Using Nozzles	13
2.4.2	Thrust Optimization Using Ejectors	15
2.5	Thrust Augmentation	18

CHAPTER 3	METI	HODOLOGY	19
	3.1	Ejector Configuration	20
	3.1.1	Ejector Inlet	20
	3.1.2	Ejector Exhaust Geometry	21
	3.2	Experimental Setup	25
	3.3	Thrust Measurement	27

CHAPTER 4 RESULTS AND DISCUSSIONS 31

4.1	PDE Performance	32
4.1.1	Improvement in Data Colection	35
4.2	PDE Without Ejector	37
4.3	Effect of Straight Ejector	40
4.4	Effect of Convergent Ejector	42
4.5	Effect of Divergent Ejector	43
4.6	Effect of Converge-Divergent Ejector	45
4.7	Effect of Ejector Geometry	46

7

CHAPTER 5	CONCLUSION	48
REFERENCES		50
APPENDICES		53

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Basic configurations for the ejector	21

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	The Rankine-Hugoniot curve for combustion process	8
2.2	The pulse detonation engine cycle.	10
2.3	Ejector schematic	11
2.4	(i) Pulse Detonation Engine tube with various exit	14
	nozzles, (ii) the shapes of the four different exit	
	nozzles and (iii) the 2D mesh used for the CD Nozzle	
	case	
2.5	Shadowgraph images of PDE –Ejector interaction.	16
	Axial position, $x/D_{PDE}=2$.	
3.1	Inlet geometry of ejector	21
3.2	Left; ejector right; ejector inlet	22
3.3	Sketches of ejector used in experiment. From above;	23
	Convergent ejector, middle; Divergent ejector,	
	bottom; Converge-Divergent ejector	
3.4	From left; Diverge ejector, Converge ejector,	24
	Converge-Diverge ejector and Straight ejector	
3.5	PDE sequences	25
3.6	Diagram of ejector geometry	26
3.7	Position of the ejector	27
3.8	Schematic diagram of the experimental setup	28
3.9	Idealized pressure history at thrust surface	29
3.10	(a) Pressure transducer; (b) 9331B load cell	30
4.1	Thrust recorded by previous researcher	32

4.2	MSD digital 6A ignition control	33
4.3	The improvements of the thrust generated by the	34
	PDE	
4.4	Block diagrams constructed using DAQ Assistant for	35
	recording the data	
4.5	Improved NI-DAQmx block diagrams for recording	36
	the data	
4.6	Thrust produced by the PDE operated at frequency 5	37
	Hz	
4.7	Pressure profile of transducer 1 with frequency of 5	38
	Hz	
4.8	Baseline experiment. (a) Pressure profile recorded by	39
	pressure transducer 1. (b) Pressure profile recorded	
	by pressure transducer 2	
4.9	Thrust produced by the PDE operated at frequency	41
	5Hz with straight ejector at position $x/D_{PDE}=-1$	
	(Upstream)	
4.10	The effect of axial position on ejector performance	41
	for straight ejector	
4.11	The effect of axial position on ejector performance	43
	for convergent ejector	
4.12	The effect of axial position on ejector performance	44
	for divergent ejector	
4.13	The effect of axial position on ejector performance	45
	for converge-divergent ejector	
4.14	The effect of different type of ejector geometry	46

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	B NI-DAQ block diagram for simulating the signals	53
В	The propane, C ₃ H ₈ -oxigen mixtures characteristics	54
	calculated by CEA code	
С	Lab Sheet and Check List	58